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Abstract
We establish the equivalence between weak and viscosity solutions to the nonhomo-
geneous double phase equation with lower-order term

− div(|Du|p−2Du+a(x)|Du|q−2Du)= f (x, u, Du), 1 < p ≤ q < ∞, a(x) ≥ 0.

We find some appropriate hypotheses on the coefficient a(x), the exponents p, q
and the nonlinear term f to show that the viscosity solutions with a priori Lipschitz
continuity are weak solutions of such equation by virtue of the inf(sup)-convolution
techniques. The reverse implication can be concluded through comparison princi-
ples. Moreover, we verify that the bounded viscosity solutions are exactly Lipschitz
continuous, which is also of independent interest.
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1 Introduction

Let � be a bounded domain in Rn (n ≥ 2). In this work we aim to examine the inner
relationship between weak and viscosity solutions to the following nonhomogeneous
double phase equation

− div(|Du|p−2Du + a(x)|Du|q−2Du)= f (x, u, Du) in �, (1.1)

where 1 < p ≤ q < ∞, a(x) ≥ 0 and f (x, τ, ξ) : � × R × R
n → R is a con-

tinuous function. The double phase problems, stemming from the models of strongly
anisotropic materials, were originally investigated by Zhikov [51, 52] and Marcellini
[40] in the context of homogenization and Lavrentiev phenomenon.

Over the last years, problems of the type considered in (1.1) have attracted intensive
attention from the variational point of view, whose celebrated prototype is given by
the following unbalanced energy functional

W 1,1(�) � u �→ P(u,�) :=
∫

�

(|Du|p + a(x)|Du|q) dx .

The significant characteristics of this functional are that its ellipticity and growth
rate will change drastically according to the modulating coefficient a(·) equal to 0
or not. The regularity of minimizers is determined via a delicate interaction between
the growth conditions and the pointwise behaviour of a(·). For instance, under the
hypotheses that

0 ≤ a(·) ∈ C0,α(�), α ∈ (0, 1] and
q

p
≤ 1 + α

n
, (1.2)

Colombo, Mingione et. al. [6, 7, 13] established the gradient Hölder continuity and
Harnack inequality for the minimizers of P . A key feature of this problem is that the
minimizers could be even discontinuous when condition (1.2) is violated, by means
of the counterexamples presented in [21, 27]. For the double phase equation

− div(|Du|p−2Du + a(x)|Du|q−2Du) = − div(|F |p−2F + a(x)|F |q−2F) in �,

the Calderón-Zygmund estimates of weak solutions were derived in [14, 18] under
assumption (1.2) (see also [4, 9]). More recently, De Filippis and Mingione [19]
considered a very large class of vector-valued nonautonomous variational problems
involving integral functionals of the double phase type, where the authors provided a
comprehensive treatment of Lipschitz regularity of solutions under sharp conditions.
Despite their relatively short history, double phase problemshave achievedvery fruitful
results with several connections to other aspects, such as the existence andmultiplicity
of solutions [47], the nonlocal version [20, 22], the properties of eigenvalues and
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eigenfunctions [12, 46], as well as the removability and obstacle problems [10, 35].
We also refer to [5, 17, 25, 26, 29, 37, 41, 44] and references therein for more results.

The topic on equivalence of different solutions started from the works of Lions [39]
and Ishii [30] on linear equations. For what concerns the quasilinear case, Juutinen,
Lindqvist andManfredi [33] proved that theweak solutions coincidewith the viscosity
solutions to the p-Laplace equation and its parabolic version based on the uniqueness
machinery of solutions; see [34] for p(x)-Laplace type equation. The equivalence of
solutions was generalized to the fractional p-Laplace equation in [36] by following
analogous ideas. Julin and Juutinen [32] gave a more immediate proof for the equiv-
alence of viscosity and weak solutions to the p-Laplace equation without relying on
the comparison principle of viscosity solutions. They introduced a technical regular-
ization process through infimal convolution, which was applied to various equations
incorporating the normalized p(x)-Laplace equation [49], the nonhomogeneous non-
local p-Laplace equation [8] and the normalized p-Possion equation [3]. More related
results can be found in [42, 43, 48, 50].

From the results mentioned above, we can see that the research achievements for
the double phase problems mainly focus on the weak solutions from the variational
perspective and there are few results concerning the relationship between viscosity
and weak solutions for the general nonuniformly elliptic equations. In particular, De
Filippis and Palatucci [20] showed that the bounded viscosity solutions of the nonlocal
counterpart to (1.1) are locally Hölder continuous. For the homogeneous case of (1.1),
Fang andZhang [23] established the equivalence betweenweak and viscosity solutions
by introducing AH(·)-harmonic functions that serve as a bridge. Motivated by the
previous works [20, 23], our intention in the present paper is to prove the equivalence
of weak and viscosity solutions for the nonhomogeneous problem (1.1). Due to the
presence of the lower-order term, we cannot introduceAH(·)-harmonic functions any
more and it is hard to use the full uniqueness machinery of viscosity solutions. To this
end, we revisit the inf(sup)-convolution approximation, developed in [32], to verify
directly that weak solutions are equivalent to viscosity solutions under some proper
preconditions.

We are now in a position to state the main contributions of this manuscript. The
first one establishes the following qualitative property.

Theorem 1.1 Let 0 < a(x) ∈ C1(�) and q
p ≤ 1 + 1

n be in force. Suppose that

f (x, τ, ξ) is uniformly continuous in�×R×R
n, decreasing in τ , Lipschitz continuous

with respect to ξ and fulfilling the following growth condition

| f (x, τ, ξ)| ≤ γ (|τ |)(|ξ |p−1 + a(x)|ξ |q−1) + �(x), (1.3)

where γ (·) ≥ 0 is continuous and � ∈ L∞
loc(�). Let u be a viscosity supersolution

with local Lipschitz continuity to problem (1.1) in �. Then u is a weak supersolution
as well.

We would like to mention that the double phase operator, compared to the usual p-
Laplace operator, lacks translation invariance property and exhibits two diverse growth
terms owing to the presence of a(x). It will lead to an additional error term E(ε) in
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the key Lemma 3.1 and demand an a priori assumption that the viscosity solution u
is locally Lipschictz continuous.

The second result is about the local Lipschitz continuity of viscosity solutions,
which is also of independent interest.

Theorem 1.2 Let u be a bounded viscosity solution to (1.1) in �. Under the assump-
tions that 0 ≤ a(x) ∈ C1(�), p ≤ q ≤ p + 1

2 and (1.3), for any �′ ⊂⊂ �, there is a
constant C that depends on n, p, q, γ∞,�′,�, ‖a‖C1(�), ‖u‖L∞(�) and ‖�‖L∞(�),
such that

|u(x) − u(y)| ≤ C |x − y|

for all x, y ∈ �′. Here, γ∞ := maxt∈[0,‖u‖L∞(�)] γ (t).

In order to verifyTheorem1.2,we need to utilize twice the Ishii-Lionsmethods [31],
and to adjust carefully the distance q − p in order to get a contradiction. Combining
the above two theorems yields that the bounded viscosity solutions are weak solutions
with some explicit conditions.

To show that weak solutions are viscosity solutions, we consider a class of functions
satisfying the following comparison principle.

Definition 1.3 Suppose that u is a weak supersolution to (1.1) in �′ ⊂ �. If for any
weak subsolution v of (1.1) such that v ≤ u a.e. in ∂�′ there holds that v ≤ u a.e. in
�′, then we say that (u, f ) fulfills the comparison principle property (CCP) in �′.

Finally, the fact that weak solutions are viscosity solutions can be obtained under
the (CCP) condition by a contradiction argument.

Theorem 1.4 Let u be a lower semicontinuous weak supersolution to (1.1) in �.
Assume that f (x, τ, ξ) is uniformly continuous in � × R × R

n. If (CPP) holds true,
then u is also a viscosity supersolution to problem (1.1).

Remark 1.5 When the nonlinear term f only depends on x , and not on u and ∇u, we
know from [19] that the weak solutions are locally Lipschitz continuous under the
minimal hypotheses that 0 ≤ a ∈ W 1,d(�), d > n, and f belongs to a proper Lorentz
space along with q/p ≤ 1 + 1/n − 1/d, if n > 2 and q/p < p, if n = 2.

This paper is organized as follows. In Sect. 2 we introduce some basic properties
of function spaces and concepts of solutions as well as some necessary known results.
Section3 is devoted to proving that viscosity solutions are weak solutions to (1.1), and
the reverse implication is showed in Sect. 4, where we also establish the comparison
principle for two equations with different nonlinearities. In Sect. 5, we verify that the
bounded viscosity solutions of (1.1) are locally Lipschitz continuous, which is the
indispensable element of equivalence.
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2 Preliminaries

In this section, we summarize some basic properties of the Musielak-Orlicz-Sobolev
space W 1,H(·)(�). These properties can be found in [11, 28, 45]. In addition, we give
different notions of solutions to Eq. (1.1) together with some auxiliary results.

2.1 Function spaces

In the rest of this paper, unless otherwise stated, we always assume that hypothesis
(1.2) holds. For all x ∈ � and ξ ∈ R

n , we shall use the notation

H(x, ξ) := |ξ |p + a(x)|ξ |q . (2.1)

With abuse of notation, we shall also denote H(x, ξ) when ξ ∈ R. Observe that the
generalized Young function H is a Musielak-Orlicz function fulfilling (
2) and (∇2)

conditions. Here, a Young function H is said to satisfy the
2-condition provided that
there is a constant c > 0 such that H(x, 2t) ≤ cH(x, t) for every t ≥ 0. We say
that H satisfies the ∇2-condition if the Fenchel-Young conjugate H∗ of H (see (2.2)),
satisfies the 
2-condition.

Let us introduce some important properties, to be used later, of the energy density
H given by (2.1). We will keep on denoting H(x, t) = t p + a(x)tq for t ≥ 0, that is,
ξ is a non-negative number in (2.1). By the Fenchel-Young conjugate of H , we mean
the function

H∗(x, t) := sup
s≥0

{st − H(x, s)}. (2.2)

It is well known that the equivalence

H∗(x, H(x, t)/t) ∼ H(x, t) (2.3)

holds up to some constants depending on p, q, and moreover the Young inequality

st ≤ H∗(x, t) + H(x, s) (2.4)

holds for all x ∈ �, s, t ∈ [0,+∞).
The Musielak-Orlicz space LH(·)(�) is defined as

LH(·)(�) := {u : � → R measurable : �H (u) < ∞} ,

and it is endowed with the norm

‖u‖LH(·)(�) := inf
{
λ > 0 : �H

(u
λ

)
≤ 1
}

,

where

�H (u) :=
∫

�

H(x, u) dx =
∫

�

|u|p + a(x)|u|q dx
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is called the �H -modular function.
The space LH(·)(�) is a separable, uniformly convex Banach space. From the

definitions of the �H -modular and the norm, we deduce that

min
{
‖u‖p

LH(·)(�)
, ‖u‖q

LH(·)(�)

}
≤ �H (u) ≤ max

{
‖u‖p

LH(·)(�)
, ‖u‖q

LH(·)(�)

}
. (2.5)

It follows from (2.5) that

‖un − u‖LH(·)(�) → 0 ⇐⇒ �H (un − u) → 0,

which indicates the equivalence of convergence in �H -modular and in norm. For the
space LH∗(·)(�) we know that

min
{
(�H∗(u))

p
p+1 , (�H∗(u))

q
q+1

}
≤ ‖u‖LH∗(·)(�)

≤ max
{
(�H∗(u))

p
p+1 , (�H∗(u))

q
q+1

}
. (2.6)

If u ∈ LH(·)(�) and v ∈ LH∗(·)(�), the following Hölder inequality

∣∣∣∣
∫

�

uv dx

∣∣∣∣ ≤ 2‖u‖LH(·)(�)‖v‖LH∗(·)(�) (2.7)

holds.
The Musielak-Orlicz-Sobolev space W 1,H(·)(�) is the set of those functions u ∈

LH(·)(�) satisfying Du ∈ LH(·)(�). We equip the space W 1,H(·)(�) with the norm

‖u‖W 1,H(·)(�) := ‖u‖LH(·)(�) + ‖Du‖LH(·)(�).

The space W 1,H(·)(�) is a separable and reflexive Banach space. The local space
W 1,H(·)

loc (�) is composed of those functions belonging to W 1,H(·)(�′) for any sub-

domain �′ compactly involved in �. Finally, we denote by W 1,H(·)
0 (�) the closure

of C∞
0 (�) in W 1,H(·)(�). Indeed, the condition (1.2) ensures that the set C∞

0 (�) is

dense in W 1,H(·)
0 (�) (see [1, 21]).

2.2 Notions of solutions

Set

A(x, ξ) := |ξ |p−2ξ + a(x)|ξ |q−2ξ

for all x ∈ � and ξ ∈ R
n . We now give the definition of diverse type of solutions

to problem (1.1). When considering the weak solutions to (1.1), we demand that the
source term f fulfills the growth condition (1.3) unless otherwise stated.
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Definition 2.1 (weak solution) We say that u ∈ W 1,H(·)
loc (�) is a weak supersolution

to problem (1.1) if

∫
�

〈A(x, Du), Dφ〉 dx ≥
∫

�

f (x, u, Du)φ dx

for each nonnegative function φ ∈ C∞
0 (�). The inequality is reverse for weak subso-

lution. When u ∈ W 1,H(·)
loc (�) is both weak super- and subsolution, we call u a weak

solution to (1.1), that is

∫
�

〈A(x, Du), Dφ〉 dx =
∫

�

f (x, u, Du)φ dx

for any φ ∈ C∞
0 (�).

Remark 2.2 In the definition above, from (1.3), (2.3) and (2.4) we can see that the
integral

∫
�

f (x, u, Du)φ dx is finite, for any φ ∈ C∞
0 (�).

Let now ξ, η ∈ R
n, X ∈ Sn with Sn being the set of symmetric n × n matrices.

We introduce some notations:

M(x, ξ) = a(x)|ξ |q−2
(
I + (q − 2)

ξ

|ξ | ⊗ ξ

|ξ |
)

,

F1(ξ, X) = −|ξ |p−2
(
trX + (p − 2)

〈
X

ξ

|ξ | ,
ξ

|ξ |
〉)

,

F2(x, ξ, X) = −a(x)|ξ |q−2
(
trX + (q − 2)

〈
X

ξ

|ξ | ,
ξ

|ξ |
〉)

= −tr(M(x, ξ)X)

and

F3(x, ξ) = −|ξ |q−2ξ · Da(x),

where ξ ⊗ η denotes an n × n matrix whose (i, j) entry is ξiη j , and 〈ξ, η〉 or ξ · η

stands for the inner product of ξ, η. For a matrix X , we set the matrix norm ‖X‖ :=
sup|ξ |≤1{|Xξ |}. In order to define the viscosity solutions of problem (1.1), we let
a ∈ C1(�) and easily check that

− div(|Du|p−2Du + a(x)|Du|q−2Du)

= F1(Du, D2u) + F2(x, Du, D2u) + F3(x, Du)

=: F(x, Du, D2u). (2.8)

We now recall the notion of semi-jets. The subjet of u : � → R at x is given by
letting (η, X) ∈ J 2,−u(x) if

u(y) ≥ u(x) + η · (y − x) + 1

2
〈X(y − x), (y − x)〉 + o(|y − x |2)
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as y → x . The closure of a subjet is defined by (η, X) ∈ J
2,−

u(x) if there exists
a sequence (η j , X j ) ∈ J 2,−u(x j ) such that (x j , u(x j ), η j , X j ) → (x, r , η, X) with
some r ∈ R as j → ∞. Obviously, r = u(x) if u is continuous. The superjet J 2,+

and its closure J
2,+

are defined by a similar way but the inequality above needs to be
converse.

Definition 2.3 (viscosity solution) A lower semicontinuous function u : � →
(−∞,∞) is a viscosity supersolution to problem (1.1) in �, if (η, X) ∈ J 2,−u(x)
with x ∈ � and η �= 0 implies that

F(x, η, X) ≥ f (x, u(x), η).

An upper semicontinuous function u : � → (−∞,∞) is a viscosity subsolution to
problem (1.1) in �, if for each (η, X) ∈ J 2,+u(x) with x ∈ � and η �= 0 there holds
that

F(x, η, X) ≤ f (x, u(x), η).

A function u is called viscosity solution to (1.1) if and only if it is viscosity super- and
subsolution.

Remark 2.4 The preceding concept of viscosity solutions is equivalently given by the
jet-closures or test functions. For instance, the following conditions are equivalent:

(1) A function u is a viscosity supersolution to (1.1) in �;

(2) If (η, X) ∈ J
2,−

u(x) with x ∈ � and η �= 0, then F(x, η, X) ≥ f (x, u(x), η);
(3) If ϕ ∈ C2(�) touches u from below at x , that is, ϕ(x) = u(x), ϕ(y) ≤ u(y) and

moreover Dϕ(x) �= 0, thenwehave F(x, Dϕ(x), D2ϕ(x)) ≥ f (x, u(x), Dϕ(x)).

In the case 2 ≤ p ≤ q, we can remove the requirement that η �= 0 or Dϕ(x) �= 0.

2.3 Inf-convolution

We now give the definition of infimal convolution together with some properties.
Define the inf-convolution as

uε(x) = inf
y∈�

{
u(y) + |x − y|s

sεs−1

}
,

where ε > 0 and s ≥ max
{
2, p

p−1

}
is a constant to be fixed by the growth powers

in Eq. (1.1). Indeed, when 2 ≤ p ≤ q, s = 2; when 1 < p ≤ q < 2, s >

max
{

p
p−1 ,

q
q−1

}
= p

p−1 ; when 1 < p < 2 ≤ q, s > max
{

p
p−1 , 2

}
= p

p−1 .

The following well-known properties of the inf-convolution uε can be found in
several references, such as [32, 49].

Proposition 2.5 Suppose that u : � → R is a bounded and lower semicontinuous
function. Then the inf-convolution uε satisfies the following properties:
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(1) uε ≤ u in � and uε → u locally uniformly as ε → 0.
(2) There is r(ε) > 0 such that

uε(x) = inf
y∈Br(ε)(x)∩�

{
u(y) + |x − y|s

sεs−1

}

with r(ε) → 0 as ε → 0. In particular, if x ∈ �r(ε) := {x ∈ � : dist(x, ∂�) >

r(ε)}, then there exists a point xε ∈ Br(ε)(x) fulfilling

uε(x) = u(xε) + |x − xε|s
sεs−1 .

(3) The function uε is semi-concave in �r(ε), that is, we can find a constant C,
depending only on u, s and ε, such that the function x �→ uε(x) − C |x |2 is
concave.

(4) If (η, X) ∈ J 2,−uε(x) with x ∈ �r(ε), then we have

η = |x − xε|s−2(x − xε)

εs−1 and X ≤ s − 1

ε
|η| s−2

s−1 I .

3 Viscosity solutions are weak solutions

In this part, we are going to make use of the inf-convolution approximation technique
to show that the locally Lipschitz continuous viscosity solutions are weak solutions to
(1.1). Furthermore, the Lipschitz continuity of viscosity solutions can be established
precisely; this proof is postponed to Sect. 5. We therefore draw a conclusion that
viscosity solutions are weak solutions under some suitable conditions. We will only
discuss viscosity and weak supersolutions below. The case of subsolutions is similar.

We begin by stating that if u is a (locally Lipschitz) viscosity supersolution to (1.1)
in �, then its inf-convolution uε is also a viscosity supersolution of such equation
(whose form may be slightly changed) in a shrinking domain. From the following
lemma, we can find that owing to the presence of the modulating coefficient a(x),
there will exist an error term E(ε) on the right-hand side of the equation. In what
follows, X ≤ Y (X ,Y ∈ Sn) means that 〈(X − Y )ξ, ξ 〉 ≤ 0 for any ξ ∈ R

n . We
denote byC a generic constant, whichmay vary from line to line. If necessary, relevant
dependencies on parameters will be emphasised using parentheses.

Lemma 3.1 Assume that0 < a(x) ∈ C1(�)and f (x, τ, ξ) is continuous in�×R×R
n

and decreasing with respect to τ . Let u be a viscosity supersolution with local Lipschitz
to (1.1) in �. Then if (η, X) ∈ J 2,−uε(x) with η �= 0 and x ∈ �r(ε), there holds that

F(x, η, X) ≥ fε(x, uε(x), η) + E(ε), (3.1)

where

fε(x, τ, ξ) := inf
y∈Br(ε)(x)

f (y, τ, ξ)
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and E(ε) → 0 as ε → 0.

Remark 3.2 It is worth mentioning that the requirement a(x) > 0 is just needed in this
lemma for the technical reason.

Proof Let xo ∈ �r(ε) and (η, X) ∈ J 2,−uε(xo) with η �= 0. Then via the properties
of the inf-convolution uε in Proposition 2.5, we have

uε(x
o) = u(xoε ) + |xo − xoε |s

sεs−1

with xoε ∈ Br(ε)(xo), and moreover η = |xo−xoε |s−2

εs−1 (xo − xoε ). There is a function

ϕ ∈ C2(�) such that it touches uε from below at xo and Dϕ(xo) = η, D2ϕ(xo) = X .
Hence by the definition of inf-convolution uε we can see that

0 ≤ uε(x) − ϕ(x) ≤ u(y) + |x − y|s
sεs−1 − ϕ(x)

for any x, y ∈ �r(ε). Notice also that

u(xoε ) + |xo − xoε |s
sεs−1 − ϕ(xo) = uε(x

o) − ϕ(xo) = 0.

Then the function−u(y)+ϕ(x)− |y−x |s
sεs−1 attains the maximum at (xoε , xo). Therefore,

by applying the maximum principle for semicontinuous functions (also known as the
theorem of sums) in [16], we can find Y , Z ∈ Sn satisfying

(−Dyψ(xoε , xo),−Y ) ∈ J
2,−

u(xoε ), (Dxψ(xoε , xo),−Z) ∈ J
2,+

ϕ(xo)

and
(
Y

−Z

)
≤ D2ψ(xoε , xo) + ε1−s(D2ψ(xoε , xo))2,

where ψ(y, x) := |y−x |s
sεs−1 and

D2ψ(xoε , xo) =
(
Dyyψ(xoε , xo) Dyxψ(xoε , xo)
Dxyψ(xoε , xo) Dxxψ(xoε , xo)

)
.

Via direct computation, we obtain

−Dyψ(xoε , xo) = η = Dxψ(xoε , xo)

and

B := Dyyψ(xoε , xo) = ε1−s |xoε − xo|s−4[|xoε − xo|2 I + (s − 2)(xoε − xo) ⊗ (xoε − xo)].
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Furthermore,

(
Y

−Z

)
≤
(

B −B
−B B

)
+ 2ε1−s

(
B2 −B2

−B2 B2

)
. (3.2)

It is straightforward to derive that Y ≤ Z andmoreover Z ≤ −X . Since u is a viscosity
supersolution to (1.1) and f is continuous in all variables, then

f (xoε , u(xoε ), η) ≤ F(xoε , η, −Y )

= F1(η, Z) − F1(η, Y ) − F1(η, Z) + F2(x
o, η, Z) − F2(x

o
ε , η, Y )

− F2(x
o, η, Z) + F3(x

o, η) + F3(x
o
ε , η) − F3(x

o, η)

≤ F(xo, η, −Z) + F2(x
o, η, Z) − F(xoε , η, Y ) + F3(x

o
ε , η) − F3(x

o, η)

with the notations given in (2.8), where in the last line we have used the decreasing
property of F1(ξ, X) in the X -variable, that is, Y ≤ Z implies F1(η, Z) ≤ F1(η,Y ).
Next, in view of a ∈ C1(�) we estimate

F3(x
o
ε , η) − F3(x

o, η) = |η|q−2η · Da(xo) − |η|q−2η · Da(xoε )

≤ |η|q−1|Da(xo) − Da(xoε )|
≤ |η|q−1ω(r(ε)), (3.3)

where ω(·) represents the modulus of continuity of Da. We finally evaluate the term
F2(xo, η, Z)−F2(xoε , η, Y ) in a similarway to address F2(y j , η j ,Y j )−F2(x j , η j , X j )

in [23, Proposition 5.1]. Observe that it follows from (3.2) that

〈ξ, Y ξ〉 − 〈ζ, Zζ 〉 ≤ ε1−s
[
(s − 1)|xoε − xo|s−2 + 2(s − 1)2|xoε − xo|2(s−2)

]
|ξ − ζ |2 (3.4)

with ξ, ζ ∈ R
n . We can easily verify the matrix M(x, ξ) ≥ 0 (positive semi-definite)

as a(x) ≥ 0 so that it has square root denoted byM
1
2 (x, ξ). Additionally, byM

1
2
l (x, ξ)

we mean the l-th column of M
1
2 (x, ξ). Then employing (3.4) and decomposition of

matrix yields that

F2(x
o, η, Z) − F2(x

o
ε , η,Y )

= tr
(
M

1
2 (xo, η)M

1
2 (xo, η)Z

)
− tr

(
M

1
2 (xoε , η)M

1
2 (xoε , η)Y

)

=
n∑

l=1

〈
M

1
2
l (xo, η), ZM

1
2
l (xo, η)

〉
−

n∑
l=1

〈
M

1
2
l (xoε , η),YM

1
2
l (xoε , η)

〉

≤ Cε1−s |xoε − xo|s−2
∥∥∥M 1

2 (xo, η) − M
1
2 (xoε , η)

∥∥∥2
2

≤ Cε1−s |xoε − xo|s−2

(
λmin

(
M

1
2 (xo, η)

)
+ λmin

(
M

1
2 (xoε , η)

))2 ‖M(xo, η) − M(xoε , η)‖22
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≤ Cε1−s |xoε − xo|s−2|η|2(q−2)|a(xo) − a(xoε )|2
|η|q−2

(√
a(xo) +√a(xoε )

)2 ,

where λmin(M) stands for the smallest eigenvalue of the matrix M . More details of
this display can be found in [23, Proposition 5.1].

On the other hand, from the local Lipschitz continuity of u,

|xo − xoε |s
sεs−1 = uε(x

o) − u(xoε ) < u(xo) − u(xoε ) ≤ C |xoε − xo|,

we have

|η| = |xo − xoε |s−1

εs−1 ≤ C .

By means of a(x) ∈ C1(�), we proceed to treat

F2(x
o, η, Z) − F2(x

o
ε , η, Y ) ≤ Cε1−s |xoε − xo|s−2|η|q−2|xo − xoε |2(√

a(xo) +√a(xoε )
)2

= C |η|q−1|xo − xoε |(√
a(xo) +√a(xoε )

)2
≤ Cr(ε)(√

a(xo) +√a(xoε )
)2 .

Here we remark that if a(xo) = 0, then the quantity |η|q−1|xo−xoε |
a(xoε )

does not necessarily
go to 0 as ε → 0, so the condition a(x) > 0 is required. Besides, by the boundedness
of η the inequality (3.3) becomes

F3(x
o
ε , η) − F3(x

o, η) ≤ Cω(r(ε)).

Since f (x, τ, ξ) is decreasing in τ and u(xoε ) ≤ uε(xo),

f (xoε , u(xoε ), η) ≥ f (xoε , uε(x
o), η) ≥ inf

y∈Br(ε)(xo)
f (y, uε(x

o), η).

Now define

E(ε) := −Cω(r(ε)) − Cr(ε)(√
a(xo) +√a(xoε )

)2 .

Consequently, we get

fε(x
o, uε(x

o), η) + E(ε) ≤ F(xo, η, X)
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with E(ε) → 0 as ε → 0. Here we have employed F(xo, η, X) ≥ F(xo, η,−Z) by
Z ≤ −X and the error term E(ε) depends on ε, n, p, q, a and the Lipschitz constant
of u. The proof is now completed. ��

Based on the preceding lemma, we further demonstrate that when u is a viscosity
supersolution to (1.1), then the inf-convolution uε is a weak supersolution of this
equation up to a certain error term. Let 
∞u = 〈Du, D2uDu〉 below.
Lemma 3.3 Suppose that the assumptions on a, f in Lemma 3.1 are in force, and that
f (x, τ, 0) ≤ 0 for all (x, τ ) ∈ �×R. Let u be a locally Lipschitz continuous viscosity
supersolution to (1.1). Then, for each nonnegative function ϕ ∈ W 1,H(·)

0 (�r(ε)), it
holds that

∫
�r(ε)

ϕ fε(x, uε, Duε) dx + E(ε)

∫
{Duε �=0}

ϕ dx ≤
∫

�r(ε)

〈A(x, Duε), Dϕ〉 dx,

where E(ε) → 0, which is from Lemma 3.1, as ε → 0.

Proof It suffices to consider the nonnegative function ϕ ∈ C∞
0 (�r(ε)), because the

function space C∞
0 (�r(ε)) is dense in W 1,H(·)

0 (�r(ε)).
Owing to uε being semi-concave, we can see by Proposition 2.5 that

h(x) := uε(x) − C(s, ε, u)|x |2

is concave in �r(ε). Let {h j } j be a sequence of smooth concave functions, obtained
from standard mollification, such that

(h j , Dh j , D
2h j ) → (h, Dh, D2h) a.e. in �r(ε).

Additionally, we define

uε, j = h j + C(s, ε, u)|x |2

and let δ ∈ (0, 1). In this proof, the condition 0 ≤ a(x) ∈ C0,1(�) is sufficient except
applying Lemma 3.1. Now denote the standard mollification of a as a j .

Case 1. 1 < p ≤ q < 2. In this singular case, we first regularize the equation by
adding a small δ > 0 as follows, and eventually pass to the limit as δ → 0. Recalling
that uε, j and a j are smooth, we can calculate by integration by parts

∫
�r(ε)

−ϕ div
[
(|Duε, j |2 + δ)

p−2
2 Duε, j + a j (x)(|Duε, j |2 + δ)

q−2
2 Duε, j

]
dx

=
∫

�r(ε)

〈
(|Duε, j |2 + δ)

p−2
2 Duε, j + a j (x)(|Duε, j |2 + δ)

q−2
2 Duε, j , Dϕ

〉
dx .

(3.5)
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We are ready to consider the limit as j → ∞, and claim that

−
∫

�r(ε)

ϕ div
[
(|Duε|2 + δ)

p−2
2 Duε + a(x)(|Duε|2 + δ)

q−2
2 Duε

]
dx

≤
∫

�r(ε)

〈
(|Duε|2 + δ)

p−2
2 Duε + a(x)(|Duε|2 + δ)

q−2
2 Duε, Dϕ

〉
dx . (3.6)

It follows, from the Lipschitz continuity of uε and a, that for some constant M > 0

‖Duε, j‖L∞(supp ’), ‖a j‖L∞(supp ’), ‖Da j‖L∞(supp ’) ≤ M, j = 1, 2, 3, · · · .

Thus we could apply the Lebesgue dominated convergence theorem to the integral at
the right-hand side of (3.5). On the other hand, via direct computation,

−
∫

�r(ε)

ϕ div
[
(|Duε, j |2 + δ)

p−2
2 Duε, j + a j (x)(|Duε, j |2 + δ)

q−2
2 Duε, j

]
dx

= −
∫

�r(ε)

ϕ(|Duε, j |2 + δ)
p−2
2

(

uε, j + p − 2

|Duε, j |2 + δ

∞uε, j

)
dx

−
∫

�r(ε)

ϕa j (|Duε, j |2 + δ)
q−2
2

(

uε, j + q − 2

|Duε, j |2 + δ

∞uε, j

)
dx

−
∫

�r(ε)

ϕ(|Duε, j |2 + δ)
q−2
2 Duε, j · Da j dx . (3.7)

Obviously, by the dominated convergence theorem, when j → ∞,

∫
�r(ε)

ϕ(|Duε, j |2 + δ)
q−2
2 Duε, j · Da j dx →

∫
�r(ε)

ϕ(|Duε|2 + δ)
q−2
2 Duε · Da dx .

Note that h j is concave. Then we have D2uε, j ≤ C(s, ε, u)I . For Duε, j �= 0, we
arrive at

(|Duε, j |2 + δ)
p−2
2

(

uε, j + p − 2

|Duε, j |2 + δ

∞uε, j

)
≤ C(s, ε, u)δ

p−2
2 (2n + p − 2)

and

a j (x)(|Duε, j |2 + δ)
q−2
2

(

uε, j + q − 2

|Duε, j |2 + δ

∞uε, j

)

≤ MC(s, ε, u)δ
q−2
2 (2n + q − 2).

For Duε, j = 0, the case becomes easier. Therefore, we can apply Fatou’s lemma to
the display (3.7), and further justify (3.6).

123



Equivalence of weak and viscosity solutions for the nonhomogeneous. . . 2533

Next, we shall let δ → 0 in the inequality (3.6). It follows from the dominated
convergence theorem that, when δ goes to 0,

∫
�r(ε)

〈
(|Duε|2 + δ)

p−2
2 Duε + a(x)(|Duε|2 + δ)

q−2
2 Duε, Dϕ

〉
dx

→
∫

�r(ε)

〈
|Duε|p−2Duε + a(x)|Duε|q−2Duε, Dϕ

〉
dx .

Besides,we show that the integrand at the left-hand side of (3.6) is bounded frombelow,
which can justify the use of Fatou’s lemma. If Duε = 0, this follows immediately
from the inequality (see Proposition 2.5)

D2uε ≤ s − 1

ε
|Duε| s−2

s−1 I .

In other words, since s > 2, then D2uε is negative semi-definite when Duε = 0. If
Duε �= 0, we will find that

− (|Duε|2 + δ)
p−2
2

(

uε + p − 2

|Duε|2 + δ

∞uε

)

≥ − (|Duε|2 + δ)
p−2
2

|Duε|2 + δ

s − 1

ε

(
|Duε| s−2

s−1+2(n + p − 2) + δn|Duε| s−2
s−1

)

≥ −|Duε| s−2
s−1+p−2 s − 1

ε
(2n + p − 2)

≥ −‖Duε‖
s−2
s−1+p−2
L∞(�r(ε))

s − 1

ε
(2n + p − 2),

where in the last inequality we need to recall the local Lipschitz continuity of uε and
s >

p
p−1 . Likewise,

− a(x)(|Duε|2 + δ)
q−2
2

(

uε + q − 2

|Duε|2 + δ

∞uε

)

≥ −‖a‖L∞(�r(ε))‖Duε‖
s−2
s−1+q−2
L∞(�r(ε))

s − 1

ε
(2n + q − 2).

Here we note s >
p

p−1 ≥ q
q−1 . Moreover, we have

∣∣∣(|Duε|2 + δ)
q−2
2 Duε · Da

∣∣∣ ≤ ‖Da‖L∞(�r(ε))‖Duε‖q−1
L∞(�r(ε))

.

On the other hand, we know that (Duε(x), D2uε(x)) ∈ J 2,−uε(x) for almost every
x ∈ �r(ε). Then by means of Lemma 3.1 we deduce

F(x, Duε(x), D
2uε(x)) ≥ fε(x, uε(x), Duε(x)) + E(ε) (3.8)
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in {x ∈ �r(ε) : Duε �= 0}. As a consequence, exploiting Fatou’s lemma along with
observing that D2uε is negative semi-definite when Duε = 0, we derive from (3.6)
that
∫

�r(ε)

〈|Duε|p−2Duε + a(x)|Duε|q−2Duε, Dϕ
〉
dx

≥ lim inf
δ→0

[∫
{Duε �=0}

+
∫

{Duε=0}
−ϕ(|Duε|2 + δ)

p−2
2

(

uε + p − 2

|Duε|2 + δ

∞uε

)
dx

]

+ lim inf
δ→0

[∫
{Duε �=0}

+
∫

{Duε=0}
−ϕa(x)(|Duε|2 + δ)

q−2
2

(

uε + q − 2

|Duε|2 + δ

∞uε

)
dx

]

+ lim inf
δ→0

[∫
{Duε �=0}

+
∫

{Duε=0}
−ϕ(|Duε|2 + δ)

q−2
2 Duε · Da dx

]

≥
∫

{Duε �=0}
−ϕ|Duε|p−2

(

uε + p − 2

|Duε|2 
∞uε

)
dx

+
∫

{Duε �=0}
−ϕa(x)|Duε|q−2

(

uε + q − 2

|Duε|2 
∞uε

)
dx

+
∫

{Duε �=0}
−ϕ|Duε|q−2Duε · Da dx

=
∫

{Duε �=0}
ϕF(x, Duε, D

2uε) dx

≥
∫

{Duε �=0}
ϕ fε(x, uε, Duε) dx + E(ε)

∫
{Duε �=0}

ϕ dx

≥
∫

�r(ε)

ϕ fε(x, uε, Duε) dx + E(ε)

∫
{Duε �=0}

ϕ dx, (3.9)

where in the penultimate line we employed the inequality (3.8), and in the last line we
used the assumption that f (x, τ, 0) ≤ 0.

Case 2. 1 < p < 2 ≤ q. We need to substitute the identity (3.5) with

∫
�r(ε)

−ϕ div
[
(|Duε, j |2 + δ)

p−2
2 Duε, j + a j (x)|Duε, j |q−2Duε, j

]
dx

=
∫

�r(ε)

〈
(|Duε, j |2 + δ)

p−2
2 Duε, j + a j (x)|Duε, j |q−2Duε, j , Dϕ

〉
dx,

since theq-growth termdoes not have singularity so that it is not necessarily regularized
as the p-growth term. Then the subsequent processes are analogous to Case 1.

Case 3. 2 ≤ p ≤ q. In this non-singular scenario, we replace the display (3.5) by

∫
�r(ε)

−ϕ div
[
|Duε, j |p−2Duε, j + a j (x)|Duε, j |q−2Duε, j

]
dx

=
∫

�r(ε)

〈
|Duε, j |p−2Duε, j + a j (x)|Duε, j |q−2Duε, j , Dϕ

〉
dx .

The other procedures are also similar to Case 1, even more straightforward due to the
absence of δ. All in all, we finally deduce the desired result. ��
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In the previous lemma, in order to get the inequality (3.9), f (x, τ, 0) is a priori
assumed to be non-positive. The forthcoming lemma states this hypotheses exactly
can be realized when Duε = 0.

Lemma 3.4 Let u be a bounded viscosity supersolution to (1.1) in �. Let also 0 ≤
a(x) ∈ C1(�) and the function f (x, τ, ξ) be continuous in all variables. Whenever
Duε(x̂) = 0 for some x̂ ∈ �r(ε), we have

fε(x̂, uε(x̂), Duε(x̂)) ≤ 0.

Proof We have known by [32, Lemma 4.3] that if Duε(x̂) = 0, then

uε(x̂) = u(x̂).

From the definition of inf-convolution,

u(x̂) ≤ u(y) + |x̂ − y|s
sεs−1 for all y ∈ �.

Now introduce an auxiliary function

φ(y) = u(x̂) − |x̂ − y|s
sεs−1 with y ∈ �,

where s = 2 if p ≥ 2, and s > max
{

p
p−1 ,

q
q−1

}
= p

p−1 if 1 < p < 2. We can

apparently see that

φ ∈ C2(�), Dφ(x̂) = 0, Dφ(y) �= 0 for y �= x̂,

and φ touches u from below at x̂ . For the case s > 2 (i.e., 1 < p < 2), we next
evaluate some important quantities,

Dφ = ε1−s |x̂ − y|s−2(x̂ − y),

D2φ = −ε1−s |x̂ − y|s−2
(
I + (s − 2)

x̂ − y

|x̂ − y| ⊗ x̂ − y

|x̂ − y|
)

and

trD2φ = −(n + s − 2)ε1−s |x̂ − y|s−2,〈
Dφ

|Dφ| , D
2φ

Dφ

|Dφ|
〉

= −(s − 1)ε1−s |x̂ − y|s−2.

Combining these quantities leads to

div(|Dφ|p−2Dφ + a(y)|Dφ|p−2Dφ)

= 
pφ + a(y)
qφ + |Dφ|p−2Dφ · Da(y)
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= −(n + (p − 1)(s − 1) − 1)ε(1−s)(p−1)|x̂ − y|(s−1)(p−1)−1

− a(y)(n + (q − 1)(s − 1) − 1)ε(1−s)(q−1)|x̂ − y|(s−1)(q−1)−1

+ ε(1−s)(q−1)|x̂ − y|(s−1)(q−1)−1(x̂ − y) · Da(y).

Observe that s > max
{

p
p−1 ,

q
q−1

}
. It implies that

(s − 1)(p − 1) − 1 > 0 and (s − 1)(q − 1) − 1 > 0.

Thereby,

lim
r→0

sup
y∈Br (x̂)\{x̂}

(− div(|Dφ|p−2Dφ + a(y)|Dφ|p−2Dφ)) = 0.

As for s = 2 (i.e., p ≥ 2), the previous identity is valid obviously. Because u is a
viscosity supersolution of (1.1), there holds that

lim
r→0

sup
y∈Br (x̂)\{x̂}

(− div(|Dφ|p−2Dφ + a(y)|Dφ|p−2Dφ)) ≥ f (x̂, u(x̂), Dφ(x̂)).

Recalling that u(x̂) = uε(x̂), Duε(x̂) = 0 = Dφ(x̂), we obtain, from the above two
displays,

0 ≥ f (x̂, uε(x̂), Duε(x̂)) ≥ fε(x̂, uε(x̂), Duε(x̂)),

as desired. ��
Next, we show the convergence of inf-convolution uε in the Musielak-Orlicz-

Sobolev space W 1,H(·)(�) in the following two lemmas.

Lemma 3.5 Under (1.3) and the preconditions of Lemma 3.1, we infer that the function
u ∈ W 1,H(·)

loc (�) and, up to a subsequence, Duε → Du weakly in LH(·)(�′) for every
�′ ⊂⊂ �.

Proof Take a cut-off function ψ ∈ C∞
0 (�) fulfilling ψ ≡ 1 in �′ and 0 ≤ ψ ≤ 1 in

�. Set ε so small that suppψ =: E ⊂ �r(ε). Notice that uε → u locally uniformly in
�, so we can define a test function

ϕ := (K − uε)ψ
q(≥ 0)

with K := supε; x∈�′ |uε(x)| (finite). Hence, utilizing Lemma 3.3,

∫
�r(ε)

ϕ fε(x, uε, Duε) dx + E(ε)

∫
�r(ε)\{Duε=0}

ϕ dx

≤
∫

�r(ε)

〈|Duε|p−2Duε + a(x)|Duε|q−2Duε, Dϕ〉 dx
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=
∫

�r(ε)

qψq−1(K − uε)〈|Duε|p−2Duε + a(x)|Duε|q−2Duε, Dψ〉 dx

−
∫

�r(ε)

ψq H(x, Duε) dx .

Namely,

∫
�r(ε)

ψq H(x, Duε) dx ≤ q
∫
�r(ε)

ψq−1(K − uε)(|Duε|p−1 + a(x)|Duε|q−1)|Dψ | dx

+
∫
�r(ε)

ϕ| fε(x, uε, Duε)| dx + |E(ε)|
∫
�r(ε)

ϕ dx

=: I1 + I2 + I3.

Noting q − 1 ≥ q(p−1)
p , 0 ≤ ψ ≤ 1 and applying Young’s inequality with ε, we have

I1 ≤ q
∫
�r(ε)

(K − uε)|Dψ |ψ
q(p−1)

p |Duε |p−1 + a(x)(K − uε)|Dψ |ψq−1|Duε |q−1 dx

≤ ε

∫
�r(ε)

ψq H(x, Duε) dx + C(q, ε)

∫
�r(ε)

H(x, (K − uε)|Dψ |) dx .

In view of the growth condition on f , we can deal with I2 as

I2 ≤
∫

�r(ε)

(K − uε)ψ
qγ∞(|Duε|p−1 + a(x)|Duε|q−1) + (K − uε)ψ

q� dx

≤ ε

∫
�r(ε)

ψq H(x, Duε) dx + C(γ∞, ε)

∫
�r(ε)

ψq H(x, K − uε) dx

+ C(K , ‖�‖L∞(E), E).

Here γ∞ := maxτ∈[0,K ] γ (τ). For I3, we have

I3 ≤ C(K , E),

where we assume |E(ε)| ≤ 1 without loss of generality. Choosing proper ε ∈ (0, 1)
and merging these above estimates yields that

∫
�′

H(x, Duε) dx ≤
∫

�r(ε)

ψq H(x, Duε) dx ≤ C(p, q, a, K , γ,�, Dψ, E).

This indicates that Duε is uniformly bounded in LH(·)(�′) with respect to ε, which
further deduces that there exists a function Du ∈ LH(·)(�′) such that Duε → Du
weakly in LH(·)(�′) up to a subsequence owing to LH(·)(�′) being a reflexible Banach
space. Finally, u belongs to W 1,H(·)(�′) with Du as its weak derivative. ��
Lemma 3.6 With (1.3) and the hypotheses of Lemma 3.1, we arrive at uε → u as
ε → 0, up to a subsequence, in W 1,H(·)(�′) for each �′ ⊂⊂ �.
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Proof Take a cut-off function ψ ∈ C∞
0 (�) satisfying ψ ≡ 1 in �′ and 0 ≤ ψ ≤ 1 in

�. Let ε so small that suppψ =: E ⊂ �r(ε). Notice that uε ≤ u in �, so we define a
test function

ϕ := (u − uε)ψ(≥ 0).

It is easy to find that ϕ ∈ W 1,H(·)
0 (�r(ε)). Employing again Lemma 3.3 obtains

∫
�r(ε)

〈A(x, Du) − A(x, Duε), Dϕ〉 dx

≤
∫

�r(ε)

〈A(x, Du), Dϕ〉 dx +
∫

�r(ε)

ϕ| fε(x, uε, Duε)| dx + |E(ε)|
∫

�r(ε)

ϕ dx .

After manipulation, we get

∫
�r(ε)

〈A(x, Du) − A(x, Duε), Du − Duε〉ψ dx

≤
∫
E

ψ〈A(x, Du), Du − Duε〉 dx +
∫
E
(u − uε)〈A(x, Duε), Dψ〉 dx

+
∫
E

ψ(u − uε)| fε(x, uε, Duε)| dx + |E(ε)|
∫
E
(u − uε)ψ dx

= J1 + J2 + J3 + J4.

For J2, via the inequalities (2.3) and (2.4), we derive

J2 ≤ ‖u − uε‖L∞(E)

∫
E

|A(x, Duε)||Dψ | dx

≤ C‖u − uε‖L∞(E)

∫
E
H∗(x, |A(x, Duε)|) + H(x, |Dψ |) dx

≤ C‖u − uε‖L∞(E)

∫
E
H(x, |Duε|) + H(x, |Dψ |) dx .

Using the growth assumption on f and Young’s inequality leads to

J3 ≤ ‖u − uε‖L∞(E)

∫
E

γ∞(|Duε|p−1 + a(x)|Duε|q−1) + � dx

≤ C‖u − uε‖L∞(E)

[∫
E
H(x, |Duε|) dx + (1 + ‖�‖L∞(E))|E |

]
,

where γ∞ is the same as that in Lemma 3.5. As for J4,

J4 ≤ |E(ε)|‖u − uε‖L∞(E)|E |.
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Recalling that Duε → Du weakly in LH(·)(E) in Lemma 3.5 and uε → u locally
uniformly in Proposition 2.5, we know J1 + J2 + J3 + J4 tends to 0. In other words,

lim
ε→0

∫
�′

〈A(x, Du) − A(x, Duε), Du − Duε〉 dx = 0.

Following the calculations in [23, page 9], we further arrive at

lim
ε→0

∫
�′

H(x, Du − Duε) dx = 0,

which implies the desired result. ��
Finally, we end this section by verifying that the locally Lipschitz continuous vis-

cosity supersolutions to (1.1) are also weak supersolutions, as stated in Theorem 1.1.
We next intend to apply the previous convergence results to pass to the limit in the
display of Lemma 3.3.

Proof of Theorem 1.1 Let ϕ ∈ C∞
0 (�) be a nonnegative test function and set an open

�′ ⊂⊂ � such that suppϕ ⊂ �′. Fix a sufficiently small ε0 > 0 fulfilling �′ ⊂ �r(ε)

for 0 < ε < ε0. Now we want to show

∫
�

〈|Du|p−2Du + a(x)|Du|q−2Du, Dϕ〉 dx ≥
∫

�

ϕ f (x, u, Du) dx, (3.10)

which is the definition of weak supersolution of (1.1). This desired claim shall follow
through Lemma 3.3, once the forthcoming displays are justified:

lim
ε→0

∫
�′

〈|Duε|p−2Duε + a(x)|Duε|q−2Duε, Dϕ〉 dx

=
∫

�′
〈|Du|p−2Du + a(x)|Du|q−2Du, Dϕ〉 dx,

(3.11)

lim
ε→0

∫
�′

ϕ fε(x, uε, Duε) dx =
∫

�′
ϕ f (x, u, Du) dx (3.12)

and

lim
ε→0

E(ε)

∫
�′

ϕ dx = 0. (3.13)

First, the limit (3.13) is obviously valid. Next, we demonstrate the validity of (3.11).
We shall employ the elementary vector inequality (see [38]):

∣∣|ξ1|t−2ξ1 − |ξ2|t−2ξ2
∣∣ ≤

{
(t − 1)|ξ1 − ξ2|(|ξ1|t−2 + |ξ2|t−2), if t ≥ 2,

22−t |ξ1 − ξ2|t−1, if 1 < t < 2,
(3.14)

where ξ1, ξ2 ∈ R
n . We split the proof of (3.11) into three cases. ��
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For the case 1 < p ≤ q < 2, we use (2.3), (2.5)–(2.7), the basic inequality (3.14)
to get
∫

�′
〈|Duε|p−2Duε − |Du|p−2Du + a(x)(|Duε|q−2Duε − |Du|q−2Du), Dϕ〉 dx

≤
∫

�′
(||Duε|p−2Duε − |Du|p−2Du| + a(x)||Duε|q−2Duε − |Du|q−2Du|)|Dϕ| dx

≤ C
∫

�′
(|Duε − Du|p−1 + a(x)|Duε − Du|q−1)|Dϕ| dx

≤ C‖h(x, Duε − Du)‖LH∗(·)(�′)‖Dϕ‖LH(·)(�′)

≤ C‖Dϕ‖LH(·)(�′) max
{
(�H∗ (h(x, Duε − Du)))

q
q+1 , (�H∗ (h(x, Duε − Du)))

p
p+1

}

≤ C‖Dϕ‖LH(·)(�′) max

{(∫
�′

H(x, Duε − Du) dx

) q
q+1

,

(∫
�′

H(x, Duε − Du) dx

) p
p+1
}

→ 0

as ε → 0, by applying Duε → Du in LH(·)(�′) in Lemma 3.6. Here h(x, z) :=
|z|p−1 + a(x)|z|q−1.

When 2 ≤ p ≤ q, exploiting again (2.3), (2.5)–(2.7) as well as (3.14), and applying
Duε → Du in LH(·)(�′), we can see that
∫

�′
〈|Duε|p−2Duε − |Du|p−2Du + a(x)(|Duε|q−2Duε − |Du|q−2Du), Dϕ〉 dx

≤ C
∫

�′

[
(|Duε|p−2 + |Du|p−2) + a(x)(|Duε|q−2 + |Du|q−2)

] |Duε − Du||Dϕ| dx

≤ C‖Dϕ‖L∞(�′)

∫
�′

[
(1 + |Duε|p−1 + |Du|p−1) + a(x)(1 + |Duε|q−1 + |Du|q−1)

]

× |Duε − Du| dx
= C‖Dϕ‖L∞(�′)

∫
�′

[(1 + a(x)) + h(x, Duε) + h(x, Du)]|Duε − Du| dx
≤ C‖Duε − Du‖LH(·)(�′) + C‖h(x, Du)‖LH∗(·)(�′)‖Duε − Du‖LH(·)(�′)

+ C‖h(x, Duε)‖LH∗(·)(�′)‖Duε − Du‖LH(·)(�′)

→ 0

as ε → 0, where the constant C depends on p, q, ‖a‖L∞(�′), ‖Dϕ‖L∞(�′), |�|. Here
we need to notice that the quantity

∫
�′ H(x, Duε) dx is uniformly bounded.

In the last case 1 < p < 2 ≤ q, we combine the previous two scenarios to deduce
the claim (3.11). Specifically,

∫
�′

〈|Duε|p−2Duε − |Du|p−2Du + a(x)(|Duε|q−2Duε − |Du|q−2Du), Dϕ〉 dx

≤ C
∫

�′

[
|Duε − Du|p−1 + a(x)(|Duε|q−2 + |Du|q−2)|Duε − Du|

]
|Dϕ| dx

≤ C
∫

�′
(|Duε − Du|p−1 + a(x)|Duε − Du|q−1)|Dϕ| dx
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+ C
∫

�′
a(x)(1 + |Duε|q−1 + |Du|q−1)|Duε − Du||Dϕ| dx

≤ C
∫

�′
h(x, Duε − Du)|Dϕ| dx + C

∫
�′

|Duε − Du| dx

+ C
∫

�′
h(x, Duε)|Duε − Du| dx + C

∫
�′

h(x, Du)|Duε − Du| dx,

which tends to 0 as ε → 0,whereC depends upon p, q, ‖a‖L∞(�′), ‖Dϕ‖L∞(�′), |�′|.
Eventually, let us prove the claim (3.12). Via the uniform continuity of f , for each

ε > 0, there is a δ > 0 depending only on ε such that

| f (x, uε(x), Duε(x)) − f (y, uε(x), Duε(x))| ≤ ε for y ∈ Bδ(x).

Now select ε′
0 > 0 to satisfy r(ε) < δ if 0 < ε < ε′

0. Then we have

f (x, uε(x), Duε(x)) < ε + f (y, uε(x), Duε(x))

for each x ∈ �′ and y ∈ Br(ε)(x). In particular,

f (x, uε(x), Duε(x)) < ε + fε(x, uε(x), Duε(x))

by the definition of fε, and moreover

0 ≤ | f (x, uε(x), Duε(x)) − fε(x, uε(x), Duε(x))| ≤ ε.

We thus have

∫
�′

| f (x, uε, Duε) − fε(x, uε, Duε)|ϕ dx ≤ ε‖ϕ‖L∞(�′)|�|.

In view of (1) in Proposition 2.5, it is known that ‖uε‖L∞(�′) ≤ ‖u‖L∞(�′) for any ε.
Namely,

max
τ∈[0,‖uε‖L∞(�′)]

{γ (τ)} ≤ max
τ∈[0,‖u‖L∞(�′)]

{γ (τ)} =: γ∞.

According to the growth condition on f ,

| f (x, uε, Du)| ≤ γ∞(|Du|p−1 + a(x)|Du|q−1) + �(x) in �′,

which belongs to LH∗(·)(�′). Thereby we can exploit the dominated convergence
theorem to infer

lim
ε→0

∫
�′

| f (x, uε, Du) − f (x, u, Du)|ϕ dx = 0.
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We finally address the term
∫
�′ | f (x, uε, Duε) − f (x, uε, Du)|ϕ dx ,

∫
�′

| f (x, uε, Duε) − f (x, uε, Du)|ϕ dx

≤ C
∫

�′
|Duε − Du|ϕ dx

≤ C‖ϕ‖LH∗(·)(�′)‖Duε − Du‖LH(·) (�′)
→ 0 as ε → 0,

where we have utilized the Lipschitz continuity of f in the third variable, and the
convergence Duε → Du in LH(·)(�′).

Merging these above estimates yields that

∫
�′

| fε(x, uε, Duε) − f (x, u, Du)|ϕ dx

≤
∫

�′
| fε(x, uε, Duε) − f (x, uε, Duε)|ϕ dx

+
∫

�′
| f (x, uε, Duε) − f (x, uε, Du)|ϕ dx

+
∫

�′
| f (x, uε, Du) − f (x, u, Du)|ϕ dx

converges to 0 by sending ε → 0. Hereto, we have verified the displays (3.11)–(3.13),
from which we get the inequality (3.10).

4 weak solutions are viscosity solutions

In this section, we prove that weak supersolutions are viscosity supersolutions to (1.1),
that is Theorem 1.4, by using comparison principle for weak solutions, subsequently
giving three examples of comparison results. Then weak subsolutions can be showed
to be viscosity subsolutions in a similar way.

Proof of Theorem 1.4 We argue by contradiction. If not, there exists a ϕ ∈ C2(�)

touching u from below at x0 ∈ �, that is,

⎧⎪⎨
⎪⎩
u(x0) = ϕ(x0),

u(x) > ϕ(x) for x �= x0,

Dϕ(x0) �= 0,

and however,

− div A(x0, Dϕ(x0)) < f (x0, u(x0), Dϕ(x0)).
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By means of continuity, for some δ > 0 there is a small enough r > 0 such that

− div A(x, Dϕ(x)) ≤ f (x, ϕ, Dϕ) − δ (4.1)

for x ∈ Br := Br (x0). Denote ϕ̃ := ϕ + m with m > 0 to be chosen later. In view of
(4.1), we have

− div A(x, Dϕ̃) − f (x, ϕ̃, Dϕ̃)

= − div A(x, Dϕ) − f (x, ϕ, Dϕ) + f (x, ϕ, Dϕ) − f (x, ϕ̃, Dϕ̃)

≤ −δ + f (x, ϕ, Dϕ) − f (x, ϕ + m, Dϕ)

≤ − δ

2
,

if m > 0 is sufficiently small. Indeed, we can pick m ∈ (0, 1
2 min∂Br {u − ϕ}) (note

the lower semicontinuity of u) small, taking into account the uniform continuity of f ,
such that

| f (x, ϕ, Dϕ) − f (x, ϕ + m, Dϕ)| ≤ δ

2
.

Hence, ϕ̃ is aweak subsolution to (1.1) in Br aswell.Observe that ϕ̃ = ϕ+m < ϕ+u−
ϕ = u on ∂Br . Thereby through the (CPP) we get u ≥ ϕ̃ in Br . Nonetheless, u(x0) =
ϕ(x0) < ϕ(x0) + m, which is a contradiction. Then u is a viscosity supersolution to
(1.1). ��

A fundamental issue in Theorem 1.4 is the availability of comparison principle for
weak solutions. Nevertheless, it is not undemanding to establish such principle for the
nonhomogeneous double phase equations with very general structure. Hence, we next
for three slightly special cases prove comparison principle for weak solutions.

Lemma 4.1 Assume that u, v ∈ W 1,H(·)(�) are the weak subsolution and supersolu-
tion, respectively, to − div A(x, Dw) = f (x, w) in �, where f is decreasing in the
w-variable. If u ≤ v on ∂�, then u ≤ v a.e. in �.

Proof Since u, v are separately weak subsolution and supersolution such that u ≤ v

on ∂�, the auxiliary function

w := (u − v − l)+, l > 0,

can be chosen as a test function, which belongs to the space W 1,H(·)
0 (�). Therefore,

we get

∫
�

〈A(x, Du) − A(x, Dv), Dw〉 dx ≤
∫

�

( f (x, u) − f (x, v))w dx .
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We use the fact that f is decreasing with respect to the second variable to arrive at

∫
�

( f (x, u) − f (x, v))(u − v − l)+ dx ≤ 0.

Furthermore, due to the strictly monotone increasing property of the operator A(x, ·),
i.e., 〈A(x, ξ) − A(x, ζ ), ξ − ζ 〉 > 0 for ξ �= ζ ∈ R

n , it follows that

0 ≤
∫

�∩{(u−v−l)+>0}
〈A(x, Du) − A(x, Dv), Du − Dv〉 dx ≤ 0.

This implies that w ≡ 0 a.e. in �. In other words, u ≤ v + l a.e. in �. Letting l → 0,
we can see that u ≤ v a.e. in �. ��
Lemma 4.2 Suppose that f (x, τ, η) is decreasing in τ , and is locally Lipschitz contin-
uouswith respect toη in�×R×R

n. Let u, v be theweak subsolution and supersolution
respectively to (1.1) such that

|Du(x)| + |Dv(x)| ≥ δ a.e. x ∈ �

with δ > 0 any number. Let also 2 ≤ p ≤ q. Then there is ε > 0 such that, for every
domain E ⊂⊂ � fulfilling |E | ≤ ε, whenever u ≤ v on ∂E then it holds that u ≤ v

a.e. in E.

Proof Selecting w = (u − v)+χE ∈ W 1,H(·)
0 (�) as a test function in the weak

formulation of (1.1), we derive, from the hypotheses on f ,

∫
�

〈A(x, Du) − A(x, Dv), Dw〉 dx

≤
∫

�

( f (x, u, Du) − f (x, v, Dv))w dx

=
∫

�

( f (x, u, Du) − f (x, v, Du))(u − v)+χE + ( f (x, v, Du)

− f (x, v, Dv))(u − v)+χE dx

≤
∫

�

( f (x, v, Du) − f (x, v, Dv))(u − v)+χE dx

≤ C
∫
E

|Du − Dv|(u − v)+ dx . (4.2)

Now by the basic inequality (see [38, page 97])

C(|ξ | + |η|)p−2|ξ − η|2 ≤ (|ξ |p−2ξ − |η|p−2η) · (ξ − η) for p ≥ 2,

(4.2) turns into

∫
E
(|Du| + |Dv|)p−2|D(u − v)+|2 + a(x)(|Du| + |Dv|)q−2|D(u − v)+|2 dx
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≤ C
∫
E

|Du − Dv|(u − v)+ dx

≤ C(E)

∫
E

|D(u − v)+|2 dx

≤ C(E)

∫
E
(|Du| + |Dv|)2−p(|Du| + |Dv|)p−2|D(u − v)+|2 dx

≤ δ2−pC(E)

∫
E
(|Du| + |Dv|)p−2|D(u − v)+|2 dx,

where in the third lineweutilized theHölder andPoincaré inequalities, and the quantity
C(E) will tend to 0 when the measure |E | goes to 0. From above, we can find that
if the domain E is small enough, the last inequality is self-contradictory. That is,
(u − v)+ ≡ 0 in E , which leads to u ≤ v a.e. in E . ��
Remark 4.3 Lemma 4.1 could be exploited in the proof of Theorem 1.4 apparently.
Observe that Dϕ(x0) �= 0 and ϕ ∈ C2(�), so we can take such small ball Br (x0)
that |Br (x0)| ≤ ε (ε is provided by Lemma 4.2) and moreover |Dϕ(x)| ≥ δ > 0 in
Br (x0). Thus we can keep track of the proof of Theorem 1.4 to deduce that a lower
semicontinuousweak supersolution is a viscosity supersolution to (1.1) byLemma4.2.

Lemma 4.4 Suppose that f (x, τ, η) is decreasing in τ , and is locally Lipschitz con-
tinuous with respect to η in � × R × R

n. Let 1 < p < 2 and u, v ∈ W 1,∞
loc (�) be

the weak subsolution and supersolution respectively to (1.1). Then there is ε > 0 such
that, for every domain E ⊂⊂ � fulfilling |E | ≤ ε, whenever u ≤ v on ∂E then it
holds that u ≤ v a.e. in E.

Proof Selecting w = (u− v)+χE ∈ W 1,H(·)
0 (�) as a test function, we can also derive

the estimate (4.2). Now by using the basic inequality (see [38, page 100])

C(1 + |ξ |2 + |η|2) p−2
2 |ξ − η|2 ≤ (|ξ |p−2ξ − |η|p−2η) · (ξ − η) for 1 < p < 2,

and

0 ≤ a(x)(|ξ |q−2ξ − |η|q−2η) · (ξ − η) for q > 1,

(4.2) becomes

∫
E
(1 + |Du|2 + |Dv|2) p−2

2 |D(u − v)+|2 dx

≤ C
∫
E

|Du − Dv|(u − v)+ dx

≤ C(E)

∫
E

|D(u − v)+|2 dx

≤ C(E)

∫
E
(1 + |Du|2 + |Dv|2) 2−p

2 (1 + |Du|2 + |Dv|2) p−2
2 |D(u − v)+|2 dx
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≤ (1 + ‖Du‖L∞(E) + ‖Dv‖L∞(E))
2−pC(E)∫

E
(1 + |Du|2 + |Dv|2) p−2

2 |D(u − v)+|2 dx,

where the quantity C(E) will tend to 0 when the measure |E | goes to 0. From the
estimate above, we find that if the domain E is small enough, the last inequality is
self-contradictory. That is, (u − v)+ ≡ 0 in E , which leads to u ≤ v a.e. in E . ��

5 Lipschitz continuity of viscosity solutions

We in this part show that the bounded viscosity solutions to (1.1) are locally Lipschitz
continuous. The strategy is to verify first the Hölder continuity of viscosity solutions
by using the Ishii–Lions methods, and further, based on the Hölder continuity, to
demonstrate the Lipschitz continuity of viscosity solutions through the Ishii-Lions
methods again. The similar idea can be found for instance in [2]. For the sake of
convenience, we suppose the domain � is a unit ball B1.

Lemma 5.1 (Local Hölder continuity) Let u be a bounded viscosity solution to (1.1)
in B1. Assume that 0 ≤ a(x) ∈ C1(B1), p ≤ q ≤ p + 1 and (1.3) are in
force. Then for each β ∈ (0, 1), there exists a constant C > 0, depending on
n, p, q, β, γ∞, ‖a‖C1(B1), ‖u‖L∞(B1) and ‖�‖L∞(B1), such that

|u(x) − u(y)| ≤ C |x − y|β

for any x, y ∈ B3/4, where γ∞ := maxt∈[0,‖u‖L∞(B1)] γ (t).

Proof Fix x0, y0 ∈ B3/4. We now aim at showing that there are two proper constants
L1, L2 > 0 such that

ω := sup
x,y∈B3/4

(
u(x) − u(y) − L1φ(|x − y|) − L2

2
|x − x0|2 − L2

2
|y − y0|2

)
≤ 0, (5.1)

where φ(r) = rβ with β ∈ (0, 1).
To this end, assume on the contrary that (5.1) is not true and moreover (x, y) ∈

B3/4 × B3/4 stands for the point where the supremum is achieved. We can easily know
two facts that x �= y by ω > 0, and x, y ∈ B3/4 by choosing

L2 ≥ 64‖u‖L∞(B1)

(min{dist(x0, ∂B3/4), dist(y0, ∂B3/4)})2 .

Besides,

|x − y| ≤
(
2‖u‖L∞(B1)

L1

) 1
β
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is small enough, provided that L1 is sufficiently large, which shall be utilized later.
Now by invoking the maximum principle for semicontinuous functions [16,

Theorem 3.2], there are X ,Y ∈ Sn such that

(η1, X + L2 I ) ∈ J
2,+

u(x) and (η2,Y − L2 I ) ∈ J
2,−

u(y)

with

η1 = L1Dxφ(|x − y|) + L2(x − x0) = L1φ
′(|x − y|) x − y

|x − y| + L2(x − x0),

η2 = −L1Dyφ(|x − y|) − L2(y − y0) = L1φ
′(|x − y|) x − y

|x − y| − L2(y − y0).

Via selecting L1 ≥ C(β)L2 large enough, there holds that

βL1

2
|x − y|β−1 ≤ |η1|, |η2| ≤ 2βL1|x − y|β−1. (5.2)

Furthermore, applying [15, Theorem 12.2], for any τ > 0 such that τ Z < I , we
obtain

− 2

τ

(
I
I

)
≤
(
X

−Y

)
≤
(

Z τ −Z τ

−Z τ Z τ

)
, (5.3)

where

Z = L1φ
′′(|x − y|) x − y

|x − y| ⊗ x − y

|x − y| + L1φ
′(|x − y|)

|x − y|
(
I − x − y

|x − y| ⊗ x − y

|x − y|
)

= βL1|x − y|β−2
(
I + (β − 2)

x − y

|x − y| ⊗ x − y

|x − y|
)

and

Z τ = (I − τ Z)−1Z

with (I−τ Z)−1 denoting the inverse of thematrix I−τ Z . Nowpick τ = 1
2βL1|x−y|β−2

such that

Z τ = 2βL1|x − y|β−2
(
I − 2

2 − β

3 − β

x − y

|x − y| ⊗ x − y

|x − y|
)

.

Observe that

〈Z τ ξ, ξ 〉 = 2β
β − 1

3 − β
L1|x − y|β−2 < 0 (5.4)
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for ξ = x−y
|x−y| . In addition, it follows from (5.3) that X ≤ Y and

‖X‖, ‖Y‖ ≤ 4βL1|x − y|β−2. (5.5)

Let

As(η) := I + (s − 2)
η

|η| ⊗ η

|η| for η ∈ R
n \ {0}

with s ∈ {p, q}. An obvious fact is that the eigenvalues of As(η) belong to the interval
[min{1, s − 1},max{1, s − 1}]. Now since u is a viscosity solution to (1.1), we have

F(x, η1, X + L2 I ) − f (x, u(x), η1) ≤ 0

and

F(y, η2,Y − L2 I ) − f (y, u(y), η2) ≥ 0.

Adding these two inequalities becomes

0 ≤ |η1|p−2tr(Ap(η1)(X + L2 I )) − |η2|p−2tr(Ap(η2)(Y − L2 I ))

+ a(x)|η1|q−2tr(Aq(η1)(X + L2 I )) − a(y)|η2|q−2tr(Aq(η2)(Y − L2 I ))

+ |η1|q−2η1 · Da(x) − |η2|q−2η2 · Da(y) + f (x, u(x), η1) − f (y, u(y), η2)

=: I1 + I2 + I3 + I4. (5.6)

In what follows, our goal is to justify I1 + I2 + I3 + I4 < 0 under suitable conditions,
which reaches a contradiction so that the claim (5.1) is precisely true. First, we examine
the term I2 as

I2 = (a(x) − a(y))|η1|q−2tr(Aq(η1)(X + L2 I ))

+ a(y)(|η1|q−2 − |η2|q−2)tr(Aq(η1)(X + L2 I ))

+ a(y)|η2|q−2[tr(Aq(η1)(X + L2 I )) − tr(Aq(η2)(Y − L2 I ))]
= (a(x) − a(y))|η1|q−2tr(Aq(η1)(X + L2 I ))

+ a(y)(|η1|q−2 − |η2|q−2)tr(Aq(η1)(X + L2 I ))

+ a(y)|η2|q−2tr(Aq(η1)(X − Y )) + a(y)|η2|q−2tr((Aq(η1) − Aq(η2))Y )

+ L2a(y)|η2|q−2(tr(Aq(η1) + tr(Aq(η2)))

=: I21 + I22 + I23 + I24 + I25.

Let us mention that the treatment of I2 is similar to that of J1 in [24, Lemma 6.1].
However, we here give some details for the sake of readability. For I21, by virtue of
(5.2), (5.5) and the eigenvalues of Aq(η1), we have

I21 ≤ C(β, q, ‖a‖C1(B1))|x − y|Lq−2
1 |x − y|(β−1)(q−2)(n‖Aq (η1)‖‖X‖ + nL2‖Aq (η1)‖)
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≤ C(n, β, q, ‖a‖C1(B1))L
q−2
1 |x − y|(β−1)(q−2)+1(L1|x − y|β−2 + L2).

We now consider I22,

I22 ≤ C(q, β)a(y)Lq−3
1 |x − y|(β−1)(q−3)L2(n‖Aq(η1)‖‖X‖ + nL2‖Aq(η1)‖)

≤ C(n, β, q)a(y)L2L
q−3
1 |x − y|(β−1)(q−3)(L1|x − y|β−2 + L2).

Indeed, we evaluate |η1|q−2 − |η2|q−2 as

|η1|q−2 − |η2|q−2 = (q − 2)|ξ12|q−3(|η1| − |η2|)
≤ |q − 2|C(q, β)Lq−3

1 |x − y|(β−1)(q−3)|η1 − η2|
≤ C(q, β)L2L

q−3
1 |x − y|(β−1)(q−3),

where |ξ12| is between |η1| and |η2|, and we have used (5.2) and |η1−η2| ≤ 4L2. Due
to (5.3) and (5.4), any eigenvalue of X −Y is non-positive and at least one eigenvalue,
denoted by λ(X −Y ), is less than or equal to 8β β−1

3−β
L1|x − y|β−2. Next, we deal with

the term I23 as

I23 ≤ a(y)|η2|q−2
n∑

i=1

λi (Aq(η1))λi (X − Y )

≤ a(y)|η2|q−2 min{1, q − 1}λ(X − Y )

≤ a(y)C(q, β)Lq−2
1 |x − y|(β−1)(q−2)

(
−8β

1 − β

3 − β

)
L1|x − y|β−2

≤ −C(q, β)a(y)Lq−1
1 |x − y|(β−1)(q−1)−1

with λ1(Aq(η1)) ≤ λ2(Aq(η1)) ≤ · · · ≤ λn(Aq(η1)) and λ1(X −Y ) ≤ λ2(X −Y ) ≤
· · · ≤ λn(X − Y ). Here we need to note 0 < β < 1. In order to evaluate I24, we first
notice

‖Aq(η1) − Aq(η2)‖ ≤ 2|q − 2|
∣∣∣∣ η1

|η1| − η2

|η2|
∣∣∣∣

≤ 2|q − 2|max

{ |η1 − η2|
|η1| ,

|η1 − η2|
|η2|

}

≤ C(q, β)
L2

L1|x − y|β−1 .

Thereby, from (5.2), (5.5) and the preceding inequality,

I24 ≤ a(y)|η2|q−2n‖Aq(η1) − Aq(η2)‖‖Y‖
≤ C(n, q, β)a(y)(L1|x − y|β−1)q−2 L2

L1|x − y|β−1 L1|x − y|β−2

= C(n, q, β)a(y)L2L
q−2
1 |x − y|(β−1)(q−2)−1.

123



2550 Y. Fang et al.

The term I25 finally can be treated by

I25 ≤ a(y)|η2|q−2L22nmax{1, q − 1} ≤ C(n, q, β)a(y)L2L
q−2
1 |x − y|(β−1)(q−2).

Now merging these estimates of I21–I25 yields that

I2 ≤ −C(q, β)a(y)Lq−1
1 |x − y|(β−1)(q−1)−1

+ C(n, q, β)a(y)L2L
q−2
1 |x − y|(β−1)(q−2)−1

+ C(n, q, β)a(y)L2
2L

q−3
1 |x − y|(β−1)(q−3)

+ C(n, q, β, ‖a‖C1(B1))L
q−1
1 |x − y|(β−1)(q−1)

+ C(n, q, β, ‖a‖C1(B1))L2L
q−2
1 |x − y|(β−1)(q−2)+1,

where we have employed the fact that |x − y| < 1. Analogously, we could derive

I1 ≤ −C(p, β)L p−1
1 |x − y|(β−1)(p−1)−1 + C(n, p, β)L2L

p−2
1 |x − y|(β−1)(p−2)−1

+ C(n, p, β)L2
2L

q−3
1 |x − y|(β−1)(p−3),

where we just note a(·) ≡ 1. The term I3 is directly estimated as

I3 ≤ |η1|q−1|Da(x)| + |η2|q−1|Da(y)| ≤ C(q, β, ‖a‖C1(B1))L
q−1
1 |x − y|(β−1)(q−1)

by applying (5.2). As for I4, according to the growth condition on f ,

I4 ≤ | f (x, u(x), η1)| + | f (y, u(y), η2)|
≤ γ (|u(x)|)(|η1|p−1 + a(x)|η1|q−1) + �(x)

+ γ (|u(y)|)(|η2|p−1 + a(y)|η2|q−1) + �(y)

≤ γ∞C(p, q, β)(L p−1
1 |x − y|(β−1)(p−1)

+ ‖a‖L∞(B1)L
q−1
1 |x − y|(β−1)(q−1))

+ ‖�‖L∞(B1)

with γ∞ := maxt∈[0,‖u‖L∞(B1)] γ (t).
We eventually gather the estimates on I1–I4 with (5.6) to infer that

0 ≤ [− C(p, β)L p−1
1 |x − y|(β−1)(p−1)−1 + C(n, p, β)L2L

p−2
1 |x − y|(β−1)(p−2)−1

+ C(n, p, β)L2
2L

p−3
1 |x − y|(β−1)(p−3) + C(p, q, β, γ∞)L p−1

1 |x − y|(β−1)(p−1)

+ C(n, p, q, β, ‖a‖C1(B1), γ∞)Lq−1
1 |x − y|(β−1)(q−1) + ‖�‖L∞(B1)

+ C(n, q, β, ‖a‖C1(B1))L2L
q−2
1 |x − y|(β−1)(q−2)+1]

+ a(y)
[− C(q, β)Lq−1

1 |x − y|(β−1)(q−1)−1 + C(n, q, β)L2L
q−2
1 |x − y|(β−1)(q−2)−1

+ C(n, q, β)L2
2L

q−3
1 |x − y|(β−1)(q−3)].
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Now our aim is to make the term at the right-hand side of the above display to be
strictly less than 0, through choosing L1 large enough. We first select L1 so large that

{
1
3C(q, β)Lq−1

1 |x − y|(β−1)(q−1)−1 ≥ C(n, q, β)L2L
q−2
1 |x − y|(β−1)(q−2)−1,

1
3C(q, β)Lq−1

1 |x − y|(β−1)(q−1)−1 ≥ C(n, q, β)L2
2L

q−3
1 |x − y|(β−1)(q−3),

i.e.,

L1|x − y|β−1 ≥ C(n, q, β, L2).

This can be realized if L1 is sufficiently large, since |x − y| < 1 and the power of it
is negative. Next, we proceed to choose L1 so large that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
7C(p, β)L p−1

1 |x − y|(β−1)(p−1)−1 ≥ C(n, p, β)L2L
p−2
1 |x − y|(β−1)(p−2)−1,

1
7C(p, β)L p−1

1 |x − y|(β−1)(p−1)−1 ≥ C(n, p, β)L2
2L

p−3
1 |x − y|(β−1)(p−3),

1
7C(p, β)L p−1

1 |x − y|(β−1)(p−1)−1 ≥ C(p, q, β, γ∞)L p−1
1 |x − y|(β−1)(p−1),

1
7C(p, β)L p−1

1 |x − y|(β−1)(p−1)−1 ≥ C(n, p, q, β, ‖a‖C1(B1), γ∞)Lq−1
1 |x − y|(β−1)(q−1),

1
7C(p, β)L p−1

1 |x − y|(β−1)(p−1)−1 ≥ C(n, q, β, ‖a‖C1(B1))L2L
q−2
1 |x − y|(β−1)(q−2)+1,

1
7C(p, β)L p−1

1 |x − y|(β−1)(p−1)−1 ≥ ‖�‖L∞(B1).

We arrange the previous display as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L1|x − y|β−1 ≥ C(n, p, β, L2, ‖�‖L∞(B1)),

|x − y|−1 ≥ C(p, q, β, γ∞),

L p−q
1 |x − y|(β−1)(p−q)−1 ≥ C(n, p, q, β, ‖a‖C1(B1), γ∞),

L p−q+1
1 |x − y|(β−1)(p−q+1)−2 ≥ C(n, p, q, β, ‖a‖C1(B1), L2).

(5.7)

Making use of the fact |x − y| ≤
(
2‖u‖L∞(B1)

L1

) 1
β
, we can pick such large L1 > 1 that

the first two inequalities of (5.7) hold true. To assure the inequality (5.7)3 holds, we
first require

(β − 1)(p − q) − 1 < 0 ⇒ q < p + 1

1 − β
(β ∈ (0, 1)).

We in turn enforce

L p−q
1 |x − y|(β−1)(p−q)−1 ≥ L p−q

1

(
2‖u‖L∞(B1)

L1

) (β−1)(p−q)−1
β

≥ C(n, p, q, β, ‖a‖C1(B1), γ∞),
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that is,

L
p−q+1

β

1 ≥ C(n, p, q, β, ‖a‖C1(B1), γ∞, ‖u‖L∞(B1)),

which is true precisely if

p − q + 1 > 0 ⇒ q < p + 1.

Under this condition, the inequality (5.7)4 shall hold true by choosing L1 large.
As has been shown above, if q < p + 1, we can select L1 large enough, which

depends on n, p, q, β, ‖a‖C1(B1), γ∞, ‖u‖L∞(B1) and ‖�‖L∞(B1), to get

0 ≤ −1

7
C(p, β)L p−1

1 |x − y|(β−1)(p−1)−1 − 1

3
C(q, β)a(y)Lq−1

1 |x − y|(β−1)(q−1)−1 < 0.

This is a contradiction. Thus the claim (5.1) holds true, which means that the viscosity
solution u is locally β-Hölder continuous. The proof is finished now. ��

Based on the local β-Hölder continuity of u in Lemma 5.1, we could further deduce
u is locally Lipschitz continuous.

Lemma 5.2 (Local Lipschitz continuity) Let u be a bounded viscosity solution to (1.1)
in B1. Under the assumptions that 0 ≤ a(x) ∈ C1(B1), p ≤ q ≤ p+ 1

2 and (1.3), there
is a constant C that depends on n, p, q, γ∞, ‖a‖C1(B1), ‖u‖L∞(B1) and ‖�‖L∞(B1),
such that

|u(x) − u(y)| ≤ C |x − y|

for all x, y ∈ B1/2. Here γ∞ := maxt∈[0,‖u‖L∞(B1)] γ (t).

Proof Let x0, y0 ∈ B1/2. Construct an auxiliary function

�(x, y) := u(x) − u(y) − M1ϕ(|x − y|)
−M2

2
|x − x0|2 − M2

2
|y − y0|2, M1, M2 > 0,

where

ϕ(t) :=
⎧⎨
⎩
t − κ0tν, if 0 ≤ t ≤ t1 :=

(
1

4νκ0

) 1
ν−1

,

ϕ(t1), if t > t1

with 1 < ν < 2 and 0 < κ0 < 1 such that 2 < t1. We are ready to verify �(x, y) ≤ 0
for (x, y) ∈ B3/4 × B3/4 under the appropriate choice of M1, M2, which leads to
Lipschitz continuity of u. We argue by contradiction. Suppose that � reaches its
positive maximum at (x̂, ŷ) ∈ B3/4 × B3/4. As in the beginning of the proof of
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Lemma 5.1, we can see that x̂ �= ŷ and x̂, ŷ ∈ B3/4 for large M2 ≥ C‖u‖L∞(B1).
Moreover, by Lemma 5.1, we know that

|u(x) − u(y)| ≤ cβ |x − y|β for x, y ∈ B3/4,

where cβ is the same as the C in Lemma 5.1. From the assumptions, we further get

M2|x̂ − x0|, M2|ŷ − y0| ≤ cβ |x̂ − ŷ| β
2 (5.8)

by adjusting the constants (by letting 2M2 ≤ cβ ). Additionally, it follows, by selecting
κ0 sufficiently small, that

M1(|x̂ − ŷ| − κ0|x̂ − ŷ|ν) ≤ 2‖u‖L∞(B1),

i.e.,

|x̂ − ŷ| ≤ 4‖u‖L∞(B1)

M1
. (5.9)

Indeed, due to |x̂ − ŷ| ≤ 2 and ν − 1 > 0, we can fix κ0 ∈ (0, 1) such that 1
2 ≤

1 − κ0|x̂ − ŷ|ν−1.
From the maximum principle for semicontinuous functions, for any μ > 0, there

exist X ,Y ∈ Sn such that

(η1, X + M2 I ) ∈ J
2,+

u(x̂) and (η2,Y − M2 I ) ∈ J
2,−

u(ŷ)

and

− (μ + 2‖B‖)
(
I
I

)
≤
(
X

−Y

)
≤
(

B −B
−B B

)
+ 2

μ

(
B2 −B2

−B2 B2

)
, (5.10)

where

η1 = M1ϕ
′(|x̂ − ŷ|) x̂ − ŷ

|x̂ − ŷ| + M2(x̂ − x0),

η2 = M1ϕ
′(|x̂ − ŷ|) x̂ − ŷ

|x̂ − ŷ| − M2(ŷ − y0)

and

B = M1ϕ
′′(|x̂ − ŷ|) x̂ − ŷ

|x̂ − ŷ| ⊗ x̂ − ŷ

|x̂ − ŷ| + M1ϕ
′(|x̂ − ŷ|)

|x̂ − ŷ|
(
I − x̂ − ŷ

|x̂ − ŷ| ⊗ x̂ − ŷ

|x̂ − ŷ|
)

.

Notice that, for t ∈ [0, t1],
{

ϕ′(t) = 1 − νκ0tν−1,

ϕ′′(t) = −ν(ν − 1)κ0tν−2,
(5.11)
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and then 3
4 ≤ ϕ′(t) ≤ 1 and ϕ′′(t) < 0 when t ∈ (0, 2]. Through straightforward

calculation we get

M1

2
≤ |η1|, |η2| ≤ 2M1, if M1 ≥ 4cβ, (5.12)

‖B‖ ≤ M1
ϕ′(|x̂ − ŷ|)

|x̂ − ŷ| (5.13)

and

‖B2‖ ≤ M2
1

(
|ϕ′′(|x̂ − ŷ|)| + ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
)2

. (5.14)

According to (5.10), we obtain X ≤ Y and furthermore ‖X‖, ‖Y‖ ≤ 2‖B‖ + μ. Via
taking

μ = 4M1

(
|ϕ′′(|x̂ − ŷ|)| + ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
)

,

we have, for ξ = x̂−ŷ
|x̂−ŷ| ,

〈(X − Y )ξ, ξ 〉 ≤ 4

(
〈Bξ, ξ 〉 + 2

μ
〈B2ξ, ξ 〉

)
≤ 2M1ϕ

′′(|x̂ − ŷ|) < 0. (5.15)

It follows from the last inequality that at lowest one eigenvalue of X − Y , denoted by
λ̂, is smaller than 2M1ϕ

′′(|x̂ − ŷ|) < 0. Besides, putting together (5.13), (5.14) and
(5.10), we derive

‖Y‖ ≤ 2|〈Bξ, ξ 〉| + 4

μ
|〈B2ξ, ξ 〉|

≤ 4M1

(
|ϕ′′(|x̂ − ŷ|)| + ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
)

, (5.16)

where ξ is a unit vector.
Because u is a viscosity solution, we arrive at

0 ≤ |η1|p−2tr(Ap(η1)(X + M2 I )) − |η2|p−2tr(Ap(η2)(Y − M2 I ))

+ a(x̂)|η1|q−2tr(Aq(η1)(X + M2 I )) − a(ŷ)|η2|q−2tr(Aq(η2)(Y − M2 I ))

+ |η1|q−2η1 · Da(x̂) − |η2|q−2η2 · Da(ŷ) + f (x̂, u(x̂), η1) − f (ŷ, u(ŷ), η2)

=: T1 + T2 + T3 + T4. (5.17)

In the following, we want to prove T1 + T2 + T3 + T4 < 0 by taking M1 large enough,
the procedure of which is analogous to that in proof of Lemma 5.1. Here we shall
briefly write down it. We first consider the term T2,
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T2 = (a(x̂) − a(ŷ))|η2|q−2tr(Aq(η2)(Y − M2 I )) + a(x̂)|η1|q−2tr(Aq(η1)(X − Y ))

+ a(x̂)(|η1|q−2 − |η2|q−2)tr(Aq(η2)Y ) + a(x̂)|η1|q−2tr((Aq(η1) − Aq(η2))Y )

+ M2a(x̂)[|η1|q−2tr(Aq(η1)) + |η2|q−2tr(Aq(η2))]
=: T21 + T22 + T23 + T24 + T25.

In view of (5.11), (5.12) and (5.16), there holds that

T21 ≤ C(q, ‖a‖C1(B1))M
q−2
1 |x̂ − ŷ|(n‖Aq(η2)‖‖Y‖ + nqM2)

≤ C(n, q, ‖a‖C1(B1))M
q−2
1 [M1(1 + |x̂ − ŷ||ϕ′′(|x̂ − ŷ|)|) + M2]

≤ C(n, q, ‖a‖C1(B1))M
q−2
1 [M1(1 + |x̂ − ŷ|ν−1) + M2]

≤ C(n, q, ‖a‖C1(B1))(M
q−1
1 + Mq−2

1 M2).

Applying the mean value theorem along with (5.8), (5.11) and (5.12), we obtain

∣∣|η1|q−2 − |η2|q−2
∣∣ ≤ C(q, cβ)Mq−3

1 |x̂ − ŷ| β
2 ,

which indicates that

T23 ≤ C(n, q, cβ)a(x̂)Mq−3
1 |x̂ − ŷ| β

2 ‖Y‖
≤ C(n, cβ, q)a(x̂)Mq−2

1 (|x̂ − ŷ| β
2 −1 + |x̂ − ŷ|ν−2).

Thanks to (5.12) and (5.15), we derive

T22 ≤ a(x̂)|η1|q−2
n∑

i=1

λi (Aq(η1))λi (X − Y )

≤ C(q)a(x̂)Mq−1
1 ϕ′′(|x̂ − ŷ|)

= −C(q, ν, κ0)a(x̂)Mq−1
1 |x̂ − ŷ|ν−2.

According to (5.8), (5.12) and (5.16),

T24 ≤ a(x̂)|η1|q−2n‖Aq(η1) − Aq(η2)‖‖Y‖
≤ C(n, q)a(x̂)|η1|q−2 max

{ |η1 − η2|
|η1| ,

|η1 − η2|
|η2|

}
‖Y‖

≤ C(n, q, cβ)a(x̂)Mq−2
1 |x̂ − ŷ| β

2

(
|ϕ′′(|x̂ − ŷ|)| + ϕ′(|x̂ − ŷ|)

|x̂ − ŷ|
)

≤ C(n, q, cβ)a(x̂)Mq−2
1 (|x̂ − ŷ| β

2 −1 + |x̂ − ŷ|ν−2).

Finally, by (5.12) we have

T25 ≤ C(n, q)a(x̂)M2M
q−2
1 .
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Thus taking ν = β
2 + 1 and combining these previous inequalities yields that

T2 ≤ −C(q, β)a(x̂)Mq−1
1 |x̂ − ŷ| β

2 −1 + C(n, q, cβ)a(x̂)Mq−2
1 |x̂ − ŷ| β

2 −1

+ C(n, q, ‖a‖C1(B1))(M
q−1
1 + Mq−2

1 M2).

Similarly, we have

T1 ≤ −C(p, β)Mp−1
1 |x̂ − ŷ| β

2 −1 + C(n, p, cβ)Mp−2
1 |x̂ − ŷ| β

2 −1 + C(n, p)Mp−2
1 M2.

For T3, it is easy to get

T3 ≤ C(q, ‖a‖C1(B1))M
q−1
1 .

Owing to the growth condition on f , we can see that

T4 ≤ γ∞(|η1|p−1 + a(x̂)|η1|q−1) + γ∞(|η2|p−1 + a(ŷ)|η2|q−1) + 2‖�‖L∞(B1)

≤ C(p, q, γ∞, ‖a‖L∞(B1))(M
p−1
1 + Mq−1

1 ) + 2‖�‖L∞(B1)

≤ C(p, q, γ∞, ‖a‖L∞(B1), ‖�‖L∞(B1))M
q−1
1

with γ∞ := maxt∈[0,‖u‖L∞(B1)] γ (t). Here we note M1 > 1 is a sufficiently large
number. It follows from merging the estimates on T1–T4 with (5.17) that

0 ≤ [− C(p, β)Mp−1
1 |x̂ − ŷ| β

2 −1 + C(n, p, cβ)Mp−2
1 |x̂ − ŷ| β

2 −1

+ C(p, q, γ∞, ‖a‖C1(B1), ‖�‖L∞(B1))M
q−1
1

]
+ a(x̂)

[− C(q, β)Mq−1
1 |x̂ − ŷ| β

2 −1 + C(n, q, cβ)Mq−2
1 |x̂ − ŷ| β

2 −1], (5.18)

where we have used the relation M1 ≥ M2 to simplify the display. To get a
contradiction, we have to select such large M1 that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
3C(p, β)Mp−1

1 |x̂ − ŷ| β
2 −1 ≥ C(n, p, cβ)Mp−2

1 |x̂ − ŷ| β
2 −1,

1
3C(p, β)Mp−1

1 |x̂ − ŷ| β
2 −1 ≥ C(p, q, γ∞, ‖a‖C1(B1), ‖�‖L∞(B1))M

q−1
1 ,

1
2C(q, β)Mq−1

1 |x̂ − ŷ| β
2 −1 ≥ C(n, q, cβ)Mq−2

1 |x̂ − ŷ| β
2 −1,

(5.19)

that is,

{
M1 ≥ C(n, p, q, cβ),

Mp−q
1 |x̂ − ŷ| β

2 −1 ≥ C(p, q, β, γ∞, ‖a‖C1(B1), ‖�‖L∞(B1)).

Remembering (5.9), we arrive at

Mp−q
1 |x̂ − ŷ| β

2 −1 ≥ (4‖u‖L∞(B1))
β
2 −1M

p−q+1− β
2

1 .
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Now enforcing

q < p + 1 − β

2
,

we could choose such large M1 that

M1 ≥ C(n, p, q, β, γ∞, ‖a‖C1(B1), ‖�‖L∞(B1), ‖u‖L∞(B1)),

which ensures (5.19) holds true. Then the display (5.18) becomes

0 ≤ −1

3
CM p−1

1 |x̂ − ŷ| β
2 −1 − 1

2
a(x̂)CMq−1

1 |x̂ − ŷ| β
2 −1 < 0,

which is a contradiction. Let us mention that we fix β to be a specific number so that
M1 does not depend on β. Up to now, we have justified the local Lipschitz continuity
of u. ��

Once Lemma 5.2 is proved in B1, then the case of a bounded domain � follows
by covering arguments. Therefore, we finish the proof of Theorem 1.2.
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