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Abstract. In this work we prove the existence of solutions for a class of
generalized Choquard equations involving the ΔΦ-Laplacian operator.
Our arguments are essentially based on variational methods. One of
the main difficulties in this approach is to use the Hardy–Littlewood–
Sobolev inequality for nonlinearities involving N-functions. The methods
developed in this paper can be extended to wide classes of nonlinear
problems driven by nonhomogeneous operators.
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1. Introduction

The stationary Choquard equation

− Δu + V (x)u =
(∫

RN

|u|p
|x − y|λ dx

)
|u|p−2u in R

N , (1.1)

where N ≥ 3, 0 < λ < N , has appeared in the context of various physical
models. In particular, this equation plays particularly an important role in the
theory of Bose–Einstein condensation where it accounts for the finite-range
many-body interactions.

For N = 3, p = 2, and λ = 1, problem (1.1) was investigated by Fröhlich
[1] and Pekar [2] in relationship with the quantum theory of a polaron, where
free electrons in an ionic lattice interact with phonons associated to defor-
mations of the lattice or with the polarisation that it creates on the medium
(interaction of an electron with its own hole). We recall that Choquard [3]
used this equation in the Hartree–Fock theory of one-component plasma. This
equation was also proposed by Penrose in [4] as a model of self-gravitating
matter and is known in that context as the Schrödinger–Newton equation.
In fact, the Choquard equation is also known as the Schrödinger–Newton
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equation in models coupling the Schrödinger equation of quantum physics
together with nonrelativistic Newtonian gravity.

Recent relevant contributions included in the papers are by Ackermann
[5], Alves et al. [6–8], Cingolani, Secchi and Squassina [9], Gao and Yang
[10], Lions [11], Ma and Zhao [12], Moroz and van Schaftingen [13–16], van
Schaftingen and Xia [17], Wang [18], and their references.

In all the above-mentioned papers, the authors used variational methods
to show the existence of solution. This method works well thanks to a Hardy–
Littlewood–Sobolev type inequality [19] that has the following statement.

Proposition 1.1 (Hardy–Littlewood–Sobolev inequality). Let t, r > 1 and
0 < λ < N with 1/t + λ/N + 1/r = 2, g ∈ Lt(RN ) and h ∈ Lr(RN ). Then
there exists a sharp constant C(t,N, λ, r), independent of f, h, such that∣∣∣∣

∫

RN

∫

RN

g(x)h(y)
|x − y|λ dxdy

∣∣∣∣ ≤ C(t,N, λ, r)‖g‖Lt(RN )‖h‖Lr(RN ). (1.2)

In this paper, we are concerned with the existence of solution for the
following class of quasilinear problems:⎧

⎪⎪⎨
⎪⎪⎩

−ΔΦu + φ(|u|)u =
(∫

RN

F (u(x))
|x − y|λ dx

)
f(u(y)) in R

N ,

u ∈ W 1,Φ(RN ).

(1.3)

This problem generalizes (1.1) in a nonhomogeneous setting, where f :
R → R is a continuous function verifying some natural hypotheses, which
will be mentioned in Sect. 3. Let F be the primitive of f , that is,

F (t) =
∫ t

0

f(s)ds.

We denote ΔΦ = div (φ(|∇u|)∇u), where Φ : R → R is a N -function of the
form

Φ(t) :=
∫ |t|

0

φ(s)sds, (1.4)

with φ : (0,+∞) → (0,+∞) being a C1 function satisfying

(tφ(t))′ > 0; ∀t > 0(φ1)

and

lim
t→0+

tφ(t) = 0, lim
t→+∞ tφ(t) = +∞.(φ2)

We also assume that there exist l,m ∈ (1, N) such that l ≤ m < l∗ := Nl
N−l

and

l ≤ m < l∗ :=
Nl

N − l
and l ≤ φ(t)t2

Φ(t)
≤ m for all t > 0.(φ3)

Our purpose is to show that the variational method can be used to
establish the existence of solutions for problem (1.3). One of the main dif-
ficulties is to show that the energy functional associated with (1.3) given
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by

J(u) =
∫

RN

(Φ(|∇u|) + Φ(|u|)) dx − 1
2

∫

RN

∫

RN

F (u(x))F (u(y))
|x − y|λ dxdy

is well defined and belongs to C1(W 1,Φ(RN ),R). In fact, the main difficulty
is to prove that the functional Ψ : W 1,Φ(RN ) → R given by

Ψ(u) =
1
2

∫

RN

∫

RN

F (u(x))F (u(y))
|x − y|λ dxdy (1.5)

belongs to C1(W 1,Φ(RN ),R) with

Ψ′(u)v =
∫

RN

∫

RN

F (u(x)f(u(y))v(y))
|x − y|λ dxdy, ∀u, v ∈ W 1,Φ(RN ).

In what follows, we would like to point out that the operator ΔΦ arises
in several physical applications, such as:
Non-Newtonian fluids: Φ(t) = 1

p |t|p for p > 1,
Plasma physics: Φ(t) = 1

p |t|p + 1
q |t|q where 1 < p < q < N with q ∈ (p, p∗),

Nonlinear elasticity: Φ(t) = (1 + t2)α − 1, α ∈ (1, N
N−2 ),

Plasticity: Φ(t) = tp ln(1 + t), 1 < −1+
√

1+4N
2 < p < N − 1, N ≥ 3,

Generalized Newtonian fluids: Φ(t) =
∫ t

0
s1−α(sinh−1 s)βds, 0 ≤ α ≤ 1 and

β > 0.
The reader can find more details about the physical applications in [20],

[21] and their references. The existence of solution for

−ΔΦu + V (x)φ(|u|)u = f(u) in Ω, and u = 0 on ∂Ω,

with Ω ⊂ R
N being a bounded or unbounded domain has been established

in some papers, see for example [22–35] and the references therein.
This paper is organized as follows. In Sect. 2 we recall some facts involv-

ing Orlicz–Sobolev spaces. In Sect. 3 we show that Ψ is of class C1 under
certain conditions on f. In Sect. 4 we study the existence of solutions to prob-
lem (1.3). Finally, in Sect. 5, we show other problems that can be studied
with the approach developed in the present paper.

2. Orlicz–Sobolev Spaces

In this section we recall some results on Orlicz–Sobolev spaces. The results
pointed below can be found in [21,28,36,37].

We say that a continuous function Φ : R → [0,+∞) is a N-function if:
(i) Φ is convex,
(ii) Φ(t) = 0 ⇔ t = 0,

(iii) lim
t→0

Φ(t)
t

= 0 and lim
t→+∞

Φ(t)
t

= +∞,

(iv) Φ is even.
We say that a N-function Φ verifies the Δ2-condition, and we denote by
Φ ∈ Δ2, if

Φ(2t) ≤ KΦ(t), ∀t ≥ t0, (2.1)
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for some constants K, t0 > 0. An important fact is that if Φ verifies the
Δ2-condition then for some s > 0 there is a constant Cs > 0 such that

Φ(st) ≤ CsΦ(t), ∀t ≥ 0.

We fix an open set Ω ⊂ R
N and a N-function Φ. We define the Orlicz

space associated with Φ as follows

LΦ(Ω) =
{

u ∈ L1(Ω):
∫

Ω

Φ
( |u|

λ

)
dx < +∞ for some λ > 0

}
.

The space LΦ(Ω) is a Banach space endowed with the Luxemburg norm given
by

‖u‖Φ = inf
{

λ > 0 :
∫

Ω

Φ
( |u|

λ

)
dx ≤ 1

}
.

In the case of |Ω| = +∞ we will consider that Φ ∈ Δ2 if t0 = 0 in (2.1).
The complementary function Φ̃ associated with Φ is given by the Legendre
transformation, that is,

Φ̃(s) = max
t≥0

{st − Φ(t)}, for all s ≥ 0.

We also have a Young-type inequality given by

st ≤ Φ(t) + Φ̃(s), for all s, t ≥ 0.

Using the above inequality, it is possible to establish the following Hölder-
type inequality:

∣∣∣
∫

Ω

uvdx
∣∣∣ ≤ 2‖u‖Φ‖v‖Φ̃, for all u ∈ LΦ(Ω), v ∈ LΦ̃(Ω).

The following results will be often used and they can be found in [21,28].

Lemma 2.1. Consider Φ a N -function of the form (1.4) and satisfying
(φ1), (φ2) and (φ3) only with the restriction 1 < l ≤ m. Set

ζ0(t) = min{t�, tm} and ζ1(t) = max{t�, tm}, t ≥ 0.

Then Φ satisfies

ζ0(t)Φ(ρ) ≤ Φ(ρt) ≤ ζ1(t)Φ(ρ), ρ, t > 0,

ζ0(‖u‖Φ) ≤
∫

Ω

Φ(u)dx ≤ ζ1(‖u‖Φ), u ∈ LΦ(Ω).

Lemma 2.2. If Φ is a N -function of the form (1.4) satisfying (φ1) and (φ2),
then

Φ̃(φ(|t|)t) ≤ Φ(2t) ∀t ≥ 0.

For a N -function Φ, the corresponding Orlicz–Sobolev space is defined
as the Banach space

W 1,Φ(Ω) =
{

u ∈ LΦ(Ω) :
∂u

∂xi
∈ LΦ(Ω), i = 1, . . . , N

}
,

endowed with the norm

‖u‖1,Φ = ‖∇u‖Φ + ‖u‖Φ.
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If Φ and Φ̃ satisfy the Δ2-condition, then the spaces LΦ(Ω) and
W 1,Φ(RN ) are reflexive and separable. Moreover, the Δ2-condition also
implies that

un → u in LΦ(Ω) ⇐⇒
∫

Ω

Φ(|un − u|) → 0

and

un → u in W 1,Φ(Ω) ⇐⇒
∫

Ω

Φ(|un − u|) → 0 and
∫

Ω

Φ(|∇un − ∇u|) → 0.

An important function related to a N -function Φ is the Sobolev conju-
gate function Φ∗ of Φ defined by

Φ−1
∗ (t) =

∫ t

0

Φ−1(s)
s(N+1)/N

ds for t > 0 when
∫ +∞

1

Φ−1(s)
s(N+1)/N

ds = +∞.

Let Φ1 and Φ2 be N -functions. We say that Φ1 increases strictly lower

than Φ2, and we denote by Φ1 ≺≺ Φ2, if lim
t→+∞

Φ1(kt)
Φ2(t)

= 0 for all k > 0.

We say that Ω ⊂ R
N is an admissible domain, if the embedding

W 1,1(Ω) ↪→ Lq(Ω) is continuous for all q ∈ [1, N
N−1 ].

The following embedding results can be found in [25,38].

Theorem 2.1. Let Φ be a N -function, A a N -function and Ω be an admissible
domain. Then

(i) If lim sup
t→0

A(t)
Φ(t)

< +∞ and lim sup
t→+∞

A(t)
Φ∗(t)

< +∞, then the embeddings

W 1,Φ(Ω) ↪→ LA(Ω) and W 1,Φ(RN ) ↪→ LA(RN ) are continuous,
(ii) If A ≺≺ Φ� and |Ω| < +∞, then the embedding W 1,Φ(Ω) ↪→ LA(Ω) is

compact.

The next result can be found in [25] and it will play an important role
in this work.

Theorem 2.2. Consider Φ(t) :=
∫ |t|
0

φ(t)t dt a N -function with φ satisfying
(φ1), (φ2) and (φ3). Let (un) be a bounded sequence in W 1,Φ(RN ) such that
there exists R > 0 satisfying

lim
n→+∞ sup

y∈RN

∫

BR(y)

Φ(|un|) = 0.

Then, for any N-function P verifying the Δ2-condition with

lim
t→0

P (t)
Φ(t)

= 0 (P1)

and

lim
t→+∞

P (t)
Φ∗(t)

= 0, (P2)

we have

un → 0 in LP (RN ).



   20 Page 6 of 24 C. O. Alves et al. MJOM

3. Differentiability of the Functional Ψ

In this section, we will study the differentiability of the functional Ψ given in
(1.5). To this end, we must assume some conditions on f .

We will consider B : R → [0,+∞) being a N -function given by
B(t) =

∫ |t|
0

b(s)sds, where b : (0,+∞) → (0,+∞) is a function satisfying
the following conditions:

(tb(t))′ > 0, for all t > 0,(H1)

lim
t→+∞ tb(t) = +∞,(H2)

and there exist bi ∈ (1,+∞), i = 1, 2 such that

b1 ≤ b(t)t2

B(t)
≤ b2,∀t > 0.(H3)

The above hypotheses permit to use Lemmas 2.1 and 2.2 by changing
Φ by B. More precisely, B satisfies the Δ2 condition with

ζ0,B(t)B(ρ) ≤ B(ρt) ≤ ζ1,B(t)B(ρ), ρ, t > 0,

and

ζ0,B(‖u‖B) ≤
∫

Ω

B(u)dx ≤ ζ1,B(‖u‖B), u ∈ LB(Ω),

where

ζ0,B(t) = min{tb1 , tb2} and ζ1,B(t) = max{tb1 , tb2}, t ≥ 0.

Let f : R → R be a continuous function satisfying the growth condition

|f(t)| ≤ Cb(|t|)|t|, ∀t ∈ R, (f1)

where C is a positive constant.
The primitive of f , that is, F (t) :=

∫ t

0
f(s)ds is continuous and satisfies

|F (t)| ≤ CB(t), ∀t ∈ R (F )

for some constant C > 0.
Let 0 < λ < N and consider s ∈ R with

1
s

+
λ

N
+

1
s

= 2,

that is, s = 2N
2N−λ . We will also suppose that the embeddings

W 1,Φ(RN ) ↪→ Lsbi(RN ), i = 1, 2 (E)

are continuous. The above condition is not empty, because we can consider
the following conditions on B

lim sup
t→0+

tsbi

Φ(t)
= 0

and

lim sup
t→+∞

tsbi

Φ∗(t)
= 0.
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If Φ(t) = 1
p |t|p with 1 < p < N , we have that ΔΦu = Δpu and the

function f can be of the form

f(t) = |t|q−2t + |t|β−2t, for all t ∈ R

with sq, sβ ∈ (p, p∗).
In the proof of the differentiability of Ψ, we will use the following ele-

mentary property, whose proof we omit.

Lemma 3.1. Let E be a normed vector space and J : E → R be a functional
verifying the following properties:

(i) the Fréchet derivative ∂J(u)
∂v := lim

t→0

J(u+tv)−J(u)
t exists for all u, v ∈ E;

(ii) for each u ∈ E, ∂J(u)
∂(.) ∈ E′, that is, the application v �→ ∂J(u)

∂v is a
continuous linear functional;
(iii) we have

un → u in E =⇒ ∂J(un)
∂(.)

→ ∂J(u)
∂(.)

in E′,

that is,

un → u in E =⇒ sup
‖v‖≤1

∣∣∣∣
∂J(un)

∂v
− ∂J(u)

∂v

∣∣∣∣ → 0.

Then J ∈ C1(E,R) and

J ′(u)v =
∂J(u)

∂v
, for all u, v ∈ E.

We are now ready to prove the differentiability of functional Ψ given
by (1.5).

Lemma 3.2. Assume (E), (H1) − (H3) and (f1). Then Ψ given in (1.5) is
well defined and belongs to C1(W 1,Φ(RN ),R) with

Ψ′(u)v =
∫

RN

∫

RN

F (u(x))f(u(y))v(y))
|x − y|λ dxdy,

for all u, v ∈ W 1,Φ(RN ).

Proof. Using the definition of s, the condition (F ) and Proposition 1.1, it
follows that Ψ is well defined. In the sequel, we will show that Ψ satisfies the
assumptions of Lemma 3.1. To this end, we will divide the proof into three
steps.
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Step 1: Existence of the Fréchet derivative:
Let u, v ∈ W 1,Φ(RN ) and t ∈ [−1, 1]. Note that

Ψ(u + tv) − Ψ(u)
t

=
1
2

∫

RN

∫

RN

F (u(x) + tv(x))F (u(y) + tv(y)) − F (u(x))F (u(y))
t|x − y|λ dxdy.

(3.1)

Denoting by I the integrand in (3.1), we have

I =
F (u(x) + tv(x))(F (u(y) + tv(y)) − F (u(y))

t

+F (u(y))(F (u(x)+tv(x))−F (u(x)))
t .

By the mean value theorem, there exist θ(x, t), η(y, t) ∈ [−1, 1], such that

F (u(y) + tv(y)) − F (u(y)) = f(u(y) + η(y, t)tv(y))v(y)t

and

F (u(x) + tv(x)) − F (u(x)) = f(u(x) + θ(x, t)tv(x))v(x)t.

The relation (3.1) allows us to estimate
∣∣∣∣
Ψ(u + tv) − Ψ(u)

t
−

∫

RN

∫

RN

F (u(x)f(u(y))v(y))
|x − y|λ dxdy

∣∣∣∣
≤ |Bt

1| + |Bt
2|,

where

Bt
1 :=

1

2

∫

RN

∫

RN

F (u(x) + tv(x))f(u(y) + η(y, t)tv(y))v(y) − F (u(x)f(u(y))v(y))

|x − y|λ dxdy

and

Bt
2 :=

1
2

∫

RN

∫

RN

F (u(y))f(u(x) + θ(x, t)tv(x))v(x)
|x − y|λ dxdy

− 1
2

∫

RN

∫

RN

F (u(x))f(u(y))v(y)
|x − y|λ dxdy.

If x ∈ R
N and u(x) �= 0, Lemma 2.1 gives

|f(u(x))v(x)| ≤ Cb(|u(x)|)|u(x)||v(x)|

≤ C

(
B(|u(x)|)

|u(x)|
)

|v(x)|

≤ C(|u(x)|b1−1 + |u(x)|b2−1)|v(x)|.
The above estimate also holds if u(x) = 0. Such estimate, combined with (E)
implies that f(u)v ∈ Ls(RN ). Since F (u) ∈ Ls(RN ), we have by Proposi-
tion 1.1,

∫

RN

∫

RN

|F (u(x))f(u(y))v(y)|
|x − y|λ dxdy < +∞.
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Thus, by Fubini’s theorem,∫

RN

∫

RN

F (u(x))f(u(y))v(y)
|x − y|λ dxdy =

∫

RN

∫

RN

F (u(y))f(u(x))v(x)
|x − y|λ dydx.

Therefore, Bt
2 can be rewritten as

Bt
2 :=

1

2

∫

RN

∫

RN

F (u(y))f(u(x) + θ(x, t)tv(x))v(x) − F (u(y)f(u(x))v(x))

|x − y| dxdy.

By Proposition 1.1 we obtain

|Bt
2| ≤ C‖F (u)‖Ls+ (RN )‖f(u + θ(., t)v)v − f(u)v‖Ls+ (RN ).

Since θ(x, t) ∈ [−1, 1], the condition (f) combined with Lemma 2.1 implies
that

|f(u(x) + θ(t, x)tv(x))v(x) − f(u(x))v(x)|s ≤ C((|u(x)| + |v(x)|)s(b1−1)|v(x)|s
+(|u(x)| + |v(x)|)s(b2−1)|v(x)|s),

(3.2)

for all x ∈ R
N . Here C is a constant that does not depend on t ∈ [−1, 1].

The embeddings (E) ensure that the right-hand side of the inequality (3.2) is
an integrable function. Thus, the Lebesgue’s dominated convergence theorem
yields

‖f(u + θ(., t)v)v − f(u)v‖Ls(RN ) → 0 as t → 0.

The last limit implies that Bt
2 → 0 as t → 0. With respect to Bt

1, we have
the estimate below

|Bt
1| ≤ 1

2

∫

RN

∫

RN

|F (u(x))||f(u(y) + η(y, t)tv(y))v(y) − f(v(y))v(y)|
|x − y|λ dxdy

+
1

2

∫

RN

∫

RN

|f(u(y) + η(y, t)tv(y))v(y)||F (u(x) + tv(x)) − F (u(x))|
|x − y|λ dxdy.

Arguing as before,∫

RN

∫

RN

|F (u(x))||f(u(y) + η(y, t)tv(y))v(y) − f(v(y))v(y)|
|x − y|λ dxdy → 0

as t → 0. On the other hand, the Lebesgue’s dominated convergence theorem
also yields

‖F (u + tv) − F (u)‖Ls(RN ) → 0 as t → 0. (3.3)

As in (3.2), ‖f(u+η(., t)tv)v‖Ls(RN ) is uniformly bounded by a constant
that does not depend on t ∈ [−1, 1]. Thus, Proposition 1.1 combined with
(3.3) gives
∫

RN

∫

RN

|f(u(y) + η(y, t)tv(y))v(y)||F (u(x) + tv(x)) − F (u(x))|
|x − y|λ dxdy → 0,

as t → 0, and so, Bt
1 → 0 as t → 0. From the above analysis,

lim
t→0

Ψ(u + tv) − Ψ(u)
t

=
∫

RN

∫

RN

F (u(x)f(u(y))v(y))
|x − y|λ dxdy,

showing the existence of the Fréchet derivative ∂Ψ(u)
∂v .
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Step 2: ∂Ψ(u)
∂(.) ∈ (W 1,Φ(RN ))′ for all u ∈ W 1,Φ(RN ).

It is evident that ∂Ψ(u)
∂v is linear at v for each u fixed. Next, we are going

to show that∣∣∣∣
∂Ψ(u)

∂v

∣∣∣∣ ≤ Cu, ∀v ∈ W 1,Φ(RN ) with ‖v‖W 1,Φ(RN ) ≤ 1,

for some positive constant Cu. From (f), (F ) and Proposition 1.1 we have
∣∣∣∣
∫

RN

∫

RN

F (u(x))f(u(y))v(y)
|x − y|λ(x,y)

dxdy

∣∣∣∣ ≤ C‖F (u)‖Ls(RN )‖f(u)v‖Ls(RN ).

(3.4)

The continuous embeddings of (E) combined with Hölder inequality, (f) and
Proposition 2.1 give

∫

RN

|f(u(y))v(y)|sdy ≤ C

(∫

RN

|u(y)|s(b1−1)|v(y)|sdy

+
∫

RN

|u(y)|s(b2−1)|v(y)|sdy

)

+C

⎛
⎝

(∫

RN

|u(y)|sb1dy

) b1−1
b1

(∫

RN

|v(y)|sb1

) 1
b1

+
(∫

RN

|u(y)|sb2dy

) b2−1
b2

(∫

RN

|v(y)|sb2

) 1
b2

⎞
⎠ ≤ Cu, (3.5)

where

Cu = K

⎛
⎝max

⎛
⎝

(∫

RN

|u(y)|sb1dy

) b1−1
b1

,

(∫

RN

|u(y)|sb2dy

) b2−1
b2

⎞
⎠

⎞
⎠ ,

with K a constant that does not depend on u and v. Then inequalities (3.4)
and (3.5) justify Step 2.

Step 3:

un → u in W 1,Φ(RN ) ⇒ sup
‖v‖W1,Φ(RN )≤1

∣∣∣∣
∂Ψ(un)

∂v
− ∂Ψ(u)

∂v

∣∣∣∣ → 0.

Consider v ∈ W 1,Φ(RN ) with ‖v‖W 1,Φ(RN ) ≤ 1 and note that
∣∣∣∣
∂Ψ(un)

∂v
− ∂Ψ(u)

∂v

∣∣∣∣ ≤
∫

RN

∫

RN

|F (un(x)) − F (u(x))||f(un(y))v(y)|
|x − y|λ dxdy

+
∫

RN

∫

RN

|F (u(x))||f(un(y))v(y) − f(y, u(y))v(y)|
|x − y|λ dxdy

:= Bn
f + Bn

F .

By Proposition 1.1, we obtain

Bn
f ≤ C‖F (un) − F (u))‖Ls(RN )‖f(un)v‖Ls(RN ).
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Since the sequence (‖f(un)v‖Ls(RN )) is bounded (see (3.5)) and

‖F (un) − F (u)‖Ls(RN ) → 0,

it follows that

sup
v∈W 1,Φ(RN )

‖v‖
W1,Φ(RN )≤1

‖F (un) − F (u))‖Ls(RN )‖f(un)v‖Ls(RN ) → 0 as n → +∞.

(3.6)

Now we will estimate Bn
F . Given ε > 0, fix R > 0 large enough such

that ∫

B(0,R)c

|u(x)|b1sdx,

∫

B(0,R)c

|u(x)|b2sdx < ε.

Since un → u in Lb1s(RN ) and Lb2s(RN ), there is n0 ∈ N large enough such
that ∫

B(0,R)c

|un(x)|b1sdx,

∫

B(0,R)c

|un(x)|b2sdx < ε, (3.7)

for all n ≥ n0. Note that by Proposition 1.1∫

RN

∫

RN

|F (u(x))||(f(un(y)) − f(u(y)))v(y)|
|x − y|λ dxdy ≤ C‖F (u)‖Ls(RN )

×‖(f(un) − f(u))v‖Ls(RN ),

(3.8)

where C0 > 0 is a constant that does not depend on n ∈ N. The condition
(f) together with Hölder’s inequality yields∫

B(0,R)c

|(f(un(y)) − f(u(x)))v(y)|sdy

≤ C1‖un‖s(b1−1)

Lsb1 (B(0,R)c)
‖v‖s

Lsb1 (B(0,R)c)

+ C1‖un‖s(b2−1)

Lsb2 (B(0,R)c)
‖v‖s

Lsb2 (B(0,R)c),

(3.9)

where C1 > 0 is a constant that does not depend on n ∈ N. Using the
embeddings (E), we have ‖v‖s

Lsbi (B(0,R)c)
≤ C2, i = 1, 2 where C2 is a positive

constant that does not depend on v ∈ W 1,Φ(RN ) with ‖v‖W 1,Φ(RN ) ≤ 1 and
R > 0. Thus, from (3.7) and (3.9)∫

B(0,R)c

|(f(un(y)) − f(u(x)))v(y)|q+
dy ≤ C3 max

{
ε

b1−1
b1 , ε

b2−1
b2

}
.

where C3 is a positive constant that does not depend on v ∈ W 1,Φ(RN ) with
‖v‖W 1,Φ(RN ) ≤ 1 and R > 0. Therefore

sup
v∈W 1,Φ(RN )

‖v‖W1,Φ(RN )≤1

∫

B(0,R)c

|(f(un(y)) − f(u(y)))v(y)|sdy ≤ Aε, ∀n ≥ n0.

(3.10)

where

Aε = C3 max
{

ε
b1−1

b1 , ε
b2−1

b2

}
→ 0 as ε → 0+.
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Now we will estimate the integral
∫

B(0,R)

|f(un(y)) − f(u(y))|s|v(y)|sdy.

From (f) and Lemma 2.1,

|f(un(y)) − f(u(y))|s ≤ C(1 + |un(y)|s(b2−1) + |u(y)|s(b2−1)),∀y ∈ R
N .

From (E) we have that the embedding W 1,Φ(RN ) ↪→ Lsb2(RN ) is continuous

which implies that |f(un) − f(u)| sb2
b2−1 , |v|sb2 ∈ L1(B(0, R)).

From Hölder’s inequality we get
∫

B(0,R)

|f(un(y)) − f(u(y))|s|v(y)|sdy ≤ C‖|f(un) − f(u)|s‖
L

b2
b2−1 (B(0,R))

× ‖|v|s‖Lb2 (B(0,R))

≤ C4‖|f(un) − f(u)|s‖
L

b2
b2−1 (B(0,R))

,

where C4 is a positive constant that does not depend on n ∈ N and v ∈
W 1,Φ(RN ) with ‖v‖W 1,Φ(RN ) ≤ 1. Recalling that |f(un(y)) − f(u(y))|s → 0

in L
b2

b2−1 (B(0, R)), it follows that

sup
v∈W 1,Φ(RN )

‖v‖1,Φ≤1

∫

B(0,R)

|(f(un(y)) − f(u(y)))v(y)|sdy → 0 as n → +∞. (3.11)

From (3.10) and (3.11),

sup
v∈W 1,Φ(RN )

‖v‖1,Φ≤1

‖(f(un) − f(u))v‖Ls(RN ) → 0 as n → +∞. (3.12)

From (3.8) and (3.12),

sup
v∈W 1,Φ(RN)

‖v‖1,Φ≤1

∫

RN

∫

RN

|F (u(x))||(f(un(y)) − f(y, u(y)))v(y)|
|x − y|λ dxdy → 0 as n → +∞.

(3.13)

The step is justified, according to (3.6), and (3.13). Finally, the lemma follows
from the previous three steps. �

4. Existence of Nontrivial Solutions

To prove the existence of solution for (1.3) we will need some assumptions.
In what follows, we will consider

m < sbi < l∗, i = 1, 2,

which implies that the embeddings in (E) hold. Moreover, we will consider
the condition (f1) with

bi > m/2, i = 1, 2. (4.1)
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Finally, we also assume the Ambrosetti–Rabinowitz-type condition: there is
θ > m such that

0 < θF (t) ≤ 2f(t)t, ∀t �= 0. (f2)

Our main result is the following:

Theorem 4.1. The problem (1.3) has a nontrivial solution under the condi-
tions (4.1), (φ1) − (φ3), (H1) − (H3) and (f1) − (f2).

In the proof of Theorem 4.1 we will use variational methods. The energy
functional J : W 1,Φ(RN ) → R associated with (1.3) is given by,

J(u) =
∫

RN

(Φ(|∇u(x)|) + Φ(|u(x)|)) dx

−1
2

∫

RN

∫

RN

F (u(x))F (u(y))
|x − y|λ dxdy,

that is,

J(u) =
∫

RN

(Φ(|∇u(x)|) + Φ(|u(x)|)) dx − Ψ(u).

The analysis developed in the previous section implies that J ∈
C1(W 1,Φ(RN ),R) with

J ′(u)v =

∫

RN

φ(|∇u(x)|)∇u(x)∇v(x) dx +

∫

RN

φ(|u(x)|)u(x)v(x)dx

−
∫

RN

∫

RN

F (u(x)f(u(y))v(y))

|x − y|λ(x,y)
dxdy,

for all u, v ∈ W 1,Φ(RN ).
Our first lemma establishes the mountain pass geometry.

Lemma 4.1. The functional J verifies the following properties:
(i) There exists ρ > 0 small enough such that J(u) ≥ η for u ∈ W 1,Φ(RN )

with ‖u‖ = ρ, for some η > 0.
(ii) There exists e ∈ W 1,Φ(RN ) such that ‖e‖ > ρ and J(e) < 0.

Proof. (i) By (F ) and Proposition 1.1 we have∣∣∣∣
∫

RN

∫

RN

F (u(x))F (u(y))
|x − y|λ dxdy

∣∣∣∣ ≤ C‖F (u)‖2
Ls(RN )

for all u ∈ W 1,Φ(RN ). Note that

‖F (u)‖Ls(RN ) ≤ C

(∫

RN

(|u(x)|sb1 + |u(x)|sb2)dx

) 1
s

≤ C(‖u‖b1
Lsb1 (RN )

+ ‖u‖b2
Lsb2 (RN )

),

where C is a constant that does not depend on u ∈ W 1,Φ(RN ).
From (E) and Theorem 2.1, it follows that the embeddings W 1,Φ(RN ) ↪→

Lsbi(RN ), i = 1, 2 are continuous. Therefore

‖u‖Lsbi (RN ) ≤ L‖u‖1,Φ, u ∈ W 1,Φ(RN ), i = 1, 2

for a positive constant L > 0 that does not depend on u ∈ W 1,Φ(RN ).
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By using the classical inequality

(x + y)α ≤ 2α−1(xα + yα), x, y ≥ 0 with α > 1,

and Lemma 2.1, we get for u ∈ W 1,Φ(RN ) with ‖u‖1,Φ = ‖∇u‖Φ + ‖u‖Φ < 1
that

J(u) ≥ Φ(1)
(
min(‖∇u‖l

Φ, ‖∇u‖m
Φ ) + min(‖u‖l

Φ, ‖u‖m
Φ )

)

− C(‖u‖2b1
1,Φ + ‖u‖2b2

1,Φ)

≥ C(‖∇u‖m
Φ + ‖u‖m

Φ ) − C(‖u‖2b1
1,Φ + ‖u‖2b2

1,Φ)

≥ K‖u‖m
1,Φ − K(‖u‖2b1

1,Φ + ‖u‖2b2
1,Φ)

where C,C, and K are constants that do not depend on u. Since (4.1) holds,
the result follows by fixing ‖u‖1,Φ = ρ with ρ > 0 small enough.

(ii) The condition (f2) implies that

F (t) ≥ C1t
θ
2 − C2 ∀t ∈ R,

where C1, C2 ≥ 0 depends only on l and θ. Now, considering a nonnega-
tive function ϕ ∈ C∞

0 (RN )\{0}, the last inequality permits to conclude that
J(tϕ) < 0 for t large enough. This finishes the proof. �

Using the mountain pass theorem without the Palais–Smale condition
(see [39, Theorem 5.4.1]), there is a sequence (un) ⊂ W 1,Φ(RN ) such that

J(un) → d and J
′
(un) → 0,

where d > 0 is the mountain pass level defined by

d := inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)), (4.2)

with

Γ := {γ ∈ C(W 1,Φ(RN ),W 1,Φ(RN ); γ(0) = 0, γ(1) = e}.

Regarding the above sequence we have the following auxiliary property.

Lemma 4.2. The sequence (un) is bounded in W 1,Φ(RN ).

Proof. Note that

J(un) − J
′
(un)un

θ
≤ d + 1 + ‖un‖1,Φ,

for n large enough and d given in (4.2). On the other hand by (φ3) and (f2)
we have

J(un) − J
′
(un)un

θ
=

∫

RN

(Φ(|∇un(x)|) + Φ(|un(x)|)dx

− 1

θ

∫

RN

φ(|∇u|)|∇u|2 + φ(|un(x)|)|un(x)|2dx

+

∫

RN

∫

RN

F (x, un(x))

|x − y|λ
(

f(y, un(y))un(y)

θ
− F (y, un(y))

2

)
dxdy

≥
(
1 − m

θ

) ∫

RN

(Φ(|∇un|) + Φ(|un|)) dx.

The last two inequalities give the boundedness of (un) in W 1,Φ(RN ). �
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Since (un) is bounded in W 1,Φ(RN ), there exists u ∈ W 1,Φ(RN ) such
that ∇un ⇀ ∇u in (LΦ(RN ))N up to a subsequence. From (4.1) and Theorem
2.1, we have that the embedding W 1,Φ(BR(0)) ↪→ LΦ(BR(0)), where BR(0)
denotes the open ball centered at the origin with radius R is compact.

Since LΦ(BR(0)) ↪→ L1(BR(0)), it follows that un(x) → u(x) a.e in
BR(0) for some subsequence. Since R > 0 is arbitrary, we have that un(x) →
u(x) a.e in R

N for some subsequence.
The next two lemmas will be needed to prove that u is a critical point

of J .

Lemma 4.3. The following limits hold for a subsequence:
(i) ∫

RN

∫

RN

F (x, un(x))f(y, u(y))v(y)
|x − y|λ dxdy

→
∫

RN

∫

RN

F (x, u(x))f(y, u(y))v(y)
|x − y|λ dxdy,

for all v ∈ C∞
0 (RN ),

(ii) ∫

RN

∫

RN

F (x, un(x))(f(y, un(y))v(y) − f(y, u(y))v(y))
|x − y|λ dxdy → 0,

for all v ∈ C∞
0 (RN ),

(iii) ∫

RN

∫

RN

F (x, un(x))f(y, un(y))v(y)
|x − y|λ dxdy

→
∫

RN

∫

RN

F (x, u(x))f(y, u(y))v(y)
|x − y|λ dxdy,

for all v ∈ C∞
0 (RN ).

Proof. (i) The hypothesis (F ), the fact that (un) is bounded in W 1,Φ(RN )
and the continuous embeddings W 1,Φ(RN ) ↪→ Lsbi(RN ), i = 1, 2 ensure that
(F (un(.))) is a bounded sequence in Ls(RN ). Combining the previous infor-
mation with the pointwise convergence F (un(x)) → F (u(x)) a.e in R

N , we
have F (un(.)) ⇀ F (u) in Ls(RN ).

By Proposition 1.1 it follows that the function

H(w) :=
∫

RN

∫

RN

w(x)f(u(y))v(y)
|x − y|λ , w ∈ Ls(RN ),

defines a continuous linear functional. Since F (., un) ⇀ F (., u) in Ls(RN ), it
follows that ∫

RN

∫

RN

F (un(x))f(un(y))v(y)
|x − y|λ dxdy

→
∫

RN

∫

RN

F (u(x))f(u(y))v(y)
|x − y|λ dxdy,

which proves (i).
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(ii) Denote by I the integral described in (ii). Since (F (un(.))) is
bounded in Ls(RN ),

|I| ≤ C‖F (un)‖Ls(RN )‖f(un)v − f(u)v‖Ls(RN )

≤ K‖f(un)v − f(u)v‖Ls(RN ),

for some positive constant K > 0 that does not depend on n ∈ N and v ∈
C∞

0 (RN ). Let v ∈ C∞
0 (RN ) and consider a bounded open set Ω that contains

the support of v. Since Ω is bounded the compactness of the embeddings
W 1,Φ(Ω) ↪→ Lsbi(Ω), i = 1, 2 implies that there exist c ∈ Lsb1(Ω) and d ∈
Lsb2(Ω) such that

• un(x) → u(x) a.e in R
N ,

• |un(x)| ≤ c(x), d(x) a.e in Ω.

These information combined with Lebesgue’s dominated convergence theo-
rem give

‖f(un)v − f(u)v‖Ls(RN ) = ‖f(un)v − f(u)v‖Ls(Ω) → 0.

This finishes the proof of (ii). (iii) is a direct consequence of (i) and (ii). �

The next lemma is crucial to prove that u is a critical point of J .

Lemma 4.4. There is a subsequence such that

(i) ∇un(x) → ∇u(x) a.e in R
N ,

(ii) φ(|∇un|)∂un

∂xi
⇀ φ(|∇u|) ∂u

∂xi
in LΦ̃(RN ),

(iii) φ(|un|)un ⇀ φ(|u|)u in LΦ̃(RN ).

Proof. (i) We begin this proof observing that (φ1) yields

(φ(|x|)x − φ(|y|)y) (x − y) > 0, ∀x, y ∈ R
N with x �= y, (4.3)

where (·, ·) denotes the usual inner product in R
N . Given R > 0, let us

consider ξ = ξR ∈ C∞
0 (RN ) satisfying

0 ≤ ξ ≤ 1, ξ ≡ 1 in BR(0) and supp(ξ) ⊂ B2R(0).

Using (4.3), we get

0 ≤
∫

BR(0)

(φ(|∇un(x)|)∇un − φ(|∇u(x)|)∇u(x))

× (∇un(x) − ∇u(x)) dx

≤
∫

B2R(0)

(φ(|∇un(x)|)∇un(x) − φ(|∇u(x)|)∇u(x))

× (∇un(x) − ∇u(x))ξ(x) dx

=
∫

B2R(0)

φ(|∇un(x)|)∇un(x)(∇un(x) − ∇u(x))ξ(x) dx

−
∫

B2R(0)

φ(|∇u(x)|)∇u(x)(∇un(x) − ∇u(x))ξ(x) dx.

(4.4)
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Now, combining the boundedness of {(un − u)ξ} in W 1,Φ(RN ) with the
limit ‖J ′(un)‖ = on(1), it follows that

on(1) = J
′
(un)((un − u)ξ) =

∫

B2R(0)

φ(|∇un(x)|)

× ∇un(x)∇ ((un − u)(x)ξ(x)) dx

+
∫

B2R(0)

φ(|un(x)|)un(x)(un − u)(x)ξ(x) dx

−
∫

RN

∫

RN

F (un(x))f(un(y))(un(y) − u(y))ξ(y)
|x − y|λ dxdy.

(4.5)

The boundedness of (un) in W 1,Φ(RN ) implies that
∫

B2R(0)

Φ̃ (φ(|un(x)|)un(x)) dx ≤
∫

B2R(0)

Φ(2|un(x)|)

×dx ≤ K

∫

B2R(0)

Φ(|un(x)|) dx ≤ C̃, (4.6)

where C̃ is a constant that does not depend on (un). Since

‖φ(|∇un|)un‖
m

m−1

LΦ̃(B2R(0))
− 1 ≤ min(‖φ(|∇un|)un‖

l
l−1

LΦ̃(B2R(0))
,

‖φ(|∇un|)un‖
m

m−1

LΦ̃(B2R(0))
),

it follows from (4.6) that the sequence (φ(|un|)|un|) is bounded in LΦ̃(B2R(0)).
A similar reasoning implies that (φ(|∇un|)|∇un|) is bounded in LΦ̃(B2R(0)).

The compact embedding W 1,Φ(B2R(0)) ↪→ LΦ(B2R(0)) implies that
‖un−u‖LΦ(B2R(0)) → 0 for a subsequence. It follows that, up to a subsequence,
we have ∣∣∣∣∣

∫

B2R(0)

φ(|un(x)|)un(x)(un − u)(x)ξ(x) dx

∣∣∣∣∣

≤
∫

B2R(0)

φ(|un(x)|)|un(x)||(un − u)(x)| dx

≤ C ‖ φ(|un|)|un| ‖LΦ̃(B2R(0))‖ un − u ‖LΦ(B2R(0))

→ 0. (4.7)

A similar reasoning implies that
∫

B2R(0)

φ(|∇un(x)|)(un − u)(x)∇un(x)∇ξ(x) dx → 0, (4.8)

for some subsequence. Standard arguments imply, for a subsequence, that
∫

RN

∫

RN

F (un(x))f(un(y))(un − u)(y)ξ(y)
|x − y|λ dxdy → 0. (4.9)

Note that
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∫

B2R(0)

Φ̃

(
ξ(x)φ(|∇u(x)|)

∣∣∣∣
∂u(x)

∂xi

∣∣∣∣
)

dx ≤ C

∫

B2R(0)

Φ̃

(
φ(|∇u(x)|)

∣∣∣∣
∂u(x)

∂xi

∣∣∣∣
)

dx

≤ C̃

∫

B2R(0)

Φ(2|∇u(x)|) dx

≤ K̃

∫

B2R(0)

Φ(|∇u(x)|) dx.

Thus from Hölder inequality, it follows that the function

Li(v) :=
∫

B2R(0)

ξ(x)φ(|∇u(x)|)∂u(x)
∂xi

v(x) dx, i = 1, . . . , N,

with v ∈ LΦ(B2R(0)) defines a linear continuous functional. Since
∂un

∂xi
⇀

∂u

∂xi
in LΦ(B2R(0)), we get

∫

B2R(0)

φ(|∇u(x)|)∇u(x)(∇un(x) − ∇u(x))ξ(x) dx → 0. (4.10)

From (4.4), (4.5), (4.7), (4.8) (4.9), (4.10) we obtain that
∫

B2R(0)

φ(|∇un(x)|)∇un(x)(∇un(x) − ∇u(x))ξ(x) dx → 0.

Therefore ∫

BR(0)

φ(|∇un(x)|)∇un(x)(∇un(x) − ∇u(x)) dx → 0.

Applying a result found in Dal Maso and Murat [40], it follows that

∇un(x) → ∇u(x) a.e in BR(0),

for each R > 0. Since R is arbitrary, there is a subsequence of (un), still
denoted by itself, such that

∇un(x) → ∇u(x) a.e in R
N .

ii) We have φ(|∇un(x)|)∇un(x) → φ(|∇u(x)|)∇u(x) a.e in R
N . Note that

Φ̃(φ(|∇un(x)|)|∇un(x)|) ≤ C̃Φ(2|∇un(x)|) ≤ K̃Φ(|∇un(x)|).
Then the boundedness of (un) in W 1,Φ(RN ) implies that the sequences(

φ(|∇un|)∂un

∂xi

)
, i = 1, . . . , N are bounded in LΦ̂(RN ). By [41], it follows

that

φ(|∇un|)∂un

∂xi
⇀ φ(|∇u|) ∂u

∂xi
in LΦ̃(RN ).

A similar reasoning implies (iii). �

Now, we are ready to prove that u is a critical point of J.
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Lemma 4.5. The function u is a critical point of J , that is, J
′
(u) = 0.

Proof. First of all, we claim that

J
′
(un)v → J

′
(u)v, ∀v ∈ C∞

0 (RN ).

To verify such limit, note that

J
′
(un)v =

∫

RN

φ(|∇un(x)|)∇un(x)∇v(x) + φ(|un|)un(x)v(x) dx

−
∫

RN

∫

RN

F (un(x))f(un(y))v(y)
|x − y|λ(x,y)

dxdy.

By Lemmas 4.3 and 4.4,∫

RN

∫

RN

F (un(x))f(un(y))v(y)
|x − y|λ(x,y)

dxdy →
∫

RN

∫

RN

F (u(x))f(u(y))v(y)
|x − y|λ(x,y)

dxdy,

(4.11)∫

RN

φ(|∇un(x)|)∇un(x)∇v(x)dx →
∫

RN

φ(|∇u(x)|)∇u(x)∇v(x)dx,

(4.12)

and ∫

RN

φ(|un(x)|)un(x)v(x)dx →
∫

RN

φ(|u(x)|)u(x)v(x)dx. (4.13)

From the relations (4.11), (4.12) and (4.13) we have the claim. Since
J ′(un)v → 0, the claim ensures that J

′
(u)v = 0, for all v ∈ C∞

0 (RN ). Now,
the lemma follows using the fact that C∞

0 (RN ) is dense in W 1,Φ(RN ). �

4.1. Proof of Theorem 4.1

If u �= 0, then u is a nontrivial solution and the theorem is proved. If u = 0,
we must find another solution v ∈ W 1,Φ(RN )\{0} for the equation (1.3). For
such purpose, the claim below is crucial in our argument.

Claim 4.1. There exist r > 0, β > 0 and a sequence (yn) ⊂ R
N such that

lim inf
n→+∞

∫

Br(yn)

Φ(|un(x)|)dx ≥ β > 0.

Proof. In fact, if the above claim does not hold, using Theorem 2.2, we derive
the limit ∫

RN

P (|un|) dx → 0, (4.14)

for any N -function P satisfying (P1) − (P2). Applying Proposition 1.1,∣∣∣∣
∫

RN

∫

RN

F (un(x))f(un(y))un(y)
|x − y|λ dxdy

∣∣∣∣
≤ C‖F (un(x))‖Ls(RN )‖f(un(y))un(y)‖Ls(RN )

By (f1), (F ), (E) and Theorem 2.2,∫

RN

|F (un(x))|sdx → 0
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and ∫

RN

|f(un(y))un(y)|sdy → 0.

Therefore ∫

RN

F (un(x))f(un(y))un(y)
|x − y|λ dxdy → 0.

The above limit together with the fact that J ′(un)un = on(1) give
∫

RN

φ(|∇un(x)|)|∇un(x)|2 + φ(|un(x)|)|∇un(x)|2 dx → 0.

From (φ3), ∫

RN

Φ(|∇un(x)|) + Φ(|un(x)|) dx → 0.

This limit leads to J(un) → 0, which contradicts the limit J(un) → d > 0. �

Using standard arguments, we can assume in Claim 4.1 that (yn) ⊂ Z
N .

By setting vn(x) = un(x + yn), it follows that

J(vn) = J(un), ‖J ′(vn)‖ = ‖J ′(un)‖ and ‖un‖1,Φ = ‖vn‖1,Φ ∀n ∈ N.

From the above information, we have that J(vn) → d and J
′
(vn) → 0. Since

(vn) is bounded in W 1,Φ(RN ), up to a subsequence, vn → v in LΦ(Br(0)),
for some v ∈ W 1,Φ. To verify that v �= 0, note that by Claim 4.1, we have for
some subsequence

0 < β ≤ lim
n→+∞

∫

Br(yn)

Φ(|un(x)|)dx

= lim
n→+∞

∫

Br(0)

Φ(|vn(x)|)dx =
∫

Br(0)

Φ(|v(x)|)dx.

Applying the same arguments as in the proofs of Lemmas 4.3, 4.4 and
4.5 for the sequence (vn) we obtain the desired result.

5. Final Comments

The same arguments used in this paper can be applied to study the existence
of solutions for related problems of the following type:⎧

⎪⎪⎨
⎪⎪⎩

−ΔΦu + V (x)φ(|u|)u =
(∫

RN

F (u(x))
|x − y|λ

)
f(u(y)), in R

N ,

u ∈ W 1,Φ(RN ).

(5.1)

The potential V : RN → R is a continuous functions with infx∈RN V (x) > 0
that belongs to one of the following classes:
Class 1: V is periodic: V is a Z

N -periodic function, that is,

V (x + y) = V (x), ∀x ∈ R
N and y ∈ Z

N .
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Class 2: V is asymptotic periodic function: There is a Z
N -periodic function

Vp : RN → R such that

V (x) < Vp(x), ∀x ∈ R
N

and

|V (x) − Vp(x)| → 0 as |x| → +∞.

Class 3: V is coercive V is a coercive function, that is,

V (x) → +∞ as |x| → +∞.

Class 4: V is a Bartsch–Wang-like potential: The potential V verifies the
following property

med ({x ∈ R
N : V (x) ≤ M}) < +∞, for all M > 0.
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[32] Rădulescu, V.D., Repovš, D.: Partial Differential Equations with Variable
Exponents Variational Methods and Qualitative Analysis, Monographs and
Research Notes in Mathematics. CRC, Boca Raton (2015)
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