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Abstract
We consider a nonlinear elliptic Dirichlet equation driven by a double phase operator
and a Carathéodory (p − 1)-linear reaction. First, we conduct a detailed spectral
analysis of the double phase operator. Next, we use the results of this analysis to
prove existence and multiplicity properties for problems in which there is resonance
asymptotically as x → ±∞.
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1708 N. S. Papageorgiou et al.

1 Introduction

Let � ⊆ R
N be a bounded domain with C2-boundary ∂�. In this paper we study the

following double phase Dirichlet problem

{−�a
pu(z) − �qu(z) = f (z, u(z)) in �,

u|∂� = 0, 1 < q < p < N .
(1.1)

Given r ∈ (1,∞) and a ∈ L∞(�) \ {0}, a(z) ≥ 0 for a.a. z ∈ �, we denote by �a
r

the weighted r -Laplace differential operator defined by

�a
r u = div

(
a(z)|Du|r−2Du

)
.

The interest in the study of this type of problem is twofold. On the one hand, there
are physical motivations, since the double phase operator has been applied to describe
steady-state solutions of reaction-diffusion problems in biophysics, plasma physics,
and chemical reaction analysis. The prototype equation for thesemodels can bewritten
in the form

ut = �a
pu(z) + �qu + g(x, u).

In this framework, the function u generally stands for a concentration, the term
�a

pu(z)+�qu corresponds to the diffusion with coefficient a(z)|Du|p−2 +|Du|q−2,
while g(x, u) represents the reaction term related to source and loss processes; see
Cherfils & Il’yasov [5] and Singer [26]. On the other hand, such operators provide a
valuable framework for explaining the behavior of highly anisotropic materials whose
hardening properties, which are linked to the exponent governing the propagation of
the gradient variable, differ considerably with the point, where the modulating coef-
ficient a(z) dictates the geometry of a composite made by two different materials.

If a ≡ 1, then we have the standard r -Laplace differential operator denoted by �r .
In problem (1.1), we have the sum of two such operators and so the left-hand side of
problem (1.1) is not homogeneous. In fact, the differential operator u �→ −�a

pu−�qu
driving problem (1.1) is related to the so-called “double-phase" integral functional
given by

u �→
∫

�

(
a(z)|Du|p + |Du|q) dz.

The integrand of this functional is the function

ξ(z, t) = a(z)t p + tq for all z ∈ �, all t ≥ 0.

A feature of this paper is that we do not assume that the weight function a(·) is
bounded away from zero, that is, we do not require that essinf

�
a > 0. This implies
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Non-autonomous (p, q)-equations... 1709

that the integrand ξ(z, ·) exhibits unbalanced growth, namely we have

tq ≤ ξ(z, t) ≤ C0
(
t p + tq

)
for a.a. z ∈ �, all t ≥ 0, for some C0 > 0.

Such functionals were first investigated by Marcellini [18] and Zhikov [27], in
the context of problems of the calculus of variations and of nonlinear elasticity for
strongly anisotropic materials. For such problems, there is no global (that is, up to the
boundary) regularity theory. There are only interior regularity results primarily due
to Marcellini and coworkers and to Mingione and coworkers. We mention the papers
of Marcellini [19] and Baroni, Colombo & Mingione [3] and the references therein.
There is also the work of Ragusa & Tachikawa [25] on anisotropic double phase
problems. An informative survey of the recent developments on the subject can be
found in Mingione & Rădulescu [20]. The lack of global regularity theory eliminates
from consideration many of the tools used in the study of balanced (p, q)-equations.

The double-phase problem (1.1) is motivated by numerous models arising in math-
ematical physics. For instance, we can refer to the following Born-Infeld equation [4]
that appears in electromagnetism:

−div

( ∇u

(1 − 2|∇u|2)1/2
)

= h(u) in �.

Indeed, by the Taylor formula, we have

(1 − x)−1/2 = 1 + x

2
+ 3

2 · 22 x
2 + 5!!

3! · 23 x
3 + · · · + (2n − 3)!!

(n − 1)!2n−1 x
n−1 + · · ·

for |x | < 1.

Taking x = 2|∇u|2 and adopting the first order approximation, we obtain problem
(Pλ) for p = 4 and q = 2. Furthermore, the n-th order approximation problem is
driven by the multi-phase differential operator

−�u − �4u − 3

2
�6u − · · · − (2n − 3)!!

(n − 1)! �2nu.

We also refer to the following fourth-order relativistic operator

u �→ div

( |∇u|2
(1 − |∇u|4)3/4 ∇u

)
,

which describes large classes of phenomena arising in relativistic quantummechanics.
Again, by Taylor’s formula, we have

x2(1 − x4)−3/4 = x2 + 3x6

4
+ 21x10

32
+ · · · .
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1710 N. S. Papageorgiou et al.

This shows that the fourth-order relativistic operator can be approximated by the
following autonomous double phase operator

u �→ �4u + 3

4
�8u.

In the reaction (right-hand side of problem (1.1)), we have a Carathéodory function
(that is, for all x ∈ R the mapping z �→ f (x, z) is measurable and for a.a. z ∈ � the
function x �→ f (z, x) is continuous). We assume that f (z, ·) exhibits (p − 1)-linear
growth as x �→ ±∞. Recently there have been some existence and multiplicity results
for double phase equations with (p−1)-superlinear reaction.Wemention the works of
Gasinski & Papageorgiou [10], Gasinski &Winkert [11], Ge, Lv& Lu [12], Liu &Dai
[16], and Papageorgiou, Vetro &Vetro [24]. For equations with (p−1)-linear reaction
f (z, ·), there is only the very recent work of Papageorgiou, Rădulescu & Zhang [22],
where it is stressed that the study of such problems is based on the spectral analysis of
the Dirichlet −�a

p operator. In the present paper, we conduct a detailed such spectral
analysis, extending the work initiated by Papageorgiou, Rădulescu & Zhang [22].
Then we prove existence and multiplicity results for resonant double phase equations.

The features of the present paper are the following:
(i) The source term of problem (1.1) is driven by a differential operator with a

power-type nonhomogeneous term.
(ii) The corresponding energy functional is a non-autonomous variational integral

that satisfies nonstandard growth conditions of (p, q)-type, following the terminology
introduced in the basic papers of Marcellini [17–19].

(iii) The potential that describes the differential operator satisfies general regularity
assumptions and it belongs to the p-Muckenhoupt class. Accordingly, the thorough
spectral and the qualitative analysis contained in this paper are developed inMusielak–
Orlicz–Sobolev spaces.

(iv) The paper covers both the coercive resonant case and the noncoercive (asymp-
totic resonance or nonresonance) case.

2 Mathematical background

The unbalanced growth integrand ξ(z, ·) implies that the right functional framework
for problem (1.1) is provided by the so called Musielak–Orlicz–Sobolev spaces (or
generalized Orlicz–Sobolev spaces). A comprehensive account of the abstract theory
of these spaces can be found in the recent book of Harjulehto & Hästo [13].

In what follows. we denote

C0,1(�) = {a : � → R Lipschitz continuous}.

We impose the following conditions on the weight function a(·) and the exponents
p, q.

H0: a ∈ C0,1(�), a(z) > 0 for all z ∈ �, 1 < q < p < N , p
q < 1 + 1

N .
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Non-autonomous (p, q)-equations... 1711

Remark 1 The last condition relating p, q, N is standard in Dirichlet double phase
problems and it implies that p < q∗ = Nq

N−q . This then leads to useful compact
embeddings of some relevant function spaces. Moreover, this condition together with
the Lipschitz continuity of a(·), implies that the Poincaré inequality is valid for the
Musielak–Orlicz–Sobolev space corresponding to the function ξ(z, t).

Let M(�) = {u : � → R measurable}. We identify two such functions which
differ only on a Lebesgue null subset of �. The Musielak–Orlicz space Lξ (�) is
defined by

Lξ (�) = {u ∈ M(�) : ρξ (u) < ∞},

where ρξ (·) is the modular function defined by

ρξ (u) =
∫

�

ξ(z, |u|)dz =
∫

�

[
a(z)|u|p + |u|q] dz.

This space is equipped with the so called “Luxemburg norm” given by

‖u‖ξ = inf
{
λ > 0 : ρξ

(u
λ

)
≤ 1

}
.

With this norm Lξ (�) becomes a Banach space which is separable and uniformly
convex (thus, reflexive). Using Lξ (�) we can introduce the corresponding Musielak–
Orlicz–Sobolev space by

W 1,ξ (�) = {
u ∈ Lξ (�) : |Du| ∈ Lξ (�)

}
.

Here, Du denotes the weak gradient of u. This space is equipped with the norm

‖u‖1,ξ = ‖u‖ξ + ‖Du‖ξ ,

with ‖Du‖ξ = ‖|Du|‖ξ . Evidently, W
1,ξ (�) is a Banach space which is separable

and uniformly convex (thus, reflexive). Also, we define

W 1,ξ
0 (�) = C∞

0 (�)
‖·‖1,ξ

.

This is also a Banach space which is separable and uniformly convex. Moreover, as
we already mentioned on account of hypotheses H0, the Poincaré inequality is valid
on W 1,ξ

0 (�). So, on W 1,ξ
0 (�) we can consider the norm

‖u‖ = ‖Du‖ξ for all u ∈ W 1,ξ
0 (�).

We have the following useful embeddings. For details we refer to [13, Chapter 6].

Proposition 1 If hypotheses H0 hold, then
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1712 N. S. Papageorgiou et al.

(a) Lξ (�) ↪→ Lμ(�) and W 1,ξ
0 (�) ↪→ W 1,μ

0 (�) continuously for all μ ∈ [1, q];
(b) W 1,ξ

0 (�) ↪→ Lμ(�) continuously for allμ ∈ [1, q∗] and compactly for all [1, q∗).
(c) L p(�) ↪→ Lξ (�) continuously.

The next proposition establishes a close relation between the norm and the modular
function; see [13, Section 3.2].

Proposition 2 If hypotheses H0 hold and u ∈ W 1,ξ
0 (�), then

(a) ‖u‖ = λ ⇔ ρξ

( |Du|
λ

)
= 1;

(b) ‖u‖ < 1 (resp. = 1,> 1) ⇔ ρξ (Du) < 1 (resp. = 1,> 1);
(c) ‖u‖ ≤ 1 ⇒ ‖u‖p ≤ ρξ (Du) ≤ ‖u‖q ;
(d) ‖u‖ > 1 ⇒ ‖u‖q ≤ ρξ (Du) ≤ ‖u‖p;
(e) ‖u‖ → 0 (resp. → +∞) ⇔ ρξ (Du) → 0 (resp. → +∞).

We introduce the operators Aa
p, Aq : W 1,ξ

0 (�) → W 1,ξ
0 (�)∗ defined by

〈Aa
p(u), h〉 =

∫
�

a(z)|Du|p−2(Du, Dh)RN dz

〈Aq(u), h〉 =
∫

�

|Du|q−2(Du, Dh)RN dz for all u, h ∈ W 1,ξ
0 (�).

We set V = Aa
p + Aq . For this operator, we have the following result (see Liu &

Dai [16]).

Proposition 3 If hypotheses H0 hold, then V : W 1,ξ
0 (�) → W 1,ξ

0 (�)∗ is bounded
(that is, maps bounded sets to bounded sets), continuous, strictly monotone (thus,
maximal monotone too) and of type (S)+, that is,

“un
w→ u in W 1,ξ

0 (�) and lim sup
n→∞

〈V (un), un − u〉 ≤ 0

imply that

un → u in W 1,ξ
0 (�)′′.

Aswe alreadymentioned in the Introduction, our analysis of problem (1.1) depends

on the spectral properties of
(
−�a

p,W
1,ξ0
0 (�)

)
with ξ0(z, t) = a(z)t p, z ∈ �, t ≥ 0.

In the next section we conduct a comprehensive study of these spectral properties.

3 Spectral analysis of
(
−1a

p,W
1,�0
0 (Ä)

)

Let m ∈ L∞(�), m(z) > 0 for a.a. z ∈ � and consider the nonlinear eigenvalue
problem {−�a

pu(z) = λ̂m(z)a(z)|u(z)|p−2u(z) in �

u|∂� = 0, 1 < p < N .
(3.1)
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Non-autonomous (p, q)-equations... 1713

Recall that ξ0(z, t) = a(z)t p and consider the corresponding spaces Lξ0(�) and
W 1,ξ0

0 (�). These are Banach spaces which are separable and reflexive (see Harjulehto
& Hästo [13]). Let Ã p denote the p-Muckenhoupt class (see Cruz Uribe & Fiorenza
[7, p.142]). We strengthen hypotheses H0 as follows:

H ′
0: a ∈ C0,1(�) ∩ Ã p, a(z) > 0, for all z ∈ �, 1 < q < p < N , p

q < 1 + 1
N .

By an eigenvalue of
(
−�a

p,W
1,ξ0
0 (�),m

)
we mean a real number λ̂ such that

problem (3.1) has a nontrivial weak solution (eigenfunction). So, there exists û ∈
W 1,ξ0

0 (�) \ {0} such that

〈Aa
p(û), h〉 =

∫
�

λ̂m(z)a(z)|û|p−2ûhdz for all h ∈ W 1,ξ0
0 (�).

The starting point of our spectral analysis is the following compact embedding
theorem proved in [22].

Proposition 4 If hypotheses H ′
0 hold, then W 1,ξ0

0 (�) ↪→ Lξ0(�) compactly.

Using this compact embedding result, we can show the existence of a smallest (first)
eigenvalue for problem (3.1).

Proposition 5 If hypotheses H ′
0 hold, then problem (3.1) has a smallest eigenvalue

λ̂a1(p,m) > 0

and every corresponding eigenfunction û ∈ W 1,ξ0
0 (�) satisfies

û ∈ L∞(�), û(z) > 0 or û(z) < 0 for a.a. z ∈ �.

Proof Let ρa(Du) =
∫

�

a(z)|Du|pdz for all u ∈ W 1,ξ0
0 (�) and define

λ̂a1(p,m) = inf

⎧⎪⎪⎨
⎪⎪⎩

ρa(Du)∫
�

m(z)a(z)|u|pdz
: u ∈ W 1,ξ0

0 (�), u �= 0

⎫⎪⎪⎬
⎪⎪⎭

= inf

{
ρa(Du) :

∫
�

m(z)a(z)|u|pdz = 1

}

(by homogeneity). (3.2)

Consider a sequence {un}n∈N ⊆ W 1,ξ0
0 (�) such that

ρa(Dun) ↓ λ̂a1(p,m) = λ̂1 and
∫

�

m(z)a(z)|un|pdz = 1

for all n ∈ N.
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1714 N. S. Papageorgiou et al.

We have that

{un}n∈N ⊆ W 1,ξ0
0 (�) is bounded.

So, we may assume that

un
w→ û in W 1,ξ0

0 (�) and un → û in Lξ0(�) (see Proposition 4). (3.3)

Note thatρa(·) is continuous, convex, thus it is sequentiallyweakly semicontinuous.
Therefore from (3.3) we have

ρa(Dû) ≤ lim inf
n→∞ ρa(Dun). (3.4)

Also we have

∫
�

m(z)a(z)|un|pdz →
∫

�

m(z)a(z)|u|pdz = 1

(see (3.2)). (3.5)

From (3.4) and (3.5) we have

ρa(Dû) ≤ λ̂1 and
∫

�

m(z)a(z)|û|pdz = 1,

⇒ ρa(Dû) = λ̂1 and
∫

�

m(z)a(z)|û|pdz = 1 (see (3.2)),

⇒ λ̂1 = λ̂a1(p,m) > 0.

The Lagrange multiplier rule (see Papageorgiou, Rădulescu &Repovš [21, p.422]),
implies that

− �a
pû = λ̂1m(z)a(z)|û|p−2û in �, û|∂� = 0. (3.6)

Suppose that û+ �= 0. Acting on (3.6) with û ∈ W 1,ξ0
0 (�) we obtain

ρa(Dû+) = λ̂1

∫
�

m(z)a(z)(û+)pdz,

⇒ û+ realizes the infimum in (3.2),

⇒ û+ is an eigenfunction for λ̂1 > 0.

Let (ξ0)∗(z, t) denote the Sobolev conjugate of ξ0(z, t) (see Adams [1, p.248]). We
know that W 1,ξ0

0 (�) ↪→ L(ξ0)∗(�) continuously (see Adams [1, p.249]). Then as in
Colasuonno & Squassina [6, Section 3.3] we infer that

û+ ∈ W 1,ξ0
0 (�) ∩ L∞(�).
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Moreover, Proposition 2.4 of Papageorgiou, Vetro & Vetro [24], implies

û+(z) > 0 for a.a. z ∈ �,

⇒ û = û+.

If û+ ≡ 0, then û = −û− is an eigenfunction and so

û(z) < 0 for a.a. z ∈ �.

The proof is now complete. ��
We consider the map m �→ λ̂a1(p,m). For this map we have the following mono-

tonicity result.

Proposition 6 If hypotheses H ′
0 hold, m, m̂ ∈ L∞(�), 0 < m(z) ≤ m̂(z), for a.a.

z ∈ � and m �= m̂, then λ̂a1(p, m̂) < λ̂a1(p,m).

Proof Let û ∈ W 1,ξ0
0 (�) ∩ L∞(�) be an eigenfunction corresponding to the eigen-

value λ̂a1(p,m) and v̂ ∈ W 1,ξ0
0 (�) ∩ L∞(�) an eigenfunction corresponding to the

eigenvalue λ̂a1(p, m̂). We have

⎧⎪⎪⎨
⎪⎪⎩

λ̂a1(p,m) = ρa(Dû)∫
�
m(z)a(z)|û|pdz ,

λ̂a1(p, m̂) = ρa(Dv̂)∫
�
m̂(z)a(z)|v̂|pdz .

(3.7)

We may assume that

û(z) > 0 and v̂(z) > 0 for a.a. z ∈ �. (3.8)

Then from (3.7) and (3.8) and since a(z) > 0 for all z ∈ � (see hypotheses H ′
0),

we infer that λ̂a1(p, m̂) < λ̂a1(p,m). ��

We show that for fixed sign we have only the eigenfunctions corresponding to λ̂1.

Proposition 7 If hypotheses H ′
0 hold and λ̂ ∈ (λ̂1, μ) is an eigenvalue of (3.2), then

every eigenfunction û ∈ W 1,ξ0
0 (�)∩ L∞(�) corresponding to λ̂ is nodal (sign chang-

ing) and if �+ = {z ∈ � : û(z) > 0}, �− = {z ∈ � : û(z) < 0}, then there exists
Ĉ > 0 such that

0 < Ĉ ≤ |�±|N for all λ̂ ∈ (λ̂1, μ)

(here | · |N denotes the Lebesgue measure on R
N ).
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1716 N. S. Papageorgiou et al.

Proof We argue by contradiction. So, suppose that û(·) has fixed sign.Wemay assume
that û ≥ 0. As before, by Proposition 2.4 of [24], we have û(z) > 0 for a.a. z ∈ �.
Let û1 ∈ W 1,ξ0

0 (�) ∩ L∞(�) be a positive eigenfunction corresponding to λ̂1 =
λ̂a1(p,m) > 0. We know that û1(z) > 0 for a.a. z ∈ � and û ≥ û1 (see (3.1)). For
ε > 0 se set

ûε = û + ε and (û1)ε = û1 + ε.

We consider the following test functions

h1 = (û1)
p
ε − û p

(û1)
p−1
ε

∈ W 1,ξ0
0 (�),

h2 = û p
ε − (û1)

p
ε

û p−1 ∈ W 1,ξ0
0 (�).

The gradients of these functions are

Dh1 =
[
1 + (p − 1)

(
ûε

(û1)ε

)p]
D(û1)ε − p

(
ûε

(û1)ε

)p−1

Dûε, (3.9)

Dh2 =
[
1 + (p − 1)

(
(û1)ε
ûε

)p]
Dûε − p

(
(û1)ε
ûε

)p−1

D(û1)ε. (3.10)

We have

〈Aa
p(û1), h1〉 = λ̂1

∫
�

m(z)a(z)û p−1
1 h1dz, (3.11)

〈Aa
p(û), h2〉 = λ̂

∫
�

m(z)a(z)û p−1h2dz. (3.12)

Adding and using (3.9), (3.10), we obtain

λ̂1

∫
�
m(z)a(z)û p−1

1

(
(û1)

p
ε − û pε

(û1)
p−1
ε

)
dz + λ̂

∫
�
m(z)a(z)û p−1

(
û pε − (û1)

p
ε

û p−1
ε

)
dz

=
∫
�
m(z)a(z)

[
λ̂1

û p−1
1

(û1)p−1 − λ̂
û p−1

û p−1
ε

](
(û1)

p
ε − û p

)
dz

=
∫
�

([
1 + (p − 1)

(
ûε

(û1)ε

)p]
|Dû1|p +

[
1 + (p − 1)

(
(û1)ε
ûε

)p]
|Dû|p

)
dz

−p
∫
�

((
ûε

(û1)ε

)p−1
|Dû1|p−2 +

(
(û1)ε
ûε

)p−1
|Dû|p−2

)
(Dû1, Dû)

RN dz

=
∫
�

(
(û1)

p
ε − û pε

) (|D ln(û1)ε|p − |D ln ûε|p
)
dz

−p
∫
�
û pε |D ln(û1)ε|p−2 (D ln(û1)ε, D ln ûε − D ln(û1)ε

)
RN dz

123



Non-autonomous (p, q)-equations... 1717

−p
∫
�

(û1)
p
ε |D ln ûε|p−2 (D ln ûε, D ln(û1)ε − D ln ûε

)
RN dz

(see Lindqvist [15, Appendix]).

We let ε → 0+ and obtain

(λ̂1 − λ̂)

∫
�

m(z)a(z)
(
û p − û p

1

)
dz ≥ 0,

⇒ 0 ≤ λ̂1 − λ̂ < 0 (since û ≥ û1),

a contradiction. So, we infer that every eigenvalue λ̂ > λ̂1 has nodal eigenfunctions.
Since we can always multiply with η > 1 big without changing the set�+, without

any loss of generality, we may assume that

‖û+‖ ≥ 1 and
∫

�

m(z)a(z)(û+)dz ≥ 1.

We have

ρa(Dû+) = λ̂

∫
�

m(z)a(z)(û+)pχ�+dz

≤ λ̂C1

[∫
�

m(z)a(z)(û+)pdz

] q
p |�+|

p−q
p

N ,

for some C1 > 0 (use Hölder’s inequality and recall that û ∈ L∞(�)).

It follows that

ρa(Dû+) ≤ λ̂C1

∫
�

m(z)a(z)(û+)pdz|�+|
p−q
p

N (sinceq < p),

⇒ 1 ≤ λ̂

λ̂1
C1|�+|

p−q
p

N ,

⇒ 0 < Ĉ ≤ |�+|N for all λ̂ ∈ (λ̂1, μ).

A similar argument holds for �−. ��
Proposition 8 If hypotheses H ′

0 hold, then λ̂1 = λ̂a1(p,m) > 0 is isolated in the
spectrum.

Proof We argue by contradiction. So, we suppose we can find a sequence of eigenval-
ues {λn}n∈N such that λn ↓ λ̂1. Consider a sequence {un}n∈N ⊆ W 1,ξ0

0 (�) ∩ L∞(�)

of corresponding eigenfunctions satisfying the normalization condition

∫
�

m(z)a(z)|un|pdz = 1 for all n ∈ N.
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We have

ρa(Dun) = λn for all n ∈ N,

⇒ {un}n∈N ⊆ W 1,ξ0
0 (�) is bounded. (3.13)

So, we may assume that

un
w→ û in W 1,ξ0

0 (�) and un → û in Lξ0(�)

(see Proposition 4). (3.14)

On account of (3.14) we have

ρa(Dû) ≤ lim inf
n→∞ ρa(Dun),

∫
�

m(z)a(z)|û|pdz = 1

⇒ ρa(Dû) ≤ λ̂1 (see (3.13))

⇒ ρa(Dû) = λ̂1 (see Proposition 2) and so û �= 0.

Therefore û is an eigenfunction corresponding to λ̂1. Hence û ∈ W 1,ξ0
0 (�)∩L∞(�)

and for every compact K ⊆ � we have

0 < CK ≤ û(z) for a.a. z ∈ K

(see [24, Proposition 2.4]).

From (3.14) and Lemma 3.3.1 of Harjulehto & Hästo [13, p.51] we know that

un(z) → û(z) for a.a. z ∈ �.

By Egorov’s theorem, we can find Dε ⊆ � compact with |� \ Dε|N ≤ ε (0 < ε <

|�|N ) such that

un → û uniformly on Dε.

Then we can find n0 = n0(ε) > 0 such that

|un(z) − û(z)| ≤ CDε

2
for all n ≥ n0, all z ∈ Dε,

⇒ CDε

2
≤ un(z) for all n ≥ n0, all z ∈ Dε.

Let �n− = {z ∈ � : un(z) < 0}, n ∈ N. From Proposition 7 we know that

0 < Ĉ ≤ |�n−|N for all n ∈ N.
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So, if we choose ε = Ĉ
2 , then for n ≥ n0 we have

|�|N ≥ |�n+|N + |�n−|N
≥ |Dε|N + Ĉ

≥ |�|N − Ĉ

2
+ Ĉ > |�|N ,

a contradiction. Therefore λ̂1 > 0 is isolated in the spectrum. ��
We can also show that λ̂1 = λ̂a1(p,m) is simple, that is, if u and v are two eigen-

functions corresponding to λ̂1, then u = μv with μ ∈ R \ {0}. We follow Lindqvist
[15], who proved the corresponding result for the Dirichlet p-Laplacian.

Proposition 9 If hypotheses H ′
0 hold, then λ̂1 > 0 is simple.

Proof As in the proof of Proposition 7, due to the lack of global regularity theory for
eigenfunctions, we need to perturb them. So, let u and v be two eigenfunctions for
λ̂1 > 0 and ε > 0.

We set

uε = u + ε and vε = v + ε.

On account of Proposition 5, we may assume that u, v ≥ 0. We have

〈Aa
p(u), h〉 = λ̂1

∫
�

m(z)a(z)u p−1hdz, (3.15)

〈Aa
p(v), h〉 = λ̂1

∫
�

m(z)a(z)v p−1hdz

for all h ∈ W 1,ξ0
0 (�). (3.16)

As in the proof of Proposition 7, in (3.15) we use the test function

h1 = u p
ε − v

p
ε

u p−1
ε

∈ W 1,ξ0
0 (�)

and in (3.16) we use the test function

h2 = v
p
ε − u p

ε

v
p−1
ε

∈ W 1,ξ0
0 (�).

Reasoning as in the proof of Proposition 7, we obtain:
If 2 ≤ p, then

0 ≤ C2

∫
�

a(z)

[
1

v
p
ε

− 1

u p
ε

]
|vεDu − uεDv|dz
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1720 N. S. Papageorgiou et al.

≤ −λ̂1

∫
�

m(z)a(z)

[(
u

uε

)p−1

−
(

v

vε

)p−1
]

(u p
ε − v p

ε )dz

for some C2 > 0. (3.17)

If 1 < p < 2, then

0 ≤ C3

∫
�

a(z) [uε + vε]
p (uεvε)

p |uεDv − vεDu|
(vε|Du| − uε|Dv|)2−p

dz

≤ −λ̂1

∫
�

m(z)a(z)

[(
u

uε

)p−1

−
(

v

vε

)p−1
]

(u p
ε − v p

ε )dz

for some C3 > 0. (3.18)

We let ε → 0+ in both (3.17) and (3.18) and obtain

uDv = vDu

⇒ u = μv for some μ > 0.

The proof is now complete. ��
Proposition 10 If hypotheses H ′

0 hold, then the operator Aa
p : W 1,ξ0

0 (�) →
W 1,ξ0

0 (�)∗ is of type (S)+.

Proof Consider a sequence {un}n∈N ⊆ W 1,ξ0
0 (�) such that

un
w→ u in W 1,ξ0

0 (�) and lim sup
n→∞

〈Aa
p(un), un − u〉 ≤ 0. (3.19)

From the convexity of the modular function ρa(·), we have
1

p
[ρa(Dun) − ρa(Du)] ≤ 〈Aa

p(un), un − u〉,
⇒ lim sup

n→∞
ρa(Dun) ≤ ρa(Du) (see (3.19)). (3.20)

On the other hand, ρa(·) is continuous and convex, hence it is sequentially weakly
lower semicontinuous. So, we have

ρa(Du) ≤ lim inf
n→∞ ρa(Dun),

⇒ ρa(Dun) → ρa(Du) (see (3.20)). (3.21)

Since ξ0(z, ·) is uniformly convex, then from (3.21) and Lemma 3.6.5 of Harjulehto
& Hästo [13, p.64], it follows that

ρa(Dun − Du) → 0,

123



Non-autonomous (p, q)-equations... 1721

⇒ un → u in W 1,ξ0
0 (�) (see Proposition 2 for ξ0).

The proof is now complete. ��
In the sequel, for the sake of simplicity, we assume thatm ≡ 1. Consider the Banach

manifold M defined by

M = {u ∈ W 1,ξ0
0 (�) : ‖u‖ξ0 = 1}.

Also let τ ap denote the spectrum of
(
−�a

p,W
1,ξ0
0 (�)

)
. It is easy to see that

τ ap ⊆ [λ̂1,+∞) is closed and unbounded (Ljusternik-Schnirelmann theory). From

Proposition 8, we know that λ̂1 > 0 is isolated in τ ap . So, the second eigenvalue

λ̂2 = λ̂a2(p) of
(
−�a

p,W
1,ξ0
0 (�)

)
is defined by

λ̂2 = min
{
λ̂ ∈ τ ap : λ̂ > λ̂1

}
.

Using the Banach manifold M , we will produce a min-max characterization of λ̂2
(for the corresponding result for the Dirichlet p-Laplacian, we refer to Cuesta, de
Figueiredo & Gossez [8]). In what follows, we denote by û1 the positive, Lξ0(�)-
normalized (that is, ‖û1‖ξ0 = 1) eigenfunction for λ̂1 > 0. From Proposition 5, we

know that û1 ∈ W 1,ξ0
0 (�) ∩ L∞(�), û1(z) > 0 for a.a. z ∈ �.

Proposition 11 If hypotheses H ′
0 hold, then

λ̂2 = inf
γ∈�

max−1≤t≤1
ρa(Dγ (t)),

where

� = {
γ ∈ C ([−1, 1], M) : γ (−1) = −û1, γ (1) = û1

}
.

Proof We start by showing that ρa

∣∣∣
M

satisfies the Palais-Smale condition. So, we

consider a sequence {un}n∈N ⊆ M such that

|ρa(Dun)| ≤ C4 for some C4 > 0, all n ∈ N (3.22)

|〈Aa
p(un), h〉| ≤ εn‖h‖ (3.23)

for all u ∈ Tun M , with εn → 0+.
Here, Tun M denotes the tangent space to the manifold M at un . From Ljusternik’s

theorem (see Gasinski & Papageorgiou [9, p.697]) we have

Tun M =
{
h ∈ W 1,ξ0

0 (�) :
∫

�

a(z)|un|p−2unhdz = 0

}
, n ∈ N. (3.24)
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1722 N. S. Papageorgiou et al.

Let y ∈ W 1,ξ0
0 (�). We have

h = y −
(∫

�

a(z)|un|p−2un ydz

)
un ∈ Tun M for all n ∈ N

(see (3.24) and recall that ρa(un) = 1 ⇔ ‖un‖ξ0 = 1).

We use this particular h as a test function in (3.23). We obtain

|〈Aa
p(un), y〉 −

∫
�

a(z)|un|p−2un ydzρa(Dun)| ≤ εn‖h‖
≤ εnC5‖y‖

for some C5 > 0, all n ∈ N. (3.25)

From (3.22), we deduce that

{un}n∈N ⊆ W 1,ξ0
0 (�) is bounded.

So, we may assume that

un
w→ u in W 1,ξ0

0 (�) and un → u in Lξ0(�)

(see Proposition 4). (3.26)

Using Hölder’s inequality (see Harjulehto & Hästo [13, p.54]) we have

∣∣∣∣
∫

�

(un − u)a(z)|un|p−2undz

∣∣∣∣
≤ C6ρξ0(un − u) for some C6 > 0, all n ∈ N,

⇒
∫

�

(un − u)a(z)|un|p−2undz → 0 as n → ∞ (see (3.26)). (3.27)

So, if in (3.25) we choose y = un −u ∈ W 1,ξ0
0 (�) and pass to the limit as n → ∞,

then using (3.26) and (3.27), we obtain

lim sup
n→∞

〈Aa
p(un), un − u〉 ≤ 0,

⇒ un → u in W 1,ξ0
0 (�) (see Proposition 10),

⇒ ρa

∣∣∣
M
satisfies the Palais-Smale condition.

We know that ±û1 ∈ M are minimizers of ρa

∣∣∣
M

and ρa(±Dû1) = λ̂1. Choose

ρ > 0 small such that

ρa(±Dû1) < inf
{
ρa(Du) : ‖u − (±û1)‖1,ξ0 = ρ

} = mρ

(see [21, Theorem 5.7.6, p.449]). (3.28)
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From (3.28) and since ρa

∣∣∣
M

satisfies the Palais-Smale condition, we can use the

mountain pass theorem for manifolds and have

λ̃ = inf
γ∈�

max−1≤t≤1
ρa(Dγ (t)) ≥ mρ > ρa(±Dû1) (3.29)

is a critical value of ρa

∣∣∣
M
. Hence λ̃ > 0 is an eigenvalue of

(
−�a

p,W
1,ξ0
0 (�)

)
. We

show that λ̃ = λ̂2. It suffices to show that (λ̂1, λ̃)∩ τ ap = ∅. Arguing by contradiction,
suppose that we can find an eigenvalue λ ∈ (λ̂1, λ̃) and u ∈ M is corresponding
eigenfunction. From Proposition 7, we know that u is nodal. Therefore u+ �= 0,
u− �= 0. Consider the following two continuous paths on M

γ1(t) = u+ − tu−

‖u+ − tu−‖ξ0

for all t ∈ [0, 1], (3.30)

γ2(t) = −u− + (1 − t)u+

‖ − u− + (1 − t)u+‖ξ0

for all t ∈ [0, 1]. (3.31)

We see that the path γ1(·) connects u+
‖u+‖ξ0

with u (recall that u ∈ M and so

‖u‖ξ0 = 1). On the other hand, the path γ2(·) connects u and −u−
‖u−‖ξ0

. We concatenate

γ1 and γ2 and generate a continuous path on M which connects u+
‖u+‖ξ0

and u−
‖u−‖ξ0

.

We have

ρa(Du+) = λρa(u
+) and ρa(Du−) = λρa(u

−),

⇒ ρa(Dγ1(t)) = ρa(Dγ2(t)) = λ for all t ∈ [0, 1] (see (3.30), (3.31)).

Consider the following set

L = {u ∈ W 1,ξ0
0 (�) : ρa(Du) < λ}.

This set cannot be path connected or otherwise we violate (3.29). Using the Ekeland

variational principle and since ρa

∣∣∣
M

satisfies the Palais-Smale condition, we see that

each path connected component of L has a critical point ρa
∣∣∣
M
. We already know that

±û1 are the only critical points of ρa

∣∣∣
M

(see Proposition 9). Therefore L has exactly

two path connected components with û1 in one and −û1 in the other. Note that u+
‖u+‖ξ0

cannot be a critical point of ρa
∣∣∣
M
. So, we can find a continuous path S : [−ε, ε] → M

such that

S(0) = u+

‖u+‖ξ0

,
d

dt

(
ρa

∣∣∣
M

)
(S(t)) �= 0 for all t ∈ [−ε, ε].
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Hence starting with this path, we can move from u+
‖u+‖ξ0

to y ∈ M staying in L ,

except at the starting point. So, y ∈ L and letU1 be the path connected component of
L which contains y. We may assume that û1 ∈ U1. We can connect y and û1 with a
continuous path which stays in U1. We concatenate this path with S(·) and produce a
continuous path γ+ : [0, 1] → U1 such that

γ+(0) = û1, γ+(1) = u+

‖u+‖ξ0

, γ+(t) ∈ U1 ⊆ L for all t ∈ [0, 1).

Similarly, if U2 is the other path connected component of L with −û1 ∈ U2, then
we produce a continuous path γ− : [0, 1] → U2 such that

γ−(0) = −u−

‖u−‖ξ0

, γ−(1) = −û1, γ−(t) ∈ U2 ⊆ L for all t ∈ (0, 1].

We concatenate γ−, γ, γ+ to produce a continuous path γ∗ ∈ � such that

ρa(Dγ (t)) ≤ λ for all t ∈ [−1, 1],
⇒ λ̃ ≤ λ, a contradiction.

Therefore λ̃ = λ̂2. ��

Let λ̂1(q) > 0 be the principal eigenvalue of
(
−�q ,W

1,q
0 (�)

)
and û1(q) be the

corresponding Lq -normalized, positive eigenfunction.
We define

V =
{
u ∈ W 1,q

0 (�) :
∫

�

û1(q)q−1udz = 0

}
, λ̂V = inf

{
‖Du‖qq
‖u‖qq

u ∈ V , u �= 0

}
.

(3.32)

Proposition 12 We have λ̂1(q) < λ̂V ≤ λ̂2(q).

Proof Clearly λ̂1(q) ≤ λ̂V . Suppose that λ̂1(q) = λ̂V . Then we can find {un}n∈N ⊆ V
such that

‖Du‖ ↓ λ̂V and ‖Dun‖q = 1 for all n ∈ N.

We have that {un}n∈N ⊆ W 1,q
0 (�) is bounded and so we may assume that

un
w→ u in W 1,q

0 (�) and un → u in Lq(�). (3.33)

From (3.33) we have

‖Du‖qq ≤ lim inf
n→∞ ‖Dun‖qq , ‖u‖q = 1. (3.34)
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Note that
∣∣∣∣
∫

�

û1(q)q−1(un − u)dz

∣∣∣∣ ≤ ‖û1(q)‖q−1
q ‖un − u‖q

(by Hölder’s inequality),

⇒
∫

�

û1(q)q−1(un − u)dz → 0 as n → ∞ (see (3.33)),

⇒
∫

�

û1(q)q−1udz = 0 (since un ∈ V for all n ∈ N),

⇒ u ∈ V . (3.35)

Then from (3.34) and (3.35) we infer that

‖Du‖qq = λ̂V = λ̂1.

According to Proposition 9, we have u = ±û1, which contradicts (3.35). Therefore
λ̂1 < λ̂V .

Next we suppose that λ̂2 < λ̂V . Hence by Proposition 8, we can find γ ∈ � such
that

‖Dγ (t)‖qq < λ̂V for all t ∈ [−1, 1]. (3.36)

Recall that

γ (−1) = −û1(q) and γ (1) = û1(q).

Let μγ : [−1, 1] → R be the function defined by

μγ (t) =
∫

�

û1(q)q−1γ (t)dz for all t ∈ [−1, 1].

Evidently μγ (·) is continuous and

μγ (−1) = −‖û1(q)‖qq = −1

and

μγ (1) = ‖û1(q)‖qq = 1.

So, by Bolzano’s theorem, we can find t0 ∈ (−1, 1) such thatμγ (t0) = 0. We have

∫
�

û1(q)q−1γ (t0)dz = 0

⇒ γ (t0) ∈ V .

which contradicts (3.36). Therefore we conclude that λ̂V ≤ λ̂2(q). ��
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1726 N. S. Papageorgiou et al.

Remark 2 Is it true that λ̂V = λ̂2(q)?Theproposition alsoholds for
(
−�a

q ,W
1,ξ0
0 (�)

)
.

Using the results of this section, we can prove the following useful estimate.

Lemma 1 If β ∈ L∞(�), β(z) ≤ λ̂1 for a.a. z ∈ � and β �≡ λ̂1, then there exists
C7 > 0 such that

C7‖u‖p
1,ξ0

≤ ρa(Du) −
∫

�

β(z)a(z)|u|pdz

for all u ∈ W 1,ξ0
0 (�).

Proof We argue by contradiction. So, suppose we can find {un}n∈N ⊆ W 1,ξ0
0 (�) such

that

ρa(Dun) −
∫

�

β(z)a(z)|un|pdz <
1

n
‖un‖p

1,ξ0
for all n ∈ N.

The p-homogeneity of the modular function ρa(·) implies that we may assume that
‖un‖1,ξ0 = 1 for all n ∈ N. So, we have

ρa(Dun) −
∫

�

β(z)a(z)|un|pdz ≤ 1

n
, ‖un‖1,ξ0 = 1 (3.37)

for all n ∈ N.
We may assume that

un
w→ u in W 1,ξ0

0 (�) and un → u in Lξ0(�). (3.38)

If u = 0, then

∣∣∣∣
∫

�

β(z)a(z)|un|pdz
∣∣∣∣ ≤ ‖β‖∞ρa(un) → 0 (see (3.38))

⇒ ρa(Dun) → 0 (see (3.37)),

⇒ un → 0 in W 1,ξ0
0 (�) (see Proposition 2).

But this contradicts the fact that ‖un‖1,ξ0 = 1 for all n ∈ N.
So, u �= 0. In (3.37) we pass to the limit as n → ∞ and use (3.38). We obtain

ρa(Du) ≤
∫

�

β(z)a(z)|u|pdz ≤ λ̂1ρa(u),

⇒ ρa(Du) = λ̂1ρa(u) (see (3.2)),

⇒ u ∈ W 1,ξ0
0 (�) ∩ L∞(�) is an eigenfunction of λ̂1. (3.39)
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Replacing u by |u| we can always assume that u ≥ 0. From Proposition 5 we have
that

0 < u(z) for a.a. z ∈ �.

Then from (3.39), we have

ρa(Du) < λ̂1ρa(u),

which contradicts (3.2). ��

4 Coercive resonant problems

In this section we consider problem (1.1) when resonance occurs with respect to the
principal eigenvalue λ̂1 = λ̂a1(p, 1) > 0. The resonance occurs from the left of λ̂1
making the energy functional of the problem coercive.

The precise conditions on the forcing term f (z, x) are the following:
H1: f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a.

z ∈ � and

(i) | f (z, x)| ≤ a(z)
[
1 + |x |r−1

]
for a.a. z ∈ �, all x ∈ R, with a ∈ L∞(�),

p < r < q∗ = Nq
N−q ;

(ii) if F(z, x) =
∫ x

0
f (z, s)ds, then lim sup

x→±∞
pF(z, x)

a(z)|x |p ≤ λ̂1 uniformly for a.a. z ∈ �;

(iii) there exists μ0 > 0 such that

−μ0 ≤ f (z, x)x − pF(z, x) for a.a. z ∈ �, all x ∈ R;

(iv) there exist η ∈ L∞(�) and δ0 > 0 such that

λ̂1(q) ≤ η(z) for a.a. z ∈ �, η �≡ λ̂1(q),

η(z) ≤ lim inf
x→0

f (z, x)

|x |q−2x
uniformly for a.a. z ∈ �,

F(z, x) ≤ 1

q
λ̂V |x |q for a.a. z ∈ �, all |x | ≤ δ0.

Remark 3 Hypothesis H1(i i) implies that we can have resonance with respect to λ̂1 =
λ̂a1(p, 1) > 0 as x → ±∞. As we will see in the process of the proof, this resonance
will occur from the left of λ̂1 (that is, λ̂1a(z)|x |p − pF(z, x) ≥ −μ0 for a.a. z ∈ �,
all x ∈ R) and this implies that the energy functional of the problem is coercive.
Hypothesis H1(iv) implies that at zerowe have nonuniformnonresonancewith respect

to λ̂1(q) > 0, that is, partial interaction with the spectrum of
(
−�q ,W

1,q
0 (�)

)
.
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Recall that ξ(z, x) = a(z)|x |p + |x |q and let ϕ : W 1,ξ
0 (�) → R be the energy

functional for problem (1.1) defined by

ϕ(u) = 1

p
ρa(Du) + 1

q
‖Du‖qq −

∫
�

F(z, u)dz for all u ∈ W 1,ξ
0 (�).

Evidently, ϕ ∈ C1
(
W 1,ξ

0 (�)
)
.

Proposition 13 If hypotheses H ′
0, H1 hold, then the energy functional ϕ(·) is coercive.

Proof We argue by contradiction. So, suppose that ϕ(·) is not coercive. We can find
{un}n∈N ⊆ W 1,ξ

0 (�) such that

‖un‖ → ∞ and ϕ(un) ≤ C8 for some C8 > 0, all n ∈ N. (4.1)

We know that W 1,ξ
0 (�) ↪→ W 1,ξ0

0 (�) continuously. So, we have un ∈ W 1,ξ0
0 (�)

for all n ∈ N.
First assume that

{un}n∈N ⊆ W 1,ξ0
0 (�) is bounded. (4.2)

Hypotheses H1(i), (i i) imply that we can find C9 > 0 such that

F(z, x) ≤ 1

p

[
λ̂1 + 1

]
a(z)|x |p + C9 for a.a. z ∈ �, all x ∈ R. (4.3)

From (4.1) and (4.3) we have

1

p

[
ρa(Dun) − λ̂1ρa(un)

]
− 1

p
ρa(un) + 1

q
‖Dun‖qq ≤ C10

for some C10 > 0, all n ∈ N,

⇒ ‖Dun‖q ≤ C11 for some C11 > 0, all n ∈ N(see (3.2) and (4.2))

⇒ {un}n∈N ⊆ W 1,ξ
0 (�) is bounded, a contradiction (see (4.1)).

So, we may assume that

‖un‖1,ξ0 → ∞ as n → ∞. (4.4)

Let yn = un‖un‖1,ξ0 for all n ∈ N. Then ‖yn‖1,ξ0 = 1 for all n ∈ N and so we may

assume that

yn
w→ y in W 1,ξ0

0 (�) and yn → y in Lξ0(�)

(see Proposition 4). (4.5)

From (4.1) we have

1

p
ρa(Dyn) + 1

q‖un‖p−q
1,ξ0

‖Dyn‖qq −
∫

�

F(z, un)

‖un‖p
1,ξ0

dz ≤ C8

‖un‖p
1,ξ0

(4.6)
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for all n ∈ N.
Claim: −μ0 ≤ λ̂1a(z)|x |p − pF(z, x) for a.a. z ∈ �, all x ∈ R.
We have

d

dx

[
F(z, x)

|x |p
]

= f (z, x)|x |p − p|x |p−2xF(z, x)

|x |2p
= f (z, x)x − pF(z, x)

|x |px{≥ − μ0
x p+1 if x > 0

≤ − μ0|x |px if x < 0

(see hypothesis H1(i i i))

⇒ F(z, v)

|v|p − F(z, x)

|x |p ≥ μ0

p

[
1

|v|p − 1

|x |p
]

for a.a.z ∈ �, all |v| ≥ |x | > 0.

We let v → ±∞. Using hypothesis H1(i i) we obtain

λ̂a(z)

p
− F(z, x)

|x |p ≥ −μ0

p

1

|x |p for a.a. z ∈ �, all x �= 0,

⇒ λ̂1a(z)|x |p − pF(z, x) ≥ −μ0 for a.a. z ∈ �, all x ∈ R.

This proves the Claim.
We return to (4.6) and use the Claim. We obtain

1

p
ρa(Dyn) − λ̂1

p
ρa(yn) ≤

[
C8 + μ0

p
|�|N

]
1

|un‖p
1,ξ0

(4.7)

for all n ∈ N.
Passing to the limit as n → ∞ and using (4.4) and (4.5) we have

ρa(Dy) ≤ λ̂1ρa(y)

⇒ ρa(Dy) = λ̂1ρa(y) (see (3.2))

⇒ y = 0 or y = eigenfunction for λ̂1.

If y = 0, then from (4.7) and (4.5), we see that

yn → 0 in W 1,ξ0
0 (�)

which contradicts the fact that ‖yn‖1,ξ0 = 1 for all n ∈ N.
If y is an eigenfunction for λ̂1, then by Proposition 5 we may assume that y(z) > 0

for a.a. z ∈ �. So, un(z) → +∞ for a.a. z ∈ � as n → ∞. From (4.1) we have

1

p
ρa(Dun) + 1

q
‖Dun‖qq −

∫
�

F(z, un)dz ≤ C8 for all n ∈ N,
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1730 N. S. Papageorgiou et al.

⇒ 1

p

∫
�

[
λ̂1a(z)|un|p − pF(z, un)

]
dz + 1

q
‖Dun‖qq ≤ C8

for all n ∈ N(see (3.2)),

⇒
ˆλ1(q)

q
‖un‖qq ≤ C12

for some C12 > 0, all n ∈ N(see the Claim).

But
∫

�

|un|qdz → +∞ (by Fatou’s lemma), a contradiction. This proves that the

energy functional ϕ(·) is coercive. ��
We know that W 1,ξ

0 (�) ↪→ W 1,q
0 (�) continuously (see Proposition 1). Let V̂ =

V ∩ W 1,ξ
0 (�). We have

W 1,ξ
0 (�) = Rû1(q) ⊕ V̂

(recall that û1(q) ∈ C1
0(�)). (4.8)

Proposition 14 If hypotheses H ′
0, H1 hold, then ϕ(·) has local linking at 0with respect

to (4.8) (see [21, p.408]).

Proof Hypotheses H1(i), (iv) imply that given ε > 0, we can find C13 = C13(ε) > 0
such that

F(z, x) ≥ 1

q
[η(z) − ε] |x |q − C13|x |r for a.a. z ∈ �, all x ∈ R. (4.9)

Let u ∈ Rû1(q). Then u = τ û1(q) for some τ ∈ R. We have

ϕ(u) = ϕ(τ û1(q))

≤ |τ |p
p

ρa
(
Dû1(q)

)+ |τ |q
q

‖Dû1(q)‖qq

−|τ |q
q

∫
�

η(z)û1(q)qdz + ε

q
|τ |q + C13|τ |r‖û1(q)‖rr

(see (4.9) and recall that ‖û1(q)‖q = 1)

≤ C14
[|τ |p + |τ |r ]+ |τ |q

q

[∫
�

(λ̂1(q) − η(z))û1(q)qdz − ε

]

for some C14 > 0.

We know that û1(q)(z) > 0 for all z ∈ �. Therefore

∫
�

(
η(z) − λ̂1(q)

)
û1(q)qdz = C15 > 0.

Hence choosing ε ∈ (0,C15), we obtain

ϕ(u) = ϕ(τ û1(q)) ≤ C14
[|τ |p + |τ |q]− C16|τ |q
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for some C16 > 0.
Since q < p < r , choosing |τ | ∈ (0, 1) small, we infer that

ϕ(u) = ϕ(τ û1(q)) < 0. (4.10)

On the other hand, using once again hypotheses H1(i), (iv), we can find C17 > 0
such that

F(z, x) ≤ 1

q
λ̂V |x |q + C17|x |r for a.a. z ∈ �, all x ∈ R. (4.11)

Let v ∈ V̂ with ‖v‖ ≤ 1. Then

ϕ(v) ≥ 1

p
ρa(Dv) + 1

q

[
‖Dv‖qq − λ̂V ‖v‖qq

]
− C18‖v‖r

for some C18 > 0(see (4.11))

≥ 1

p
‖v‖p − C18‖v‖r

(see Propositions 2 and 12).

Since p < r , we can find δ ∈ (0, 1) small such that

ϕ(v) > 0 for all v ∈ V̂ with 0 < ‖v‖ ≤ δ. (4.12)

From (4.10), (4.12) we conclude that ϕ(·) has local linking at 0 with respect to
(4.8). ��

Now we are ready for our first multiplicity theorem for problem (1.1) (coercive
case).

Theorem 1 If hypotheses H ′
0, H1 hold, then problem (1.1) has at least two nontrivial

solutions u0, û ∈ W 1,ξ
0 (�) ∩ L∞(�).

Proof We already know that ϕ(·) has local linking at 0 with respect to (4.8). Also, by
Proposition 13 we know that ϕ(·) is coercive. Therefore it satisfies the Palais-Smale
condition (see [21, Proposition 5.1.15, p.369]). Moreover, from (4.10), we see that

−∞ < inf
{
ϕ(u) : u ∈ W 1,ξ

0 (�)
}

< 0.

Hence we can apply Theorem 5.4.17 in [21, p.410] and find two nontrivial critical
points u0, û of ϕ. Then these are nontrivial solutions of problem (1.1) and

u0, û ∈ W 1,ξ
0 (�) ∩ L∞(�)

(see Gasinski &Winkert [11, Theorem 3.1]).

This completes the proof. ��

123



1732 N. S. Papageorgiou et al.

5 Noncoercive problems

In this section we study noncoercive problems. First we deal with the nonresonant case
(nonuniform nonresonance) and then with the resonant case (resonance with respect
to the principal eigenvalue λ̂1 > 0 from the right).

For the nonresonant case the hypotheses on the reaction f (z, x) are the following
(see [23]):

H2: f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a.
z ∈ � and

(i) | f (z, x)| ≤ a(z)
[
1 + |x |p−1

]
for a.a. z ∈ �, all x ∈ R, with a ∈ L∞(�);

(ii) there exist η0 ∈ L∞(�) and η1 ∈
(
λ̂1, λ̂2

)
such that

λ̂1 ≤ η0(z) for a.a. z ∈ �, η0 �≡ λ̂1

η0(z) ≤ lim inf
x→±∞

f (z, x)

a(z)|x |p−2x
≤ lim sup

x→±∞
f (z, x)

a(z)|x |p−2x
≤ η1

uniformly for a.a. z ∈ �;

(iii) lim
x→0

f (z, x)

|x |q−2x
= +∞ uniformly for a.a. z ∈ �, there exists s ∈ (1, q) such that

lim
x→0

f (z, x)

|x |s−2x
= 0 uniformly for a.a. z ∈ �

0 ≤ lim inf
x→0

sF(z, x) − f (z, x)x

|x |p uniformly for a.a. z ∈ �.

Similar conditions concerning the asymptotic behavior as x → +∞ can be found
in Papageorgiou & Scapelatto [23] in the context of parametric Robin problems with
an indefinite potential term.

Remark 4 Hypothesis H2(i i i) implies the presence of a concave term near zero. Con-
sider for example the following functions (for the sake of simplicity we drop the
z-dependence)

f1(x) =
{ |x |p−2x − |x |τ−2x, if |x | ≤ 1

η0
[|x |p−2 − |x |q−2

]
, if 1 < |x | 1 < τ < q, λ̂1 < η0

f2(x) =
{

η0|x |q−2x − |x |s−2x ln |x |, if |x | ≤ 1
η0|x |p−2x, if 1 < x

1 < s < q, λ̂1 < η0.

Both functions satisfy hypotheses H2.

Recall that ϕ : W 1,ξ
0 (�) → R is the energy functional for problem (1.1), defined

by

ϕ(u) = 1

p
ρa(Du) + 1

q
‖Du‖qq −

∫
�

F(z, u)dz
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for all u ∈ W 1,ξ
0 (�).

We know that ϕ ∈ C1
(
W 1,ξ

0 (�)
)
.

Proposition 15 If hypotheses H ′
0, H2 hold, then ϕ satisfies the C-condition (see [21,

p.336]).

Proof We consider a sequence {un}n∈N ⊆ W 1,ξ
0 (�) such that {ϕ(un)} ⊆ R is bounded

and
(1 + ‖un‖)ϕ′(un) → 0 in W 1,ξ

0 (�)∗ as n → ∞. (5.1)

From (5.1) we have

∣∣∣∣〈Aa
p(un), h〉 + 〈Aq(un), h〉 −

∫
�

f (z, un)hdz

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

for all h ∈ W 1,ξ
0 (�), with εn → 0+. (5.2)

Suppose that {un}n∈N ⊆ W 1,ξ
0 (�) is not bounded. By passing to a subsequence if

necessary, we may assume that

‖un‖ → ∞ as n → ∞. (5.3)

We set vn = un‖un‖ for all n ∈ N. Then ‖vn‖ = 1 for all n ∈ N and so we may
assume that

vn
w→ v in W 1,ξ

0 (�) and vn → v in L p(�)

(see Proposition 1 and H ′
0). (5.4)

From (5.2) we have

∣∣∣∣〈Aa
p(vn), h〉 + 1

‖un‖p−q
〈Aq(vn), h〉 −

∫
�

f (z, un)

‖un‖p−1 hdz

∣∣∣∣ ≤ ε′
n‖h‖

(1 + ‖un‖) (5.5)

for all h ∈ W 1,ξ
0 (�), all n ∈ N, ε′

n = εn‖un‖p−1
Hypothesis H2(i) implies that

{
f (·, un(·))
‖un‖p−1

}
n∈N

⊆ L p′
(�) is bounded. (5.6)

If in (5.5) we choose h = vn − v ∈ W 1,ξ
0 (�), pass to the limit as n → ∞ and use

(5.3), (5.4), (5.6), we obtain

lim
n→∞〈Aa

p(un), un − u〉 = 0,

⇒ un → u in W 1,ξ
0 (�) (see Proposition 3), so‖v‖ = 1. (5.7)
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1734 N. S. Papageorgiou et al.

On account of (5.6) and hypothesis H2(iv), we have

f (·, un(·))
‖un‖p−1

w→ η̃(·)a(·)|v|p−2v in L p′
(�) (5.8)

with η̃ ∈ L∞(�), η0(z) ≤ η̃(z) ≤ η1 for a.a. z ∈ � (see Aizicovici, Papageorgiou &
Staicu [2], proof of Proposition 16).

So, if in (5.5) we pass to the limit as n → ∞ and use (5.3), (5.7), (5.8), we obtain

〈Aa
p(v), h〉 =

∫
�

η̃(z)a(z)|v|p−2hdz for all h ∈ W 1,ξ
0 (�)

⇒ −�a
pv = η̃(z)a(z)|v|p−2v in �, v

∣∣∣
∂�

= 0. (5.9)

From Proposition 6 we know that

λ̂a1(p, η̃) < λ̂a1(p, λ̂1) = 1. (5.10)

Moreover, we have

η̃(z) ≤ η1 < λ̂2 for a.a. z ∈ �

(see (5.8) andH2(iv)). (5.11)

From (5.9), (5.10), (5.11) it follows that

v = 0,

which contradicts (5.7).
This proves that {un}n∈N ⊆ W 1,ξ

0 (�) is bounded. So, we may assume that

un
w→ u in W 1,ξ

0 (�) and un → u in L p(�). (5.12)

In (5.2) we choose h = un − u ∈ W 1,ξ
0 (�), pass to the limit as n → ∞ and use

(5.12) and hypothesis H2(i). We obtain

lim
n→∞

[
〈Aa

p(un), un − u〉 + 〈Aq(un), un − u〉
]

= 0,

⇒ lim sup
n→∞

[
〈Aa

p(un), un − u〉 + 〈Aq(u), un − u〉
]

≤ 0

(using the monotonicity ofAq(·)),
⇒ lim sup

n→∞
〈Aa

p(un), un − u〉 ≤ 0 (see (5.12)),

⇒ un → u in W 1,ξ
0 (�) (see Proposition 10) (5.13)
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Similarly, we have

lim sup
n→∞

〈Aq(un), un − u〉 ≤ 0,

⇒ un → u in W 1,q
0 (�)

(since W 1,ξ
0 (�) ↪→ W 1,q

0 (�) continuously). (5.14)

From (5.13) and (5.14) we conclude that

un → u in W 1,ξ
0 (�)

⇒ ϕ(·) satisfies the C-condition.

The proof is now complete. ��

The next proposition shows that ϕ(·) is not bounded below (so the problem is not
coercive).

Proposition 16 If hypotheses H ′
0, H2 hold, then ϕ(t û1) → −∞ as t → ±∞.

Proof On account of hypothesis H2(i i), given ε > 0, we can find M = M(ε) > 0
such that

F(z, x) ≥ 1

p
[η(z) − ε] a(z)|x |p for a.a. z ∈ �, all |x | ≥ M . (5.15)

We have

ϕ(t û1) = |t |p
p

ρa(Dû1) + |t |q
q

‖Dû1‖qq −
∫

�

F(z, t û1)dz

≤ |t |p
p

ρa(Dû1) + |t |q
q

‖Dû1‖qq − |t |p
p

∫
{|t û1|≥M}

[η(z) − ε]a(z)û p
1 dz

−
∫

{|t û1|<M}
F(z, t û1)dz (see (5.15))

≤ |t |p
p

(∫
{|t û1|≥M}

[λ̂1 − η(z)]a(z)û p
1 dz + C19ε|�|N

)
+ C20

∣∣{t û1 < M}∣∣N
for some C19,C20 > 0(see hypothesis H2(i)). (5.16)

Note that

∫
�

[η(z) − λ̂1]a(z)û p
1 dz = C∗ > 0 (see H2(iv))

and
∣∣{t û1 < M}∣∣N → 0 as t → ±∞.

123



1736 N. S. Papageorgiou et al.

Then Ct =
∫

{t û1≥M}
[η(z) − λ̂1]a(z)|t û1|pdz → 0 as t → ±∞. Therefore from

(5.16) and by choosing ε > 0 small we have

ϕ(t û1) → −∞ as t → ±∞.

This completes the proof. ��
Consider the following set in W 1,ξ

0 (�)

S =
{
u ∈ W 1,ξ

0 (�) : ρa(Du) = λ̂2ρa(u)
}

.

Proposition 17 If hypotheses H ′
0, H2 hold, then ϕ

∣∣∣
S
is coercive, hence bounded below.

Proof Hypotheses H2(i), (i i) imply that we can find η2 ∈ (η1, λ̂2) and C21 > 0 such
that

F(z, x) ≤ η2

p
a(z)|x |p + C21 for a.a. z ∈ �, all x ∈ R. (5.17)

Let u ∈ S with ‖u‖ ≥ 1. We have

ϕ(u) ≥ 1

p

[
1 − η2

λ̂2

]
ρa(Du) − C21|�|N (see (5.17))

⇒ ϕ(u) ≥ C22‖u‖q − C21|�|N (see Proposition 2),

⇒ ϕ

∣∣∣
S
is coercive, thus bounded below.

The proof is now complete. ��
Propositions 16 and 17 imply that we can find t0 > 1 big such that

ϕ(±t0û1) < inf
S

ϕ = mS . (5.18)

In addition to S above, we also consider the following two subsets of W 1,ξ
0 (�)

D0 = {
t0û1,−t0û1

}
,

D =
{
u ∈ W 1,ξ

0 (�) : u = s(−t0û1) + (1 − s)t0û1, 0 ≤ s ≤ 1
}

.

Proposition 18 If hypotheses H ′
0, H2 hold, then the pair {D0, D} is linking with S in

W 1,ξ
0 (�) (see [21, p.397]).

Proof Consider the set

K =
{
u ∈ W 1,ξ

0 (�) : ρa(Du) ≤ λ̂2ρa(u)
}

.
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Evidently, ±t0û1 ∈ K . We claim that K is not path connected and t û1, −t û1
belong in different components of K . To this end, we consider a path γ0 ∈
C
(
[−1, 1],W 1,ξ

0 (�)
)
which connects −t0û1 and t0û1 and γ0(t) �= 0 for all t ∈

[−1, 1]. We have

γ0(−1) = −t0û1, γ0(1) = t0û1.

Consider the line segments

L− = conv{−t0û1,−û1}, L+ = conv{t0û1, û1}.

We extend γ0(·) in a linear way along them and obtain continuous path γ̂0(·) con-
necting −û1 and û1. Let

γ̂ ∗
0 (t) = γ̂0(t)

‖γ̂0(t)‖ξ0

, t ∈ [−1, 1].

Then γ̂ ∗
0 ∈ � (see Proposition 11) and so

λ̂2 ≤ max−1≤t≤1

ρa(Dγ̂ ∗
0 (t))

ρa(γ̂
∗
0 )

(see Proposition 11).

This means that there exists t̂ ∈ (−1, 1) such that

γ̂ ∗
0 (t̂) /∈ K .

Therefore K cannot be path connected and −t0û1, t0û1 belong to different path
components.

Note that D0 ∩ S = ∅. Also let γ ∈ C
(
D,W 1,ξ

0 (�)
)
be such that γ

∣∣∣
D0

= id
∣∣∣
D0
.

We have

γ (−t0û1) = −t û1, γ (t0û1) = t0û1.

From the first part of the proof we know that these two elements belong to different
path components of K . Hence

γ (D) ∩ ∂K �= ∅.

But ∂K ⊆ S. Therefore

γ (D) ∩ S �= ∅,

⇒ {D0, D} links with S in W 1,ξ
0 (�)(see [21, p.397]).

The proof is now complete. ��
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Now we are ready for the existence theorem in the noncoercive, nonresonant case.

Theorem 2 If hypotheses H ′
0, H2 hold, then problem (1.1) has a nontrivial solution

u0 ∈ W 1,ξ
0 (�) ∩ L∞(�).

Proof In Proposition 18wehave established that the closed sets {D0, D, K } are linking
(in the sense of Definition 5.4.1 in [21, p.397]). Also we have

ϕ(±t0û1) < inf
S

ϕ = mS (see (5.18)).

Finally, from Proposition 15 we know that

ϕ(·) satisfies the C-condition.

The above facts permit the use of Theorem 5.4.4 of Papageorgiou, Rădulescu &
Repovš [21, p.399]. Therefore we can find u0 ∈ W 1,ξ

0 (�) such that

u0 ∈ Kϕ and mS ≤ ϕ(u0).

So u0 is a solution of problem (1.1) and u0 ∈ W 1,ξ
0 (�)∩L∞(�). Moreover, Corollary

6.6.12 of [21, p.534] implies that the first critical group of ϕ at u0 is nontrivial, that is,

C1(ϕ, u0) �= 0. (5.19)

On the other hand, hypothesis H2(i i i) and Proposition 6 of Leonardi & Papageor-
giou [14] imply that

Ck(ϕ, 0) = 0 for all k ∈ N0. (5.20)

Comparing (5.19) and (5.20) we conclude that u0 �= 0. ��
Next, we will consider the noncoercive resonant case. To deal with this case we

need to strengthen the hypotheses on the reaction.
The new hypotheses on f (z, x) are the following.
H3: f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a.

z ∈ � and

(i) for every ρ > 0, there exists aρ ∈ L∞(�) such that

| f (z, x)| ≤ aρ(z) for a.a. z ∈ �, all |x | ≤ ρ;

(ii) there exist η∗ < λ̂2 and τ ∈ (q, p] such that

λ̂1 ≤ lim inf
x→±∞

f (z, x)

a(z)|x |p−2x
≤ lim sup

x→±∞
f (z, x)

a(z)|x |p−2x
≤ η∗
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uniformly for a.a. z ∈ �;

0 < β̂ ≤ lim inf
x→±∞

pF(z, x) − f (z, x)x

|x |τ

uniformly for a.a. z ∈ �;

(iii) lim
x→0

f (z, x)

|x |q−2x
= +∞ uniformly for a.a. z ∈ �, there exists s ∈ (1, q) such that

lim
x→0

f (z, x)

|x |s−2x
= 0 uniformly for a.a. z ∈ �

0 ≤ lim inf
x→0

sF(z, x) − f (z, x)s

|x |p uniformly for a.a. z ∈ �.

Remark 5 Hypothesis H3(i i) implies that we can have resonance with respect to λ̂1 =
λ̂a1(p, 1) > 0. In this case the resonance occurs form the right of λ̂1 in the sense that
λ̂1a(z)|x |p − pF(z, x) → −∞ as x → ±∞.

The following function satisfies hypotheses H3 above. For the sake of simplicity
we drop the z-dependence

f (x) =
{ |x |s−2x − |x |η−2x, if |x | ≤ 1

λ̂1
[|x |p−2x + |x |τ−2x − 2|x |ϑ−2x

]
, if 1 < |x |.

with 1 < s < q ≤ η and 1 < ϑ < q < τ < p.

The approach is similar to that for nonresonant case. Our aim is to apply Theorem
5.4.4 of [21, p.399].

Proposition 19 If hypotheses H ′
0, H3 hold, then the energy functional ϕ(·) satisfies

the C-condition.

Proof Consider a sequence {un}n∈N ⊆ W 1,ξ
0 (�) such that

|ϕ(un)| ≤ C23 for some C23 > 0, all n ∈ N (5.21)

(1 + ‖un‖)ϕ′(un) → 0 in W 1,ξ
0 (�)∗ as n → ∞. (5.22)

Suppose that the sequence {un}n∈N ⊆ W 1,ξ
0 (�) ↪→ W 1,ξ0

0 (�) is not bounded in

W 1,ξ0
0 (�). We may assume that

‖un‖1,ξ0 → ∞ as n → ∞. (5.23)

Let vn = un‖un‖1,ξ0 for all n ∈ N. Then ‖vn‖1,ξ0 = 1 for all n ∈ N and so we may

assume that
vn

w→ v in W 1,ξ0
0 (�) and vn → v in Lξ0(�). (5.24)
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From (5.22) we have

〈Aa
p(un), h〉 + 〈Aq(un), h〉 =

∫
�

f (z, un)hdz

for all h ∈ W 1,ξ
0 (�)

⇒ 〈Aa
p(vn), h〉 1

‖un‖p−q
1,ξ0

〈Aq(vn), h〉 =
∫

�

f (z, un)

‖un‖p−1
1,ξ0

hdz

for all h ∈ W 1,ξ0
0 (�). (5.25)

From hypotheses H3(i), (i i) and Hölder’s inequality, we see that

{
f (·, un(·))
‖un‖p−1

1,ξ0

}
⊆ Lξ0(�)∗ is bounded. (5.26)

In (5.25) we use h = vn − v, pass to the limit as n → ∞ and use (5.23), (5.24),
(5.26). We obtain

lim
n→∞〈Aa

p(vn), vn − v〉 = 0,

⇒ vn → v in W 1,ξ0
0 (�) (see Proposition 10), so ‖v‖1,ξ0 = 1. (5.27)

On account of (5.26) and hypothesis H3(i i i), we have

f (·, un(·))
‖un‖p−1

1,ξ0

w→ η̃(·)a(·)|v|p−2v in Lξ0(�)∗, (5.28)

λ̂1 ≤ η̃(z) ≤ η∗ for a.a. z ∈ �. (5.29)

So, if in (5.25) we pass to the limit as n → ∞ and use (5.23), (5.27), (5.28), we
obtain

〈Aa
p(v), h〉 =

∫
�

η̃(z)a(z)|v|p−2vhdz

for all h ∈ W 1,ξ
0 (�)

⇒ −�a
pv = η̃(z)a(z)|v|p−2v in �, v

∣∣∣
∂�

= 0

(recall thatW 1,ξ
0 (�) ↪→ W 1,ξ0

0 (�) continuously and densely). (5.30)

If η̃ �≡ λ̂1 (nonresonance), then as in the proof of Proposition 15, we have that
v = 0, a contradiction to (5.27).

If η̃(z) = λ̂1 for a.a. z ∈ �, then from (5.30) we see that we can say that

v = û1. (5.31)
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From (5.31) it follows that

|un(z)| → +∞ for a.a. z ∈ �. (5.32)

From (5.21) we have

− ρa(Dun) − p

q
‖Dun‖qq +

∫
�

pF(z, un)dz ≤ pC23 (5.33)

for all n ∈ N.
On the other hand from (5.22), we have

ρa(Dun) + ‖Dun‖qq −
∫

�

f (z, un)undz ≤ εn (5.34)

for all n ∈ N, with εn → 0+.
Adding (5.33) and (5.34), we obtain

∫
�

[pF(z, un) − f (z, un)un] dz ≤
[
p

q
− 1

]
‖Dun‖qq + C24

for some C24 > 0, all n ∈ N,

⇒
∫

�

pF(z, un) − f (z, un)un
‖un‖τ

dz ≤
(
p

q
− 1

) ‖Dvn‖qq
‖un‖τ−q

+ C24

‖un‖τ

for all n ∈ N.

The right-hand side goes to 0 as n → ∞ (see H ′
0), while on account of hypothesis

H3(i i) and Fatou’s lemma, we have

0 < lim inf
n→∞

∫
�

pF(z, un) − f (z, un)un
‖un‖τ

dz,

a contradiction.
Therefore we have that {un}n∈N ⊆ W 1,ξ

0 (�) is bounded and then continuing as in
the proof of Proposition 15, we conclude that ϕ(·) satisfies the C-condition. ��
Proposition 20 If hypotheses H ′

0, H3 hold, then ϕ(t û1) → −∞ as t → ±∞.

Proof On account of hypothesis H3(i i), we can find β̂0 ∈ (0, β̂) and M0 > 0 such
that

− β̂0|x |τ ≤ pF(z, x) − f (z, x)x for a.a. z ∈ �, all |x | ≥ M0. (5.35)

We have

d

dx

[
F(z, x)

x p

]
= f (z, x)x − pF(z, x)

x p+1
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≤ −β0x
τ−p−1 for a.a. z ∈ �, all x ≥ M0,

⇒ F(z, y)

y p
− F(z, x)

x p
≤ β̂0

p − τ

[
1

y p−τ
− 1

x p−τ

]

for a.a. z ∈ �, all y ≥ x ≥ M0.

Let y → +∞. Using hypothesis H3(i i), we have

λ̂1a(z)

p
− F(z, x)

x p
≤ − β̂

p − τ

1

x p−τ
,

⇒ λ̂1a(z)x p − pF(z, x) ≤ −β̂0
p

p − τ

for a.a. z ∈ �, all x ≥ M0. (5.36)

For t > 0, we have

ϕ(t û1) = t p

p
ρa(Dû1) + tq

q
‖Dû1‖qq −

∫
�

F(z, t û1)dz

= t p

p
λ̂1ρa(û1) + tq

q
‖Dû1‖qq −

∫
�

F(z, t û1)dz

≤ −β̂0t
τ‖û1‖τ

τ + tq

q
‖Dû1‖qq + C25

for someC25 > 0(see (5.36)),

⇒ ϕ(t û1) → −∞ as t → +∞ (recall that q < τ).

Similarly we show that

ϕ(t û1) → −∞ as t → −∞.

The proof is now complete. ��
Nowwe proceed as in the nonresonant case. Namely, note that by hypothesis H3(i i)

we can find η̂ ∈ (λ̂1, λ̂2) and C22 > 0 such that

F(z, x) ≤ η̂

ρ
a(z)|x |p + C22 for a.a. z ∈ �, allx ∈ R.

As before, let S = {u ∈ W 1,ξ
0 (�) : ρa(Du) = λ̂2ρa(u)}. Then for all u ∈ S with

‖u‖ ≥ 1, we have

ϕ(u) ≥ 1

p

(
1 − η̂

λ̂2

)
ρa(Du) − C22|�|N ,

⇒ ϕ(u) ≥ C23‖u‖q − C22|�|N for some C23 > 0,

⇒ ϕ|S is coercive.
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Therefore we can find γ > 0 such that

ϕ|S ≥ −γ.

On the other hand, on account of Proposition 20 we can find t0 > 0 such that

ϕ(t0û1), ϕ(−t0û1) < −γ.

Hence we see that
ϕ(±t0û1) < −γ ≤ inf

S
ϕ. (5.37)

From Proposition 19 we know that

ϕ(·) satisfies the C-condition. (5.38)

Let

D0 = {±t0û1}, D = {u ∈ W 1,ξ
0 (�) : u = s(−û1) + (1 − s)û1, s ∈ [0, 1]}

and S as above. From Proposition 18 we know that

{D0, D} is linking withSin W 1,ξ
0 (�). (5.39)

Finally, relations (5.37), (5.38), (5.39) and Theorem 5.4.4 of [21, p.399] produce
u0 ∈ Kϕ with −γ ≤ ϕ(u0). Then u0 ∈ W 1,ξ

0 (�) ∩ L∞(�) is a solution of problem
(1.1) and since C1(ϕ, u0) �= 0, while Ck(ϕ, 0) = 0 for all k ∈ N0, we conclude that
u0 �= 0. So, we can state the following theorem.

Theorem 3 If hypotheses H ′
0, H3 hold, then problem (1.1) has a nontrivial solution

u0 ∈ W 1,ξ
0 (�) ∩ L∞(�).
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