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Abstract. We consider a parametric Robin problem driven by the p-Laplacian and with a
Carathéodory reaction. Our hypotheses on the reaction incorporate a special case p-logistic
equations with a superdiffusive reaction. Using variational methods coupled with suitable
truncation, perturbation and comparison techniques, we prove a bifurcation near infinity
result.

1. Introduction

Let� ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper, we study

the following nonlinear parametric Robin problem
⎧
⎪⎪⎨

⎪⎪⎩

−�pu(z) = λ f (z, u(z)) in �
∂u

∂n p
+ β(z)u p−1 = 0 on ∂�

u > 0 in �,

(Pλ)

where 1 < p < ∞. Here �p denotes the p-Laplace differential operator defined
by

�pu = div (|Du|p−2Du) for all u ∈ W 1,p(�).

We are looking for solutions in the Sobolev space W 1,p(�). The weak distrib-
utional formulation of (Pλ) is

∫

�

|Du|p−2(Du, Dh)RN dz +
∫

∂�

β(z)|u|p−2uhdσ

= λ

∫

�

f (z, u)hdz for all h ∈ W 1,p(�)
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416 N. S. Papageorgiou, V. D. Rădulescu

(or, equivalently, for all h ∈ C∞(�); recall that since ∂� is a C2-manifold, the
space C∞(�) is dense in W 1,p(�), see for example Gasinski and Papageorgiou
[9, p. 189]). In the above equation, dσ denotes the (N − 1)-dimensional Hausdorff
measure on ∂� (the surface measure on ∂�).

The Robin boundary condition is interpreted using the nonlinear Green’s iden-
tity (see Casas and Fernandez [5], Kenmochi [12], and Gasinski and Papageorgiou
[9, p. 211]) as is the case in Lieberman [13]. So, according to that identity, there
exists a unique element

∂u

∂n p
∈ W−1/p′,p′

(∂�)

(
1

p
+ 1

p′ = 1

)

,

which by extension we denote by

∂u

∂n p
= |Du|p−2(Du, n)RN

with n(·) being the outward unit normal on ∂� such that if �pu ∈ L p′
(�), then

∫

�

|Du|p−2(Du, Dh)RN dz+
∫

�

(�pu)hdz=
〈

∂u

∂n p
, γ0(h)

〉

for all h∈W 1,p(�).

Here γ0 is the trace map and we have denoted by 〈 ·, · 〉 the duality brackets for the
pair

(
W−1/p′,p′

(∂�),W 1/p′,p(∂�)
)
.

The reaction f (z, x) is a Carathéodory function (that is, for all x ∈ R the
mapping z �−→ f (z, x) is measurable and for a.a. z ∈ �, x �−→ f (z, x) is
continuous).On f (z, ·)we impose conditions near+∞ and near 0+. Our conditions
are general and incorporate as a special case, the so-called superdiffusive reaction
of the p-logistic equation. Finally λ > 0 is a parameter.

Our goal is to study the existence, nonexistence and multiplicity of positive
solutions as the parameter λ > 0 varies. More precisely, we prove a bifurcation-
type result for large values of the parameter λ > 0 (bifurcation near +∞). So,
we establish the existence of a critical parameter value λ∗ > 0 such that for every
λ > λ∗ problem (Pλ) admits at least two positive solutions, when λ = λ∗ problem
(Pλ) has at least one positive solution and finally for all λ ∈ (0, λ∗) problem (Pλ)
has no positive solutions.

Such bifurcation type results, were proved by Brock et al. [3], Filippakis et al.
[8], Gasinski and Papageorgiou [10], Rădulescu and Repovs [17], Takeuchi [19,20]
(semilinear or nonlinear Dirichlet problems) and by Cardinali et al. [4], Papageor-
giou and Rădulescu [15] (for nonlinear Neumann problems). All the aforemen-
tioned results impose more restrictive conditions on the reaction f (z, ·). Moreover,
our work here complements the recent one by Papageorgiou and Rădulescu [16],
where the authors prove for Robin problems a bifurcation theorem for small values
of λ > 0 (bifurcation near zero). However, it should be pointed out that in [16]
the differential operator is considerably more general and nonhomogeneous. It is
an interesting open problem whether our work here can be extended to equations
driven by such operators.
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Bifurcation near infinity for the Robin p-Laplacian 417

An important role in our analysis is played by the regularity theory of Lieberman
[13], who established regularity up to the boundary (global regularity) for solutions
of equations driven by a broad class of nonhomogeneous differential operators,
which includes as a special case the p-Laplacian. The results of Lieberman [13]
extend local regularity results of DiBenedetto [7] and Tolksdorf [21].

Our approach is variational and it is based on the critical point theory combined
with suitable truncation, perturbation and comparison techniques.

2. Mathematical background

Let X be a Banach space and X∗ be its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ satisfies the
“Cerami condition” (the “C-condition” for short), it the following is true:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and

(1 + ||un||)ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.

This compactness-type condition, is in general weaker than the usual Palais–
Smale condition (“PS-condition” for short). The two conditions coincide if ϕ is
bounded below (see, for example, Denkowski et al. [6, p. 174]). The C-condition
leads to a deformation theorem, from which one can derive the minimax theory of
the critical values of ϕ. Prominent in that theory, is the so-called “mountain pass
theorem” of Ambrosetti and Rabinowitz [2], which here we state in a slightly more
general form (see, for example, Denkowski et al. [6, p. 179]).

Theorem 1. Assume that ϕ ∈ C1(X) satisfies the C-condition, u0, u1 ∈ X, ρ >

0, ||u1 − u0|| > ρ,

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ||u − u0|| = ρ] = ηρ

and c = inf
γ∈�

max
0�t�1

ϕ(γ (t)) where � = {γ ∈ C([0, 1], X) : γ (0) = u0, γ (1) =
u1}. Then c � ηρ and c is a critical value of ϕ.

The analysis of problem (Pλ) will involve the Sobolev space W 1,p(�) and the
Banach space C1(�). We will also make use of the fact that C1(�) is an ordered
Banach space with positive cone C+ = {u ∈ C1(�) : u(z) � 0 for all z ∈ �}.
This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ �}.
In what follows by || · || we denote the norm of the Sobolev space W 1,p(�).

So, we have

||u|| = (||u||pp + ||Du||pp
)1/p

for all u ∈ W 1,p(�)

On ∂� we use the (N − 1)-dimensional Hausdorff (surface) measure σ(·).
Using this measure, we can define the Lebesgue spaces L p(∂�), 1 � p � ∞. We

Author's personal copy



418 N. S. Papageorgiou, V. D. Rădulescu

know that there exists a unique continuous linear map γ0 : W 1,p(�) → L p(∂�)

known as the “trace map”, which satisfies γ0(u) = u|∂� for all u ∈ C1(�). In fact
γ0 is compact and we have

im γ0 = W
1
p′ ,p(∂�)

(

with
1

p
+ 1

p′ = 1

)

ker γ0 = W 1,p
0 (�)

In what follows, for the sake of notational simplicity, we drop the use of the
trace map. All the restrictions of functions on ∂�, are understood in the sense of
traces.

Let f0 : �×R → R be a Carathéodory function with subcritical growth in the
x ∈ R variable, that is

| f0(z, x)| � a0(z)(1 + |x |r−1) for a.a z ∈ �, all x ∈ R

with a0 ∈ L∞(�)+ and 1 < r < p∗ =
{

Np
N−p if p < N
+∞ if N � p

. We set F0(z, x) =
∫ x
0 f0(z, s)ds and consider the C1-functional ϕ0 : W 1,p(�) → R defined by

ϕ0(u)= 1

p
||Du||pp+ 1

p

∫

∂�

β(z)|u(z)|pdσ −
∫

�

F0(z, u(z))dz for all u∈W 1,p(�).

The next proposition can be found in Papageorgiou and Rădulescu [16] and it
is essentially a consequence of the nonlinear regularity theory of Lieberman [13].

Proposition 2. Assume that u0 ∈ W 1,p(�) is a local C1(�)-minimizer of ϕ0, that
is, there exists ρ0 > 0 such that

ϕ0(u0) � ϕ0(u0 + h) for all h ∈ C1(�) with ||h||C1(�) � ρ0.

Then u0 ∈ C1,α(�) for some α ∈ (0, 1) and it is also a local W 1,p(�)-minimizer
of ϕ0, that is, there exists ρ1 > 0 such that

ϕ0(u0) � ϕ0(u) + h) for all h ∈ W 1,p(�) with ||h|| � ρ1.

Let A : W 1,p(�) → W 1,p(�)∗ be the nonlinear map defined by

〈A(u), y〉 =
∫

�

|Du|p−2(Du, Dy)RN dz for all u, y ∈ W 1,p(�). (1)

The next result about the map A is well-known (see, for example, Gasinski and
Papageorgiou [9, p. 745]).

Proposition 3. The map A : W 1,p(�) → W 1,p(�)∗ defined by (1) is demicontin-
uous, monotone (hence maximal monotone too) and of type (S)+, that is

“if un
w→ u in W 1,p(�) and lim sup

n→∞
〈A(un), un − u〉 � 0,

then un → u in W 1,p(�).′′

Author's personal copy
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Finally, let us fix our notation. In what follows, by | · |N we denote the Lebesgue
measure on R

N . If x ∈ R
N , then we set x± = max{±x, 0}. So, if u ∈ W 1,p(�),

we define u±(·) = u(·)±. We know that

u± ∈ W 1,p(�), u = u+ − u−, |u| = u+ + u−

If h : � × R → R is a measurable function (for example, a Carathéodory
function), then we define

Nh(u)(·) = h(·, u(·)) for all u ∈ W 1,p(�).

Evidently, the mapping z �−→ Nh(u)(z) is measurable.

3. Bifurcation near infinity

The hypotheses in the reaction f (z, x) are the following:
H : f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a.

z ∈ � and

(i) | f (z, x)| � a(z) (1+xr−1) for a.a. z ∈ �, all x � 0, with a ∈ L∞(�)+, p �
r < p∗;

(ii) if F(z, x) = ∫ x
0 f (z, s)ds, then F(z, x) → −∞ uniformly for a.a. z ∈ � as

x → +∞ and there exists ũ ∈ L1(�) such that
∫

�
F(z, ũ(z))dz > 0;

(iii) there exist τ > p and M > 0 such that τ F(z, x) � f (z, x)x for a.a. z ∈ �,
all x � M ;

(iv) −ĉ � lim inf
x→0+

f (z,x)
x p−1 � lim sup

x→0+
f (z,x)
x p−1 � 0 uniformly for a.a. z ∈ �;

(v) there exists μ > p such that for all η > 0, we can find ξ̃η > 0 for which we
have

y − x � η ⇒ f (z, x)

xμ−1 − f (z, y)

yμ−1 � ξ̃η for a.a. z ∈ �.

Remark 1. Sincewe are interested onpositive solutions and all the abovehypotheses
concern the positive semi-axis R+ = [0,+∞), without any loss of generality we
may assume that f (z, x) = 0 for a.a. z ∈ �, all x � 0.

Example 1. The following functions satisfy hypotheses H . For the sake of simplic-
ity, we drop the z-dependence:

f1(x) = xq−1 − xr−1 for all x � 0, with p < q < r < p∗,

f2(x) = xτ−1
(
1

τ
− ln x

)

for all x � 0, with p < τ < p∗

The function f1(x) corresponds to the superdiffusive reaction of the p-logistic
equation.

Our condition on the boundary weight β(·) is the following:
H(β) : β ∈ C1,α(∂�) with α ∈ (0, 1), β(z) � 0 for all z ∈ ∂� and β �= 0.

Author's personal copy



420 N. S. Papageorgiou, V. D. Rădulescu

Under this hypothesis, we know that the eigenvalue problem

− �pu(z) = λ(u(z))p−2u(z) in �,
∂u

∂n p
+ β(z)|u|p−2u = 0 on ∂�, (2)

has a first eigenvalue λ̂1 > 0 which is isolated, simple and admits the following
variational characterization

λ̂1 = inf

[
||Du||pp + ∫

∂�
β(z)|u|pdσ

||u||pp
: u ∈ W 1,p(�), u �= 0

]

. (3)

This infimum is realized on the corresponding one dimensional eigenspace
whose elements are in C1(�) and have constant sign. For details, we refer to
Papageorgiou and Rădulescu [14].

We introduce the following truncation-perturbation of the term λ f (z, ·):

f̂λ(z, x) =
{
0 if x � 0
λ f (z, x) + x p−1 if 0 < x .

This is a Carathéodory function. We set F̂λ(z, x) = ∫ x
0 f̂λ(z, s)ds and consider

the C1-functional ϕ̂λ : W 1,p(�) → R defined by

ϕ̂λ(u) = 1

p
||Du||pp + 1

p
||u||pp + 1

p

∫

∂�

β(z)u+(z)pdσ −
∫

�

F̂λ(z, u(z))dz

for all u ∈ W 1,p(�).

Proposition 4. If hypotheses H, H(β) hold and λ > 0, then the functional ϕ̂λ is
bounded below.

Proof. Hypotheses H(i), (i i), imply that we can find c1 > 0 such that

F(z, x) � c1 for a.a. z ∈ �, all x � 0. (4)

Then for all u ∈ W 1,p(�), we have

ϕ̂λ(u) = 1

p
||Du||pp + 1

p
||u||pp + 1

p

∫

∂�

β(z)(u+)pdσ −
∫

�

F̂λ(z, u)dz

� 1

p
||Du||pp − c1|�|N (see (3), (4) and hypothesis H(β)),

⇒ ϕ̂λ is bounded below.

The proof is complete. �

Proposition 5. If hypotheses H, H(β) hold and λ > 0, then the functional ϕ̂λ

satisfies the C-condition.

Author's personal copy



Bifurcation near infinity for the Robin p-Laplacian 421

Proof. Let {un}n�1 ⊂ W 1,p(�) be a sequence such that

|ϕ̂λ(un)| � M1 for some M1 > 0, all n � 1 (5)

(1 + ||un||)ϕ̂ ′
λ(un) → 0 in W 1,p(�)∗ as n → ∞. (6)

From (6), we have
∣
∣
∣

〈
ϕ̂

′
λ(un), h

〉∣
∣
∣ � εn||h||

1 + ||un|| for all h ∈ W 1,p(�) with εn → 0+,

⇒
∣
∣
∣
∣〈A(un), h〉+

∫

�

|un|p−2unhdz+
∫

∂�

β(z)(u+
n )p−1hdσ −

∫

�

f̂λ(z, un)hdz

∣
∣
∣
∣

� εn||h||
1 + ||un||

for all h ∈ W 1,p(�) with εn → 0+. (7)

In (7) we choose h = −u−
n ∈ W 1,p(�) and obtain

||u−
n ||p � εn for all n � 1 (see (3)),⇒ u−

n → 0 in W 1,p(�) as n → ∞. (8)

Next in (7) we choose h = u+
n ∈ W 1,p(�). Then

−||Du+
n ||pp −

∫

∂�

β(z)(u+
n )pdσ +

∫

�

λ f (z, u+
n )u+

n dz � εn

for all n � 1 (see (3)). (9)

On the other hand from (5) and (8), we have

||Du+
n ||pp +

∫

∂�

β(z)(u+
n )pdσ − λ

∫

�

pF(z, u+
n )dz � M2 (10)

for some M2 > 0, all n � 1.

Adding (9) and (10), we obtain

λ

∫

�

[
f (z, u+

n )u+
n − pF(z, u+

n )
]
dz � M3 for some M3 > 0, all n � 1,

⇒ λ(τ − p)
∫

�

F(z, u+
n )dz + λ

∫

�

[
f (z, u+

n )u+
n − τ F(z, u+

n )
]
dz

� M3 for all n � 1,

⇒ λ(τ − p)
∫

�

F(z, u+
n )dz � M4 for some M4 > 0, all n � 1 (11)

(see hypotheses H(i), (i i i)).

From (5) and (8), we have

1

p
||Du+

n ||pp + 1

p

∫

∂�

β(z)(u+
n )pdσ − λ

∫

�

F(z, u+
n )dz � M5 (12)

for some M5 > 0, all n � 1 (see (3)),

⇒ ||Du+
n ||pp � M6 for some M6 > 0, all n � 1 (13)

(see hypothesis H(β), (11) and recall τ > p (see H(i i i))).
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422 N. S. Papageorgiou, V. D. Rădulescu

Let V = {u ∈ W 1,p(�) : ∫
�
u(z)dz = 0}. We have

W 1,p(�) = R ⊕ V .

Then every un ∈ W 1,p(�) n � 1, can be written in a unique way as

un = ūn + ûn with ūn ∈ R, ûn ∈ V for all n � 1.

From (8) and (13), we see that

{Dun}n�1 ⊆ L p(�, R
N ) is bounded,⇒ {Dûn}n�1 ⊆ L p(�, R

N ) is bounded.

By virtue of the Poincaré–Wirtinger inequality (see, for example, Gasinski and
Papageorgiou [9, p. 84]), we have that

{ûn}n�1 ⊆ W 1,p(�) is bounded. (14)

Suppose that |ūn| → ∞ as n → ∞. We know that there exists c2 > 0 such
that

||ūn|| � c2||un|| (see Goldberg [11, p.48])
⇒ ||un|| → +∞ as n → ∞.

Also, we have

u−
n = (ūn + ûn)

− = −min{ūn + ûn, 0}
� ū−

n + û−
n for all n � 1 (see Schaefer [18, p. 53).

From (8) we see that ū−
n → 0 and so ū+

n → +∞ as n → ∞. Therefore
un(z) → +∞ for a.a. z ∈ �, hence u+

n (z) → ∞ for a.a. z ∈ �.
Let yn = un||un || n � 1. Then ||yn|| = 1 for all n � 1 and so by passing to a

suitable subsequence if necessary, we may assume that

yn
w→ y in W 1,p(�) and yn → y in Lr (�) as n → ∞. (15)

We have

yn = ȳn + ŷn with ȳn = ūn
||un|| , ŷn = ûn

||un|| for all n � 1.

From (14) and (15), we infer that

yn → y = ȳ ∈ R in W 1,p(�) as n → ∞ and ||y|| = 1.

Since u+
n (z) → +∞ for a.a. z ∈ � as n → ∞, from hypothesis H2(i i) and

Fatou’s lemma, we have
∫

�

F(z, u+
n )dz → −∞ as n → ∞. (16)

On the other hand from (12), we have

− λ

∫

�

F(z, u+
n )dz � M5 for all n � 1. (17)
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Bifurcation near infinity for the Robin p-Laplacian 423

Comparing (16) and (17), we reach a contradiction (recall that λ > 0). So, we
have that

{u+
n }n�1 ⊆ W 1,p(�) is bounded,

⇒ {un}n�1 ⊆ W 1,p(�) is bounded (see (8)).

Therefore, we may assume that

un
w→ u in W 1,p(�) and un → u in Lr (�) and in L p(∂�) as n → ∞. (18)

In (7) we choose h = un − u ∈ W 1,p(�), pass to the limit as n → ∞ and use
(18). Then we have

lim
n→∞ 〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p(�) as n → ∞ (see Proposition 3),

⇒ ϕ̂λ satisfies the C − condition.

This completes the proof. �
Remark 2. Propositions 4 and 5 imply that for all λ > 0, the functional ϕ̂λ satisfies
the PS-condition too (see [6, p. 174]).

We introduce the following sets

L = {λ > 0 : problem (Pλ) admits a positive solution}
S(λ) = set of positive solutions of problem (Pλ).

Proposition 6. If hypotheses H and H(β) hold, then for every λ > 0, S(λ) ⊆
int C+ and λ∗ = inf L > 0.

Proof. We may assume that λ ∈ L (otherwise S(λ) = ∅). Let u ∈ S(λ). Then we
have

〈A(u), h〉 +
∫

∂�

β(z)|u|p−2uhdσ =
∫

σ

λ f (z, u)hdz for all h ∈ W 1,p(�).

(19)

Let 〈·, ·〉0 denote the duality brackets for the pair (W−1,p′
(�) = W 1,p

0 (�)∗,
W 1,p

0 (�)). From the representation theorem for the elements of the dual space
W−1,p′

(�) (see, for example, Gasinski and Papageorgiou [9, p. 212]), we have

�pu = div (|Du|p−2Du) ∈ W−1,p′
(�).

Integration by parts (Green’s identity), shows that

〈A(u), h〉 = 〈−�pu, h
〉

0 for all h ∈ W 1,p
0 (�) ⊆ W 1,p(�).
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424 N. S. Papageorgiou, V. D. Rădulescu

Using this equation in (19) and recalling that, if h ∈ W 1,p
0 (�), then h|∂� = 0

in the sense of trace. So, we have

〈−�pu, h
〉

0 =
∫

�

λ f (z, u)hdz for all h ∈ W 1,p
0 (�).

Note that hypothesis H(i) implies that N f (u) ∈ Lr ′
(�) ⊆ L p′

(�) (recall that
p � r , hence r ′ � p′; 1

p + 1
p′ = 1, 1

r + 1
r ′ = 1). So, we have

∫

�

λ f (z, u)hdz = 〈λN f (u), h〉0 for all h ∈ W 1,p
0 (�),

⇒ 〈−�pu − λN f (u), h〉0 = 0 for all h ∈ W 1,p
0 (�),

⇒ −�pu(z) = λ f (z, u(z)) for a.a. z ∈ �. (20)

Then using the nonlinear Green’s identity mentioned in the Introduction (see
alsoCasas andFernandez [5],Gasinski andPapageorgiou [9, p. 210], andKenmochi
[12]), we have

〈A(u), h〉 +
∫

�

(�pu)hdz =
〈

∂u

∂n p
, h

〉

∂�

for all h ∈ W 1,p(�). (21)

Here by 〈·, ·〉∂� we denote the duality brackets for the pair (W
− 1

p′ ,p
′
(∂�),

W
1
p′ ,p(∂�)). Returning to (19) and using (20) and (21), we obtain

〈
∂u

∂n p
+ β(z)u p−1, h

〉

∂�

= 0 for all h ∈ W 1,p(�). (22)

Let γ0 denote the trace map on W 1,p(�). We know that

im γ0 = W
1
p′ ,p(∂�).

So, from (22) it follows that

∂u

∂n p
+ β(z)u p−1 = 0 in W−1/p′,p′

(∂�). (23)

In fact the nonlinear regularity theory will help us to interpret this boundary
condition in a pointwise sense. More precisely, from (20), (23) and Winkert [22],
we know that u ∈ L∞(�). Thus we can apply Theorem 2 of Lieberman [13] and
have that u ∈ C+\{0}. So, it follows that relation (23) holds for all z ∈ ∂�.

Hypotheses H(i), (iv) imply that given ρ > 0, we can find ξρ > 0 such that

f (z, x) + ξρx
p−1 � 0 for a.a z ∈ �, all x ∈ [0, ρ]. (24)

Let ρ = ||u||∞ and let ξρ > 0 as in (24). Then

−�pu(z) + λξρu(z)p−1 = λ f (z, u(z)) + λξρu(z)p−1

� 0 for a.a. z ∈ � (see (20), (24))

⇒ �pu(z) � λξρu(z)p−1 for a.a. z ∈ �,

⇒ u ∈ intC+ (see, for example, Gasinski and Papageorgiou [9, p. 738]).
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Therefore, we conclude that S(λ) ⊆ intC+.
Note that hypotheses H(i), (ii), (iv) imply that

f (z, x) � c3x
p−1 for a.a. z ∈ �, all x � 0 with c3 > 0. (25)

Let λ ∈
(
0, λ̂1

c2

)
. Recall that λ̂1 > 0 is the principal eigenvalue of the negative

Robin p-Laplacian (see (2)). We have

λ f (z, x) < λ̂1x
p−1 for a.a. z ∈ �, all x > 0 (see (25)). (26)

Suppose that λ ∈ L. Then we can find uλ ∈ S(λ) ⊆ intC+ and we have

〈A(uλ), h〉 +
∫

∂�

β(z)u p−1
λ hdσ = λ

∫

�

f (z, uλ)hdz for all h ∈ W 1,p(�).

Choosing h = uλ ∈ intC+, we have

||Duλ||pp +
∫

∂�

β(z)u p
λdσ < λ̂1||uλ||pp (see (26) and recall uλ ∈ intC+),

which contradicts (2). Therefore λ∗ � λ̂1
c2

> 0. �
Next we show the nonemptiness and a structural property of the admissible set

L.
Proposition 7. If hypotheses H and H(β) hold, then L �= ∅ and λ ∈ L, η > λ

imply η ∈ L.
Proof. From Propositions 4 and 5 and Theorem 2.1.14 of Denkowski et al. [6, p.
184], we know that there exists u0 ∈ W 1,p(�) such that

ϕ̂λ(u0) = inf
[
ϕ̂λ(u) : u ∈ W 1,p(�)

]
. (27)

The integral functional u �−→ IF (u) = ∫

�
F(z, u(z))dz is continuous on

L1(�) and, by hypothesis H(i i), IF (ũ) > 0. Exploiting the density ofW 1,p(�) in
L1(�), we can find ũ0 ∈ W 1,p(�) such that

IF (ũ0) =
∫

�

F(z, ũ0(z))dz > 0. (28)

Recalling that F(z, x) = 0 for a.a. z ∈ �, all x � 0, we see that we can replace
ũ0 by ũ+

0 ∈ W 1,p(�). So, without any loss of generality, we may assume that
ũ0 � 0.

We have

ϕ̂λ(ũ0) = 1

p
||Dũ0||pp + 1

p

∫

∂�

β(z)ũ p
0 dσ − λ

∫

�

F(z, ũ0)dz.

Because of (28), we see that we can find λ̃ > 0 such that

ϕ̂λ(ũ0) < 0 for all λ > λ̃,

⇒ ϕ̂λ(u0) < 0 = ϕ̂λ(0) (see (27)), hence u0 �= 0.
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From (27) we have

ϕ̂
′
λ(u0) = 0,

⇒ 〈A(u0), h〉 +
∫

�

|u0|p−2u0hdz +
∫

∂�

β(z)(u+
0 )p−1hdσ

=
∫

�

f̂λ(z, u0)hdz for all h ∈ W 1,p(�). (29)

In (29) we choose h = −u−
0 ∈ W 1,p(�) and obtain

||Du−
0 ||pp + ||u−

0 ||pp = 0 (see (3)), hence u0 � 0, u0 �= 0.

So, (29) becomes

〈A(u0), h〉+
∫

∂�

β(z)u p−1
0 hdσ =λ

∫

�

f (z, u0)hdz for all h∈W 1,p(�) (see (3)).

From this equality, as in the proof of Proposition 6, using the nonlinear Green’s
identity, we obtain

−�pu0(z) = λ f (z, u0(z)) for a.a. z ∈ �,
∂u0
∂n p

+ β(z)u p−1
0 = 0 on ∂�,

⇒ u0 ∈ S(λ) and so (λ̃,∞) ⊆ L, hence L �= ∅.

Next let λ ∈ L and η > λ. Choose ϑ ∈ (0, 1) such that λ = ϑτ−pη (here
τ > p is as in hypothesis H(v)). Since λ ∈ L, we can find uλ ∈ S(λ) ⊆ intC+
(see Proposition 6).

We have

− �p(ϑuλ)(z) = ϑ p−1λ f (z, uλ(z)) (since uλ ∈ S(λ)) (30)

= ϑτ−1η f (z, uλ(z)) (since λ = ϑτ−pη)

� η f (z, ϑuλ(z)) for a.a. z ∈ �

(since ϑ ∈ (0, 1), see hypothesis H(v)).

Also, we have

∂(ϑuλ)

∂n p
+ β(z)(ϑuλ)

p−1 = 0 on ∂�. (31)

Let u = ϑuλ ∈ intC+ and consider the following truncation-perturbation of
the reaction in problem (Pη) :

ĝη(z, x) =
{

η f (z, u(z)) + u(z)p−1 if x � u(z)
η f (z, x) + x p−1 if u(z) < x .

(32)

This is a Carathéodory function.We set Ĝη(z, x) = ∫ x
0 ĝη(z, s)ds and consider

the C1−functional ψ̂η : W 1,p(�) → R defined by

ψ̂η(u) = 1

p
||Du||pp + 1

p
||u||pp + 1

p

∫

∂�

β(z)u+(z)pdσ −
∫

�

Ĝη(z, u(z))dz.
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From (32) it is clear that for u � u

ψ̂η = ϕ̂η + ξ∗
η for some ξ∗

η ∈ R.

So, it follows that

• ψ̂η is bounded below (see Proposition 4).
• ψ̂η satisfies the C-condition (see Proposition 5).

Therefore we can find uη ∈ W 1,p(�) such that

ψ̂η(uη) = inf
[
ψ̂η(u) : u ∈ W 1,p(�)

]
(see [6, p. 184]),

⇒ ψ̂
′
η(uη) = 0,

⇒ 〈
A(uη), h

〉+
∫

�

|uη|p−2uηhdz+
∫

∂�

β(z)(u+
η )p−1hdσ =

∫

�

ĝη(z, uη)hdz

for all h ∈ W 1,p(�). (33)

Choosing h = (u − uη)
+ ∈ W 1,p(�), we obtain

〈
A(uη), (u − uη)

+〉 +
∫

�

|uη|p−2uη(u − uη)
+dz

+
∫

∂�

β(z)(u+
η )p−1(u − uη)

+dσ =
∫

�

ĝη(z, uη)(u − uη)
+dz

=
∫

�

[
η f (z, u) + u p−1

]
(u − uη)

+dz (see (32))

�
〈
A(u), (u − uη)

+〉 +
∫

�

u p−1(u − uη)
+dz +

∫

∂�

β(z)u p−1(u − uη)
+dσ

(see (30), (31) and use the nonlinear Green’s identity)

⇒ 〈
A(u) − A(uη), (u − uη)

+〉

+
∫

�

(u p−1 − |uη|p−2uη)(u − uη)
+dz

+
∫

∂�

β(z)(u p−1 − (u+
η )p−1)(u − uη)

+dσ � 0. (34)

Note that

u(z) > uη(z) for all z ∈ {u > uη},
⇒ u(z) � u+

η (z) for all z ∈ {u > uη} (recall u = ϑuλ ∈ intC+)

⇒
∫

∂�

β(z)(u p−1 − (u+
η )p−1)(u − uη)

+dσ � 0 (see hypothesis H(β)).

Using this last inequality in (34), we obtain

〈
A(u) − A(uη), (u − uη)

+〉 +
∫

�

(u p−1 − |uη|p−2uη)(u − uη)
+dz � 0,

⇒ |{u > uη}|N = 0, hence u � uη.
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So, relation (33) becomes

〈
A(uη), h

〉+
∫

∂�

β(z)u p−1
η hdσ =

∫

�

η f (z, uη)hdz for all h∈W 1,p(�) (see (32))

⇒ uη ∈ S(η) ⊆ intC+ (see Proposition 6 its proof),

⇒ η ∈ L and so [λ,+∞) ⊆ L.

This completes the proof. �
Remark 3. According to Proposition 7, the admissible set L is an upper half line.

Next we prove a multiplicity result for the positive solutions of problem (Pλ).
To do this we need to strengthen the conditions on f (z, ·).

The new hypotheses on the reaction function f (z, x), are the following:
H

′ : f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for
a.a. z ∈ �, hypotheses H

′
(i) → (v) are the same as the corresponding hypotheses

H(i) → (v) and
(vi) for every ρ > 0, there exists ξρ > 0 such that for a.a. z ∈ �, the function

x �−→ f (z, x) + ξρx
p−1

is nondecreasing on [0, ρ].
Remark 4. If p = 2 and f (z, ·) is differentiable with f

′
x (z, ·) being L∞(�)-

bounded on bounded sets in R, then hypothesis H
′
(vi) is satisfied. Also, the two

examples given after hypotheses H (the functions f1(x) and f2(x)), satisfy the new
hypothesis H

′
(vi).

Proposition 8. If hypotheses H, H(β) hold and λ > λ∗, then problem (Pλ) has at
least two positive solutions

u0, û ∈ int C+, u0 �= û.

Proof. Let ν ∈ (λ∗, λ). By virtue of Proposition 7, ν ∈ L and so we can find
uν ∈ S(ν) ⊆ intC+. We choose ϑ ∈ (0, 1) such that ν = ϑτ−pλ (see hypothesis
H

′
(i i i)). We set u = ϑuν ∈ intC+ and define

ĝλ(z, x) =
{

λ f (z, u(z)) + u(z)p−1 if x � u(z)
λ f (z, x) + x p−1 if u(z) < x .

(35)

This is a Carathéodory function.We set Ĝλ(z, x) = ∫ x
0 ĝλ(z, s)ds and consider

the C1−functional ψ̂λ : W 1,p(�) → R defined by

ψ̂λ(u) = 1

p
||Du||pp + 1

p
||u||pp + 1

p

∫

∂�

β(z)u+(z)pdz

−
∫

�

Ĝλ(z, u(z))dz for all u ∈ W 1,p(�).
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Reasoning as in the second half of the proof of Proposition 7, we can find
u0 ∈ W 1,p(�) such that

ψ̂λ(u0) = inf[ψ̂λ(u) : u ∈ W 1,p(�)]. (36)

From (36) it follows that

u0 ∈ S(λ) ⊆ intC+ and u � u0 (see the proof of Proposition 7).

Let ρ = ||u0||∞ and let ξρ > 0 be as postulated by hypothesis H
′
(vi). Let

δ > 0 and set uδ = u + δ ∈ intC+. We have

−�pu
δ(z) + λξρu

δ(z)p−1

� −�pu(z) + λξρu(z)p−1 + γ (δ) with γ (δ) → 0+ as δ → 0+

= ϑ p−1(−�puν(z)) + λξρu(z)p−1 + γ (δ)

= ϑ p−1ν f (z, uν(z)) + λξρu(z)p−1 + γ (δ) (since uν ∈ S(ν))

= ϑτ−1λ f (z, uν(z)) + λξρu(z)p−1 + γ (δ) (since ν = ϑτ−pλ). (37)

Let mν = min
�

uν > 0 (recall that uν ∈ intC+). By virtue of hypothesis H
′
(v)

for η = (1 − ϑ)mν , we can find ξ̃η > 0 such that

f (z, u(z))

u(z)τ−1 − f (z, uν(z))

uν(z)τ−1 � ξ̃η (recall u = ϑuν, ϑ ∈ (0, 1))

⇒ f (z, u(z))

ϑτ−1 − f (z, uν(z)) � ξ̃ηm
τ−1
ν ,

⇒ f (z, u(z)) − ϑτ−1 f (z, uν(z)) � ϑτ−1ξ̃ηm
τ−1
ν > 0. (38)

Using (38) in (37), we obtain

−�pu
δ(z) + λξρu

δ(z)p−1

� λ f (z, u(z)) − ϑτ−1ξ̃ηm
τ−1
ν + λξρu(z)p−1 + γ (δ)

� λ f (z, u0(z)) + λξηu0(z)
p−1 − ϑτ−1ξ̃ηm

τ−1
ν + γ (δ)

(see hypothesis H
′
(vi) and recall u � u0)

� −�pu0(z) + λξρu0(z)
p−1 for a.a. z ∈ �, for δ > 0 small

(recall γ (δ) → 0+ as δ → 0+). (39)

Note that

∂u

∂nη

+ β(z)u p−1 = 0 and
∂u0
∂n p

+ β(z)u p−1
0 = 0 on ∂�. (40)

From (39), (40) and using the nonlinear Green’s identity, as before we obtain

u0 − uδ � 0 for δ > 0 small,

⇒ u0 − u ∈ intC+. (41)
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Let
[
u
) = {

u ∈ W 1,p(�) : u(z) � u(z) for a.a. z ∈ �
}
. From (35) it is clear

that on [u)

ψ̂λ = ϕ̂λ + ξ∗
λ with ξ∗

λ ∈ R.

Then (41) implies that u0 is a local C1(�)-minimizer of ψ̂λ. Invoking Propo-
sition 2, we infer that u0 is a local W 1,p(�)-minimizer of ψ̂λ.

By virtue of hypothesis H
′
(iv), given ε > 0, we can find δ = δ(ε) > 0 such

that

F(z, x) � ε

p
x p for a.a. z ∈ �, all x ∈ [0, δ]. (42)

Then for u ∈ C1(�) with ||u||C1(�) � δ, we have

ϕ̂λ(u) = 1

p
||Du||pp + 1

p
||u−||pp + 1

p

∫

∂�

β(z)(u+)pdσ −
∫

�

λF(z, u+)dz

� 1

p

[

||Du+||pp +
∫

∂�

β(z)(u+)pdσ

]

+ 1

p
||u−||pp − ε

p
λ||u+||pp (see (42))

� λ̂1 − λε

p
||u+||pp + 1

p
||u−||pp (see (21))

� c4||u||pp for some c4 > 0 (choosing ε ∈ (0, λ̂1/λ)).

So, we have

ϕ̂λ(0) = 0 < ϕ̂λ(u) for all u ∈ C1(�), 0 < ||u||C1(�) � δ,

⇒ u = 0 is a (strict) local C1(�) − minimizer of ϕ̂λ,

⇒ u = 0 is a local W 1,p(�) − minimizer of ϕ̂λ (see Proposition 2).

Without any loss of generality, we may assume that ϕ̂λ(0) = 0 � ϕ̂λ(u0) (the
analysis is similar if the opposite inequality holds). We may assume that the critical
set of ϕ̂λ is finite (otherwise, we already have infinitely many positive solutions for
problem (Pλ)). Since u0 ∈ intC+ is a local minimizer of ϕ̂λ, we can find ρ ∈ (0, 1)
small such that

0 = ϕ̂λ(0) � ϕ̂λ(u0) < inf[ϕ̂λ(u) : ||u − u0|| = ρ] = mρ, ||u0|| > ρ (43)

(see Aizicovici, Papageorgiou and Staicu [1] (proof of Proposition 29). Recall that
ϕ̂λ satisfies the C-condition (see Proposition 5). This fact and (43) permit the use
of Theorem 1 (the mountain pass theorem). So, se can find û ∈ W 1,p(�) such that

ϕ̂′
λ(û) = 0 and mρ � ϕ̂λ(û). (44)

From (43) and (44) it follows that û /∈ {0, u0} and û ∈ S(λ) ⊆ intC+. �
Next we examine what happens in the critical case λ = λ∗.

Proposition 9. If hypotheses H and H(β) hold, then λ∗ ∈ L.
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Proof. Le {λn}n�1 ⊆ L such that λn ↓ λ∗ as n → ∞ and let un ∈ S(λn) for all
n � 1.

We have

〈A(un), h〉 +
∫

∂�

β(z)u p−1
n hdσ = λn

∫

�

f (z, un)hdz for all h ∈ W 1,p(�),

all n � 1. (45)

Hypotheses H(i), (i i), (iv), imply that given ε > 0, we can find c5 = c5(ε) >

0 such that

f (z, x) � εx p−1 + c5 for a.a. z ∈ �, all x � 0. (46)

In (45) we choose h = un ∈ W 1,p(�) and use (46). Then

||Dun||pp +
∫

∂�

β(z)u p
n dσ � λnε||un||pp + λnc5|�|N

� λ1ε||un||pp + λ1c5|�|N (47)

(since λn � λ1 for all n � 1),

⇒ (λ̂1 − λ1ε)||un||pp � λ1c5|�|N .

Choosing ε ∈
(
0, λ̂1

λ1

)
, we see that {un}n�1 ⊆ L p(�) is bounded. Using this

in (47) and since β � 0 (see hypothesis H(β)), we infer that

{Dun}n�1 ⊆ L p(�, R
N ) is bounded,

⇒ {un}n�1 ⊆ W 1,p(�) is bounded

So, we may assume that

un
w→ u∗ in W 1,p(�) and un → u∗ in Lr (�) and in L p(∂�) as n → ∞. (48)

In (45) we choose h = un − u∗ ∈ W 1,p(�), pass to the limit as n → ∞ and
use (48). Then

lim
n→∞ 〈A(un), un − u∗〉 = 0,

⇒ un → u∗ in W 1,p(�) as n → ∞ (see Proposition 3). (49)

So, if in (45) we pass to the limit as n → ∞ and use (49), then

〈A(u∗), h〉 +
∫

∂�

β(z)u p−1∗ hdσ = λ∗
∫

�

f (z, u∗)hdz for all h ∈ W 1,p(�),

⇒ u∗ is a solution of problem (Pλ∗).

We need to show that u∗ �= 0 in order to conclude that u∗ ∈ S(λ∗), hence that
λ∗ ∈ L. Arguing by contradiction, suppose u∗ = 0. Then

un → 0 in W 1,p(�) as n → ∞ (see (49)).
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Let yn = un||un || n � 1. Then ||yn|| = 1, yn � 0, for all n � 1. So, we may
assume that

yn
w→ y in W 1,p(�) and yn → y in L p(�) and in L p(∂�) as n → ∞. (50)

From (45), we have

〈A(yn), h〉 +
∫

∂�

β(z)y p−1
n hdσ =

∫

�

N f (un)

||un||p−1 hdz for all h ∈ W 1,p(�),

all n � 1. (51)

Hypotheses H(i), (iv) imply that

| f (z, x)| � c6(x
p−1 + xr−1) for a.a. z ∈ � with c6 > 0

⇒
{

N f (un)

||un||p−1

}

n�1
⊆ L p′

(�) is bounded.

Passing to a subsequence if necessary and using hypothesis H(iv) we obtain

N f (un)

||un||p−1
w→ ξ y p−1 in L p

′
(�) with − ĉ � ξ(z) � 0 for a.a. z ∈ �. (52)

In (51), we choose h = yn − y ∈ W 1,p(�), pass to the limit as n → ∞ and
use (52). Then

lim
n→∞ 〈A(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p(�) as n → ∞, hence ||y|| = 1, y � 0. (53)

If in (51) we pass to the limit as n → ∞ and use (52) and (53), we obtain

〈A(y), h〉 +
∫

∂�

β(z)y p−1hdσ = λ∗
∫

�

ξ(z)y p−1hdz for all h ∈ W 1,p(�).

Choose h = y ∈ W 1,p(�). Then using (2), we have

0 < λ̂1||y||pp � ||Dy||pp +
∫

∂�

β(z)y pdσ = λ∗
∫

�

ξ(z)y pdz � 0 (see (52)),

a contradiction. This proves that u∗ �= 0 and so u∗ ∈ S(λ∗), that is, λ∗ ∈ L. �
So, we can summarize the situation for problem (Pλ), by stating the following

bifurcation near infinity result.

Theorem 10. If hypotheses H
′
and H(β) hold, then there exists λ∗ > 0 such that

(a) for all λ > λ∗ problem (Pλ) admits at least two positive solutions

u0, û ∈ int C+, u0 �= û;
(b) for λ = λ∗ problem (Pλ) admits at least one positive solution

u∗ ∈ int C+;
(c) for all λ ∈ (0, λ∗) problem (Pλ) has no positive solutions.
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