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Abstract
In this paper, we establish concentration and multiplicity properties of ground state solutions
to the following perturbed double phase problem with competing potentials:{−ε p�pu − εq�q u + V (x)(|u|p−2u + |u|q−2u) = K (x) f (u), in R

N ,

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0, in R
N ,

where 1 < p < q < N , �su = div(|∇u|s−2∇u), with s ∈ {p, q}, is the s-Laplacian
operator, and ε is a small positive parameter. We assume that the potentials V , K and
the nonlinearity f are continuous but are not necessarily of class C1. Under some natu-
ral hypotheses, using topological and variational tools from Nehari manifold analysis and
Ljusternik–Schnirelmann category theory, we study the existence of positive ground state
solutions and the relation between the number of positive solutions and the topology of the
set where V attains its global minimum and K attains its global maximum. Moreover, we
determine two concrete sets related to the potentials V and K as the concentration posi-
tions and we describe the concentration of ground state solutions as ε → 0. The asymptotic
convergence and the exponential decay of positive solutions are also explored. Finally, we
establish a sufficient condition for the non-existence of ground state solutions.
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1 Introduction

In this paper, we are concerned with the following perturbed double phase problem with
competing potentials

{−ε p�pu − εq�q u + V (x)(|u|p−2u + |u|q−2u) = K (x) f (u) in R
N ,

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0 in R
N ,

(1.1)

where 1 < p < q < N , �su = div(|∇u|s−2∇u), with s ∈ {p, q}, is the usual s-Laplace
operator, ε is small positive parameter, V and K are potential functions and f is the reaction
term with subcritical growth. We are interested in the qualitative and asymptotic analysis
of solutions to problem (1.1) and we are mainly concerned with existence and multiplicity
properties of solutions, as well as with concentration phenomena as ε → 0.

The features of this paper are the following:

(1) the presence of several differential operators with different growth, which generates a
double phase associated energy;

(2) the problem combines the multiple effects generated by two variable potentials;
(3) there exists a competition effect between the absorption potential and the reaction poten-

tial, which implies more complex phenomena to locate the concentration positions;
(4) the main concentration phenomenon creates a bridge between the global maximum point

of the solution versus the global maximum of the reaction potential and the global mini-
mum of the absorption potential;

(5) due to the unboundedness of the domain, the Palais–Smale sequences do not have the
compactness property;

(6) the proofs combine refined analysis techniques, including topological and variational
tools.

Problems like (1.1) arise when one looks for the stationary solutions of reaction-diffusion
systems of the form

ut = div[D(u)∇u] + c(x, u), x ∈ R
N and t > 0,

where D(u) = |∇u|p−2 + |∇u|q−2. This system has a wide range of applications in physics
and related sciences, such as biophysics, plasma physics, and chemical reaction design (see
[12]). In such applications, the function u is a state variable and describes density or con-
centration of multi-component substances, div[D(u)∇u] corresponds to the diffusion with a
diffusion coefficient D(u), and c(x, u) is the reaction and relates to source and loss processes.
Typically, in chemical and biological applications, the reaction term c(x, u) has a polynomial
form with respect to the unknown concentration denoted by u.

Since the content of the paper is closely concerned with double phase problems, we start
with a short description on the background and applications. An interesting phenomenon
is that the operator involved in (1.1) is the so-called double phase operator whose behavior
switches between two different elliptic situations. Originally, the idea to treat such opera-
tors comes from Zhikov [43] who introduced such classes to provide models of strongly
anisotropic materials; see also the monograph of Zhikov, Kozlov and Oleinik [44].

Moreover, the double phase problem (1.1) is also motivated by numerous models arising
in mathematical physics. For example, we can refer to the following Born–Infeld equation
[11] that appears in electromagnetism, electrostatics and electrodynamics as a model based
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on a modification of Maxwell’s Lagrangian density:

−div

( ∇u

(1 − 2|∇u|2)1/2
)

= h(u) in �.

Indeed, by the Taylor formula, we have

(1− x)−1/2 = 1+ x

2
+ 3

2 · 22 x2 + 5!!
3! · 23 x3 + · · · + (2n − 3)!!

(n − 1)!2n−1 xn−1 + · · · for |x | < 1.

Taking x = 2|∇u|2 and adopting the first order approximation, we can obtain problem (1.1)
for p = 2 and q = 4. Furthermore, the n-th order approximation problem is driven by the
multi-phase differential operator

−�u −�4u − 3

2
�6u − · · · − (2n − 3)!!

(n − 1)! �2nu.

We also refer to the following fourth-order relativistic operator

u �→ div

( |∇u|2
(1 − |∇u|4)3/4 ∇u

)
,

which describes large classes of phenomena arising in relativistic quantummechanics. Again,
by Taylor’s formula, we have

x2(1 − x4)−3/4 = x2 + 3x6

4
+ 21x10

32
+ · · · .

This shows that the fourth-order relativistic operator can be approximated by the following
autonomous double phase operator

u �→ �4u + 3

4
�8u.

For more details in the physical backgrounds and other applications, we refer to Bahrouni,
Rădulescu and Repovš [7] (for phenomena associated with transonic flows) and to Benci,
D’Avenia, Fortunato and Pisani [10] (for models arising in quantum physics).

In the past few decades, problem (1.1) has been the subject of extensive mathematical
studies. For the case ε = 1, using various variational and topological arguments, many
authors studied the existence and multiplicity results of nontrivial solutions, ground state
solutions, nodal solutions and some qualitative properties of solutions, respectively. See for
example [19, 28, 30–32] for the case of bounded domains. In this classical setting we recall
here the seminal papers by Ni and Wei [29], Li and Nirenberg [23], del Pino and Felmer
[15], del Pino, Kowalczyk and Wei [16], and we refer to Ambrosetti and Malchiodi [4] for
detailed discussions.

We point out that the problem settled on the whole space has been considered recently
by several authors. In [21], He and Li established some regularity results for problem (1.1).
By combining the concentration-compactness principle with the mountain pass arguments,
an existence result has been established by He and Li [22] when the nonlinearity has an
asymptotic (p −1)-linear growth at infinity. Figueiredo [18] proved the existence of positive
ground state solutions for the critical growth case. We also point out that the existence of
infinitely many solutions was obtained in [8] by using linking theory and the symmetric
mountain pass theorem.

For the case when ε > 0 sufficiently small, the solutions of problem (1.1) are often
referred to as semiclassical states, which possess many significant physical insights for ε
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small. More precisely, the concentration phenomenon of semiclassical states, as ε → 0,
reflects the transformation process between quantum mechanics and classical mechanics.
For such problem, some asymptotic behaviors of semiclassical states, such as concentration,
convergence and exponential decay, are very interesting research topics in mathematics and
physics. In this framework, from a mathematical viewpoint, it is worth to study not only the
existence of semiclassical solutions but also their asymptotic behavior as ε → 0. Typically,
solutions tend to concentrate around critical points of the potentials functions: such solutions
are called spikes. To put our result in perspective, we review briefly some related results in
this direction.

In [3], Alves and Figueiredo studied the multiplicity and concentration of solutions for
the following problem with linear potential{−�pu −�qu + V (εx)(|u|p−2u + |u|q−2u) = f (u), in R

N ,

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0, in R
N ,

(1.2)

which is equivalent to the problem under the action of variable substitution{−ε p�pu − εq�q u + V (x)(|u|p−2u + |u|q−2u) = f (u), in R
N ,

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0, in R
N .

(1.3)

Here the authors assumed that the potential V satisfies the following global condition intro-
duced by Rabinowitz [33]

0 < inf
x∈RN

V (x) < lim inf|x |→∞ V (x) < ∞, (1.4)

and the nonlinear term f has C1-smoothness with superlinear and subcritical growth. Using
mountain pass arguments combined with the Ljusternik–Schnirelmann category theory, they
proved the existence and multiplicity of positive solutions which concentrate at global min-
imum points of V for problem (1.2). Subsequently, the multiplicity result in [3] has been
improved in [6] by considering continuous nonlinearities. It should be noted that Ambrosio
and Repovš [6] proved a useful splitting lemma in detail under the continuous condition.
Recall the following local hypothesis introduced by del Pino and Felmer [14]: there exists a
bounded domain � such that

0 < inf
x∈� V (x) < inf

x∈∂� V (x). (1.5)

Under this assumption, Alves and da Silva [2] obtained multiplicity and concentration prop-
erties depending on� by penalization method and Lusternik–Schnirelmann theory. We also
mention the recent papers [5] and [42] in which the multiplicity and concentration of posi-
tive solutions for a class of fractional double phase problems with local condition (1.5) are
established.

We would like to emphasize that, in all the works mentioned above, the authors focused
only on the linear potential case for the double phase problem. In other words, themultiplicity
and concentration results depend only on the properties of the linear potentialV . Furthermore,
the problem is autonomous in the reaction, in the sense that the nonlinearities on the right-
hand side of the equation do not depend on the variable x . That is why it is quite natural to
ask how the appearance of nonlinear potential and linear potential will affect the existence,
multiplicity and concentration of solutions to problem (1.1)? This is an interesting question
which motivates the present work.

Inspired by the above facts, in the present paper, we are going to study the existence,
multiplicity and concentration phenomena of positive solutions to problem (1.1) with both
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absorption potential (linear potential) V and reaction potential (nonlinear potential) K . To
the best of our knowledge, it seems that such a problem was not considered in the literature
before. Here, it is worth pointing out that the combination of linear potential and nonlinear
potential is called the competing potentials (see [39]), whichmakes difficulties in determining
the concentration positions of solutions.

More precisely, we first establish the existence result of positive ground state solutions for
small ε. Secondly, we investigate the concentration phenomena of ground state solutions as
ε → 0. For this purpose, we determine two concrete sets related to the potentials V and K as
the concentration positions of these solutions. Roughly speaking, the ground state solutions
concentrate at such points x0 where V (x0) is small or K (x0) is large. As a special case, we
can show that these ground state solutions concentrate around such points which are both the
minima points of the potential V and themaximumpoints of the potential K . Furthermore, we
analyze the asymptotic convergence of ground state solutions under scaling and translation
and the exponential decay estimate. Finally, we investigate the relation between the number
of positive solutions and the topology of the set where V attains its global minimum and
K attains its global maximum. To the best of our knowledge, the present paper is the first
work dealing with concentration properties for double phase problems in the presence of two
competing potentials.

1.1 Main results

We start with the following basic notations:

Vmin = min V , V = {x ∈ R
N : V (x) = Vmin} and V∞ = lim inf|x |→∞ V (x)

and
Kmax = max K , K = {x ∈ R

N : K (x) = Kmax} and K∞ = lim sup
|x |→∞

K (x).

We assume that V and K satisfy the following conditions:

(A0) V , K ∈ C(RN ,R) are bounded, Vmin := inf V > 0 and Kmin := inf K > 0;
(A1) Vmin < V∞ and there is xv ∈ V such that K (xv) ≥ K (x) for all |x | ≥ R and some

large R > 0;
(A2) Kmax > K∞ and there is xk ∈ K such that V (xk) ≤ V (x) for all |x | ≥ R and some

large R > 0;
(A3) V , K ∈ C(RN ,R) are bounded functions such that 0 < V ∞ := lim|x |→∞ V (x) ≤

V (x) and 0 < K (x) ≤ K ∞ := lim|x |→∞ K (x), and |V| > 0 or |K| > 0, where

V = {x ∈ R
N : V ∞ < V (x)} and K = {x ∈ R

N : K ∞ > K (x)}.
Note that, for the case (A1), we can assume K (xv) = maxx∈V K (x); and for the case

(A2), we can assume V (xk) = minx∈K V (x). To describe some concentration phenomena
of positive ground state solutions, we define two concrete sets related to the potentials V and
K :

Av := {x ∈ V : K (x) = K (xv)} ∪ {x /∈ V : K (x) > K (xv)},
and

Ak := {x ∈ K : V (x) = V (xk)} ∪ {x /∈ K : V (x) < V (xk)}.
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This kind of structure was recently introduced by Ding and Liu [17] which generalized the
condition (1.4) introduced by Rabinowitz [33].

We observe that xv ∈ Av and xk ∈ Ak , which shows that Av and Ak are non-empty
and bounded sets. Moreover, if (A1) holds and V ∩ K �= ∅, we can set K (xv) =
maxx∈V ∩K K (x) and

Av := {x ∈ V ∩ K : K (x) = K (xv)},
which implies thatAv = V ∩K . Similarly, if (A2) holds andV ∩K �= ∅, thenAk = V ∩K .

We assume that the nonlinearity f satisfies the following hypotheses:

( f1) f ∈ C(R,R) and f (s) = 0 for all s < 0;
( f2) f (s) = o(|s|p−1) as s → 0;
( f3) there exist c0 > 0 and r ∈ (q, q∗), with q∗ = Nq

N−q , such that | f (s)| ≤ c0(1+ |s|r−1)

for all s;
( f4) there exists θ ∈ (q, q∗) such that

0 < θF(s) = θ

∫ s

0
f (t)dt ≤ s f (s) for all s > 0;

( f5) f (s)/sq−1 is increasing for all s ∈ (0,∞).

We state in what follows the main results of this paper.

Theorem 1.1 Suppose that (A0), (A1) and ( f1)–( f5) hold, then for all small ε > 0

(i) problem (1.1) has at least a positive ground state solution uε;
(ii) Lε is compact, where Lε denotes the set of all positive ground state solutions;
(iii) uε(x) possesses a maximum point xε such that, up to a subsequence, xε → x0 as ε → 0,

and limε→0 dist(xε,Av) = 0, and vε(x) := uε(εx + xε) converges to a ground state
solution of

−�pu −�qu + V (x0)(|u|p−2u + |u|q−2u) = K (x0) f (u) in R
N .

In particular, if V ∩ K �= ∅, then limε→0 dist(xε,V ∩ K ) = 0, and up to a subse-
quence, vε converges to a ground state solution of

−�pu −�qu + Vmin(|u|p−2u + |u|q−2u) = Kmax f (u) in R
N .

(iv) We have lim|x |→∞ uε(x) = 0 and uε ∈ C1,σ
loc (R

N ) with σ ∈ (0, 1). Furthermore, there
exist positive constants c,C such that

uε(x) ≤ C exp
(
− c

ε
|x − xε |

)
.

Theorem 1.2 Suppose that (A0), (A2) and ( f1)–( f5) hold, and we replace Av by Ak , then
all the conclusions of Theorem 1.1 remain true.

To obtain the multiplicity result of positive solutions for problem (1.1), we first recall the
definition of Ljusternik–Schnirelmann category. If Y is a given closed subset of a topological
space X , the Ljusternik–Schnirelmann category catX (Y ) is the least number of closed and
contractible sets in X which cover Y .

To prove the multiplicity result, in the following we assume V ∩ K �= ∅. Let us denote
by

� := V ∩ K and �δ = {x ∈ R
N : dist(x,�) ≤ δ} for δ > 0.

Clearly, by (A0), (A1) and (A2), we know that the set� is compact.We establish the following
multiplicity property of positive solutions.
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Theorem 1.3 Suppose that (A0), (A1) (or (A2)) and ( f1)–( f5) hold and � �= ∅. Then for
any δ > 0 there exists εδ > 0 such that, for any ε ∈ (0, εδ), problem (1.1) has at least
cat�δ (�) positive solutions.

Finally, we give the non-existence result of ground state solutions as follows.

Theorem 1.4 Assume that (A3) and ( f1)–( f5) hold, then for each ε > 0, problem (1.1) has
no positive ground state solutions.

Additionally, according to the above observations, we can obtain some consequences of
the above results. More precisely, we consider the double phase problem with nonlinear
potential {−ε p�pu − εq�qu + |u|p−2u + |u|q−2u = K (x) f (u), in R

N ,

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0, in R
N .

(1.6)

and assume that the reaction potential K satisfies the following condition:

(K1) 0 < inf x∈RN K (x) and lim sup|x |→∞ K (x) < maxx∈RN K (x).
(K2) K ∈ C(RN ,R) is bounded such that 0 < K (x) ≤ K ∞ := lim|x |→∞ K (x) and

|K| > 0, where K = {x ∈ R
N : K ∞ > K (x)}.

The main results are the following theorems for problem (1.6).

Theorem 1.5 Assume that (K1) and ( f1)–( f5) hold, then for all small ε > 0

(i) problem (1.6) has at least a positive ground state solution uε;
(ii) Lε is compact, where Lε denotes the set of all positive ground state solutions;
(iii) uε(x) possesses a maximum point xε such that, up to a subsequence, xε → x0 as ε → 0,

and limε→0 dist(xε,K ) = 0, and vε(x) := uε(εx + xε) converges to a ground state
solution of

−�pu −�q u + |u|p−2u + |u|q−2u = Kmax f (u) in R
N .

(iv) We have lim|x |→∞ uε(x) = 0 and uε ∈ C1,σ
loc (R

N ) with σ ∈ (0, 1). Furthermore, there
exist positive constants c,C such that

uε(x) ≤ C exp
(
− c

ε
|x − xε |

)
.

Theorem 1.6 Assume that (K1) and ( f1)–( f5) hold. Then for any δ > 0 there exists εδ > 0
such that, for any ε ∈ (0, εδ), problem (1.6) has at least catK δ (K ) positive solutions.

Theorem 1.7 Assume that (K2) and ( f1)–( f5) hold, then for each ε > 0, problem (1.6) has
no positive ground state solutions.

Compared with the existing issues in [3, 6] where the authors studied the relationship
between the linear potential and multiplicity and concentration properties of positive solu-
tions, a novelty of the present paper is that we will study how the behavior of competing
potentials will affect themultiplicity and concentration of positive solutions of problem (1.1).
For problem (1.1), there exists competition between the linear potential V and the nonlinear
potential K . This happens because V has the tendency to attract solutions to its minimum
points, while the potential K tends to attract solutions to its maximum points. Furthermore,
the existence, multiplicity and some properties of positive solutions depend not only on the
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linear potential but also on the nonlinear potential. Therefore, the study of problem (1.1) is
much more complicated due to the multiple effects of the competing potentials. That is why
we will discuss carefully in this paper the interactions of the two potentials, and the present
arguments seem to be more delicate. Besides, another novelty of this paper is that we obtain
a non-existence result of positive ground state solutions under suitable conditions. So our
results can apply to more general situations. From the comments above, the results obtained
in this paper cover, improve and extend the relevant results in [3, 6].

On the other hand, our main motivation of this paper also comes from the study of
Schrödinger equations

− ε2�u + V (x)u = K (x) f (u), u ∈ H1(RN ). (1.7)

Note that, if p = q = 2, problem (1.1) reduces to problem (1.7). Many scholars investigated
the existence, concentration and multiplicity of semiclassical solutions for problem (1.7).
In particular, in the pioneering work by Rabinowitz [33], the author proved the existence
of positive ground state solution of problem (1.7) with K ≡ 1 under the global condition
(1.4) by using mountain pass theorem. Based on the work of [33], Wang [37] studied the
concentration phenomena around the global minimum points of potential V . Using the penal-
ization method, del Pino and Felmer in [14] studied the localized concentration phenomena:
the solutions concentrating around local minima of potential V . Later, Wang and Zeng [39]
first constructed a ground state solutions concentrating at a special set characterized by the
competing potential functions V and K . For related results on coupled nonlinear Schrödinger
system with competing potentials, we refer to [41]. Applying the Ljusternik–Schnirelmann
category theory, a multiplicity result depending on the topology properties of the compet-
ing potentials was obtained by Cingolani and Lazzo [13]. Compared with the semilinear
Schrödinger equations, the lack of homogeneity caused by the (p, q)-Laplacian operator
makes our analysis more delicate and intriguing with respect to the above mentioned works,
and some refined estimates will be carried out to implement our variational machinery.

In order to complete the proofs of main results, we need to use some suitable variational
and topological arguments and refined analysis techniques. More precisely, due to the fact
that f is only continuous, the Nehari manifoldNε is not differentiable and some well-known
arguments for C1-Nehari manifolds are not applicable in our situation. To overcome this
obstacle, in the spirit of [6], we intend to make use of the method developed by Szulkin and
Weth [34] to deal with our problem. Themain idea of thismethod is to find a homeomorphism
mapping between the Nehari manifold Nε and the unit sphere of working space Eε . Then,
one can construct a reduction functional Iε on the unit sphere such that critical points of Iε
are in one-to-one correspondence with critical points of the original functional 
ε , where
Eε , Nε , 
ε and Iε will be defined in Sect. 2. On the other hand, due to the interactions of
the competing potentials, we need to characterize the comparison relationships of the ground
state energy value between the original problem and certain auxiliary problems, which will
play a crucial role in our arguments. To obtain the multiplicity result, we use a technique
introduced by Benci and Cerami [9], which consists of making precise comparisons between
the category of some sublevel sets of the energy functional 
ε and the category of the set
�. Since we want to use Ljusternik–Schnirelmann category theory, we need to prove certain
compactness properties for the functional
ε . This will be done by applying suitable energy
comparison methods. In particular, we will see that the levels of compactness are strongly
related to the behaviors of the potentials V and K at infinity.

Finally, it should be noted that we only give the detailed proofs for problem (1.1) because
the arguments for problem (1.6) are similar.
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The structure of the present is the following. In Sect. 2, we establish the variational
framework of problem (1.1) and give some useful preliminary results which will be used
later. In Sect. 3, we present some necessary results for the constant coefficients problem.
In Sect. 4, we analyze the Palais–Smale compactness condition to overcome the lack of
compactness. In Sect. 5, we prove the existence and concentration of positive ground state
solutions andwe complete the proofs of Theorems 1.1 and 1.2. In Sect. 6,we are devoted to the
multiplicity result and we give the proof of Theorem 1.3. Finally, we prove the non-existence
result of ground state solutions in Sect. 7.

2 Variational framework and preliminary results

Throughout this paper, for convenience we will use the following notations:
– ‖ · ‖s denotes the usual norm of the space Ls(RN ), 1 ≤ s ≤ ∞;
– c, C , ci , Ci denote some different positive constants.
Inwhat follows,we recall some facts about the Sobolev spaces and introduce some lemmas

which we will use later.
For p ∈ (1,∞) and N > p, we define D1,p(RN ) as the closure of C∞

0 (R
N ) with respect

to

‖∇u‖p
p =

∫
RN

|∇u|pdx .

Let W 1,p(RN ) be the usual Sobolev space endowed with the standard norm

‖u‖p =
∫
RN
(|∇u|p + |u|p)dx .

According to [1], we have the following embedding theorem for Sobolev spaces.

Lemma 2.1 Let N > p, then there exists a constant S∗ > 0 such that, for any u ∈ D1,p(RN ),

‖u‖p
p∗ ≤ S−1∗ ‖∇u‖p

p.

Furthermore, W 1,p(RN ) is embedded continuously into Ls(RN ) for any s ∈ [p, p∗] and
compactly into Ls

loc(R
N ) for any s ∈ [1, p∗).

We recall the following Lions compactness lemma, see [24].

Lemma 2.2 Let N > p and r ∈ [p, p∗). If {un} is a bounded sequence in W 1,p(RN ) and if

lim
n→∞ sup

y∈RN

∫
BR(y)

|u|rdx = 0,

where R > 0, then un → 0 in Ls(RN ) for all s ∈ (p, p∗).

In order to prove the main results, we do not deal with the problem (1.1) directly, but
instead we study an equivalent problem to problem (1.1). In fact, after the change of variable
x �→ εx , we can rewrite problem (1.1) as the following equivalent problem{−�pu −�q u + V (εx)(|u|p−2u + |u|q−2u) = K (εx) f (u), in R

N ,

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0, in R
N .

(2.1)

We observe that if u is a solution of problem (2.1), then v(x) := u(x/ε) is a solution of
problem (1.1). Thus, to study the original problem (1.1), next we will study the equivalent
problem (2.1).
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Now we establish the variational framework of problem (2.1). For any fixed ε > 0, we
introduce the following working space

Eε =
{

u ∈ W 1,p(RN ) ∩ W 1,q(RN ) :
∫
RN

V (εx)(|u|p + |u|q)dx < ∞
}

endowed with the norm
‖u‖ε = ‖u‖Vε ,p + ‖u‖Vε ,q ,

where

‖u‖s
Vε ,s =

∫
RN
(|∇u|s + V (εx)|u|s)dx for all s > 1.

Since V is a bounded function, then ‖ · ‖ε and the norm of W 1,p(RN ) ∩ W 1,q(RN ) are
equivalent. So, Eε = E := W 1,p(RN ) ∩ W 1,q(RN ).

Now, let us recall the following embedding property proved by Alves and Figueiredo, see
[3] for more details.

Lemma 2.3 The space Eε is embedded continuously into Ls(RN ) for s ∈ [p, q∗] and com-
pactly into Ls

loc(R
N ) for s ∈ [1, q∗). Moreover, there is a positive constant πs such that

πs‖u‖s ≤ ‖u‖ε, for all s ∈ [p, q∗]. (2.2)

In order to study problem (2.1), we define the energy functional on Eε


ε(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q +
∫
RN

V (εx)

(
1

p
|u|p + 1

q
|u|q

)
dx −

∫
RN

K (εx)F(u)dx .

Furthermore, using Lemma 2.3 and some standard arguments, we know that
ε ∈ C1(Eε,R)
under the conditions ( f1), ( f2) and ( f3), and critical points of 
ε are weak solutions of
problem (2.1). Also, for any u, v ∈ Eε , we have

〈
′
ε(u), v〉 =

∫
RN

|∇u|p−2∇u · ∇vdx +
∫
RN

|∇u|q−2∇u · ∇vdx

+
∫
RN

V (εx)(|u|p−2u + |u|q−2u)vdx −
∫
RN

K (εx) f (u)vdx .

According to ( f1), ( f2) and ( f3), for any ε > 0, there exists Cε > 0 such that

| f (s)| ≤ ε|s|p−1 + Cε|s|r−1 and |F(s)| ≤ ε|s|p + Cε|s|r for any s ∈ R. (2.3)

Moreover, from ( f4) and ( f5) we can infer that

F(s) > 0 and
1

q
f (s)s − F(s) > 0, ∀s > 0. (2.4)

To prove the positive ground state solutions of problem (2.1), we consider the Nehari
manifold related to 
ε

Nε := {u ∈ Eε \ {0} : 〈
′
ε(u), u〉 = 0},

deeply studied by Szulkin andWeth [34]. Obviously,Nε contains all nontrivial critical points
of 
ε .

Let

cε := inf
N ε


ε.
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If cε is attained by uε ∈ Nε , then uε is a critical point of 
ε . Since cε is the lowest level for

ε , then uε is called a ground state solution of problem (2.1).

Employing Lemma 2.3 and using some standard arguments [6], one can check easily some
elementary properties of the functional 
ε .

Lemma 2.4 Assume that ( f1)–( f5) hold, then 
ε satisfies the following conditions:

(i) 
′
ε maps bounded sets of Eε into bounded sets of Eε;

(ii) 
′
ε is weakly sequentially continuous in Eε .

Lemma 2.5 (mountain pass geometry) Assume that ( f1)–( f5) hold, then

(i) there exist α, � > 0 such that 
ε(u) ≥ α with ‖u‖ε = �;
(ii) there exist u0 ∈ Eε and R > 0 with ‖u0‖ε > R such that 
ε(u0) < 0.

Proof (i) Let u ∈ Eε , from (2.2) and (2.3), it is easy to obtain


ε(u) = 1

p
‖u‖p

Vε ,p
+ 1

q
‖u‖q

Vε,q
−

∫
RN

K (εx)F(u)dx

≥ 1

p
‖u‖p

Vε ,p
+ 1

q
‖u‖q

Vε,q
− εKmax‖u‖p

p − CεKmax‖u‖r
r

≥ c1‖u‖p
Vε ,p

+ 1

q
‖u‖q

Vε,q
− CεKmax‖u‖r

r

≥ c1‖u‖p
Vε ,p

+ 1

q
‖u‖q

Vε,q
− CεKmaxπ

−r
r ‖u‖r

ε .

(2.5)

We take � ∈ (0, 1) with ‖u‖ε = �, then ‖u‖Vε ,p < 1. Therefore, ‖u‖p
Vε ,p

≥ ‖u‖q
Vε ,p

since
1 < p < q . According to (2.5) and the inequality: as + bs ≥ cs(a + b)s for any a, b ≥ 0
and s > 1, we get


ε(u) ≥ c1‖u‖p
Vε ,p

+ 1

q
‖u‖q

Vε,q
− CεKmaxπ

−r
r ‖u‖r

ε

≥ c1‖u‖q
Vε ,p

+ 1

q
‖u‖q

Vε,q
− CεKmaxπ

−r
r ‖u‖r

ε

≥ c2(‖u‖Vε ,p + ‖u‖Vε,q)
q − CεKmaxπ

−r
r ‖u‖r

ε

= c2‖u‖q
ε − CεKmaxπ

−r
r ‖u‖r

ε .

Since q < r , then there exist α, � > 0 such that 
ε(u) ≥ α > 0 for ‖u‖ε = �.
(ii) Let e ∈ Eε\{0}, using ( f4) we have


ε(te) = t p−q

p
‖e‖p

Vε ,p
+ 1

p
‖e‖q

Vε ,q
−

∫
RN

K (εx)
F(te)

tq
dx → −∞

as t → ∞. Hence, there exist R > � and t0 > 0 with u0 = t0e and ‖u0‖ε > R such that

ε(u0) < 0. The proof is completed. ��

According to Lemma 2.5, we can use a version of mountain pass theorem without the
Palais–Smale condition [40] to deduce the existence of a Palais–Smale sequence {un} at
level c̃ε , namely


ε(un) → c̃ε and 
′
ε(un) → 0,

where c̃ε is the mountain pass level of 
ε defined as

c̃ε = inf
�∈� max

t∈[0,1]
ε(�(t)),
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and
� = {� ∈ C([0, 1], Eε) : �(0) = 0,
ε(�(1)) < 0}.

Next, we are ready to prove some properties forNε , which will be used frequently in the
sequel of the paper.

Lemma 2.6 Nε is bounded away from 0. Moreover, Nε is closed in Eε .

Proof We follow the idea of [34]. For any u ∈ Nε , we infer from Lemma 2.1, (2.2) and (2.3)
that

‖u‖p
Vε ,p

+ ‖u‖q
Vε ,q

=
∫
RN

K (εx) f (u)udx

≤ εKmax‖u‖p
p + CεKmax‖u‖r

r

≤ εc3‖u‖p
Vε ,p

+ CεKmaxπ
−r
r ‖u‖r

ε .

According to the arbitrariness of ε, we can deduce that

c4‖u‖p
Vε ,p

+ ‖u‖q
Vε ,q

≤ c5‖u‖r
ε .

If ‖u‖ε ≥ 1, the conclusion is obvious. If ‖u‖ε < 1, then ‖u‖p
Vε ,p

≥ ‖u‖q
Vε ,p

and we have

c5‖u‖r
ε ≥ c4‖u‖p

Vε ,p
+ ‖u‖q

Vε ,q
≥ c4‖u‖q

Vε ,p
+ ‖u‖q

Vε ,q
≥ c6‖u‖q

ε ,

which implies that ‖u‖ε ≥ α0 for some α0 > 0.
Next, we verify that Nε is closed in Eε . Let {un} ⊂ Nε be a sequence such that un → u

in Eε . According to Lemma 2.4, 
′
ε(un) is bounded. Then we can get

〈
′
ε(un), un〉 − 〈
′

ε(u), u〉 = 〈
′
ε(un)−
′

ε(un), u〉 + 〈
′
ε(un), un − u〉 → 0,

this shows that 〈
′
ε(u), u〉 = 0. Using the above conclusion we deduce that ‖u‖ε ≥ α0,

hence u ∈ Nε . This completes the proof. ��
Lemma 2.7 Let u ∈ Eε\{0}, then there exists a unique tu > 0 such that tuu ∈ Nε . Moreover,
m̂ε(u) = tuu is the unique global maximum of 
ε on R

+u. In particular, if u ∈ Nε , then


ε(u) = max
t≥0


ε(tu) ≥ 
ε(tu) for all t ≥ 0.

Proof Let u ∈ Eε\{0}, we define the function g(t) = 
ε(tu) for t > 0. Following the same
arguments as in the proof of Lemma 2.5, we infer that g(0) = 0, g(t) > 0 for t sufficiently
small and g(t) < 0 for t sufficiently large. Therefore, there is t = tu such that maxt>0 g(t)
is achieved at tu , so g′(tu) = 0 and tuu ∈ Nε .

Next, we claim that tu is the unique critical point of g. Assume by contradiction that there
exist t1 and t2 with 0 < t1 < t2 such that t1u, t2u ∈ Nε , then it follows that

t p−q
1 ‖u‖p

Vε ,p
+ ‖u‖q

Vε ,q
=

∫
RN

K (εx)
f (t1u)

(t1u)q−1 uqdx

and

t p−q
2 ‖u‖p

Vε ,p
+ ‖u‖q

Vε ,q
=

∫
RN

K (εx)
f (t2u)

(t2u)q−1 uqdx .

Subtracting term by term in the above equalities, we get

(t p−q
1 − t p−q

2 )‖u‖p
Vε ,p

=
∫
RN

K (εx)

(
f (t1u)

(t1u)q−1 − f (t2u)

(t2u)q−1

)
uqdx .
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Using ( f5) and recalling that p < q , we can deduce that

0 < (t p−q
1 − t p−q

2 )‖u‖p
Vε ,p

=
∫
RN

K (εx)

(
f (t1u)

(t1u)q−1 − f (t2u)

(t2u)q−1

)
uqdx < 0,

which implies a contradiction. The proof is completed. ��

Lemma 2.8 There exists λ > 0 such that tu ≥ λ for each u ∈ Sε , and for each compact
subset S ⊂ Sε , there exists CS > 0 such that tu ≤ CS for all u ∈ S, where Sε = {u ∈ Eε :
‖u‖ε = 1}.

Proof For each u ∈ Sε , by using Lemmas 2.6 and 2.7, there exists tu > 0 such that tuu ∈ Nε ,
and tu = ‖tuu‖ε ≥ α0. It remains we prove that tu ≤ CS for all u ∈ S ⊂ Sε . Arguing
by contradiction we assume that there exist a sequence {un} ⊂ S ⊂ Sε and {tn} such that
tn → ∞. Note that, since S is compact, there exists u ∈ S such that un → u in Eε . Similar
to the proof of Lemma 2.5, we can see that 
ε(tnun) → −∞. However, for any u ∈ Nε ,
using (2.4) we have


ε(u) = 
ε(u)− 1

q
〈
′

ε(u), u〉

=
(
1

p
− 1

q

)
‖u‖p

Vε ,p
+

∫
RN

K (εx)

(
1

q
f (u)u − F(u)

)
dx > 0.

So, the conclusion 
ε(tnun) → −∞ is impossible, a contradiction. ��

Combining with Lemmas 2.5, 2.7 and 2.8, the ground state energy value cε has a minimax
characterization given by

cε = c̃ε = inf
u∈Eε\{0}

max
t≥0


ε(tu) = inf
u∈Sε

max
t≥0


ε(tu). (2.6)

The proof can be found in [6, 34] and [40], here we omit the details.

Lemma 2.9 (i) There exists α > 0 independent of ε such that cε ≥ α > 0.
(ii) The mapping 
ε is coercive on Nε , i.e., 
ε(u) → ∞ as ‖u‖ε → ∞, u ∈ Nε .

Proof (i) Let u ∈ Nε , according to the proof of Lemma 2.5-(i) we infer that there exists
α > 0 independent of ε such that 
ε(tu) ≥ α > 0 for t > 0 small. Moreover, in view of
(2.6) we can get cε ≥ α > 0. So the conclusion (i) holds.

(ii) Arguing by contradiction, we assume that there exists a sequence {un} ⊂ Nε such that
‖un‖ε → ∞ and 
ε(un) ≤ d for some d ∈ [α,∞). Let vn = un/‖un‖ε , then ‖vn‖ε = 1
and max{‖vn‖Vε ,p, ‖vn‖Vε ,q} < 1. Passing to a subsequence, we can assume that vn⇀v in
Eε , and vn(x) → v(x) a.e. in R

N .
There are two cases need to discuss: {vn} either is vanishing, i.e.,

lim
n→∞ sup

y∈RN

∫
BR(y)

|vn |qdx = 0, ∀R > 0,

or non-vanishing, i.e., there exist R0, δ > 0 and a sequence yn ∈ R
N such that

lim
n→∞

∫
BR0 (yn)

|vn |qdx ≥ δ > 0.
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If {vn} is vanishing, then Lemma 2.2 implies that vn → 0 in Ls(RN ) for s ∈ (q, q∗). From
(2.3), for any t satisfying tq−p > q/p, we have∫

RN
K (εx)F(tvn)dx → 0. (2.7)

Observe that, according to Lemma 2.7 and (2.7) we get

d ≥ 
ε(un) ≥ 
ε(tvn) = t p

p
‖vn‖p

Vε ,p
+ tq

q
‖vn‖q

Vε ,q
−

∫
RN

K (εx)F(tvn)dx

≥ t p

p

(
‖vn‖p

Vε ,p
+ ‖vn‖q

Vε ,q

)
−

∫
RN

K (εx)F(tvn)dx

≥ t p

p

(
‖vn‖q

Vε ,p
+ ‖vn‖q

Vε ,q

)
−

∫
RN

K (εx)F(tvn)dx

≥ cq t p

p

(‖vn‖Vε ,p + ‖vn‖Vε ,q
)q −

∫
RN

K (εx)F(tvn)dx

≥ cq t p

p
‖vn‖q

ε −
∫
RN

K (εx)F(tvn)dx → cq t p

p
.

Evidently, this is a contradiction if t is large enough. So the vanishing case does not occur.
Assume that {vn} is non-vanishing. Let us define ṽn(x) = vn(x + yn), then∫

BR0 (0)
|ṽn |qdx ≥ δ

2
.

Passing to a subsequence, we may assume that ṽn → ṽ in Lq
loc(R

N ) with ṽ �= 0. Set � :=
{x ∈ R

N : ṽ(x) �= 0}. Then |�| > 0 and for each x ∈ �, |un(x+yn)| = |ṽn(x)|‖un‖ε → ∞.
Hence, using (A0), ( f4), Fatou’s lemma and conclusion-(i) we can deduce that

0 ≤ 
ε(un)

‖un‖q
ε

= 1

p

‖un‖p
Vε ,p

‖un‖q
ε

+ 1

q

‖un‖q
Vε ,q

‖un‖q
ε

−
∫
RN

K (εx)
F(un)

‖un‖q
ε

dx

≤ 1

p
+ 1

q
− Kmin

∫
RN

F(un)

‖un‖q
ε

dx

≤ 1

p
+ 1

q
− Kmin

∫
RN

F(un(x + yn))

|un(x + yn)|q |ṽn |qdx

→ −∞.

This yields a concentration. So the non-vanishing case does not occur, and we finish the
proof. ��

We introduce the following crucial results from [34], with which we can use the Nehari
method developed by Szulkin and Weth [34].

Lemma 2.10 The map m̂ε : Eε\{0} → Nε is continuous, and the map mε := m̂ε |Sε : Sε →
Nε is a homeomorphism between Sε and Nε with inverse given by

m̌ε : Nε → Sε, m̌ε(u) = u/‖u‖.
Proof We adapt some ideas found in [34]. Suppose that un → u �= 0. Since m̂ε(su) = m̂ε(u)
for each s > 0, wemay assume un ∈ Sε for all n and it suffices to show that m̂ε(un) → m̂ε(u)
after passing to a subsequence. According to Lemma 2.7, m̂ε(un) = tun un . It follows from
Lemma 2.8 that {tun } is bounded and bounded away from 0, hence, taking a subsequence,
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tun → t0 > 0. By Lemma 2.6, Nε is closed and m̂ε(un) → t0u and t0u ∈ Nε . Hence t0u =
tuu = m̂ε(u). From the above proof, the second conclusion is an immediate consequence. ��

Based on Lemma 2.10, we now consider the functional Îε : Eε\{0} → R and the restric-
tion Iε : Sε → R as follows

Îε(u) = 
ε(m̂ε(u)) and Iε = Îε |Sε .

Moreover, Lemma 2.10 shows that Îε is continuous.

Lemma 2.11 The following conclusions hold:

(i) Îε ∈ C1(Eε\{0},R) and for u, v ∈ Eε and u �= 0,

〈 Î ′
ε(u), v〉 = ‖m̂ε(u)‖ε

‖u‖ε 〈
′
ε(m̂ε(u)), v〉.

(ii) Iε ∈ C1(Sε,R) and 〈I ′
ε(u), v〉 = ‖m̂ε(u)‖〈
′

ε(m̂ε(u)), v〉 for v ∈ Tu(Sε), where
Tu(Sε) is the tangent space of Sε at u.

(iii) {un} is a Palais–Smale sequence for Iε if and only if {m̂ε(un)} is a Palais–Smale
sequence for 
ε .

(iv) u ∈ Sε is a critical point of Iε if and only if m̂ε(u) ∈ Nε is a critical point of 
ε .
Moreover, the corresponding values of Iε and 
ε coincide and

inf
Sε

Iε = inf
N ε


ε = cε .

3 The constant coefficients problem

For our scope, we shall also investigate the corresponding limit problem. To this end, we first
discuss in this section the existence and some properties of the positive ground state solutions
of the constant coefficients problem.

For any μ > 0 and κ > 0, we consider the constant coefficients problem{−�pu −�q u + μ(|u|p−2u + |u|q−2u) = κ f (u), in R
N ,

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0, in R
N .

(3.1)

Now we define the following working space

Eμ =
{

u ∈ W 1,p(RN ) ∩ W 1,q(RN ) :
∫
RN

μ(|u|p + |u|q)dx < ∞
}

endowed with the norm
‖u‖μ = ‖u‖μ,p + ‖u‖μ,q ,

where

‖u‖s
μ,s =

∫
RN
(|∇u|s + μ|u|s)dx for all s > 1.

It is well known that the solutions of problem (3.1) are critical points of the functional

Jμκ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q + μ

∫
RN

(
1

p
|u|p + 1

q
|u|q

)
dx − κ

∫
RN

F(u)dx .
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Clearly, Jμκ ∈ C1(Eμ,R) and its differential is given by

〈J ′
μκ(u), v〉 =

∫
RN

|∇u|p−2∇u · ∇vdx +
∫
RN

|∇u|q−2∇u · ∇vdx

+ μ

∫
RN
(|u|p−2u + |u|q−2u)vdx − κ

∫
RN

f (u)vdx

for any u, v ∈ Eμ. The corresponding Nehari manifold is defined by

Nμκ := {u ∈ Eμ \ {0} : 〈J ′
μκ(u), u〉 = 0}.

Similarly, we define the ground state energy level on Nμκ

cμκ = inf
Nμκ

Jμκ .

Moreover, as before, define the mapping

m̂μκ : Eμ\{0} → Nμκ and mμκ = m̂μκ |S : S → Nμκ,

and the inverse of mμκ is given by

m̌μκ : Nμκ → S, m̌μκ(u) = u/‖u‖μ.
According to arguments in Sect. 2, we can verify that Jμκ , Nμκ and cμκ have properties

similar to those of 
ε , Nε and cε . Moreover, all related Lemmas in Sect. 2 still hold for the
constant coefficients problem (3.1). So we collect some relevant results for problem (3.1).

Lemma 3.1 The following conclusions hold:

(a) Nμκ is bounded away from 0. Moreover, Nμκ is closed in Eμ.
(b) For all u ∈ Eμ\{0}, there exists a unique tu > 0 such that tuu ∈ Nμκ . Moreover,

m̂μκ(u) = tuu is the unique global maximum of Jμκ on R
+u.

(c) There exists λ > 0 such that tu ≥ λ for each u ∈ S, and for each compact subset S ⊂ S,
there exists CS > 0 such that tu ≤ CS for all u ∈ S.

(d) cμκ > 0 and Jμκ has positive bounded below on Nμκ .
(e) Jμκ is coercive on Nμκ , i.e., Jμκ(u) → ∞ as ‖u‖μ → ∞, u ∈ Nμκ .

Define the functional Îμκ : Eμ\{0} → R and the restriction Iμκ : S → R as follows

Îμκ(u) = Jμκ(m̂μκ(u)) and Iμκ = Îμκ |S .

According to (2.6), we also have

cμκ = inf
u∈Eμ\{0}max

t≥0
Jμκ(tu) = inf

u∈S
max
t≥0

Jμκ(tu).

Moreover, we also have the following results.

Lemma 3.2 The following conclusions hold:

(a) Iμκ ∈ C1(S,R) and 〈I ′
μκ(u), v〉 = ‖m̂μκ(u)‖〈J ′

μκ(m̂μκ(u)), v〉 for v ∈ Tu(S), where
Tu(S) is the tangent space of S at u.

(b) {un} is a Palais–Smale sequence for Iμκ if and only if {m̂μκ(un)} is a Palais–Smale
sequence for Jμκ .

(c) u ∈ S is a critical point of Iμκ if and only if m̂μκ(u) ∈ Nμκ is a critical point of Jμκ .
Moreover, the corresponding values of Iμκ and Jμκ coincide and
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cμκ = inf
Nμκ

Jμκ = inf
S

Iμκ .

We now state the main result for problem (3.1).

Lemma 3.3 Assume that μ, κ > 0 and ( f1)–( f5) hold. Then problem (3.1) has at least one
positive ground state solution u such that Jμκ(u) = cμκ .

Proof Firstly, in view of Lemma 3.1-(d) , we can derive cμκ > 0. If u ∈ Nμκ satisfies
Jμκ(u) = cμκ , then m̌μκ(u) ∈ S is a minimizer of Iμκ , and hence a critical point of Iμκ .
Therefore, Lemma 3.2 shows that u is a critical point of Jμκ . It remains to show that there
exists a minimizer ũ ∈ Nμκ such that Jμκ(ũ) = cμκ . In fact, using Ekeland’s variational
principle [40], there exists a sequence {vn} ⊂ S such that Iμκ(vn) → cμκ and I ′

μκ(vn) → 0
as n → ∞. Let un = m̂μκ(vn) ∈ Nμκ for all n ∈ N. Then using Lemma 3.2 again, we can
get Jμκ(un) → cμκ and J ′

μκ(un) → 0. By Lemma 3.1-(e), we know that {un} is bounded
in Eμ, and ‖un‖μ ≥ α0 for some α0 > 0 by Lemma 3.1-(a). Moreover, we have

lim
n→∞

sup
y∈RN

∫
BR(y)

|un |qdx > 0.

Otherwise, from Lemma 2.2 we have un → 0 in Ls(RN ) for any s ∈ (q, q∗). Using the fact
that un ∈ Nμκ and (2.3) we can infer that

0 = 〈J ′
μκ(un), un〉 = ‖∇un‖p

p + ‖∇un‖q
q + μ(‖un‖p

p + ‖un‖q
q)− κ

∫
RN

f (un)undx

≥ ‖∇un‖p
p + ‖∇un‖q

q + μ(‖un‖p
p + ‖un‖q

q)− εκ‖un‖p
p − Cεκ‖un‖r

r

≥ c7‖un‖p
μ,p + c8‖un‖q

μ,q − c9‖un‖r
r ,

and consequently
c7‖un‖p

μ,p + c8‖un‖q
μ,q ≤ c9‖un‖r

r → 0

since r ∈ (q, q∗). Then,wehave‖un‖μ → 0,which contradictswith‖un‖μ ≥ α0. Therefore,
there are δ > 0 and {kn} ⊂ Z

N such that∫
BR(kn)

|un |qdx ≥ δ.

Let us define ũn(x) = un(x + kn) so that∫
BR(0)

|ũn |qdx ≥ δ. (3.2)

Since problem (3.1) is autonomous, then Jμκ possesses translation invariance, and we can
obtain ‖ũn‖μ = ‖un‖μ and

Jμκ(ũn) → cμκ and J ′
μκ(ũn) → 0. (3.3)

Passing to a subsequence, we assume that ũn⇀ũ in Eμ, ũn → ũ in Ls
loc(R

N ) for s ∈ (q, q∗),
and ũn(x) → ũ(x) a.e. in R

N . Therefore, from Lemma 2.4, (3.2) and (3.3) we infer that
ũ �= 0 and J ′

μκ(ũ) = 0. This shows that ũ ∈ Nμκ and Jμκ(ũ) ≥ cμκ . On the other hand,
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using Fatou’s lemma and (2.4), we get

cμκ = lim
n→∞

(
Jμκ(ũn)− 1

q
〈J ′

μκ(ũn), ũn〉
)

= lim
n→∞

[(
1

p
− 1

q

)
‖ũn‖p

μ,p + κ

∫
RN

(
1

q
f (ũn)ũn − F(ũn)

)
dx

]

≥
(
1

p
− 1

q

)
‖ũ‖p

μ,p + κ

∫
RN

(
1

q
f (ũ)ũ − F(ũ)

)
dx

= Jμκ(ũ)− 1

q
〈J ′

μκ(ũ), ũ〉 = Jμκ(ũ),

which implies that Jμκ(ũ) ≤ cμκ . Hence Jμκ(ũ) = cμκ and ũ is critical point of Jμκ , which
shows that ũ is a ground state solution of problem (3.1).

Next, we verify that the ground state solution ũ is positive. In fact, taking ũ− = min{ũ, 0}
as test function in problem (3.1), and applying ( f1) and the following inequality

|a − b|s−2(a − b)(a− − b−) ≥ |a− − b−|s for all s > 1,

we can obtain

‖ũ−‖p
μ,p + ‖ũ−‖q

μ,q ≤
∫
RN

|∇ũ|p−2∇ũ∇ũ−dx + μ

∫
RN

|ũ|p−2ũũ−dx

+
∫
RN

|∇ũ|q−2∇ũ∇ũ−dx + μ

∫
RN

|ũ|q−2ũũ−dx

= κ

∫
RN

f (ũ)ũ−dx = 0.

This shows that ũ− = 0, that is ũ ≥ 0 in R
N . By the regularity results in [21], we know that

ũ ∈ L∞(RN )∩ C1,σ
loc (R

N ). Now we can apply Harnack’s inequality in [36] to conclude that
ũ > 0 in R

N . ��
At the end of this section, we establish the following lemmawhich describes a comparison

between the ground state energy values for different parameters and is crucial in the process
of seeking for the existence and concentration of ground state solutions.

Lemma 3.4 Assume that μi > 0 and κi > 0 for i = 1, 2, with min{μ2 − μ1, κ1 − κ2} ≥ 0.
Then cμ1κ1 ≤ cμ2κ2 . Additionally, if max{μ2 − μ1, κ1 − κ2} > 0, then cμ1κ1 < cμ2κ2 . In
particular, we have cμ1κi < cμ2κi if μ1 < μ2, and cμiκ1 > cμiκ2 if κ1 < κ2.

Proof Let u ∈ Nμ2κ2 with Jμ2κ2(u) = cμ2κ2 , then, Lemma 3.1-(b) implies that

cμ2κ2 = Jμ2κ2(u) = max
t≥0

Jμ2κ2(tu).

According to Lemma 3.1-(b) again, there exist t0 > 0 such that u0 = t0u ∈ Nμ1κ1 satisfying

Jμ1κ1(u0) = max
t≥0

Jμ1κ1(tu0).

Clearly, from the above fact we get

cμ2κ2 = Jμ2κ2(u) ≥ Jμ2κ2(u0)

= Jμ1κ1(u0)+ 1

p
(μ2 − μ1)‖u0‖p

p + 1

q
(μ2 − μ1)‖u0‖q

q + (κ1 − κ2)

∫
RN

F(u0)dx

≥ cμ1κ1 + 1

p
(μ2 − μ1)‖u0‖p

p + 1

q
(μ2 − μ1)‖u0‖q

q + (κ1 − κ2)

∫
RN

F(u0)dx,
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this implies that cμ2κ2 ≥ cμ1κ1 . If max{μ2 − μ1, κ1 − κ2} > 0, it is easy to see that
cμ2κ2 > cμ1κ1 by the above formula. This completes the proof of the lemma. ��

4 Palais–Smale compactness condition

In this section we analyze the Palais–Smale compactness condition. First we introduce the
following splitting lemma due to [6] which will be very useful later.

Lemma 4.1 Let {un} be a sequence such that un⇀u in Eε , and set vn = un − u. Then the
following conclusions hold:

‖∇vn‖p
p + ‖∇vn‖q

q = (‖∇un‖p
p + ‖∇un‖q

q)− (‖∇u‖p
p + ‖∇u‖q

q)+ on(1),∫
RN

V (εx)|vn |pdx =
∫
RN

V (εx)|un |pdx −
∫
RN

V (εx)|u|pdx + on(1),∫
RN

V (εx)|vn |qdx =
∫
RN

V (εx)|un |qdx −
∫
RN

V (εx)|u|qdx + on(1),∫
RN

F(vn)dx =
∫
RN

F(un)dx −
∫
RN

F(u)dx + on(1),∫
RN

f (vn)φdx =
∫
RN

f (un)φdx −
∫
RN

f (u)φdx + on(1) uniformly in φ ∈ Eε .

In order to obtain the compactness result, we need the following crucial result (see [26]).

Lemma 4.2 Let ϕn : R
N → R

m, m ≥ 1, with ϕn ∈ Ls(RN ) × · · · × Ls(RN ) (s > 1),
ϕn → 0 a.e. in R

m and B(y) = |y|s−2y, y ∈ R
m. Then, if ‖ϕn‖s ≤ c for all n ∈ N, there

holds ∫
RN

|B(ϕn + u)− B(ϕn)− B(u)| s
s−1 dx = on(1)

for each u ∈ Ls(RN )× · · · × Ls(RN ).

According to Lemmas 4.1 and 4.2 and using some standard arguments, we can prove the
following result holds.

Lemma 4.3 Let {un} be a sequence such that un⇀u in Eε , and set vn = un − u. Then we
have


ε(vn) = 
ε(un)−
ε(u)+ on(1),

〈
′
ε(vn), φ〉 = 〈
′

ε(un), φ〉 − 〈
′
ε(u), φ〉 + on(1)

uniformly in φ ∈ Eε .

Proof Obviously, the first conclusion is an immediate consequence of Lemma 4.1. Next we
show that the second conclusion holds. Indeed, for s ∈ {p, q}, Lemma 4.2 implies that∫

RN
|B(vn)− B(un)+ B(u)| s

s−1 dx = on(1). (4.1)

Moreover, according to the proof of Theorem 3.3 in [26], we can see that∫
RN

V (εx)||vn |s−2vn − |un |s−2un + |u|s−2u| s
s−1 dx = on(1). (4.2)
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Using the Hölder inequality, for any φ ∈ Eε such that ‖φ‖ε ≤ 1, we have

|〈
′
ε(vn)−
′

ε(un)+
′
ε(u), φ〉|

≤
(∫

RN
|B(vn)− B(un)+ B(u)| p

p−1 dx

) p−1
p

(∫
RN

|∇φ|pdx

) 1
p

+
(∫

RN
|B(vn)− B(un)+ B(u)| q

q−1 dx

) q−1
q

(∫
RN

|∇φ|qdx

) 1
q

+
(∫

RN
V (εx)||vn |p−2vn − |un |p−2un + |u|p−2u| p

p−1 dx

) p−1
p

(∫
RN

V (εx)|φ|pdx

) 1
p

+
(∫

RN
V (εx)||vn |q−2vn − |un |q−2un + |u|q−2u| q

q−1 dx

) q−1
q

(∫
RN

V (εx)|φ|qdx

) 1
q

+
∫
RN

K (εx)|( f (vn)− f (un)+ f (u))φ|dx .

By using Lemma 4.1, (4.1) and (4.2), it is easy to see that the second conclusion holds. The
proof is completed. ��

Consider the limit problem{−�pu −�qu + V∞(|u|p−2u + |u|q−2u) = K∞ f (u), in R
N ,

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0, in R
N .

(4.3)

As before, JV∞ K∞ ,NV∞ K∞ and cV∞ K∞ denote the corresponding energy functional, Nehari
manifold and ground state energy value of limit problem (4.3), respectively.

Lemma 4.4 Let {un} be a Palais–Smale sequence at level c > 0 for 
ε with un⇀u in
Eε . Then the following alternative holds: either un → u in Eε along a subsequence, or
c −
ε(u) ≥ cV∞ K∞ .

Proof Define vn = un − u and assume that vn � 0 in Eε . From Lemma 2.7, for each vn

there is a unique {tn} ⊂ (0,∞) such that {tnvn} ⊂ NV∞ K∞ . We divide the proof into three
steps.

Step 1. The sequence {tn} satisfies
lim sup

n→∞
tn ≤ 1.

Indeed, assume by contradiction that the above conclusion does not hold. Then, there exist
τ > 0 and a subsequence of {tn}, still denoted by itself, such that

tn ≥ 1 + τ for all n ∈ N.

According to Lemma 4.3, it is easy to see that 〈
′
ε(vn), vn〉 = on(1). Moreover, from the

fact that {tnvn} ⊂ NV∞ K∞ , we can infer that

‖∇vn‖p
p + ‖∇vn‖q

q +
∫
RN

V (εx)(|vn |p + |vn |q)dx −
∫
RN

K (εx) f (vn)vndx = on(1)

and

t p−q
n ‖∇vn‖p

p + ‖∇vn‖q
q + V∞

∫
RN
(t p−q

n |vn |p + |vn |q)dx − K∞
∫
RN

f (tnvn)

(tnvn)q−1 v
q
ndx = 0.
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Consequently,∫
RN

(
K∞ f (tnvn)

(tnvn)q−1 − K∞ f (vn)

v
q−1
n

)
v

q
ndx +

∫
RN

(
K∞ f (vn)

v
q−1
n

− K (εx) f (vn)

v
q−1
n

)
v

q
ndx

= (t p−q
n − 1)‖∇vn‖p

p +
∫
RN
(t p−q

n V∞ − V (εx))v p
n dx

+
∫
RN
(V∞ − V (εx))vq

ndx + on(1).

(4.4)
By the definition of V∞ and K∞, for any ε > 0, there exists R = R(ε) > 0 such that

V (εx) ≥ V∞ − ε > V∞/tq−p
n − ε and K (εx) ≤ K∞ + ε for any |x | ≥ R. (4.5)

Since vn⇀0 in Eε , then vn → 0 in Ls
loc(R

N ) for s ∈ [1, q∗) by Lemma 2.3. Using (2.3) and
(4.4) we deduce that∫

RN

(
K∞ f (tnvn)

(tnvn)q−1 − K∞ f (vn)

v
q−1
n

)
v

q
ndx

≤
∫
RN
(K (εx)− K∞) f (vn)vndx

+
∫
RN

[
(t p−q

n V∞ − V (εx))v p
n + (V∞ − V (εx))vq

n

]
dx + on(1)

≤ ε

∫
|x |≥R

f (vn)vndx + ε

∫
|x |≥R

(|vn |p + |vn |q)dx

+ 2Kmax

∫
|x |≤R

f (vn)vndx + 2Vmax

∫
|x |≤R

(|vn |p + |vn |q)dx + on(1)

= cε + on(1).

(4.6)

By the fact vn � 0 in Eε and 
′
ε(vn) → 0, there exist R̄, δ > 0 and yn ∈ R

N such that∫
BR̄(yn)

|vn |qdx ≥ δ. (4.7)

Note that the above claim is true, because otherwise, using again Lemma 2.2, we have vn → 0
in Ls(RN ) for s ∈ (q, q∗). According to 〈
′

ε(vn), vn〉 = on(1) and (2.3) we can infer that

on(1) = 〈
′
ε(vn), vn〉

= ‖∇vn‖p
p + ‖∇vn‖q

q +
∫
RN

V (εx)(|vn |p + |vn |q)dx −
∫
RN

K (εx) f (vn)vndx

≥ ‖∇vn‖p
p + ‖∇vn‖q

q

+
∫
RN

V (εx)(|vn |p + |vn |q)dx − εKmax‖vn‖p
p − CεKmax‖vn‖r

r

≥ c10‖vn‖p
Vε ,p

+ c11‖vn‖q
Vε ,q

− c12‖vn‖r
r ,

and consequently
c10‖vn‖p

Vε ,p
+ c11‖vn‖q

Vε ,q
≤ c12‖vn‖r

r → 0

since r ∈ (q, q∗). Then, vn → 0 in Eε , which is a contradiction. Setting ṽn = vn(x + yn),
we may suppose that, passing to a subsequence, ṽn⇀ṽ in Eε and ṽn(x) → ṽ(x) a.e. in R

N .
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Thus, ∫
BR̄(0)

|ṽn |qdx ≥ δ,

showing that ṽ �= 0.Moreover, using the fact that vn ≥ 0 for all n ∈ N, we have that ṽ(x) ≥ 0
a.e. in R

N . Hence, there exists a subset �1 ⊂ R
N with positive measure such that ṽ(x) > 0

for all x ∈ �1. Consequently, it follows from ( f5) and (4.6) that

0 <
∫
�1

(
K∞ f ((1 + τ)vn)

((1 + τ)vn)q−1 − K∞ f (vn)

v
q−1
n

)
v

q
ndx ≤ cε + on(1).

Letting n → ∞ in the last inequality and applying Fatou’s lemma, it follows that

0 <
∫
�1

(
K∞ f ((1 + τ)ṽ)

((1 + τ)ṽ)q−1 − K∞ f (ṽ)

ṽq−1

)
ṽqdx ≤ cε,

which is absurd, since the arbitrariness of ε.
From Step 1, we derive that

lim sup
n→∞

tn = 1 or lim sup
n→∞

tn = t0 < 1.

Next, we will study each one of these possibilities.

Step 2. The sequence {tn} satisfies
lim sup

n→∞
tn = 1.

In this case, there exists a subsequence, such that tn → 1. Since JV∞ K∞(tnvn) ≥ cV∞ K∞ ,
by Lemma 4.3 we have

c −
ε(u)+ on(1) = 
ε(vn)

= 
ε(vn)− JV∞ K∞(tnvn)+ JV∞ K∞(tnvn)

≥ 
ε(vn)− JV∞ K∞(tnvn)+ cV∞ K∞ .

(4.8)

Observe that,


ε(vn)− JV∞ K∞(tnvn)

= (1 − t p
n )

p
‖∇vn‖p

p + (1 − tq
n )

q
‖∇vn‖q

q + 1

p

∫
RN
(V (εx)− t p

n V∞)v p
n dx

+ 1

q

∫
RN
(V (εx)− tq

n V∞)vq
ndx +

∫
RN
(K∞F(tnvn)− K (εx)F(vn))dx .

(4.9)

It follows from (4.5) that

V (εx)− t p
n V∞ = (V (εx)− V∞)+ (1 − t p

n )V∞ ≥ −ε + (1 − t p
n )V∞ for any |x | ≥ R,

then by vn → 0 in L p
loc(R

N ) and tn → 1 we get∫
RN
(V (εx)− t p

n V∞)v p
n dx

=
∫

|x |≤R
(V (εx)− t p

n V∞)v p
n dx +

∫
|x |≥R

(V (εx)− t p
n V∞)v p

n dx

≥ (Vmin − t p
n V∞)

∫
|x |≤R

v
p
n dx − ε

∫
|x |≥R

v
p
n dx + V∞(1 − t p

n )

∫
|x |≥R

v
p
n dx

≥ on(1)− cε.

(4.10)
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Similarly, we can prove that∫
RN
(V (εx)− tq

n V∞)vq
ndx ≥ on(1)− cε. (4.11)

In what follows, we verify that∫
RN
(K∞F(tnvn)− K (εx)F(vn))dx ≥ on(1)− cε. (4.12)

Indeed, note that∫
RN
(K∞F(tnvn)− K (εx)F(vn))dx

=
∫
RN
(K∞F(tnvn)− K∞F(vn))dx +

∫
RN
(K∞F(vn)− K (εx)F(vn))dx

:= T1 + T2.

On the one hand, using the mean value theorem, the fact that tn → 1 and the boundedness
of {vn} we have

T1 ≤ K∞
∫
RN

|F(tnvn)− F(vn)|dx

≤ c13|tn − 1|
∫
RN

|vn |pdx + c14|tn − 1|
∫
RN

|vn |qdx

= on(1).

On the other hand, applying the fact vn → 0 in Ls
loc(R

N ) for s ∈ [1, q∗) and (4.5) we obtain

T2 =
∫

|x |≤R
(K∞ − K (εx))F(vn)dx +

∫
|x |≥R

(K∞ − K (εx))F(vn)dx

≥ on(1)− cε.

Combining the above facts, we can see that (4.12) holds. Finally, from the boundedness of
{vn} and tn → 1 we can conclude that

(1 − t p
n )

p
‖∇vn‖p

p = on(1) and
(1 − tq

n )

q
‖∇vn‖q

q = on(1). (4.13)

Using (4.8), (4.9) (4.10), (4.11), (4.12) and (4.13) we are led to

c −
ε(u) ≥ on(1)− cε + cV∞ K∞ ,

and taking the limit as ε → 0 we get

c −
ε(u) ≥ cV∞ K∞ .

Step 3. The sequence {tn} satisfies
lim sup

n→∞
tn = t0 < 1.
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We assume that there exists a subsequence, still denoted by {tn}, such that tn → t0 < 1. First,
similar to the above arguments, we can get∫

RN
(V∞ − V (εx))v p

n dx = on(1)∫
RN
(K∞ − K (εx))

(
1

q
f (vn)vn − F(vn)

)
dx = on(1).

(4.14)

Since 〈
ε(vn), vn〉 = on(1), then we have

c −
ε(u)+ on(1) = 
ε(vn)− 1

q
〈
ε(vn), vn〉

=
(
1

p
− 1

q

)
‖vn‖p

Vε ,p
+

∫
RN

K (εx)

(
1

q
f (vn)vn − F(vn)

)
dx .

(4.15)
Recalling that tnvn ∈ NV∞ K∞ , and using ( f5), (4.14) and (4.15) we get

cV∞ K∞ ≤ JV∞ K∞(tnvn)

= JV∞ K∞(tnvn)− 1

q
〈JV∞ K∞(tnvn), tnvn〉

=
(
1

p
− 1

q

)
‖tnvn‖p

V∞,p +
∫
RN

K∞
(
1

q
f (tnvn)tnvn − F(tnvn)

)
dx .

≤
(
1

p
− 1

q

)
‖vn‖p

V∞,p +
∫
RN

K∞
(
1

q
f (vn)vn − F(vn)

)
dx

=
(
1

p
− 1

q

)
‖vn‖p

Vε ,p
+

∫
RN

K (εx)

(
1

q
f (vn)vn − F(vn)

)
dx

+
(
1

p
− 1

q

) ∫
RN
(V∞ − V (εx))v p

n dx

+
∫
RN
(K∞ − K (εx))

(
1

q
f (vn)vn − F(vn)

)
dx

= 
ε(vn)− 1

q
〈
ε(vn), vn〉 + on(1)

= c −
ε(u)+ on(1).

Taking the limit as n → ∞, we get

c −
ε(u) ≥ cV∞ K∞ .

The proof is now complete. ��

Applying Lemmas 4.3 and 4.4, we have the following compactness result.

Lemma 4.5 Let {un} be a bounded Palais–Smale sequence at level c < cV∞ K∞ for
ε . Then
{un} has a convergent subsequence in Eε .

Proof Let {un} be a bounded Palais–Smale sequence, up to a subsequence, we may assume
that un⇀u in Eε , un → u in Ls

loc(R
N ) for s ∈ [1, q∗) and un(x) → u(x) a.e. in R

N . Using
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Lemma 2.4, we can see that 
′
ε(u) = 0. Moreover, it follows from (2.4) that


ε(u) = 
ε(u)− 1

q
〈
′

ε(u), u〉

=
(
1

p
− 1

q

)
‖u‖p

Vε ,p
+

∫
RN

K (εx)

(
1

q
f (u)u − F(u)

)
dx ≥ 0.

(4.16)

Hence, we have c −
ε(u) ≤ c < cV∞ K∞ . From Lemma 4.4 we can deduce that un → u in
Eε . This completes the proof. ��

5 Existence and concentration of positive ground state solutions

In this section, we will prove the existence and concentration phenomena of positive ground
state solutions to problem (2.1). Moreover, we complete the proofs of Theorems 1.1 and 1.2.

We first consider the situation that (A0) and (A1) are satisfied. For any xv ∈ V , we set
Ṽ (εx) = V (εx + εxv) and K̃ (εx) = K (εx + εxv). It is clear that if ũ is a solution of

{−�pu −�q u + Ṽ (εx)(|u|p−2u + |u|q−2u) = K̃ (εx) f (u), in R
N ,

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0, in R
N ,

then u(x) = ũ(x − εxv) solves problem (2.1). By conditions (A0) and (A1), without loss of
generality, we may assume that xv = 0 ∈ V or xv = 0 ∈ V ∩ K if V ∩ K �= ∅. Then we
have

V (0) = Vmin and κ := K (0) ≥ K (x) for all |x | ≥ R. (5.1)

Consider the following problem

−�pu −�qu + Vmin(|u|p−2u + |u|q−2u) = κ f (u) in R
N . (5.2)

In the sequel, we also use the associated notations JVminκ , NVminκ and cVminκ as before,
which denote the energy functional, Nehari manifold and ground state energy value of prob-
lem (5.2), respectively. Moreover, we deduce from Lemma 3.3 that problem (5.2) possesses
at least one positive ground state solution.

Next, we give the comparison relationship of the ground state energy value between
problem (2.1) and problem (5.2), which play a significant role in our analysis.

Lemma 5.1 We have lim supε→0 cε ≤ cVminκ . In particular, if V ∩K �= ∅, then limε→0 cε =
cVminKmax .

Proof Let u be a positive ground state solution of problem (5.2), then from Lemma 3.1-(b)
we have

u ∈ NVminκ and cVminκ = JVminκ (u) = max
t≥0

JVminκ (tu). (5.3)

It follows from Lemma 2.7 that there exists tε > 0 such that tεu ∈ Nε , and

cε ≤ 
ε(tεu) = max
t≥0


ε(tu). (5.4)
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Moreover, it is clear to see that {tε} is bounded. Then, passing to a subsequence, we assume
that tε → t0. Note that


ε(tεu) = JVminκ (tεu)+
∫
RN
(κ − K (εx))F(tεu)dx

+ t p
ε

p

∫
RN
(V (εx)− Vmin)u

pdx + tq
ε

q

∫
RN
(V (εx)− Vmin)u

qdx .

(5.5)

According to the boundedness of tε , K (εx) → κ in a bounded domain and the exponential
decay of u, we have∫

RN
(κ − K (εx))F(tεu)dx

=
∫

|x |≤R
(κ − K (εx))F(tεu)dx +

∫
|x |≥R

(κ − K (εx))F(tεu)dx

= oε(1).

(5.6)

Similarly, according to the boundedness of tε , V (εx) → Vmin in a bounded domain and the
exponential decay of u, we get

t p
ε

p

∫
RN
(V (εx)− Vmin)u

pdx = oε(1) and
tq
ε

q

∫
RN
(V (εx)− Vmin)u

qdx = oε(1). (5.7)

Using (5.5) (5.6) and (5.7) we have


ε(tεu) = JVminκ (tεu)+ oε(1).

Together with (5.3) and (5.4), as ε → 0, we can infer that

cε ≤ 
ε(tεu) → JVminκ (t0u) ≤ max
t≥0

JVminκ (tu) = JVminκ (u) = cVminκ .

Thus,
lim sup
ε→0

cε ≤ cVminκ . (5.8)

Now we show that the second conclusion holds. Observe that


ε(u) = JVminKmax(u)+
∫
RN
(Kmax − K (εx))F(u)dx

+ 1

p

∫
RN
(V (εx)− Vmin)u

pdx + 1

q

∫
RN
(V (εx)− Vmin)u

qdx .

It follows that
cVminKmax ≤ cε .

On the other hand, since V ∩ K �= ∅, then κ = Kmax. So, according to (5.8) we can get

lim
ε→0

cε = cVminKmax .

The proof is now complete. ��

Lemma 5.2 Assume that (A0), (A1) and ( f1)–( f5) hold. Then for any ε > 0 small enough,
problem (2.1) has a positive ground state solution.
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Proof Observe that if uε ∈ Nε satisfies 
ε(uε) = cε , then

Iε(m̌ε(uε)) = 
ε(m̂ε(m̌ε(uε))) = 
ε(uε) = cε = inf
Sε

Iε .

This shows that m̌ε(uε) ∈ Sε is a minimizer of Iε , and hence a critical point of Iε . From
Lemma 2.11, we know that uε is a critical point of 
ε . Therefore, it suffices to prove that
there exists a minimizer uε ∈ Nε such that
ε(uε) = cε . In fact, using Ekeland’s variational
principle [40], there exists a sequence {vn} ⊂ Sε such that Iε(vn) → cε and I ′

ε(vn) → 0
as n → ∞. Let un = m̂ε(vn) ∈ Nε for all n ∈ N. Then using Lemma 2.11 again, we get

ε(un) → cε and 
′

ε(un) → 0. According to Lemma 2.9, we can see that {un} is bounded
in Eε . Passing to a subsequence, we can assume that un⇀uε in Eε . From (5.1) and (A1), we
can see that Vmin < V∞ and κ ≥ K∞. By Lemma 3.4, we have cVminκ < cV∞ K∞ , moreover,
using Lemma 5.1 we deduce that cε ≤ cVminκ < cV∞ K∞ for ε > 0 small enough. Therefore,
Lemma 4.5 shows that
ε satisfies the Palais–Smale condition for ε > 0 small enough. Using
Lemma 2.4 and continuity of 
ε , we have 
′

ε(uε) = 0 and 
ε(uε) = cε . Hence, problem
(2.1) has a ground state solution uε . The positivity of the ground state solution follows with
same arguments as in the proof of Lemma 3.3. ��

Let Lε be the set of all positive ground state solutions of problem (2.1). Then we have
the following result.

Lemma 5.3 Lε is compact in Eε for all small ε > 0.

Proof Arguing by contradiction, we assume thatLε j is not compact in Eε for some ε j → 0.

Thus, for each j , there exists a sequence {u j
n} ⊂ Lε j such that it does not have convergent

subsequence. Nevertheless, we note that {u j
n} is bounded in Eε . So, without loss of generality,

we may assume that u j
n⇀u in Eε as n → ∞. Finally, as in the proof of Lemma 5.2, we can

deduce a contradiction. ��
Next, we are devoted to the study of concentration phenomena for the positive ground

state solution uε obtained in Lemma 5.2 as ε → 0. The following result plays a fundamental
role in the study of the behaviors of ground state solutions.

Lemma 5.4 Assume that uε ∈ Lε . Then uε possesses a maximum point yε such that, up to
a subsequence, εyε → x0 as ε → 0, limε→0dist(εyε,Av) = 0 and vε(x) := uε(x + yε)
converges strongly to a positive ground state solution of

−�pu −�q u + V (x0)(|u|p−2u + |u|q−2u) = K (x0) f (u) in R
N .

In particular, if V ∩K �= ∅, then limε→0 dist(εyε,V ∩K ) = 0, and up to a subsequence,
vε converges strongly to a positive ground state solution of

−�pu −�q u + Vmin(|u|p−2u + |u|q−2u) = Kmax f (u) in R
N .

Proof Let uε ∈ Lε , we first show that there exist {ỹε} ⊂ R
N , R0 > 0 and σ0 > 0 such that∫

BR0 (ỹε )
|uε |qdx ≥ σ0 (5.9)

for all small ε > 0. Arguing indirectly, we assume that there exists a sequence ε j → 0 as
j → ∞, such that for any R1 > 0,

lim
j→∞ sup

y∈RN

∫
BR1 (y)

|uε j |qdx = 0.
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Then Lemma 2.2 yields that uε j → 0 in Ls(RN ) for s ∈ (q, q∗). From (2.3) we can infer
that

0 = 〈
′
ε(uε j ), uε j 〉

= ‖∇uε j ‖p
p + ‖∇uε j ‖q

q +
∫
RN

V (ε j x)(|uε j |p + |uε j |q)dx −
∫
RN

K (ε j x) f (uε j )uε j dx

≥ ‖∇uε j ‖p
p + ‖∇uε j ‖q

q +
∫
RN

V (ε j x)(|uε j |p + |uε j |q)dx

− εKmax‖uε j ‖p
p − CεKmax‖uε j ‖r

r

≥ c15‖uε j ‖p
Vε ,p

+ c16‖uε j ‖q
Vε ,q

− c17‖uε j ‖r
r ,

and consequently
c15‖uε j ‖p

Vε ,p
+ c16‖uε j ‖q

Vε ,q
≤ c17‖uε j ‖r

r → 0

since r ∈ (q, q∗). Then, uε j → 0 in Eε . However, {uε j } has positive bounded from below
by Lemma 2.6, a contradiction. So (5.9) holds.

Let {yε} ⊂ R
N be maximum point of uε , then uε(yε) = maxx∈RN uε(x). We show that

there exist η0 > 0 independent of ε such that uε(yε) ≥ η0 for all small ε > 0. If not, then
we assume that uε(yε) → 0 as ε → 0. Form (5.9) we can deduce that

0 < σ0 ≤
∫

BR0 (ỹε )
|uε |qdx ≤ c|uε(yε)|q → 0 as ε → 0,

which is a contradiction. Therefore, there exist R > R0 > 0 and σ > 0 such that for all
small ε > 0 ∫

BR(yε )
|uε |qdx ≥ σ > 0. (5.10)

Setting vε = uε(x + yε), passing to a subsequence, we may assume that vε⇀v in Eε and
vε → v in Ls

loc(R
N ) for s ∈ [1, q∗), moreover, v �= 0 by (5.10). It is obvious that vε is a

solution of the problem

−�pu −�q u + V (εx + εyε)(|u|p−2u + |u|q−2u) = K (εx + εyε) f (u) in R
N . (5.11)

and the energy

Tε(vε) = 1

p
‖∇vε‖p

p + 1

q
‖∇vε‖q

q + 1

p

∫
RN

V (εx + εyε)|vε |pdx

+ 1

q

∫
RN

V (εx + εyε)|vε |qdx −
∫
RN

K (εx + εyε)F(vε)dx

= Tε(vε)− 1

q
〈T ′
ε (vε), vε〉

=
(
1

p
− 1

q

)
‖vε‖p

Vε ,p
+

∫
RN

K (εx + εyε)

(
1

q
f (vε)vε − F(vε)

)
dx

= 
ε(uε)− 1

q
〈
′

ε(uε), uε〉
= 
ε(uε) = cε .

(5.12)
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Moreover, for any ϕ ∈ C∞
0 (R

N ) there holds

〈T ′
ε (vε), ϕ〉 =

∫
RN

|∇vε |p−2∇vε∇ϕdx +
∫
RN

|∇vε |q−2∇vε∇ϕdx

+
∫
RN

V (εx + εyε)|vε |p−2vεϕdx +
∫
RN

V (εx + εyε)|vε |q−2vεϕdx

−
∫
RN

K (εx + εyε) f (vε)ϕdx = 0.

(5.13)
According to condition (A0), without loss of generality, we can assume that V (εyε) → V0

and K (εyε) → K0 as ε → 0.
Next we complete our proof by several steps.

Step 1. We show that v is a positive ground state solution of the limit problem

−�pu −�qu + V0(|u|p−2u + |u|q−2u) = K0 f (u) in R
N . (5.14)

Indeed, since vε⇀v in Eε , applying some standard arguments, we can easily check that∫
RN

V (εx + εyε)|vε |p−2vεϕdx =
∫

suppϕ
V (εx + εyε)|vε |p−2vεϕdx

→
∫
RN

V0|v|p−2vϕdx .

Similarly, we have∫
RN

V (εx + εyε)|vε |q−2vεϕdx →
∫
RN

V0|v|q−2vϕdx

and ∫
RN

K (εx + εyε) f (vε)ϕdx →
∫
RN

K0 f (v)ϕdx .

According to (5.13), we can see that v is a solution of problem (5.14). Moreover,

JV0K0(v) = JV0K0(v)− 1

q
〈J ′

V0K0
(v), v〉

=
(
1

p
− 1

q

)
‖v‖p

V0,p
+ K0

∫
RN

(
1

q
f (v)v − F(v)

)
dx

≥ cV0K0 ,

where cV0K0 is the ground state energy value of JV0K0 . On the other hand, from Fatou’s
lemma and Lemma 5.1, we can deduce that

cV0K0 ≤
(
1

p
− 1

q

)
‖v‖p

V0,p
+ K0

∫
RN

(
1

q
f (v)v − F(v)

)
dx

≤ lim inf
ε→0

[(
1

p
− 1

q

)
‖vε‖p

ε,p +
∫
RN

K (εx + εyε)

(
1

q
f (vε)vε − F(vε)

)
dx

]
= lim inf

ε→0
Tε(vε) ≤ lim sup

ε→0

ε(uε) ≤ cV0K0 .

Therefore, v is a ground state solution of problem (5.14). According to the proof of
Lemma 3.3, we can prove that v is positive. Moreover, we also have

lim
ε→0

Tε(vε) = lim
ε→0

cε = JV0K0(v) = cV0K0 . (5.15)

123



4066 J. Zhang et al.

Step 2. We claim that {εyε} is bounded. Arguing by contradiction we assume that, up to
a subsequence, |εyε | → ∞. Since

V (0) = Vmin and κ := K (0) ≥ K (x) for all |x | ≥ R,

then using (A1)we can infer that V0 > Vmin and K0 ≤ κ . So it follows from Lemma 3.4 that
cV0K0 > cVminκ . But, according to Lemma 5.1 and (5.15), we can get cε → cV0K0 ≤ cVminκ .
This is a contradiction. So, {εyε} is bounded.

It follows from Step 2 that, passing to a subsequence, we can assume that εyε → x0 as
ε → 0, then V0 = V (x0) and K0 = K (x0). Therefore, according to Step 1, we can see that
v is a positive ground state solution of the limit problem

−�pu −�qu + V (x0)(|u|p−2u + |u|q−2u) = K (x0) f (u) in R
N .

Step 3. We prove that limε→0dist(εyε,Av) = 0. In fact, we just need to prove x0 ∈ Av .
Arguing by contradiction, we assume that x0 /∈ Av , then we get V0 ≥ Vmin and K0 < κ by
condition (A1) and the definition ofAv .Moreover, usingLemma3.4,we have cV0K0 > cVminκ .
Thus, from (5.15) and Lemma 5.1, we can deduce that

lim
ε→0

cε = cV0K0 > cVminκ ≥ lim
ε→0

cε,

which is a contradiction.

Step 4. We verify that vε → v in W 1,p(RN ) ∩ W 1,q(RN ). We use some ideas developed
in [17]. Let η : [0,∞) → [0, 1] be a smooth function satisfying η(t) = 1 if t ≤ 1, η(t) = 0
if t ≥ 2. Define ṽε(x) = η(2ε|x |)v(x). By straightforward computation, we have

‖v − ṽε‖ε → 0 and ‖v − ṽε‖s → 0 as ε → 0 (5.16)

for s ∈ [p, q∗]. Setting wε = vε − ṽε , it is easy to verify by applying Lemma 4.1 that up to
a subsequence,

lim
ε→0

∣∣∣∣
∫
RN

K (εx + εyε)(F(vε)− F(wε)− F(ṽε))dx

∣∣∣∣ = 0 (5.17)

and

lim
ε→0

∣∣∣∣
∫
RN

K (εx + εyε)( f (vε)− f (wε)− f (ṽε))ϕdx

∣∣∣∣ = 0 (5.18)

uniformly in ϕ ∈ Eε with ‖ϕ‖ε ≤ 1. Using the exponentially decay of v and (5.16) one
checks easily the following

lim
ε→0

∫
RN

V (εx + εyε)(|ṽε |p + |ṽε |q)dx →
∫
RN

V0(|v|p + |v|q)dx (5.19)

and

lim
ε→0

∫
RN

K (εx + εyε)F(ṽε)dx →
∫
RN

K0F(v)dx . (5.20)

From (5.15), (5.16), (5.17), (5.19) and (5.20), we are lead to

Tε(wε) = Tε(vε)− JV0K0(v)

+
∫
RN

K (εx + εyε)(F(vε)− F(wε)− F(ṽε))dx + oε(1)

= oε(1),
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which implies that Tε(wε) → 0. Similarly, according to (5.18), we get T ′
ε (wε) → 0. There-

fore, by the condition ( f4), we obtain

Tε(wε)− 1

θ
〈T ′
ε (wε), wε〉 =

(
1

p
− 1

θ

)
‖wε‖p

Vε ,p
+

(
1

q
− 1

θ

)
‖wε‖q

Vε ,q

+
∫
RN

K (εx + εyε)

(
1

θ
f (wε)wε − F(wε)

)
dx

≥
(
1

p
− 1

θ

)
‖wε‖p

Vε ,p
+

(
1

q
− 1

θ

)
‖wε‖q

Vε ,q
,

which shows that ‖wε‖ε → 0. This, together with (5.16), implies that vε → v in Eε . But
‖ · ‖ε and the norm of W 1,p(RN ) ∩ W 1,q(RN ) are equivalent. Consequently, the desired
conclusion holds.

Finally, if V ∩ K �= ∅, using condition (A1), we have Av = V ∩ K . From the above
arguments, we can prove that limε→0 dist (εyε,V ∩K ) = 0. So, x0 ∈ V ∩K , V (x0) = Vmin

and K (x0) = Kmax. Hence, up to a subsequence, vε converges in W 1,p(RN )∩ W 1,q(RN ) to
a positive ground state solution v of the limit problem

−�pu −�qu + Vmin(|u|p−2u + |u|q−2u) = Kmax f (u) in R
N .

Combining the above steps, we prove all conclusions of Lemma 5.4. ��
In the following we study the exponential decay property of solutions.

Lemma 5.5 vε ∈ C1,σ
loc (R

N ) with σ ∈ (0, 1) and vε(x) → 0 as |x | → ∞ uniformly holds
for all small ε > 0.

Proof We follow some ideas developed in [21, 35]. Using the interior L p-estimate and the
Sobolev embedding, we get vε ∈ Ls(RN ) ∩ C1,σ

loc (R
N ) for s ∈ [p,∞] and σ ∈ (0, 1).

Moreover, from the Step 4 of proof of Lemma5.4,we have vε → v inW 1,p(RN )∩W 1,q(RN ).
So, applying theMoser iterative method in [6, 27], we can prove that vε(x) → 0 as |x | → ∞
uniformly holds for all small ε > 0. The details of the proof can be found in [6,Lemma 7.1],
here we omit it. ��
Lemma 5.6 There are c, C > 0 such that for all small ε > 0, there holds

uε(x) ≤ C exp (−c|x − yε |) .
Proof We adapt some arguments from [21] (see also [6]). According to Lemma 5.5 and ( f2),
there exists R > 0 such that

Kmax f (vε) ≤ Vmin

2
(v p−1
ε + vq−1

ε ) for all |x | ≥ R.

Then, for |x | ≥ R we get

−�pvε −�qvε + Vmin

2
(v p−1
ε + vq−1

ε )

= K (εx + εyε) f (vε)−
(

V (εx + εyε)− Vmin

2

)
(v p−1
ε + vq−1

ε )

≤ Kmax f (vε)− Vmin

2
(v p−1
ε + vq−1

ε ) ≤ 0.

(5.21)
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Let ψ(x) = C0 exp(−c0|x |) with c0,C0 > 0 such that cp
0 (p − 1) < Vmin

2 , cq
0 (q − 1) < Vmin

2
and vε(x) ≤ C0 exp(−c0R) for all |x | = R. Then, computing directly, we have

−�pψ −�qψ + Vmin

2
(ψ p−1 + ψq−1)

= ψ p−1
(

Vmin

2
− cp

0 (p − 1)+ N − 1

|x | cp−1
0

)

+ ψq−1
(

Vmin

2
− cq

0 (q − 1)+ N − 1

|x | cq−1
0

)
> 0

(5.22)

for all |x | ≥ R. Let � = {|x | ≥ R} ∩ {vε > ψ}. Using the following inequality

(|x |s−2x − |y|s−2y) · (x − y) ≥ 0 for all s > 1 and x, y ∈ R
N

and choosing φ = max{vε − ψ, 0} ∈ W 1,p
0 (RN \BR) ∩ W 1,q

0 (RN \BR) as a test function in
(5.21) and (5.22), we obtain

0 ≥
∫
�

[
(|∇vε |p−2∇vε − |∇ψ |p−2ψ) · ∇φ + (|∇vε |q−2∇vε − |∇ψ |q−2ψ) · ∇φ]

dx

+ Vmin

2

∫
�

[
(v p−1
ε − ψ p−1)+ (vq−1

ε − ψq−1)
]
φdx

≥ 0.

Therefore, the set � is empty. From this we can easily conclude that vε(x) ≤ ψ(x) for all
|x | ≥ R, and

vε(x) ≤ ψ(x) = C0 exp(−c0|x |) for all |x | ≥ R.

Recalling that uε(x) = vε(x − yε), there exist c,C > 0 such that

uε(x) ≤ C exp(−c|x − yε |)
for all x ∈ R

N and small ε > 0. The proof is completed. ��
Now we are in a position to finish the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1 From Lemma 5.2, problem (2.1) has a positive ground state solution vε
for ε > 0 small enough. Hence, uε(x) = vε(

x
ε
) is a positive ground state solution of problem

(1.1), which shows that conclusion (i) holds in Theorem 1.1. By Lemma 5.3 we deduce that
conclusion (ii) holds in Theorem 1.1. Furthermore, the maximum points xε and yε of uε and
vε satisfy xε = εyε . Setting v̂ε := uε(εx + xε). Then by Lemma 5.4 we get

xε → x0 and lim
ε→0

dist(xε,Av) = 0,

and v̂ε converges in W 1,p(RN ) ∩ W 1,q(RN ) to a positive ground state solution v of

−�pu −�qu + V (x0)(|u|p−2u + |u|q−2u) = K (x0) f (u) in R
N .

In particular, if V ∩ K �= ∅, then Av = V ∩ K and

lim
ε→0

dist(xε,V ∩ K ) = 0,

and v̂ε converges in W 1,p(RN ) ∩ W 1,q(RN ) to a positive ground state solution v of

−�pu −�qu + Vmin(|u|p−2u + |u|q−2u) = Kmax f (u) in R
N .
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Evidently, conclusion (iii) holds.
Finally, according to Lemmas 5.5 and 5.6, we can get uε ∈ C1,σ

loc (R
N ) with σ ∈ (0, 1)

and lim|x |→∞ uε(x) = 0. Moreover,

|uε(x)| =
∣∣∣vε ( x

ε

)∣∣∣ ≤ C exp
(
−c| x

ε
− yε |

)
= C exp

(
− c

ε
|x − xε |

)
for some c,C > 0. We now complete the proof of Theorem 1.1. ��
Proof of Theorem 1.2 Suppose that the potentials V and K satisfy conditions (A0) and (A2).
We may assume without loss of generality that xk = 0 ∈ K or xk = 0 ∈ V ∩ K if
V ∩ K �= ∅. It follows that

π := V (0) ≤ V (x) for all |x | ≥ R and K (0) = Kmax.

Analogous to the proofs of Lemma 5.1, we can show that

lim sup
ε→0

cε ≤ cπKmax .

The remaining proofs are similar to the proof of Theorem 1.1 with suitable modification, so
we omit the details here. ��

6 Multiplicity of positive solutions

In this section we are going to show the multiplicity of positive solutions and study the
behavior of their maximum points in relationship with the set �, where � is defined in
Sect. 1. Moreover, we complete the proof of Theorem 1.3.

Let u be a positive ground state solution of problem

−�pu −�q u + Vmin(|u|p−2u + |u|q−2u) = Kmax f (u) in R
N , (6.1)

and ζ be a smooth nonincreasing cut-off function in [0,+∞) such that ζ(s) = 1 if 0 ≤ s ≤ 1
2

and ζ(s) = 0 if s ≥ 1. For any y ∈ �, we define

�ε,y(x) = ζ(|εx − y|)u
(
εx − y

ε

)
.

Then, there exists tε > 0 such that

max
t≥0


ε(t�ε,y) = 
ε(tε�ε,y).

We define γε : � → Nε by γε(y) = tε�ε,y . By the construction, γε(y) has compact support
for any y ∈ �.

Lemma 6.1 The function γε satisfies

lim
ε→0


ε(γε(y)) = cVminKmax uniformly in y ∈ �.

Proof Suppose by contradiction that there exist ε0 > 0, {yn} ⊂ � and εn → 0 such that

|
εn (γεn (y))− cVminKmax | ≥ ε0. (6.2)

Observe that, by Lebesgue’s dominated convergence theorem, we can easily check that

‖∇�εn ,yn ‖p
p +

∫
RN

V (εn x)|�εn ,yn |pdx → ‖∇u‖p
p +

∫
RN

Vmin|u|pdx, (6.3)
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‖∇�εn ,yn ‖q
q +

∫
RN

V (εn x)|�εn ,yn |qdx → ‖∇u‖q
q +

∫
RN

Vmin|u|qdx, (6.4)

and ∫
RN

K (εn x)F(�εn ,yn )dx → Kmax

∫
RN

F(u)dx . (6.5)

Using the fact that 〈
′
εn
(tεn�εn ,yn ), tεn�εn ,yn 〉 = 0 and the change of variable z = εn x−yn

εn
,

we obtain

t p
εn

‖∇�εn ,yn ‖p
p + tq

εn
‖∇�εn ,yn ‖q

q +
∫
RN

V (εn x)(|tεn�εn ,yn |p + |tεn�εn ,yn |q)dx

=
∫
RN

K (εn x) f (tεn�εn ,yn )tεn�εn ,yndx

=
∫
RN

K (εnz + yn) f (tεn ζ(|εnz|)u(z))tεn ζ(|εnz|)u(z)dz.

(6.6)

We claim that tεn → 1. First we need to prove that {tεn } is bounded. In fact, assume by
contradiction that tεn → ∞. Using (6.6) and ( f5) we have

t p−q
εn

‖∇�εn ,yn ‖p
p + ‖∇�εn ,yn ‖q

q +
∫
RN

V (εn x)(t p−q
εn

|�εn ,yn |p + |�εn ,yn |q)dx

=
∫
RN

K (εnz + yn) f (tεn ζ(|εnz|)u(z))tεn ζ(|εnz|)u(z)t−q
εn

dz

≥ Kmin

∫
B 1
2
(0)

f (tεn u(z))

(tεn u(z))q−1 u(z)qdz

≥ Kmin
f (tεn u(z0))

(tεn u(z0))q−1

∫
B 1
2
(0)

u(z)qdz,

(6.7)

where u(z0) = min{u(z) : |z| ≤ 1
2 } > 0 (this is true because u ∈ C(RN ) by Lemma 5.5).

Since p < q , then from ( f4) and (6.7), we can deduce that ‖�εn ,yn ‖q
Vε ,q

→ ∞. Clearly, this
contradicts relation (6.4). Hence, {tεn } is bounded. Passing to a subsequence, we may assume
that tεn → t0 ≥ 0. If t0 = 0, by ( f2), (6.4) and (6.6) we can infer that ‖�εn ,yn ‖p

Vε ,p
→ 0,

this contradicts relation (6.3). We conclude that t0 > 0.
Next, we prove that t0 = 1. Letting n → ∞ in (6.6), we obtain

t p−q
0 ‖∇u‖p

p + ‖∇u‖q
q + Vmin

∫
RN
(t p−q
0 |u|p + |u|q)dx = Kmax

∫
RN

f (t0u)

(t0u)q−1 uqdx . (6.8)

Moreover, since u is a positive ground state solution of problem (6.1)

‖∇u‖p
p + ‖∇u‖q

q + Vmin

∫
RN
(|u|p + |u|q)dx = Kmax

∫
RN

f (u)udx . (6.9)

Combining (6.8) and (6.9), we can conclude that

(t p−q
0 − 1)‖∇u‖p

p + (t p−q
0 − 1)Vmin

∫
RN

|u|pdx = Kmax

∫
RN

(
f (t0u)

(t0u)q−1 − f (u)

uq−1

)
uqdx .
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Then, we deduce from ( f5) that t0 = 1. Therefore, from (6.3), (6.4) and (6.5), we infer that


εn (γεn (yn)) = t p
εn

p
‖∇�εn ,yn ‖p

p + tq
εn

q
‖∇�εn ,yn ‖q

q

+
∫
RN

V (εn x)

(
t p
εn

p
|�εn ,yn |p + tq

εn

q
|�εn ,yn |q

)
dx

−
∫
RN

K (εn x)F(tεn�εn ,yn )dx

→ 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q +
∫
RN

Vmin

(
1

p
|u|p + 1

q
|u|q

)
dx

− Kmax

∫
RN

F(u)dx

= JVminKmax(u) = cVminKmax .

Obviously, from (6.2) we can see that this is impossible. The proof is completed. ��
Now, we are in the position to introduce the barycenter map. For any δ > 0, let ρ =

ρ(δ) > 0 be such that �δ ⊂ Bρ(0). We define η : R
N → R

N as follows

η(x) = x for |x | ≤ ρ and η(x) = ρx

|x | for |x | ≥ ρ.

Let us consider βε : Nε → R
N given by

βε(u) =
∫
RN η(εx)(|u|p + |u|q)dx∫

RN (|u|p + |u|q)dx
.

Using the above notations, we have the following result.

Lemma 6.2 The function βε satisfies

lim
ε→0

βε(γε(y)) = y uniformly in y ∈ �.

Proof Arguing by contradiction, we assume that there exist σ0 > 0, {yn} ⊂ � and εn → 0
such that

|βεn (γεn (yn))− yn | ≥ σ0 > 0. (6.10)

According to the definitions of γεn and βεn , and using the change of variable z = εn x−yn
εn

we
get

βεn (γεn (yn)) = yn +
∫
RN [η(εnz + yn)− yn](|ζ(|εnz|)u(z)|p + |ζ(|εnz|)u(z)|q)dz∫

RN (|ζ(|εnz|)u(z)|p + |ζ(|εnz|)u(z)|q)dz
.

Taking into account {yn} ⊂ � ⊂ Bρ(0) and using the Lebesgue’s dominates convergence
theorem, we have

|βεn (γεn (yn))− yn | → 0,

which contradicts relation (6.10). ��
Lemma 6.3 Let εn → 0 and {un} ⊂ Nεn be a sequence satisfying 
εn (un) → cVminKmax .
Then there exists {ỹn} ⊂ R

N such that vn = un(x + ỹn) has a convergent subsequence.
Moreover, up to a subsequence, yn → y ∈ �, where yn = εn ỹn.
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Proof Since un ∈ Nεn and 
εn (un) → cVminKmax , we have that {un} is bounded. We claim
that there are R0, δ > 0 and ỹn ∈ R

N such that

lim inf
n→∞

∫
BR0 (ỹn)

|un |qdx ≥ δ. (6.11)

Indeed, if relation (6.11) does not hold, Lemma 2.2 implies that un → 0 in Ls(RN ) for
s ∈ (q, q∗). According to (2.3) and the fact un ∈ Nεn it is easy to verify that un → 0 in Eε ,
which is a contradiction, because 
εn (un) → cVminKmax > 0. So, (6.11) holds. Let us define
vn(x) = un(x + ỹn). Passing to a subsequence, we may assume that vn⇀v �= 0. By virtue
of Lemma 2.7, there exists tn > 0 such that ṽn = tnvn ∈ NVminKmax . Then we have

cVminKmax ≤ JVminKmax(ṽn) = JVminKmax(tnun) ≤ 
εn (tnun) ≤ 
εn (un) → cVminKmax ,

which shows that JVminKmax(ṽn) → cVminKmax . According to Lemma 3.1-(e), we know that
{ṽn} is bounded. Thus, for some subsequence, ṽn⇀ṽ with ṽ �= 0. Moreover, J ′

VminKmax
(ṽ) =

0. Using Lemma 4.3 we have

JVminKmax(ṽn − ṽ) → cVminKmax − JVminKmax(ṽ) and J ′
VminKmax

(ṽn − ṽ) → 0.

Observe that, from (2.4) we get

cVminKmax = lim
n→∞

(
JVminKmax(ṽn)− 1

q
〈J ′

VminKmax
(ṽn), ṽn〉

)

= lim
n→∞

[(
1

p
− 1

q

)
‖ṽn‖p

Vmin,p
+ Kmax

∫
RN

(
1

q
f (ṽn)ṽn − F(ṽn)

)
dx

]

≥
(
1

p
− 1

q

)
‖ṽ‖p

Vmin,p
+ Kmax

∫
RN

(
1

q
f (ṽ)ṽ − F(ṽ)

)
dx

= JVminKmax(ṽ)− 1

q
〈J ′

VminKmax
(ṽ), ṽ〉

= JVminKmax(ṽ)

≥ cVminKmax .

It follows that
JVminKmax(ṽn − ṽ) → 0 and J ′

VminKmax
(ṽn − ṽ) → 0. (6.12)

Moreover, using ( f4) and (6.12) we have

on(1) = JVminKmax(ṽn − ṽ)− 1

θ
〈J ′

VminKmax
(ṽn − ṽ), ṽn − ṽ〉

=
(
1

p
− 1

θ

)
‖ṽn − ṽ‖p

Vmin,p
+

(
1

q
− 1

θ

)
‖ṽn − ṽ‖q

Vmin,q

+ Kmax

∫
RN

(
1

θ
f (ṽn − ṽ)(ṽn − ṽ)− F(ṽn − ṽ)

)
dx

≥
(
1

p
− 1

θ

)
‖ṽn − ṽ‖p

Vmin,p
+

(
1

q
− 1

θ

)
‖ṽn − ṽ‖q

Vmin,q
,

which implies that ṽn → ṽ in EVmin . Since {tn} is bounded, we can assume that tn → t0 > 0,
and so, vn → v in EVmin .

Next, we prove that {yn} = {εn ỹn} has a subsequence satisfying yn → y ∈ �. We first
claim that {yn} is bounded. In fact, assume by contradiction that {yn} is not bounded. Then,
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there exists a subsequence, still denoted by {yn}, such that |yn | → ∞. From ṽn → ṽ in
EVmin , Vmin < V∞ and Kmax > K∞, we can deduce that

cVminKmax = 1

p
‖ṽ‖p

Vmin,p
+ 1

q
‖ṽ‖q

Vmin,q
− Kmax

∫
RN

F(ṽ)dx

<
1

p
‖ṽ‖p

V∞,p + 1

q
‖ṽ‖q

V∞,q − K∞
∫
RN

F(ṽ)dx

≤ lim inf
n→∞

[
1

p

∫
RN

|∇ṽn |pdx + 1

q

∫
RN

|∇ṽn |qdx

+
∫
RN

V (εn x + yn)

(
1

p
|ṽn |p + 1

q
|ṽn |q

)
dx −

∫
RN

K (εn x + yn)F(ṽn)dx

]

≤ lim inf
n→∞

[
1

p

∫
RN

|∇tnun |pdx + 1

q

∫
RN

|∇tnun |qdx

+
∫
RN

V (εn x)

(
1

p
|tnun |p + 1

q
|tnun |q

)
dx −

∫
RN

K (εn x)F(tnun)dx

]
= lim inf

n→∞ 
εn (tnun)

≤ lim inf
n→∞ 
εn (un)

= cVminKmax ,

which is a contradiction. Thus, {yn} is bounded and, passing to a subsequence, we may
assume that yn → y. If y /∈ �, then Vmin < V (y) and Kmax > K (y), and according to the
above steps we get a contradiction. Consequently, we conclude that y ∈ �. ��

Let ϑ : R
+ → R

+ be a positive function given by

ϑ(ε) = max
y∈� |
ε(γε(y))− cVminKmax |.

It follows from Lemma 6.1 that ϑ(ε) → 0 as ε → 0. We introduce a subset ˜Nε of Nε .
Setting

˜Nε := {u ∈ Nε : 
ε(u) ≤ cVminKmax + ϑ(ε)},
Since γε(y) ∈ ˜Nε for all y ∈ �, then we can deduce that ˜Nε �= ∅. Moreover, we have the
following result.

Lemma 6.4 For any δ > 0, then the following holds

lim
ε→0

sup
u∈ ˜N ε

inf
y∈�δ

|βε(u)− y| = 0.

Proof Let εn → 0 as n → ∞. For each n ∈ N, there exists {un} ⊂ ˜Nεn , such that

inf
y∈�δ

|βεn (un)− y| = sup
u∈ ˜N εn

inf
y∈�δ

|βεn (u)− y| + on(1).

Hence, it is sufficient to prove that there exists {yn} ⊂ �δ such that

lim
n→∞ |βεn (un)− yn | = 0.

Indeed, since {un} ⊂ ˜Nεn , then we have

cVminKmax ≤ cεn ≤ 
εn (un) ≤ cVminKmax + ϑ(εn),
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which implies that

εn (un) → cVminKmax and {un} ⊂ Nεn .

According to Lemma 6.3, there exists {ỹn} ⊂ R
N such that vn(x) = un(x + ỹn) has a

convergent subsequence. Moreover, up to a subsequence, yn = εn ỹn → y ∈ �. Therefore,
we get

βεn (un) =
∫
RN η(εn x)(|un |p + |un |q)dx∫

RN (|un |p + |un |q)dx

=
∫
RN η(εnz + yn)(|un(z + ỹn)|p + |un(z + ỹn)|q)dz∫

RN (|un(z + ỹn)|p + |un(z + ỹn)|q)dz

= yn +
∫
RN [η(εnz + yn)− yn](|vn(z)|p + |vn(z)|q)dz∫

RN (|vn(z)|p + |vn(z)|q)dz

→ y ∈ �.

Consequently, there exists {yn} ⊂ �δ such that

lim
n→∞ |βεn (un)− yn | = 0.

The proof is now complete. ��
We shall use the Ljusternik–Schnirelmann category theory (see [13,Theorem 2.1]) and

the idea in [9] to prove the multiplicity result of positive solutions. Since Nε is not a C1-
submanifold of Eε , we cannot directly apply the Ljusternik–Schnirelmann category theory.
Fortunately, according to Lemma 2.10, we can know that the mapping mε is a home-
omorphism between Nε and Sε , and Sε is a C1-submanifold of Eε . So we can apply
the Ljusternik–Schnirelmann category theoty to the functional Iε(u) = 
ε(m̂ε(u))|Sε =

ε(mε(u)). Based on the above observations, we are ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3 For any ε > 0, we define ωε : � → Sε as follows

ωε(y) = m̌ε(tε�ε,y) = m̌ε(γε(y)) for all y ∈ �.

Using Lemma 6.1 we get

lim
ε→0

Iε(ωε(y)) = lim
ε→0


ε(γε(y)) = cVminKmax uniformly in y ∈ �.

Moreover, we set
S̃ε = {u ∈ Sε : Iε(u) ≤ cVminKmax + ϑ(ε)},

with ϑ(ε) = supy∈� |Iε(u) − cVminKmax | → 0 as ε → 0. Hence, ωε(y) ∈ S̃ε for all y ∈ �,

and this shows that S̃ε �= ∅ for all ε > 0.
According to Lemmas 2.10, 2.11, 6.1 and 6.4, we can find εδ > 0 such that the diagram

�
γε−→ ˜Nε

m̌ε−→ S̃ε
mε−→ ˜Nε

βε−→ �δ

is well defined for any ε ∈ (0, εδ). By Lemma 6.2, there exists a function l(ε, y) with
|l(ε, y)| < δ

2 uniformly in y ∈ � for all ε ∈ (0, εδ), such that βε(γε(y)) = y + l(ε, y) for all
y ∈ �. We define the function H(t, y) = y + (1− t)l(ε, y). Then, H : [0, 1] ×� → �δ is
continuous. Evidently, H(0, y) = βε(γε(y)) and H(1, y) = y for all y ∈ �, and βε ◦ γε =
(βε ◦ mε) ◦ ωε is homotopic to the inclusion mapping id : � → �δ . So, making use of
Lemma 2.2 of [13] (see also [6,Lemma 6.4]), we have

catS̃ε (S̃ε) ≥ cat�δ (�).
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On the other hand, let us choose a function ϑ(ε) > 0 such that ϑ(ε) → 0 as ε → 0 and
such that cVminKmax + ϑ(ε) is not a critical level for
ε . For ε > 0 small enough, Lemma 4.5
shows that
ε satisfies the Palais–Smale condition in ˜Nε . Then, according to Lemma 2.11,we
know that Iε satisfies the Palais–Smale condition in S̃ε . Therefore, applying the Ljusternik–
Schnirelmann category theory [13,Theorem 2.1], we obtain that Iε has at least catS̃ε (S̃ε)

critical points on S̃ε . Then, using Lemma 2.11 again, we can deduce that 
ε has at least
cat�δ (�) critical points. We finish the proof of Theorem 1.3. ��

7 Nonexistence of positive ground state solutions

In this section, we prove the nonexistence of positive ground state solutions. Consider the
following auxiliary problem

−�pu −�qu + V ∞(|u|p−2u + |u|q−2u) = K ∞ f (u) in R
N , (7.1)

where V ∞ and K ∞ are given in condition (A3). Moreover, according to the discussion in
Sect. 3, we know that problem (7.1) has a positive ground state solution. In the following,
we follow the idea of [38] and give the proof of Theorem 1.4.

Proof of Theorem 1.4 First we need to claim that cε = cV ∞ K ∞ for each ε > 0. In fact,
according to (A3), we can see that V ∞ ≤ V (x) and K (x) ≤ K ∞ for all x ∈ R

N , and
cε ≥ cV ∞ K ∞ by Lemma 3.4. Next, we show that cε ≤ cV ∞ K ∞ for any fixed ε > 0. Let u∞
be a positive ground state solution of problem (7.1), by Lemma 3.1-(b), we know that u∞ is
the unique global maximum of JV ∞ K ∞(tu∞). Set un = u∞(· − yn), where {yn} ⊂ R

N is
a sequence satisfying |yn | → ∞ as n → ∞. As in Lemma 2.7, it follows that there exists
tn > 0 such that m̂ε(un) = tnun ∈ Nε is the unique global maximum of
ε(tun) for each n.
Moreover, the sequence {tn} is bounded.

We have

cε ≤ 
ε(tnun)

= JV ∞ K ∞(tnun)+ t p
n

p

∫
RN
(V (εx)− V ∞)|un |pdx

+ tq
n

q

∫
RN
(V (εx)− V ∞)|un |qdx +

∫
RN
(K ∞ − K (εx))F(tnun)dx

= JV ∞ K ∞(tnu∞)+ t p
n

p

∫
RN
(V (εx + εyn)− V ∞)|u∞|pdx

+ tq
n

q

∫
RN
(V (εx + εyn)− V ∞)|u∞|qdx +

∫
RN
(K ∞ − K (εx + εyn))F(tnu∞)dx

≤ cV ∞ K ∞ + t p
n

p

∫
RN
(V (εx + εyn)− V ∞)|u∞|pdx

+ tq
n

q

∫
RN
(V (εx + εyn)− V ∞)|u∞|qdx +

∫
RN
(K ∞ − K (εx + εyn))F(tnu∞)dx .

(7.2)
Using the exponential decay of u∞, it follows that for any ε > 0, there exists R > 0 such
that ∫

|x |≥R
(V (εx + εyn)− V ∞)|u∞|sdx ≤ cε,
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where s = {p, q}. Moreover, from (A3) and Lebesgue’s dominated convergence theorem we
have

lim
n→∞

∫
|x |≤R

(V (εx + εyn)− V ∞)|u∞|sdx = 0.

Thus, we have proved that∫
RN
(V (εx + εyn)− V ∞)|u∞|sdx = on(1), (7.3)

where s = {p, q}.
Similarly, using the above arguments and (2.3) we have∫

RN
(K ∞ − K (εx + εyn))F(tnu∞)dx = on(1). (7.4)

So, from (7.2), (7.3) and (7.4) we deduce that cε = cV ∞ K ∞ for each ε > 0.
We complete the proof by using a contradiction argument. Assume that for some ε0 > 0

there exists a positive function u0 such that u0 ∈ Nε0 and cε0 = 
ε0(u0). We know that u0 is
the unique global maximum of 
ε0(tu0). By Lemma 3.1-(b), there exists t∞ > 0 such that
t∞u0 ∈ NV ∞ K ∞ , hence

cV ∞ K ∞ ≤ JV ∞ K ∞(t∞u0) = max
t≥0

JV ∞ K ∞(tu0). (7.5)

On the other hand, using (A3) we have JV ∞ K ∞(u) ≤ 
ε0(u) for any u. Thus, combining
with (7.5), we have

cV ∞ K ∞ ≤ JV ∞ K ∞(t∞u0) ≤ 
ε0(t
∞u0) ≤ 
ε0(u0) = cε0 = cV ∞ K ∞ .

This shows that
cV ∞ K ∞ = JV ∞ K ∞(t∞u0) = 
ε0(t

∞u0). (7.6)

Observe that

JV ∞ K ∞(t∞u0) = 
ε0(t
∞u0)+ 1

p

∫
RN
(V ∞ − V (ε0x))|t∞u0|pdx

+ 1

q

∫
RN
(V ∞ − V (ε0x))|t∞u0|qdx

+
∫
RN
(K (ε0x)− K ∞)F(t∞u0)dx .

(7.7)

We deduce from (A3) that∫
RN
(V ∞ − V (ε0x))|t∞u0|sdx =

(∫
V

+
∫
Vc

)
(V ∞ − V (ε0x))|t∞u0|sdx < 0, (7.8)

where s = {p, q}.
Similarly, we have∫
RN
(K (ε0x)− K ∞)F(t∞u0)dx =

(∫
K

+
∫
Kc

)
(K (ε0x)− K ∞)F(t∞u0)dx < 0. (7.9)

Combining (7.7), (7.8) and (7.9), we obtain JV ∞ K ∞(t∞u0) < 
ε0(t
∞u0), which contra-

dicts relation (7.6). This completes the proof of Theorem 1.4. ��
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