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A Variational Approach for the Mixed
Problem in the Elastostatics of Bodies
with Dipolar Structure

Marin Marin and Vicenţiu Rădulescu

Abstract. In this study, we address the mixed initial boundary value
problem in the elastostatics of dipolar bodies. Using the equilibrium
equations, we build the operator of dipolar elasticity and prove that
this operator is positively defined even in the general case of an elastic
inhomogeneous and anisotropic dipolar solid. This helps us to prove the
existence of a generalized solution for first boundary value problem and
also the uniqueness of the solution. Moreover, relying on this property of
the operator of dipolar elasticity to be positively defined, we can apply
the known variational method proposed by Mikhlin.
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1. Introduction

The modern theories that take into account the microstructure of the medium
have as main aim the elimination of the discrepancies that occur between ex-
periments and the consecrated elasticity theory. The old theory of elasticity is
not enough for the best characterization of deformations, when it is necessary
to consider the microstructure of the solids. In this regard we can remember
some materials with great applicability, such as human bones, graphite, poly-
mers and, in general, some granular bodies with large molecules, and so on.
First studies dedicated to these modern theories were published by Eringen, of
which there are remarkable papers [1] and [2]. Starting from Eringen’s results,
a large number of authors have developed a considerable number of studies
in order to continue the approaches of different types of micro-structures, of
which we recall [3–7]. For instance, based on the results of Eringen, Ciarletta
studied in [7] the bending of a plate made of an elastic material, neglecting
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the thermal effect but considering its microstructure. In addition, Iesan and
Pompei in paper [3] proposed a solution of Boussinesq–Somigliana–Galerkin
type for the boundary value problem in this context. Other issues regarding
these materials have been addressed in [8] and [9]. The studies [10] and [11]
offer some considerations on waves propagation in the context of the bodies
with microstructure. Among the theories dedicated to the microstructure, a
special place is occupied by the dipolar structure. To highlight the importance
of the dipolar structure, it is enough to see the list of researchers who have
dedicated their studies to this modern theory. The importance of the dipolar
structure of materials was highlighted by many renowned researchers. At the
top of this list we will find the results published in Mindlin [12], Green and
Rivlin [13], and so on. We must emphasize that these authors approached in
their papers the multipolar structures of the bodies, from which the dipolar
structure is obtained as a particular case. Another name to be remembered
is that of M. E. Gurtin who elaborated a few works dedicated to the multi-
polar structures. A conclusive example is offered by the work [14] in which
Gurtin and Fried give new formulations for the energy balance, for the force
balance and for entropy imbalance to characterize the interface between the
bodies and their environment. It is known that in the theory that considers
dipolar structure, there are twelve degrees of freedom, for each point of the
medium, namely: three translations and nine micro-deformations; see Marin
[5]. In addition, each particle of the body is bound to deform uniformly and
homogeneously.

To model an elastic body having a dipolar structure, we formulate an
initial boundary value problem which becomes more credible after a result is
obtained on the uniqueness of the solution for the respective problem.

Lately, many studies have been devoted to both the uniqueness of the
solution and other related problems, of which we mention a few: Brun [15],
Knops and Payne [16], Levine [17], Wilkes [18], Rionero and Chirita [19],
and so on. In a part of previous papers on uniqueness of solutions in elas-
ticity or thermoelasticity, the results are based on the assumptions that the
thermoelastic coefficients or elasticity tensors are considered to be positive
definite. See for instance the paper [18]. In other studies the same issues of
uniqueness is approached using different conservation laws of energy. We wish
to mention that the uniqueness result obtained by Green and Laws in the
paper [20] was only possible by adding some positive definiteness hypotheses
to the restrictions already imposed by thermodynamics. A uniqueness result
obtained using medium restrictions is due to Brun [15]. In this paper, Brun
employs an identity of Lagrange type together with an ordinary law on en-
ergy conservation to deduce the uniqueness of solution, but neglecting the
thermal effect.

In the present paper, we consider the first boundary value problem in
the context of dipolar structure and address the problem of the existence of a
generalized solution for this problem. In addition, the uniqueness of the weak
solution is investigated. In addition, we extend variational method proposed
by Mikhlin in [21] to cover the new context of elastic dipolar solids. We have
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also taken into account the results of existence for the classical solutions
derived in [22].

By taking into account the dipolar structure, we can obtain a good
description for a considerable number of applications in solid mechanics.

2. Notations, Basic Equations and Conditions

Assume that our dipolar elastic body occupies the region B of three-dimensional
Euclidean space R3. The closure of the domain B is denoted by B̄ and the
boundary of B will be denoted by ∂B, which is a closed, bounded and regu-
lar surface. The deformation of the body is referred to a system of Cartesian
axes, so that the spatial variables of points from B are denoted by xj . We
also use the time variable t, t ∈ [0,∞). When possible, it is omitted to specify
the variables on which a function depends. Throughout this paper, we adopt
the Cartesian tensor notation. If there is no likelihood of confusion, the spa-
tial variables and the time variable of functions will be omitted. The known
convention on summation over repeated subscripts is implied. A superposed
dot is used for partial differentiation with respect to time, while a subscript
preceded by a comma is used for partial differentiation with respect to the
corresponding spatial variable.

In what follows, the theory of elastostatic bodies with a dipolar structure
is considered. Our considerations start from the work [13], while the notations
and the terminology are inspired by the papers [5] and [6].

To insert the components of strain tensors, εij , γij and χijk, the kine-
matic equations are used, namely

εij =
1
2

(uj,i + ui,j) ,

γij = uj,i − ϕij ,

χijk = ϕij,k. (1)

The equilibrium equations in our context are

(τij + σij),j + Fi = 0, (2)
μijk,i + σjk + Gjk = 0, (3)

for any (x, t) ∈ B × [0,∞).
With the help of the constitutive equations, we introduce the stress

tensors, namely τij , σij and μijk

τij = Cijmnεmn + Gijmnγmn + Fmnrijχmnr,

σij = Gijmnεmn + Bijmnγmn + Dijmnrχmnr,

μijk = Fijkmnεmn + Dmnijkγmn + Aijkmnrχmnr, (4)

satisfied for all (t, x) ∈ [0,∞) × B. In above equations we also used the
following notations

Fi—the body force per unit mass,
Gjk—the body couple per unit mass,
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Cijmn, Gijmn, Bijmn, Fijkmn, Dijkmn, Aijkmnr - the characteristic con-
stants of material and these elastic coefficients satisfy following symmetry
relations

Cmnij = Cijmn = Cijnm, Bijmn = Bmnij ,

Gijmn = Gijnm, Fijkmn = Fijknm, Aijkmnr = Amnrijk. (5)

Along with the basic equations (1)–(4) we prescribe the initial conditions in
the form

ui(xs, 0) = ai(xs), u̇i(xs, 0) = bi(xs),
ϕjk(xs, 0) = cjk(xs), ϕ̇jk(xs, 0) = djk(xs), (6)

considered for any (xk) ∈ B̄.
In addition, we will divide the surface ∂B into subsets ∂B1 and its

complement ∂Bc
1, respectively ∂B2 and its complement ∂Bc

2 and suppose
that

∂B1 ∪ ∂Bc
1 = ∂B2 ∪ ∂Bc

2 = ∂B,

∂B1 ∩ ∂Bc
1 = ∂B2 ∩ ∂Bc

2 = ∅.

The above mentioned mixed problem for elastic dipolar bodies will be com-
plete after we add the boundary conditions in the following form

ui = ũi on ∂B1 × [0,∞), ti = t̃i on ∂Bc
1 × [0,∞),

ϕjk = ϕ̃jk on ∂B2 × [0,∞), mjk = m̃jk on ∂Bc
2 × [0,∞), (7)

where ti and mjk are the components of surface traction and the components
of surface couple, that are, respectively, are computed by using the relations

ti = (τij + σij) nj ,mjk = μijkni.

As usual, we denote by ni the components of the outward normal to the
surface ∂B.

The functions ai, bi, cjk and djk from (6) are known in all domain B.
At the same time, the functions ũi, t̃i, ϕ̃jk, and m̃jk from (7) are prescribed
and regular functions where they are defined.

Introducing (1) and (4) into Eqs. (2) and (3), we are led to the equations

[(Cijmn + Gijmn) un,m + (Gmnij + Bijmn) (un,m − ϕmn)
+ (Fmnrij + Dijmnr) ϕnr,m],j + Fi = 0,

[Fijkmnun,m + Dmnijk (un,m − ϕmn) + Aijkmnrϕnr,m],i
+Gjkmnum,n + Bjkmn (un,m − ϕmn) + Djkmnrϕnr,m + Gjk = 0. (8)

An ordered array (ui, ϕjk) is called a solution for our mixed problem, for any
(x, t) in the cylinder Ω0 = B × [0,∞) if it satisfies the system of differential
equations (8) for all (x, t) ∈ Ω0, the conditions on the border (7) and the
above initial conditions (6).

The regularity hypotheses we need to get our results are the following:
To obtain our results, we shall use the following regularity assumptions

(i) the components of the body force Fi and the components of the body
couple Gjk are continuous functions for any (x, t) ∈ Ω0 = B × [0,∞);
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(ii) the coefficients from the constitutive equations are continuous functions
on B̄;

(iii) the given initial functions ai, bi, cjk and djk are continuous on B̄;
(iv) the given boundary functions ũi and ϕ̃jk are continuous in their respec-

tive domains of definition;
(v) the given traction functions t̃i and m̃jk are continuous in time and

piecewise regular in their respective domains of definition.

3. Main Results

With a suggestion given by (8), we define the operators Ti by

Tiu = − ∂

∂xj

[
(Cijmn + 2Gijmn + Bijmn)

∂un

∂xm

+ (Fmnrij + Dijmnr)
∂ϕnr

∂xm
− (Gmnij + Bijmn) ϕmn

]
,

Tj+k+3u = − ∂

∂xi

[
(Fijkmnun,m + Dmnijk)

∂un

∂xm
+ Aijkmnr

∂ϕnr

∂xm

−Dmnijkϕmn

]
+ (Gjkmnum,n + Bjkmn)

∂un

∂xm

+Djkmnr
∂ϕnr

∂xm
− Bjkmnϕmn, (9)

where we used the notation

u = (ui, ϕjk) = (u1, u2, u3, ϕ11, ϕ12, ..., ϕ33) . (10)

Taking into account (9) and (10), we can write the system of equations (8)
in the form

Tiu = Fi, i = 1, 2, 3
Tj+k+3u = Gjk, j, k = 1, 2, 3 (11)

With the help of notations

f = (F1, F2, F3, G11, G12, ..., G33) ,

Tu = (T1u, T2u, T3u, T4u, , ..., T12u) (12)

the system of equations (11) may be written in a more concise form

Tu = f. (13)

In the following, we will call T as the operator of the dipolar elasticity.
Now, we will prove an auxiliary result which will be useful in the

following. Let us consider two different systems of elastic loadings which
act on our body,

(
F

(α)
i , G

(α)
jk

)
and the two corresponding states

(
u
(α)
i , ϕ

(α)
jk ,

ε
(α)
ij , γ

(α)
ij , χ

(α)
ijk , τ

(α)
ij , σ

(α)
ij , μ

(α)
ijk

)
.

Let us introduce the notation

2Eα,β = τ
(α)
ij ε

(β)
ij + σ

(α)
ij γ

(β)
ij + μ

(α)
ijkχ

(β)
ijk , α, β = 1, 2 (14)
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Proposition 1. The following two identities hold true

E1,2 = E2,1 (15)

2
∫

B

Eα,βdV =
∫

B

(
F

(α)
i u

(β)
i + G

(α)
jk ϕ

(β)
jk

)
dV

+
∫

∂B

(
t
(α)
i u

(β)
i + m

(α)
jk ϕ

(β)
jk

)
dS. (16)

Proof. Taking into account (14), the constitutive equations (4) and the sym-
metry relations (5), we can write

2Eα,β = Cijmnε(α)
mnε

(β)
ij + Gijmn

(
ε
(α)
ij γ(β)

mn + ε
(β)
ij γ(α)

mn

)

+Bijmnγ
(α)
ij γ(β)

mn + Fmnrij

(
ε
(α)
ij χ(β)

mnr + ε
(β)
ij χ(α)

mnr

)

+Dijmnr

(
γ
(α)
ij χ(β)

mnr + γ
(β)
ij χ(α)

mnr

)
+ Aijkmnrχ

(α)
mnrχ

(β)
ijk . (17)

If we integrate in (17) over B and use the divergence theorem, we are led to
(16). The equality (15) is immediately obtained starting from (14) and taking
into account the symmetry relations (5). �

Let us consider two displacements and two tractions

u =
(
u
(1)
i , ϕ

(1)
jk

)
, v =

(
u
(2)
i , ϕ

(2)
jk

)
,

t(u) =
(
t
(1)
i ,m

(1)
jk

)
, t(v) =

(
t
(2)
i ,m

(2)
jk

)
. (18)

In (16) we use the notation E1,2 = E(u, v) and will give two properties of the
operator of the dipolar elasticity.

Proposition 2. The operator of the dipolar elasticity satisfies the relations∫
B

(uTv − v Tu)dV =
∫

∂B

[v t(u) − u t(v)] dS, (19)
∫

B

uTu dV = 2
∫

B

E(u) dV −
∫

∂B

u t(u) dS. (20)

Proof. From (16) for α = 1 and β = 2, with the help of (18) we deduce

2
∫

B

E(u, v) dV =
∫

B

v Tu dV +
∫

∂B

v t(u) dS (21)

Taking into account the symmetries (5), from (17) we obtain the following
symmetry relation

2E(u, v) = Cijmnεmn(u)εij(v) + Gijmn [εij(u)γmn(v) + εij(v)γmn(u)]
+Bijmnγij(u)γmn(v) + Fmnrij [εij(u)χmnr(v) + εij(v)χmnr(u)]
+Dijmnr [γij(u)χmnr(v) + γij(v)χmnr(u)]
+Aijkmnrχmnr(u)χijk(v) = 2E(v, u), (22)

so that from (21) we can write

2
∫

B

E(v, u) dV =
∫

B

uTv dV +
∫

∂B

u t(v) dS,
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and this equality with (21) led to (19).
It is easy to obtain (20) from (21) by using the notation E(u) = E(u, u).

�

To achieve our proposed goals, we will have to assume the internal
energy density E(u) to be a positive definite quadratic form. This is a natural
restriction very often used in continuum mechanics because it is in line with
real experiments. In a large number of studies dedicated to the classical theory
of elasticity, this hypothesis was intensively used (see, for instance, [23]).

As such, there is a constant c1 > 0 so that

2E(u) = Cijmnεmn(u)εij(u) + 2Gijmnεij(u)γmn(u) + Bijmnγij(u)γmn(u)
+ 2Fmnrijεij(u)χmnr(u) + 2Dijmnrγij(u)χmnr(u)
+Aijkmnrχmnr(u)χijk(u)

≥ c1

⎛
⎝ 3∑

i,j=1

(
ε2ij(u) + γ2

ij(u)
)

+
3∑

i,j,k=1

χ2
ijk(u)

⎞
⎠ (23)

To the system of field equations (20) we will add the boundary condition
u = u0 on ∂B, where u = (ui, ϕjk) and the value u0 is prescribed. So we
have the following boundary value problem

Tu = f in B,

u = u0 on ∂B. (24)

It is natural to address the issue of the uniqueness of the solution for the
problem (24).

Theorem 1. The solution of the boundary value problem (24) is determined
up to a rigid displacement and a rigid dipolar displacement.

Proof. The difference u∗ of two solutions of problem (24), that is,

u∗ =
(
u
(1)
i − u

(2)
i ), ϕ(1)

jk − ϕ
(2)
jk

)
,

satisfies the homogeneous equation Au∗ = 0 in B and the homogeneous
boundary condition u∗ = 0 on ∂B so that the equality (20), written for u∗,
becomes ∫

B

E(u∗)dV = 0,

from where, taking into account that the quadratic form E(u∗) is positive
definite, we deduce that

εij(u∗) = 0, γij(u∗) = 0, χijk(u∗) = 0. (25)

According to geometric equations (1), from (25) we are led to the conclusion

u∗
i,j + u∗

j,i = 0, u∗
i,j − ϕ∗

ij = 0, ϕ∗
ijk,i = 0, (26)

which ends the proof of the theorem. �



  221 Page 8 of 12 M. Marin and V. Rădulescu MJOM

In the following, we wish to approach the problem of existence of a
solution of the boundary value problem (24). Using an idea given by Mikhlin
in [1] we will attach to operator T in (24)1 the functional F called functional
of energy, defined by

F(v) = (Tv, v) − 2(v, f). (27)

Let us denote by H the domain of the functional F . If we denote by DT the
domain of the operator T and consider the metric generated by the scalar
product (Tu, u), then H is a Hilbert space, namely the closure of the domain
DT in relation to this metric.

A known result affirms that if the the operator T is positive definite,
then the boundary value problem (24) admits a weak (generalized) solution
and this is the point of minimum of the energy functional (27).

We recall that an operator which is symmetric, that is, (Tu, v)
= (u, Tv), ∀u ∈ DT and positive, that is (Tu, u) ≥ 0, ∀u ∈ DT is
called a positive definite operator if it satisfies the inequality

(Tu, u) ≥ c22‖u‖2, c2 = constant, (28)

for any u ∈ DT . The main result of our study is the following existence result.

Theorem 2. The boundary value problem (24) has at least one generalized
solution.

Proof. We have to prove that the operator T of the dipolar elasticity is pos-
itive definite. More specifically, we will prove that T is symmetric, then T
is a positive operator and finally, it is positive definite. In this situation, the
scalar product that generates the Hilbert space H is

(u, v) =
∫

B

uv dV =
∫

B

⎡
⎣ 3∑

i=1

uivi +
3∑

j=1

(
3∑

k=1

ϕjkψjk

)⎤
⎦dV,

u = (ui, ϕjk) = (u1, u2, u3, ϕ11, ϕ12, ..., ϕ33) ,

v = (vi, ψjk) = (v1, v2, v3, ψ11, ψ12, ..., ψ33) (29)

We will use the notation u(x) = (ui(x), ϕjk(x)). Let C2
0 be the usual space

of these vector functions, with the following properties:

– they are twice continuous differentiable in the domain B̄;
– they vanish on the surface ∂B, the boundary of B.

We will prove that the operator T is positive definite on C2
0 .

First, clearly from (19) we deduce that T is symmetric on the set C2
0 . In

addition, from (20) and (23) we can see that T is a positive operator on the
set C2

0 . We still have to prove the positive defining property of this operator
of elasticity for dipolar structure. Considering that u ∈ B0, the relation (20)
reduces to

(Tu, u) =
∫

B

uTu dV = 2
∫

B

E(u) dV,
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and this, together with (23) provides

(Tu, u) ≥ c1

∫
B

⎛
⎝ 3∑

i,j=1

(
ε2ij(u) + γ2

ij(u)
)

+
3∑

i,j,k=1

χ2
ijk(u)

⎞
⎠ dV. (30)

Now, we recall the inequality due to Friedrichs
∫

B

3∑
i=1

u2
i dV ≤ c2

⎡
⎣∫

B

3∑
i,j=1

(ui,j)
2 dV +

∫
∂B

u2dA

⎤
⎦ , c2 = constant, c2 > 0.

(31)

In our situation, because we are on the set C2
0 , (31) reduces to

∫
B

3∑
i=1

u2
i dV ≤ c2

∫
B

3∑
i,j=1

(ui,j)
2 dV. (32)

We also recall the first Korn’s inequality
∫

B

3∑
i,j=1

(ui,j)
2 dV ≤ c3

∫
B

3∑
i,j=1

ε2ij dV, c3 = constant, c3 > 0. (33)

Clearly, from (31) and (32), taking into account the geometric equations (31),
we deduce∫

B

3∑
i,j=1

(
ε2ij + γ2

ij

)
dV ≥ c4

∫
B

3∑
i=1

u2
i dV, c4 = constant, c4 > 0. (34)

In a similar way, we use the inequality of Friedrichs and the first Korn’s
inequality to obtain

∫
B

3∑
j,k=1

ϕ2
jk(u)dV ≤ c5

∫
B

3∑
j,k,i=1

ϕ2
jk,i(u)dV, c5 = constant, c5 > 0. (35)

If we take into account (34) and (35), from (30) we deduce

(Tu, u) ≥ c6

∫
B

3∑
i=1

u2
i dV +

∫
B

3∑
j,k=1

ϕ2
jk(u)dV, c6 = constant, c6 > 0.

Clearly, this proves that T is an operator positive definite on the space C2
0 .

Further on, we can use a procedure almost identical to that of Mikhlin
[1] to find a generalized solution to the boundary value problem (24). Here,
we find the idea of introducing a scalar product

〈
u, v

〉
to the set C2

0 , defined
by〈
u, v

〉
= (Tu, v)

=
∫

B

{Cijmnεmn(u)εij(v) + Gijmn [εij(u)γmn(v) + εij(v)γmn(u)]

+Bijmnγij(u)γmn(v) + Fmnrij [εij(u)χmnr(v) + εij(v)χmnr(u)]
+Dijmnr [γij(u)χmnr(v) + γij(v)χmnr(u)]
+Aijkmnrχmnr(u)χijk(v)} dV. (36)
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Let us denote by H0 the completion of C2
0 relative to the scalar product

(36). So our problem can be reformulated in the form: find a vector functions
in H0 which satisfies the boundary value problem (24). Next, we apply the
procedure of Mikhlin, which means to find a vector function in H0 which is
the minimum of the functional

F(u) =
〈
u, v

〉 − 2(u, f) =
∫

B

{Cijmnεmn(u)εij(v)

+2Gijmnεij(u)γmn(u) + Bijmnγij(u)γmn(u)
+Fmnrijεij(u)χmnr(u) + Dijmnrγij(u)χmnr(u)
+Aijkmnrχmnr(u)χijk(u) − 2Fiui − 2Gjkϕjk} dV.

According to [1], the problem of finding the minimum of this function is based
exclusively on the positive definiteness of the operator T . This ends the proof
of the theorem. �

4. Conclusions

Clearly, in the context of the elastostatic of bodies with dipolar structure,
the basic equations and the general boundary data are much more and more
complex than in the elasticity of classical medium. However, the main fea-
tures of the solutions for the mixed problem, formulated in this context, does
not change. So the uniqueness result is based only on hypothesis that the
internal energy density is a quadratic form which is positive definite. In ad-
dition, as in the classical case, the procedure used by Mikhlin is useful in the
case of elasticity of dipolar body too. Using Mikhlin’s algorithm, we prove
that according to this, the boundary value problem admits a weak solution,
namely, the minimum of the energy functional.
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