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Abstract. We consider a parametric Robin problem driven by the p-Laplacian and with a
Carathéodory reaction. Our hypotheses on the reaction incorporate a special case p-logistic
equations with a superdiffusive reaction. Using variational methods coupled with suitable
truncation, perturbation and comparison techniques, we prove a bifurcation near infinity
result.

1. Introduction

Let © € R be a bounded domain with a C>-boundary 9. In this paper, we study
the following nonlinear parametric Robin problem

—Apu(z) = Af(z,u(z)) in Q

ou 1

— 4+ B@uPT =0 ondQ (P
onp

u>0 in ,

where 1 < p < co. Here A, denotes the p-Laplace differential operator defined
by

Apu = div (|Du|”~2 Du) for all u € WP (Q).

We are looking for solutions in the Sobolev space W7 (). The weak distrib-
utional formulation of (Py) is

/|Du|p_2(Du,Dh)RNdz+/ B@)|u|’2uhdo
Q aQ

= )‘/ f(z,u)hdz forall h € whr(Q)
Q
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(or, equivalently, for all 1 € C®(); recall that since 92 is a C2-manifold, the
space C(Q) is dense in W7 (), see for example Gasinski and Papageorgiou
[9, p. 189]). In the above equation, do denotes the (N — 1)-dimensional Hausdorff
measure on 02 (the surface measure on 92).

The Robin boundary condition is interpreted using the nonlinear Green’s iden-
tity (see Casas and Fernandez [5], Kenmochi [12], and Gasinski and Papageorgiou
[9, p. 211]) as is the case in Lieberman [13]. So, according to that identity, there
exists a unique element

D - 1ol
L oew P (hg) (— +— = 1),
onp p P

which by extension we denote by

ou
P = |Du|P~2(Du, n)gy
with n(-) being the outward unit normal on d<2 such that if A,u € LY (2), then

)
/lDu|p_2(Du,Dh)RNdz+/ (A,,u)hdz:<—u,yo(h)> forall he WhP(Q).
Q Q an,,

Here yy is the trace map and we have denoted by (-, - ) the duality brackets for the
pair (W_I/P/’P/(E)Q), Wl/P/’P(E)SZ)).

The reaction f(z,x) is a Carathéodory function (that is, for all x € R the
mapping z —> f(z,x) is measurable and for a.a. z € Q, x —> f(z,x) is
continuous). On f (z, -) we impose conditions near +oc and near 0. Our conditions
are general and incorporate as a special case, the so-called superdiffusive reaction
of the p-logistic equation. Finally A > 0 is a parameter.

Our goal is to study the existence, nonexistence and multiplicity of positive
solutions as the parameter A > 0 varies. More precisely, we prove a bifurcation-
type result for large values of the parameter A > 0 (bifurcation near 400). So,
we establish the existence of a critical parameter value A, > 0 such that for every
A > A, problem (P) admits at least two positive solutions, when A = A, problem
(P,) has at least one positive solution and finally for all A € (0, A,) problem (P,)
has no positive solutions.

Such bifurcation type results, were proved by Brock et al. [3], Filippakis et al.
[8], Gasinski and Papageorgiou [10], Rddulescu and Repovs [17], Takeuchi [19,20]
(semilinear or nonlinear Dirichlet problems) and by Cardinali et al. [4], Papageor-
giou and Réadulescu [15] (for nonlinear Neumann problems). All the aforemen-
tioned results impose more restrictive conditions on the reaction f(z, -). Moreover,
our work here complements the recent one by Papageorgiou and Rédulescu [16],
where the authors prove for Robin problems a bifurcation theorem for small values
of A > 0 (bifurcation near zero). However, it should be pointed out that in [16]
the differential operator is considerably more general and nonhomogeneous. It is
an interesting open problem whether our work here can be extended to equations
driven by such operators.
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Animportant role in our analysis is played by the regularity theory of Lieberman
[13], who established regularity up to the boundary (global regularity) for solutions
of equations driven by a broad class of nonhomogeneous differential operators,
which includes as a special case the p-Laplacian. The results of Lieberman [13]
extend local regularity results of DiBenedetto [7] and Tolksdorf [21].

Our approach is variational and it is based on the critical point theory combined
with suitable truncation, perturbation and comparison techniques.

2. Mathematical background

Let X be a Banach space and X* be its topological dual. By (-, -) we denote the
duality brackets for the pair (X*, X). Let ¢ € C L(X). We say that ¢ satisfies the
“Cerami condition” (the “C-condition” for short), it the following is true:

“Every sequence {u,},>1 € X such that {¢(u,)},>1 € R is bounded and
(1 + lun| D¢’ (up) — 0in X* as n — oo,

admits a strongly convergent subsequence”.

This compactness-type condition, is in general weaker than the usual Palais—
Smale condition (“P S-condition” for short). The two conditions coincide if ¢ is
bounded below (see, for example, Denkowski et al. [6, p. 174]). The C-condition
leads to a deformation theorem, from which one can derive the minimax theory of
the critical values of ¢. Prominent in that theory, is the so-called “mountain pass
theorem” of Ambrosetti and Rabinowitz [2], which here we state in a slightly more
general form (see, for example, Denkowski et al. [6, p. 179]).

Theorem 1. Assume that ¢ € C! (X) satisfies the C-condition, ug,u; € X, p >
0, [luy —uoll > p,

max{e(uo), ¢(u1)} < infle) : [lu —uoll = pl = np
and ¢ = inf max o(y(t)) where ' = {y € C([0, 1], X) : y(0) = ug, y(l) =
yel 0<t<1
u1}. Then ¢ = n, and c is a critical value of ¢.

The analysis of problem (P) will involve the Sobolev space WP (Q) and the
Banach space C 1(Q). We will also make use of the fact that C!(Q) is an ordered
Banach space with positive cone C; = {u € C'(Q) : u(z) > 0forall z € Q}.
This cone has a nonempty interior given by

intCy ={ueCy:u(z)>0foralze Q).

In what follows by || - || we denote the norm of the Sobolev space wLr(Q).
So, we have

1
lull = (lll? + 11Dul|5)"? forall u € W (Q)

On 02 we use the (N — 1)-dimensional Hausdorff (surface) measure o (-).
Using this measure, we can define the Lebesgue spaces L?(0R2), 1 < p < oco. We
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know that there exists a unique continuous linear map yy : wlr(Q) - LP(0L2)
known as the “trace map”, which satisfies yop(u) = ulyq forall u € C'(Q). In fact
o is compact and we have

. Lo o1 1
imyy = W»r'"(0Q) (| with — + — =1
p p
keryp = W, ()
In what follows, for the sake of notational simplicity, we drop the use of the
trace map. All the restrictions of functions on 9€2, are understood in the sense of
traces.

Let fo : 2 x R — R be a Carathéodory function with subcritical growth in the
x € R variable, that is

| fo(z, x)| < ao(z)(1 + |x|" ') foraaz € Q, allx € R

L ifp < N

+oo if N < p
0(z, s)ds and consider the -functional ¢q : ’ — efine

¥ fo(z, s)ds and consider the C'-functional g : W7 () — R defined by

withag € L®(Q); and 1 < r < p* = . We set Fp(z,x) =

(po(u)=l||Du||§+l/ ﬂ(z)lu(z)lpda—/ Fo(z, u(z))dz for all ue WhHP ().
p P Jaq Q

The next proposition can be found in Papageorgiou and Radulescu [16] and it
is essentially a consequence of the nonlinear regularity theory of Lieberman [13].

Proposition 2. Assume that ug € W-P(Q) is a local C'(Q)-minimizer of go, that
is, there exists po > 0 such that

9o(uo) < @o(uo + h) for all h € C'(Q) with ||| c1 g, < po-

Then ug € CH%(Q) for some o € (0, 1) and it is also a local WP (2)-minimizer
of o, that is, there exists p1 > 0 such that

00(u0) < @ouy + ) for all b € WP () with ||h]| < pi.
Let A: WhP(Q) — WP (Q)* be the nonlinear map defined by
(Aw), y) = / |Du|P~?(Du, Dy)pndz forallu,y € whr(Q). €))
Q
The next result about the map A is well-known (see, for example, Gasinski and
Papageorgiou [9, p. 745]).
Proposition 3. The map A : WP (Q) — WLP(Q)* defined by (1) is demicontin-

uous, monotone (hence maximal monotone too) and of type (S)+, that is

“ifu, = u in WHP () and lim sup (A(un), un — u) <0,

n—oo

then u, — u in WP ().”
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Finally, let us fix our notation. In what follows, by | - |y we denote the Lebesgue
measure on RV . If x € RV, then we set x* = max{=£x, 0}. So, if u € WP (Q),
we define u®(-) = u(-)*. We know that

utew P, u=ut—u", lul=ut +u"

If h : 2 x R — R is a measurable function (for example, a Carathéodory
function), then we define

Np(u)(-) = h(-, u(-)) forallu € WhP(Q).

Evidently, the mapping z —— Np(1)(z) is measurable.

3. Bifurcation near infinity

The hypotheses in the reaction f(z, x) are the following:
H: f:Q xR — Ris a Carathéodory function such that f(z,0) = 0 for a.a.
z € Qand

G) |f(z, %) <azx) A+x"""foraa.z e Qallx > 0,witha € L®(Q)4, p <
r<p*
(i) if F(z,x) = [y f(z,s)ds, then F(z, x) — —oo uniformly for a.a. z € Q as
x — 400 and there exists i € L' () such that fQ F(z,u(z))dz > 0;
(iii) there exist t > p and M > O such that T F(z,x) < f(z,x)x fora.a.z € Q,

allx > M,
(iv) —¢ < lim 1nf f < lim sup == f < O uniformly for a.a. 7 € Q;
x—0 x—0t
(v) there exists i > p such that for all n > 0, we can find §n > 0 for which we
have
yoxSno fx)  fiy) S foraa zeQ.

xH—1 yp,l

Remark 1. Since we are interested on positive solutions and all the above hypotheses
concern the positive semi-axis Ry = [0, +00), without any loss of generality we
may assume that f(z,x) =0fora.a.z € Q,all x <O0.

Example 1. The following functions satisfy hypotheses H . For the sake of simplic-
ity, we drop the z-dependence:

fix) =x?"' —x"forallx >0, withp <gq <r < p*,
1
frlx) =x"! (— —lnx) forall x > 0, with p <t < p*
T
The function f(x) corresponds to the superdiffusive reaction of the p-logistic
equation.

Our condition on the boundary weight S(-) is the following:
H(B):p e Ch¥dQ) witha € (0, 1), B(z) = 0forall z € 32 and B # 0.
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Under this hypothesis, we know that the eigenvalue problem

2 . ou s
— Apu(z) = AMu(2)’“u(z) in Q, W+ﬂ(z)|u|” u=00ndQ, (2)
P

has a first eigenvalue A1 > 0 which is isolated, simple and admits the following
variational characterization

Ay = inf 1Dullp + [y B@)|ulPdo
luel

cueWhP(Q), u # 0} . (3)

This infimum is realized on the corresponding one dimensional eigenspace
whose elements are in C!(Q) and have constant sign. For details, we refer to
Papageorgiou and Radulescu [14].

We introduce the following truncation-perturbation of the term Af (z, -):

| ifx <0
Mz, X) = Af(z,x) +xP71if0 < x.

This is a Carathéodory function. We set F 2wz, x) = f(;c fA)\ (z, s)ds and consider
the C'-functional ¢; : W7 (Q) — R defined by

. 1 » 1 p 1 np ~
@r(u) = —IIDu||p+—IIu||p+—/ B@Du"(2) da—/ Fy.(z,u(2))dz
p p P Jaq Q

forallu € WHP (Q).

Proposition 4. If hypotheses H, H(B) hold and » > 0, then the functional §;, is
bounded below.

Proof. Hypotheses H (i), (ii), imply that we can find c¢; > 0 such that
F(z,x) <cy foraa. zeQ, allx>0. 4)

Then for all u € W17 (), we have

5 ) = ~11Dull” + L + L Ydo — | Fi(z,u)d
on(u) = —I[1Dullp + —Ilullp + B(2) ™) do 2(z, u)dz
p p P Ja Q
1
> —||Dull} — c1|Q|n (see (3), (4) and hypothesis H (8)),
p
= (. is bounded below.
The proof is complete. O

Proposition 5. If hypotheses H, H(B) hold and ) > 0, then the functional ¢;,
satisfies the C-condition.
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Proof. Let {uy},>1 C wWhr(Q)bea sequence such that

|@a (un)| < M for some My > 0, alln > 1 5)
(1 + [Jun|) @y (un) — 0in WHP(Q)* as n — oco. (6)
From (6), we have

il
L+ {lunl|

<¢3’A(un), h>( < forall h € WhP(Q) with €, — 07,
- ’<A<un), ny+ / | P~ 2unhdz+ / B )P hdo — / F o )z
Q Q2 Q
€nllhll
1+ [fugl
forall h € WhP(Q) with e, — 07 (7)

In (7) we choose h = —u,; € WP () and obtain
[lu, ||” < €, foralln > 1 (see (3)),= u,, — 0in WhP(Q)asn — co. (8)

Next in (7) we choose h = u e WLP (). Then

—1Duf 115 —/ B(2) ()P do +/ Mz ouhuydz < ey
Q
foralln > 1 (see (3)). 9)
On the other hand from (5) and (8), we have

Dufih+ [ p@whrdo i [ pFeudz <y 0
I Q
for some My > 0, alln > 1

Adding (9) and (10), we obtain
k/ [f @ uhHut — pF(z,u)]dz < M3 for some M3 > 0, alln > 1,

= AT — p)/ F(z,u)dz +/\/ [fG uDut —tF(z ul)]dz
< Mjsforalln >

9

:>A(r—p)/ F(z,u )dz < My for some My > 0, alln > 1 (11)
(see hypotheses H (i), (iii)).
From (5) and (8), we have

1 1

;||Du;f||§ + —/ B()(u)HPdo — / F(z,ul)dz < Ms  (12)
for some M5 > 0, alln > 1 (see (3)),

= ||Du; ||}, < Me for some Mg > 0, alln > 1 (13)
(see hypothesis H(B), (11) and recall T > p (see H (iii))).
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Let V ={u € W'P(Q) : [u(z)dz = 0}. We have
WP =Reo V.
Then every u, € W"7(Q) n > 1, can be written in a unique way as
Uy = Uy + i, withu, € R, u, € Vforalln > 1.
From (8) and (13), we see that
{Dup}y>1 € LP(2,RY) is bounded, = {Dil,},>1 € LP (2, RY) is bounded.

By virtue of the Poincaré—Wirtinger inequality (see, for example, Gasinski and
Papageorgiou [9, p. 84]), we have that

{ttn}n>1 C WP () is bounded. (14)

Suppose that |i,| — oo as n — oco. We know that there exists ¢c; > 0 such
that

llinll < c2llun|l (see Goldberg [11, p.48])

= ||lun|| - +o0 asn — oo.
Also, we have

M; = (ip + ﬁn)_ = —min{u, + ﬁnv 0}
> i, +u, foralln > 1 (see Schaefer [18, p. 53).

From (8) we see that &, — 0 and so i — +o00 as n — oo. Therefore
un(z) = +oo fora.a. z € Q, hence u;f (z) — oo fora.a. z € Q.

Let y, = HZ_ZH n > 1. Then ||y,|| = 1 for all # > 1 and so by passing to a
suitable subsequence if necessary, we may assume that

Vn Bt yin W'P(Q) and y, — yin L' () as n — 0. (15)
We have

~

, Yo = foralln > 1.

e in
Yn = Yn + yp with y, =
[unll

Un
etnll
From (14) and (15), we infer that

yo—>y=yeRinW'P(Q)asn — ooand||y|| = 1.

Since u;f (z) — +oo fora.a. z € Q as n — oo, from hypothesis H,(ii) and
Fatou’s lemma, we have

/ F(z, u,‘f)dz — —ooasn — 0. (16)
Q
On the other hand from (12), we have

— x/ F(z,u)dz < Ms foralln > 1. (17)
Q
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Comparing (16) and (17), we reach a contradiction (recall that > > 0). So, we
have that

{ufti>1 < WP (Q) is bounded,
= {unla>1 € WHP(Q) is bounded (see (8)).

Therefore, we may assume that
Un — uin WhP(Q) and u, — uin L"(Q) and in L?(3Q) asn — co. (18)

In (7) we choose h = u, —u € WHP(Q), pass to the limit as n — oo and use
(18). Then we have

lim (A(upn), up —u) =0,
n— o0
= U, — uin Wl’p(Q) as n — oo (see Proposition 3),

= ¢, satisfies the C — condition.
This completes the proof. O

Remark 2. Propositions 4 and 5 imply that for all & > 0, the functional ¢, satisfies
the P S-condition too (see [6, p. 174]).

We introduce the following sets

L = {X > 0: problem (P,) admits a positive solution}
S(A) = set of positive solutions of problem (P,).

Proposition 6. If hypotheses H and H(B) hold, then for every A > 0, S(A) C
int Cq and Ay = inf L > 0.

Proof. We may assume that . € £ (otherwise S(A) = @). Let u € S(1). Then we
have

(A(u),h)+/ B |u|P *uhdo =/kf(z,u)hdz forallh € WhP(Q).
Q2 o
(19)

Let (-, -)¢ denote the duality brackets for the pair (W_l’l’,(Q) = W(}’p(Q)*,
W(;’p (€2)). From the representation theorem for the elements of the dual space
w-Lr (R2) (see, for example, Gasinski and Papageorgiou [9, p. 212]), we have

Apu = div (|DulP~2Du) € W=7 ().
Integration by parts (Green’s identity), shows that

(A(u), h) = (—Apu, h), forall h e Wol’p(Q) c whr(Q).
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Using this equation in (19) and recalling that, if 4 € Wé’p (2), then h|gg =0
in the sense of trace. So, we have

(—Apu, h)o = /Q)»f(z, u)hdz forall h € W(}’p(Q).

Note that hypothesis H (i) implies that Ny (u) € L" /(Q) - Ll’/(Q) (recall that
p < r,hence r’ < p’;%—i—% = 1,}4—% = 1). So, we have

/ Af (2, uhdz = (AN (u), h)o forall h € WP (),
Q

= (—=Apu—ANys(u), h)o=0 forallh WJ”’(Q),
= —Apu(z) = Af(z,u(z)) foraa.ze Q. (20)
Then using the nonlinear Green’s identity mentioned in the Introduction (see

also Casas and Fernandez [5], Gasinski and Papageorgiou [9, p. 210], and Kenmochi
[12]), we have
ad
(A(u), h) /(Apu)hdz_<—u h> forallh e W'P(Q). (1)
np  laq

1
Here by (-, -)5q we denote the duality brackets for the pair (W P 09),
1
W ”’(a 2)). Returning to (19) and using (20) and (21), we obtain

d
<—” +Bur T, h> — Oforall h € WP (). 22)
ai’lp IQ

Let y denote the trace map on W7 (). We know that

Loy
imyg= W»r'"(0).
So, from (22) it follows that
8 ! /
a—" +B@uP ' =0in WPP (3Q). (23)
np

In fact the nonlinear regularity theory will help us to interpret this boundary
condition in a pointwise sense. More precisely, from (20), (23) and Winkert [22],
we know that u € L°°(£2). Thus we can apply Theorem 2 of Lieberman [13] and
have that u € C,\{0}. So, it follows that relation (23) holds for all z € 9€2.

Hypotheses H (i), (iv) imply that given p > 0, we can find &, > 0 such that

fzx)+&xP" > 0foraaz e, allx €0, pl. (24)
Let p = ||ullo and let §, > 0 as in (24). Then
—Apu(2) + Mpu(@)" ™ = Af (2 u(2) + 2gpu()" !
> 0 fora.a. z € Q (see (20), (24))

= Apu(z) < AEpu(z)’ "' foraa. z € Q,
= u € int C4 (see, for example, Gasinski and Papageorgiou [9, p. 738]).
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Therefore, we conclude that S(A) C intC.
Note that hypotheses H (i), (ii), (iv) imply that

f(z,x) < c3xPlforaa. z € Q, all x > 0 with ez > 0. (25)

Let A € (O, %) Recall that A; > 0 is the principal eigenvalue of the negative
Robin p-Laplacian (see (2)). We have

Af(z,x) < AixP"foraa. z € , allx > 0 (see (25)). (26)

Suppose that A € L. Then we can find u; € S(A) C int C4 and we have

(A(uyp), h) +/ ﬁ(z)uf_lhda = A/ f(z,up)hdz forall h € WP ().
aQ Q
Choosing & = u, € intC4, we have

||Du)\||5 +/ ﬂ(z)ufda < )AL]||u;L||£ (see (26) and recall u) € intCy),
R

which contradicts (2). Therefore A, > % > 0. |

Next we show the nonemptiness and a structural property of the admissible set

L.

Proposition 7. If hypotheses H and H(B) hold, then L # @ and . € L, n > X\
implyn € L.

Proof. From Propositions 4 and 5 and Theorem 2.1.14 of Denkowski et al. [6, p.
1841, we know that there exists ug € W2 () such that

@1.uo) = inf [¢,u) 1w e WP (@) @7

The integral functional u — Ip(u) = fQ F(z,u(z))dz is continuous on
L'(€) and, by hypothesis H (ii), Ir(it) > 0. Exploiting the density of W17 (Q) in
L'(€2), we can find i € WI’P(Q) such that

Ir(ug) = / F(z,u0(2)dz > 0. (28)
Q

Recalling that F'(z, x) = 0 fora.a.z € @, all x < 0, we see that we can replace

o by ﬁaL e WhP(Q). So, without any loss of generality, we may assume that

g = 0.
We have

. 1 1 3 N
@ (i) = —||Duo||,’§+—/ ﬁ(z)ué’dc—x/ F(z, iip)dz.
P P JaQ Q

Because of (28), we see that we can find A > 0 such that

@ (o) < O forall A > A,
= @1 (o) < 0 = $(0) (see (27)), hence uy # 0.
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From (27) we have

b, (ug) =0,

= (A(uo), h) + / luol”~*uohdz + / B@ W)’ hdo
2 90
=/ fo.(z, uo)hdz for all h € WP (). (29)
Q

In (29) we choose h = —u, € WP () and obtain
[|Dug || + llug I, = 0 (see (3)), hence ug = 0, ug # 0.

So, (29) becomes

(A(uo),h)+/ ﬂ(z)ug”hdazx/f(z,uo)hdzforanhewlﬁl’(sz) (see (3)).
02 Q

From this equality, as in the proof of Proposition 6, using the nonlinear Green’s
identity, we obtain

ou _
—Apuo(z) = Af (2, up(2)) foraa. z € Q, an_o +B@ul ™ =00naQ,
P

= up € S(A) and so (A, 00) C L, hence £ = 0.

Next let A € £ and n > A. Choose ¢+ € (0, 1) such that A = 97~ Pn (here
T > p is as in hypothesis H (v)). Since A € £, we can find u) € S(A) C intC4
(see Proposition 6).

We have

— Ap(Pup) (@) = 9P 'Af (2. ux(2)) (since uy € S(1)) (30)
=97 '0f (2, un(2)) (since 1 = 97 )
< nf(z, Yuy(z)) fora.a. z € Q
(since ¥ € (0, 1), see hypothesis H(v)).

Also, we have

a(Vuy)

+B@)@u )P ' =0 onaQ. (31)
on

Let u = Yu; € intCy and consider the following truncation-perturbation of
the reaction in problem (P,) :

nf(z,u@) +u@P' ifx <uz)

nf(z, x) +xP~! ifu(z) < x. (32)

g?](Z’-x) = <

This is a Carathéodory function. We set G,, (z,x) = f(;c 8y(z, s)ds and consider
the C!—functional 1&,7 : WP (Q) — R defined by

. 1 P U .
Y () = —IIDuIIp+—||M||p+—/ B2)u™(z) dU—/ Gy(z, u(2))dz.
p p P Jag o
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From (32) it is clear that foru > u

Uy =y + g, for some &, € R.
So, it follows that

° 1/},7 is bounded below (see Proposition 4).

° 1/?,, satisfies the C-condition (see Proposition 5).

Therefore we can find u,, € WP () such that

Ty ty) = inf [1/3,,(14) ‘ue Wl’p(Q)] (see [6, p. 184]),
= P, (uy) = 0,

= (AGuy). h)+ / ey P~ 2uhdz+ / B hdo = / 80z uy)hdz
Q Q2 Q

forall h € WhP(Q). (33)
Choosing h = (u — u,)* € WHP(Q), we obtain

(AGup), (u—uy) ™)+ /Q || P 2uy ( — uy)Tdz

+ [ p@uhr - utdo = [ G w—uy)*d:
02 Q

= [ [+ )z Gsee 2
Q

> (Aw), (w—uy™) +/ u? N — uy)tdz +/ B@u" " (w —uy)tdo
Q I

(see (30), (31) and use the nonlinear Green’s identity)
= <A(E) — Auy), (w — 1477)+>

+ /Q P — uy 1P 2uy) (e — uy) Tdz

+/ B W™ — wH? ) (w —uy)tdo <0.
Q

Note that

(34)

u(z) > uy(z) forall z € {u > uy},

= u(z) 2 u,]+(z) forall z € {u > u,} (recall u = Puy € intCy)
= / Bl — (u;)pfl)(g —uy)Tdo > 0 (see hypothesis H(B)).
aQ

Using this last inequality in (34), we obtain

(A@ — AGuy), (w—uy)t)+ /Q @P ™" — Juy P2y (u — uy) Tdz <0,

= |[{u > uy}|y =0, hence u < u,.



428 N. S. Papageorgiou, V. D. Riddulescu

So, relation (33) becomes

(A(u,,),h)+/ ﬂ(z)u{;—lhdaz/ nf (z, uy)hdz for all he WP (Q) (see (32))
Q2 Q

= u, € S(n) C int C4 (see Proposition 6 its proof),
= n € Landso [A, +00) C L.

This completes the proof. O
Remark 3. According to Proposition 7, the admissible set £ is an upper half line.

Next we prove a multiplicity result for the positive solutions of problem (Py).
To do this we need to strengthen the conditions on f(z, -).

The new hypotheses on the reaction function f(z, x), are the following:

H : f : Q@ xR — Ris a Carathéodory function such that f(z,0) = 0 for
a.a. z € 2, hypotheses H '(i) = (v) are the same as the corresponding hypotheses
H(@i) — (v) and
(vi) for every p > 0, there exists £, > 0 such that for a.a. z € 2, the function

x+— f(z,x)+ prpfl
is nondecreasing on [0, p].

Remark 4. If p = 2 and f(z,-) is differentiable with f;(z, -) being L°°(L2)-
bounded on bounded sets in R, then hypothesis H /(vi ) is satisfied. Also, the two
examples given after hypotheses H (the functions f1(x) and f>(x)), satisfy the new
hypothesis H/(vi).

Proposition 8. If hypotheses H, H(B) hold and A > M\, then problem (P,) has at
least two positive solutions

ug, u € intCy,ug # ul.
Proof. Let v € (Ay, A). By virtue of Proposition 7, v € £ and so we can find
u, € S(v) CintCy. We choose ¢ € (0, 1) such that v = 97 ~PX (see hypothesis
H (iii)). We set u = Yu, € int C; and define

Mz u@) +u@P™! ifx <ulz)

Af(z,x) +xP! ifu(z) < x. (35)

iz, x) = [

This is a Carathéodory function. We set Gi(z,x) = f(f 8,.(z, s)ds and consider
the C!' —functional 1% : WhP(Q) — R defined by

o 1 1 1
Yo (u) = —IIDuII§+—|Iu||§+—/ But(z)Pdz
p p P Jag

—/ Gy (z, u(z))dz forallu € WHP(Q).
Q



Bifurcation near infinity for the Robin p-Laplacian 429

Reasoning as in the second half of the proof of Proposition 7, we can find
ug € WhP(Q) such that

Vi (up) = inf[; () : u € WHP(Q)]. (36)
From (36) it follows that
up € S(A) CintC4 and u < ug (see the proof of Proposition 7).

Let p = |luglleo and let &, > 0 be as postulated by hypothesis H/(vi). Let
8 >0andsetu’ =u+ 8 €intC,. We have

— Al (2) + AEpul ()P !
< —Apu(@) + Mpu()" ! 4y (8) with y (8) > 0F as 5 — O+
= 9P (= A puy(2) + AEpu()P " + ¥ ()
=97 0f (2 1y () + Mpu(2)P ™! + ¥ (8) (since uy € S(v)
=07 Af (@ un (@) + A5u ()P 4y (6) (since v = 9T PR). (37)
Letm, = mﬁinuv > 0 (recall that u, € intCy). By virtue of hypothesis H' (v)

for n = (1 — ¥)m,, we can find 5,7 > 0 such that

S u@) [z un(z)

> &, (recall u = duy,, 0 € (0, 1))

u(z)™! uy(z)t-!
% — fzoun(@) = Emi",
= flz,u@) =97 fzun(@) =907 EmT > 0. (38)

Using (38) in (37), we obtain

—Apu’ (2) + AEpu’ ()P 7!
<Az u@) =97 EmET + 28 u@) " + ¥ 6)
S Af (2 u0(2)) + Mo @P " = 97 EmIT! 4y (8)
(see hypothesis H/(vi) and recall u < ugp)
< —Apup(z) + )Lépuo(z)”_1 fora.a. z € Q, for§ > 0 small

(recall y(8) — 0T as 8 — 0™). (39)
Note that
82 —1 3140 p—1
— +B@uP"" =0and — + B(DJu;, =00ndQ. (40)
ony onp

From (39), (40) and using the nonlinear Green’s identity, as before we obtain

Uo —g‘s > 0 for § > 0 small,
= uyg—ucintCy. 41)



430 N. S. Papageorgiou, V. D. Riddulescu

Let [u) = {u € W'P(Q) : u(z) < u(z) foraa. z € Q}. From (35) it is clear
that on [u)

Vi = r + & with & e R.

Then (41) implies that ug is a local C'!($2)-minimizer of ¢A Invoking Propo-
sition 2, we infer that ug is a local wl P (Q2)-minimizer of WA

By virtue of hypothesis H (iv), given € > 0, we can find § = §(¢) > 0 such
that

F(z,x) < —x”foraazeQ all x € [0, §]. (42)
p
Then for u € C'(Q) with |lullc1 gy < 8, we have
. 1 p o Ly 1 \p +
o) = —||Dullp + —llu"|lp+— [ B@)w)Pdo — | AF(z,u")dz
p p P Jaq Q

1 1 €
> — [IIDM+I|§ +/ ﬂ(Z)(qu)”dG} + a1 = =Allu™ ||} (see (42))
p 9 p p

):1—)L6 1. _
> T||M+||z + ;HM I (see 21))

> C4||u||§ for some ¢4 > 0 (choosing € € (0, ):1/)\)).
So, we have
@1(0) =0 < @y (u) forall u cl©), 0 < ||”||Cl(§) <4,

= u = 0is a (strict) local C!(€2) — minimizer of O
= u = 0 is alocal Wl”’(Q) — minimizer of ¢, (see Proposition 2).

Without any loss of generality, we may assume that ¢; (0) = 0 < @ (ug) (the
analysis is similar if the opposite inequality holds). We may assume that the critical
set of ¢, is finite (otherwise, we already have infinitely many positive solutions for
problem (Py)). Since ug € int C4 is a local minimizer of ¢, we can find p € (0, 1)
small such that

0= ¢,.(0) < @r(uo) < infl@. () = |lu — uoll = pl =my, [luoll > p (43)

(see Aizicovici, Papageorgiou and Staicu [1] (proof of Proposition 29). Recall that
¢, satisfies the C-condition (see Proposition 5). This fact and (43) permit the use
of Theorem 1 (the mountain pass theorem). So, se can find i € W7 (Q) such that

@) =0and m, < @y (@1). (44)
From (43) and (44) it follows that iz ¢ {0, up} and 2 € S(A) C intCy. O
Next we examine what happens in the critical case A = A,.

Proposition 9. If hypotheses H and H(B) hold, then A, € L.
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Proof. Le {Ay}p>1 € L suchthat &, | Ay asn — oo and let u, € S(A,) for all
n>l1.
‘We have

(A(un), h) +/ B@ul " hdo = xn/ f(z, up)hdz forall h € WP (),
02 Q
alln > 1. (45)

Hypotheses H (i), (ii), (iv),imply that givene > 0, we can find ¢s = c5(¢) >
0 such that

fz,x) <exP ' 4esforaa zeQ, allx >0. (46)

In (45) we choose it = u, € W1P(Q) and use (46). Then

IIDunII§+/ B@updo < dnellunlly + rncs|Qn
e

< Melluqllh + ries|Qy 47)
(since A, < Ap foralln > 1),
= (b =21 lunllh < Aics|QUn.

Choosing € € (0, %), we see that {u,},>1 € L” () is bounded. Using this
in (47) and since B > 0 (see hypothesis H (8)), we infer that

{Duy}y>1 € LP(2, RY) is bounded,
= {unla>1 € WHP(Q) is bounded

So, we may assume that
Up — uy in WHP(Q) and u,, — uy in L’ () and in LP(32) as n — oo. (48)

In (45) we choose h = u, — u, € Wl’p(Q), pass to the limit as n — oo and
use (48). Then

lim (A(uy), up —uy) =0,
n— 00

= U, —> Uy in W“’(Q) as n — oo (see Proposition 3). 49)

So, if in (45) we pass to the limit as n — oo and use (49), then

(A(uy), h) +/ ﬂ(z)uf_lhdcr = )»*/ f(z, us)hdz forall h € WHP(Q),
a0 Q

= U4 is a solution of problem (P;,).

We need to show that u, 7# 0 in order to conclude that u,. € S(A,), hence that
Ay € L. Arguing by contradiction, suppose u, = 0. Then

u, — 0in WHP(Q) as n — oo (see (49)).
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Un
[utn ]|

Let y, =
assume that

Yu — yin W"?(Q) and y, — yin L?(Q) and in LP(3Q) as n — oo. (50)

n > 1. Then ||y,|| = 1, y, = 0, for all n > 1. So, we may

From (45), we have

_ N
(A(y,,),h)—i—/ B2yl hdo =/ L”_)lhdz forallh € WhP(Q),
FYe o |luall?
alln > 1. 51)

Hypotheses H (i), (iv) imply that
|f(z, %) < ce(xP™" +x""1) foraa. z € Q with ¢g > 0

[ Nf(un)

—1} C L” () is bounded.
NunllP~1 ) >t

Passing to a subsequence if necessary and using hypothesis H (iv) we obtain

N !’
: f|(|’;n_)1 B gy~ lin LP (Q) with — ¢ < &(z) < Oforaa.z € Q. (52)
Up

In (51), we choose & = y, — y € W'P(Q), pass to the limit as n — oo and
use (52). Then
lim (A(y), yn —y) =0,
n—oo
=y, = yin WP (Q) asn — oo, hence [|y|]| =1, y > 0. (53)

If in (51) we pass to the limit as n — 0o and use (52) and (53), we obtain

(A(y), h) +/ B(2)y" 'hdo = ,\*/ E(z)yP "' hdz forallh € WHP(Q).
Q2 Q
Choose h = y € WP(Q). Then using (2), we have

0 < AlIylly < 1IDyll5 + /m B(z)yPdo = /\*/Qé(z)y"dz < 0 (see (52)),

a contradiction. This proves that u, # 0 and so u, € S(Ly), thatis, 1, € L. |

So, we can summarize the situation for problem (P, ), by stating the following
bifurcation near infinity result.

Theorem 10. If hypotheses H "and H (B) hold, then there exists A, > 0 such that
(a) for all & > M\, problem (P) admits at least two positive solutions

ug, i € intCy, ug # it;
(b) for A = Ay problem (P;) admits at least one positive solution
uy, €intCy;

(c) for all A € (0, L) problem (Py) has no positive solutions.
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