# Critical singular problems on infinite cones 

Vincenţiu Rădulescu ${ }^{\text {a }}$, Didier Smets ${ }^{\text {b,* }}$<br>${ }^{a}$ Department of Mathematics, University of Craiova, 1100 Craiova, Romania<br>${ }^{\mathrm{b}}$ Laboratoire Jacques-Louis Lions, Université de Paris 6, 175 rue du Chevaleret, 75013 Paris, France

Received 1 December 2001; accepted 3 September 2002


#### Abstract

We prove existence results for non autonomous perturbations of critical singular elliptic boundary value problems. The non singular case was treated by Tarantello (Ann. Inst. H. Poincaré, Analyse Non-linéaire 9 (1992) 281) for bounded domains; here the singular weight allows for unbounded domains as cones and give rise to a different non compactness picture (as was first remarked by Caldiroli and Musina (Calc. Variations PDE 8 (1999) 365)).


© 2003 Elsevier Ltd. All rights reserved.
Keywords: Singular weights; Critical exponent; Unbounded domains; Caffarelli-Kohn-Nirenberg inequalities

## 1. Introduction

Let $\Omega$ be an open set in $\mathbb{R}^{N}, N \geqslant 2$ and let $\alpha \in(0,2)$. For any $\zeta \in C_{c}^{\infty}(\Omega)$, define

$$
\|\zeta\|_{\alpha}=\left(\int_{\Omega}|x|^{\alpha}|\nabla \zeta|^{2} \mathrm{~d} x\right)^{1 / 2}
$$

Let $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ be the closure of $C_{c}^{\infty}(\Omega)$ with respect to the $\|\cdot\|_{\alpha}$-norm. It turns out that $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ is a Hilbert space with respect to the inner product

$$
\langle u, v\rangle_{\alpha}=\int_{\Omega}|x|^{\alpha} \nabla u \cdot \nabla v \mathrm{~d} x, \quad \forall u, v \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right) .
$$

If $\Omega=\mathbb{R}^{N}$ we set $H^{1}\left(\mathbb{R}^{N} ;|x|^{\alpha}\right)=H_{0}^{1}\left(\mathbb{R}^{N} ;|x|^{\alpha}\right)$. We remark that if $\Omega_{1}$ and $\Omega_{2}$ are arbitrary open sets in $\mathbb{R}^{N}$ such that $\Omega_{1} \subset \Omega_{2}$ then $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right) \hookrightarrow H_{0}^{1}\left(\Omega_{2} ;|x|^{\alpha}\right)$, with continuous embedding. We also point out that since we allow the cases $0 \in \bar{\Omega}$ or $\Omega$

[^0]unbounded then there is no inclusion relationship between $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ and the standard Sobolev space $H_{0}^{1}(\Omega)$. However, the Caffarelli-Kohn-Nirenberg inequality [4] (see also [6]) asserts that $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ is continuously embedded in $L^{2_{\alpha}^{*}}(\Omega)$, where $2_{\alpha}^{*}=2 N /(N-$ $2+\alpha$ ). More precisely, there exists $C_{\alpha}>0$ such that
$$
\left(\int_{\Omega}|u|^{2_{\alpha}^{*}} \mathrm{~d} x\right)^{1 / 2_{\alpha}^{*}} \leqslant C_{\alpha}\left(\int_{\Omega}|x|^{\alpha}|\nabla u|^{2} \mathrm{~d} x\right)^{1 / 2}
$$
for any $u \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$.
Consider the problem
\[

$$
\begin{cases}-\operatorname{div}\left(|x|^{\alpha} \nabla u\right)=|u|^{2_{\alpha}^{*}-2} u & \text { in } \Omega  \tag{1}\\ u \geqslant 0, u \not \equiv 0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$
\]

We observe that degeneracy occurs in (1) if $0 \in \bar{\Omega}$ or if $\Omega$ is unbounded. We also point out that if $2_{\alpha}^{*}$ in problem (1) is replaced by a subcritical exponent $p \in\left[2,2_{\alpha}^{*}\right)$ then the corresponding equation is characterized by local compactness, and existence results are carried out in an easier way.

Consider the quotient

$$
S_{\alpha}(u ; \Omega)=\frac{\int_{\Omega}|x|^{\alpha}|\nabla u|^{2} \mathrm{~d} x}{\left(\int_{\Omega}|u|^{2 *} \mathrm{~d} x\right)^{2 / 2_{\alpha}^{*}}},
$$

and denote

$$
\begin{equation*}
S_{\alpha}(\Omega)=\inf _{u \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right) \backslash\{0\}} S_{\alpha}(u ; \Omega) \tag{2}
\end{equation*}
$$

It is obvious that if $u \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ satisfies

$$
\int_{\Omega}|x|^{\alpha}|\nabla u|^{2} \mathrm{~d} x=S_{\alpha}(\Omega) \quad \text { and } \quad \int_{\Omega}|u|^{2_{\alpha}^{*}} \mathrm{~d} x=1
$$

then the function $U(x)=\left[S_{\alpha}(\Omega)\right]^{1 /\left(2_{\alpha}^{*}-2\right)} u(x)$ is a solution of (1).
Caldiroli and Musina [5] studied the critical case and they showed that some concentration phenomena may occur in (1), due to the action of the non compact group of dilations in $\mathbb{R}^{N}$. They proved in [5] that if $\alpha \in(0,2)$ then, in certain cases, $S_{\alpha}(\Omega)$ is attained in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ by a positive function, so problem (1) has a solution. We point out (see [10, Theorem III.1.2]) that $S_{\alpha}(\Omega)$ is never attained in $H_{0}^{1}(\Omega)$ in the limiting case $\alpha=0$ and if $\Omega \neq \mathbb{R}^{N}$. For the study of further Critical Singular problems we also refer to [7,9].

Let $H^{-1}\left(\Omega ;|x|^{\alpha}\right)$ be the dual space of $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ and denote by $\|\cdot\|_{-1}$ the norm in $H^{-1}\left(\Omega ;|x|^{\alpha}\right)$. For any $f \in H^{-1}\left(\Omega ;|x|^{\alpha}\right)$, consider the perturbed problem

$$
\begin{cases}-\operatorname{div}\left(|x|^{\alpha} \nabla u\right)=|u|^{2_{\alpha}^{*}-2} u+f & \text { in } \Omega  \tag{3}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

We say that a function $u \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ is a solution of problem (3) if $u$ is a critical point of the energy functional

$$
J(u)=\frac{1}{2} \int_{\Omega}|x|^{\alpha}|\nabla u|^{2} \mathrm{~d} x-\frac{1}{2_{\alpha}^{*}} \int_{\Omega}|u|^{2_{\alpha}^{*}} \mathrm{~d} x-\int_{\Omega} f u \mathrm{~d} x .
$$

We observe that the Caffarelli-Kohn-Nirenberg inequality ensures that $J$ is well defined on the space $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$. Moreover, by the continuity of the embedding $H_{0}^{1}(\Omega) \hookrightarrow$ $L^{2_{\alpha}^{*}}(\Omega)$, the functional $J$ is Fréchet differentiable on $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$.

Perturbations of critical semilinear boundary value problems on bounded domains were initially studied by Tarantello in [11]. Our purpose is to prove a corresponding multiplicity result for the degenerate problem (3). Notice that in our case, $\Omega$ will be unbounded. We first need some preliminaries. Set

$$
s_{\alpha}^{0}(\Omega)=\lim _{r \rightarrow 0} S_{\alpha}\left(\Omega \cap B_{r}\right)
$$

and

$$
s_{\alpha}^{\infty}(\Omega)=\lim _{r \rightarrow \infty} S_{\alpha}\left(\Omega \backslash B_{r}\right)
$$

These limits are well defined because the mappings $r \mapsto S_{\alpha}\left(\Omega \cap B_{r}\right)$ and $r \mapsto S_{\alpha}\left(\Omega \backslash B_{r}\right)$ are easily seen to be, respectively, nonincreasing and nondecreasing.

Condition $\mathscr{C}$. We say that $\Omega \subset \mathbb{R}^{N}(N \geqslant 2)$ satisfies Condition $\mathscr{C}$ provided that $\Omega$ is a cone in $\mathbb{R}^{N}$, or $\Omega=\mathbb{R}^{N}$, or

$$
\begin{equation*}
S_{\alpha}(\Omega)<\min \left\{s_{\alpha}^{0}(\Omega), s_{\alpha}^{\infty}(\Omega)\right\} \tag{4}
\end{equation*}
$$

We recall that $\Omega \subset \mathbb{R}^{N}$ is a cone if $\Omega$ has Lipschitz boundary and if $\lambda x \in \Omega$ for every $\lambda>0$ and $x \in \Omega$. If $\Omega$ is a cone then

$$
S_{\alpha}(\Omega)=s_{\alpha}^{0}(\Omega)=s_{\alpha}^{\infty}(\Omega)
$$

so equality holds in (4) (see [5, Leemma 3.9]). We also point out (see Caldiroli-Musina [5]) the following situations in which property (4) is fulfilled:
(i) $\Omega=\Omega_{0} \cup \Omega_{1}$, where $\Omega_{0}$ is a cone and $\Omega_{1}$ is an open bounded set such that $0 \notin \overline{\Omega_{1}}$;
(ii) $\Omega=I \times \mathbb{R}^{N-1}$, where $I=\mathbb{R}$, or $I=(0,+\infty)$, or $I=(-\infty, 0)$, or $I$ is bounded and $0 \notin \bar{I}$.

Denote by $E_{+}$the positive cone of $E=H^{-1}\left(\Omega ;|x|^{\alpha}\right)$. This means that $f \in E_{+}$if and only if $f \neq 0$ and

$$
\int_{\Omega} f u \mathrm{~d} x \geqslant 0
$$

for any $u \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ such that $u \geqslant 0$ a.e. in $\Omega$.

Our main result is the following
Theorem 1.1. Assume that $\alpha \in(0,2)$ and $\Omega$ satisfies Condition $\mathscr{C}$. Then, for each $g \in E_{+}$, there exists $\varepsilon_{0}>0$ such that for all $0<\varepsilon \leqslant \varepsilon_{0}$, problem (3) with $f=\varepsilon g$ has at least two positive solutions.

Remark 1.2. (a) In the previous theorem, $\varepsilon_{0}$ can be chosen uniformly for $g$ in a compact subset of $E_{+}$.
(b) The existence of at least two solutions (not necessarily positive) when $g$ belongs to $E$ instead of $E_{+}$is less clear. The sign condition can easily be weakened, but we think the general case should require some additional assumption.

## 2. The first solution

We first recall that if $c$ is a real number, $X$ is a Banach space and $F: X \rightarrow \mathbb{R}$ is a $C^{1}$-functional then $F$ satisfies condition $(P S)_{c}$ if any sequence $\left(u_{n}\right)$ in $X$ such that $F\left(u_{n}\right) \rightarrow c$ and $\left\|F^{\prime}\left(u_{n}\right)\right\|_{X *} \rightarrow 0$ as $n \rightarrow \infty$, is relatively compact. It is obvious that if a Palais-Smale, sequence converges strongly, then its limit is a critical point. Our first result shows that if a $(P S)_{c}$ sequence of $J$ is weakly convergent then its limit is a solution of problem (3).

Lemma 2.1. Let $\left(u_{n}\right) \subset H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ be a $(P S)_{c}$ sequence of $J$, for some $c \in \mathbb{R}$. Assume that $\left(u_{n}\right)$ converges weakly to some $u_{0}$. Then $u_{0}$ is a solution of problem (3).

Proof. Consider an arbitrary function $\zeta \in C_{0}^{\infty}(\Omega)$ and set $\omega=\operatorname{supp}(\zeta)$. Obviously $J^{\prime}\left(u_{n}\right) \rightarrow 0$ in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ implies $\left\langle J^{\prime}\left(u_{n}\right), \zeta\right\rangle \rightarrow 0$ as $n \rightarrow \infty$, that is

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\int_{\omega}|x|^{\alpha} \nabla u_{n} \cdot \nabla \zeta \mathrm{~d} x-\int_{\omega}\left|u_{n}\right|^{\left.\right|_{\alpha} ^{*}-2} u_{n} \zeta \mathrm{~d} x-\int_{\omega} f \zeta \mathrm{~d} x\right)=0 . \tag{5}
\end{equation*}
$$

Since $u_{n} \rightharpoonup u_{0}$ in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\omega}|x|^{\alpha} \nabla u_{n} \cdot \nabla \zeta \mathrm{~d} x=\int_{\omega}|x|^{\alpha} \nabla u_{0} \cdot \nabla \zeta \mathrm{~d} x . \tag{6}
\end{equation*}
$$

The boundedness of $\left(u_{n}\right)$ in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ and the Caffarelli-Kohn-Nirenberg inequality imply that $\left|u_{n}\right|^{2_{\alpha}^{*}-2} u_{n}$ is bounded in $L^{2_{\alpha}^{*} /\left(2_{\alpha}^{*}-1\right)}\left(\Omega ;|x|^{\alpha}\right)$. Combining this with the convergence (up to be a sequence)

$$
\left|u_{n}\right|^{2_{\alpha}^{*}-2} u_{n} \rightarrow\left|u_{0}\right|^{2_{\alpha}^{*}-2} u_{0} \quad \text { a.e. in } \Omega
$$

we deduce (see [1]) that $\left|u_{0}\right|^{2_{\alpha}^{*}-2} u_{0}$ is the weak limit of the sequence $\left|u_{n}\right|^{2_{\alpha}^{*}-2} u_{n}$ in the space $L^{2_{\alpha}^{*} /\left(2_{\alpha}^{*}-1\right)}\left(\Omega ;|x|^{\alpha}\right)$. So

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\omega}\left|u_{n}\right|^{2_{\alpha}^{*}-2} u_{n} \zeta \mathrm{~d} x=\int_{\omega}\left|u_{0}\right|^{2_{\alpha}^{*}-2} u_{0} \zeta \mathrm{~d} x \tag{7}
\end{equation*}
$$

From (5)-(7) we deduce that

$$
\int_{\omega}|x|^{\alpha} \nabla u_{0} \cdot \nabla \zeta \mathrm{~d} x-\int_{\omega}\left|u_{0}\right|^{2_{\alpha}^{*}-2} u_{0} \zeta \mathrm{~d} x-\int_{\omega} f \zeta \mathrm{~d} x=0
$$

By density, this equality holds for any $\zeta \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ which means that $J^{\prime}\left(u_{0}\right)=0$.
Lemma 2.2. There exists $\varepsilon_{1}>0$ such that problem (3) has at least one solution $u_{0}$ provided that $f \neq 0$ and $\|f\|_{-1}<\varepsilon_{1}$. Moreover, $u_{0}$ is positive if $f \in E_{+}$.

Proof. The idea is to show that there exist $c_{0}<0$ and $R>0$ such that $J$ has the $(P S)_{c_{0}}$ property, where

$$
\begin{equation*}
c_{0}=\inf \left\{J(u) ; u \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right) \text { and }\|u\| \leqslant R\right\} . \tag{8}
\end{equation*}
$$

Then we prove that $c_{0}$ is achieved by some $u_{0} \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ and, furthermore, $J^{\prime}\left(u_{0}\right)=0$.
Applying the Caffarelli-Kohn-Nirenberg inequality we have

$$
\begin{aligned}
J(u) & =\frac{1}{2}\|u\|^{2}-\frac{1}{2_{\alpha}^{*}} \int_{\Omega}|u|^{2_{\alpha}^{*}} \mathrm{~d} x-\int_{\Omega} f u \mathrm{~d} x \\
& \geqslant \frac{1}{2}\|u\|^{2}-\frac{1}{2_{\alpha}^{*}} \int_{\Omega}|u|^{2_{\alpha}^{*}} \mathrm{~d} x-\|f\|_{-1} \cdot\|u\| \\
& \geqslant\left(\frac{1}{2}-\frac{\varepsilon^{2}}{2}\right)\|u\|^{2}-C\|u\|^{2_{\alpha}^{*}}-C_{\varepsilon}\|f\|_{-1}^{2} .
\end{aligned}
$$

Fixing $\varepsilon \in(0,1)$ we find $R>0, \varepsilon_{1}>0$ and $\delta>0$ such that $J(u) \geqslant \delta$ if $\|u\|=R$ and $\|f\|_{-1}<\varepsilon_{1}$.

Let $c_{0}$ be defined in (8). Since $f \neq 0, c_{0}<J(0)=0$. The set

$$
\bar{B}_{R}:=\left\{u \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right) ;\|u\| \leqslant R\right\}
$$

becomes a complete metric space with respect to the distance

$$
\operatorname{dist}(u, v)=\|u-v\| \quad \text { for any } u, v \in \bar{B}_{R}
$$

On the other hand, $J$ is lower semi-continuous and bounded from below on $\bar{B}_{R}$. So, by Ekeland's variational principle [8, Theorem 1.1], for any positive integer $n$ there exists $u_{n}$ such that

$$
\begin{equation*}
c_{0} \leqslant J\left(u_{n}\right) \leqslant c_{0}+\frac{1}{n} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
J(w) \geqslant J\left(u_{n}\right)-\frac{1}{n}\left\|u_{n}-w\right\| \quad \text { for all } w \in \bar{B}_{R} . \tag{10}
\end{equation*}
$$

We claim that $\left\|u_{n}\right\|<R$ for $n$ large enough. Indeed, if $\left\|u_{n}\right\|=R$ for infinitely many $n$, we may assume, without loss of generality, that $\left\|u_{n}\right\|=R$ for all $n \geqslant 1$. It follows that $J\left(u_{n}\right) \geqslant \delta>0$. Combining this with (9) and letting $n \rightarrow \infty$, we have $0 \geqslant c_{0} \geqslant \delta>0$ which is a contradiction.

We now prove that $\left\|J^{\prime}\left(u_{n}\right)\right\|_{-1} \rightarrow 0$. Indeed, for any $u \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ with $\|u\|=1$, let $w_{n}=u_{n}+t_{u}$. For a fixed $n$, we have $\left\|w_{n}\right\| \leqslant\left\|u_{n}\right\|+t<R$, where $t>0$ is small enough. Using (10) we obtain

$$
J\left(u_{n}+t u\right) \geqslant J\left(u_{n}\right)-\frac{t}{n}\|u\|
$$

that is

$$
\frac{J\left(u_{n}+t u\right)-J\left(u_{n}\right)}{t} \geqslant-\frac{1}{n}\|u\|=-\frac{1}{n}
$$

Letting $t \searrow 0$, we deduce that $\left\langle J^{\prime}\left(u_{n}\right), u\right\rangle \geqslant-1 / n$ and a similar argument for $t \nearrow 0$ produces $\left|\left\langle J^{\prime}\left(u_{n}\right), u\right\rangle\right| \leqslant 1 / n$ for any $u \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ with $\|u\|=1$. So,

$$
\left\|J^{\prime}\left(u_{n}\right)\right\|_{-1}=\sup _{\|u\|=1}\left|\left\langle J^{\prime}\left(u_{n}\right), u\right\rangle\right| \leqslant \frac{1}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

We have obtained the existence of a $(P S)_{c_{0}}$ sequence, i.e. a sequence $\left(u_{n}\right) \subset H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ with

$$
\begin{equation*}
J\left(u_{n}\right) \rightarrow c_{0} \quad \text { and } \quad\left\|J^{\prime}\left(u_{n}\right)\right\|_{-1} \rightarrow 0 \tag{11}
\end{equation*}
$$

But $\left\|u_{n}\right\| \leqslant R$ shows that $\left(u_{n}\right)$ converges weakly in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$, up to a subsequence. Therefore, by (11) and Lemma 2.1 we find that for some $u_{0} \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$,

$$
\begin{equation*}
u_{n} \rightharpoonup u_{0} \text { in } H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right), \quad u_{n} \rightarrow u_{0} \text { a.e in } \mathbb{R}^{N} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
J^{\prime}\left(u_{0}\right)=0 . \tag{13}
\end{equation*}
$$

We now prove that $J\left(u_{0}\right)=c_{0}$. By (11) and (12) we have

$$
o(1)=\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\int_{\Omega}|x|^{\alpha}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x-\int_{\Omega}\left|u_{n}\right|^{2_{\alpha}^{*}} \mathrm{~d} x-\int_{\Omega} f u_{n} \mathrm{~d} x .
$$

Therefore

$$
J\left(u_{n}\right)=\left(\frac{1}{2}-\frac{1}{2_{\alpha}^{*}}\right) \int_{\Omega}\left|u_{n}\right|^{2_{\alpha}^{*}} \mathrm{~d} x-\left(1-\frac{1}{2_{\alpha}^{*}}\right) \int_{\Omega} f u_{n} \mathrm{~d} x+o(1) .
$$

By (11)-(13) and Fatou's lemma we have

$$
c_{0}=\liminf _{n \rightarrow \infty} J\left(u_{n}\right) \geqslant\left(\frac{1}{2}-\frac{1}{2_{\alpha}^{*}}\right) \int_{\Omega}|x|^{\alpha}\left|u_{0}\right|^{2_{\alpha}^{*}} \mathrm{~d} x-\left(1-\frac{1}{2_{\alpha}^{*}}\right) \int_{\Omega} f u_{0} \mathrm{~d} x=J\left(u_{0}\right) .
$$

Since $u_{0} \in \bar{B}_{R}$, it follows that $J\left(u_{0}\right)=c_{0}$. If $f \in E_{+}, u_{0}$ can be replaced by $\left|u_{0}\right|$, and the proof is complete.

## 3. A priori estimates for the second solution

Set

$$
I(u)=\frac{1}{2} \int_{\Omega}|x|^{\alpha}|\nabla u|^{2} \mathrm{~d} x-\frac{1}{2_{\alpha}^{*}} \int_{\Omega}|u|^{2_{\alpha}^{*}} \mathrm{~d} x
$$

and denote

$$
S=\left\{u \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right) \backslash\{0\} ;\left\langle I^{\prime}(u), u\right\rangle=0\right\} .
$$

We first justify that $S \neq \emptyset$. Indeed, fix $u_{0} \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right) \backslash\{0\}$ and set, for any $\lambda>0$,

$$
\Psi(\lambda)=\left\langle I^{\prime}\left(\lambda u_{0}\right), \lambda u_{0}\right\rangle=\lambda^{2} \int_{\Omega}|x|^{\alpha}\left|\nabla u_{0}\right|^{2} \mathrm{~d} x-\lambda^{2_{\alpha}^{*}} \int_{\Omega}\left|u_{0}\right|^{2_{\alpha}^{*}} \mathrm{~d} x .
$$

Since $2_{\alpha}^{*}>2$, it follows that $\Psi(\lambda)<0$ for $\lambda$ large enough and $\Psi(\lambda)>0$ for $\lambda$ sufficiently close to zero.

Hence there exists $\lambda_{0} \in(0, \infty)$ such that $\Psi\left(\lambda_{0}\right)=0$. This means that $\lambda_{0} u_{0} \in S$.
Lemma 3.1. Let $I_{\infty}=\inf \{I(u) ; u \in S\}$. Then there exists $\bar{u} \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ such that

$$
\begin{equation*}
I_{\infty}=I(\bar{u})=\sup _{t \geqslant 0} I(t \bar{u}) \tag{14}
\end{equation*}
$$

Proof. We first claim that

$$
\begin{equation*}
I_{\infty}(u)=\sup _{t \geqslant 0} I(t u) \quad \forall u \in S \tag{15}
\end{equation*}
$$

Indeed, for some fixed $\varphi \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right) \backslash\{0\}$, denote

$$
f(t)=I(t \varphi)=\frac{t^{2}}{2} \int_{\Omega}|x|^{\alpha}|\nabla u|^{2} \mathrm{~d} x-\frac{t^{2_{\alpha}^{*}}}{2_{\alpha}^{*}} \int_{\Omega}|\varphi|^{2_{\alpha}^{*}} \mathrm{~d} x .
$$

We have

$$
f^{\prime}(t)=t \int_{\Omega}|x|^{\alpha}|\nabla u|^{2} \mathrm{~d} x-t^{2_{\alpha}^{*}-1} \int_{\Omega}|\varphi|^{2_{\alpha}^{*}} \mathrm{~d} x
$$

which vanishes for

$$
t_{0}=t_{0}(\varphi)=\left\{\frac{\int_{\Omega}|x|^{\alpha}|\nabla u|^{2} \mathrm{~d} x}{\int_{\Omega}|\varphi|^{2 *} \mid \mathrm{d} x}\right\}^{1 /\left(2_{\alpha}^{*}-2\right)}
$$

Hence

$$
f\left(t_{0}\right)=I\left(t_{0} \varphi\right)=\sup _{t \geqslant 0} I(t \varphi)=\frac{2-\alpha}{2 N}\left\{\frac{\int_{\Omega}|x|^{\alpha}|\nabla u|^{2} \mathrm{~d} x}{\left(\int_{\Omega}|\varphi|^{2_{\alpha}^{*}} \mathrm{~d} x\right)^{(N-2+\alpha) / N}}\right\}^{N /(2-\alpha)}
$$

It follows that

$$
\begin{equation*}
\inf _{\varphi \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right) \backslash\{0\}} \sup _{t \geqslant 0} I(t \varphi)=\frac{2-\alpha}{2 N}\left[S_{\alpha}(\Omega)\right]^{N /(2-\alpha)} . \tag{16}
\end{equation*}
$$

We now easily observe that for every $u \in S$ we have $t_{0}(u)=1$. So, by (16), we find (15).

By Caldiroli-Musina [5, Theorems 2.2 and 3.1] the minimum is achieved in (2) by some function $U \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$. We prove in what follows that the function $\bar{u}:=$ $\left[S_{\alpha}(\Omega)\right]^{1 /\left(2_{\alpha}^{*}-2\right)} U$ satisfies (14). We first observe that $\bar{u} \in S$ and

$$
\begin{equation*}
I(\bar{u})=\frac{2-\alpha}{2 N}\left[S_{\alpha}(\Omega)\right]^{N /(2-\alpha)} \tag{17}
\end{equation*}
$$

So, by (15) and (17),

$$
\begin{aligned}
I_{\infty} & =\inf _{u \in S} I(u)=\inf _{u \in S} \sup _{t \geqslant 0} I(t u) \geqslant \inf _{u \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right) \backslash\{0\}} \sup _{t \geqslant 0} I(t u) \\
& =\frac{2-\alpha}{2 N}\left[S_{\alpha}(\Omega)\right]^{N /(2-\alpha)}=I(\bar{u}),
\end{aligned}
$$

which concludes our proof.
Lemma 3.2. Assume $\left(u_{n}\right)$ is a $(P S)_{c}$ sequence of $J$ that converges weakly to $u_{0}$ in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$. Then either $\left(u_{n}\right)$ converges strongly in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$, or $c \geqslant J\left(u_{0}\right)+I_{\infty}$.

Proof. Since $\left(u_{n}\right)$ is a $(P S)_{c}$ sequence and $u_{n} \rightharpoonup u_{0}$ in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ we have

$$
\begin{equation*}
J\left(u_{n}\right)=c+o(1) \quad \text { and } \quad\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\mathrm{o}(1) \tag{18}
\end{equation*}
$$

Set $v_{n}=u_{n}-u_{0}$. Then $v_{n} \rightharpoonup 0$ in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ which implies

$$
\begin{aligned}
& \int_{\Omega}|x|^{\alpha} \nabla v_{n} \cdot \nabla u_{0} \mathrm{~d} x \rightarrow 0 \quad \text { as } n \rightarrow \infty \\
& \int_{\Omega} f v_{n} \mathrm{~d} x \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

We rewrite the above relations as

$$
\begin{align*}
\left\|u_{n}\right\|^{2} & =\left\|u_{0}\right\|^{2}+\left\|v_{n}\right\|^{2}+o(1) \\
J\left(v_{n}\right) & =I\left(v_{n}\right)+o(1) \tag{19}
\end{align*}
$$

The Brezis-Lieb Lemma (see [2]) combined with the Caffarelli-Kohn-Nirenberg Inequality yield

$$
\begin{equation*}
\int_{\Omega}\left(\left|u_{n}\right|^{2_{\alpha}^{*}}-\left|v_{n}\right|^{2_{\alpha}^{*}}\right) \mathrm{d} x=\int_{\Omega}\left|u_{0}\right|^{2_{\alpha}^{*}} \mathrm{~d} x+o(1) \tag{20}
\end{equation*}
$$

From (18)-(20) and Lemma 2.1 we find

$$
\begin{align*}
o(1) & +c=J\left(u_{n}\right)=J\left(u_{0}\right)+J\left(v_{n}\right)+o(1)=J\left(u_{0}\right)+I\left(v_{n}\right)+o(1), \\
o(1) & =\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\left\langle J^{\prime}\left(u_{0}\right), u_{0}\right\rangle+\left\langle J^{\prime}\left(v_{n}\right), v_{n}\right\rangle+o(1) \\
& =\left\langle I^{\prime}\left(v_{n}\right), v_{n}\right\rangle+o(1) . \tag{21}
\end{align*}
$$

If $v_{n} \rightarrow 0$ in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$, then $u_{n} \rightarrow u_{0}$ in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ and $J\left(u_{0}\right)=\lim _{n \rightarrow \infty} J\left(u_{n}\right)=c$. If $v_{n} \nrightarrow 0$ in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$, then combining this with the fact that $v_{n} \rightharpoonup 0$ in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ we may assume that $\left\|v_{n}\right\| \rightarrow l>0$. Then, by (21),

$$
\begin{align*}
& c=J\left(u_{0}\right)+I\left(v_{n}\right)+o(1)  \tag{22}\\
& \mu_{n}=\left\langle I^{\prime}\left(v_{n}\right), v_{n}\right\rangle=\int_{\Omega}|x|^{\alpha}\left|\nabla v_{n}\right|^{2} \mathrm{~d} x-\int_{\Omega}\left|v_{n}\right|^{2_{\alpha}^{*}} \mathrm{~d} x=\alpha_{n}-\beta_{n} \tag{23}
\end{align*}
$$

where $\lim _{n \rightarrow \infty} \mu_{n}=0, \alpha_{n}=\int_{\Omega}|x|^{\alpha}\left|\nabla v_{n}\right|^{2} \mathrm{~d} x \geqslant\left\|v_{n}\right\|^{2}$ and $\beta_{n}=\int_{\Omega}\left|v_{n}\right|^{2_{\alpha}^{*}} \mathrm{~d} x \geqslant 0$. In virtue of (22), it remains to show that $I\left(v_{n}\right) \geqslant I_{\infty}+o(1)$. For $t>0$, we have

$$
\left\langle I^{\prime}\left(t v_{n}\right), t v_{n}\right\rangle=t^{2} \int_{\Omega}|x|^{\alpha}\left|\nabla v_{n}\right|^{2} \mathrm{~d} x-t^{2_{\alpha}^{*}} \int_{\Omega}\left|v_{n}\right|^{\left.\right|_{\alpha} ^{*}} \mathrm{~d} x .
$$

If we prove the existence of a sequence $\left(t_{n}\right)$ with $t_{n} \rightarrow 1$ and $\left\langle I^{\prime}\left(t_{n} v_{n}\right), t_{n} v_{n}\right\rangle=0$, then

$$
I\left(v_{n}\right)=I\left(t_{n} v_{n}\right)+\frac{1-t_{n}^{2}}{2} \alpha_{n}-\frac{1-t_{n}^{2 *}}{2_{\alpha}^{*}}\left\|v_{n}\right\|_{L^{2 *}}^{2_{\alpha}^{*}}=I\left(t_{n} v_{n}\right)+o(1) \geqslant I_{\infty}+o(1)
$$

and the conclusion follows. To do this, let $t=1+\delta$ with $\delta>0$ small enough and using (23) we obtain

$$
\begin{aligned}
\left\langle I^{\prime}\left(t v_{n}\right), t v_{n}\right\rangle= & (1+\delta)^{2} \alpha_{n}-(1+\delta)^{2_{\alpha}^{*}} \beta_{n}=(1+\delta)^{2} \alpha_{n}-(1+\delta)^{2_{\alpha}^{*}}\left(\alpha_{n}-\mu_{n}\right) \\
= & \alpha_{n}\left(2 \delta-2_{\alpha}^{*} \delta+o(\delta)\right)+(1+\delta)^{2_{\alpha}^{*}} \mu_{n}=\alpha_{n}\left(2-2_{\alpha}^{*}\right) \delta+\alpha_{n} o(\delta) \\
& +(1+\delta)^{2_{\alpha}^{*}} \mu_{n}
\end{aligned}
$$

Since $\alpha_{n} \rightarrow \bar{l} \geqslant l^{2}>0, \lim _{n \rightarrow \infty} \mu_{n}=0$ and $2_{\alpha}^{*}>2$ then, for $n$ large enough, we can define the sequence $\delta_{n}=2\left|\mu_{n}\right| / \alpha_{n}\left(2_{\alpha}^{*}-2\right)>0$ and $\delta_{n} \rightarrow 0$. Then

$$
\begin{equation*}
\left\langle I^{\prime}\left(\left(1+\delta_{n}\right) v_{n}\right),\left(1+\delta_{n}\right) v_{n}\right\rangle<0 \quad\left\langle I^{\prime}\left(\left(1-\delta_{n}\right) v_{n}\right),\left(1-\delta_{n}\right) v_{n}\right\rangle>0 \tag{24}
\end{equation*}
$$

From (24) we deduce the existence of $t_{n} \in\left(1-\delta_{n}, 1+\delta_{n}\right)$ such that

$$
t_{n} \rightarrow 1 \quad \text { and } \quad\left\langle I^{\prime}\left(t_{n} v_{n}\right), t_{n}, v_{n}\right\rangle=0
$$

This concludes our proof.
Fix $\bar{u} \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ such that (14) holds. Since $2<2_{\alpha}^{*}$, there exists $t_{0}>0$ such that

$$
\begin{array}{ll}
I(t \bar{u})<0 & \text { if } t \geqslant t_{0} \\
J(t \bar{u})<0 & \text { if } t \geqslant t_{0} .
\end{array}
$$

Set

$$
\begin{align*}
& \mathscr{P}=\left\{\gamma \in C\left([0,1], H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)\right) ; \gamma(0)=0, \gamma(1)=t_{0} \bar{u}\right\}  \tag{25}\\
& c_{1}=\inf _{\gamma \in \mathscr{P}} \sup _{u \in \gamma} J(u) . \tag{26}
\end{align*}
$$

In the next result $c_{0}$, resp. $c_{1}$, are those defined in (8), resp. (26).

Lemma 3.3. Given $g \in E_{+},\|g\|_{-1}=1$, there exist $R>0$ and $\varepsilon_{2}=\varepsilon_{2}(R)>0$ such that $c_{1}<c_{0}+I_{\infty}$, for all $f=\varepsilon g$ with $\varepsilon \leqslant \varepsilon_{2}$.

Proof. We first remark that

$$
\begin{equation*}
I_{\infty}+c_{0}>0 \tag{27}
\end{equation*}
$$

provided that $\varepsilon_{1}$ and $R$ given in the proof of Lemma 2.2 are sufficiently small. Indeed, let $u_{0}$ be the solution obtained in Lemma 2.2. Then, by Cauchy-Schwarz,

$$
\begin{align*}
c_{0} & =\left(\frac{1}{2}-\frac{1}{2_{\alpha}^{*}}\right) \int_{\Omega}|x|^{\alpha}\left|\nabla u_{0}\right|^{2} \mathrm{~d} x-\left(1-\frac{1}{2_{\alpha}^{*}}\right) \int_{\Omega} f u_{0} \mathrm{~d} x \\
& \geqslant\left(\frac{1}{2}-\frac{1}{2_{\alpha}^{*}}\right) \int_{\Omega}|x|^{\alpha}\left|\nabla u_{0}\right|^{2} \mathrm{~d} x-\left(1-\frac{1}{2_{\alpha}^{*}}\right)\|f\|_{-1} \cdot\left\|u_{0}\right\| . \tag{28}
\end{align*}
$$

Applying the inequality

$$
\alpha \beta \leqslant \frac{\alpha^{2}}{2}+\frac{\beta^{2}}{2} \quad \forall \alpha, \beta>0
$$

We find

$$
\begin{equation*}
\left(1-\frac{1}{2_{\alpha}^{*}}\right)\|f\|_{-1} \cdot\left\|u_{0}\right\| \leqslant\left(\frac{1}{2}-\frac{1}{2_{\alpha}^{*}}\right)\left\|u_{0}\right\|^{2}+\frac{(N-\alpha+2)^{2}}{16 N(2-\alpha)}\|f\|_{-1}^{2} \tag{29}
\end{equation*}
$$

So, by (28) and (29),

$$
\begin{equation*}
c_{0} \geqslant-\frac{(N-\alpha+2)^{2}}{16 N(2-\alpha)}\|f\|_{-1}^{2} . \tag{30}
\end{equation*}
$$

It follows that the negative number $c_{0}$ is close enough to 0 if $\|f\|_{-1}$ is small. But, by Lemma 3.1,

$$
I_{\infty}=\frac{2-\alpha}{2 N}\left[S_{\alpha}(\Omega)\right]^{N /(2-\alpha)}>0
$$

so (27) follows obviously.
In order to conclude the proof we observe, by the definition of $c_{1}$, that if suffices to show that

$$
\begin{equation*}
\sup _{t \geqslant 0} J(t \bar{u})<c_{0}+I_{\infty} \tag{31}
\end{equation*}
$$

if $\|f\|_{-1}$ is sufficiently small.
Next, using (27), the continuity of $J$ and $J(0)=0$, we obtain some $T_{0}>0$ which is uniform with respect to all $f$ satisfying $0<\|f\|_{-1}<\varepsilon_{1}$ such that, for some $\varepsilon^{\prime}<\varepsilon_{1}$,

$$
c_{0}+I_{\infty}>\sup _{t \in\left[0, T_{0}\right]} J(t \bar{u}),
$$

if $\|f\|_{-1}<\varepsilon^{\prime}$. So, in order to prove (31), it sufficies to show that if $\|f\|_{-1}$ is small then

$$
\begin{equation*}
c_{0}+I_{\infty}>\sup _{t \geqslant T_{0}} J(t \bar{u}) \tag{32}
\end{equation*}
$$

But

$$
\begin{aligned}
J(t \bar{u}) & =\frac{t^{2}}{2} \int_{\Omega}|x|^{\alpha}|\nabla \bar{u}|^{2} \mathrm{~d} x-\frac{t^{2_{\alpha}^{*}}}{2_{\alpha}^{*}} \int_{\Omega}|\bar{u}|^{2_{\alpha}^{*}} \mathrm{~d} x-t \int_{\Omega} f \bar{u} \mathrm{~d} x \\
& \leqslant \frac{t^{2}}{2} \int_{\Omega}|x|^{\alpha}|\nabla \bar{u}|^{2} \mathrm{~d} x-\frac{t^{2 *}}{2_{\alpha}^{*}} \int_{\Omega}|\bar{u}|^{2_{\alpha}^{*}} \mathrm{~d} x-T_{0} \int_{\Omega} f \bar{u} \mathrm{~d} x,
\end{aligned}
$$

for any $t \geqslant T_{0}$. But, by Lemma 3.1,

$$
I(\bar{u})=\frac{2-\alpha}{2 N}\left[S_{\alpha}(\Omega)\right]^{N /(2-\alpha)} .
$$

Hence, using an argument similar to that used for proving (28), we find

$$
\begin{aligned}
\sup _{t \geqslant T_{0}} J(t \bar{u}) & \leqslant \sup _{t \geqslant T_{0}}\left(\frac{t^{2}}{2} \int_{\Omega}|x|^{\alpha}|\nabla \bar{u}|^{2} \mathrm{~d} x-\frac{t_{\alpha}^{2}}{2_{\alpha}^{*}} \int_{\Omega}|\bar{u}|^{2_{\alpha}^{*}} \mathrm{~d} x\right)-T_{0} \int_{\Omega} f \bar{u} \mathrm{~d} x \\
& \leqslant I_{\infty}-T_{0} \int_{\Omega} f \bar{u} \mathrm{~d} x<I_{\infty}+c_{0}
\end{aligned}
$$

if $f=\varepsilon g$ with $\varepsilon \leqslant \varepsilon^{\prime \prime}$. Indeed, it follows (30) that $c_{0}$ is quadratic in $\varepsilon$ while $\int f \bar{u}$ is linear. Letting $\varepsilon_{2}=\min \left\{\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right\}$, we conclude the proof.

## 4. Proof of Theorem 1.1 concluded

Let $\varepsilon_{0}=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$. Hence, by Lemma 2.2, we obtain the existence of a positive solution $u_{0} \in H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ of (3) such that $J\left(u_{0}\right)=c_{0}$.

On the other hand, since $J(|u|) \leqslant J(u)$ when $f \in E_{+}$, it follows from the Mountain Pass Theorem without the Palais-Smale condition [3, Theorem 2.2] that there exists a positive $(P S)_{c_{1}}$ sequence $\left(u_{n}\right)$ of $J$, that is

$$
J\left(u_{n}\right)=c_{1}+o(1) \quad \text { and }\left\|J^{\prime}\left(u_{n}\right)\right\|_{-1} \rightarrow 0 .
$$

This implies

$$
\begin{align*}
c_{1}+\frac{1}{2_{\alpha}^{*}}\left\|J^{\prime}\left(u_{n}\right)\right\|_{-1} \cdot\left\|u_{n}\right\|+o(1) \geqslant & J\left(u_{n}\right)-\frac{1}{2_{\alpha}^{*}}\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
\geqslant & \left(\frac{1}{2}-\frac{1}{2_{\alpha}^{*}}\right)\left\|u_{n}\right\|^{2} \\
& -\left(1-\frac{1}{2_{\alpha}^{*}}\right)\|f\|_{-1} \cdot\left\|u_{n}\right\| . \tag{33}
\end{align*}
$$

Hence $\left\{u_{n}\right\}$ is a bounded sequence $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$. So, up to a subsequence, we may assume that $u_{n} \rightharpoonup u_{1} \geqslant 0$ in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$. Lemma 2.1 implies that $u_{1}$ is a solution of (3).

We prove in what follows that $u_{0} \neq u_{1}$. For this aim we shall prove that $J\left(u_{0}\right) \neq$ $J\left(u_{1}\right)$. Indeed, by Lemma 3.2, either $u_{n} \rightarrow u_{1}$ in $H_{0}^{1}\left(\Omega ;|x|^{\alpha}\right)$ which gives

$$
J\left(u_{1}\right)=\lim _{n \rightarrow \infty} J\left(u_{n}\right)=c_{1}>0>c_{0}=J\left(u_{0}\right)
$$

and the conclusion follows, or

$$
c_{1}=\lim _{n \rightarrow \infty} J\left(u_{n}\right) \geqslant J\left(u_{1}\right)+I_{\infty} .
$$

If we suppose that $J\left(u_{1}\right)=J\left(u_{0}\right)=c_{0}$, then $c_{1} \geqslant c_{0}+I_{\infty}$ which contradicts Lemma 3.3. This concludes our proof.

## Acknowledgements

This work has been completed while the first author was visiting the Institut MAPA, Université Catholique de Louvain. He is very grateful to Professor Michel Willem for this invitation and for useful discussions.

## References

[1] H. Brezis, Analyse fonctionnelle: théorie et applications, Masson, Paris, 1983.
[2] H. Brezis, E.H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983) 486-490.
[3] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1986) 437-477.
[4] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weight, Compositio Math. 53 (1984) 259-275.
[5] P. Caldiroli, R. Musina, On the existence of extremal functions for a weighted Sobolev embedding with critical exponent, Calc. Variations PDE 8 (1999) 365-387.
[6] F. Catrina, Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, non existence and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001) 229-258.
[7] R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology I: Physical Origins and Classical Methods, Springer, Berlin, 1985.
[8] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979) 443-473.
[9] B. Franchi, R. Serapioni, F. Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associated to Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B 11 (1997) 83-117.
[10] M. Struwe, Variational Methods, Third Edition, Springer-Verlag, Berlin, Heidelberg, 2000.
[11] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponents, Ann. Inst. H. Poincaré, Analyse Non-linéaire 9 (1992) 281-304.


[^0]:    * Corresponding author.

    E-mail addresses: radules@ann.jussieu.fr (V. Rădulescu), smets@ann.jussieu.fr (D. Smets).

