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Abstract
We present a weighted version of the Caffarelli–Kohn–Nirenberg inequality 
in the framework of variable exponents. The combination of this inequality 
with a variant of the fountain theorem, yields the existence of infinitely many 
solutions for a class of non-homogeneous problems with Dirichlet boundary 
condition.
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1.  Introduction

Nonlinear problems with variable exponents are motivated by numerous models in the applied 
sciences that are driven by some classes of non-homogeneous partial differential operators. In 
some circumstances, the standard analysis based on the theory of usual Lebesgue and Sobolev 
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function spaces, Lp and W1,p, is not appropriate in the framework of materials that involve non-
homogeneities. For instance, both electro-rheological ‘smart’ fluids and phenomena arising in 
image processing are properly described by nonlinear models in which the exponent p is not 
necessarily constant. The variable exponent describes the geometry of the material which is 
allowed to change its hardening exponent at different points. This leads to the analysis of vari-
able exponent Lebesgue and Sobolev function spaces (denoted by Lp(x) and W1,p(x)), where p 
is a real-valued (non-constant) function. We point out important contributions of Halsey [21] 
and Zhikov [30] in strong relationship with the behavior of strongly anisotropic materials. 
This is mainly achieved in the framework of the homogenization and nonlinear elasticity. We 
refer, e.g. to Acerbi and Mingione [3] and Ružička [28] (electrorheological ‘smart’ fluids) and 
Antontsev and Shmarev [6] (nonlinear Darcy’s law in porous media). A thorough variational 
analysis of the problems with variable exponents has been developed in the recent monograph 
by Rădulescu and Repovš [27] (see also the survey paper by Rădulescu [26] and the important 
contributions of Pucci et al [12, 25]).

Let Ω ⊂ RN (N � 2) be a bounded domain with smooth boundary. The following 
Caffarelli–Kohn–Nirenberg inequality [9] states that given p ∈ (1, N) and real numbers a, b 
and q such that

−∞ < a <
N − p

p
, a � b � a + 1, q =

Np
N − p(1 + a − b)

,

there is a positive constant Ca,b such that for all u ∈ C1
c(Ω),

(∫

Ω

|x|−bq|u|q dx
) p/q

� Ca,b

∫

Ω

|x|−ap|∇u| p dx.� (1.1)

This result goes back to the celebrated Hardy inequality [22], which establishes that if 
1 � p < N , then for all u ∈ C∞

0 (RN \ {0})
∥∥∥∥

u(x)
‖x‖

∥∥∥∥
L p(RN)

�
p

N − p
‖∇u‖L p(RN),

where ‖x‖ =
√

x2
1 + · · ·+ x2

n  and the constant p
N−p  is known to be sharp. Inequality (1.1) has 

been widely analyzed in many different settings (see, e.g. [1, 2, 5, 10, 11, 14, 15, 16, 19]). 
Nowadays, there is vast literature on this subject, for example, the MathSciNet search shows 
about 5000 research works related to this topic.

The main aim of this paper is to present an analogoue of the Caffarelli–Kohn–Nirenberg 
inequality in the framework of variable exponents. To the best of our knowledge, there are 
very few results dealing with this topic. For instance, the following result was established in 
[24]: there exists a positive constant C such that
∫

Ω

|u(x)| p(x) dx � C
∫

Ω

|−→a (x)| p(x)|∇u(x)| p(x) dx, for all u ∈ C1
c(Ω),� (1.2)

where Ω ⊂ RN (N � 2) is a bounded domain with smooth boundary, while −→a : Ω → RN  and 
p : Ω → R are functions of class C1, satisfying for some a0  >  0

div (−→a (x)) � a0 > 0, for all x ∈ Ω,� (1.3)

provided that

−→a (x) · ∇p(x) = 0, for all x ∈ Ω.� (1.4)
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In this paper, we establish a more involved version of inequality (1.2), which combines 
the contributions of several quantities. In order to introduce the main abstract result of the 
paper, we assume that Ω ⊂ RN (N � 2) is a bounded domain with smooth boundary and 
a, p : Ω → R are given functions such that the following hypotheses are fulfilled:

	(A)	a is a function of class C1 and there exist x0 ∈ Ω, r  >  0, s ∈ (1,+∞) such that

|a(x)| �= 0, for all x ∈ Ω \ {x0} and |a(x)| � |x − x0|s, for all x ∈ B(x0, r); and

	(P)	p is a function of class C1 and p(x) ∈ (2, N) for all x ∈ Ω.

The main abstract result of this paper is the following weighted Caffarelli–Kohn–Nirenberg 
inequality.

Theorem 1.1.  Assume that conditions (A) and (P) hold. Let Ω ⊂ RN (N � 2) be a bounded 
domain with smooth boundary. Then there exists a positive constant β such that
∫

Ω

|a(x)| p(x)|u(x)| p(x)dx � β

∫

Ω

|a(x)| p(x)−1||∇a(x)||u(x)| p(x)dx

+ β

(∫

Ω

|a(x)| p(x)|∇u(x)| p(x)dx +
∫

Ω

|a(x)| p(x)|∇p(x)||u(x)| p(x)+1dx
)

+ β

∫

Ω

|a(x)| p(x)−1|∇p(x)||u(x)| p(x)−1dx.

for all u ∈ C1
c(Ω).

We point out that, by hypotheses (A) and (P), the potential ∇a can vanish in Ω and we do 
not assume that ∇p(x) · a(x) = 0, for all x ∈ Ω (see assumption (1.4) related to inequality 
(1.3)).

Next, we are concerned with the existence of infinitely many solutions for the problem


−div (B(x)|∇u| p(x)−2∇u) + (A(x)|u| p(x)−2 + C(x)|u| p(x)−3)u
= (b(x)|u|q(x)−2 − D(x)|u| p(x)−1)u in Ω,
u = 0 on ∂Ω,

� (1.5)

where the variable exponent q fulfills a subcritical condition (namely, in the sense of Sobolev-
type embeddings for spaces with variable exponent). We assume that b : Ω → R and the 
weighted potentials A, B, C, D are defined by




A(x) = |a(x)| p(x)−1|∇a(x)|
B(x) = |a(x)| p(x)

C(x) = |a(x)| p(x)−1|∇p(x)|
D(x) = B(x)|∇p(x)|.

� (1.6)

The potential b is assumed to satisfy the following hypothesis:

	(B)	 b ∈ L∞(Ω) and b  >  0 in Ω.

In the final part of this paper, by combining our generalized Caffarelli–Kohn–Nirenberg 
inequality with a variant of the fountain theorem, we shall prove that problem (1.5) has infi-
nitely many solutions.
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2. Terminology and the abstract setting

In this section we recall some basic definitions and properties concerning the Lebesgue and 
Sobolev spaces with variable exponent. We refer to [17, 27] and the references therein.

Consider the set

C+(Ω) = { p ∈ C(Ω); p(x) > 1 for all x ∈ Ω}.

For all p ∈ C+(Ω) we define

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

L p(x)(Ω) =

{
u; u is measurable real-valued function such that

∫

Ω

|u(x)| p(x) dx < ∞
}

.

This vector space is a Banach space if it is endowed with the Luxemburg norm, which is 
defined by

|u|p(x) = inf

{
µ > 0;

∫

Ω

∣∣∣∣
u(x)
µ

∣∣∣∣
p(x)

dx � 1

}
.

The function space L p(x)(Ω) is reflexive if and only if 1 < p− � p+ < ∞ and continuous 
functions with compact support are dense in L p(x)(Ω) if p+ < ∞.

Let Lq(x)(Ω) denote the conjugate space of L p(x)(Ω), where 1/p(x) + 1/q(x) = 1. If 
u ∈ L p(x)(Ω) and v ∈ Lq(x)(Ω) then the following Hölder-type inequality holds:

∣∣∣∣
∫

Ω

uv dx
∣∣∣∣ �

(
1

p−
+

1
q−

)
|u|p(x)|v|q(x).� (2.7)

Moreover, if pj ∈ C+(Ω) (j  =  1,2,3) and

1
p1(x)

+
1

p2(x)
+

1
p3(x)

= 1

then for all u ∈ L p1(x)(Ω), v ∈ L p2(x)(Ω), w ∈ L p3(x)(Ω)
∣∣∣∣
∫

Ω

uvw dx
∣∣∣∣ �

(
1

p−1
+

1
p−2

+
1

p−
3

)
|u|p1(x)|v|p2(x)|w|p3(x).� (2.8)

The inclusion between Lebesgue spaces also generalizes the classical framework, namely 
if 0 < |Ω| < ∞ and p1, p2 are variable exponents such that p1 � p2 in Ω then there exists a 
continuous embedding L p2(x)(Ω) ↪→ L p1(x)(Ω).

Proposition 2.1.  If we denote

ρ(u) =
∫

Ω

|u| p(x)dx, ∀u ∈ L p(x)(Ω),

then

	 (i)	|u|p(x) < 1(= 1;> 1) ⇔ ρ(u) < 1(= 1;> 1); 
	(ii)	|u|p(x) > 1 ⇒ |u| p−

p(x) � ρ(u) � |u| p+

p(x); 

A Bahrouni ﻿Nonlinearity 31 (2018) 1516



1520

	(iii)	|u|p(x) < 1 ⇒ |u| p+

p(x) � ρ(u) � |u| p−

p(x).

Proposition 2.2.  If u, un ∈ L p(x)(Ω) and n ∈ N, then the following statements are equiva-
lent:

	(1)	 lim
n→+∞

|un − u|p(x) = 0; 
	(2)	 lim

n→+∞
ρ(un − u) = 0;

	(3)	un → u in the measure on Ω and lim
n→+∞

ρ(un) = ρ(u).

If k is a positive integer and p ∈ C+(Ω), then we define the variable exponent Sobolev 
space by

Wk,p(x)(Ω) = {u ∈ L p(x)(Ω); Dαu ∈ L p(x)(Ω), for all |α| � k}.

Here, α = (α1, . . . ,αN) is a multi-index, |α| =
∑N

i=1 αi, and

Dαu =
∂|α|u

∂α1
x1 . . . ∂αN

xN

.

On Wk,p(x)(Ω) we consider the following norm

‖u‖k,p(x) =
∑
|α|�k

|Dαu|p(x).

Then Wk,p(x)(Ω) is a reflexive and separable Banach space if 1 < p− � p+ < +∞. Let 

Wk,p(x)
0 (Ω) denote the closure of C∞

0 (Ω) in Wk,p(x)(Ω).
The Lebesgue and Sobolev spaces with variable exponents coincide with the usual Lebesgue 

and Sobolev spaces provided that p is constant. According to Rădulescu and Repovš [27, pp 8 
and 9], these function spaces have some unusual properties, such as:

	 (i)	Assuming that 1 < p− � p+ < ∞ and p : Ω → [1,∞) is a smooth function, the fol-
lowing co-area formula

∫

Ω

|u(x)| pdx = p
∫ ∞

0
t p−1 |{x ∈ Ω; |u(x)| > t}| dt

		 has no analogue in the framework of variable exponents.
	(ii)	Spaces Lp(x) do not satisfy the mean continuity property. More exactly, if p is noncon-

stant and continuous in an open ball B(x0), then there is some u ∈ L p(x)(B(x0)) such that 
u(x + h) �∈ L p(x)(B(x0 + h)) for every h ∈ RN  with arbitrarily small norm.

	(iii)	Function spaces with variable exponent are never invariant with respect to translations. 
The convolution is also limited. For instance, the classical Young inequality

| f ∗ g|p(x) � C | f |p(x) ‖g‖L1

		 remains valid if and only if p is constant.

3.  Weighted Caffarelli–Kohn–Nirenberg inequality for p(x)-Laplacian

We start with the following weighted logarithmic inequality.

A Bahrouni ﻿Nonlinearity 31 (2018) 1516
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Lemma 3.1.  Let condition (P) be satisfied. Then there exists a positive constant μ such that
∫

supp (u)
|∇p(x)||u(x)| p(x)| log(|u(x)|)|dx � µ

∫

Ω

|∇p(x)|
(
|u(x)| p(x)−1 + |u(x)| p(x)+1

)
dx,

for all u ∈ C1
c(Ω).

Proof.  Let u ∈ C1
c(Ω). We define

α1 = sup
0<t�1

t| log(t)| < ∞ and α2 = sup
1<t

t−1 log(t) < ∞.

We observe that 0 < α1 < +∞ and 0 < α2 < +∞. Let

Ω1 = {x ∈ supp (u); |u(x)| � 1} and Ω2 = {x ∈ supp (u); |u(x)| > 1}.

Then
∫

supp (u) |∇p(x)||u(x)| p(x)| log(|u(x)|)|dx =
∫
Ω1

|∇p(x)||u(x)| p(x)| log(|u(x)|)|dx

+
∫
Ω2

|∇p(x)||u(x)| p(x)| log(|u(x)|)|dx
� α1

∫
Ω1

|∇p(x)||u(x)| p(x)−1dx
+α2

∫
Ω2

|∇p(x)||u(x)| p(x)+1dx
� µ(

∫
Ω
|∇p(x)||u(x)| p(x)−1dx

+
∫
Ω
|∇p(x)||u(x)| p(x)+1dx),

where µ = max(α1,α2). This proves the lemma.� □ 

Proof of theorem 1.1.  We prove in what follows our weighted version of the Caffarelli–
Kohn–Nirenberg inequality with variable exponent.

We define the function W : RN → RN by W(y) = y for all y ∈ RN . We choose ε > 0 small 
enough so that

0 < ε <
N

p+‖W‖L∞(Ω)
.� (3.9)

By a straightforward computation we can deduce that for all u ∈ C1
c(Ω) we have

div (|a(x)u(x)| p(x)W(x)) = |a(x)| p(x)|u(x)| p(x)div (W(x))

+ p(x)|a(x)| p(x)|u(x)| p(x)−2u(x)∇u(x) · W(x)

+ p(x)|u(x)| p(x)|a(x)| p(x)−2a(x)∇a(x) · W(x)

�

(3.10)

+|u(x)a(x)| p(x) log(|a(x)u(x)|)∇p(x).W(x), ∀x ∈ Ω.� (3.11)

Now the flux-divergence theorem implies that 
∫
Ω

div (|a(x)u(x)| p(x)W(x))dx = 0. It follows 
from lemma 3.1 and conditions (A) and (P), that

A Bahrouni ﻿Nonlinearity 31 (2018) 1516
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∫

Ω

|a(x)u(x)| p(x)div (W(x))dx � p+
∫

Ω

|u(x)| p(x)|a(x)| p(x)−1|∇a(x)||W(x)|dx

+

∫

Ω

|a(x)u(x)| p(x)| log(|u(x)a(x)|)||∇p(x)||W(x)|dx

+ p+
∫

Ω

|u(x)| p(x)−1|a(x)| p(x)|∇u(x)||W(x)|dx

� p+‖W‖L∞(Ω)

∫

Ω

|a(x)| p(x)−1||∇a(x)||u(x)| p(x)dx

+ µ‖W‖L∞(Ω)

∫

Ω

|a(x)| p(x)−1|∇p(x)||u(x)| p(x)−1dx

+ µ‖a‖L∞(Ω)‖W‖L∞(Ω)

∫

Ω

|a(x)| p(x)|∇p(x)||u(x)| p(x)+1dx

+ εp+‖W‖L∞(Ω)

∫

Ω

|a(x)| p(x)|u(x)| p(x)dx

+ p+ ‖W‖L∞(Ω)

ε p−−1

∫

Ω

|a(x)| p(x)|∇u(x)| p(x)dx.

�

(3.12)

Next, we combine div (W(x)) = N  in Ω with relation (3.12) and the following Young inequal-
ity:

a p−1b � εa p +
b p

ε p−1 , for all a, b, ε ∈ (0,∞), p ∈ (1,∞).

It follows that

(N − p+‖W‖L∞(Ω)ε)

∫

Ω

|a(x)u(x)| p(x)dx � p+
‖W‖L∞(Ω)

ε p−−1

∫

Ω

|a(x)| p(x)|∇u(x)| p(x)dx

+ p+‖W‖L∞(Ω)

∫

Ω

|a(x)| p(x)−1||∇a(x)||u(x)| p(x)dx

+ c
∫

Ω

|a(x)| p(x)|∇p(x)||u(x)| p(x)+1dx

�

(3.13)

+µ‖W‖L∞(Ω)

∫

Ω

|a(x)| p(x)−1|∇p(x)||u(x)| p(x)−1dx,�

(3.14)
with c = µ‖a‖L∞(Ω)‖W‖L∞(Ω). Invoking (3.9), we set

β =
max(c, p+ ‖W‖L∞(Ω)

ε p−−1 , p+‖W‖L∞(Ω),µ‖W‖L∞(Ω))

(N − p+‖W‖L∞(Ω)ε)
.

This completes the proof of theorem 1.1.� □ 

We denote by W1,p(x)
0,a(x) (Ω) the closure of C1

c(Ω) under the norm

‖u‖ = ||B(x)|
1

p(x)∇u(x)|p(x) + |A(x)
1

p(x) u(x)|p(x) + ||D(x)|
1

p(x)+1 u(x)|p(x)+1

+||C(x)|
1

p(x)−1 u(x)|p(x)−1,

A Bahrouni ﻿Nonlinearity 31 (2018) 1516
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where the potentials A, B, C, D are defined in (1.6).
As a corollary of theorem 1.1, we prove the following compactness property.

Lemma 3.2.  Assume that conditions (A) and (P) hold. Furthermore, assume that 

p−  >  1  +  s. Then W1,p(x)
0,a(x) (Ω) is compactly embedded in Lq(Ω) for each q ∈ (1, Np−

N+sp+ ). More-

over, the same conclusion holds if we replace Lq(Ω) by Lq(x)(Ω), provided that q+ < Np−

N+sp+ .

Proof.  Fix q ∈ (1, Np−

N+sp+ ). Let (un) be a bounded sequence in W1,p(x)
0,a(x) (Ω). Since x0 ∈ Ω, it 

follows that there exists ε0 > 0 such that

0 < ε0 < min(1, r) and B(x0, ε0) ⊂ Ω.

Fix ε > 0 such that ε < ε0. By condition (A), there exists a0  >  0 such that 
a(x) � a0, for all x ∈ Ω \ B(x0, ε). Hence, by invoking theorem 1.1 we deduce that 
the sequence (un) is bounded in L p(x)(Ω \ B(x0, ε)). Consequently, (un) is bounded in 
W1,p(x)(Ω \ B(x0, ε)). Since W1,p(x)(Ω \ B(x0, ε)) ⊂ W1,p−(Ω \ B(x0, ε)) we deduce that (un) 
is bounded in W1,p−(Ω \ B(x0, ε)). For all s  >  0 we have Np−/(N − p−) > Np−/(N + sp+). 
Thus, since 1 < q < Np−/(N + sp+), the classical compact embedding theorem shows that 
there exists a convergent subsequence of (un), still denoted by (un), in Lq(Ω \ B(x0, ε)). Thus, 
for any large enough n and m we have

∫

Ω\B(x0,ε)
|un − um|qdx < ε.� (3.15)

Now the Hölder inequality for variable exponent spaces implies
∫

B(x0,ε)
|un − um|qdx =

∫

B(x0,ε)
|a(x)|q|a(x)|−q|un − um|qdx

� c‖|a(x)|−qχB(x0,ε)‖( p(x)
q )′

‖|a(x)|q|un − um|q‖ p(x)
q

,
�

(3.16)

where c is a positive constant and ( p(x)
q )′ = p(x)

p(x)−q. By theorem 1.1 and proposition 2.1, there 

exist positive constants c1 and c2 such that

‖|a(x)|q|un − um|q‖ p(x)
q

� c1(

∫

Ω

|a(x)| p(x)|un − um| p(x)dx)
q

p−

+ c1(

∫

Ω

|a(x)| p(x)|un − um| p(x)dx)
q

p+

� c2.

�

(3.17)

Taking into account relations (3.16) and (3.17) we deduce that
∫

B(x0,ε)
|un − um|qdx � c2‖|a(x)|−qχB(x0,ε)‖( p(x)

q )′
.� (3.18)

By invoking proposition 2.1, we obtain

A Bahrouni ﻿Nonlinearity 31 (2018) 1516
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‖|a(x)|−qχB(x0,ε)‖( p(x)
q )′

� (

∫

Ω

|a(x)|
−qp(x)

( p(x)−q)χB(x0,ε)dx)((
p(x)

q )′)+

+ (

∫

Ω

|a(x)|
−qp(x)

( p(x)−q)χB(x0,ε)dx)((
p(x)

q )′)− .
�

(3.19)

Using condition (A) and ε < 1, we infer that
∫

B(x0,ε)
|a(x)|

−qp(x)
( p(x)−q) dx �

∫

B(0,ε)
|x|

−sqp+

( p−−q) dx

= wn

∫ ε

0
rN−1r

−sqp+

( p−−q) dr
�

(3.20)

= wn
εα

α
,� (3.21)

where α = N − sqp+

( p−−q) > 0 and wN is the area of the unit ball in RN . Thus, it follows from 

(3.15), (3.18) and (3.20) that
∫

Ω

|un − um|qdx � c(ε+ εα1 + εα2),

where c is a positive constant, α1 = (( p(x)
q )′)−α, and α2 = (( p(x)

q )′)+α. We conclude that (un) 

is a Cauchy sequence in Lq(Ω).
The same proof still applies if we replace Lq(Ω) by Lq(x)(Ω). The conclusion of the lemma 

is now evident.� □ 

4.  A multiplicity property for a problem with variable exponent

In this section, we work under conditions introduced in lemma 3.2. We investigate the exis-
tence of infinitely many solutions of problem (1.5), where b ∈ L∞(Ω) and

q(x) ∈
(

1,min

{
Np−

N + sp+
, p− − 1

})
for all x ∈ Ω.� (4.22)

We say that u ∈ W1,p(x)
0,a(x) (Ω) is a weak solution of problem (1.5) if

∫

Ω

B(x)|∇u(x)| p(x)−2∇u(x)∇v(x)dx +
∫

Ω

A(x)|u(x)| p(x)−2u(x)v(x)dx

+

∫

Ω

D(x)|u(x)| p(x)−1u(x)v(x)dx +
∫

Ω

C(x)|u(x)| p(x)−3u(x)v(x)dx

−
∫

Ω

b(x)|u(x)|q(x)−2u(x)v(x)dx = 0,

for all v ∈ W1,p(x)
0,a(x) (Ω).

Standard argument can be used to show that (W1,p(x)
0,a(x) (Ω), ‖.‖) is a reflexive Banach sepa-

rable space. Then, by [20], there exist (en) ⊂ W1,p(x)
0,a(x) (Ω) and e∗n ⊂ (W1,p(x)

0,a(x) (Ω))
∗ such that

A Bahrouni ﻿Nonlinearity 31 (2018) 1516



1525

e∗n (em) = 1 if n = m and e∗n (em) = 0 if n �= m.

It follows that

W1,p(x)
0,a(x) (Ω) = span {en, n � 1} and (W1,p(x)

0,a(x) (Ω))
∗ = span {e∗n , n � 1} .

For any integer k � 1, denote

Ek = span {ek} , Yk = ⊕k
j=1Ej and Zk = ⊕∞

j=kEj.

The main result of this section is the following multiplicity property.

Theorem 4.1.  Assume that p−  >  1  +  s and that conditions (A), (B) and (P) are fulfilled. 
Then problem (1.5) has infinitely many solutions.

Remark 4.2.  The main problem in treating equation (1.5) is the presence of the indefinite 
potential a(x), which can vanish at x0. To overcome this difficulty, we have proved a new type 
of the Caffarelli–Kohn–Nirenberg inequality, theorem 1.1, which is very useful to prepare the 
variational framework of equation (1.5), for example lemma 3.2. Moreover, we remark that 
the functions A, B, C, and D that appear in equation (1.5) are strongly related to our Caffarelli–
Kohn–Nirenberg type theorem. To the best of our knowledge, there are no known results on 
the existence of solutions to problem (1.5). Hence, in order to prove theorem 4.1, we use the 
previous section in relationship with some technical lemma related to the critical point theo-
rem established by Zou.

In order to prove theorem 4.1 we define the functional I : W1,p(x)
0,a(x) (Ω) → R by

I(u) =
∫

Ω

B(x)
p(x)

|∇u(x)| p(x)dx +
∫

Ω

A(x)
p(x)

|u(x)| p(x)dx +
∫

Ω

C(x)
p(x)− 1

|u(x)| p(x)−1dx

+

∫

Ω

D(x)
p(x) + 1

|u(x)| p(x)+1dx −
∫

Ω

b(x)
|u(x)|q(x)

q(x)
dx.

Standard arguments show that I ∈ C1(W1,p(x)
0,a(x) (Ω),R) and

〈I′(u), v〉 =
∫

Ω

B(x)|∇u(x)| p(x)−2∇u(x)∇v(x)dx +
∫

Ω

A(x)|u(x)| p(x)−2u(x)v(x)dx

+

∫

Ω

D(x)|u(x)| p(x)−1u(x)v(x)dx +
∫

Ω

C(x)|u(x)| p(x)−3u(x)v(x)dx

−
∫

Ω

b(x)|u(x)|q(x)−2u(x)v(x),

for all u, v ∈ W1,p(x)
0,a(x) (Ω). Thus, in order to find weak solutions of problem (1.5) it suffices to 

find critical points of the associated energy I.
Consider the functional

Iλ(u) = J(u)− λK(u),

where
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J(u) =
∫

Ω

B(x)
p(x)

|∇u(x)| p(x)dx +
∫

Ω

C(x)
p(x)− 1

|u(x)| p(x)−1dx

+

∫

Ω

A(x)
p(x)

|u(x)| p(x)dx +
∫

Ω

D(x)
p(x) + 1

|u(x)| p(x)+1dx

and

K(u) =
∫

Ω

b(x)
|u(x)|q(x)

q(x)
dx.

Then any critical point of I1 is a weak solution of problem (1.5).
An important ingredient of the proof of theorem 4.1 is the following version of the fountain 

theorem, see Zou [31].

Theorem 4.3.  Suppose that the functional Iλ defined above satisfies the following condi-
tions:

	(T1)	Iλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Furthermore, 

Iλ(−u) = Iλ(u) for all (λ, u) ∈ [1, 2]× E , where E := W1,p(x)
0,a(x) (Ω); 

	(T2)	B(u) � 0, B(u) → ∞ as ‖u‖ → ∞ on any finite-dimensional subspace of E; and
	(T3)	there exist ρk > rk > 0 such that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

Iλ(u) � 0 > bk(λ) = max
u∈Yk ,‖u‖=rk

Iλ(u) for λ ∈ [1, 2] ,

dk(λ) = inf
u∈Zk ,‖u‖�ρk

Iλ(u) → 0 as k → ∞ uniformly for λ ∈ [1, 2] .

Then there exist a sequence of real numbers (λn) converging to 1 and u(λn) ∈ Yn such that 
I′λn

|Yn (uλn) = 0 and (Iλn) (u (λn)) → ck ∈ [dk(2), bk(1)], as n → ∞. In particular, for fixed 
k ∈ N, if (u(λn)) has a convergent subsequence to uk, then I1 has infinitely many nontrivial 
critical points (uk) ⊂ E\{0} satisfying I1 (uk) → 0− as k → ∞.

We start with the following auxiliary property.

Lemma 4.4.  Assume that condition (B) holds. Then we have

βk = sup
u∈Zk ,‖u‖=1

∫

Ω

b(x)
|u(x)|q(x)

q(x)
dx → 0 as k → +∞.

Proof.  It is clear that 0 < βk+1 � βk, so that βk → β � 0 as k → +∞. For every k � 0, 

by definition of βk, there exists uk ∈ Zk such that ‖uk‖ = 1 and 
∫
Ω

b(x) |uk|q(x)

q(x) dx > βk
2 . Since 

uk ∈ Zk, it follows that uk ⇀ 0 in W1,p(x)
0,a(x) (Ω). Lemma 3.2 implies that, up to a subsequence,

∫

Ω

b(x)
|uk|q(x)

q(x)
dx → 0 as k → +∞.

Thus, β = 0 and the proof is complete.� □ 

The next result establishes that B is coercive on finite-dimensional subspaces of W1,p(x)
0,a(x) (Ω).
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Lemma 4.5.  Assume that hypotheses of theorem 4.1 are fulfilled. Then K(u) → +∞ as 

‖u‖ → +∞ on any finite-dimensional subspace of W1,p(x)
0,a(x) (Ω).

Proof.  Let F be a finite-dimensional subspace of W1,p(x)
0,a(x) (Ω). Put

b̃(x) =
b(x)
q(x)

, for all x ∈ Ω.

We start by showing that there exists ε1 > 0 such that

m
{

x ∈ Ω; b̃(x) |u|q(x) � ε1 ‖u‖q(x)
}
� ε1, for all u ∈ F\{0}.� (4.23)

Otherwise, for any positive integer n, there exists un ∈ F\{0} such that

m
{

x ∈ Ω; b̃(x) |un|q(x) �
1
n
‖un‖q(x)

}
<

1
n

.� (4.24)

Set vn(x) =
un(x)
‖un‖ ∈ F\{0}. Then ‖vn‖ = 1 for all n ∈ N and

m
{

x ∈ Ω; b̃(x) |vn|q(x) �
1
n

}
<

1
n

.

Passing to a subsequence, we may assume that vn → v0 in W1,p(x)
0,a(x) (Ω) for some v0 ∈ F . Then 

‖v0‖ = 1 and, by lemma 3.2,
∫

Ω

b̃(x) |vn − v0|q(x) dx → 0 as n → +∞.� (4.25)

We claim that there exists γ0 > 0 such that

m
{

x ∈ Ω; b̃(x) |v0|q(x) � γ0

}
� γ0.� (4.26)

Indeed, arguing by contradiction, we have

m
{

x ∈ Ω; b̃(x) |v0|q(x) �
1
n

}
= 0, for all n ∈ N.

It follows that

0 �
∫

Ω

b̃(x) |v0|q(x)+1 dx <
‖v0‖1

n
→ 0, as n → +∞.

Hence v0  =  0, which contradicts ‖v0‖ = 1.
Set

Ω0 =
{

x ∈ Ω; b̃(x) |v0|q(x) � γ0

}
, Ωn =

{
x ∈ Ω; b̃(x) |vn|q(x)

<
1
n

}

and
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Ωc
n =

{
x ∈ Ω; b̃(x) |vn|q(x) �

1
n

}
.

By (4.24) and (4.26), we obtain

m (Ωn ∩ Ω0) = m (Ω0\ (Ωc
n ∩ Ω0))

� m (Ω0)− m (Ωc
n ∩ Ω0)

� γ0 −
1
n
>

γ0

2

for large enough n. Consequently, since yq(x) is convex,
∫

Ω

b̃(x) |vn − v0|q(x) dx �
∫

Ωn∩Ω0

b̃(x) |vn − v0|q(x) dx

�
1

2q+−1

∫

Ωn∩Ω0

b̃(x) |v0|q(x) dx −
∫

Ωn∩Ω0

b̃(x) |vn|q(x) dx

�

(
γ0

2q+−1
− 1

n

)
m (Ωn ∩ Ω0)

�
γ2

0

2q++1
> 0,

for all large n, which is a contradiction to (4.25). Therefore (4.23) holds. For the ε1 given in 
(4.23), let

Ωu =
{

x ∈ Ω; b̃(x) |u|q(x) � ε1 ‖u‖q(x)
}

, for all u ∈ F\{0}.

Then

m (Ωu) � ε1 for all u ∈ F\{0}.� (4.27)

From (B) and (4.27), for any u ∈ F\{0} with ‖u‖ � 1, we get

K(u) =
∫

Ω

b̃(x) |u|q(x) dx �
∫

Ωu

b̃(x) |u|q(x) dx

� ε1 ‖u‖q− m (Ωu) � ε2
1 ‖u‖q− .

This implies that K(u) → ∞ as ‖u‖ → ∞ on any finite-dimensional subspace of E and this 
completes the proof.� □ 

Lemma 4.6.  Suppose that the conditions of theorem 4.1 are satisfied. Then there exists a 
sequence ρk → 0+ as k → +∞ such that

ak(λ) = inf
u∈Zk ,‖u‖=ρk

Iλ(u) � 0, for all k � k1

and

dk(λ) = inf
u∈Zk ,‖u‖�ρk

Iλ(u) → 0 as k → +∞ uniformly for all λ ∈ [1, 2].
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Proof.  By proposition 2.1 and lemma 3.2, we deduce that for any u ∈ Zk with ‖u‖ < 1, we 
have

Iλ(u) � 1
p+

(∫
Ω

B(x)|∇u(x)| p(x)dx +
∫
Ω

A(x)|u(x)| p(x)dx
)

+ 1
p++1

∫
Ω

D(x)|u(x)| p(x)+1dx

+ 1
p+−1

∫
Ω

C(x)|u(x)| p(x)−1dx − λ
∫
Ω

b(x)
q(x) |u(x)|

q(x)dx

� 1
4 p++2( p++1)

‖u‖ p++1 − λ‖u‖q−
∫
Ω

b(x)
q(x) (

|u(x)|
‖u‖ )q(x)dx

� 1
4 p++2( p++1)

‖u‖ p++1 − 2βk
q− ‖u‖q− .

�

(4.28)

We denote ρk = ( 4 p++3( p++1)βk
q− )

1
p++1−q− . By invoking lemma 4.4 we can deduce that 

ρk → 0 as k → +∞. Then there exists k1 ∈ N such that ρk � 1
4 p++3( p++1)

 for all k � k1. 
Relation (4.28) implies that

ak(λ) = inf
u∈Zk ,‖u‖=ρk

Iλ(u) �
1

2.4 p++3( p+ + 1)
ρ p++1

k , for all k � k1.

Furthermore, by (4.28), we have

inf
u∈Zk ,‖u‖�ρk

Iλ(u) � −2βk

q−
‖u‖q− , for all k � k1.

Having in mind Iλ(0) = 0, we obtain

inf
u∈Zk ,‖u‖�ρk

Iλ(u) � 0, ∀k � k1.

Using the fact that βk, ρk → 0 as k → +∞ and the above inequalities, we deduce that

dk(λ) = inf
u∈Zk ,‖u‖=ρk

Iλ(u) → 0 as k → +∞ uniformly for all λ ∈ [1.2].

This completes the proof.� □ 

Lemma 4.7.  Assume that hypotheses of theorem 4.1 are fulfilled. Then, for the sequence 
obtained in lemma 4.6, there exist 0 < rk < ρk for all k ∈ N such that

bk(λ) = max
u∈Yk ,‖u‖=rk

Iλ(u) < 0 for all λ ∈ [1, 2].

Proof.  Let u ∈ Yk with ‖u‖ < 1 and λ ∈ [1, 2]. By (A), (P) and (4.23), there exists εk > 0 
such that

Iλ(u) =
∫

Ω

B(x)
p(x)

|∇u(x)| p(x)dx +
∫

Ω

A(x)
p(x)

|u(x)| p(x)dx +
∫

Ω

C(x)
p(x)− 1

|u| p(x)−1dx

+

∫

Ω

D(x)
p(x) + 1

|u(x)| p(x)+1dx − λ

∫

Ω

b(x)
|u(x)|q(x)

q(x)
dx

� (
2

p− +
1

p− + 1
+

1
p− − 1

)‖u‖ p−−1 − εk‖u‖q−m(Ωu)

� (
2

p− +
1

p− + 1
+

1
p− − 1

)‖u‖ p−−1 − ε2
k‖u‖q− .
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Since 0 < q− < q+ < p− < p+, we deduce that for small ‖u‖ = rk  we have

bk(λ) < 0, for all k ∈ N.

This concludes the proof of lemma 4.7.� □ 

4.1.  Proof of theorem 4.1 completed

Evidently, condition (T1) in theorem 4.3 holds. By lemmas 4.5–4.7, conditions (T2) and (T3) 
in theorem 4.3 are satisfied. Then, by theorem 4.3, there exist λn → 1 and u(λn) ∈ Yn such that

I′λn
|Yn(u(λn)) = 0, Iλn(u(λn)) → ck ∈ [dk(2), bk(1)]

as n → +∞.
For the sake of notational simplicity, we always set in what follows un = u (λn) for all 

n ∈ N.

Claim.  The sequence (un) is bounded in W1,p(x)
0,a(x) (Ω).

Arguing by contradiction, we suppose that (un) is unbounded in W1,p(x)
0,a(x) (Ω). Without loss of 

generality, we can assume that ‖un‖ > 1 for all n � 1.
Observe first that there exists c  >  0 such that for large enough n,

〈I′λn
(un), un〉 � ‖un‖ and |Iλn(un)| � c.� (4.29)

Using relation (4.29), we have

c � Iλn(un) � 1
p+ (

∫
Ω

B(x)|∇un(x)| p(x)dx +
∫
Ω

A(x)|un(x)| p(x)dx)

+ 1
p+−1

∫
Ω

C(x)|un| p(x)−1dx

+ 1
p++1

∫
Ω

D(x)|un(x)| p(x)+1dx − 2
q−

∫
Ω

b(x)|un(x)|q(x)dx.
�

(4.30)

Combining proposition 2.1, relation (4.30) and since q+ < p− − 1 < p− < p+ < p+ + 1, it 

follows that (un) is bounded in W1,p(x)
0,a(x) (Ω). This shows that our claim is true. So, by lemma 3.2 

and up to a subsequence, we can assume that

un ⇀ u0 in W1,p(x)
0,a(x) (Ω)

and

un → u0 in Lq(x)(Ω).

In what follows, we show that

un → u0 in W1,p(x)
0,a(x) (Ω).

Having in mind that (un) is a bounded sequence, we get

lim
n→+∞

〈I′λn
(un)− I′λn

(u0), un − u0〉 = 0.� (4.31)

Hence, (4.31) and lemma 3.2 give as n → +∞
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o(1) = 〈I′λn
(un)− I′λn

(u0), un − u0〉

=

∫

Ω

B(x)(|∇un(x)| p(x)−2∇un(x)− |∇u0(x)| p(x)−2∇u0(x))(∇un(x)−∇u0(x))dx

+

∫

Ω

A(x)(|un(x)| p(x)−2un(x)− |u0(x)| p(x)−2u0(x))(un(x)− u0(x))dx

+

∫

Ω

D(x)(|un(x)| p(x)−1un(x)− |u0(x)| p(x)−1u0(x))(un(x)− u0(x))dx

+

∫

Ω

C(x)(|un(x)| p(x)−3un(x)− |u0(x)| p(x)−3u0(x))(un(x)− u0(x))dx.

We have for all n ∈ N
∫

Ω

B(x)(|∇un(x)| p(x)−2∇un(x)− |∇u0(x)| p(x)−2∇u0(x))(∇un(x)−∇u0(x))dx � 0,

∫

Ω

A(x)(|un(x)| p(x)−2un(x)− |u0(x)| p(x)−2u0(x))(un(x)− u0(x))dx � 0,

∫

Ω

C(x)(|un(x)| p(x)−3un(x)− |u0(x)| p(x)−3u0(x))(un(x)− u0(x))dx � 0,

and
∫

Ω

D(x)(|un(x)| p(x)−1un(x)− |u0(x)| p(x)−1u0(x))(un(x)− u0(x))dx � 0.

Therefore

lim
n→+∞

∫

Ω

B(x)(|∇un(x)| p(x)−2∇un(x)− |∇u0(x)| p(x)−2∇u0(x))(∇un(x)−∇u0(x))dx = 0,

� (4.32)

lim
n→+∞

∫

Ω

A(x)(|un(x)| p(x)−2un(x)− |u0(x)| p(x)−2u(x))(un(x)− u0(x))dx = 0,

�

(4.33)

lim
n→+∞

∫

Ω

C(x)(|un(x)| p(x)−3un(x)− |u0(x)| p(x)−3u(x))(un(x)− u0(x))dx = 0,

�

(4.34)

and

lim
n→+∞

∫

Ω

D(x)(|un(x)| p(x)−1un(x)− |u0(x)| p(x)−1u0(x))(un(x)− u0(x))dx = 0.

�

(4.35)

Let us now recall the Simon inequalities [29, formula 2.2] (see also [18, p 713])


|x − y| p � cp

(
|x| p−2 x − |y| p−2 y

)
.(x − y) for p � 2

|x − y| p � Cp

[(
|x| p−2 x − |y| p−2 y

)
.(x − y)

] p
2 (|x| p

+ |y| p) 2−p
2 for 1 < p < 2,

� (4.36)
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for all x, y ∈ RN , where cp and Cp are positive constants depending only on p. Combining 
(4.32)–(4.36), we conclude that

lim
n→+∞

‖un − u0‖ = 0.

Now, invoking theorem 4.3, we complete the proof of theorem 4.1.� □ 

Remark 4.8.  We point out that the multiplicity property described in theorem 4.1 is some-
how related with theorem 1.1 established in Bahrouni [4]. However, there are several differ-
ences between problem (1.5) studied in this paper and problem (1.1) considered in [4]. For 
instance, the main result in [4] is concerned with the existence of infinitely many solutions (as 
in our case) but for a class of semilinear elliptic equations driven by the Laplace equation and 
with a reaction term defined by the sum of two power-type concave terms. Problem (1.5) in 
the present work has a much more complicated structure. For instance, the non-homogeneous 
differential operator is perturbed by two power-type terms with variable exponent. Moreo-
ver, in the present work we are concerned with competition effects between several variable 
exponents and indefinite potentials. A crucial role in the analysis developed in the present 
paper is played by the main abstract result established in the first part of this paper, namely the 
weighted version of the Caffarelli–Kohn–Nirenberg inequality for variable exponents. Such 
an abstract result (even for constant exponents) is not used in [4]. The analysis carried out 
in this paper includes the degenerate case, which corresponds to a potential that can vanish 
in one or more points. Finally, it is worth pointing out that this potential is assumed to be 
indefinite and not positive, as in [4].

4.2.  Perspectives and open problems

The methods developed in this paper can be extended to more general variational integrals. 
We mainly refer to energy functionals associated to non-homogeneous operators of the type 
−div (φ(x, |∇u|)∇u), which extend the standard p(x)-Laplace operator. These operators have 
been introduced by Kim and Kim [23]; see also Baraket, Chebbi, Chorfi, and Rădulescu [7] 
for recent advances in this new abstract setting.

We believe that a valuable research direction is to generalize the abstract approach devel-
oped in this paper to the framework of double-phase variational integrals studied by Mingione 
et al [8, 13]. We expect that a related Caffarelli–Kohn–Nirenberg inequality can be established 
for energies of the type

u �→
∫

Ω

[
|∇u| p(x) + a(x)|∇u|q(x)

]
dx� (4.37)

or

u �→
∫

Ω

[
|∇u| p(x) + a(x)|∇u|q(x) log(e + |x|)

]
dx,

� (4.38)
where p(x) � q(x), p �= q, and a(x) � 0. In the case of two different materials that involve 
power hardening exponents p(x) and q(x), the coefficient a(x) describes the geometry of a 
composite of these two materials. When a(·) > 0 then the q(·)-material is present. In the 
opposite case, the p(·)-material is the only one describing the composite. We also point out 
that since the integral energy functional defined in (4.38) has a degenerate behavior on the 
zero set of the gradient, it is natural to study what happens if the integrand is modified in 
such a way that, also if |∇u| is small, there exists an imbalance between the two terms of the 
integrand.
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