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Abstract. — We are concerned with the study of weak solutions to a class of subcritical quasi-
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1. Introduction and the main result

Nonlinear elliptic equations with convex-concave nonlinearities in bounded do-
mains have been studied starting with the seminal paper by Ambrosetti, Brezis
and Cerami [2]. They considered the Dirichlet problem

�Du ¼ luq�1 þ up�1 in W;

u > 0 in W;

u ¼ 0 on qW;

8<
:ð1Þ

where l is a positive parameter, WHRN is a bounded domain with smooth
boundary, and 1 < q < 2 < p < 2� (2� ¼ 2N=ðN � 2Þ if Nb 3, 2� ¼ l if
N ¼ 1; 2). Ambrosetti, Brezis and Cerami proved that there exists l0 > 0 such
that problem (1) admits at least two solutions for all l a ð0; l0Þ, has one solution
for l ¼ l0, and no solution exists provided that l > l0.

In [1], Alama and Tarantello studied the related Dirichlet problem with indef-
inite weights

�Du� lu ¼ kðxÞuq � hðxÞup in W;

u > 0 in W;

u ¼ 0 on qW;

8<
:ð2Þ



where l a R, WHRN , Nb 3, is a bounded open set with smooth boundary,
the functions h; k a L1ðWÞ are nonnegative, and 1 < p < q. For l a R in a
neighbourhood of l1 (the first eigenvalue of the Laplace operator in H 1

0 ðWÞ),
they obtained the solvability of (2) (and corresponding multiplicities) under vari-
ous assumptions on h and k. More exactly, they proved existence, nonexistence
and multiplicity results depending on l and according to the integrability proper-
ties of the ratio kp�1=hq�1.

For more general results of (2) involving variable weights functions in un-
bounded domains, we refer to Chabrowski [7], Chabrowski and do Ó [8], Liu
and Wang [13], and Wu [24].

Related studies can be also found in [5], [8], [9], [21], [22] and [25].
Motivated by these results, we are concerned in this paper with the existence

and the multiplicity of solutions in the quasilinear case. More precisely, we con-
sider the problem

�divðj‘ujm�2‘uÞ þ jujm�2
u ¼ ljujq�2

u� hðxÞjujp�2
u in RN ;

ub 0; in RN ;

�
ð3Þ

where h : RN ! R is a positive continuous function, whose growth is described by
the condition

Z
RN

hðxÞq=ðq�pÞ
dx ¼ H a Rþ;ð4Þ

l is a positive parameter and 2am < q < p < m�, with m� ¼ Nm=ðN �mÞ if
N > m and m� ¼ l if Nam.

Without altering the proof arguments below, the coe‰cient 1 of the
dominating term jujm�2

u can be replaced by any function f a LlðRNÞ with
inf essk f kLl > 0. Hence equation (3) is the renormalized form. Problem (3)
may be viewed as a prototype of pattern formation in biology and is related
to the steady-state problem for a chemotactic aggregation model introduced by
Keller and Segel [12]. Problem (3) also plays an important role in the study of
activator-inhibitor systems modeling biological pattern formation, as proposed
by Gierer and Meihardt [10].

In this paper we use standard notations and terminology. We denote by
W 1;mðRNÞ the Sobolev space equipped with the norm

kukW 1;m ¼
�Z

RN

ðj‘ujm þ jujmÞ dx
�1=m

:

For simplicity we often denote the above norm by kuk.
By Lp

r ðRNÞ, 1a p < l, we denote the weighted Lebesgue space

Lp
r ðRNÞ ¼ u a L1

locðRNÞ :
Z
RN

rðxÞjujp dx < l

� �
;
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where rðxÞ is a positive continuous function on RN , equipped with the norm

kukr;p ¼
�Z

RN

rðxÞjujp dx
�1=p

:

If rðxÞC 1 on RN , the norm is denoted by k � kp.
In this paper we seek weak solutions of problem (3) in a subspace E of

W 1;mðRNÞ, which is defined by

E ¼ u a W 1;mðRNÞ :
Z
RN

hðxÞjujp dx < l

� �
:

Then E is a Banach space if equipped with the norm

kukE ¼ ðkukm
W 1;m þ kukm

r;pÞ
1=m:

We define a weak solution of problem (3) as a function u a E with uðxÞb 0
a.e. in RN , satisfying

Z
RN

j‘ujm�2‘u‘v dxþ
Z
RN

jujm�2
uv dx

� l

Z
RN

jujq�2
uv dxþ

Z
RN

hðxÞjujp�2
uv dx ¼ 0;

for all v a E.
The main result in the present paper establishes the following properties: the

non-existence of nontrivial solutions to problem (3) if l is small enough; the exis-
tence of at least two nontrivial solutions for problem (3) if l is large enough.

Theorem 1. Under the above hypotheses there exists l� > 0 such that

(i) if 0 < l < l�, then problem (3) does not possess any nontrivial weak solution;
(ii) if l > l�, then problem (3) admits at least two nontrivial weak solutions;
(iii) if l ¼ l�, then problem (3) has at least one nontrivial weak solution.

2. Proof of Theorem 1

We point out in what follows the main ideas in the proof:
(a) There exists l� > 0 such that problem (3) does not have any solution for

any l < l�. This means that if a solution exists then l must be su‰ciently large.
One of the key arguments in this proof is based on the assumption p > q. In
particular, this proof yields an energy lower bound of solutions in term of l that
will be useful to conclude that problem (3) has a non-trivial solution if l ¼ l�.

(b) There exists l�� > 0 such that problem (3) admits at least two solutions for
all l > l��. Next, by the properties of l� and l�� we deduce that l� ¼ l��.
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2.1. Nonexistence if l is small

Let Fl : E ! R be the energy functional given by

FlðuÞ ¼
1

m
kukm � l

q
kukq

q þ
1

p
kukp

h;p:

Then Fl a C1ðE;RÞ and for all u; v a E

3F 0
lðuÞ; v4 ¼

Z
RN

ðj‘ujm�2‘u‘vþ jujm�2
uvÞ dx

� l

Z
RN

jujq�2
uv dxþ

Z
RN

hðxÞjujp�2
uv dx:

Weak solutions of problem (3) are found as the critical points of the functional
Fl in E.

Let us now assume that u a E is a weak solution of problem (3). Then

kukm þ kukp
h;p ¼ lkukq

q :ð5Þ

To proceed further, we need Young’s inequality

aba
aa

a
þ bb

b
for all a; b > 0;

where a; b > 1 satisfy 1=aþ 1=b ¼ 1.
Taking a ¼ hðxÞq=pjujq, b ¼ l=½hðxÞ�q=p, a ¼ p=q and b ¼ p=ðp� qÞ, we ob-

tain

hðxÞq=pjujq l

hðxÞq=p
a

q

p
ðhðxÞq=pjujqÞp=q þ p� q

p

� l

hðxÞq=p
�p=ðp�qÞ

:

Integrating over RN we have

lkukq
q a

q

p
kukp

h;p þ
p� q

p
lp=ðp�qÞ

Z
RN

hðxÞq=ðq�pÞ
dx:

The above inequality and relation (5) imply

kukm
a

p� q

p
lp=ðp�qÞ

Z
RN

hðxÞq=ðq�pÞ
dxþ q� p

p
kukp

h;pð6Þ

a
p� q

p
lp=ðp�qÞH;

being q < p.
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Since m < q < m�, the Sobolev embedding W 1;mðRNÞHLqðRNÞ is continu-
ous, so that there exists a positive constant Cq such that

Cqkvkm
q a kvkm for all v a W 1;mðRNÞ:

On the other hand, being kukh;p b 0, it follows from (5) that

kukm
a lkukq

q :

Combining the last two inequalities we obtain

Cqkukm
q a kukm

a lkukq
q :ð7Þ

Retaining the first and the last terms of (7) we get

ðCql
�1Þ1=ðq�mÞ

a kukq:

That inequality combined with (7) leads to

CqðCql
�1Þm=ðq�mÞ

a kukm:

By relation (6) and the above inequality we have

CqðCql
�1Þm=ðq�mÞ

a kukm
a

p� q

p
lp=ðp�qÞH:

Retaining the first and the last term it follows that

l >
�
Cq=ðm�qÞ

q

p� q

p
H
�ðq�pÞðq�mÞ=qðp�mÞ

;

being H > 0 by (4). Denoting the term in the right-hand side of the above in-
equality by m, we conclude that Theorem 1-(i) holds true, by putting

l� :¼ supfl > 0 : ð3Þ does not admit any nontrivial weak solutiong:ð8Þ

Clearly l�
b m > 0.

2.2. Existence if l is large

We start with several auxiliary results.

Lemma 1. The functional Fl is coercive.

Proof. We need the following elementary inequality: for every k1 > 0, k2 > 0
and 0 < s < r we have

k1jtjs � k2jtjr aCrsk1

� k1

k2

�s=ðr�sÞ
for all t a R;ð9Þ

where Crs > 0 is a constant depending on r and s.
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Taking k1 ¼ l=q, k2 ¼ ðm� 1ÞhðxÞ=mp, s ¼ q and r ¼ p (so that s < r is
verified, being q < p), in (9) for all x a RN we obtain

l

q
juðxÞjq � ðm� 1ÞhðxÞ

mp
juðxÞjp aCpq

l

q

� l=q

ðm� 1ÞhðxÞ=mp

�q=ðp�qÞ

¼ Cpq

q

� mp

qðm� 1Þ

�q=ðp�qÞ
lp=ðp�qÞhðxÞq=ðq�pÞ;

where Cpq > 0 is a constant depending on p and q. Relabeling the constant
Cpq

q

� mp

qðm�1Þ
�q=ðp�qÞ

by K and integrating the above inequality over RN , we get

Z
RN

� l

q
jujq � ðm� 1ÞhðxÞ

mp
jujp

�
dxaKlp=ðp�qÞ

Z
RN

hðxÞq=ðq�pÞ
dx:

By assumption (4) there exists a constant Cl > 0 such that

l

q
kukq

q �
m� 1

mp
kukp

h;p aCl:

Therefore

FlðuÞ ¼
1

m
kukm � l

q
kukq

q �
m� 1

mp
kukp

h;p

� �
�m� 1

mp
kukp

h;p þ
1

p
kukp

h;pð10Þ

b
1

m
kukm þ 1

mp
kukp

h;p � Cl;

and so Fl is coercive in E. r

Lemma 2. If ðunÞn is a sequence in E such that ðFlðunÞÞn is bounded in R, then
there exists a subsequence of ðunÞn, still relabeled ðunÞn, which converges weakly in
E to some u0 a E and

Flðu0Þa lim inf
n!l

FlðunÞ:

Proof. By (10) and the fact that ðFlðunÞÞn is bounded, it follows that both
sequences ðkunkÞn and ðkunkh;pÞn are bounded. Therefore, ðkunkEÞn is bounded
and there exists u0 a E such that

un * u0 in W 1;mðRNÞ
un ! u0 in L

p
h ðR

NÞ
un ! u0 in Ls

locðRNÞ for all s a ½1;m�Þ:

Let us define

Fðx; uÞ ¼ l

q
jujq � hðxÞ juj

p

p
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and

f ðx; uÞ ¼ Fuðx; uÞ ¼ ljujq�2
u� hðxÞjujp�2

u;

so that

fuðx; uÞ ¼ lðq� 1Þjujq�2 � hðxÞðp� 1Þjujp�2:

Using again inequality (9) for k1 ¼ lðq� 1Þ, k2 ¼ hðxÞðp� 1Þ, s ¼ q� 2,
r ¼ p� 2, we obtain

fuðx; uÞ ¼ lðq� 1Þjujq�2 � hðxÞðp� 1Þjujp�2

aC � l � ðq� 1Þ �
� lðq� 1Þ
hðxÞðp� 1Þ

�ðq�2Þ=ðp�qÞ
;

where C is a positive constant depending only of p and q.
This yields,

fuðx; uÞaCpq � l �
� l

hðxÞ

�ðq�2Þ=ðp�qÞ
;ð11Þ

where Cpq is a positive constant depending only of p and q. According to the
definition of Fl and F we obtain the following estimate for Flðu0Þ �FlðunÞ

Flðu0Þ �FlðunÞ ¼
1

m
ðku0km � kunkmÞð12Þ

þ
Z
RN

½F ðx; unÞ � Fðx; u0Þ� dx:

By position

Z s

0

fuðx; u0 þ tðun � u0ÞÞ dt ¼
1

un � u0
½ f ðx; u0 þ sðun � u0ÞÞ � f ðx; u0Þ�

¼ 1

un � u0
½Fuðx; u0 þ sðun � u0ÞÞ � Fuðx; u0Þ�:

Integrating the above relation over ½0; 1�, we obtain
Z 1

0

�Z s

0

fuðx; u0 þ tðun � u0ÞÞ dt
�
ds

¼ 1

un � u0

Z 1

0

½Fuðx; u0 þ sðun � u0ÞÞ � Fuðx; u0Þ� ds

¼ 1

ðun � u0Þ2
½F ðx; unÞ � Fðx; u0Þ� �

f ðx; u0Þ
un � u0

:
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The above equality can be rewritten in the following way

Fðx; unÞ � F ðx; u0Þ ¼ ðun � u0Þ2
Z 1

0

�Z s

0

fuðx; u0 þ tðun � u0ÞÞ dt
�
dsð13Þ

þ ðun � u0Þ f ðx; u0Þ:

Introducing relation (13) in (12) we get

Flðu0Þ �FlðunÞ ¼
1

m
ðku0km � kunkmÞ þ

Z
RN

ðun � u0Þ f ðx; u0Þ dxð14Þ

þ
Z
RN

ðun � u0Þ2
Z 1

0

Z s

0

fuðx; u0 þ tðun � u0ÞÞ dt ds dx

a
1

m
ðku0km � kunkmÞ þ

Z
RN

ðun � u0Þ f ðx; u0Þ dx

þ C1

Z
RN

ðun � u0Þ2hðxÞðq�2Þ=ðq�pÞ
dx;

where the last inequality follows from (11) and C1 ¼ Cpql
ðp�2Þ=ðp�qÞ. It remains to

show that the last two integrals converge to 0 as n ! l.
We define J : E ! R by

JðvÞ ¼
Z
RN

f ðx; u0Þv dx:

Obviously, J is linear. We shall show that J is also continuous. Indeed,

jJðvÞja
Z
RN

j f ðx; u0Þj � jvj dxð15Þ

a l

Z
RN

ju0jq�1jvj dxþ
Z
RN

hðxÞju0jp�1jvj dx:

On the other hand, using Hölder’s inequality, it follows that

Z
RN

ju0jq�1jvj dxa ku0kq�1
q kvkq:

Since W 1;mðRNÞ is continuously embedded in LqðRNÞ we deduce that there exists
a constant C > 0 such that

kvkq aCkvkW 1;mðRN Þ for all v a W 1;mðRNÞ:

Combining the last two inequalities with the fact that

kvkW 1;mðRN Þ a kvkE ;
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we deduce that there exists a positive constant cq > 0 such thatZ
RN

ju0jq�1jvj dxa cqkvkE :ð16Þ

Applying again Hölder’s inequality we obtainZ
RN

hðxÞju0jp�1jvj dx ¼
Z
RN

ðhðxÞðp�1Þ=pju0jp�1ÞðhðxÞ1=pjvjÞ dxð17Þ

a ku0kp�1
h;p kvkh;p aC0kvkh;p

aC0kvkE ;

where C0 is a positive constant.
By (15), (16) and (17) we conclude that there exists a positive constant k such

that

jJðvÞja kkvkE for all v a E;

and so J is continuous.
Since ðunÞn converges weakly to u0 in E and J is linear and continuous we

deduce that

JðunÞ ! Jðu0Þ;

in other words

lim
n!l

Z
RN

f ðx; u0Þðun � u0Þ dx ¼ 0:ð18Þ

In order to show that

lim
n!l

Z
RN

ðun � u0Þ2hðxÞðq�2Þ=ðq�pÞ
dx ¼ 0;ð19Þ

we first note that for all R > 0Z
RN

ðun � u0Þ2hðxÞðq�2Þ=ðq�pÞ
dxð20Þ

¼
Z
fjxj<Rg

ðun � u0Þ2hðxÞðq�2Þ=ðq�pÞ
dx

þ
Z
fjxjbRg

ðun � u0Þ2hðxÞðq�2Þ=ðq�pÞ
dx

a

�Z
fjxj<Rg

hðxÞq=ðq�pÞ
dx

�ðq�2Þ=q
�
�Z

fjxj<Rg
jun � u0jq dx

�2=q

þ
�Z

fjxjbRg
hðxÞq=ðq�pÞ

�ðq�2Þ=q
�
�Z

fjxjbRg
jun � u0jq dx

�2=q
:
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By hypothesis (4) we have

Z
fjxj<Rg

hðxÞq=ðq�pÞ
dxa

Z
RN

hðxÞq=ðq�pÞ
dx ¼ H < l for all R > 0:

On the other hand, for all e > 0 there exists Re > 0 such that

Z
fjxjbReg

hðxÞq=ðq�pÞ
dx < e:

Using the fact that m < q < m� we deduce that W 1;mðBRe
ð0ÞÞ is compactly

embedded in LqðBRe
ð0ÞÞ and thus

lim
n!l

�Z
jxj<Re

jun � u0jq dx
�2=q

¼ 0:

Since ðun � u0Þn is bounded in E, it is also bounded in LqðRNÞ and so there exists
a positive constant M > 0 such that

�Z
jxjbRe

jun � u0jq dx
�2=q

a kun � u0k2q aM:

Combining the above information with relation (20), we conclude that for any
e > 0 there exists Ne > 0 such that for all nbNe we have

Z
RN

ðun � u0Þ2hðxÞðq�2Þ=ðq�pÞ
dxaHeþMeðq�2Þ=q:

Therefore, (19) holds true.
Since ðunÞn converges weakly to u0 in W 1;mðRNÞ Proposition III.5 in [6]

implies

lim inf
n!l

kunkm
W 1;mðRN Þ b ku0km

W 1;mðRN Þ:

Passing to the limit in (14) and taking into account that (18) and (19) hold true,
we obtain

Flðu0Þa lim inf
n!l

FlðunÞ:

Thus, Fl is weakly lower semi-continuous.
The proof of Lemma 2 is now complete. r

Proof of Theorem 1 continued. Using Lemmas 1, 2 and Theorem 1.2 in
[20] we deduce that there exists a global minimizer u a E of Fl, that is,

FlðuÞ ¼ inf
v AE

FlðvÞ:
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It is obvious that u is a weak solution of problem (3). We prove that u2 0 in E.
To do that we show that infE Fl < 0, provided that the parameter l is su‰ciently
large.

Let us set

l ¼ inf
u AE

q

m
kukm þ q

p
kukp

h;p : kukq ¼ 1

� �
:

We point out that l > 0. Indeed, for any u a E with kukq ¼ 1 by Hölder’s
inequality and by (4) we have

1 ¼ kukq
q a

�Z
RN

hðxÞq=ðq�pÞ
dx

�ðp�qÞ=p
�
�Z

RN

hðxÞjujp dx
�q=p

¼ Hðp�qÞ=pkukq
h;p;

so that

lb
q

p
Hðq�pÞ=q > 0;

being H > 0 by assumption. Let l > l. Then there exists a function u1 a E, with
ku1kq ¼ 1, such that

lku1kq
q ¼ l >

q

m
ku1km þ q

p
ku1kp

h;p:

This can be rewritten as

Flðu1Þ ¼
1

m
ku1km � l

q
ku1kq

q þ
1

p
ku1kp

h;p < 0

and consequently infu AE FlðuÞ < 0. Therefore, there exists l0 ¼ l > 0 such
that problem (3) has a nontrivial weak solution u1 a E for any l > l0, and
Flðu1Þ < 0. Since Flðu1Þ ¼ Flðju1jÞ and ju1j a E, we may assume that u1 b 0
a.e. in RN . r

In the following we are looking for a second nontrivial weak solution for
problem (3).

Fix lb l0. Set

gðx; tÞ ¼
0; if t < 0;

ltq�1 � hðxÞtp�1; if 0a ta u1ðxÞ;
lu1ðxÞq�1 � hðxÞu1ðxÞp�1; if t > u1ðxÞ;

8><
>:

and

Gðx; tÞ ¼
Z t

0

gðx; sÞ ds:
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Define the functional C : E ! R by

CðuÞ ¼ 1

m
kukm �

Z
RN

Gðx; uÞ dx:

Clearly, C a C1ðE;RÞ and

3C 0ðuÞ; v4 ¼
Z
RN

ðj‘ujm�2‘u‘vþ jujm�2
uvÞ dx�

Z
RN

gðx; uÞv dx;

for all u; v a E. Moreover, if u is a critical point of C, then ub 0 a.e. in RN .
Next, we are concerned with the location of critical points of the energy func-

tional C.

Lemma 3. If u is a critical point of C, then ua u1.

Proof. For a function v we define the positive part vþðxÞ ¼ maxfvðxÞ; 0g. By
Theorem 7.6 in [11] we deduce that if v a E then vþ a E. We have

0 ¼ 3C 0ðuÞ �F 0
lðu1Þ; ðu� u1Þþ4

¼
Z
RN

ðj‘ujm�2‘u� j‘u1jm�2‘u1Þ‘ðu� u1Þþ dx

þ
Z
RN

ðjujm�2
u� ju1jm�2

u1Þðu� u1Þþ dx

�
Z
RN

½gðx; uÞ � lu
q�1
1 þ hðxÞup�1

1 �ðu� u1Þþ dx

¼
Z
fu>u1g

ðj‘ujm�2‘u� j‘u1jm�2‘u1Þð‘u� ‘u1Þ dx

þ
Z
fu>u1g

ðjujm�2
u� ju1jm�2

u1Þðu� u1Þ dx

b

Z
fu>u1g

ðj‘ujm�1 � j‘u1jm�1Þðj‘uj � j‘u1jÞ dx

þ
Z
fu>u1g

ðjujm�1 � ju1jm�1Þðjuj � ju1jÞ dxb 0:

Thus, we obtain ua u1 and the proof of Lemma 3 is complete. r

In the following, via the mountain pass theorem, we determine a critical point
u2 a E of C such that Cðu2Þ > 0. By the above lemma we shall deduce that
0a u2 a u1 in W. Therefore,

gðx; u2Þ ¼ lu
q�1
2 � hðxÞup�1

2 and Gðx; u2Þ ¼
l

q
u
q
2 �

hðxÞ
p

u
p
2 ;
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so that

Cðu2Þ ¼ Flðu2Þ and C 0ðu2Þ ¼ F 0
lðu2Þ:

More precisely, we find

Flðu2Þ > 0 ¼ Flð0Þ > Flðu1Þ and F 0
lðu2Þ ¼ 0:

This shows that u2 is a weak solution of problem (3) such that 0a u2 a u1, u2A 0
and u2A u1.

In order to find u2 described above we prove the following result.

Lemma 4. There exists r a ð0; ku1kÞ and a > 0 such that CðuÞb a for all u a E,
with kuk ¼ r.

Proof. We have

CðuÞ ¼ 1

m
kukm �

Z
fu>u1g

Gðx; uÞ dx�
Z
fuau1g

Gðx; uÞ dx

¼ 1

m
kukm � l

q

Z
fu>u1g

u
q
1 dxþ 1

p

Z
fu>u1g

hðxÞup
1 dx

� l

q

Z
f0auau1g

uq dxþ 1

p

Z
f0auau1g

hðxÞup dx

b
1

m
kukm � l

q
kukq

q :

On the other hand, the continuous Sobolev embedding of E into LqðRNÞ implies
that there exists a positive constant L > 0 such that

kvkq aL kvk for all v a E:

The above inequalities yield

CðuÞb 1

m
kukm � L1kukq ¼ kukm

� 1

m
� L1kukq�m

�
;

where L1 ¼ lLq=q is a positive constant. Since q > m it is clear that Lemma 4
holds true. r

Lemma 5. The functional C is coercive.

Proof. For each u a E we have
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CðuÞ ¼ 1

m
kukm � l

q

Z
fu>u1g

u
q
1 dxþ 1

p

Z
fu>u1g

hðxÞup
1 dx

� l

q

Z
f0auau1g

uq dxþ 1

p

Z
f0auau1g

hðxÞup dx

b
1

m
kukm � l

q

Z
RN

u
q
1 dx

¼ 1

m
kukm � L2;

where L2 is a positive constant, being u1A 0. The above inequality implies that
CðuÞ ! l as kuk ! l, that is, C is coercive, as required. r

Proof of Theorem 1 completed. Using Lemma 4 and the mountain pass
theorem (see [4] with the variant given by Theorem 1.15 in [23]) we deduce that
there exists a sequence ðvnÞn HE such that

CðvnÞ ! c > 0 and C 0ðvnÞ ! 0;ð21Þ

where

c ¼ inf
g AG

max
t A ½0;1�

CðgðtÞÞ

and

G ¼ fg a Cð½0; 1�;EÞ : gð0Þ ¼ 0; gð1Þ ¼ u1g:

We also refer to Ambrosetti and Prodi [3], Pucci and Serrin [17] for various
extensions of the mountain pass theorem, cf. also the recent survey [16].

By relation (21) and Lemma 5 we obtain that ðvnÞn is bounded and thus
passing eventually to a subsequence, still denoted by ðvnÞn, we may assume that
there exists u2 a E such that vn converges weakly to u2. Standard arguments
based on the Sobolev embeddings will show that

lim
n!l

3C 0ðvnÞ; j4 ¼ 3C 0ðu2Þ; j4

for any j a Cl
0 ðRNÞ. Taking into account that EHW 1;mðRNÞ and Cl

0 ðRNÞ is
dense in W 1;mðRNÞ, the above information implies that u2 is a weak solution of
problem (3).

We conclude that problem (3) admits at least two nontrivial weak solutions
for all l > l0.

Put

l�� :¼ inffl > 0 : problem ð3Þ admits a nontrivial weak solutiong:

Then l��b l� > 0, where l� is the parameter defined in (8).

202 p. pucci and v. rădulescu



Let us consider the constrained minimization problem

L :¼ inf
v AE

1

m
kvkm þ 1

p
kvkp

h;p : kvk
q
q ¼ q

� �
:ð22Þ

Let ðvnÞn HE be a minimizing sequence of (22). Then ðvnÞn is bounded in E,
hence we can assume, without loss of generality, that it converges weekly to some
v a E with kvkq

q ¼ q. Moreover, by lower semi-continuity arguments we have

L ¼ 1

m
kvkm þ 1

p
kvkp

h;p:

Thus, FlðvÞ ¼ L� l for all l > L.
To complete the proof of Theorem 1 it is enough to show the following crucial

facts:

(a) problem (3) has at least two distinct solutions for any l > l��;
(b) l�� ¼ l� and problem (3) admits a nontrivial weak solution if l ¼ l�.

Claim (a) follows by standard monotonicity techniques. Claim (b) uses
the same proof as in Filippucci, Pucci and Rădulescu [9, p. 712]. The proof of
Theorem 1 is now complete. r

We point out that the proof of Theorem 1-(ii) uses some ideas found in the
proofs of Theorems 2.1 and 2.2 in [1]. However, our method in finding the second
solution is di¤erent, since we use the mountain pass theorem, while in [1] the
authors appeal to sub- and super-solutions method. Our idea is frequently
used when we deal with quasilinear problems, see e.g., Filippucci, Pucci and
Rădulescu [9], Mihăilescu and Rădulescu [14], Perera [15], Pucci and Servadei
[18, 19].

On the other hand, we point out that equation (3) can be studied also in the
case when p is supercritical using similar arguments, since the jujp term in the
energy continues to be coercive. In these cases standard regularity results will
lead to stronger results in what concerns the smoothness of solutions, since
W 1;m is embedded into C1.
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