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Abstract
In this paper, we first develop the fractional Trudinger–Moser inequality in singular
case and then we use it to study the existence andmultiplicity of solutions for a class of
perturbed fractional Kirchhoff type problems with singular exponential nonlinearity.
Under some suitable assumptions, the existence of two nontrivial and nonnegative
solutions is obtained by using the mountain pass theorem and Ekeland’s variational
principle as the nonlinear term satisfies critical or subcritical exponential growth con-
ditions. Moreover, the existence of ground state solutions for the aforementioned
problems without perturbation and without the Ambrosetti–Rabinowitz condition is
investigated.
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1 Introduction andMain Results

Let N ≥ 2 and assume that � ⊂ R
N is a bounded domain with Lipschitz boundary

and 0 ∈ �. Given s ∈ (0, 1), we study the following fractional Kirchhoff type problem
with exponential growth:

⎧
⎨

⎩

M
(‖u‖N/s

)LKu = f (x, u)

|x |β + λh(x) in �,

u = 0 in R
N \ �,

(1.1)

where

‖u‖ =
(∫∫

R2N
|u(x) − u(y)|N/sK(x − y)dxdy

)s/N

,

M : [0,∞) → [0,∞) is a continuous function, β ∈ [0, N ), λ > 0 is a parameter, h :
R

N → [0,∞) is a perturbed function which belongs to the dual space (Ws,N/s
0,K (�))∗

of Ws,N/s
0,K (�) (see Sect. 2), f : � × R → R is a continuous function, and LK

is the associated nonlocal integro-differential operator which, up to a normalization
constant, is defined as

LKϕ(x) = 2 lim
ε→0+

∫

RN \Bε(x)
|ϕ(x) − ϕ(y)|N/s−2(ϕ(x) − ϕ(y))K(x − y) dy, x ∈ R

N ,

along functions ϕ ∈ C∞
0 (RN ). Henceforward Bε(x) denotes the ball ofRN centered at

x ∈ R
N and radius ε > 0. Throughout the paper, we always assume that the singular

kernel K : RN \ {0} → R
+ satisfies the following properties:

(K1) mK ∈ L1(RN ), where m(x) = min{1, |x |N/s};
(K2) there exists K0 > 0 such that K(x) ≥ K0|x |−2N for all x ∈ R

N \ {0}.
Obviously, if K(x) = |x |−2N , then LK reduces to the fractional N/s-Laplacian
(−�)sN/s .

Equations of the type (1.1) are important in many fields of science, notably contin-
uum mechanics, phase transition phenomena, population dynamics, minimal surfaces
and anomalous diffusion, since they are the typical outcome of stochastically stabi-
lization of Lévy processes, see [2,8,25] and the references therein. Moreover, such
equations and the associated fractional operators allow us to develop a generalization
of quantum mechanics and also to describe the motion of a chain or an array of par-
ticles that are connected by elastic springs as well as unusual diffusion processes in
turbulent fluid motions and material transports in fractured media, for more details see
[2,8] and the references therein. Indeed, the nonlocal fractional operators have been
extensively studied by many authors in many different cases: bounded domains and
unbounded domains, different behavior of the nonlinearity, and so on. In particular,
many works focus on the subcritical and critical growth of the nonlinearity which
allow us to treat the problem variationally using general critical point theory.
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Recently, some authors have paid considerable attention in the limiting case of the
fractional Sobolev embedding. Let ωN−1 be the N − 1-dimensional measure of the
unit sphere inRN and let � ⊂ R

N be a bounded domain and defineWs,N/s
0 (�) as the

completion of C∞
0 (�) with respect to the norm [·]s,N/s which is defined as

[u]s,N/s =
(∫∫

R2N

|u(x) − u(y)|N/s

|x − y|2N dxdy

)s/N

.

In [29], Martinazzi obtained that there exist positive constants

αN ,s = N

ωN−1

(

((N − s)/2)


(s/2)2sπN/2

)− N
N−s

and CN ,s depending only on N and s such that

sup
u∈Ws,N/s

0 (�)

[u]s,N/s≤1

∫

�

exp(α|u| N
N−s )dx ≤ CN ,s |�|, (1.2)

for all α ∈ [0, αN ,s] and there exists α∗
N ,s ≥ αN ,s such that the supremum in (1.2) is

∞ for α > α∗
N ,s . However, it still an open problem whether or not αN ,s = α∗

N ,s? For
more details about Trudinger–Moser inequality, we also refer to [23] and [39].

On one hand, in the setting of the fractional Laplacian, Iannizzotto and Squassina
in [22] investigated existence of solutions for the following Dirichlet problem

{
(−�)

1
2 u = f (u) in (0, 1),

u = 0 in R \ (0, 1),
(1.3)

where (−�)
1
2 is the fractional Laplacian and f (u) behaves like exp(α|u|2) as u → ∞.

Using the mountain pass theorem, the authors obtained the existence of solutions for
problem (1.3). The existence of ground state solutions for (1.3) was discussed in [16].
Subsequently, Giacomoni, Mishra and Sreenadh in [21] studied the multiplicity of
solutions for problems like (1.3) by using the Nehari manifold method. For more
recent results for problem (1.3) in the higher dimension case, we refer the interested
reader to [41] and the references therein. For the general fractional p-Laplacian in
unbounded domains, Souza in [13] considered the following nonhomogeneous frac-
tional p-Laplacian equation

(−�)spu + V (x)|u|p−2u = f (x, u) + λh in R
N , (1.4)

where (−�)sp is the fractional p-Laplacian and the nonlinear term f satisfies expo-
nential growth. The author obtained a nontrivial weak solution of the equation (1.4)
by using fixed point theory. Li and Yang [27] studied the following equation
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(−�)ζpu + V (x)|u|p−2u = λA(x)|u|q−2u + f (u) x ∈ R
N,

where p ≥ 2, 0 < ζ < 1, 1 < q < p,λ > 0 is a real parameter, A is a positive function

in L
p

p−q (RN ), (−�)
ζ
p is the fractional p-Laplacian and f satisfies exponential growth.

On the other hand, Li andYang in [26] studied the following Schrödinger–Kirchhoff
type equation

(∫

RN
(|∇u|N + V (x)|u|N )dx

)k

(−�Nu + V (x)|u|N−2u)

= λA(x)|u|p−2u + f (u) in RN , (1.5)

where �Nu = div(|∇u|N−2∇u) is the N -Laplaician, k > 0, V : RN → (0,∞) is

continuous, λ > 0 is a real parameter, A is a positive function in L
p

p−q (RN ) and f
satisfies exponential growth. By using themountain pass theorem and Ekeland’s varia-
tional principle, the authors obtained two nontrivial solutions of (1.5) as the parameter
λ small enough. Mingqi, Rădulescu and Zhang studied the following problem

{
M
(‖u‖N/s

)
(−�)spu = f (x, u) in �,

u = 0 in R
N \ �,

where f behaves like exp(α|t |N/(N−s)) as t → ∞ for some α > 0. Under suitable
assumption on M and f , the authors obtained the existence of ground state solutions
by using the mountain pass lemma combined with the fractional Trudinger–Moser
inequality. Actually, the study of Kirchhoff-type problems, which arise in various
models of physical and biological systems, have received more and more attention in
recent years. More precisely, Kirchhoff established a model governed by the equation

ρ
∂2u

∂t2
−
(

ρ0

h
+ E

2L

∫ L

0

∣
∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2

dx

)
∂2u

∂x2
= 0, (1.6)

for all x ∈ (0, L), t ≥ 0,where u = u(x, t) is the lateral displacement at the coordinate
x and the time t , E is the Young modulus, ρ is the mass density, h is the cross-section
area, L is the length and ρ0 is the initial axial tension. Eq. (1.6) extends the classical
D’Alembert wave equation by considering the effects of the changes in the length
of the strings during the vibrations. Recently, Fiscella and Valdinoci in [18] have
proposed a stationary Kirchhoff model driven by the fractional Laplacian by taking
into account the nonlocal aspect of the tension, see [18, Appendix A] for more details.
Related results in the case of critical nonlinearities have been obtained by Fiscella and
Pucci [19] and Miyagaki and Pucci [35].

It is worth mentioning that when s → 1 and M ≡ 1, the equation in problem (1.1)
becomes

−�Nu = f (x, u) + λh(x),
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which studied by many authors by using variational methods, see for example, [1,12,
15,20,24].

Inspired by the above works, we are devoted to the existence and multiplicity of
solutions for problem (1.1) and overcome the lack of compactness due to the presence
of critical exponential growth terms as well as the degenerate nature of the Kirchhoff
coefficient. To the best of our knowledge, there are no results for (1.1) in such a
generality.

Throughout the paper, without explicit mention, we assume that M : R+
0 → R

+
0 is

assumed to be continuous and to verify

(M1) for any τ > 0 there exists κ = κ(τ) > 0 such that M(t) ≥ κ for all t ≥ τ ;
(M2) there exists θ > 1 such that

θM (t) ≥ M(t)t forall t ≥ 0,

where M (t) = ∫ τ

0 M(τ )dτ .

A typical example of M is given by M(t) = a + bθ tθ−1 for t ≥ 0, where a, b ≥ 0
and a+b > 0.When M is of this type, problem (1.1) is said to be degenerate if a = 0,
while it is called non-degenerate if a > 0. Recently, the fractional Kirchhoff problems
have received more and more attention. Some new existence results of solutions for
fractional non-degenerate Kirchhoff problemswere given, for example, in [42–44,49].
On some recent results concerning the degenerate case of Kirchhoff-type problems,
we refer to [3,9,30,45,50] and the references therein. It is worth pointing out that the
degenerate case in Kirchhoff theory is rather interesting, for example, it was treated in
the seminal paper [11]. In the large literature on degenerate Kirchhoff problems, the
transverse oscillations of a stretched string, with nonlocal flexural rigidity, depends
continuously on the Sobolev deflection norm of u via M(‖u‖2). From a physical point
of view, the fact that M(0) = 0 means that the base tension of the string is zero.
Clearly, assumptions (M1)–(M2) cover the degenerate case.

Define

λ1 = inf

{
‖u‖θN/s

∫

�
1

|x |β |u|θN/sdx
: u ∈ Ws,N/s

0,K (�) \ {0}
}

.

Clearly, by 0 ≤ β < N and the fractional Sobolev embedding, we obtain that λ1 > 0.
First in bounded domain �, we assume that the nonlinear term f : � ×R → R is

a continuous function, with f (x, t) ≡ 0 for t ≤ 0 and x ∈ �. In the following, we
also require the following assumptions ( f1)–( f3).

( f1) f satisfies subscritical growth, i.e., for any α > 0 there holds

lim
t→∞ f (x, t) exp(−α|t |N/(N−s)) = 0,

uniformly in �.
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( f ′
1) f satisfies critical growth, i.e., there exists α0 > 0 such that,

lim
t→∞ f (x, t) exp(−α|t |N/(N−s)) =

{
0, ∀α > α0,

∞, ∀α < α0,

uniformly in �.
( f2) There exists μ > θN/s such that

0 < μF(x, t) ≤ f (x, t)t, F(x, t) =
∫ t

0
f (x, τ )dτ,

whenever x ∈ � and t > 0, and there exists some T > 0 such that
inf x∈� F(x, T ) > 0.

( f3) There holds:

lim sup
t→0+

F(x, t)

|t |θN/s
<

sM (1)

N
λ1 uniformly in x ∈ �.

( f4) There exist q0 > θN/s and C0 > 0 such that

F(x, t) ≥ C0
q0

tq0 for all x ∈ � and t ≥ 0,

where

C0 >

(
4μ(sq0 − Nθ)

q(sμ − Nθ)

) q0s−Nθ

Nθ
(
N − β

N

αN ,s

α0

) (N−s)(q0s−Nθ)

Ns

C
sq0
Nθ
q0 , (1.7)

and Cq0 > 0 is defined by

Cq0 = inf
u∈Ws,N/s

0,K (�)\{0}

{

‖u‖N/s :
∫

�

1

|x |β |u|q0dx = 1

}

.

A simple example of f , verifying ( f1)–( f2), is given by

f (x, t) = tθN/s
[
exp(|t |N/(N−s)) − 1

]
+ C0tθN/s−1,

where C0 is a positive constant.
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Definition 1.1 We say that u ∈ Ws,N/s
0,K (�) is a (weak) solution of problem (1.1), if

M(‖u‖N/s)〈u, ϕ〉s,N/s =
∫

�

(
f (x, u)

|x |β + λh(x)

)

ϕdx,

〈u, ϕ〉s,N/s =
∫∫

R2N
|u(x) − u(y)| Ns −2[u(x) − u(y)]

·[ϕ(x) − ϕ(y)
]
K (x − y)dxdy,

for all Ws,N/s
0,K (�), where Ws,N/s

0,K (�) will be introduced in Sect. 2.

Now we are in a position to state our results concerning the subcritical case.

Theorem 1.1 Assume that f satisfies ( f1)–( f3) and M fulfills (M1)–(M2). Let 0 ≤
h ∈ (Ws,N/s

0,K (�))∗. Then there exists λ∗ > 0 such that for all 0 < λ < λ∗, problem
(1.1) admits at least two nontrivial and nonnegative solutions in Ws,N/s

0,K (�), where
one is a mountain pass type solution and another is a local least energy solution.

For the critical case, we have the following result.

Theorem 1.2 Assume that f satisfies ( f ′
1), ( f2)–( f4) and M = a + bθ tθ−1 with

a ≥ 0, b > 0 and θ > 1. Let 0 ≤ h ∈ (Ws,N/s
0,K (�))∗. Then there exists λ∗ > 0 such

that for all 0 < λ < λ∗, problem (1.1) admits at least two nontrivial and nonnegative
solutions in Ws,N/s

0,K (�), where one is a mountain pass type solution and another is a
local least energy solution.

Let us simply give an sketch of the proofs of Theorems 1.1 and 1.2. Since the prob-
lems discussed here satisfies singular exponential growth conditions, the fractional
Trudinger–Moser inequality is not available directly. Thus, we first obtain the frac-
tional Trudinger–Moser inequality in singular case. Then, two theorems are proved
by using the mountain pass lemma and the Eekand variational principle combined
with the singular fractional Trudinger–Moser inequality. To applying the mountain
pass theorem and the Ekeland variational principle, we must verify that the associated
functional satisfies the Palais–Smale conditions. However, since the nonlinear term
satisfies the critical exponential growth, it becomes more difficulty to get the com-
pactness of the energy functional. To overcome the loss of compactness of the energy
functional, we have to estimate the range of level value of energy functional. This is
the key point to obtain the existence of solutions for the critical case.

Finally, we consider the following problem with critical exponential growth

⎧
⎨

⎩

M
(‖u‖N/s

)LKu = f (x, u)

|x |β in �,

u = 0 in R
N \ �.

(1.8)

To get the existence of ground state solutions for problem (1.8), we also need the
following hypotheses:

123



922 Applied Mathematics & Optimization (2021) 84:915–954

(M3) There exists θ > 1 such that
M(t)

tθ−1 is nonincreasing for t > 0.

(M4) M is superadditive, i.e., for any t1, t2 ≥ 0 there holds

M (t1) + M (t2) ≤ M (t1 + t2).

( f5) There exists β0 >
M

((
N−β
N

αN ,s
α0

)(N−s)/s
)(

N−β
N

αN ,s
α0

)(N−s)/s

ωN−1R
N−β
0

N−β

such that

lim
t→∞

f (x, t)t

exp
(

α0α
∗
N ,s

αN ,s
t N/(N−s)

) ≥ β0 uniformly in x ∈ �,

where R0 is the radius of the largest open ball centered at zero contained in �.

( f6) For each x ∈ �,
f (x, t)

t
θN
s −1

is increasing for t > 0, where θ > 1 is given by (M3).

Remark 1.1 If M is a nondecreasing function, then (M4) holds. Indeed, for any 0 ≤
t1 ≤ t2 < ∞

M (t1 + t2) =
∫ t1+t2

0
M(t)dt =

∫ t1

0
M(t)dt +

∫ t1+t2

t1
M(t)dt ≥ M (t1) + M (t2).

In terms of (M3) and Remark 1.1 of [33], we can obtain that

θM (t) − M(t)t is nondecreasing for t > 0.

In particular, we have

θM (t) − M(t)t ≥ 0, ∀t ≥ 0. (1.9)

Moreover, from (M3) one can deduce that

lim
t→∞M (t) = ∞.

Remark 1.2 According to ( f ′
1), for some 0 < α < α0 we have

lim
t→∞

f (x, t)

exp(αt
N

N−s )
= ∞,

uniformly in �. Then

lim
t→∞

f (x, t)

tθ
N
s −1

= ∞,
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uniformly in �. Furthermore, we deduce

lim
t→∞

F(x, t)

tθ
N
s

= ∞, (1.10)

uniformly in �.
Using ( f6) and the same discussion as [33], one can deduce that for each x ∈ �,

t f (x, t) − Nθ

s
F(x, t) is increasing for t > 0. (1.11)

In particular, t f (x, t) − Nθ
s F(x, t) ≥ 0 for all (x, t) ∈ � × [0,∞).

Theorem 1.3 Assume that f satisfies ( f ′
1), ( f3), ( f5) and ( f6), and M fulfills (M1),

(M3) and (M4). Then problem (1.8) has a ground state solution in Ws,N/s
0,K (�).

To get the existence of ground state solutions for problem (1.8), we first show that
problem (1.8) has a nonnegative mountain pass solution, and then prove that the
mountain pass solution is a ground state solution. The main difficulty is that how we
can get the strong convergence of (un)n and how to prove that the limit of (un)n is
the ground state solution of problem (1.8). In the process of proving our main results,
some ideas are inspired from papers [17] and [33].

To the best of our knowledge, Theorems 1.1–1.3 are the first results for theKirchhoff
equations involving singular Trudinger–Moser nonlinearities in the fractional setting.

The paper is organized as follows. In Sect. 2, we present the functional setting
and show preliminary results. In Sect. 3, by using the mountain pass theorem and
Ekeland’ variational principle, we obtain the existence of two nontrivial nonnegative
solutions for problem (1.1) with subcritical exponential growth conditions as λ small.
In Sect. 4, we get the existence of two nonnegative solutions for problem (1.1) with
critical exponential nonlinearity. In Sect. 5, we investigate the existence of ground state
solutions for problem (1.8) without perturbation term and the Ambrosetti–Rabinowitz
condtion.

2 Preliminary Results

In this section, we give the variational framework of problem (1.1) and prove several
necessary results which will be used later.

Define Ws,N/s
0,K (�) as

Ws,N/s
0,K (�) =

{
u ∈ LN/s(�) : [u]s,K < ∞, u = 0 a.e. in R

N \ �
}

,

where

[u]s,K =
(∫∫

R2N
|u(x) − u(y)|N/sK(x − y)dxdy

)s/N

.
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Equip Ws,N/s
0,K (�) with respect to the norm

‖u‖ = [u]s,K,

herewe apply (k1). By a similar discussion as in [44],we know that (Ws,N/s
0,K (RN ), ‖·‖)

is a reflexive Banach space. Clearly, the embedding Ws,N/s
0,K (�) ↪→ Ws,N/s

0 (�) is
continuous, being

[u]s,N/s ≤ K−s/N
0 [u]s,K for all u ∈ Ws,N/s

0,K (�),

by (k2).

Theorem 2.1 (see [14, Theorem 6.10]) Let s ∈ (0, 1) and N ≥ 1. Let � ⊂ R
N

be a bounded domain with Lipschitz boundary. Then there exists a positive constant
C = C(N , s,�) such that for any u ∈ Ws,N/s

0 (�) there holds

‖u‖Lq (�) ≤ C[u]s,N/s

for any q ∈ [1,∞), i.e. the space Ws,N/s
0 (�) is continuously embedded in Lq(�) for

any q ∈ [1,∞).

For ν ≥ 1 and β < N , we define

Lν(�, |x |−β) =
{

u : � → R is measurable

∣
∣
∣
∣

∫

�

1

|x |β |u(x)|νdx < ∞
}

,

endowed with the norm

|u|ν,β =
(∫

�

1

|x |β |u(x)|νdx
) 1

ν

.

To prove the existence of weak solutions for problem (1.1), we shall use the fol-
lowing embedding theorem.

Theorem 2.2 (Compact embedding) Let s ∈ (0, 1), N ≥ 1 and 0 ≤ β < N. Assume
that� is a bounded domain inRN with Lipschitz boundary ∂�. Then, for any ν ≥ 1 the
embeddings Ws,N/s

0 (�) ↪→ Lν(�) and Ws,N/s
0 (�) ↪→ Lν(�, |x |−β) are compact.

Proof By [33], we know that the embedding Ws,N/s
0 (�) ↪→ Lν(�) is compact for

any ν ∈ [1,∞).
Next we show that Ws,N/s

0 (�) ↪→ Lν(�, |x |−β) is compact. To this aim, we
choose t > 1 close to 1 such that βt < N . Then for any bounded sequence (un)n in
Ws,N/s

0 (�), we have

123



Applied Mathematics & Optimization (2021) 84:915–954 925

∫

�

1

|x |β |un − u|νdx ≤
(∫

�

1

|x |βt dx
) 1

t
(∫

�

|un − u| νt
t−1 dx

) t−1
t

≤C

(∫

�

|un − u| νt
t−1 dx

) t−1
t

.

Note that the embedding Ws,N/s
0 (�) ↪→ L

νt
t−1 (�) is compact. Thus,

∫

�

1

|x |β |un − u|νdx → 0.

This proves the theorem. ��

Theorem 2.3 Let N ≥ 2 and let � be a bounded domain in RN containing the origin.
Assume u ∈ Ws,N/s

0 (�). Then for any α ≥ 0 and β ∈ [0, N ) there holds

∫

�

exp(α|u|N/(N−s))

|x |β dx < ∞.

Moreover, for all 0 ≤ α <
(
1 − β

N

)
αN ,s there holds

sup
[u]s,N/s≤1

∫

�

exp(α|u|N/(N−s))

|x |β dx < ∞,

and the supremum is ∞ for α >
(
1 − β

N

)
α∗
N ,s .

Proof Choose σ > 1 such that σβ < N . Then by the Hölder inequality and the
fractional Trudinger–Moser inequality, we have

∫

�

exp(α|u|N/(N−s))

|x |β dx ≤
(∫

�

exp

(

α
σ

σ − 1
|u|N/(N−s)

)

dx

) σ−1
σ
(∫

�

1

|x |σβ
dx

) 1
σ

< ∞,

being βσ < N . If α < (1 − β
N )αN ,s , we can choose σ > 1 is sufficiently close 1

such that σα < αN ,s and σ(σ − 1)−1 < N
β
. Then by the Hölder inequality and the

fractional Trudinger–Moser inequality, we deduce that

sup
‖u‖≤1

∫

�

exp(α|u|N/(N−s))

|x |β dx ≤ sup
‖u‖≤1

(∫

�

exp(ασ |u|N/(N−s))dx

) 1
σ

(∫

�

1

|x |β σ
σ−1

dx

) σ−1
σ

<∞.
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Now we define the Moser functions which have been used in [40]:

G̃n(x) = 1

γ
s/N
s,N

⎧
⎪⎪⎨

⎪⎪⎩

| ln n| N−s
N if |x | ≤ 1

n ,
| ln |x ||
| ln n| s

N
if 1

n < |x | < 1,

0 if |x | ≥ 1,

where

γs,N := 2(NωN )2

( N
s + 1

)

N !
∞∑

k=0

N + k − 1

k!
1

(N + 2k)N+s
.

By the result in [40], we get

lim
n→∞[G̃n(x)]N/s

s,N/s = 1.

Choose R > ε > 0 such that BR(0) ⊂ � and define

Gn(x) = G̃n(x/R),

then Gn(x) ∈ Ws,N/s
0 (�), the support of Gn(x) is the ball BR(0) and

lim
n→0

[Gn]s,N/s = 1. (2.1)

Consider ωn = Gn[Gn ]s,N/s
, then we can write

ω
N/(N−s)
n = γ

−s/(N−s)
s,N ln n + dn for |x | ≤ R

n
.

Moreover, we have

dn
ln n

→ 0 as n → ∞. (2.2)

Thus, for α > (N − β)γ
s

N−s
s,N , we deduce that

∫

�

exp(α|ωn|N/(N−s))

|x |β dx

≥
∫

BR/n(0)

exp(α|ωn|N/(N−s))

|x |β dx

= exp[α(γ
−s/(N−s)
s,N ln n + dn)] (

R
n )N−βωN−1

N − β

= RN−βωN−1 exp[(αγ
−s/(N−s)
s,N − N + β) ln n + αdn] → ∞ as n → ∞,
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which together with

sup
[u]s,N/s≤1

∫

�

exp(α|u|N/(N−s))

|x |β dx ≥
∫

�

exp(α|ωn|N/(N−s))

|x |β dx

yields that

sup
[u]s,N/s≤1

∫

�

exp(α|u|N/(N−s))

|x |β dx = ∞.

It follows from [40] that α∗
N ,s = Nγ

s/(N−s)
s,N . In conclusion, the proof is complete. ��

We give a singular fractional version of theorem of P.L. Lions ( [28]).

Theorem 2.4 Let (un)n be sequence in Ws,N/s
0 (�) satisfying [un]s,N/s = 1 and

converging weakly to a nonzero function u. Then for any α < (1 − β
N )αN ,s(1 −

[u]N/s
s,N/s)

−s/(N−s) and 0 ≤ β < N,

sup
n

∫

�

exp
(
α|un|N/(N−s)

)

|x |β dx < ∞.

Proof By the Hölder inequality, we obtain

∫

�

exp
(
α|un|N/(N−s)

)

|x |β dx ≤
(∫

�

exp
(
tα|un|N/(N−s)

)
dx

) 1
t
(∫

�

1

|x |β t
t−1

dx

) t−1
t

.

where t > N
N−β

sufficiently close to N
N−β

such that αt < αN ,s(1−[u]N/s
s,N/s)

−s/(N−s).
By Theorem 2.2 in [41], we have

sup
n

(∫

�

exp
(
tα|un|N/(N−s)

)
dx

) 1
t

< ∞.

Clearly, from t > N
N−β

, one can deduce that

∫

�

1

|x |β t
t−1

dx < ∞.

Therefore, the desired result holds true. ��
To study the nonnegative solutions of problems (1.1) and (1.8), we define the asso-

ciated functionals Iλ, I : Ws,N/s
0,K (�) → R as

Iλ(u) = s

N
M (‖u‖N/s) −

∫

�

1

|x |β F(x, u)dx − λ

∫

�

h(x)udx
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and

I (u) = s

N
M (‖u‖N/s) −

∫

�

1

|x |β F(x, u)dx .

Since f is continuous and satisfies ( f1) (or ( f ′
1)) and ( f3), for any 0 < ε < λ1, α > α0

and q ≥ 0, there exists C = C(ε, α, q) > 0 such that

|F(x, t)| ≤ s

N
M (1)(λ1 − ε)|t | θN

s + C |t |q exp(α|t | N
N−s ) ∀(x, t) ∈ � × R. (2.3)

If ( f ′
1) holds, then the α > 0 in (2.3) is arbitrary. Using (2.3), Theorem 2.3 and the

assumption onK, one can verify that the functionals Iλ and I are well defined, of class
C1(Ws,N/s

0,K (�),R). Moreover,

〈I ′
λ(u), v〉 = M(‖u‖N/s)〈u, v〉s,N/s −

∫

�

f (x, u)

|x |β vdx − λ

∫

�

hvdx

and

〈I ′(u), v〉 = M(‖u‖N/s)〈u, v〉s,N/s −
∫

�

f (x, u)

|x |β vdx

for all u, v ∈ Ws,N/s
0,K (�). From now on, 〈·, ·〉 denotes the duality pairing between

(
Ws,N/s

0,K (�)
)′ and Ws,N/s

0,K (�). Evidently, the critical points of Iλ and I are exactly
the weak solutions of problem (1.1) and problem (1.8), respectively. Moreover, the
following lemma shows that any nontrivial weak solution of problem (1.1) or problem
(1.8) is nonnegative.

Lemma 2.1 If h(x) ≥ 0 for almost every x ∈ �, then for all λ > 0 any nontrivial
critical point of functional Iλ is nonnegative. Similarly, any nontrivial critical point
of functional I is also nonnegative.

Proof Fix λ > 0 and let uλ ∈ Ws,N/s
0,K (�) \ {0} be a critical point of functional Iλ.

Clearly, u−
λ = max{−u, 0} ∈ Ws,N/s

0,K (�). Then 〈I ′
λ(uλ),−u−

λ 〉 = 0, a.e.

M(‖uλ‖N/s)〈uλ,−u−
λ 〉s,N/s =

∫

�

1

|x |β f (x, uλ)(−u−
λ )dx + λ

∫

�

h(−u−
λ )dx .

Observe that for a.e. x, y ∈ �,

|uλ(x) − uλ(y)|N/s−2(uλ(x) − uλ(y))(−u−
λ (x) + uλ(y)

−)

= |uλ(x) − uλ(y)|N/s−2u+
λ (x)u−

λ (y)

+ |uλ(x) − uλ(y)|N/s−2u−
λ (x)u+

λ (y) + [u−
λ (x) − u−

λ (y)]p
≥ |u−

λ − u−
λ (y)|N/s,
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f (x, uλ)u
−
λ = 0 a.e. x ∈ � by assumption and h(−u−

λ ) ≤ 0 a.e. in �. Hence,

M(‖uλ‖N/s)‖u−
λ ‖N/s ≤ 0.

This, together with ‖uλ‖ > 0 and (M1), implies that u−
λ ≡ 0, that is uλ ≥ 0 a.e. in �.

Similarly, one can verify that any nontrivial critical point of functional I is non-
negative. ��

3 The Subcritical Case

Let us recall that Iλ satisfies the (PS)c condition in Ws,N/s
0,K (�) at level c ∈ R, if any

(PS)c sequence (un)n ⊂ Ws,N/s
0,K (�), namely a sequence such that Iλ(un) → c and

I ′
λ(un) → 0 as n → ∞, admits a strongly convergent subsequence in Ws,N/s

0,K (�).
In the sequel, we shall make use of the well-known mountain pass theorem. For the

reader’s convenience, we state it as follows (see for example [46]).

Theorem 3.1 Let X be a real Banach space and J ∈ C1(X ,R) with J (0) = 0.
Suppose that

(i) there exist ρ, α > 0 such that J (u) ≥ α for all u ∈ X, with ‖u‖X = ρ;
(ii) there exists e ∈ X satisfying ‖e‖X > ρ such that J (e) < 0.

Define 
 = {γ ∈ C1([0, 1]; X) : γ (0) = 1, γ (1) = e}. Then

c = inf
γ∈


max
0≤t≤1

J (γ (t)) ≥ α

and there exists a (PS)c sequence (un)n ⊂ X.

To find a mountain pass solution of problem (1.1), let us first verify the validity of
the conditions of Theorem 3.1.

Lemma 3.1 (Mountain Pass Geometry I) Assume that ( f1) and ( f4) hold. Then there
exist �∗ > 0, ρ > 0 and σ > 0 such that Iλ(u) ≥ σ for any u ∈ Ws,N/s

0,K (�) with
‖u‖ = ρ, and all 0 < λ < �∗.

Proof Since f satisfies subcritical growth condition ( f1), for q > θN/s and any
α > 0, we have

∫

�

F(x, u)dx ≤ s

N
M (1) (λ1 − ε)

∫

�

1

|x |β |u|θN/sdx + C
∫

�

|u|q 1

|x |β exp(α|u| N
N−s )dx

≤ s

N
M (1)

(

1 − ε

λ1

)

‖u‖θN/s

+ C

(∫

�

1

|x |β |u|2qdx
)1/2 (∫

�

1

|x |β exp(2α‖u‖ N
N−s (u/‖u‖) N

N−s )dx

)1/2

,

(3.1)
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for all u ∈ Ws,N/s
0,K (�) and any ε ∈ (0, λ1). Since 0 ≤ β < N , we can choose ν > 1

close to 1 such that βν < N . It follows from Theorem 2.1 and (K2) that there exists
C > 0 such that

(∫

�

1

|x |β |u|2qdx
)1/2

≤
(∫

�

1

|x |νβ dx
) 1

2ν
(∫

�

|u| 2qν
ν−1 dx

) ν−1
2ν ≤ C‖u‖q .

Thus, we deduce from (3.1) that

∫

�

F(x, u)dx ≤ s

N
M (1)

(

1 − ε

λ1

)

‖u‖θN/s

+ C‖u‖q
(∫

�

1

|x |β exp(2α‖u‖ N
N−s (u/‖u‖) N

N−s )dx

)1/2

, (3.2)

for all u ∈ Ws,N/s
0,K (�). On the other hand, by (M2) one can deduce

M (t) ≥ M (1)tθ for all t ∈ [0, 1]. (3.3)

Thus, combining (3.2) with (3.3), we obtain

Iλ(u) ≥ sM (1)ε

Nλ1
‖u‖θN/s − C‖u‖q

(∫

�

1

|x |β exp(2αρ
N

N−s
1 (u/‖u‖) N

N−s )dx

)1/2

− λ‖h‖∗‖u‖,

for all u ∈ Ws,N/s
0,K (�) with ‖u‖ ≤ ρ1 ≤ 1, and ε ∈ (0, λ1). Here ‖h‖∗ denotes

‖h‖
(Ws,N/s

0,K (�))∗ . Choosing 2αρ
N/(N−s)
1 ≤ (1 − β/N ) αN ,s and using Theorem 2.3,

we get

Iλ(u) ≥ ‖u‖θN/s sM (1)ε

Nλ1
− C‖u‖q − λ‖h‖∗‖u‖.

Fix ε ∈ (0, λ1) and define

g(t) = sM (1)ε

Nλ1
t

θN
s −1 − Ctq−1, for all t ∈ [0, ρ1].

Due to θN/s < q, we can choose 0 < ρ ≤ ρ1 < 1 such that g(ρ) > 0. Thus,
Iλ(u) ≥ σ := ρ (g(ρ) − λ‖h‖∗) > 0 for all u ∈ Ws,N/s

0,K (�) with ‖u‖ = ρ, and

0 < λ < �∗ := g(ρ)
‖h‖∗ . ��

Lemma 3.2 (Mountain Pass Geometry II) Assume that ( f1)–( f2) hold. Then there
exists a nonnegative function e ∈ Ws,N/s

0,K (�) independent of λ, such that Iλ(e) < 0
and ‖e‖ ≥ ρ for all λ ∈ R

+, where ρ is given in Lemma 3.1.
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Proof By (M2), one can deduce that

M (t) ≤ M (1)tθ for all t ≥ 1. (3.4)

On the other hand, using ( f2) and the continuity of f , there exist positive constants
C1,C2 > 0 such that

F(x, t) ≥ C1t
μ − C2 for all x ∈ � and t ≥ 0. (3.5)

Now, choose nonnegative function v0 ∈ Ws,N/s
0,K (�) with

∫

�
1

|x |β |v0|μdx > 0 and
‖v0‖ = 1. Then for all t ≥ 1, we have

Iλ(tv0) ≤ s

N
M (1)tθN/s‖v0‖θN/s − C1t

μ

∫

�

1

|x |β |v0|μdx

+ C2

∫

�

1

|x |β dx − tλ
∫

�

hv0dx

≤ s

N
M (1)tθN/s − C1t

μ

∫

�

1

|x |β |v0|μdx + C → −∞ as t → ∞,

thanks to θN/s < μ. The lemma is proved by taking e = T0v0, with T0 > 0 so large
that ‖e‖ ≥ ρ and Iλ(e) < 0. ��

Lemma 3.3 (The (PS)c condition) Let (M1) − (M2) and ( f1), ( f2), ( f4) hold. Then
the functional Iλ satisfies the (PS)c condition for all c ∈ R.

Proof Let (un)n be a (PS)c sequence in Ws,N/s
0,K (�). Then

Iλ(un) → c and I ′
λ(un) → 0.

If d := infn≥1 ‖un‖ = 0, either 0 is an isolated point or accumulation point of the
sequence (‖un‖)n . If 0 is an isolated point, then there is a subsequence (unk )k such
that

inf
k∈N ‖unk‖ = d > 0.

Otherwise, 0 is an accumulation point of the sequence (‖un‖)n and so there exists a
subsequence (unk )k of (un)n such that unk → 0 strongly in Ws,N/s

0,K (�) as k → ∞.
Thus, we need only consider the case d := infn≥1 ‖un‖ > 0.
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In the following, we assume that d := infn≥1 ‖un‖ > 0. We first show that (un)n
is bounded in Ws,N/s

0,K (�). Using (M1), (M2) and ( f2) with μ > θN
s , we get

C + ‖un‖ ≥ Iλ(un) − 1

μ
〈I ′

λ(un), un〉

≥
(
s

N
− 1

μ

)

M(‖un‖N/s)‖un‖N/s −
(

1 − 1

μ

)

λ‖h‖∗‖un‖

≥
(

s

Nθ
− 1

μ

)

κ‖un‖N/s −
(

1 − 1

μ

)

λ‖h‖∗‖un‖. (3.6)

It follows from (3.6) that (un)n is bounded in Ws,N/s
0,K (�).

Next we show that (un)n has a convergence subsequence in Ws,N/s
0,K (�). Going if

necessary to a subsequence, there exists a function u ∈ Ws,N/s
0,K (�) such that

un⇀u weaklyin Ws,N/s
0,K (�),

un → u stronglyin Lν(�)(ν ≥ 1),

un → u a.e.in �. (3.7)

Here we have used the compact embedding from Ws,N/s
0 (�) to Lν(�) for any ν ≥ 1

(see Theorem 2.2) and the embedding Ws,N/s
0,K (�) ↪→ Ws,N/s

0 (�) is continuous.
Next we show that

lim
n→∞

∫

�

1

|x |β f (x, un)(un − u)dx = 0. (3.8)

Choose ν > 1 close to 1 and α small enough such that να‖un‖N/(N−s) < δ <
N−β
N αN ,s . Thus, it follows from ( f1) and ( f4) that

∣
∣
∣
∣

∫

�

1

|x |β f (x, un)(un − u)dx

∣
∣
∣
∣

≤ C

(∫

�

1

|x |β |un|θN/s−1|un − u|dx +
∫

�

1

|x |β |un − u| exp(α|un|N/(N−s))dx

)

≤ C

⎡

⎣

(∫

�

|un − u| Nθ
s

|x |β dx

) s
Nθ

+
(∫

�

|un − u| ν
ν−1

|x |β dx

) ν−1
ν

(∫

�

1

|x |β exp[να‖un‖ N
N−s (

un
‖un‖ )

N
N−s ]dx

) 1
ν

]

≤ C

⎡

⎣

(∫

�

|un − u| Nθ
s

|x |β dx

) s
Nθ

+
(∫

�

|un − u| ν
ν−1

|x |β dx

) ν−1
ν

⎤

⎦ → 0

as n → ∞, thanks to Theorem 2.2. Thus, (3.8) holds true.
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Since (un)n is a bounded (PS)c sequence, we get as n → ∞

〈I ′
λ(un), un − u〉 =M(‖un‖N/s)〈un, un − u〉s,N/s −

∫

�

1

|x |β f (x, un)(un − u)dx

− λ

∫

�

h(un − u)dx → 0,

which implies that

M(‖un‖N/s)〈un, un − u〉s,N/s → 0.

Moreover, one can prove that 〈u, un − u〉s,N/s → 0. Hence we obtain that

M(‖un‖N/s)
[〈un, un − u〉s,N/s − 〈u, un − u〉s,N/s

] → 0.

By using a similar discussion as [33], we have un → u in Ws,N/s
0,K (�). This ends the

proof. ��
Proof of Theorem 1.1 By Lemmas 3.1 and 3.2, we know that there exists a threshold
λ∗ > 0 such that for all 0 < λ < λ∗, Iλ satisfies all the assumptions of Theorem 3.1.
Hence there exists a (PS)c sequence. Moreover, by Lemma 3.3, for all λ < λ∗ the
functional Iλ admits a nontrivial critical point u1 ∈ Ws,N/s

0,K (�). The critical point
u1 is a nontrivial mountain pass solution of problem (1.1). Furthermore, Lemma 2.1
shows that u1 is nonnegative.

Next we show that problem has another nontrivial and nonnegative solution. Define

cλ = inf
u∈Bρ

Iλ(u) and inf
x∈∂Bρ

Iλ(u) > 0,

where ρ > 0 is given by Lemma 3.1 and Bρ = {u ∈ Ws,N/s
0,K (�) : ‖u‖ < ρ}. Now we

claim that cλ < 0. Consider the following problem

{
LK v = h(x) in �,

v = 0 on R
N \ �.

By the direct method and 0 ≤ h ∈ (Ws,N/s
0,K (�))∗, one can verify that the above

problem has a unique nonnegative solution v ∈ Ws,N/s
0,K (�). Moreover, ‖v‖N/s =

∫

�
h(x)vdx > 0. Then

Iλ(tv) ≤
(

max
0≤τ≤1

M(τ )

)
st N/s

N
− λt

∫

�

h(x)vdx

for all 0 ≤ t ≤ 1 small enough. Since N/s > 1, it follows that Iλ(tv) < 0 for t ∈ (0, 1)
small enough. Thus, the claim is true. By Ekeland’s principle and a standard argument,
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there exists a sequence (un)n ⊂ Bρ such that Iλ(un) → cλ < 0 and I ′
λ(un) → 0 as

n → ∞. Furthermore, Lemma 3.3 yields that (un)n converges to some u2 strongly
in Ws,N/s

0,K (�), and so u2 is a nontrivial and nonnegative solution of problem (1.1).
Clearly, u1 and u2 are two distinct solutions. ��

4 The Critical Case

In this section, we consider the critical case of problem (1.1). Without further men-
tioning, we always assume that f satisfies ( f ′

1), ( f2) − ( f4), and M(t) = tθ−1 with
θ > 1. To prove Theorem 1.2, we first give several necessary results.

Lemma 4.1 Under assumptions ( f ′
1), ( f2), ( f3), the functional Iλ satisfies the condi-

tions of the mountain pass theorem:

(1) I (0) = 0;
(2) there exist�2 > 0,ρ2 > 0andσ2 > 0 such that for0 < λ < �2, Iλ(u) ≥ σ2 > 0

for any u ∈ Ws,N/s
0,K (�), with ‖u‖ = ρ2. Furthermore, ρ2 can be chosen small

enough such that ρ2 < (
N−β
N

αN ,s
α0

)(N−s)/N ;

(3) there exists a nonnegative function e ∈ Ws,N/s
0,K (�) independent of λ, such that

Iλ(e) < 0 and ‖e‖ ≥ ρ2 for all λ ∈ R
+.

Proof Clearly I (0) = 0. The rest of proofs are similar to the proofs of Lemmas
3.1–3.2. ��
Lemma 4.2 There exists �3 > 0 such that for all 0 < λ < �3, the functional Iλ

satisfies the (PS)c condition for c < 1
4 (

s
Nθ

− 1
μ
)
(
N−β
N

αN ,s
α0

) (N−s)θ
s

.

Proof Assume (un)n ⊂ Ws,N/s
0,K (�) satisfies

Iλ(un) → c, I ′
λ(un) → 0 as n → ∞.

We first consider c > 0. By ( f2) and the assumption on M , we have

c + o(1)‖un‖ ≥ Iλ(un) − 1

μ
〈I ′

λ(un), un〉

≥
(

s

Nθ
− 1

μ

)

M(‖un‖N/s)‖un‖N/s − λ

(

1 − 1

μ

)

‖h‖∗‖un‖,

which means that (un)n is bounded in Ws,N/s
0,K (�). Thus, we get

(
s

Nθ
− 1

μ

)

‖un‖θ N
s ≤ c + o(1)‖un‖ + λ

(

1 − 1

μ

)

‖h‖∗‖un‖. (4.1)
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For any ε > 0, by the Young inequality we have

λ

(

1 − 1

μ

)

‖h‖∗‖un‖ ≤ ε‖un‖ Nθ
s + ε− s

Nθ−s

(

λ

(

1 − 1

μ

)

‖h‖∗
) Nθ

Nθ−s

.

Taking ε = 1
2

(
s
Nθ

− 1
μ

)
in above inequality and putting it into (4.1), we obtain

1

2

(
s

Nθ
− 1

μ

)

‖un‖θ N
s ≤ c + o(1)‖un‖ +

(
1

2

(
s

Nθ
− 1

μ

))− s
Nθ−s

×
(

λ

(

1 − 1

μ

)

‖h‖∗
) Nθ

Nθ−s

.

It follows that

lim sup
n→∞

‖un‖ ≤
[

c
1
2 (

s
Nθ

− 1
μ
)

+
(
1

2

(
s

Nθ
− 1

μ

))− Nθ
Nθ−s

(

λ

(

1 − 1

μ

)

‖h‖∗
) Nθ

Nθ−s
] s

Nθ

Set

�′
3 = (sμ − Nθ)

2Nθ(μ − 1)‖h‖∗

⎡

⎣
1

2

(
N − β

N

αN ,s

α0

) (N−s)θ
s

⎤

⎦

Nθ−s
Nθ

.

Then for all 0 < λ < �′
3, we get

lim sup
n→∞

‖un‖ <

(
N − β

N

αN ,s

α0

) N−s
N

, (4.2)

thanks to c < 1
4 (

s
Nθ

− 1
μ
)
(
N−β
N

αN ,s
α0

) (N−s)θ
s

.

If c < 0, then with a similar discussion as above, one can easily get that there exists
�′′

3 > 0 such that the (PS) sequence satisfies (4.2).
Therefore, there exists �3 = min{�′

3,�
′′
3} such that (4.2) holds true.

It follows from (4.2) that there exist n0 ∈ N and δ > 0 such that ‖un‖N/(N−s) <

δ <
N−β
N

αN ,s
α0

. Choosing ν > 1 close to 1 and α > α0 close to α0 such that we still

have να‖un‖N/(N−s) < δ <
N−β
N αN ,s . Thus, it follows from (2.2) with q = 1 that

∣
∣
∣
∣

∫

�

1

|x |β f (x, un)(un − u)dx

∣
∣
∣
∣

≤ C

(∫

�

1

|x |β |un|θN/s−1|un − u|dx +
∫

�

1

|x |β |un − u| exp(α|un|N/(N−s))dx

)
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≤ C

⎡

⎣

(∫

�

|un − u| Nθ
s

|x |β dx

) s
Nθ

+
(∫

�

|un − u| ν
ν−1

|x |β dx

) ν−1
ν

(∫

�

1

|x |β exp[να‖un‖ N
N−s (

un
‖un‖ )

N
N−s ]dx

) 1
ν

]

≤ C

⎡

⎣

(∫

�

|un − u| Nθ
s

|x |β dx

) s
Nθ

+
(∫

�

|un − u| ν
ν−1

|x |β dx

) ν−1
ν

⎤

⎦ → 0

as n → ∞, thanks to Theorem 2.2. Then using a similar discussion as Lemma 3.3,
one can prove that un → u strongly in Ws,N/s

0,K (�).
If infn≥1 ‖un‖ = 0, we can proceed as in Lemma 3.3. ��

Proof of Theorem 1.2 ByLemma4.1 andTheorem3.1, there exists a sequence (un)n ⊂
Ws,N/s

0,K (�) such that Iλ(un) → c1 and I ′
λ(un) → 0, where

c1 = inf
γ∈


max
0≤t≤1

Iλ(γ (t)) ≥ α

and 
 =
{
γ ∈ C1([0, 1];Ws,N/s

0,K (�)) : γ (0) = 1, γ (1) = e
}
. Next we show that

c1 <
1

4

(
s

Nθ
− 1

μ

)(
N − β

N

αN ,s

α0

) (N−s)θ
s

. (4.3)

Set

Cq0 := inf
ϕ∈Ws,N/s

0,K (�)\{0}

{

‖ϕ‖Nθ/s :
∫

�

|ϕ|q0
|x |β dx = 1

}

.

Clearly,Cq0 > 0. By Theorem 2.2, one can easily verify that there exists a nonnegative

function ϕ0 ∈ Ws,N/s
0,K (�) \ {0} such that

‖ϕ0‖Nθ/s = Cp0 and |ϕ0|q0q0,β = 1.

In view of the proof of Lemma 4.1, we take γ (t) = tTϕ0, where T > 0 is sufficiently
large such that e = Tϕ0. Hence, it follows from the definition of c1 that

c1 < max
t≥0

Iλ(tϕ0),

which implies that

c1 ≤ max
t≥0

{
s

Nθ
‖tϕ0‖Nθ/s −

∫

�

1

|x |β F(x, tϕ0)dx

}

.
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Furthermore, from ( f4), we obtain

c1 ≤ max
t≥0

{

t
Nθ
s

s

Nθ
‖ϕ0‖Nθ/s − tq0

C0
q0

∫

�

1

|x |β |ϕ0|q0dx
}

= max
t≥0

{

t
Nθ
s

s

Nθ
Cp0 − tq0

C0
q0

}

= C

q0
q0− Nθ

s
p0 C− Nθ

sq0−Nθ

0

(
s

Nθ
− 1

q0

)

.

By the assumption on C0, (4.3) holds.
Thus, it follows from Lemma 4.2 that there exists �4 = min{�2,�3} such that

problem (1.1) has a nontrivial nonnegative solution.
To show that problem has another solution, we set

c2 = inf
u∈Bρ2

Iλ(u),

where ρ2 > 0 is given by Lemma 4.1 and Bρ2 = {u ∈ Ws,N/s
0,K (�) : ‖u‖ < ρ2}. Then

infx∈∂Bρ2
Iλ(u) > 0. With a similar discussion as the proof of Theorem 1.1, we can

prove that c2 < 0. By Lemma 4.1, we obtain

ρ2 <

(
N − β

N

αN ,s

α0

)(N−s)/N

.

By Ekeland’s variational principle, there exists a sequence (vn)n ⊂ Bρ2 such that
Iλ(vn) → c2 ≤ 0 and I ′

λ(vn) → 0, as n → ∞. Observing that

‖vn‖ ≤ ρ2 <

(
N − β

N

αN ,s

α0

)(N−s)/N

,

byLemma 4.2, for all λ ∈ (0,�4), (vn)n has a convergent subsequence still denoted by
(vn)n such that vn → uλ in Ws,N/s

0,K (�). Thus, uλ is a nontrivial nonnegative solution
with Iλ(uλ) < 0. Thus, the proof is complete. ��

5 Problem (1.1) Without Perturbation

In this section, we consider problem (1.8), i.e. problem (1.1) without perturbation term
h and the Ambrosetti-Rabinowitz condition.

The following version of the mountain pass theorem, which will be used later,
shows us the existence of a Cerami sequence at the mountain pass level.
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Theorem 5.1 (See [10]) Let X be a real Banach space with its dual space E∗ and
assume that J ∈ C1(X ,R) satisfies

max{J (0), J (e)} ≤ � < σ ≤ inf‖u‖X=ρ
J (u),

for some �, σ, ρ > 0 and e ∈ X with ‖e‖X > ρ. Let c be characterized by

c = inf
γ∈


max
0≤t≤1

J (γ (t)),

where 
 = {γ ∈ C([0, 1], X) : γ (0) = 0, γ (1) = e}. Then there exists a Cerami
sequence (un)n in X, that is,

J (un) → c ≥ σ, (1 + ‖un‖X )‖J ′(un)‖X∗ → 0,

as n → ∞.

To this aim, let us first verify the validity of the conditions of Theorem 5.1.

Lemma 5.1 (Mountain Pass Geometry I) Assume that ( f ′
1) and ( f3) hold. Then there

exist ρ > 0 and � > 0 such that I (u) ≥ � for any u ∈ Ws,N/s
0,K (�) with ‖u‖ = ρ.

Proof By (3.2) and (3.3), we obtain

I (u) ≥ sM (1)ε

Nλ1
‖u‖θN/s − C‖u‖q

(∫

�

1

|x |β exp(2αρ
N

N−s
1 (u/‖u‖) N

N−s )dx

)1/2

,

for all u ∈ Ws,N/s
0,K (�) with ‖u‖ ≤ ρ1 ≤ 1, and ε ∈ (0, λ1). Choosing 2αρ

N/(N−s)
1 ≤

(1 − β/N ) αN ,s and using Theorem 2.3, we get

I (u) ≥ sM (1)ε

Nλ1
‖u‖θN/s − C‖u‖q .

Fix ε ∈ (0, λ1). By virtue of θN/s < q, we can choose 0 < ρ ≤ ρ1 < 1 such
that sM (1)ε

Nλ1
ρθN/s − Cρq > 0. Thus, I (u) ≥ � := �θN/s sM (1)ε

Nλ1
− Cρq > 0 for all

u ∈ Ws,N/s
0,K (�) with ‖u‖ = ρ. ��

Lemma 5.2 (Mountain Pass Geometry II) Assume that ( f ′
1), ( f2) and ( f3) hold. Then

there exists a nonnegative function e ∈ Ws,N/s
0,K (�) such that I (e) < 0 and ‖e‖ ≥ ρ,

where ρ is given in Lemma 5.1.

Proof Choose a nonnegative function v0 ∈ Ws,N/s
0,K (�) with

∫

�
1

|x |β |v0|μdx > 0 and
‖v0‖ = 1. Then for all t ≥ 1, we have by (3.4) and (3.5) that

I (tv0) ≤ s

N
M (1)tθN/s‖v0‖θN/s − C1t

μ

∫

�

1

|x |β |v0|μdx + C2

∫

�

1

|x |β dx

≤ s

N
M (1)tθN/s − C1t

μ

∫

�

1

|x |β |v0|μdx + C → −∞ as t → ∞,
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thanks to θN/s < μ. The lemma is proved by taking e = T0v0, with T0 > 0 so large
that ‖e‖ ≥ ρ and I (e) < 0. ��

By Theorem 5.1, there exists a Cerami sequence (un)n ⊂ Ws,N/s
0,K (�) such that

I (un) → c∗ and (1 + ‖un‖)‖I ′(un)‖ → 0 as n → ∞,

where

c∗ = inf
γ∈


max
t∈[0,1] I (γ (t)), (5.1)

where 
 =
{
γ ∈ C([0, 1];Ws,N/s

0,K (�)) : γ (0) = 0, γ (1) = e
}

. Obviously, c∗ > 0

by Lemma 5.1. To get more precisely estimate of c∗, we first obtain the following
result.

Lemma 5.3 Assume that ( f ′
1), ( f3) and ( f5) hold. Then there exists n > 0 such that

max
t≥0

I (tGn) <
s

N
M

((
N − β

N

αN ,s

α0

)(N−s)/s
)

,

where Gn is given by Theorem 2.3.

Proof Arguing by contradiction, we assume that

max
t≥0

I (tGn) ≥ s

N
M

((
N − β

N

αN ,s

α0

)(N−s)/s
)

. (5.2)

Since I possesses the mountain pass geometry, for each n, maxt≥0 I (tGn) is attained
at some tn > 0, that is,

I (tnGn) = max
t≥0

I (tGn).

Using F(x, t) ≥ 0 for all (x, t) ∈ � × R, one can deduce that

M

(

t
N
s
n ‖Gn‖N/s

)

≥ M

((
N − β

N

αN ,s

α0

)(N−s)/s
)

.

Since M : [0,∞) → [0,∞) is a nondecreasing function by (M1), we get

t
N
s
n ‖Gn‖N/s ≥

(
N − β

N

αN ,s

α0

)(N−s)/s

.
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It follows from ‖Gn‖N/s → 1 that

lim inf
n→∞ t N/s

n ≥
(
N − β

N

αN ,s

α0

)(N−s)/s

. (5.3)

Due to

d

dt
I (tGn)

∣
∣
t=tn

= 0,

we deduce

M(t N/s
n ‖Gn‖N/s)t N/s

n ‖Gn‖N/s =
∫

�

1

|x |β f (x, tnGn)tnGndx

≥
∫

BR0 (0)

1

|x |β f (x, tnGn).tnGndx . (5.4)

Next we show that (tn)n is bounded. Using change of variable, we deduce from (5.4)
that

M(t N/s
n ‖Gn‖N/s)t N/s

n ‖Gn‖N/s

≥ RN
0

∫

B1(0)

1

|R0x |β f (R0x, tn G̃n)tnG̃ndx

≥ RN
0

∫

B 1
n
(0)

1

|R0x |β f (R0x, tn
1

γ
s/N
s,N

(ln n)(N−s)/N )tn
1

γ
s/N
s,N

(ln n)(N−s)/Ndx .

Note that (5.3) implies that

tn

γ
s/N
s,N

(ln n)(N−s)/N → ∞ as n → ∞.

It follows from ( f5) that given δ > 0 there exists tδ > 0 such that

f (x, t)t ≥ (β0 − δ) exp

(
α0α

∗
N ,s

αN ,s
t N/(N−s)

)

∀(x, t) ∈ � × [tδ,∞). (5.5)

Thus, there exists n0 ∈ N such that

f (R0x, tn
1

γ
s/N
s,N

(ln n)(N−s)/N )tn
1

γ
s/N
s,N

(ln n)(N−s)/N

≥ (β0 − δ) exp

(
α0α

∗
N ,s

αN ,s
t N/(N−s)
n

1

γ
s/(N−s)
s,N

ln n

)

,
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for all n ≥ n0. Hence,

M(t N/s
n ‖Gn‖N/s)t N/s

n ‖Gn‖N/s

≥ (β0 − δ)RN−β
0 exp

(
α0α

∗
N ,s

αN ,s
t N/(N−s)
n

1

γ
s/(N−s)
s,N

ln n

)

ωN−1
1

nN−β

= (β0 − δ)ωN−1R
N−β
0 exp

(
α0α

∗
N ,s

αN ,s
t N/(N−s)
n

1

γ
s/(N−s)
s,N

ln n

)

exp(−(N − β) ln n)

= (β0 − δ)ωN−1R
N−β
0 exp

[(
α0

αN ,s
t N/(N−s)
n N − N + β

)

ln n

]

. (5.6)

From (M2) and (5.3), we can conclude that

M(t N/s
n ‖Gn‖N/s)t N/s

n ‖Gn‖N/s

exp
[(

α0
αN ,s

t N/(N−s)
n N − N + β

)
ln n

] → 0 as n → ∞,

which contradicts (5.6). Thus,

lim sup
n→∞

t N/s
n ≤

(
N − β

N

αN ,s

α0

)(N−s)/s

,

which together with (5.3) yields that

lim
n→∞ t N/s

n =
(
N − β

N

αN ,s

α0

)(N−s)/s

(5.7)

as n → ∞.
Inspired by [12,17,33], we are going to estimate (5.4). In view of (5.5), for 0 <

δ < β0 and n ∈ N, we set

Un,δ := {x ∈ BR0(0) : tnGn(x) ≥ tδ} and Vn,δ := BR0(0) \Un,δ.

Splitting the integral (5.4) on Un,δ and Vn,δ and using (5.5), we deduce

M(t N/s
n ‖Gn‖N/s)t N/s

n ‖Gn‖N/s

≥ (β0 − δ)

∫

BR0 (0)

1

|x |β exp

(
α0α

∗
N ,s

αN ,s
(tnGn)

N/(N−s)
)

dx

− (β0 − δ)

∫

Vn,δ

1

|x |β exp

(
α0α

∗
N ,s

αN ,s
(tnGn)

N/(N−s)
)

dx

+
∫

Vn,δ

1

|x |β f (x, tnGn)tnGndx . (5.8)

123



942 Applied Mathematics & Optimization (2021) 84:915–954

Since Gn(x) → 0 a.e. in BR0(0), we deduce that the characteristic functions χVn,δ

satisfies

χVn,δ → 1 a.e. in BR0(0) as n → ∞.

By tnGn < tδ and the Lebesgue dominated convergence theorem, we have

∫

Vn,δ

1

|x |β exp

(
α0α

∗
N ,s

αN ,s
(tnGn)

N/(N−s)
)

dx → ωN−1

N − β
RN−β
0 and

∫

Vn,δ

1

|x |β f (x, tnGn)tnGndx → 0. (5.9)

The key point is to estimate the first term on the right hand of (5.8). By (5.3) and
the definition of Gn , we have

∫

BR0 (0)

1

|x |β exp

(
α0α

∗
N ,s

αN ,s
(tnGn)

N/(N−s)
)

dx

≥ RN−β
0

∫

B1/n(0)

1

|x |β exp((N − β) ln n)dx

+ RN−β
0

∫

1/n<|x |<1

1

|x |β exp

[

(N − β)
| ln |x ||N/(N−s)

(ln n)s/(N−s)

]

dx

= ωN−1R
N−β
0

N − β
+ RN−β

0

∫

1/n<|x |<1

1

|x |β exp

[

(N − β)
| ln |x ||N/(N−s)

(ln n)s/(N−s)

]

dx

≥ ωN−1R
N−β
0

N − β
+ ωN−1R

N−β
0

N − β

(

1 − 1

nN−β

)

. (5.10)

Inserting (5.9) and (5.10) in (5.8) and using (5.7), we arrive at

M

((
N − β

N

αN ,s

α0

)(N−s)/s
)(

N − β

N

αN ,s

α0

)(N−s)/s

≥ (β0 − δ)
ωN−1R

N−β
0

N − β
, ∀δ ∈ (0, β0).

Letting δ → 0+, we obtain

β0 ≤
M

((
N−β
N

αN ,s
α0

)(N−s)/s
)(

N−β
N

αN ,s
α0

)(N−s)/s

ωN−1R
N−β
0

N−β

,

which contradicts ( f5). Therefore, the lemma is proved. ��
By Lemma 5.3, we obtain the desired estimate for the level c∗.

123



Applied Mathematics & Optimization (2021) 84:915–954 943

Lemma 5.4 Assume (M1), (M3), (M4) and ( f3) hold. Then

c∗ <
s

N
M

((
N − β

N

αN ,s

α0

)(N−s)/s
)

.

Proof Since Gn ≥ 0 in � and ‖Gn‖ → 1, as in the proof of Lemma 5.2, we deduce
that I (tGn) → −∞ as t → ∞. Consequently,

c∗ ≤ max
t≥0

I (tGn), ∀n ∈ N.

Thus, the desired result follows by using Lemma 5.3. ��
Consider the Nehari manifold associated to the functional I , that is,

N =
{
u ∈ Ws,N/s

0,K (�) \ {0} : 〈I ′(u), u〉 = 0
}

and define c∗ := infu∈N I (u).
The next result is crucial in our arguments to get the existence of a ground state

solution for problem (1.8).

Lemma 5.5 Assume that (M3) and ( f5) are satisfied. Then c∗ ≤ c∗, where c∗ is given
by (5.1).

Proof The proof is similar to [17] and [33], so we omit the proof. ��
Lemma 5.6 (The (PS)c condition) Let (M1), (M3), (M4) and ( f ′

1), ( f3), ( f5) and
( f6) hold. Then the functional I satisfies the (PS)c∗ condition.

Proof The proof is similar to Lemma 4.1 of [33]. Let (un)n be a Cerami sequence at
level c∗ in Ws,N/s

0,K (�). Then

I (un) → c∗ and (1 + ‖un‖)‖I ′(un)‖ → 0.

If d := infn≥1 ‖un‖ = 0, we can discuss as Lemma 3.3. Thus, we need only consider
the case d := infn≥1 ‖un‖ > 0.

In the following, we assume that d := infn≥1 ‖un‖ > 0. We first show that (un)n
is bounded in Ws,N/s

0,K (�). Arguing by contradiction, we assume that

‖un‖ ≥ 1 and lim
n→∞ ‖un‖ = ∞.

Set

vn = un
‖un‖ .
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Then ‖vn‖ = 1. Going if necessary to a subsequence, we can assume that vn⇀v in
Ws,N/s

0,K (�). Further, one can show that

⎧
⎪⎨

⎪⎩

v+
n ⇀v+ in Ws,N/s

0,K (�),

v+
n → v+ a.e. in �,

v+
n → v+ in Lq(�, |x |−β)(∀1 ≤ q < ∞).

Now we prove that v+ = 0 a.e. in �. If the Lebesgue measure of set U+ := {x ∈ � :
v+(x) > 0} is positive, then we have

lim
n→∞ u+

n (x) = lim
n→∞ v+

n (x)‖un‖ = ∞ in U+.

Thus, by (1.10), we deduce

lim
n→∞

F(x, u+
n (x))

|x |β |u+
n |Nθ/s

= ∞ a.e. in U+,

which implies that

lim
n→∞

F(x, u+
n (x))

|x |β |u+
n |Nθ/s

= ∞ a.e. in U+.

It follows that

∫

�

lim inf
n→∞

F(x, u+
n (x))

|x |β |u+
n |Nθ/s

dx = ∞. (5.11)

Note that (un)n is a Cerami sequence at level c∗. Then

M (‖un‖N/s) = N

s
c∗ + N

s

∫

�

1

|x |β F(x, u+
n )dx + o(1),

which together with limt→∞ M (t) = ∞ yields that

lim
n→∞

∫

�

1

|x |β F(x, u+
n )dx = ∞.
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Hence,

lim inf
n→∞

∫

�

F(x, u+
n )

|x |β |u+
n |Nθ/s

|v+
n |Nθ/sdx = lim inf

n→∞

∫

�

F(x, u+
n )

|x |β‖un‖Nθ/s
dx

≤ lim inf
n→∞

M (1)
∫

�
1

|x |β F(x .u+
n )dx

N
s

(
c∗ + ∫

�
F(x,u+

n )

|x |β dx
)

+ o(1)

= sM (1)

N
.

Here we have used the fact that

tθ ≥ M (t)

M (1)
∀t ≥ 1,

thanks to (1.9). Note that F(x, t) ≥ 0. By Fatou’s lemma and (5.11) , we get a
contradiction. Thus, v ≤ 0 a.e. in � and v+

n ⇀0 in Ws,N/s
0,K (�).

Clearly, there exist tn ∈ [0, 1] such that

I (tnun) = max
t∈[0,1] I (tun).

For any R ∈ (0, ( N−β
N

αN ,s
α0

)
N−s
N ), since f satisfies ( f ′

1), we choose ε = N−β
N

αN ,s

RN/(N−s) −
α0 and α0 < α < α0 + ε such that

F(x, t) ≤ C(R)|t |Nθ/s +
(
N − β

N

αN ,s

RN/(N−s)
− α0

)

exp(α|t |N/(N−s)), ∀(x, t) ∈ � × R.

It follows that

I (Rvn) ≥ s

N
M (RN/s) − C(R)RNθ/s

∫

�

|v+
n | Nθ

s

|x |β dx

−
(
N − β

N

αN ,s

RN/(N−s)
− α0

)∫

�

1

|x |β exp(αRN/(N−s)|v+
n |N/(N−s))dx .

Since v+
n ⇀0 in Ws,N/s

0,K (�) and Ws,N/s
0,K (�) ↪→ Lq(�, |x |−β) is compact for any

q ≥ 1, we have

∫

�

1

|x |β |v+
n | Nθ

s dx → 0.

By Theorem 2.3 and αRN/(N−s) <
N−β
N

αN ,s
α0

, we know that

∫

�

1

|x |β exp(αRN/(N−s)|v+
n |N/(N−s))dx
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is bounded. Thus,

I (Rvn) ≥ s

N
M (RN/s) − C(R)RNθ/s

∫

�

|v+
n | Nθ

s

|x |β dx

− C

(
N − β

N

αN ,s

RN/(N−s)
− α0

)

.

On the other hand, by ‖un‖ → ∞, we deduce

I (tnun) ≥ I

(
R

‖un‖un
)

= I (Rvn).

Thus, letting n → ∞ and then letting R →
(
N−β
N

αN ,s
α0

)(N−s)/N
, we obtain

lim inf
n→∞ I (tnun) ≥ s

N
M

((
N − β

N

αN ,s

α0

)(N−s)/s
)

> c∗. (5.12)

Since I (0) = 0 and I (un) → c∗, we can assume that tn ∈ (0, 1). Then
d
dt I (tun)|tn = 0. Thus, we get 〈I ′(tnun), tnun〉 = 0, that is,

M(t N/s
n ‖un‖N/s)t N/s

n ‖un‖N/s =
∫

�

1

|x |β f (x, tnun)tnundx .

From (1.11), it yields that

I (tnun) = s

N
M (t N/s

n ‖un‖N/s) −
∫

�

1

|x |β F(x, tnun)dx

= s

N
M (t N/s

n ‖un‖N/s) − s

Nθ
M(t N/s

n ‖un‖N/s)t N/s
n ‖un‖N/s

+
∫

�

1

|x |β
[ s

Nθ
f (x, tnun)tnun − F(x, tnun)

]
dx

≤ s

N
M (‖un‖N/s) − s

Nθ
M(‖un‖N/s)‖un‖N/s

+
∫

�

1

|x |β
[ s

Nθ
f (x, un)un − F(x, un)

]
dx .

Moreover, it follows from (un)n is a Cerami sequence that

s

N
M (‖un‖N/s) − s

Nθ
M(‖un‖N/s)‖un‖N/s

+
∫

�

1

|x |β
[ s

Nθ
f (x, un)un − F(x, un)

]
d = c∗ + o(1).
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Thus,

lim sup
n→∞

I (tnun) ≤ c∗,

which contradicts (5.12). Therefore, (un)n is bounded in Ws,N/s
0,K (�).

Next we show that (un)n has a convergence subsequence in Ws,N/s
0,K (�). Going if

necessary to a subsequence, there exist a function u ∈ Ws,N/s
0,K (�) and ξ > 0 such

that

un⇀u weakly in Ws,N/s
0,K (�),

un → u strongly in Lν(�)(ν ≥ 1),

un → u a.e. in �

‖un‖ → ξ. (5.13)

Here we have used the compact embedding from Ws,N/s
0 (�) to Lν(�) for any ν ≥ 1

(see Theorem2.2) and the embeddingWs,N/s
0,K (�) ↪→ Ws,N/s

0 (�) is continuous. Using
a similar discussion as [33], we can deduce that

lim
n→∞

∫

�

1

|x |β f (x, un)dx =
∫

�

1

|x |β f (x, u)dx and lim
n→∞

∫

�

1

|x |β F(x, un)dx

=
∫

�

1

|x |β F(x, u)dx . (5.14)

Now, we assert that u �= 0. Arguing by contradiction, we assume that u = 0. Then,∫

�
1

|x |β F(x, un)dx → 0 and I (un) → c gives that

s

N
M (‖un‖N/s) → c <

s

N
M

((
N − β

N

αN ,s

α0

)(N−s)/s
)

as n → ∞. Thus, there exist n0 ∈ N and δ > 0 such that ‖un‖N/(N−s) < δ <
N−β
N

αN ,s
α0

. Choosing ν > 1 close to 1 and α > α0 close to α0 such that we still have

να‖un‖N/(N−s) < δ <
N−β
N αN ,s . Thus, it follows from (2.2) with q = 1 that

∣
∣
∣
∣

∫

�

1

|x |β f (x, un)undx

∣
∣
∣
∣

≤ C

(∫

�

1

|x |β |un|θN/sdx +
∫

�

1

|x |β |un| exp(α|un|N/(N−s))dx

)

≤ C

(∫

�

1

|x |β |un|θN/sdx +
(∫

�

1

|x |β |un| ν
ν−1 dx

) ν−1
ν
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(∫

�

1

|x |β exp[να‖un‖ N
N−s (

un
‖un‖ )

N
N−s ]dx

) 1
ν

)

≤ C

(∫

�

1

|x |β |un|θN/sdx +
(∫

�

1

|x |β |un| ν
ν−1 dx

) ν−1
ν

)

→ 0

as n → ∞. Since (un)n is a bounded Cerami sequence, we get

〈I ′(un), un〉 = M(‖un‖N/s)‖un‖N/s −
∫

�

1

|x |β f (x, un)undx → 0,

which implies that

M(‖un‖N/s)‖un‖N/s → 0.

From this and assumption (M1), we deduce ‖un‖ → 0, which contradicts the assump-
tion that infn≥1 ‖un‖ > 0. Therefore, we must have u �= 0.

We claim that I (u) ≥ 0. Arguing by contradiction, we assume that I (u) < 0. Set
ζ(t) := I (tu) for all t ≥ 0. Then ζ(0) = 0 and ζ(1) < 0. Arguing as in the proof
of Lemma 3.1, we can see that ζ(t) > 0 for t > 0 small enough. Hence there exists
t0 ∈ (0, 1) such that

ζ(t0) = max
t∈[0,1] ζ(t), ζ ′(t0) = 〈I ′(t0u), u〉 = 0,

which means that t0u ∈ N . Therefore, by Remarks 1.1 and 1.2, the semicontinuity of
norm and Fatou’s lemma, we get

c∗ ≤ c∗ ≤ I (t0u) = I (t0u) − s

Nθ
〈I ′(t0u), t0u〉

= s

N
M (‖t0u‖N/s) − s

Nθ
M(‖t0u‖N/s)‖t0u‖N/s

+ s

Nθ

∫

�

1

|x |β
[

f (x, t0u)t0u − θN

s
F(x, t0u)

]

dx

<
s

N
M (‖u‖N/s) − s

Nθ
M(‖u‖N/s)‖u‖N/s

+ s

Nθ

∫

�

1

|x |β
[

f (x, u)u − θN

s
F(x, u)

]

dx .

By the weak lower semicontinuity of convex functional, we have

‖u‖N/s ≤ lim inf
n→∞ ‖un‖N/s = ξ N/s .
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In view of Remark 1.1 and the continuity of M , we deduce that

s

N
M (‖u‖N/s) − s

Nθ
M(‖u‖N/s)‖u‖N/s

≤ s

N
M (ξ N/s) − s

Nθ
M(ξ N/s)ξ N/s

= lim
n→∞

[ s

N
M (‖un‖N/s) − s

Nθ
M(‖un‖N/s)‖un‖N/s

]
.

By Fatou’s lemma, we get

∫

�

1

|x |β f (x, u)udx ≤ lim inf
n→∞

∫

�

1

|x |β f (x, un)undx .

It follows from above results and (5.14) that

c∗ ≤ c∗ < lim
n→∞

[ s

N
M (‖un‖N/s) − s

Nθ
M(‖un‖N/s)‖un‖N/s

]

+ s

Nθ
lim inf
n→∞

∫

�

1

|x |β
[

f (x, un)un − Nθ

s
F(x, un)

]

dx

≤ lim
n→∞

[
I (un) − s

Nθ
〈I ′(un), un〉

]
= c∗

which is absurd. Thus the claim holds true.
Now we claim that

I (u) = c∗. (5.15)

Obviously, by (5.14) and semicontinuity of norm, we have I (u) ≤ c∗. Next we prove
that I (u0) < c∗ can not occur. Actually, if I (u) < c∗, then

‖u‖ < ξ.

Note that (5.14) yields that

s

N
M (ξ N/s) = lim

n→∞
s

N
M (‖un‖N/s) = c∗ +

∫

�

1

|x |β F(x, u)dx . (5.16)

This gives that

ξ
N
s = M−1

(
N

s
c∗ + N

s

∫

�

1

|x |β F(x, u)dx

)

.

Setwn = un/‖un‖. Thenwn⇀w = u/ξ inWs,N/s
0,K (�) and ‖w‖ < 1. Thus, it follows

from Theorem 2.4 that

sup
n

∫

�

exp
(
α′|wn|N/(N−s)

)

|x |β dx < ∞, ∀ α′ <
(1 − β

N )αN ,s

(1 − ‖w‖N/s)s/(N−s)
. (5.17)
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On the other hand, by (5.16), we have

N

s
c∗ − N

s
I (u) = M (ξ N/s) − M (‖u‖N/s).

Thus, it follows from I (u) ≥ 0 that

M (ξ N/s) ≤ N

s
c∗ + M (‖u‖N/s) < M

((
N − β

N

αN ,s

α0

)(N−s)/s
)

+ M (‖u‖N/s).

Furthermore, by (M1), we get

ξ N/s <M−1

[

M

((
N − β

N

αN ,s

α0

)(N−s)/s
)

+ M (‖u‖N/s)

]

≤
(
N − β

N

αN ,s

α0

)(N−s)/s

+ ‖u‖N/s . (5.18)

Note that

ξ N/s = ξ N/s − ‖u‖N/s

1 − ‖w‖N/s
.

Hence, it follows from (5.18) that

ξ N/s <

(
N−β
N

αN ,s
α0

)(N−s)/s

1 − ‖w‖N/s
.

Thus, there exist n0 ∈ N and α′′ > 0 such that

α0‖un‖N/(N−s) < α′′ <

(N−β)αN ,s
N

(1 − ‖w‖N/s)s/(N−s)

for all n ≥ n0. We choose ν > 1 close to 1 and α > α0 close to α0 such that

να‖un‖N/(N−s) ≤ α′′ <

(N−β)αN ,s
N

(1 − ‖v‖N/s)s/(N−s)
.

In view of (5.17), for some C > 0 and n large enough, we obtain

∫

�

1

|x |β exp(να|un|N/(N−s))dx ≤
∫

�

1

|x |β exp(α′′|wn|N/(N−s))dx ≤ C .
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Therefore, we deduce from (2.2) that

∣
∣
∣
∣

∫

�

1

|x |β f (x, un)(un − u)dx

∣
∣
∣
∣

≤ C

(∫

�

1

|x |β |un − u|Nθ/sdx +
∫

�

1

|x |β |un − u| exp(α|un|N/(N−s))dx

)

≤ C
∫

�

1

|x |β |un − u|Nθ/sdx + C

(∫

�

1

|x |β |un − u| ν
ν−1 dx

) ν−1
ν → 0

as n → ∞.
Since (un)n is a bounded Cerami sequence in Ws,N/s

0,K (�), we have

o(1) = 〈I ′(un), un − u〉
= M(‖un‖N/s)〈un, un − u〉s,N/s −

∫

�

1

|x |β f (x, un)(un − u)dx . (5.19)

Define a functional L as follows:

〈L(v), w〉 = 〈v,w〉s,N/s

for all v,w ∈ Ws,N/s
0,K (�). By the Hölder inequality, one can see that

|〈L(v), w〉| ≤ ‖v‖ N
s −1‖w‖,

which together with the definition of L implies that for each v, L(v) is a bounded
linear functional on Ws,N/s

0,K (�). Thus, 〈L(u), un − u〉 = o(1), that is,

〈u, un − u〉s,N/s = o(1).

In conclusion, we can deduce from (5.19) that

M(‖un‖N/s)
[〈un, un − u〉s,N/s − 〈u, un − u〉s,N/s

] = o(1).

In view of the fact that ‖un‖ → ξ and ξ > 0, by using (M1) and a similar discussion
as in [33], we obtain that un → u in Ws,N/s

0,K (�). Furthermore, using (5.14) and the
continuity of M , we have I (u) = c∗, which is a contradiction. Thus, the assertion
(5.15) holds true.

Combining I (u) = c∗ with I (un) → c∗ and ‖un‖ → ξ , we conclude that

M (ξ N/s) = M (‖u‖N/s),

which implies that ξ = ‖u‖. By the uniform convexity of norm, we obtain that un → u
in Ws,N/s

0,K (�). This finishes the proof. ��
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Proof of Theorem 1.3 By Lemmas 5.1 and 5.2, we know that I satisfies all the assump-
tions of Theorem 5.1. Thus there exists a Cerami sequence (un)n ⊂ Ws,N/s

0,K (�).
Moreover, by Lemma 5.6, there exists a subsequence of (un)n (still labeled by (un)n)
such that un → u in Ws,N/s

0,K (�). It follows from I ′(un) → 0 that

M(‖un‖N/s)〈un, ϕ〉s,N/s =
∫

�

1

|x |β f (x, un)ϕdx, ∀ϕ ∈ Ws,N/s
0,K (�).

Furthermore, we have

M(‖u‖N/s)〈u, ϕ〉s,N/s =
∫

�

1

|x |β f (x, u)ϕdx ∀ϕ ∈ Ws,N/s
0,K (�),

which means that u is a nontrivial solution of (1.8) satisfying I (u) = c∗, that is,
I ′(u) = 0 and I (u) = c∗. Therefore, by the definition of c∗ and c∗ ≤ c∗, we know
that u is a ground state solution of problem (1.8). Moreover, Lemma 2.1 shows that u
is nonnegative. ��
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50. Xiang, M., Zhang, B., Rădulescu, V.: Multiplicity of solutions for a class of quasilinear Kirchhoff
system involving the fractional p-Laplacian. Nonlinearity 29, 3186–3205 (2016)

51. Xiang, M., Zhang, B., Qiu, H.: Existence of solutions for a critical fractional Kirchhoff type problem
in R

N . Sci. China Math. 60, 1647–1660 (2017)
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