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SUMMARY

We consider a singular anisotropic quasilinear problem with Dirichlet boundary condition and we
establish two suFcient conditions for the uniqueness of the solution, provided such a solution exists.
The proofs use elementary tools and they are based on a general comparison lemma combined with
the generalized mean value theorem. Copyright ? 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION AND THE MAIN RESULTS

Singular anisotropic boundary value problems arise naturally when studying many concrete
situations. We refer to ICaniJc–Key&tz [1] for the study of self-similar solutions of conservation
laws in two dimensions. We also mention Ding–Liu [2], where another anisotropic problem
in the plane is studied. Their model is closely related to the phase transition problem in
anisotropic superconductivity with ‘thermal noise’ term.

In [3], Choi et al. studied a problem that is linked to an equation arising in Quid dynamics.
They proved that the singular elliptic boundary value problem

uauxx + ubuyy + p(x; y) = 0; (x; y)∈T

u= 0; (x; y)∈ 9T (1)

has a positive classical solution, where T⊂R2 is a bounded convex domain with smooth
boundary, p is a positive HUolder continuous function and the constants a; b satisfy a¿b¿0.
Choi et al. also developed a new comparison principle for quasilinear problems that is based
on the method of sub- and super-solutions.

Recently, Choi and McKenna [4] removed the assumption that the dimension be restricted
to two, but they also retained the convexity assumption which is crucial in the construction

∗Correspondence to: Vicent9iu D. R>adulescu, Department of Mathematics, University of Craiova, 1100 Craiova,
Romania.

†E-mail: radules@ann.jussieu.fr

Copyright ? 2001 John Wiley & Sons, Ltd. Received 19 January 2001
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of a super-solution  , satisfying the boundary conditions. More precisely, they showed that
the boundary value problem

N∑
i=1

uaiuxixi + p(x) = 0; x∈T

u= 0; x∈ 9T
(2)

has at least one positive classical solution u, such that u(x)6 (x) for all x∈T, where
T⊂RN (N¿1) is a bounded convex domain with smooth boundary and a1¿a2¿ · · ·¿aN¿0,
with a1¿aN . Choi and McKenna point out that the most signi&cant omission of their paper
is the absence of any information on the uniqueness of solutions. In this direction very few
results are known which hold only for the two-dimensional case.

Lair and Shaker proved in [5] a uniqueness result related to (1) and they required neither
the domain T to be convex nor the function p to be as smooth as in [3]. They made only
the assumption that there is some solution u for which uxx is bounded above appropriately.
In their paper, two diWerent situations are distinguished: a− b¿1, resp., a− b¡1.

Reichel [6] established that problem (1) has at most one positive classical solution. It is
assumed that

p(1x; 2y)¿p(x; y) for all (x; y)∈T; i ∈ [0; 1]

and the bounded domain T (with 0∈T) satis&es an interior rectangle condition, i.e. for each
(x; y)∈ 9T the rectangle {(1x; 2y) : i ∈ [0; 1)} is a subset of T.

It is natural to ask if it is possible to give a uniqueness result which holds for more general
degenerate quasilinear operators and for a larger class of functions p, with no assumption on
the geometry of the domain or the dimension of the space.

For this aim, we consider the singular anisotropic elliptic boundary value problem

N−1∑
i=1

fi(u)uxi xi + uyy + p(x)g(u) = 0; x∈T

u= 0; x∈ 9T
(3)

where T is a bounded domain in RN ; N¿2 and p is a positive continuous function on XT. We
have denoted the last co-ordinate xN by y and we shall use notation x′ for the &rst (N − 1)
co-ordinates.

Throughout this paper, we assume that the following hypotheses are ful&lled:

(H1) fi; g : (0;∞) → (0;∞); i = 1; N − 1 are C1-functions;
(H2) fi; i = 1; N − 1 is non-decreasing on (0;∞) and g is non-increasing on (0;∞):

Since T is bounded, we can make a translation of the domain so that it lies in the
interior of the strip RN−1 × [0; ‘] for some ‘¿0. The fact that p∈C( XT) is a positive
function implies the existence of �¿0 and �¿0 such that p(x)∈ [�; �] for each x∈ XT.
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Set

D= {y∈ [0; ‘] :∃x′ such that (x′; y)∈ XT}
We can suppose, without loss of generality, that ‘ �∈D.

Let  be the unique positive function de&ned by
∫  (y)

0

1
g(t)

dt =
�
2

(‘y − y2) for any y∈ [0; ‘] (4)

It is obvious that

max
y∈D

 (y)6 max
y∈[0; ‘]

 (y) =A (5)

where A¿0 is uniquely de&ned by
∫ A

0

1
g(t)

dt =
�
8
‘2 (6)

We also assume
(H3) f′

1¿0 on (0; A].
In the &rst result of this paper we impose the condition

(C1) there exists and is &nite limx↘0 f1f′
i =f

′
1(x), for all i = 2; N − 1:

In view of this hypothesis we observe that for any i = 2; N − 1 it makes sense to de&ne

mi = min
[0; A]

(fi=f1)′

(1=f1)′
= min

[0; A]

(
fi − f′

i f1

f′
1

)
and Mi = max

[0; A]

(fi=f1)′

(1=f1)′
= max

[0; A]

(
fi − f′

i f1

f′
1

)

For any x∈T we de&ne the sets

Px = {26i6N − 1; uxi xi(x)¿0} and Nx = {26i6N − 1; uxi xi(x)¡0}

Our &rst result asserts that the existence of a positive solution u∈C2; �(T)∩C( XT) of (3)
ensures its uniqueness, provided that the expression

∑
i∈Pxmiuxi xi+

∑
i∈Nx

Miuxi xi+uyy is bounded
below appropriately.

Theorem 1. Assume (H1)–(H3) and (C1) hold. There exists a positive constant K1;
depending on f1; g; p and T; such that if u is a positive solution of (3) satisfying

∑
i∈Px

miuxi xi +
∑
i∈Nx

Miuxi xi + uyy¿−K1 in T (7)

then u is the unique solution of (3).

We now drop the assumption (C1) but we require
(C2) fi=f1; i = 2; N − 1 is non-increasing on (0;∞).

Our next theorem shows that the uniqueness of the solution to (3) is assured if we &nd
a positive solution u∈C2; �(T)∩C( XT) with the property that ux1x1+

∑
i∈Pxfi(u)=f1(u)uxi xi+∑

i∈Nx
(inf (0; A) f′

i =f
′
1)uxi xi is bounded above appropriately.
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Theorem 2. Assume (H1)–(H3) and (C2) hold. There exists a non-negative constant K2;
depending on f1; g; p and T; such that if u is a positive solution of problem (3) satisfying

ux1x1 +
∑
i∈Px

fi(u)
f1(u)

uxi xi +
∑
i∈Nx

(
inf
(0; A)

f′
i

f′
1

)
uxi xi¡K2 in T (8)

then u is the unique solution of (3).

We point out that hypotheses (7) and (8) should be understood as suFcient conditions that
guarantee the uniqueness of the solution, provided such a solution exists. Problems related to
uniqueness for singular anisotropic quasilinear boundary value problems have been recently
studied by Hill et al. in [7]. In [7] the authors impose a topological constraint to the boundary
and the proof of the uniqueness of the solution uses essentially the fact that T satis&es
a weighted starshapedness condition. In order to illustrate our above stated results, let us
consider the problem

N∑
i=1

uaiuxi xi + 2
N∑
i=1

(1 − |x|2)ai = 0 if x∈B(0; 1)⊂RN

u= 0 if |x|= 1

(9)

where a1¿ · · ·¿aN¿0 and a1¿aN . By Theorem 4:3 in [7], this problem has a unique so-
lution. The same conclusion follows from our results. Indeed, let us observe that the func-
tions fi(t) = tai−aN and g(t) = t−aN ful&ll conditions (H1)–(H3) and (C1), with �= 0, �= 2N ,
A= [N (aN + 1)]1=(aN +1), mi = 0 and Mi = (a1 − ai) (a1 − aN )−1Aai−aN , for 16i6
N − 1. Choosing

K1¿2 +
2

a1 − aN

N−1∑
i=2

(a1 − ai)Aai−aN

it follows from Theorem 1 that u(x) = 1 − |x|2 is the unique solution of problem (9).
The main diFculty in the treatment of (3) is the lack of the usual comparison principle

between sub- and super-solution, due to the anisotropic character of the equation. To this end,
using a result of Choi and McKenna, we will state in Section 2 a comparison principle which
is suitable for (3).

2. AN AUXILIARY RESULT

In this section we prove that the number A given by (6) is an upper bound for every positive
classical solution of problem (3). To this end, we make use of a comparison lemma on a
class of quasilinear elliptic equations established by Choi–McKenna [4]. In view of this result
we can obtain L∞ bounds on the solutions to this class of equations using the method of sub-

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:771–779



UNIQUENESS FOR SINGULAR ANISOTROPIC PROBLEMS 775

and super-solutions. Consider the problem

N−1∑
i=1

fi(x; u)uxi xi + uyy + p(x)g(x; u) = 0 in T

u= u0 on 9T

(10)

with u0|9T¿0; where the functions fi; g and p satisfy the assumptions:

(A1) fi : T × [0;∞) → [0;∞) is continuous and fi(x; ·) is non-decreasing for each x∈T;
(A2) g : T × (0;∞) → (0;∞) is continuous, and g(x; ·) is non-increasing for each x∈T;
(A3) p : XT → R is continuous, and there exist positive constants � and � such that

0¡�6p(x)6� for all x∈ XT

Assume that
(L) There exists a sub-solution ’∈C( XT) ∩ C2(T) with ’¿0 on T satisfying

N−1∑
i=1

fi(x; ’)’xi xi+’yy+p(x)g(x; ’)¿0 in T

’xi xi60 in T for any i = 1; 2; : : : ; N − 1

and ’6u0 on 9T.
(U) There exists a super-solution  ∈C( XT) ∩ C2(T) with  ¿0 in T satisfying

N−1∑
i=1

fi(x;  ) xi xi+ yy+p(x)g(x;  )60 in T

 xi xi60 in T for any i = 1; 2; : : : ; N − 1

and  ¿u0 on 9T.

Lemma 1. Assume (A1)–(A3); (L) and (U) hold. Then any positive solution u of (3)
satis&es u6A in XT; where A is de&ned in (6).

Proof. Under the above hypotheses, Choi and McKenna proved in [4] that every solution
u∈C 2(T)∩C( XT) of problem (10), with u¿0 in T, satis&es

’6u6 in XT

Moreover, if only conditions (A1)–(A3) and (U) hold, then u6 in XT.
It is easy to check whether the function  de&ned in (4) satis&es condition (U) considered

for our problem (3). Therefore, by the Choi–McKenna comparison lemma and (5), we &nd
that every positive classical solution of (3) is bounded above by the same number A de&ned
in (6).
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3. PROOF OF THEOREM 1

Let u and v be solutions of (3) and let u satisfy (7), where

K1 =
!2

‘2

1
f1(A)

inf
(0; A)

f2
1

f′
1

+ � inf
(0; A)

(g=f1)′

(1=f1)′

We prove in what follows that u= v in XT. Set

w(x) =
u(x′; y)
s(y)

; z(x) =
v(x′; y)
s(y)

where

s(y) = sin
!y
‘

; c(y) = cos
!y
‘

; y∈ (0; ‘)

Since s¿0 and s∈C∞, it follows that w and z are well-de&ned and that they are as smooth
as u and v, respectively, on T. A simple computation shows that w satis&es the boundary
value problem

N−1∑
i=1

sfi(u)wxi xi +
2!c
‘

wy + swyy − !2s
‘2 w + p(x)g(u) = 0 in T

w = 0 on 9T

(11)

Similarly,

N−1∑
i=1

sfi(v)zxi xi +
2!c
‘

zy + szyy − !2s
‘2 z + p(x)g(v) = 0 in T

z = 0 on 9T

(12)

Relations (11) and (12) yield

N−1∑
i=1

s
fi(v)
f1(v)

(z − w)xi xi +
N−1∑
i=2

s
[(

fi

f1

)
(v) −

(
fi

f1

)
(u)

]
wxi xi +

2!c
‘

1
f1(v)

(z − w)y

+
2!c
‘

(
1

f1(v)
− 1

f1(u)

)
wy + s

1
f1(v)

(z − w)yy + s
(

1
f1(v)

− 1
f1(u)

)
wyy

− !2s
‘2

1
f1(v)

(z − w) − !2s
‘2

(
1

f1(v)
− 1

f1(u)

)
w + p(x)

[(
g
f1

)
(v) −

(
g
f1

)
(u)

]
= 0
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Whenever z �=w we can rewrite the above equation as follows:

N−1∑
i=1

s
fi (v)
f1 (v)

(z − w)xi xi + s
1

f1 (v)
(z − w)yy +

2!c
‘

1
f1 (v)

(z − w)y

+
(

1
f1 (v)

− 1
f1(u)

)
Q(z; w) = 0 (13)

where

Q(z; w) = uyy +
N−1∑
i=2

(fi=f1) (v) − (fi=f1) (u)
(1=f1) (v) − (1=f1) (u)

uxi xi −
!2

‘2

1
f1(v)

v− u
(1=f1) (v) − (1=f1) (u)

+p(x)
(g=f1) (v) − (g=f1) (u)
(1=f1) (v) − (1=f1) (u)

In order to conclude the proof it is enough to show that

Q(z; w)¿0 whenever z �=w (14)

Indeed, if (z−w)¿0 at some point in T, then max XT (z−w) is achieved in T, since z =w = 0
on 9T. At that point we have

(z − w)xi xi60 (z − w)yy60; (z − w)y = 0 and
(

1
f1(v)

− 1
f1(u)

)
Q(z; w)¡0

which contradicts (13). A similar argument shows that (z − w) cannot be negative at any
point in T. Hence, z =w in T which implies u= v on XT.

For every x∈T, let us de&ne

'(x) = min(u(x); v(x)) and ((x) = max(u(x); v(x))

Thus, by Lemma 1, (6A in T.
In (13) we apply the Cauchy generalized mean value theorem on every interval ['(x); ((x)],

where x∈T is taken such that z(x) �=w(x). Hence, for all i = 2; N − 1 we obtain the existence
of )i(x); *(x); +(x)∈ ('(x); ((x))⊂ (0; A) such that

mi6
(fi=f1) (v(x)) − (fi=f1) (u(x))
(1=f1) (v(x)) − (1=f1) (u(x))

=
(fi=f1)′

(1=f1)′
()i(x))6Mi (15)

− v(x) − u(x)
(1=f1) (v(x)) − (1=f1) (u(x))

=
f2

1

f′
1

(*(x))¿ inf
(0; A)

f2
1

f′
1

(16)

(g=f1) (v(x)) − (g=f1) (u(x))
(1=f1) (v(x)) − (1=f1) (u(x))

=
(g=f1)′

(1=f1)′
(+(x))¿ inf

(0; A)

(g=f1)′

(1=f1)′
(17)
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Using (15)–(17) we &nd

Q(z; w)¿ uyy+
∑
i∈Px

miuxi xi +
∑
i∈Nx

Miuxi xi +
!2

‘2

1
f1(A)

inf
(0; A)

f2
1

f′
1

+ � inf
(0; A)

(g=f1)′

(1=f1)′

= uyy +
∑
i∈Px

miuxi xi +
∑
i∈Nx

Miuxi xi + K1

Since the solution u satis&es (7) we deduce that relation (14) is true. This completes the
proof.

4. PROOF OF THEOREM 2

Let u and v be two solutions of (3) and set

K2 =−� sup
(0; A)

g′

f′
1
¿0 (18)

The functions w; z; ' and ( will have the same signi&cation as in the above proof.
By (11) and (12) it follows that

N−1∑
i=1

sfi(v)(z − w)xi xi +
N−1∑
i=1

s[fi(v) − fi(u)]wxi xi +
2!c
‘

(z − w)y + s(z − w)yy

− !2s
‘2 (z − w)+p(x)[g(v) − g(u)] = 0 (19)

Whenever z �=w, relation (19) may be rewritten in the following form:

N−1∑
i=1

sfi(v)(z − w)xi xi +
2!c
‘

(z − w)y + s(z − w)yy + [f1(v) − f1(u)]R(z; w) = 0

where

R(z; w) = ux1 x1 +
N−1∑
i=2

fi(v) − fi(u)
f1(v) − f1(u)

uxi xi −
!2

‘2

v− u
f1(v) − f1(u)

+ p(x)
g(v) − g(u)
f1(v) − f1(u)

Using the maximum principle (as we did in the proof of Theorem 1) we see that the proof
will be concluded if we prove that

R(z; w)¡0 whenever z �=w

From now on, we shall consider only the points x∈T with the property that z(x) �=w(x). For
these points, we again apply the Cauchy generalized mean value theorem on ['(x); ((x)] and
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we obtain -i(x); .(x); /(x)∈ ('(x); ((x))⊂ (0; A) such that

fi(v(x)) − fi(u(x))
f1(v(x)) − f1(u(x))

=
f′
i

f′
1
(-i(x))¿ inf

(0; A)

f′
i

f′
1
; i = 2; N − 1 (20)

v(x) − u(x)
f1(v(x)) − f1(u(x))

=
1

f′
1(.(x))

(21)

g(v(x)) − g(u(x))
f1(v(x)) − f1(u(x))

=
g′

f′
1
(/(x))6 sup

(0; A)

g′

f′
1
60 (22)

It is easy to verify that hypothesis (C2) implies

fi(v(x)) − fi(u(x))
f1(v(x)) − f1(u(x))

6
fi(u(x))
f1(u(x))

for all i = 2; N − 1 (23)

On the other hand, since f1 is increasing on (0; A),

v(x) − u(x)
f1(v(x)) − f1(u(x))

¿0 (24)

Combining relations (20), (22), (23) and (24) with the expression of R(z; w) we deduce that

R(z; w)¡ux1 x1 +
∑
i∈Px

fi(u)
f1(u)

uxi xi +
∑
i∈Nx

(
inf
(0; A)

f′
i

f′
1

)
uxi xi + � sup

(0; A)

g′

f′
1

Since u is a solution of (3) satisfying (8) we deduce that R(z; w) is negative. This completes
our proof.
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