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Abstract. In this paper, we consider the Schrödinger equation involving the fractional
(p, p1, . . . , pm)-Laplacian as follows

(−�)spu +
m∑

i=1

(−�)spi u + V (εx)(|u|(N−2s)/2su +
m∑

i=1

|u|pi−2u) = f (u) in R
N ,

where ε is a positive parameter, N = ps, s ∈ (0, 1), 2 ≤ p < p1 < · · · < pm <

+∞,m ≥ 1. The nonlinear function f has the exponential growth and potential function V
is continuous function satisfying some suitable conditions. Using the penalization method
and Ljusternik–Schnirelmann theory, we study the existence, multiplicity and concentration
of nontrivial nonnegative solutions for small values of the parameter. In our best knowledge,
it is the first time that the above problem is studied.

1. Introduction and main results

Let � be a bounded, open domain of RN (N ≥ 2). The standard Sobolev space
Wk,p

0 (�) is defined by the completion of C∞
0 (�) equipped with the norm

||u||
Wk,p

0 (�)
=
⎛

⎝||u||pL p(�) +
k∑

j=1

||∇ j u||pL p(�)

⎞

⎠
1/p

.
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V. D. Rădulescu: Faculty of Applied Mathematics, AGH University of Science and Tech-
nology, al. Mickiewicza 30, 30-059 Kraków, Poland
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The well-known Sobolev embedding theorem states that Wk,p
0 (�) embeds contin-

uously into LNp/(N−kp)(�) for a positive integer k < N and 1 ≤ p <
N

k
. When

p = N

k
, the embedding Wk,N/k

0 (�) ⊂ L∞(�) fails. To overcome this difficulty,

Trudinger [55] proved that functions in W 1,N
0 (�) has property

W 1,N
0 (�) ⊂

⎧
⎨

⎩u ∈ L1(�) : Eβ(u) :=
∫

�

eβ|u|N/(N−1)
dx < +∞

⎫
⎬

⎭ for any β < ∞.

Furthermore, the function Eβ is continuous onW 1,N
0 (�). In 1970, Moser [41] gave

the optimal β and proved that β ≤ αN = Nω
1/(N−1)
N−1 ,whereωN−1 is the area of the

surface of the unit ball. From this work, manyworks are done andmade the research
direction about Trudinger–Moser type inequality and applications. Special, In 2007,
Adimurthi-Sandeep [2] extended the work of Trudinger–Moser for singular case
on bounded domain. When � is unbounded, Adachi and Tanach [1] and do Ó [23]
gave a subcritical Trudinger–Moser-type inequality as follows: For 0 < α < αN ,

there exists a positive constant CN such that

sup
u∈W 1,N (RN ),

∫

RN
|∇u|N dx≤1

∫

RN

�
(
α|u(x)|N/(N−1)

)
dx ≤ CN

∫

RN

|u(x)|Ndx,

where �(t) = et − ∑N−2
i=0

t i

i ! . Moreover, the constant αN is sharp in the sense

that if α ≥ αN , the supremum will become infinite. In 2010, Adimurthi-Yang [3]
extended the result of Adachi and Tanach [1] and do Ó [23] for singular case. In
2019, Parini and Ruf [43] extended the result of Trudinger–Moser to fractional
Sobolev-Slobodeckij spaces and obtained the following result: Let � be a bounded
open domain ofRN , (N ≥ 2)with Lipschitz boundary, and let s ∈ (0, 1), N = ps.
Then there exists an exponent α of the fractional Trudinger–Moser inequality such
that

sup
u∈W̃ s,p

0 (�),[u]Ws,p (RN )
≤1

∫

�

exp(α|u|N/(N−s))dx < +∞.

Set

α∗ = α∗(s,�)

= sup

⎧
⎨

⎩α : sup
u∈W̃ s,p

0 (�),[u]Ws,p (RN )
≤1

∫

�

exp(α|u|N/(N−s))dx < +∞
⎫
⎬

⎭ .

Moreover, α∗ ≤ α∗
s,N , where

α∗
s,N = N

(
2(NωN )2	(p + 1)

N !
+∞∑

k=0

(N + k − 1)!
k!

1

(N + 2k)p

)s/(N−s)

.
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By replacing the norm [u]Ws,p(RN ) by ||u||Ws,p(RN ), Iula [33] proved that the result
of Parini and Ruf is still true in R. In 2019, Zhang [61] has been extended the
that result of Parini and Ruf, and Iula to RN and get a fractional Trudinger–Moser
type imequality. Using that result, Zhang studied the existence of weak solution to
Schrödinger equation involving the fractional p-Laplacian. For some more results
and the applications of Trudinger–Moser inequality and fractional Trudinger–
Moser type inequality, we refer the readers to [4,24–27,31,36,37,39,45,59] and the
references therein for more details. On singular Trudinger–Moser type inequality
in fractional Sobolev space and its application, we recommend the readers to [52]
for more details.

Using the fractional Trudinger–Moser type inequality, in this paper, we study
the existence and concentration of nontrivial nonnegative solution for the following
Schrödinger equation involving fractional (p, p1, . . . , pm)-Laplacian:

(−�)sN/su(x) +
m∑

i=1

(−�)spi u + V (x)(|u|
N

s
−2

u

+
m∑

i=1

|u|pi−2u) = f (u) in R
N , (Pε) (1.1)

where ε is small positive parameter, 0 < s < 1, 2 ≤ p < p1 < · · · < pm <

+∞,m ≥ 1, N = ps, the potential V is bounded below by V0 > 0, the nonlin-
earity f has exponential critical growth, and (−�)st (t ∈ {p, p1, . . . , pm}) is the
fractional t-Laplace operator which may be defined along a function ϕ ∈ C∞

0 (RN )

(up to a normalization constant) as

(−�)st ϕ(x) = 2 lim
ε→0+

∫

RN \Bε(x)

|ϕ(x) − ϕ(y)|t−2(ϕ(x) − ϕ(y))

|x − y|N+ts
dy

for x ∈ R
N , where Bε(x) is a ball with center x and radius ε.

Assume that the continuous function V verifies the following conditions:
(V1) There exists V0 > 0 such that V (x) ≥ V0 for all x ∈ R

N ;
(V2) There exists a bounded set � ⊂ R

N such that

V0 = min
x∈�

V (x) < min
x∈∂�

V (x).

Observe that

M := {x ∈ � : V (x) = V0} 
= ∅.

Moreover, we assume that the nonlinear function f satisfying the following con-
ditions:
( f1) The nonlinearity f ∈ C1(R) such that f (t) = 0 for all t ∈ (−∞, 0], f (t) > 0
for all t > 0 and there exist constants α0 ∈ (0, α∗), b1, b2 > 0 such that for any
t ∈ R,

| f (t)| ≤ b1|t |pm−1 + b2|t |p−1�N ,s(α0|t |N/(N−s)),
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where �N ,s(y) = ey − ∑ jp−2
i=0

y j

j ! , jp = min{ j ∈ N : j ≥ p} and α∗ ≤ α∗
s,N (see

Lemma 1).
( f2) There exists μ > pm such that

f (t)t − μF(t) ≥ 0

for all t ∈ R, where F(t) =
t∫

0
f (τ )dτ.

( f3)

lim
t→0+

f (t)

t pm−1 = 0.

( f4) There exists γ1 > 0 large enough such that F(t) ≥ γ1|t |μ for all t ≥ 0.

( f5)
f (t)

t pm−1 is a strictly increasing function in R+.

Recently, Alves–Ambrosio–Isernia [7], Ambrosio–Radulescu [8] studied the
fractional (p, q)-Laplacian as follows:

(−�)spu + (−�)squ + V (εx)(|u|p−2u + |u|q−2u) = f (u) in R
N , (1.2)

where ε > 0 is a parameter, s ∈ (0, 1), 1 < p < q <
N

s
and f has the subcritical

growth and satisfies some suitable conditions. For more results on fractional (p, q)-
Laplace or (p, q)-Laplace, we refer the readers to [9–11]. When s → 1−1, the
Eq. (1.2) becomes the following equation

−�pu − �qu + V (εx)(|u|p−2u + |u|q−2u) = f (u) in R
N , (1.3)

where �r u = div(|∇u|r−2∇u), r ∈ {p, q}. The study of Eq. (1.3) is connected to
more general reaction-diffusion equation

ut = div((|∇u|p−2 + |∇u|q−2)∇(u)) + c(x, u) (1.4)

which has many applications in biophysics, physics of plasmas and chemical reac-
tion design [13,21]. In that equation, c(x, u) is related to source and loss process.
The multiple phases quation is motivated from the following Born–Infeld equation
[18–20] that appears in electromagnetism, electrostatics and electrodynamics as a
model based on a modification of Maxwell’s Lagrangian density

−div
( ∇u

(1 − 2|∇u|2)1/2
)

= h(u) in R
N .

We refer the readers to the work of Zhang–Tang–Radulescu [62] for more infor-
mation and motivation as well as application of double-phases equation.

In 2021, Ambrosio–Repovs [12] have been studied the problem (1.3) when
1 < p < q < N , V : RN → R is a continuous function satisfying the global
Rabinowitz condition, and f : R → R is a continuous function with subcritical
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growth. Using suitable variational arguments and Ljusternik–Schnirelmann cate-
gory theory, they study the relation between the number of positive solutions and
the topology of the set where V attains its minimum for small ε.

When p = q and ε = 1, the Eq. (1.2) becomes

(−�)spu + V (εx)|u|p−2u = g(x, u) in R
N , (1.5)

where V and f satisfy some suitable assumptions. Many works were achieved on
that equation such as [14–16,25,28,29]. In particular, when p = 2, the Eq. (1.5)
becomes

(−�)su + V (εx)|u|p−2u = g(x, u) in R
N , (1.6)

which has been proposed by Laskin [34,35] as a result of expanding the Feynman
path integral, from the Brownian like to the Lévy quantum mechanical paths. We
refer the readers to [5,6,30,49–51] for more results about Eq. (1.6). Recently, many
authors studied the existence of multiple solution to (1.5) in subcritical growth,
exponential growth and Kirchhoff type problem involving fractional p-Laplace
such as Xiang, Zhang and [58], Zhang, Fiscella and Liang [60], Wang and Xiang
[63]. In that works, they use Krasnoselskii’s genus theory to study their problems.
Motivate by above works, we study the problem (1.1) with exponential growth.
We point out that as far as we know, in the literature appears only few papers on
fractional (p, q)-Laplace problems, and there are no results on the multiplicity and
concentration of solutions to the problem (1.1). So the aim of this work is to give the
first result in this direction. We use the Ljusternik–Schnirelmann category theory
instead of Krasnoselskii’s genus theory as in some previous works.

Before starting our results, we recall some useful notations. Suppose that N =
ps or N > ps. The fractional Sobolev space Ws,p(RN ) is defined by

Ws,p(RN ) := {u ∈ L p(RN ) : [u]s,p < ∞},
where [u]s,p denotes by the seminorm Gagliardo, that is

[u]s,p =
( ∫

R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy
)1/p

.

Ws,p(RN ) is a uniformly convex Banach space (similar to [46]) with norm

||u|| =
(
||u||p

L p(RN )
+ [u]ps,p

)1/p
.

Set η > 0, we denote another norm on Ws,p(RN ) as follows

||u||η,Ws,p(RN ) =
(
η||u||p

L p(RN )
+ [u]ps,p

)1/p
.

Then ||.|| and ||.||η,Ws,p(RN ) are two norms equivalent on Ws,p(RN ). For each
ε > 0, let Wε denote by the completion of C∞

0 (RN ), with respect to the norm

||u||Ws,p
V,ε(R

N ) =
(
[u]ps,p + ||u||pp,V,ε

)1/p
, ||u||pp,V,ε =

∫

RN

V (εx)|u(x)|pdx .
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Then Ws,p
V,ε(R

N ) is uniformly convex Banach space (similar to [46], Lemma 10),

and then Ws,p
V,ε(R

N ) is a reflexive space. By the condition (V ) and Theorem 6.9

[42], we have the embedding from Ws,p
V,ε(R

N ) into Lν(RN ) is continuous for any

ν ∈ [N
s

,+∞). Similarly, we can define the space Ws,pi
V,ε (RN ), i = 1, . . . ,m. We

denote Wε = Ws,p
V,ε(R

N ) ∩ ∩m
i=1W

s,pi
V,ε (RN ) endowed with the norm

||u||Wε = ||u||Ws,p
V,ε(R

N ) +
m∑

i=1

||u||Ws,pi
V,ε (RN )

.

Then Wε is uniformly convex Banach space (similar to [46], Lemma 10) and we
have the embeddings

Wε = Ws,p
V,ε(R

N ) ∩ ∩m
i=1W

s,pi
V,ε (RN ) ↪→ Ws,p

V,ε(R
N ) ↪→ Lν(RN )

are continuous for any ν ∈ [N
s

,+∞). Hence, there exists a best constant Sν,ε > 0

for all ν ∈ [N
s

,+∞) as follows:

Sν,ε = inf
u 
=0,u∈Wε

||u||Wε

||u||Lν (RN )

.

This implies

||u||Lν(RN ) ≤ S−1
ν,ε ||u||Wε for all u ∈ Wε. (1.7)

Definition 1. We say that u ∈ Wε is a weak solution of problem (1.1) if

∫

R2N

|u(x) − u(y)|
N

s
−2

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|2N dxdy

+
m∑

i=1

∫

R2N

|u(x) − u(y)|pi−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+pi s
dxdy

+
∫

RN

V (εx)(|u(x)|
N

s
−2

u(x)

+
m∑

i=1

|u(x)|pi−2u(x))ϕ(x)dx =
∫

RN

f (u(x))ϕ(x)dx

for any ϕ ∈ Wε.

We denote catB(A) by the category of A with respect to B, namely the least
integer k such that A ⊂ A1 ∪ · · · ∪ Ak, where Ai (i = 1, . . . , k) is closed and
contractible in B. We set catB(∅) = 0 and catB(A) = +∞ if there is no integer
with above property. We refer the reader to [57] for more details on Ljusternik–
Schnirelmann theory. Now, we state the main result in this paper.
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Theorem 2. Let (V1), (V2) and ( f1) − ( f5) hold. Then for any δ > 0 such that

Mδ = {x ∈ R
3 : dist(x, M) ≤ δ} ⊂ �,

there exists εδ > 0 such that problem (Pε) has at least catMδ (M) nontrivial non-
negative weak solutions for any 0 < ε < εδ. Moreover, if uε denotes one of these
solutions and ηε is its global maximum, then

lim
ε→0+ V (ηε) = V0.

Remark 3. We use the Nehari manifold, penalization method, concentration com-
pactness principle and Ljusternik–Schnirelmann theory to prove the main result.
There are some difficulties in proving our theorem. The first difficulty is that the
nonlinearity f has exponential critical growth. The second is that the fractional
Sobolev embedding is the lack of compactness. Furthermore, our problem can-
not transfer to local problem via to Caffarelli–Silvestre’s method. Compare with
subcritical case due to Ambrosio–Radulescu [8] as m = 1, we need estimate the
Mountain pass level due to the Trudinger–Moser nonlinearity and all our steps
need focus it. Then our duties are complex and they are not the same in the work
of Ambrosio–Radulescu. We emphase that the work Ambrosio–Radulescu studied
the Eq. (1.1) when m = 1 and 0 < N < ps. In this case we have the continuous
embedding from Ws,p(�) into LNp/(N−sp)(�). In our work, N = ps, then we do
not have the previous embedding. Hence, our work is independent with work of
Ambrosio–Radulescu [8]. Furthermore, our problem is more complicated than the
problem in [8] due to many phases, not only double phases.

The paper is organized as follows. In Sect. 2, we study the autonomous problem
associated. In Sect. 3, we study the modified problem. We prove the Palais-Smale
condition for the energy functional and provide some tools which are useful to
establish a multiplicity result. This allows us to show that the modified problem
has multiple solutions. In Sect. 4, we prove the existence of ground state solution
to modified problem. In the final part of this paper, we complete the paper with the
proof of Theorem 2.

2. Autonomous problem

In this section, we study the autonomous problem associated to (1.1) as following

(−�)sN/su +
m∑

i=1

(−�)spi u + η

⎛

⎝|u|
N

s
−2

u +
m∑

i=1

|u|pi−2u

⎞

⎠ = f (u) in R
N , (Pη)

(2.1)

where η > 0 is a constant. Set W = Ws,N/s(RN ) ∩ ∩m
i=1W

s,pi (RN ). We denote
Jη : W → R by the corresponding energy functional for problem (2.1)

Jη(u) = 1

p
||u||p

η,Ws,p(RN )
+

m∑

i=1

1

pi
||u||pi

η,Ws,pi (RN )
−
∫

RN

F(u)dx .
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From the condition ( f3), there exist τ > 0 and δ > 0 such that for all |t | ≤ δ,

we have

| f (t)| ≤ τ |t |pm−1. (2.2)

Moreover from the condition ( f1) and f is a continuous function, for each q ≥ N

s
,

we can find a constant C = C(q, δ) > 0 such that

| f (t)| ≤ C |t |q−1�N ,s(α0|t |N/(N−s)) (2.3)

for all |t | ≥ δ. Combine (2.2) and (2.3), we get

| f (t)| ≤ τ |t |pm−1 + C |t |q−1�N ,s(α0|t |N/(N−s)) (2.4)

for all t ≥ 0 and

|F(t)| ≤
t∫

0

| f (s)|ds ≤ τ |t |pm + C |t |q�N ,s(α0|t |N/(N−s)) (2.5)

for all t ≥ 0.

Definition 4. We said that u ∈ W is a weak solution of (2.1) if

∫

R2N

|u(x) − u(y)|
N

s
−2

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|2N dxdy

+
m∑

i=1

∫

R2N

|u(x) − u(y)|pi−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+pi s
dxdy

+
∫

RN

η(|u(x)|
N

s
−2

u(x) +
m∑

i=1

|u(x)|pi−2u(x))ϕ(x)dx =
∫

RN

f (u(x))ϕ(x)dx

for any ϕ ∈ W.

In order to prove the result in this paper, we need the following result:

Lemma 1. ([61]) Let s ∈ (0, 1) and sp = N . Then for every 0 ≤ α < α∗ ≤ α∗
s,N ,

the following inequality holds:

sup
u∈Ws,p(RN ),||u||Ws,p (RN )

≤1

∫

RN

�N ,s(α|u|N/(N−s))dx < +∞,

where �N ,s(t) = et − ∑ jp−2
i=0

t j

j ! , jp = min{ j ∈ N : j ≥ p}. Moreover, for

α > α∗
s,N ,

sup
u∈Ws,p(RN ),||u||Ws,p (RN )

≤1

∫

RN

�N ,s(α|u|N/(N−s))dx = +∞.
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Remark 5. From Lemma 1, if we use the norm ||.||η onWs,N/s(RN ), then we have

(max{1, η})−1/p||u||η,Ws,p(RN ) ≤ ||u||Ws,p(RN ) ≤ (min{1, η})−1/p||u||η,Ws,p(RN ),

then we get

sup
u∈Ws,p(RN ),||u||

η,Ws,p (RN )
≤(min{1,η})s/N

∫

RN

�N ,s(α|u|N/(N−s))dx < +∞

for all 0 ≤ α < α∗ ≤ α∗
s,N .

Using Lemma 1 and note that C∞
0 (RN ) is a density subspace of Ws,p(RN ) ∩

∩m
i=1W

s,pi (RN ),we see that Jη is well defined onWs,N/s(RN )∩∩m
i=1W

s,pi (RN ).

Furthermore, we have

< J
′
η(u), ϕ > =

∫

R2N

|u(x) − u(y)|
N

s
−2

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|2N dxdy

+
m∑

i=1

∫

R2N

|u(x) − u(y)|pi−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+pi s
dxdy

+ η

∫

RN

⎛

⎝|u|
N

s
−2

u +
m∑

i=1

|u|pi−2u

⎞

⎠ϕdx −
∫

RN

f (u)ϕdx .

We know that W is uniformly convex with norm

||u||W = ||u||Ws,p(RN ) +
m∑

i=1

||u||Ws,pi (RN ).

Another norm is

||u||η,W = ||u||η,Ws,p(RN ) +
m∑

i=1

||u||η,Ws,pi (RN ).

By Theorem 6.9 [42], we have the embedding from Ws,N/s(RN ) into Lν(RN )

is continuous for any ν ∈ [N
s

,+∞) and W = Ws,p(RN ) ∩ ∩m
i=1W

s,pi (RN ) is

continuously embedded into Ws,p(RN ). Hence, W is continuously embedded into

Lν(RN ) is continuous for any ν ∈ [N
s

,+∞). Then there exists a best constant

Aν,η > 0 for all ν ∈ [N
s

,+∞) as follows:

Aν,η = inf
u 
=0,u∈W

||u||η,W

||u||Lν(RN )

.
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This implies

||u||Lν (RN ) ≤ A−1
ν,η||u||η,W for all u ∈ W. (2.6)

We can check that Jη satisfies the geometry condition of Mountain Pass Theo-
rem. Indeed, we have the following result:

Lemma 2. Suppose that ( f1) and ( f3) hold. Then there exist constants positive
t0, ρ0 such that Jη(u) ≥ ρ0 for all u ∈ W, with ||u||η,W = t0.

Proof. From (2.4), for some q > pm, we have

|F(t)| ≤ τ |t |pm + C |t |q�N ,s(α0|t |N/(N−s))

for all t ∈ R. Then we get

Jη(u) = s

N
||u||N/s

η,Ws,p(RN )
+

m∑

i=1

1

pi
||u||pi

η,Ws,pi (RN )
−
∫

RN

F(u)dx

≥ s

N
||u||N/s

η,Ws,p(RN )
+

m∑

i=1

1

pi
||u||pi

η,Ws,pi (RN )
− τ

∫

RN

|u|pmdx

− C
∫

RN

|u|q�N ,s(α0|u|N/(N−s))dx . (2.7)

Using Hölder inequality, we have
∫

RN

|u|q�N ,s(α0|u|N/(N−s))dx

≤
⎛

⎜⎝
∫

RN

(
�N ,s(α0|u|N/(N−s))

)t
dx

⎞

⎟⎠

1/t

||u||q
Lqt ′ (RN )

, (2.8)

where t > 1, t ′ > 1 such that
1

t
+ 1

t ′
= 1. By Lemma 2.3 [38], for any b > t,

there exist a constant C(b) > 0 such that
(
�N ,s(α0|u|N/(N−s))

)t ≤ C(b)�N ,s(bα0|u|N/(N−s)) (2.9)

on R
N . Denote by d = min{1, η}, we get

∫

RN

(
�N ,s(α0|u|N/(N−s))

)t
dx ≤ C(b)

∫

RN

�N ,s(bα0|u|N/(N−s))dx

= C(b)

∫

RN

�N ,s(bα0d
−s/(N−s)||u||N/(N−s)

η,Ws,p(RN )
|ds/Nu/||u||η,Ws,p(RN )|N/(N−s))dx .

(2.10)
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We know that ||u||η,Ws,p(RN ) ≤ ||u||η,W , then ||u||η,W is small enough implies that
||u||η,Ws,p(RN ) is also small enough. Therefore, when b near t, we have

bα0d
−s/(N−s)||u||N/(N−s)

η,Ws,p(RN )
< α∗, (2.11)

by Remark 5, (2.10) and (2.11), there exists a constant D > 0 such that

⎛

⎜⎝
∫

RN

(
�N ,s(α0|u|N/(N−s))

)t
dx

⎞

⎟⎠

1/t

≤ D.

Since the embedding from W → Lqt ′(RN ) is continuous, we get
∫

RN

|u|q�N ,s(α0|u|N/(N−s))dx ≤ DA−q
qt ′,η||u||qη,W < +∞. (2.12)

From (2.6), we have

||u||L pm (RN ) ≤ A−1
pm ,η||u||η,W for all u ∈ W. (2.13)

Note that the function f (t) = t pm is convex, then

(a1 + · · · + am+1

m + 1

)pm ≤ a pm
1 + · · · + a pm

m

m + 1

for all ai ≥ 0, i = 1, . . . ,m + 1. Hence apply above inequality, combine (2.7),
(2.12) and (2.13), when ||u||η,W is small enough, we obtain

Jη(u) ≥ (m + 1)1−pm

pm
(||u||η,Ws,p(RN ) +

m∑

i=1

||u||η,Ws,pi (RN ))
pm

− τ A−pm
pm ,η||u||pmη,W − CDA−q

qt ′,η||u||qη,W

= ||u||pmη,W

[( (m + 1)1−pm

pm
− τ A−pm

pm ,η

)
− CDA−q

qt ′,η||u||q−pm
η,W

]
. (2.14)

We see
(m + 1)1−pm

pm
− τ A−pm

pm ,η > 0 for τ small enough. Let

h(t) = (m + 1)1−pm

pm
− τ A−pm

pm ,η − CDA−q
qt ′,ηt

q−pm , t ≥ 0.

We now prove there exists t0 > 0 small satisfying h(t0) ≥ 1

2
(
(m + 1)1−pm

pm
−

τ A−pm
pm ,η). We see that h is continuous function on [0,+∞) and limt→0+ h(t) =

(m + 1)1−pm

pm
− τ A−pm

pm ,η, then there exists t0 such that h(t) ≥ (m + 1)1−pm

pm
−
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τ A−pm
pm ,η − ε1 for all 0 ≤ t ≤ t0, t0 is small enough such that ||u||η,W = t0 satisfies

(2.11). If we choose ε1 = 1

2
(
(m + 1)1−pm

pm
− τ A−pm

pm ,η), we have

h(t) ≥ 1

2

(
(m + 1)1−pm

pm
− τ A−pm

pm ,η

)

for all 0 ≤ t ≤ t0. Especialy,

h(t0) ≥ 1

2

(
(m + 1)1−pm

pm
− τ A−pm

pm ,η

)
. (2.15)

From (2.14) and (2.15), for ||u||η,W = t0, we have

Jη(u) ≥ t pm0

2
·
(

(m + 1)1−pm

pm
− τ A−pm

pm ,η

)
= ρ0.

��
Lemma 3. Suppose that ( f4) holds. Then there exists a function v ∈ C∞

0 (RN )with
||v||η,W > t0, such that Jη(v) < 0, where t0 > 0 is the number given in Lemma 3.

Proof. For all u ∈ C∞
0 (RN ) with ||u||η,W = 1, from the condition ( f4) and all

t > 0, we obtain

Jη(tu) = st N/s

N
||u||N/s

η,Ws,p(RN )
+

m∑

i=1

t pi

pi
||u||pi

η,Ws,pi (RN )
−
∫

RN

F(tu)dx

≤ st N/s

N
||u||N/s

η,W +
m∑

i=1

t pi

pi
||u||pi

η,Ws,pi (RN )
− γ1t

μ

∫

RN

|u(x)|μdx

≤ st N/s

N
+

m∑

i=1

t pi

pi
− γ1t

μ

∫

RN

|u(x)|μdx .

By (2.6), for all ν ≥ N

s
, we have

0 <
1

Aν,η + ε
= ||u||η,W

Aν,η + ε
≤ ||u||Lν (RN ) ≤ A−1

ν,η||u||η,W = A−1
ν,η < +∞,

where ε > 0. Since μ > pm, we have Jη(tu) → −∞ as t → +∞. Taking
v = ρ1u, ρ1 > t0 > 0 large enough, we have Jη(v) < 0, ||v||η,W > t0. ��

Using the version of Mountain Pass Theorem without the Palais-Smale condi-
tion, we get a sequence {un} ⊂ W such that

Jη(un) → cη and J ′
η(un) → 0 as n → ∞,

where the level cη is characterized by

cη = inf
γ∈	

max
t∈[0,1] Jη(γ (t))

and 	 = {γ ∈ C([0, 1],W ) : γ (0) = 0, Jη(γ (1)) < 0}.
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Lemma 4. Let {un} be (PS)cη sequence for Jη. Then there exists a constant Cγ1

such that ρ0 ≤ cη ≤ Cγ1 .

Proof. We choose a functionw ∈ W\{0} such that ||w||Lμ(RN ) = 1 and ||w||η,W ≤
Aμ,η + ε for some ε > 0 small enough. We see that

c ≤ max
t≥0

Jη(tw)

= max
t≥0

{ st N/s

N
||w||N/s

η,Ws,p(RN )
+

m∑

i=1

t pi

pi
||w||pi

η,Ws,pi (RN )
− γ1t

μ

∫

RN

|w(x)|μdx
}

≤ max
t≥0

{ s(Aμ,η + ε)N/s t N/s

N
+

m∑

i=1

(Aμ,η + ε)pi t pi

pi
− γ1t

μ
}
. (2.16)

Set g(t) = ∑m
i=1

(Aμ,η + ε)pi t pi

pi
+ s(Aμ,η + ε)N/s t N/s

N
− γ1tμ on [0,+∞). We

have

c ≤ max
t∈[0,1] g(t) + max

t≥1
g(t). (2.17)

When t ∈ [0, 1], we get

g(t) ≤ h(t) =
(

m∑

i=1

(Aμ,η + ε)pi

pi
+ s(Aμ,η + ε)N/s

N

)
t

N

s − γ1t
μ.

We denote a = s(Aμ,η + ε)N/s

N
+∑m

i=1
(Aμ,η + ε)pi

pi
, b = γ1. Compute directly,

we have

max
t∈[0,1] g(t) ≤ h(θγ1) = Cγ1 , (2.18)

where

θγ1 =
(

aN

sγ1μ

)s/(μs−N )

≤ 1

as γ1 ≥ aN

sμ
= γ ∗. Compute directly, we get

Cγ1 = h(θγ1) = a

(
1 − N

sμ

)(
aN

sbμ

)N/(μs−N )

. (2.19)

We see that limγ1→+∞ θγ1 = 0, then limγ1→+∞ h(θγ1) = 0. By arguments as
above, for all t ≥ 1, we get

g(t) ≤ h∗(t) =
(

m∑

i=1

(Aμ,η + ε)pi

pi
+ s(Aμ,η + ε)N/s

N

)
t pm − γ1t

μ
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andh∗ has uniqueness localmaximumpoint atβγ1 =
(
apm
γ1μ

)1/(μ−pm )

on (0,+∞).

Note that if we choose γ1 ≥ γ∗, where γ∗ satisfies
(
apm
γ∗μ

)1/(μ−pm )

≤ 1,

we deduce

max
t≥1

g(t) ≤ h∗(1) =
m∑

i=1

(Aμ,η + ε)pi

pi
+ s(Aμ,η + ε)N/s

N
− γ1.

Set γ∗∗ = ∑m
i=1

(Aμ,η + ε)pi

pi
+ s(Aμ,η + ε)N/s

N
. We have

max
t≥1

g(t) ≤ 0 for all γ1 ≥ max{γ∗, γ∗∗}. (2.20)

Combine (2.17), (2.18), (2.19) and (2.20), we obtain

c ≤ Cγ1 = a

(
1 − N

sμ

)(
aN

bsμ

)N/(μs−N )

(2.21)

for γ1 ≥ max{γ ∗, γ∗, γ∗∗}. Therefore, the Mountain Pass level c is small enough
when γ1 is large enough, which will be used later. Combine Lemma 2, (2.16) and
(2.21), we get ρ0 ≤ cη ≤ Cγ1 . ��

The following result is a version of Lions’s result:

Lemma 5. ([54]) If {un} is a bounded sequence in Ws,N/s(RN )∩∩m
i=1W

s,pi (RN )

and

lim
n→∞ sup

y∈RN

∫

BR(y)

|un(x)|t dx = 0

for some R > 0, t ≥ N

s
, then un → 0 strongly in Lq(RN ) for all q ∈ (t,+∞).

Lemma 6. Let {un} be a sequence in W converging weakly to 0 verifying

lim sup
n→∞

||un||N/(N−s)
η,W <

α∗ds/(N−s)

cα0
,

where c > 1 is a suitable constant andassume that ( f1)holds and limt→0+
f (t)

t pm−1 =
0. If there exists R > 0 such that lim infn→∞ supy∈RN

∫

BR(y)
|un|pmdx = 0, it

follows that
∫

RN

f (un)undx → 0 and
∫

RN

F(un)dx → 0.
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Proof. Since lim infn→∞ supy∈RN

∫

BR(y)
|un|pmdx = 0, by Lemma 5, we get un →

0 strongly in Lt (RN ) for all t ∈ (pm,+∞). From the condition ( f1) and

lim
t→0+

f (t)

t pm−1 = 0,

then for any ε > 0 and q > pm, there exists C(q, ε) > 0 such that

| f (un)un| ≤ ε|un|pm + C(q, ε)|un |q�N ,s(α0|un|N/(N−s)). (2.22)

For t > 1, t ′ > 1 and t ′ near 1 such that
1

t
+ 1

t ′
= 1, using Hölder inequality, we

get
∫

RN

|un|q�N ,s(α0|un|N/(N−s))dx

≤
⎛

⎜⎝
∫

RN

|un|qtdx
⎞

⎟⎠

1/t ⎛

⎜⎝
∫

RN

(�N ,s(α0|un|N/(N−s)))t
′
dx

⎞

⎟⎠

1/t ′

. (2.23)

Then by Lemma 2.3 [38], for any c > t ′ and near t ′, there exist a constantC(c) > 0
such that

(
�N ,s(α0|un|N/(N−s))

)t ′ ≤ C(c)�N ,s

(
cα0|un|N/(N−s)

)
(2.24)

on R
N and all n. We have

∫

RN

�N ,s(cα0|un |N/(N−s))dx

=
∫

RN

�N ,s

⎛

⎝cα0d
−s/(N−s)||un ||N/(N−s)

η,Ws,p(RN )
ds/(N−s)

(
|un |

||un ||η,Ws,p(RN )

)N/(N−s)
⎞

⎠ dx .

(2.25)

Since ||un||η,Ws,p(RN ) ≤ ||u||η,W , from Remark 5, we get

supn

∫

RN

�N ,s(cα0|un|N/(N−s))dx < +∞. (2.26)

Combine (2.23)-(2.26) and the fact that un → 0 in Lqt (RN ), we obtain
∫

RN

| f (un)un|dx ≤ ε

∫

RN

|un|pmdx + C(q, ε)

∫

RN

|un|q�N ,s(α0|un|N/(N−s))dx → 0

(2.27)

as n → ∞ since {un} is a bounded sequence in L p1(RN ). Similarly as (2.27), we
also get

∫

RN

|F(un)|dx → 0 as n → ∞. ��
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Proposition 1. Assume that the conditions ( f1)−( f5) satisfies. Then problem (2.1)
admits a nontrivial nonnegative weak solution.

Proof. From Lemma 2, Lemma 3 and a version ofMountain Pass Theoremwithout
the Palais–Smale condition [47,57], we get a sequence {un} ⊂ W such that

Jη(un) → cη and J ′
η(un) → 0 as n → ∞,

where the level cη is characterized by

0 < cη = inf
γ∈	

max
t∈[0,1] Jη(γ (t)).

By the assumption ( f5), using the idea in [43] and Lemma 3.2 [7], we can get

cη = inf
u∈W\{0} supt≥0

Jη(tu) = inf
u∈Nη

Jη(u),

where Nη is Nehari manifold for Jη.
Note that {un} is a (PS) sequence with level cη ∈ R in W. This means

Jη(un) → cη and sup
||ϕ||η,W=1

| < J ′
η(un), ϕ > | → 0 (2.28)

as n → ∞. We show that the sequence {un} is bounded in W. From (2.28), we
have

< J ′
η(un),

un
||un||η,W

>= on(1) and Jη(un) = cη + on(1)

when n large enough. It implies

Jη(un) − 1

μ
< J ′

η(un), un >= cη + on(1) + on(1)||un||η,W , (2.29)

where μ is a parameter in the condition ( f2). We have

Jη(un) − 1

μ
< J ′

η(un), un >= s

N
||un||N/s

η,Ws,p(RN )

+
m∑

i=1

1

pi
||un||piη,Ws,pi (RN )

−
∫

RN

F(un)dx

− 1

μ

[
||un||N/s

η,Ws,N/s (RN )
+

m∑

i=1

||un||piη,Ws,pi (RN )
−
∫

RN

f (un)undx
]

=
( s

N
− 1

μ

)
||un||N/s

η,Ws,p(RN )

+
m∑

i=1

( 1

pi
− 1

μ

)
||un||piη,Ws,pi (RN )

+ 1

μ

∫

RN

( f (un)un − μF(un)) dx .
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Therefore, we have

Jη(un) − 1

μ
< J ′

η(un), un >

≥
( s

N
− 1

μ

)
||un||N/s

η,Ws,p(RN )
+

m∑

i=1

( 1

pi
− 1

μ

)
||un||piη,Ws,pi (RN )

. (2.30)

Combine (2.29) and (2.30), we get

( s

N
− 1

μ

)
||un||N/s

η,Ws,p(RN )
+

m∑

i=1

( 1

pi
− 1

μ

)
||un||piη,Ws,pi (RN )

≤ cη + on(1) + on(1)||un||η,W . (2.31)

Note that

lim
x→+∞,x1→+∞,...,xm→+∞

axN/s + b1x
p1
1 · · · + bmx

pm
m

x + x1 + · · · + xm
= +∞,

where a > 0, b1 > 0, . . . , bm > 0. Then from (2.31), we conclude that the
sequence {un} is bounded in W. Since

Jη(un) − 1

μ
< J ′

η(un), un >→ cη

as n → ∞, then

lim sup
n→∞

||un||N/s
η,Ws,p(RN )

≤ cη

s

N
− 1

μ

≤ Cγ1

s

N
− 1

μ

(2.32)

and

lim sup
n→∞

||un||piη,Ws,pi (RN )
≤ cη

1

pi
− 1

μ

≤ Cγ1

1

pi
− 1

μ

(2.33)

for all i = 1, . . . ,m. Hence, we deduce

lim sup
n→∞

||un||η,W ≤

⎛

⎜⎜⎝
Cγ1

s

N
− 1

μ

⎞

⎟⎟⎠

s/N

+
m∑

i=1

⎛

⎜⎜⎝
Cγ1

1

pi
− 1

μ

⎞

⎟⎟⎠

1

pi

. (2.34)

Moreover, we claim that there exists R > 0, δ > 0 and a sequence {yn} ⊂ R
N such

that

lim inf
n→∞

∫

BR(yn)

|un|pmdx ≥ δ. (2.35)
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If the above inequality doesnot hold, it means that

lim inf
n→∞ sup

y∈RN

∫

BR(y)

|un|pmdx = 0

for some R > 0, then from (2.21) and (2.34), when γ1 large enough, we get

lim sup
n→∞

||un||N/(N−s)
η,W <

α∗ds/(N−s)

cα0
.

Using Lemma 6, we have limn→∞
∫

RN

f (un)undx → 0 as n → ∞. Then

o(1) =< J ′
η(un), un >= ||un||pη,Ws,p(RN )

+
m∑

i=1

||un||piη,Ws,pi (RN )
−
∫

RN

f (un)undx

= ||un||pη,Ws,p(RN )
+

m∑

i=1

||un||piη,Ws,pi (RN )
+ o(1)

as n → ∞. Hence un → 0 strongly in W. It implies that

Jη(un) = 1

p
||un||pη,Ws,p(RN )

+
m∑

i=1

1

pi
||un||piη,Ws,pi (RN )

−
∫

RN

F(un)dx → 0

as n → ∞. It contradicts with cη > 0. Therefore (2.35) holds. We denote vn(x) =
un(x + yn), then from (2.35) we get

∫

BR(0)

|vn|pmdx ≥ δ/2. (2.36)

Because Jη and J ′
η are both invariant by the translation, it implies that

Jη(vn) → cη and J ′
η(vn) → 0 in W ∗.

Because ||vn||η,W = ||un||η,W , then {vn} is also bounded in W, then exists v ∈ W
such that vn → v weak inW, vn → v in Lq

loc(R
N ) (q ∈ (pm,+∞)) and vn(x) →

v(x) almost everywhere in R
N . From (2.36), we get

∫

BR(0)
|v|pmdx ≥ δ/2 > 0,

then v 
≡ 0. By arguments as in [53,54], we get J ′
η(v) = 0. Furthermore, from the

condition f (t) = 0 for all t ∈ (−∞, 0], we can get v ≥ 0.
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By Fatou’s lemma, we have

cη ≤ Jη(v) = Jη(v) − 1

μ
< J

′
η(v), v >

=
(
s

N
− 1

μ

)
||v||p

η,Ws,p(RN )

+
m∑

i=1

(
1

pi
− 1

μ

)
||v||pi

η,Ws,pi (RN )
+ 1

μ

∫

RN

( f (v)v − μF(v))dx

≤ lim inf
n→∞

{( s

N
− 1

μ

)
||vn||pη,Ws,p(RN )

+
m∑

i=1

(
1

pi
− 1

μ

)
||vn||piη,Ws,pi (RN )

+ 1

μ

∫

RN

( f (vn)vn − μF(vn))dx
}

= lim inf
n→∞

{
Jη(vn) − 1

μ
< J

′
η(vn), vn >

}
= cη.

Hence v is a ground state solution to the problem (2.1). ��

3. The modified problem

Now, we introduce a penalized function in the spirit of [44] which will be funda-
mental to get our main result. First of all, without loss of generality, wemay assume
that

0 ∈ � and V (0) = V0.

Let us choose k >
μ

μ − pm
> 1 and a > 0 such that

f (a)

a pm−1 = V0
k

.

We define

f̃ (t) :=
{

f (t) if t ≤ a
V0
k
t pm−1 if t > a

,

and

g(x, t) = χ�(x) f (t) + (1 − χ�(x)) f̃ (t) for all (x, t) ∈ R
N × R.

We show that if uε is a solution in W to

(−�)spu +
m∑

i=1

(−�)spi u + V (εx)

(
|u|p−2u +

m∑

i=1

|u|pi−2u

)

= g(εx, u) in R
N (P∗

ε ) (2.37)

with uε(x) ≤ a for all x ∈ �c
ε = R

N\�ε, where �ε := {RN : εx ∈ �}, then
g(εx, uε) = f (uε). Hence uε is a solution of (1.1).
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Definition 6. We say that u ∈ Wε is a weak solution of problem (2.37) if

∫

R2N

|u(x) − u(y)|
N

s
−2

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|2N dxdy

+
m∑

i=1

∫

R2N

|u(x) − u(y)|pi−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+pi s
dxdy

+
∫

RN

V (εx)(|u(x)|
N

s
−2

u(x) +
m∑

i=1

|u(x)|pi−2u(x))ϕ(x)dx

=
∫

RN

g(εx, u(x))ϕ(x)dx

for any ϕ ∈ Wε.

We have that g satisfies the following properties [40]:
(g1) g(x, t) = 0 for all t ≤ 0 and g(x, t) > 0 for all t > 0 and x ∈ R

N ;
(g2) limt→0+

g(x, t)

t pm−1 = 0 uniformly with respect to x ∈ R
N ;

(g3) g(x, t) ≤ f (t) for all t ≥ 0 and x ∈ R
N ;

(g4) 0 < μG(x, t) ≤ g(x, t)t for all x ∈ � and t > 0, where G(x, t) =
t∫

0
g(x, τ )dτ ;

(g5) 0 < pmG(x, t) ≤ g(x, t)t ≤ V0
k
t pm for all x ∈ �c and t > 0.

(g6) for each x ∈ �, the function
g(x, t)

t pm−1 is a strictly increasing of t in (0,+∞);
(g7) for each x ∈ �c, the function

g(x, t)

t pm−1 is a strictly increasing of t in (0, a).

Further, if t ≥ a, we have
g(x, t)

t pm−1 = V0
k

.

In order to study the Eq. (2.37), we consider the energy functional Iε : Wε → R

given by

Iε(u) = 1

p
||u||p

Ws,p
V,ε

+
m∑

i=1

1

pi
||u||pi

W
s,pi
V,ε

−
∫

RN

G(εx, u)dx .

By the condition ( f1) and (g3), Iε is well defined on Wε, Iε ∈ C2(Wε,R) and its
critical points are weak solution of problem (2.37). Associated to Iε, we consider
the Nehari manifold Nε given by

Nε = {u ∈ Wε\{0} :< I ′
ε(u), u >= 0},
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where

< I ′
ε(u), ϕ > =

∫

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+ps
dxdy

+
m∑

i=1

∫

R2N

|u(x) − u(y)|pi−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+pi s
dxdy

+
∫

RN

V (εx)(|u|p−2u +
m∑

i=1

|u|pi−2u)ϕdx −
∫

RN

g(εx, u)ϕdx

for any u, ϕ ∈ Wε.

Proposition 2. There exists r∗ > 0 such that

||u||Wε ≥ r∗ > 0 for all u ∈ Nε.

Proof. We are easy to get the inequality

||u||Ws,p(RN ) ≤ min{1, V0}−1/p||u||Ws,p
V,ε(R

N ) ≤ min{1, V0}−1/p||u||Wε . (2.38)

Then from Lemma 1 and (2.38), we have

sup
u∈Wε,||u||Wε ≤(min{1,V0})s/N

∫

RN

�N ,s(α|u|N/(N−s))dx < +∞ (2.39)

and

sup
u∈Ws,p

V,ε(R
N ),||u||

W
s,p
V,ε

(RN )
≤(min{1,V0})s/N

∫

RN

�N ,s(α|u|N/(N−s))dx < +∞ (2.40)

for all 0 ≤ α < α∗. From the condition ( f1), ( f3) and (g3), for any ε∗ > 0 and
q > pm, there exists Cq,ε∗ > 0 such that

|g(εx, t)t | ≤ | f (t)t | ≤ ε∗|t |pm + Cq,ε∗ |t |q�N ,s(α0|t |N/(N−s)) (2.41)

for all t ≥ 0. Combining (2.39) and (2.41), by arguments as Proposition 2 in [54],
we can get the result of Proposition 2. We omit the details at here. ��
Lemma 7. The functional Iε satisfies the following conditions:
(i) There exists α > 0, ρ > 0 such that Iε(u) ≥ α for all u ∈ Wε with ||u||Wε = ρ.

(i i) There exists e ∈ Wε with ||e||Wε > ρ such that Iε(e) < 0.

Proof. First we prove the statement (i). From (2.41), for any τ > 0 and some
q > pm, there exists C > 0 such that

|G(εx, t)| ≤ |g(εx, t)t | ≤ | f (t)t | ≤ τ |t |pm + C |t |q�N ,s(α0|t |N/(N−s))
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for all t ∈ R. Then for all u ∈ Wε such that ||u||Wε ∈ (0, 1), we have

Iε(u) = 1

p
||u||p

Ws,p
V,ε

+
m∑

i=1

1

pi
||u||pi

W
s,pi
V,ε

−
∫

RN

G(εx, u)dx

≥ (m + 1)1−pm

pm
||u||pmWε

− τ

∫

RN

|u|pmdx − C
∫

RN

|u|q�N ,s(α0|u|N/(N−s))dx .

(2.42)

Using Hölder inequality, we have

∫

RN

|u|q�N ,s(α0|u|N/(N−s))dx ≤
⎛

⎜⎝
∫

RN

(
�N ,s(α0|u|N/(N−s))

)t
dx

⎞

⎟⎠

1/t

||u||q
Lqt ′ (RN )

,

(2.43)

where t > 1, t ′ > 1 such that
1

t
+ 1

t ′
= 1. By Lemma 2.3 [38], for any b > t,

there exist a constant C(b) > 0 such that
(
�N ,s(α0|u|N/(N−s))

)t ≤ C(b)�N ,s(bα0|u|N/(N−s)) (2.44)

on R
N . We get

∫

RN

(
�N ,s(α0|u|N/(N−s))

)t ≤ C(b)

∫

RN

�N ,s(bα0|u|N/(N−s))dx

= C(b)

∫

RN

�N ,s(bα0d
−s/(N−s)||u||N/(N−s)

Wε
|ds/Nu/||u||Wε |N/(N−s))dx .

(2.45)

When ||u||Wε is small enough and b near t, we have

bα0d
−s/(N−s)||u||N/(N−s)

Wε
< α∗, (2.46)

From (2.45) and (2.46), there exists a constant D > 0 such that

⎛

⎜⎝
∫

RN

(
�N ,s(α0|u|N/(N−s))

)t
dx

⎞

⎟⎠

1/t

≤ D.

Since the embedding from Wε → Lqt ′(RN ) is continuous, we get
∫

RN

|u|q�N ,s(α0|u|N/(N−s))dx ≤ DS−q
qt ′,ε||u||qWε

< +∞. (2.47)
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From (1.7), we have

||u||L pm (RN ≤ S−1
pm ,ε||u||Wε for all u ∈ Wε. (2.48)

Hence, combine (2.42), (2.47) and (2.48), we obtain

Iε(u) ≥ (m + 1)1−pm

pm
||u||pmWε

− τ S−pm
pm ,ε ||u||pmWε

− CDS−q
qt ′,ε||u||qWε

= ||u||pmWε

[( (m + 1)1−pm

pm
− τ S−pm

pm ,ε

)
− CDS−q

qt ′,ε||u||q−pm
Wε

]
. (2.49)

We see
(m + 1)1−pm

pm
− τ S−pm

pm ,ε > 0 for τ small enough. Let

h(t) = (m + 1)1−pm

pm
− τ S−pm

pm ,ε − CDS−q
qt ′ t

q−pm , t ≥ 0.

We now prove there exists t0 > 0 small satisfying h(t0) ≥ 1

2
(
(m + 1)1−pm

pm
−

τ S−pm
pm ,ε ). We see that h is continuous function on [0,+∞) and limt→0+ h(t) =

(m + 1)1−pm

pm
− τ S−pm

pm ,ε , then there exists t0 such that h(t) ≥ (m + 1)1−pm

pm
−

τ S−pm
pm ,ε − ε1 for all 0 ≤ t ≤ t0, t0 is small enough such that ||u||Wε = t0 satisfies

(2.46). If we choose ε1 = 1

2
(
(m + 1)1−pm

pm
− τ S−pm

pm ,ε ), we have

h(t) ≥ 1

2

(
(m + 1)1−pm

pm
− τ S−pm

pm ,ε

)

for all 0 ≤ t ≤ t0. Especialy,

h(t0) ≥ 1

2

(
(m + 1)1−pm

pm
− τ S−pm

pm ,ε

)
. (2.50)

From (2.49) and (2.50), for ||u||Wε = t0, we have

Iε(u) ≥ t pm0

2
·
(

(m + 1)1−pm

pm
− τ S−pm

pm ,ε

)
= ρ0.

Second, we prove the statement (i i). Set u ∈ C∞
0 (RN )\{0} such that supp(u) ⊂

�ε. From the condition ( f4) and all t > 0, we obtain

Iε(tu) = t N/s

p
||u||N/s

Ws,p
V,ε(R

N )
+

m∑

i=1

t pi

pi
||u||pi

W
s,pi
V,ε (RN )

−
∫

RN

F(tu)dx

≤ t N/s

p
||u||N/s

Ws,p
V,ε(R

N )
+

m∑

i=1

t pi

pi
||u||pi

W
s,pi
V,ε (RN )

− γ1t
μ

∫

supp(u)

|u(x)|μdx .

Since μ > pm >
N

s
, we have Iε(tu) → −∞ as t → +∞. Taking v = ρ1u, ρ1 >

t0 > 0 large enough, we have Iε(v) < 0, ||v||η > t0. ��



522 T. V. Nguyen, V. D. Rădulescu

FromLemma7 and the version ofMountain Pass Theorem, there exists a (PS)cε
sequence {un} ⊂ Wε, that is,

Iε(un) → cε and I
′
ε(un) → 0,

where

cε = inf
γ∈	

max
t∈[0,1] Iε(γ (t))

and 	 = {γ ∈ C([0, 1],Wε) : γ (0) = 0, Iε(γ (1)) < 0}.
The following result is the characteristic of Mountain Pass level which the

original idea comes from [43]:

Proposition 3. We have cε = infu∈Wε\{0} supt≥0 Iε(tu) = infu∈Nε
Iε(u).

Proof. We denote c∗
ε = infu∈Wε\{0} supt≥0 Iε(tu) and c∗∗

ε = infu∈Nε
Iε(u). For

each u ∈ Nε\{0}, there exists a unique t (u) > 0 such that t (u)u ∈ Nε and the
maximum of Iε(tu) for all t ≥ 0 is achieved at t = t (u). Indeed, by Lemma 7,
hu(t) = Iε(tu) > 0 when t > 0 is small enough and hu(t) = Iε(tu) < 0 when
t > 0 is large enough. Then there exists t (u) > 0 such that hu(t (u)) = Iε(t (u)u) =
maxt≥0 Iε(tu). By Fermat’s Theorem, we have h′

u(t (u)) = 0 iff t (u)u ∈ Nε. From
g(εx, t) = 0 for all t ≤ 0, it follows that

||u||p
Ws,p

V,ε

t pm−p
+ · · · +

||u||p1
W

s,p1
V,ε

t pm−p1
+ ||u||pm

Ws,pm
V,ε

=
∫

RN

ug(εx, tu)

t pm−1 dx

=
∫

{x∈RN :tu(x)>0}
(u+)

pm g(εx, tu+)

(tu+)pm−1 dx .

We conisder the case m ≥ 2, the case m = 1 is proved similarly. Arguing by a
contradiction, there exists two positive numbers t1 > t2 > 0 such that t1u, t2u ∈
Nε, from (g6), we get

(
1

t pm−p
1

− 1

t pm−p
2

)
[u]ps,p +

(
1

t pm−p
1

− 1

t pm−p
2

) ∫

RN

V (εx)|u|pdx + · · ·

+
(

1

t pm−pm−1
1

− 1

t pm−pm−1
2

)
[u]pm−1

s,pm−1

+
(

1

t pm−pm−1
1

− 1

t pm−pm−1
2

) ∫

RN

V (εx)|u|pm−1dx

=
∫

RN

(u+)
pm
[g(εx, t1u+)

(t1u+)pm−1 − g(εx, t2u+)

(t2u+)pm−1

]
dx

=
∫

RN \�ε

(u+)
pm
[g(εx, t1u+)

(t1u+)pm−1 − g(εx, t2u+)

(t2u+)pm−1

]
dx
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+
∫

�ε

(u+)
pm
[g(εx, t1u+)

(t1u+)pm−1 − g(εx, t2u+)

(t2u+)pm−1

]
dx

≥
∫

RN \�ε

(u+)
pm
[g(εx, t1u+)

(t1u+)pm−1 − g(εx, t2u+)

(t2u+)pm−1

]
dx . (2.51)

We have
∫

RN \�ε

(u+)
pm
[g(εx, t1u+)

(t1u+)pm−1 − g(εx, t2u+)

(t2u+)pm−1

]
dx

=
∫

(RN \�ε)∩{t2u>a}
(u+)

pm
[g(εx, t1u+)

(t1u+)pm−1 − g(εx, t2u+)

(t2u+)pm−1

]
dx

+
∫

(RN \�ε)∩{t2u≤a<t1u}
(u+)

p1
[g(εx, t1u+)

(t1u+)pm−1 − g(εx, t2u+)

(t2u+)pm−1

]
dx

+
∫

(RN \�ε)∩{t1u<a}
(u+)

pm
[g(εx, t1u+)

(t1u+)pm−1 − g(εx, t2u+)

(t2u+)pm−1

]
dx

:= I + I I + I I I.

By the definition of g, we have I = 0. Since g(εx, t) = f̃ (t) = V0
k
t pm−1 for all

x ∈ �c
ε and t > a, we get

I I =
∫

(RN \�ε)∩{t2u≤a<t1u}
(u+)

pm
[V0
k

− g(εx, t2u+)

(t2u+)pm−1

]
dx .

Wehave
g(εx, t2u+)

(t2u+)pm−1 = f (t2u+)

(t2u+)pm−1 ≤ f (a)

a pm−1 = V0
k

since
f (t)

t pm−1 is an increasing

function.Therefore I I ≥ 0.By the condition (g7) and t1u+ > t2u+,wehave I I I >

0. Since t1 > t2, then we have
1

t pm−p
1

− 1

t pm−p
2

< 0 and
1

t pm−pi
1

− 1

t pm−pi
2

< 0 for

all i = 1, . . . ,m − 1. Combine that property, (2.51) and I + I I + I I I > 0, we get
a contradiction. Thus t (u) is uniqueness. Therefore, we see that

sup
t≥0

Iε(tu) = I (t (u)u)

and t (u)u ∈ Nε. It implies that c∗
ε = c∗∗

ε . On the other hand, for fixed u ∈ Wε\{0},
we have Iε(tu) < 0 when t large enough. Then there exist t0 >> 0 such that
Iε(tu) < 0 for all t ≥ t0. We consider the curve gu : [0, 1] → Wε such that
gu(t) = t t0u for all t ∈ [0, 1] and gu ∈ 	. Hence, we obtain maxt≥0 Iε(tu) =
maxt∈[0,1] I (gu(t)) and it implies that

c∗
ε = inf

u∈Wε\{0}
max
t≥0

Iε(tu) = inf
u∈Wε\{0}

max
t∈[0,1] I (gu(t)) ≥ inf

γ∈	
max
t∈[0,1] I (γ (t)) = cε.
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Next we prove that cε ≥ c∗∗
ε . Indeed, we only need show that every path γ ∈ 	

has to cross Nε. Conversly, if γ ∩ Nε = ∅, then < I ′
ε(γ (t)), γ (t) >> 0 or

< I ′(ε)(γ (t)), γ (t) >< 0 for all t ∈ [0, 1]. We have

< I ′
ε(γ (t)), γ (t) >= ||γ (t)||p

Ws,p
V,ε(R

N )
+

m∑

i=1

||γ (t)||pi
W

s,pi
V,ε (RN )

−
∫

RN

g(εx, γ (t))γ (t)dx .

Using Trudinger–Moser inequality we get

< I ′
ε(γ (t)), γ (t) >> 0

when ||γ (t)||Wε is small enough. Then the case < I ′(ε)(γ (t)), γ (t) >< 0 for all
t ∈ [0, 1] is not true. Next, we prove that < I ′

ε(γ (t)), γ (t) >> 0 for all t ∈ [0, 1]
can not occur.

From the assumptions (g4) and (g5), we have

∫

RN

g(εx, γ (t))γ (t)dx =
∫

�ε

g(εx, γ (t))γ (t)dx +
∫

�c
ε

g(εx, γ (t))γ (t)dx

≥ μ

∫

�ε

G(εx, γ (t))dx + pm

∫

�c
ε

G(εx, γ (t))dx ≥ pm

∫

RN

G(εx, γ (t))dx .

Then, we get

0 << I ′
ε(γ (t)), γ (t) >≤ ||γ (t)||p

Ws,p
V,ε(R

N )

+
m∑

i=1

||γ (t)||pi
W

s,pi
V,ε (RN )

− pm

∫

RN

G(εx, γ (t))dx

for all t ∈ [0, 1]. By the definition of γ, when t near 1, we have Iε(γ (t)) < 0 due
to the continuous of Iε on Wε. Then we get

∫

RN

G(εx, γ (t))dx <
1

pm
(||γ (t)||p

Ws,p
V,ε(R

N )
+

m∑

i=1

||γ (t)||pi
W

s,pi
V,ε (RN )

)

<
1

p
||γ (t)||p

Ws,p
V,ε(R

N )
+

m∑

i=1

1

pi
||γ (t)||pi

W
s,pi
V,ε (RN )

<

∫

RN

G(εx, γ (t))dx .

It is a contradiction. Hence γ ∩ Nε 
= ∅ and then cε ≥ c∗∗
ε . ��
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Lemma 8. Assume that {un} ⊂ Wε is a (PS)d sequence for the functional Iε and

k >
μ

μ − pm
. If 0 < d and d satisfies the condition

[( s

N
− 1

μ

)−s/N
ds/N

+
m−1∑

i=1

( 1

pi
− 1

μ

)−1

pi d

1

pi +
( 1

pm
− 1

μ
− 1

pmk

)−1

pm d

1

pm
]N/(N−s)

<
β∗ds/(N−s)∗

cα0
,

if m ≥ 2 and

[( s

N
− 1

μ

)−s/N
ds/N +

( 1

p1
− 1

μ
− 1

p1k

)−1

p1 d

1

p1
]N/(N−s)

<
β∗ds/(N−s)∗

cα0

if m = 1, then {un} is a bounded sequence in Wε and

lim sup
n→∞

||un||N/(N−s)
Wε

<
β∗ds/(N−s)∗

cα0
,

where c > 1 is a suitable constant and d∗ = min{1, V0}.

Proof. We only consider the case m ≥ 2. The case m = 1 is proved similarly as
m ≥ 2. We omit the details. First, we see that

d + on(1) + on(1)||un||Wε ≥ Iε(un) − 1

μ
< I

′
ε(un), un >

=
(
1

p
− 1

μ

)
||un||pWs,p

V,ε(R
N )

+
m∑

i=1

(
1

pi
− 1

μ

)
||un||piWs,pi

V,ε (RN )

+
∫

RN

(
1

μ
g(εx, un)un − G(εx, un))dx

≥
(
1

p
− 1

μ

)
||un||pWs,p

V,ε(R
N )

+
m∑

i=1

(
1

pi
− 1

μ

)
||un||piWs,pi

V,ε (RN )

+
∫

�c

(
1

μ
g(εx, un)un − G(εx, un)

)
dx .
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Therefore, we get

d + on(1) + on(1)||un ||Wε ≥
∫

�c

(
1

μ
g(εx, un)un − G(εx, un)

)
dx

≥
(
1

p
− 1

μ

)
||un ||pWs,p

V,ε (R
N )

+
m∑

i=1

(
1

pi
− 1

μ

)
||un ||piWs,pi

V,ε (RN )
−
∫

�c

G(εx, un)dx

≥
(
1

p
− 1

μ

)
||un ||pWs,p

V,ε (R
N )

+
m∑

i=1

(
1

pi
− 1

μ

)
||un ||piWs,pi

V,ε (RN )
−
∫

�c

V0
kpm

|un |pm dx

≥
(
1

p
− 1

μ

)
||un ||pWs,p

V,ε (R
N )

+
m∑

i=1

(
1

pi
− 1

μ

)
||un ||piWs,pi

V,ε (RN )
− 1

pmk

∫

�c

V (εx)|un |pm dx

≥
(

s

N
− 1

μ

)
||un ||N/s

Ws,p
V,ε (R

N )
+

m−1∑

i=1

(
1

pi
− 1

μ

)
||un ||piWs,pi

V,ε (RN )

+
(

1

pm
− 1

μ
− 1

pmk

)
||un ||pmWs,pm

V,ε (RN )
.

Since k >
μ

μ − pm
, using the property

lim
x→+∞,x1→+∞,...,xm→+∞

ax p + a1x
p1
1 + · · · + amx

pm
m

x + x1 + · · · + xm
= +∞,

where a > 0, a1 > 0, . . . , am > 0, we have {un} is a bounded sequence in Wε.

Then, we deduce

lim sup
n→∞

||un||N/s
Ws,p

V,ε(R
N )

≤ d
s

N
− 1

μ

, lim sup
n→∞

||un||piWs,pi
V,ε (RN )

≤ d
1

pi
− 1

μ

for all i = 1, . . . ,m − 1 and

lim sup
n→∞

||un||pmWs,pm
V,ε (RN )

≤ d
1

pm
− 1

μ
− 1

pmk

.

From the assumption of d, we get

lim sup
n→∞

||un||N/(N−s)
Wε

= lim sup
n→∞

(
||un||Ws,p

V,ε(R
N ) +

m∑

i=1

||un||Ws,pi
V,ε (RN )

)N/(N−s)

≤
[( s

N
− 1

μ

)−s/N
ds/N +

m−1∑

i=1

( 1

pi
− 1

μ

)−1

pi d

1

pi

+
( 1

pm
− 1

μ
− 1

pmk

)−1

pm d

1

pm
]N/(N−s)

<
β∗ds/(N−s)∗

cα0
.

��
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Lemma 9. Let d > 0 and d satisfies the condition

[( s

N
− 1

μ

)−s/N
ds/N +

m−1∑

i=1

( 1

pi
− 1

μ

)−1

pi d

1

pi

+
( 1

pm
− 1

μ
− 1

pmk

)−1

pm d

1

pm
]N/(N−s)

<
β∗ds/(N−s)∗

cα0
,

if m ≥ 2 and

[( s

N
− 1

μ

)−s/N
ds/N +

( 1

p1
− 1

μ
− 1

p1k

)−1

p1 d

1

p1
]N/(N−s)

<
β∗ds/(N−s)∗

cα0

if m = 1, and {un} ⊂ Wε be a (PS)d sequence for Iε such that un → 0 weak in
Wε. Then we have either:
(i) un → 0 in Wε or
(i i) there exists a sequence {yn} ⊂ R

N and constants R > 0, β > 0 such that

lim inf
n→∞

∫

BR(yn)

|un|pmdx ≥ β > 0.

Proof. Suppose that (i i) doesnot occur. By Lemma 8, we have

lim sup
n→∞

||un||N/(N−s)
Ws,p

V,ε(R
N )

<
β∗ds/(N−s)∗

cα0
.

Since the embeddings Wε → Ws,N/s
V,ε (RN ) → Ws,p(RN ) are continuous, then we

can apply Lemma 5 and get un → 0 in Lq(RN ) for q ∈ (pm,+∞). By arguments
as Lemma 6, from the conditions (g2) and (g3), using the inequality (2.40), we
have limn→∞

∫

RN

f (un)undx = 0. Recalling that < I ′
ε(un), un >→ 0 as n → ∞,

then we deduce un → 0 strongly in Wε. The proof of Lemma 9 is completed. ��
Lemma 10. The number cε and cV0 satisfy the following inequality

lim sup
ε→0+

cε ≤ cV0 ≤ a

(
1 − N

sμ

)(
aN

γ1sμ

)N/(μs−N )

for all γ1 ≥ a,

a = s(Aμ,η + ε∗)N/s

N
+

m∑

i=1

(Aμ,η + ε∗)pi
pi

for some ε∗ > 0.
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Proof. First, we consider the case m ≥ 2. Let φ ∈ C∞
0 (RN , [0, 1]) be such that

φ ≡ 1 on Bδ/2(0), supp(φ) ⊂ Bδ(0) ⊂ � for some δ > 0 and φ ≡ 0 on
R

N\Bδ(0). For each ε > 0, let us define vε(x) = φ(εx)w(x),wherew is a ground
state solution of the problem (PV0) given in Proposition 1. Then vε → w strong in
Ws,N/s(RN )∩∩m

i=1W
s,pi (RN ) (see Lemma 2.4 [14]). We see that support of vε is

contained in �ε = {x ∈ R
N : εx ∈ �}. For each vε, there exists tε > 0 such that

tεvε ∈ Nε, and we have

cε ≤ Iε(tεvε) = t pε
p

∫

R2N

|vε(x) − vε(y)|p
|x − y|2N dxdy + t pε

p

∫

RN

V (εx)|vε(x)|pdx

+
m∑

i=1

( t piε

pi

∫

R2N

|vε(x) − vε(y)|pi
|x − y|N+pi s

dxdy + t piε

pi

∫

RN

V (εx)|vε(x)|pi dx
)

−
∫

RN

G(εx, tεvε)dx

= t pε
p

∫

R2N

|vε(x) − vε(y)|p
|x − y|2N dxdy + t pε

p

∫

RN

V (εx)|vε(x)|pdx

+
m∑

i=1

( t piε

pi

∫

R2N

|vε(x) − vε(y)|pi
|x − y|N+pi s

dxdy + t piε

pi

∫

RN

V (εx)|vε(x)|pi dx
)

−
∫

RN

F(tεvε)dx

Since tεvε ∈ Nε, we have

||tεvε||pWs,p
V,ε (R

N )
+

m∑

i=1

||tεvε||piWs,pi
V,ε (RN )

=
∫

RN

g(εx, tεvε)tεvεdx =
∫

RN

f (tεvε)tεvεdx .

(2.52)

Then we get

Iε(tεvε) = 1

p
||tεvε||pWs,p

V,ε(R
N )

+
m∑

i=1

1

pi
||tεvε||piWs,pi

V,ε (RN )
−
∫

RN

F(tεvε)dx

=
( 1
p

− 1

pm

)
||tεvε||pWs,p

V,ε(R
N )

+
m−1∑

i=1

( 1

pi
− 1

pm

)
||tεvε||piWs,pi

V,ε (RN )

−
∫

RN

(
1

pm
f (tεuε)tεuε − F(tεuε)

)
dx ≥ 0. (2.53)

From (2.53), we see that the sequence {tε} must be bounded as ε → 0+. Indeed, if
tε → +∞ as ε → 0+, then using the condition ( f4), we have

Iε(tεvε) ≥ t pε
p

||vε||pWs,p
V,ε(R

N )
+

m∑

i=1

t piε

pi
||vε||piWs,pi

V,ε (RN )
− γ1t

μ
ε ||vε||μLμ(RN )

→ −∞,
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which is a contradiction with (2.53). Thus, we can assume that tε → t0 as ε → 0+.

Then we get

lim sup
ε→0+

cε ≤ t p0
p

∫

R2N

|w(x) − w(y)|p
|x − y|2N dxdy + t p0

p

∫

RN

V0|w|pdx

+
m∑

i=1

( t pi0

pi

∫

R2N

|w(x) − w(y)|pi
|x − y|N+pi s

dxdy

+ t pi0

pi

∫

RN

V0|w|pi dx
)

−
∫

RN

F(t0w)dx

= JV0(t0w)

via to Vitali’s theorem. If t0 = 0, by the condition ( f1) and ( f3), we have

| f (t)| ≤ ε∗|t |pm−1 + C(ε∗)|t |q−1�N ,s(α0|t |N/(N−s))

for all t ≥ 0 and some constants q > pm . Then from (2.52), we get

t p−p1
ε ||vε||pWs,p

V,ε

+
m−1∑

i=1

t p−pi
ε ||vε||piWs,pi

V,ε

) + ||vε||pmWs,pm
V,ε

=
∫

RN

f (tεvε)

t pm−1
ε

vεdx

≤ ε∗
∫

RN

|vε|pmdx + tq−pm
ε C(ε∗)

∫

RN

|vε|q�N ,s(α0|tεvε|N/(N−s))dx . (2.54)

Choose ε∗ > 0 is small enough, using Trudinger–Moser inequality and note that

vε → w strong Ws,t (RN ) (t ≥ N

s
) from (2.54), we get a contradiction since the

left side tends to ∞ and the right side tends to zero. Hence t0 > 0. Using Vitali’s
theorem and take limit of (2.52) as ε → 0+, we deduce

t p−p1
0 ||w||pWV0,Ws,p (RN )

+
m−1∑

i=1

t p−pi
0 ||w||piWV0,Ws,pi (RN )

+ ||w||pmWV0,Ws,pm (RN )
=

∫

RN

f (t0w)

t pm−1
0

wdx .

Note that w ∈ NV0 and using the condition ( f5), we obtain t0 = 1. Therefore

lim sup
ε→0+

cε ≤ JV0(w) = cV0.

By Lemma 4, we get cV0 ≤ Cγ1 = a(1 − N

sμ
)(

aN

γ1sμ
)N/(μs−N ) for all γ1 ≥ a. In

the case m = 1, we can proved similarly as above. We omit the details. ��
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Lemma 11. The functional Iε satisfies the (PS)d condition at any level d > 0 and
d satisfies the condition

[( s

N
− 1

μ

)−s/N
ds/N +

m−1∑

i=1

( 1

pi
− 1

μ

)−1

pi d

1

pi

+
( 1

pm
− 1

μ
− 1

pmk

)−1

pm d

1

pm
]N/(N−s)

<
β∗ds/(N−s)∗

cα0
,

if m ≥ 2 and

[( s

N
− 1

μ

)−s/N
ds/N +

( 1

p1
− 1

μ
− 1

p1k

)−1

p1 d

1

p1
]N/(N−s)

<
β∗ds/(N−s)∗

cα0

if m = 1, where c > 1 is a suitable constant and near 1.

Proof. Let {un} be a (PS)d sequence of Iε, then by Lemma 8, {un} is a bounded
sequence in Wε and

lim sup
n→∞

||un||N/(N−s)
Wε

<
β∗ds/(N−s)∗

cα0
, (2.55)

where c > 1 is a suitable constant and c near 1. Therefore, up to a subsequence, we

can assume that un → u weak in Wε, un → u in Lq
loc(R

N ) for all q ∈ [N
s

,+∞)

and un(x) → u(x) almost everywhere on R
N . By arguments as Lemma 2.5 [8],

for any ε∗ > 0, there exists R = R(ε∗) > 0 such that �ε ⊂ BR(0) and

lim sup
n→∞

∫

RN \BR(0)

( ∫

RN

|un(x) − un(y)|p
|x − y|2N +

m∑

i=1

|un(x) − un(y)|pi
|x − y|N+pi s

+ V (εx)(|un|p +
m∑

i=1

|un|pi )
)
dx < ε∗.

Then, we obtain
∫

RN \BR(0)

|un|N/sdx <
ε∗
V0

and
∫

RN \BR(0)

|un|pmdx <
ε∗
V0

(2.56)

for all n large enough. From the condition ( f1), ( f3) and (g3), we get

|g(x, t)t | ≤ δ|t |pm + Cδ|t |q�N ,s(α0|t |N/(N−s)) (2.57)
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for all t ∈ R, x ∈ R
N and some δ > 0, q > pm . Using (2.55), (2.57) and

Trudinger–Moser inequality, Hölder inequality, there exists D > 0 such that

∫

RN \BR(0)

|g(εx, un)un|dx ≤ δ

∫

RN \BR(0)

|un|pmdx + D

⎛

⎜⎝
∫

RN \BR(0)

|un|qtdx
⎞

⎟⎠

1/t

(2.58)

for some constant t > 1.

For any ν ∈ (
N

s
,+∞), choose a >

N

s
such that ν ∈ (

N

s
, a), there exists

σ1 ∈ (0, 1) such that
1

ν
= sσ1

N
+ 1 − σ1

a
. Apply the Hölder inequality to estimate

∫

RN \BR(0)

|un(x)|νdx, and we get

∫

RN \BR(0)

|un(x)|νdx =
∫

RN \BR(0)

|un(x)|νσ1 |un(x)|(1−σ1)νdx

≤
( ∫

RN \BR(0)

|un(x)|N/sdx
)σ1νs/N( ∫

RN \BR(0)

|un(x)|adx
)(1−σ1)ν/a

. (2.59)

From (2.48), we have

||un||La(RN \BR(0)) ≤ S−1
a,ε||un||Wε .

On combining that inequality with (2.59), we deduce
∫

RN \BR(0)

|un(x)|νdx ≤ S−(1−σ1)ν
a,ε ||un||σ1νLN/s (RN \BR(0))

||un||(1−σ1)ν
Wε

. (2.60)

From (2.55), (2.56) and (2.60), there exists constant D > 0 such that
∫

RN \BR(0)

|un(x)|νdx ≤ Dε∗. (2.61)

Join (2.56), (2.58) and apply (2.61) to ν = qt, we get
∫

RN \BR(0)

|g(εx, un)un|dx ≤ κ∗ε∗

for all n large enough and κ∗ > 0 is a suitable constant. Hence, we deduce

lim
n→∞

∫

RN \BR(0)

|g(εx, un)un|dx = 0. (2.62)
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Note that �ε ⊂ BR(0), and the embedding from Wε into Lq(BR(0)) is compact

for any q ∈ [N
s

,+∞), we have

lim
n→∞

∫

BR(0)

|g(εx, un)un|dx = lim
n→∞

∫

BR(0)

|g(εx, u)u|dx (2.63)

by the Lebesgue Dominated convergence theorem or Vitali’s theorem. Using
Trudinger–Moser inequality, we get g(εx, u)u ∈ L1(RN ), then can choose R
large enough such that

∫

RN \BR(0)

|g(εx, u)u|dx < ε∗. (2.64)

From (2.62), (2.63) and (2.64), we obtain

lim
n→∞

∫

RN

g(εx, un)undx =
∫

RN

g(εx, u)udx . (2.65)

By arguments as in [54], we get < I
′
ε(u), ϕ >= 0 for all ϕ ∈ Wε. Consequently,

we get < I
′
ε(u), u >= 0, or equivalently

||u||p
Ws,p

V,ε(R
N )

+
m∑

i=1

||u||pi
W

s,pi
V,ε (RN )

=
∫

RN

g(εx, u)udx . (2.66)

Since {un} is (PS) sequence, then < I
′
ε(un), un >= on(1) as n → ∞.

||un||pWs,p
V,ε(R

N )
+

m∑

i=1

||un||piWs,pi
V,ε (RN )

=
∫

RN

g(εx, un)undx + on(1). (2.67)

Apply Brezis–Lieb lemma, (2.66) and (2.67), we obtain un → u strong in Wε. We
finish the proof of Lemma 11. ��
Lemma 12. The functional Iε restricted toNε satisfies the (PS)d condition at any
level d > 0 and d verifies

[( s

N
− 1

μ

)−s/N
ds/N +

m−1∑

i=1

( 1

pi
− 1

μ

)−1

pi d

1

pi

+
( 1

pm
− 1

μ
− 1

pmk

)−1

pm d

1

pm
]N/(N−s)

<
β∗ds/(N−s)∗

cα0
,
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if m ≥ 2 and

[( s

N
− 1

μ

)−s/N
ds/N +

( 1

p1
− 1

μ
− 1

p1k

)−1

p1 d

1

p1
]N/(N−s)

<
β∗ds/(N−s)∗

cα0

if m = 1, where c > 1 is a suitable constant and near 1.

Proof. Let {un} ⊂ Nε be such that Iε(un) → d and ||I ′
ε(un)|Nε

||W ∗
ε

= on(1) as
n → ∞, where W ∗

ε is the dual space of Wε. Then there exists {λn} ⊂ R such that

I
′
ε(un) = λnT

′
ε (un) + on(1), (2.68)

where

Tε(u) = ||u||p
Ws,p

V,ε(R
N )

+
m∑

i=1

||u||pi
W

s,pi
V,ε (RN )

−
∫

RN

g(εx, u)udx .

Taking into account < I
′
ε(un), un >= 0, we have

< T
′
ε (un), un > = p

∫

R2N

|un(x) − un(y)|p
|x − y|2N dxdy + p

∫

R2N

V (εx)|un|pdx

+
m∑

i=1

(
pi

∫

R2N

|un(x) − un(y)|pi
|x − y|N+pi s

dxdy + pi

∫

R2N

V (εx)|un|pi dx
)

−
∫

RN

g(εx, un)undx −
∫

RN

g
′
t (εx, un)u

2
ndx

≤
∫

RN

((pm − 1)g(εx, un)un − g′
t (εx, un)u

2
n)dx

=
∫

�ε

((pm − 1)g(εx, un)un − g′
t (εx, un)u

2
n)dx

+
∫

�c
ε∩{x :un(x)<a}

((pm − 1)g(εx, un)un − g′
t (εx, un)u

2
n)dx

+
∫

�c
ε∩{x :un(x)≥a}

((pm − 1)g(εx, un)un − g′
t (εx, un)u

2
n)dx .

When x ∈ �s
ε and t > a, we have g(εx, t) = V0

k
t pm−1. It implies that

(pm − 1)g(εx, t)t − g
′
t (εx, t)t

2 = 0.
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Therefore, we get

− < T
′
ε (un), un > ≥

∫

�ε

(g′
t (εx, un)u

2
n − (pm − 1)g(εx, un)un)dx

+
∫

�c
ε∩{x :un(x)<a}

(g′
t (εx, un)u

2
n − (pm − 1)g(εx, un)un)dx ≥ 0

(2.69)

via to the conditions (g6) and (g7).By arguments as Lemma 8, for γ1 large enough,
we have {un} is a bounded sequence in Wε and

lim sup
n→∞

||un||N/(N−s)
Wε

<
β∗ds/(N−s)∗

cα0
, (2.70)

where c > 1 is a suitable constant and c near 1. Therefore, up to a subse-
quence, we can assume that un → u weak in Wε, un → u in Lq

loc(R
N ) for

all q ∈ [N
s

,+∞) and un(x) → u(x) almost everywhere on R
N . We prove that

supn∈N < T
′
ε (un), un >< 0. Conversly, if supn∈N < T

′
ε (un), un >= 0, then up to

a subsequence, we can assume that limn→∞ < T
′
ε (un), un >= 0. Using Fatou’s

lemma and (2.69), we have

0 ≥ lim inf
n→∞

∫

�ε

(g′
t (εx, un)u

2
n − (pm − 1)g(εx, un)un)dx

≥
∫

�ε

(g′
t (εx, u)u2 − (pm − 1)g(εx, u)u)dx ≥ 0 (2.71)

due to the condition (g7). Hence u ≡ 0 in �ε. Then un → 0 in Lq(�ε). Using
Trudinger–Moser inequality and (2.70), we get

lim
n→∞

∫

�ε

g(εx, un)undx = lim
n→∞

∫

�ε

f (un)undx = 0.

Hence, we obtain

||un||pWs,p
V,ε(R

N )
+

m∑

i=1

||un||piWs,pi
V,ε (RN )

=
∫

�ε

g(εx, un)undx +
∫

�c
ε

g(εx, un)undx

=
∫

�c
ε

g(εx, un)undx + on(1)

≤ 1

k

∫

�c
ε

V (εx)|un|pmdx + on(1),
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thanks to the condition (g5). Then, we deduce

||un||Wε → 0

as n → ∞, it is a contradiction with the fact that ||un||Wε ≥ r∗ > 0 for all n. In
conclusion, we get supn∈N < T

′
ε (un), un >< 0, and (2.68) implies λn = on(1)

as n → ∞. Therefore, {un} is a (PS)c sequence of Iε and Lemma 12 is obtained
from Lemma 11. ��
Corollary 1. The critical points of Iε on Nε are critical points of Iε in Wε.

Now, we prove the existence of a ground state solution for problem (P∗
ε ). That

is a critical point uε of Iε satisfying Iε(uε) = cε.

Theorem 7. Assume that ( f1) − ( f5) and (V ) hold. Then there exists ε > 0 such
that (P∗

ε ) has a ground state solution for all 0 < ε < ε.

Proof. By Lemma 10 and Lemma 11, there exists ε > 0 such that cε ≤ cV0

for all ε ∈ (0, ε). We can choose d = cV0 ≤ a(1 − N

sμ
)(

aN

γ1sμ
)N/(μs−N ) and

γ1 ≥ max{a, γ3} where γ3 satisfies the condition

[( s

N
− 1

μ

)−s/N
bs/N +

( 1

p1
− 1

μ
− 1

p1k

)−1

p1 b

1

p1
]N/(N−s)

<
β∗ds/(N−s)∗

cα0

in which b = a(1 − N

sμ
)(

aN

γ3sμ
)N/(μs−N ) and m = 1. When m ≥ 2, γ3 satisfies

the condition

[( s

N
− 1

μ

)−s/N
bs/N +

m−1∑

i=1

( 1

pi
− 1

μ

)−1

pi b

1

pi
]N/(N−s)

+
( 1

pm
− 1

μ
− 1

pmk

)−1

pm b

1

pm
]N/(N−s)

<
β∗ds/(N−s)∗

cα0
.

Lemma 11 implies that Iε satisfies the (PS)cε condition. Combine that result with
Lemma 7, Iε has a critical point at level cε. ��

4. Multiplicity of solutions to (P∗
ε )

In this section, we show that the existence of multiple weak solutions and study
the behavior of its maximum points related with the set M. The main result of this
section is equivalent to Theorem 2 and it is stated as follows:

Theorem 8. Assume that ( f1)−( f5) and (V ) hold. Then for any δ > 0, there exists
εδ > 0 such that (P∗

ε ) has at least catMδ (M) nontrival nonnegative solutions, for
any 0 < ε < εδ. Moreover, if uε denotes one of these solutions and zε is its global
maximum, then

lim
ε→0+ V (εzε) = V0.
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Proof. We consider the energy function

JV0(u) = 1

p

⎛

⎜⎝
∫

R2N

|u(x) − u(y)|p
|x − y|2N +

∫

RN

V0|u|pdx
⎞

⎟⎠

+
m∑

i=1

1

pi

⎛

⎜⎝
∫

R2N

|u(x) − u(y)|pi
|x − y|N+pi s

+
∫

RN

V0|u|pi dx
⎞

⎟⎠ −
∫

RN

F(u)dx

of problem (PV0). We recall that cV0 is the minimax level related to JV0 andNV0 is
the Nehari manifold related to JV0 is given by

NV0 = {u ∈ Ws,N/s(RN ) ∩ ∩m
i=1W

s,pi (RN )\{0} :< J
′
V0(u), u >= 0}.

Let δ > 0 be a fixed andw be a ground state solution of problem (PV0). It means that
JV0(w) = cV0 and J

′
V0

(w) = 0. Let η be a smooth nonincreasing cut-off function

in [0,+∞) such that η(s) = 1 if 0 ≤ s ≤ δ

2
and η(s) = 0 if s ≥ δ. For any y ∈ M,

we denote

ψε,y(x) = η(|εx − y|)w
(

εx − y

ε

)

and �ε : M → Nε which is defined by �ε(y) = tεψε,y, where tε > 0 satisfies

max
t≥0

Iε(tψε,y) = Iε(tεψε,y).

From the construction, �ε(y) has compact support for any y ∈ M. ��
Lemma 13. The function �ε satisfies the following limit

lim
ε→0+ Iε(�ε(y)) = cV0 uniformly in y ∈ M.

Proof. Suppose that the statement of Lemma 13 doesnot hold, then there exists
δ0 > 0, {yn} ⊂ M and εn → 0 such that

|Iεn (�εn (yn)) − cV0 | ≥ δ0. (4.1)

By Lemma 2.2 [14], we have

lim
n→∞ ||ψεn ,yn ||pWs,p

V,εn
(RN )

= ||w||pWV0,Ws,p (RN )
. (4.2)

and

lim
n→∞ ||ψεn ,yn ||piWs,pi

V,εn
(RN )

= ||w||piWV0,Ws,pi (RN )
(4.3)
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for all i = 1, . . . ,m. Since < I
′
εn

(tεnψεn ,yn ), tεnψεn ,yn >= 0, using the change of

variable z = εnx − yn
εn

, then we get

||tεψεn ,yn ||pWs,p
V,εn

(RN )
+

m∑

i=1

||tεψεn ,yn ||piWs,pi
V,εn

(RN )
=

∫

RN

g(εnx, tεψεn ,yn )tεnψεn ,yn dx

=
∫

RN

g(εnz + yn, tεnψ(|εnz|)w(z))tεnψ(|εnz|)w(z)dz.

(4.4)

We observe that if z ∈ Bδ/εn (0), then εnz + yn ∈ Bδ(yn) ⊂ Mδ ⊂ �. Then

g(εnz + yn, tεnψ(|εnz|)w(z)) = f (tεnψ(|εnz|)w(z)).

Now we prove that tεn → 1. First we show that tεn → t0 < +∞. Conversly if
tεn → +∞, from (4.4) we have

t p−p1
εn

||ψεn ,yn ||pWs,p
V,εn

(RN )
+ ||ψεn ,yn ||p1Ws,p1

V,εn
(RN )

≥
∫

|z|≤ δ

2εn

f (tεnw(z))w(z)

t p1−1
εn

dz

(4.5)

if m = 1, and

t p−pm
εn

||ψεn ,yn ||pWs,p
V,εn

(RN )
+

m−1∑

i=1

t pi−pm
εn

||ψεn ,yn ||piWs,pi
V,εn

(RN )
+ ||ψεn ,yn ||pmWs,pm

V,εn
(RN )

(4.6)

≥
∫

|z|≤ δ

2εn

f (tεnw(z))w(z)

t pm−1
εn

dz (4.7)

if m ≥ 2. From the condition ( f2) and ( f4), we have f (t) ≥ γ1μ|t |μ−1 for all
t ≥ 0. If m = 1, combine that property and (4.4), we deduce

t p−p1
εn

||ψεn ,yn ||pWs,p
V,εn

(RN )
+ ||ψεn ,yn ||p1Ws,p1

V,εn

≥
∫

|z|≤ δ

2εn

f (tεnw(z))w(z)

t p1−1
εn

dz

≥ γ1μt
μ−p1
εn

∫

|z|< δ

2εn

wμdx → +∞
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asn → ∞. It is a contradictionwith (4.2) and (4.3). Similarly,weget a contradiction
in the casem = 2. Therefore, up to a subsequence, we may assume that tεn → t0 ≥
0 as n → ∞. We consider the case that t0 = 0. From (2.41), we have

f (tεnη(|εnz|)w(z))|tεnη(|εnz|)w(z)|
≤ τ |tεnη(|εnz|)w(z)|pm
+ C |tεnη(|εnz|)w(z)|q�N ,s(α0|tεnη(|εnz|)w(z)|N/(N−s)))

≤ τ |tεnw(z)|pm + C |tεnw(z)|q�N ,s(α0|tεnw(z)|N/(N−s))) (4.8)

due to �N ,s(t) is an increasing function on [0,+∞), where τ > 0 is small enough
and q > pm . Combine (4.6) and (4.8), we get

||tεnψεn ,yn ||pWs,p
V,εn

(RN )
+

m∑

i=1

||tεnψεn ,yn ||piWs,pi
V,εn

(RN )

≤ τ

∫

RN

|tεnw(z)|pmdx + Ctqεn

∫

RN

|w(z)|q�N ,s(α0|tεnw(z)|N/(N−s)))dx . (4.9)

Since ||tεnψεn ,yn ||Ws,p
V,εn

(RN ) → 0 and ||tεnψεn ,yn ||Ws,pi
V,εn

(RN )
→ 0 as n → ∞ for all

i = 1, . . . ,m, then

||tεnψεn ,yn ||pWs,p
V,εn

(RN )
+

m∑

i=1

||tεnψεn ,yn ||piWs,pi
V,εn

(RN )

≥ (m + 1)1−pm .t pmεn
(||ψεn ,yn ||Ws,p

V,εn
(RN ) +

m∑

i=1

||ψεn ,yn ||Ws,pi
V,εn

(RN )
)pm . (4.10)

Using Trudinger–Moser inequality and note that tεn → 0 as n → ∞, take τ > 0
is small enough such that (m + 1)1−pm − τ A−pm

pm ,V0
> 0, from (4.9) and (4.10), we

obtain ((m + 1)1−pm − τ A−pm
pm ,V0

)||w||pmV0,W ≤ on(1) as n → ∞ due to

||ψεn ,yn ||Ws,p
V,εn

(RN )

+
m∑

i=1

||ψεn ,yn ||Ws,pi
V,εn

(RN )
→ ||w||WV0,Ws,p (RN )

+
m∑

i=1

||w||WV0,Ws,pi (RN )
> 0

as n → ∞. It is a contradiction. Hence, t0 > 0. Now we prove that t0 = 1. From
(4.6), using Lebesgue Dominated convergence theorem, we have

t p−p1
0 ||w||pWV0,Ws,p (RN )

+ ||w||p1WV0,Ws,p1 (RN )
=

∫

RN

f (t0w)w

t p1−1
0

dx if m = 1

and

t p−pm
0 ||w||pWV0,Ws,p (RN )

+ ∑m−1
i=1 t pi−pm

0 ||w||piWV0,Ws,pi (RN )
+ ||w||pmWV0,Ws,pm (RN )

= ∫

RN

f (t0w)w

t pm−1
0

dx
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if m ≥ 2. Note that w ∈ NV0 , then the condition ( f5) implies t0 = 1. Still using
Lebesgue Dominated convergence theorem or Vitali’s theorem, we get

lim
n→∞

∫

RN

F(tεψεn ,yn (x))dx =
∫

RN

F(w)dx .

Hence, we obtain

lim
n→∞ Iεn (�εn (yn))

= lim
n→∞

[ t pεn
p

||ψεn ,yn ||pWs,p
V,εn

(RN )
+

m∑

i=1

t piεn

pi
||ψεn ,yn ||piWs,pi

V,εn

−
∫

RN

F(tεnψεn ,yn )dx
]

=
||w||pWV0,Ws,p (RN )

p
+

m∑

i=1

||w||piWV0,Ws,pi (RN )

pi
−
∫

RN

F(w)dx = JV0(w) = cV0

which contradicts with (4.1). ��
For any δ > 0, let ρ = ρ(δ) > 0 be such that Mδ ⊂ Bρ(0). Let χ : RN → R

N

be define as

χ(x) =
{

x if |x | < ρ
ρx

|x | if |x | ≥ ρ
.

Next, we define the barycenter map βε : Nε → R
N given by

βε(u) =

∫

RN

χ(εx)(|u(x)|p + ∑m
i=1 |u(x)|pi )dx

∫

RN

(|u(x)|p + ∑m
i=1 |u(x)|pi )dx .

Lemma 14. ([54]) The functional �ε satisfies the following limit

lim
ε→0+ βε(�ε(y)) = y uniformly in y ∈ M. (4.11)

Proof. For the convenience to the readers, we present a proof to above lemma.
Suppose by a contradiction that there exists δ0 > 0, {yn} ⊂ M and εn → 0 such
that

|βεn (�εn (yn)) − yn| ≥ δ0 (4.12)

for all n large enough. Using the definitions of �εn (yn), βεn , η and the change of

variable z = εnx − yn
εn

, we have

βεn (�εn (yn)) = yn

+

∫

RN

[χ(εnz + yn) − yn]([η(|εnz|)|w(z)|]p + ∑m
i=1[η(|εnz|)|w(z)|]pi )dz

∫

RN

([η(|εnz|)|w(z)|]p + ∑m
i=1[η(|εnz|)|w(z)|]pi )dz .

(4.13)
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From the assumptions {yn} ⊂ M ⊂ Bρ(0) and |χ(x)| ≤ ρ for all x ∈ R
N , use the

Dominated convergence theorem by taking n → ∞ in (4.13), we get

lim
n→∞ |βεn (�εn (yn)) − yn| = 0,

which contradicts with (4.12). ��
Lemma 15. Let εn → 0+ and {un} ⊂ Nεn be such that Iεn (un) → cV0 . Then there
exists {ỹn} ⊂ R

N such that the translation sequence vn(x) = un(x + ỹn) has a
subsequence which converges in Ws,N/s(RN ) ∩ ∩m

i=1W
s,pi (RN ). Moreover, up to

a subsequence, {yn} : yn = ε ỹn → y ∈ M.

Proof. Since < I
′
εn

(un), un >= 0 and Iεn (un) → cV0 , by arguments Lemma 8
and Lemma 10, {||un||Wεn

} is a bounded sequence and when γ1 is choosen such
that γ1 ≥ max{a, γ3} and

cV0 ≤ a

(
1 − N

sμ

)(
aN

γ3sμ

)N/(μs−N )

= b,

a = s
(
Aμ,η + ε∗

)N/s

N
+

m∑

i=1

(
Aμ,η + ε∗

)pi

pi

for some ε∗ > 0 and γ3 satisfies

[( s

N
− 1

μ

)−s/N
bs/N +

( 1

p1
− 1

μ
− 1

p1k

)−1

p1 b

1

p1
]N/(N−s)

<
β∗ds/(N−s)∗

cα0

if m = 1 and

[( s

N
− 1

μ

)−s/N
bs/N +

m−1∑

i=1

( 1

pi
− 1

μ

)−1

pi b

1

pi +
( 1

pm
− 1

μ
− 1

pmk

)−1

pm b

1

pm
]N/(N−s)

<
β∗ds/(N−s)∗

cα0

if m ≥ 2. Then, we deduce

lim sup
n→∞

||un||N/s
Ws,p

V,ε(R
N )

≤ cV0
s

N
− 1

μ

and

lim sup
n→∞

||un||p1Ws,p1
V,ε (RN )

≤ cV0
1

p1
− 1

μ
− 1

p1k

if m = 1 and

lim sup
n→∞

||un||pmWs,pm
V,ε (RN )

≤ cV0
1

pm
− 1

μ
− 1

pmk

, lim sup
n→∞

||un||piWs,pi
V,ε (RN )

≤ cV0
1

pi
− 1

μ

,
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i = 1, . . . ,m − 1 if m ≥ 2. Hence, we obtain

lim sup
n→∞

||un||N/(N−s)
Wε

<
β∗ds/(N−s)∗

cα0
. (4.14)

We also get

lim sup
n→∞

||un||N/(N−s)
V0,W

<
β∗ds/(N−s)∗

cα0

due to the continuous embedding from Wε into W. Now, we show that there exist
a sequence {ỹn} ⊂ R

N and constants r > 0, β > 0 such that

lim inf
n→∞

∫

Br (ỹn)

|un|pmdx ≥ β > 0. (4.15)

Indeed, if (4.15) is false, then for any r > 0, we have

lim
n→∞ sup

y∈RN

∫

Br (y)

|un|pmdx = 0.

By Lemma 5, we have un → 0 strongly in Lq(RN ) for any q ∈ (pm,+∞). Using
Trudinger–Moser inequality and (4.14), we deduce

lim
n→∞

∫

RN

g(εnx, un)undx = 0.

Combine that result and un ∈ Nεn , we obtain ||un||Wεn
→ 0 as n → ∞. It is

a contradiction with Iεn (un) → cV0 > 0. Therefore, (4.15) holds. Let us define
vn := un(x + ỹn). Since the ||.||V0 is invariant with the translation, then {vn} is a
bounded sequence inW, thus up to a subsequence, we can assume that there exists
v ∈ W such that vn → v weak in W and vn(x) → v(x) a.e. in R

N and vn → v in

Lq
loc(R

N ) for any q ∈ [N
s

,+∞). From that result and (4.15), we get v 
≡ 0. Let

tn > 0 such that wn = tnvn ∈ NV0 and we set yn := εn ỹn . Thus, using the change
of the variable z = x + ỹn, V (εn(x + ỹn)) ≥ V0 and the invariance by translation,
we can see that

cV0 ≤ JV0(wn) ≤ 1

p
[wn]ps,p + 1

p

∫

RN

V (εnx + yn)|wn|pdx −
∫

RN

F(wn)dx

+
m∑

i=1

( 1

pi
[wn]pis,pi + 1

pi

∫

RN

V (εnx + yn)|wn|pi dx
)

≤ 1

p
[wn]ps,p + 1

p

∫

RN

V (εnx + yn)|wn|pdx
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+
m∑

i=1

( 1

pi
[wn]pis,pi + 1

pi

∫

RN

V (εnx + yn)|wn|pi dx
)

−
∫

RN

G(εnx + yn, wn)dx

= Iεn (tnun) ≤ Iεn (un) ≤ cV0 + on(1)

due to the condition (g3). Then we get JV0(wn) → cV0 . Since {wn} ⊂ NV0 , using
the condition ( f2), there exists a constant K > 0 such that ||wn||W,V0 ≤ K for all
n. We have vn 
→ 0 strongly in W. Indeed, if vn → 0 in W, then vn → v weak
in W, it contradicts with vn → v 
≡ 0 in W. Hence, there exists α > 0 such that
||vn||V0,W ≥ α > 0 for all n. Consequently, we have

tnα ≤ ||tnvn||V0,W = ||wn||V0,W ≤ K ,

which yields tn ≤ K

α
for all n ∈ N. Therefore, up to a subsequence, we can assume

that tn → t0 ≥ 0. We prove that t0 > 0. If t0 = 0, then ||wn||V0,W → 0, it
is a contradiction with wn ∈ NV0 . Up to a subsequence, we suppose that wn →
w := t0v 
≡ 0 weak in W and wn(x) → w(x) a.e. on R

N . By arguments as in
Proposition 1 (also see [54]), we can get J

′
V0

(w) = 0. Now we prove that

lim
n→∞ ||wn||pV0,Ws,p(RN )

= ||w||p
V0,Ws,p(RN )

(4.16)

and

lim
n→∞ ||wn||piV0,Ws,pi (RN )

= ||w||pi
V0,Ws,pi (RN )

, i = 1, . . . ,m. (4.17)

Using Brezis–Lieb’s lemma, (4.16) and (4.17), we obtain wn → w strong in W.

By Fatou’s lemma, we have

||w||p
V0,Ws,p(RN )

≤ lim inf
n→∞ ||wn||pV0,Ws,p(RN )

(4.18)

and

||w||pi
V0,Ws,pi (RN )

≤ lim inf
n→∞ ||wn||piV0,Ws,pi (RN )

, i = 1, . . . ,m. (4.19)

Assume that by contradiction that

||w||p
V0,Ws,p(RN )

< lim sup
n→∞

||wn||pV0,Ws,p(RN )
.

or

||w||pi
V0,Ws,pi (RN )

< lim sup
n→∞

||wn||piV0,Ws,pi (RN )
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for some i ∈ {1, . . . ,m}. We see that

cV0 + on(1) = JV0(wn) − 1

μ
< J

′
V0(wn), wn >

=
(
1

p
− 1

μ

)
||wn||pV0,Ws,p(RN )

+
m∑

i=1

(
1

pi
− 1

μ

)
||wn||piV0,Ws,pi (RN )

+
∫

RN

[
1

μ
f (wn)wn − F(wn)

]
dx .

Using the condition ( f2), and Fatou’s lemma, we get

cV0 ≥
(
1

p
− 1

μ

)
lim sup
n→∞

||wn||pV0,Ws,p(RN )
+

m∑

i=1

(
1

pi
− 1

μ

)
lim sup
n→∞

||wn||piV0,Ws,pi (RN )

+ lim inf
n→∞

∫

RN

[
1

μ
f (wn)wn − F(wn)

]
dx

>

(
1

p
− 1

μ

)
||w||p

V0,Ws,p(RN )
+

m∑

i=1

(
1

pi
− 1

μ

)
||w||pi

V0,Ws,pi (RN )

+
∫

RN

[
1

μ
f (w)w − F(w)

]
dx

= JV0(w) − 1

μ
< J

′
V0(w),w >= JV0(w) ≥ cV0 ,

which is a contradiction. Then

||w||p
V0,Ws,p(RN )

≥ lim sup
n→∞

||wn||pV0,Ws,p(RN )
. (4.20)

and

||w||pi
V0,Ws,pi (RN )

≥ lim sup
n→∞

||wn||piV0,Ws,pi (RN )
, i = 1, . . . ,m. (4.21)

Combine (4.18) and (4.20), (4.19) and (4.21), we get (4.16). Since tn → t0 as
n → ∞, then vn → v in Ws,N/s(RN ) ∩ ∩m

i=1W
s,pi (RN ) as n → ∞. Now we

prove that {yn} has a subsequence such that yn → y ∈ M. Indeed, if {yn} is
not bounded, that is there exists a subsequence, still denoted by {yn}, such that
|yn| → +∞. Choose R > 0 such that � ⊂ BR(0). Then for all n large enough,
we have |yn| > 2R, and for any x ∈ BR/εn (0), we have

εnx + yn ≥ |yn| − εn|x | > R.
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From the condition (V1), un ∈ Nεn and the definition of g we have

||un||pV0,Ws,p(RN )
+

m∑

i=1

||un||piV0,Ws,pi (RN )

≤ ||un||pWs,p
V,εn

(RN )
+

m∑

i=1

||un||piWs,pi
V,εn

(RN )
=

∫

RN

g(εnx, un)undx . (4.22)

Using the change of variable z = x + ỹn, from (4.22), we get

||vn||pV0,Ws,p(RN )
+

m∑

i=1

||vn||piV0,Ws,pi (RN )
≤

∫

RN

g(εnx + yn, vn)vndx

=
∫

BR/εn (0)

g(εnx + yn, vn)vndx +
∫

Bc
R/εn

(0)

g(εnx + yn, vn)vndx

=
∫

BR/εn (0)

f̃ (vn)vndx +
∫

Bc
R/εn

(0)

g(εnx + yn, vn)vndx . (4.23)

Note that f̃ (t) ≤ V0
k

|t |pm−1. Then (4.23) implies

||vn||pV0,Ws,p(RN )
+

m∑

i=1

||vn||piV0,Ws,pi (RN )
≤ 1

k

∫

BR/εn (0)

V0|vn|pmdx

+
∫

Bc
R/εn

(0)

g(εnx + yn, vn)vndx . (4.24)

Since vn → v strong in W, then vn → v strong Lq(RN ) for all q ≥ N

s
, then for

any ε∗ > 0, we can choose R as above large enough such that
∫

RN \BR(0)

|vn|pmdx < ε pm and
∫

RN \BR(0)

|vn|qdx < εq

for some q > pm . Using the condition (g3) and Trudinger–Moser inequality, we
get

∫

Bc
R/εn

(0)

|g(εnx + yn, vn)vn|dx < κε∗, (4.25)

where κ∗ > 0 is a suitable constant and n large enough. Combine (4.24) and (4.25),
we have
(
1 − 1

k

)
||vn||pmV0,Ws,pm (RN )

+
m−1∑

i=1

||vn||piV0,Ws,pi (RN )
+ ||vn||pV0,Ws,p(RN )

= on(1)
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if m ≥ 2 and
(
1 − 1

k

)
||vn||p1V0,Ws,p1 (RN )

+ ||vn||pV0,Ws,p(RN )
= on(1)

if m = 1. That is vn → 0 strong in Ws,N/s(RN ) ∩ ∩m
i=1W

s,pi (RN ) which contra-
dicts with vn → v 
≡ 0. Therefore, we may assume that yn → y0. If y0 /∈ �. Then
there exists r > 0 such that for every n large enough, we have |yn − y0| < r and
B2r (y0) ⊂ �

c
. Thus if x ∈ Br/εn (0), we have that |εnx + yn − y0| < 2r so that

εnx + yn ∈ �
c
. By arguments as above, we get a contradiction. Hence, y0 ∈ �.

We now prove V (y0) = V0. Indeed, if V (y0) > V0, using the Fatou’s lemma and
the change of variable z = x + ỹn, then we have

cV0 = JV0(w) < JV (y0)(w)

≤ lim inf
n→∞

[ 1
p

⎛

⎜⎝[wn]ps,p +
∫

RN

V (εnx + yn)|wn|pdx
⎞

⎟⎠

+
m∑

i=1

1

pi

⎛

⎜⎝[wn]pis,pi +
∫

RN

V (εnx + yn)|wn|pi dx
⎞

⎟⎠ −
∫

RN

F(wn)dx
]

= lim inf
n→∞

[ t pn
p

[un]ps,p + t pn
p

∫

RN

V (εnz)|un|pdz

+
m∑

i=1

( t pin

pi
[un]pis,pi + t pin

pi

∫

RN

V (εnz)|un|pi dz
)

−
∫

RN

F(tnun)dz
]
.

From above inequality, we deduce

cV0 = JV0(w) < JV (y0)(w)

≤ lim inf
n→∞

[ t pn
p

[un]ps,p + t pn
p

∫

RN

V (εnz)|un|pdz

+
m∑

i=1

( t pin

pi
[un]pis,pi + t pin

pi

∫

RN

V (εnz)|un|pi dz
)

−
∫

RN

G(εnz, tnun)dz
]

= lim inf
n→∞ Iεn (tnun) ≤ lim inf

n→∞ Iεn (un) = cV0 , (4.26)

which is an absurd. ��
Let R+ → R

+ be a positive function such that h(ε) → 0 as ε → 0+ and let

Ñε = {u ∈ Nε : Iε(u) ≤ cV0 + h(ε)}.
By Lemma 14, we have h(ε) = |Iε(�ε(y)) − cV0 | → 0 as ε → 0+. Hence
�ε(y) ∈ Nε and Ñε 
= ∅ for any ε > 0. Moreover, we have the following result:
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Lemma 16. ([7]) For any δ > 0, it holds that

lim
ε→0+ sup

u∈Ñε

dist(βε(u), Mδ) = 0.

Lemma 17. Assume that (V ) and ( f1) − ( f5) hold and let vn be a nontrivial
nonnegative solution of the following problem

(−�)spvn +
m∑

i=1

(−�)spi vn + Vn(x)

(
|vn|p−2vn +

m∑

i=1

|vn|pi−2vn

)

= g(εnx + εn ỹn, vn) in R
N , (4.27)

where Vn(x) = V (εnx + εn ỹn) and εn ỹn → y ∈ M. If {vn} is a bounded sequence
in W verifying

lim sup
n→∞

||vn||N/(N−s)
V0,W

<
β∗d∗s/(N−s)

cα0
,

where c > 1 is a suitable constant and vn → v strong in W, then vn ∈ L∞(RN )

and there exists C > 0 such that ||vn||L∞(RN ) ≤ C for all n ∈ N. Furthermore

lim|x |→+∞ vn(x) = 0 uniformly in n.

Proof. For any L > 0 and β > 1, let us to consider the function γ (t) =
t (min{t, L})p(β−1) and

γ (vn) = γL ,β(vn) = vnv
p(β−1)
L ,n ∈ W, vL ,n = min{vn, L}.

Set

�(t) = |t |p
p

and 	(t) =
t∫

0

(γ
′
(t))

1

p dτ.

Then we have [14]

�
′
(a − b)(γ (a) − γ (b)) ≥ |	(a) − 	(b)|p for any a, b ∈ R. (4.28)

From (4.28), we get

|	(vn(x)) − 	(vn(y))|p
≤ |vn(x) − vn(y)|p−2(vn(x) − vn(y))((vnv

p(β−1)
L ,n )(x) − (vnv

p(β−1)
L ,n )(y)).

(4.29)
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Therefore, taking γ (vn) = vnv
p(β−1)
L ,n as a test function in (4.27), we have

∫

R2N

|vn(x) − vn(y)|p−2(vn(x) − vn(y))((vnv
p(β−1)
L ,n )(x) − (vnv

p(β−1)
L ,n )(y))

|x − y|2N dxdy

+
m∑

i=1

∫

R2N

|vn(x) − vn(y)|pi−2(vn(x) − vn(y))((vnv
p(β−1)
L ,n )(x) − (vnv

p(β−1)
L ,n )(y))

|x − y|N+pi s
dxdy

+
∫

RN

Vn(x)

(
|vn |p +

m∑

i=1

|vn |pi
)

v
p(β−1)
L ,n dx =

∫

RN

g(εnx + εn ỹn, vn)vnv
p(β−1)
L ,n dx .

From the condition ( f1), ( f3) and (g3), for any ε > 0, there exist C(ε) > 0 such
that

g(x, t) ≤ f (t) ≤ ε|t |p−1 + C(ε)|t |p−1�N ,s(α0|t |N/(N−s))

for all x ∈ R
N and t ∈ R. By arguments as [7], we have

∫

R2N

|vn(x) − vn(y)|pi−2(vn(x) − vn(y))((vnv
p(β−1)
L ,n )(x) − (vnv

p(β−1)
L ,n )(y))

|x − y|2N dxdy

≥ 0

for all i = 1, . . . ,m. Combine that inequality with (4.29), we have

[	(vn)]ps,p +
∫

RN

Vn(x)|vn|pv p(β−1)
L ,n dx ≤

∫

RN

f (vn)vnv
p(β−1)
L ,n dx .

Since	(vn) ≥ 1

β
vnv

β−1
L ,n , vnv

β−1
L ,n ≥ 	(vn) and the embedding fromWs,N/s(RN ) →

LN∗
(RN ) (N∗ >

N

s
) is continuous, then there exists a suitable constant S∗ > 0

such that

||	(vn)||pV0,Ws,p(RN )
≥ S∗||	(vn)||pLN∗

(RN )
≥ 1

β p
S∗||vnvβ−1

L ,n ||p
LN∗

(RN )
. (4.30)

Weknow that the embedding fromWs,N/s(RN )∩∩m
i=1W

s,pi (RN ) → Ws,N/s(RN ) →
Lν(RN ) (ν ≥ N

s
) is continuous, then there exists a best constant

Sν = inf
u 
=0,u∈Ws,N/s (RN )

||u||V0,Ws,p(RN )

||u||Lν(RN )

, ν ≥ N

s
.

This implies

||u||L p(RN ) ≤ S−1
p ||u||V0,Ws,p(RN ) for all u ∈ Ws,p(RN ). (4.31)
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Then we obtain

||	(vn)||pV0,Ws,p(RN )
≤ ε

∫

RN

|vnvβ−1
L ,n |pdx + C(ε)

∫

RN

�N ,s(α0|vn |N/(N−s))|vnvβ−1
L ,n |pdx

≤ εβ p
∫

RN

|	(vn)|pdx + C(ε)

∫

RN

�N ,s(α0|vn |N/(N−s))|vnvβ−1
L ,n |pdx

≤ εβ pS−p
p ||	(vn)||pV0,Ws,p(RN )

+ C(ε)

∫

RN

�N ,s(α0|vn |N/(N−s))|vnvβ−1
L ,n |pdx . (4.32)

Choose 0 < ε < β−pS p
p , then (4.32) implies

1

β p
S∗(1 − εβ pS−p

p )||vnvβ−1
L ,n ||p

LN∗
(RN )

≤ C(ε)

⎛

⎜⎝
∫

RN

(�N ,s(α0|vn|N/(N−s)))q
′
dx

⎞

⎟⎠

1

q ′ ⎛
⎜⎝
∫

RN

|vnvβ−1
L ,n |qpdx

⎞

⎟⎠

1

q
.

Using Trudinger–Moser inequality inWs,N/s(RN )with q >>
N

s
such that N∗∗ =

qp < N∗, q ′ > 1 and q ′ near 1, then there exists a constant D > 0 such that

||vnvβ−1
L ,n ||p

LN∗
(RN )

≤ Dβ p||vnvβ−1
L ,n ||p

Lqp(RN )
.

Let L → +∞ in above inequality, we deduce

||vn||LN∗β ≤ D

1

pβ β

1

β ||vn||LN∗∗β(RN ). (4.33)

Now, we set β = N∗

N∗∗ > 1. Then β2N∗∗ = βN∗ and (4.33) holds with β replaced

by β2. Therefore, we obtain

||vn||LN∗β2 ≤ D

1

pβ2
β

2

β2 ||vn||LN∗∗β2 (RN )

= D

1

pβ2
β

2

β2 ||vn||LN∗β(RN )

≤ D

1

p

(
1

β
+ 1

β2

)

β

1

β
+ 2

β2 ||vn||LN∗∗β(RN ). (4.34)

Iterating this process as in (4.34), we can infer that for any positive integer m,

||vn||LN∗βm ≤ D

∑m
j=1

1

pβ j
β
∑m

j=1 jβ− j ||vn||LN∗∗β(RN ). (4.35)
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Taking the limit in (4.35) as m → ∞, we get

||vn||L∞(RN ) ≤ C

for all n, where C = D

∑∞
j=1

1

pβ j
β
∑∞

j=1 jβ− j
supn ||vn||LN∗∗β(RN ) < +∞. Since

vn → v strong in W, then lim|x |→+∞ vn(x) = 0 uniformly in n. ��
Let δ > 0 be small enough such that Mδ ⊂ �. By Lemma 14 and Lemma 16,

there exists ε = εδ > 0 such that the following diagram

M
�ε→ Ñε

βε→ Mδ

is well-defined for any ε ∈ (0, ε). Thanks to Lemma 14 and by decreasing ε if
necessary, we obtain that

βε(�ε(y)) = y + θ(ε, y)

for all y ∈ M , for some function θ = θ(ε, y) satisfying |θ(ε, y)| < δ
2 uniformly

in y ∈ M , and for all ε ∈ (0, ε). Therefore, H(t, y) := y + (1 − t)θ(ε, y),
with (t, y) ∈ [0, 1] × M , is a homotopy between βε ◦ �ε and the inclusion map
id : M → Mδ . By [17, Lemma 4.3] (see also Lemma [22, Lemma 2.2]), we get

catÑε
(Ñε) ≥ catMδ (M).

Since the functional Iε satisfies the (PS)cε condition on Nε with 0 < cε ≤
cV0 + h(ε)), then by Lusternik-Schnirelmann’s theory of critical points (see [57,
Theorem 5.20]), Iε has at least catÑε

(Ñε) ≥ catMδ (M) critical points on Ñε ⊂ Nε.

By Corollary 1, Iε has at least catMδ (M) critical points restricted to Ñε which are
critical points of Iε in Wε. This means that (Pε)

∗ has at least catMδ (M) solutions.
Now, we show that there exists ε̂ = ε̂δ such that, for any ε ∈ (0, ε̂δ) and any

solution uε ∈ Ñε of (2.37), it holds

|uε|L∞(�c
ε)

< a. (4.36)

Assuming (4.36) to be false, then there exists a sequence εn → 0 and a sequence
{uεn } ⊆ Ñεn such that I ′

εn
(uεn ) = 0 and

|uεn |L∞(�c
εn ) ≥ a. (4.37)

Since V (εnx) ≥ V0 for all x ∈ R
N and n ∈ N, then

cV0 ≤ max
t≥0

JV0(tun) ≤ max
t≥0

Iεn (tun) = Iεn (un) ≤ cV0 + h(εn),

and h(εn) → 0. It implies that Iεn (uεn ) → cV0 . By Lemmas 15 and 17, we
can find a sequence {ỹn} ⊂ R

N such that vn(·) = uεn (· + ỹn) → v in W and
yn = εn ỹn → y ∈ M . Then, we can find r > 0 such that Br (y) ⊂ B2r (y) ⊂ � and
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so Br/εn (y/εn) ⊂ �εn , for all n large enough. In particular, for any y ∈ Br/εn (ỹn),
we have

∣∣∣∣y − y

εn

∣∣∣∣ ≤ |y − ỹn| +
∣∣∣∣ỹn − y

εn

∣∣∣∣ <
1

εn
(r + on(1)) <

2r

n

and �c
εn

⊂ Bc
r/εn

(ỹn) for n large enough. Since vn → v in W, we deduce that
vn(x) → 0 as |x | → +∞ uniformly in n ∈ N, and hence there exist R, n0 > 0
such that vn(x) < a for all |x | ≥ R and n ≥ n0. Consequently,

uεn (x) < a for all x ∈ Bc
R(ỹn) and n ≥ n0. (4.38)

Increasing n0 if necessary, we can assume that r
εn

> R, and we get �c
εn

⊂
Bc
r/εn

(ỹn) ⊂ Bc
R(ỹn). So,

uεn (x) < a for all x ∈ �c
εn

and n ≥ n0, (4.39)

which contradicts (4.37). Hence (4.36) holds.
Setting εδ = min{εδ, ε̂δ}, we can then guarantee that problem (2.37) admits at

least catMδ (M) non-trivial solutions. If uε ∈ Nε is one of these solutions, in the
light of (4.36) and the definition of g, uε is a solution of (2.37) and ûε(x) = uε(x/ε)
is a solution of problem (1.1).

Final we consider the behavior of maximum points of ûε(x) as ε → 0. Take
εn → 0+ and the sequence {uεn } of solutions of (2.37) for ε = εn . By (g1) we can
find γ > 0 small enough such that

g(εx, t)t ≤ V0
k
t pm for all x ∈ R

N , 0 < t ≤ γ. (4.40)

Arguing as before, we can take R > 0 such that, for n large enough,
∥∥uεn

∥∥
L∞(Bc

R(ỹn))
< γ. (4.41)

Up to a subsequence, we may assume that, for n large enough,
∥∥uεn

∥∥
L∞(BR(ỹn))

≥ γ, (4.42)

otherwise we would get ‖un‖L∞(RN ) < γ . Since I ′
εn

(un)(un) = 0, we obtain

∥∥uεn

∥∥p
Ws,p

V,εn
(RN )

+
m∑

i=1

∥∥uεn

∥∥pi
W

s,pi
V,εn

(RN )
=
∫

RN
g(εnx, uεn )dx ≤ V0

k

∫

RN
|uεn |pmdx

≤ 1

k

∥∥uεn

∥∥pm
Ws,pm

V,εn
(RN )

,

and hence
∥∥uεn

∥∥
Wεn

→ 0 as n → ∞, in contrast with Iεn (uεn ) → cV0 > 0. From
(4.41) and (4.42), we deduce that the global maximum points pεn of uεn belong
to BR(ỹn), that is pεn = qn + ỹn for some qn ∈ BR(0). Recalling that ûn(x) =
un(x/εn) solves (1.1), then the maximum points ηεn of ûn are ηεn = εn ỹn + εnqn .
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Noting that qn ∈ BR(0), εn ỹn → y ∈ M , we get V (y) = V0 = limn→∞ V (ηεn ).
Then, we deduce

lim
ε→0+ V (ηε) = lim

n→+∞ V (εn pεn ) = V0.

and the proof is concluded. ��

Acknowledgements Thin Van Nguyen is supported by Ministry of Education and Training
of Vietnam under project with the name “Some properties about solutions to differential
equations, fractional partial differential equations” and grant number B2023-TNA-14. The
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