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Sublinear eigenvalue problems on compact Riemannian
manifolds with applications in Emden–Fowler equations

by
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and Vicenţiu Rădulescu (Bucureşti and Craiova)

Abstract. Let (M, g) be a compact Riemannian manifold without boundary, with
dimM ≥ 3, and f : R→ R a continuous function which is sublinear at infinity. By various
variational approaches, existence of multiple solutions of the eigenvalue problem

−∆gω + α(σ)ω = K̃(λ, σ)f(ω), σ ∈M, ω ∈ H2
1 (M),

is established for certain eigenvalues λ > 0, depending on further properties of f and on
explicit forms of the function K̃. Here, ∆g stands for the Laplace–Beltrami operator on
(M, g), and α, K̃ are smooth positive functions. These multiplicity results are then applied
to solve Emden–Fowler equations which involve sublinear terms at infinity.

1. Introduction and statement of main results. Let us consider
the following parametrized Emden–Fowler (or Lane–Emden) equation:

(EF )λ −∆u = λ|x|s−2K(x/|x|)f(|x|−su), x ∈ Rd+1 \ {0},

where f : R→ R is a continuous function, K is smooth on the d-dimensional
unit sphere Sd, d ≥ 3, s ∈ R, and λ > 0 is a parameter. The equation (EF )λ
has been extensively studied in the pure superlinear case, i.e., when f has the
form f(t) = |t|p−1t, p > 1 (see Cotsiolis–Iliopoulos [3], Vázquez–Véron [9]).
In these papers, the authors obtained existence and multiplicity of solutions
for (EF )λ, applying either minimization or minimax methods. Note that
in the pure superlinear case the presence of the parameter λ > 0 is not
relevant due to the rescaling technique. One of the purposes of the present
paper is to guarantee multiple solutions of (EF )λ for certain λ > 0 when
the nonlinearity f : R→ R is

(a) not necessarily of pure power type, and
(b) sublinear at infinity (see (1.2) below).

2000 Mathematics Subject Classification: 58J05, 35J60.
Key words and phrases: Emden–Fowler equation, sublinear eigenvalue problem, multiple
solutions.

DOI: 10.4064/sm191-3-5 [237] c© Instytut Matematyczny PAN, 2009
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The solutions of (EF )λ are being sought in the particular form

(1.1) u(x) = u(|x|, x/|x|) = u(r, σ) = rsω(σ).

Here, (r, σ) ∈ (0,∞)× Sd are the spherical coordinates in Rd+1 \ {0}. This
type of transformation is also used by Bidaut-Véron and Véron [2], where
the asymptotics of a special form of (EF )λ has been studied. By means
of (1.1), the equation (EF )λ reduces to

(1.1)λ −∆g0ω + s(1− s− d)ω = λK(σ)f(ω), σ ∈ Sd,
where ∆g0 denotes the Laplace–Beltrami operator on (Sd, g0) and g0 is the
canonical metric induced from Rd+1.

Note in particular that when s = −d/2 or s = −d/2 + 1, and f(t) =
|t|4/(d−2)t, the existence of a smooth solution ω > 0 of (1.1)λ can be viewed
as an affirmative answer to the famous Yamabe problem on Sd (see also
the Nirenberg problem); for these topics we refer the reader to Aubin [1],
Cotsiolis–Iliopoulos [4], Hebey [5], and references therein. In these cases the
right hand side of (1.1)λ involves the critical Sobolev exponent.

As we pointed out before, our aim is to study (EF )λ (specially, problem
(1.1)λ) in the sublinear case. Since 1 − d < s < 0 implies the coercivity of
the operator ω 7→ −∆g0ω + s(1− s− d)ω, the form of (1.1)λ motivates the
study of the following general eigenvalue problem, denoted by (P )λ, which
constitutes the main objective of our paper:

Find λ ∈ (0,∞) and ω ∈ H2
1 (M) such that

(1̃.1)λ −∆gω + α(σ)ω = K̃(λ, σ)f(ω), σ ∈M,

where we assume

(A1) (M, g) is a smooth compact d-dimensional Riemannian manifold
without boundary, d ≥ 3;

(A2) α ∈ C∞(M) and K̃ ∈ C∞((0,∞)×M) are positive functions;
(f1) f : R → R is locally Hölder continuous and sublinear at infinity,

i.e.,

(1.2) lim
|t|→∞

f(t)
t

= 0.

A typical case when (1.2) holds is

(f q,c1 ) There exist q ∈ (0, 1) and c > 0 such that |f(t)| ≤ c|t|q for every
t ∈ R.

We simply say that ωλ ∈ H2
1 (M) is a solution of (P )λ if ω = ωλ satisfies

(1̃.1)λ. Above, ∆g is the Laplace–Beltrami operator on (M, g); its expression
in local coordinates is ∆gω = gij(∂ijω−Γ kij∂kω). H2

1 (M) is the usual Sobolev
space on M, endowed with its natural norm ‖ · ‖H2

1
(see [5] or Section 2 for

details).
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The presence of the parameter λ > 0 in (P )λ is indispensable. Indeed, if
we consider a sublinear function at infinity which is, in addition, uniformly
Lipschitz (with Lipschitz constant L > 0), and K̃(λ, σ) = λK(σ), with K ∈
C∞(M) positive, one can prove that for 0 < λ < (1/L)(minM α/maxM K)
=: λL we have only the ω = ωλ = 0 solution of (P )λ, as the standard contrac-
tion principle on the Hilbert space H2

1 (M) shows. For a concrete example,
let us consider the function f(t) = ln(1 + t2) and assume that K(σ)/α(σ) =
const = µ0 ∈ (0,∞). Then, for every 0 < λ < minM α/µ0 maxM α, problem
(P )λ has only the trivial solution; however, when λ > 5/4µ0, problem (P )λ
has three distinct constant solutions which are precisely the fixed points of
the function t 7→ λµ0 ln(1 + t2). Note that one of the solutions is the trivial
one.

In the generic case, for a fixed λ > 0, the function ωλ(σ) = c ∈ R is
a solution of (P )λ if and only if α(σ)c = K̃(λ, σ)f(c) for a.e. σ ∈ M. In
particular, when ωλ(σ) = c 6= 0, the function σ 7→ K̃(λ, σ)/α(σ) is constant;
let us denote this value by µλ > 0. Thus, nonzero constant solutions of (P )λ
appear as fixed points of the function t 7→ µλf(t).

In order to obtain multiple solutions of (P )λ not only in the case when
σ 7→ K̃(λ, σ)/α(σ) is constant for certain λ > 0, we will use variational
arguments; weak solutions of (P )λ will be found as critical points of the
energy functional associated with (P )λ (see Section 2). Due to (f1), these
elements are actually classical solutions of (P )λ.

Our first result concerns the case when f : R→ R satisfies

(f2) limt→0 f(t)/t = 0.

Before stating this result, let us note that the usual norm on the space
Lp(M) will be denoted by ‖ · ‖p, p ∈ [1,∞].

Theorem 1.1. Assume that f : R→R satisfies (f1), (f2) and supt∈R F (t)
> 0, where F (t) =

	t
0 f(τ) dτ. Assume also that (A1) and (A2) are satisfied

with K̃(λ, σ) = λK(σ), and K ∈ C∞(M) is positive. Then there exists λ̃ > 0
such that for every λ > λ̃ problem (P )λ has at least two distinct , nontrivial
solutions.

Remark 1.1. As we mentioned above, when the nonlinearity f is a
uniformly Lipschitz function (with Lipschitz constant L > 0), we have extra
information on the eigenvalues:

(a) problem (P )λ has only the trivial solution whenever λ ∈ (0, λL);
(b) problem (P )λ has at least two nontrivial solutions whenever λ > λ̃.

Moreover, the proof of Theorem 1.1 shows that the number λ̃ is less than
or equal to the value
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λ∗ :=
1
2
‖α‖1
‖K‖1

(
max
t6=0

F (t)
t2

)−1

.

Consequently, Theorem 1.1 is valid for any λ > λ∗ which can be easily
computed.

A direct consequence of Theorem 1.1 applied for (1.1)λ is the following

Theorem 1.2. Assume that 1− d < s < 0. Let f : R→ R be a function
as in Theorem 1.1 and K ∈ C∞(Sd) positive. Then there exists λ̃ > 0 such
that for every λ > λ̃ problem (EF )λ has at least two distinct , nontrivial
solutions.

In order to obtain a new kind of multiplicity result concerning (P )λ
(specially, (1.1)λ and (EF )λ), we require:

(f3) There exists µ0 ∈ (0,∞) such that the set of all global minima of the
function t 7→ F̃µ0(t) := 1

2 t
2 − µ0F (t) has at least m ≥ 2 connected

components.

Note that (f3) implies that the function t 7→ F̃µ0(t) has at least m− 1 local
maxima. Thus, the function t 7→ µ0f(t) has at least 2m− 1 fixed points. In
particular, if for some λ > 0 one has K̃(λ, σ)/α(σ) = µ0 for every σ ∈ M,
then problem (P )λ has at least 2m− 1 ≥ 3 constant solutions. On the other
hand, the following general result can be shown.

Theorem 1.3. Let f : R→ R be a function which satisfies (f1) and (f3).
Assume that (A1) and (A2) are satisfied with K̃(λ, σ) = λK(σ) + µ0α(σ),
and K ∈ C∞(M) is positive. Then

(a) for every η > max{0, ‖α‖1 mint∈R F̃µ0(t)} there exists λ̃η > 0 such
that for every λ ∈ (0, λ̃η) problem (P )λ has at least m+ 1 solutions
ω1,η
λ , . . . , ωm+1,η

λ ∈ H2
1 (M);

(b) if (f q,c1 ) holds then for each λ ∈ (0, λ̃η) there is a set Iλ ⊂ {1, . . . ,
m+ 1} with card(Iλ) = m such that

‖ωi,ηλ ‖H2
1
<

tη,q,c

min{1,minM α1/2}
, i ∈ Iλ,

where tη,q,c > 0 is the greatest solution of the equation

1
2
t2 − µ0c‖α‖(1−q)/21

q + 1
tq+1 − η = 0, t > 0.

A consequence of Theorem 1.3 in the context of (EF )λ reads as follows.

Theorem 1.4. Assume that 1− d < s < 0. Let f : R→ R be a function
as in Theorem 1.3 and K ∈ C∞(Sd) be a positive function. Then there exists
λ0 > 0 such that for every λ ∈ (0, λ0) the problem
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−∆u = |x|s−2[λK(x/|x|) + µ0s(1− s− d)]f(|x|−su), x ∈ Rd+1 \ {0},
has at least m+ 1 solutions.

The proof of Theorem 1.1 is based on the paper of Pucci–Serrin [6],
while that of Theorem 1.3 relies on a recent abstract critical point theorem
of Ricceri (see [7] and [8]).

Examples. (a) Let f(t) = ln(1 + t2). Then Theorems 1.1–1.2 apply.
(b) Let f : R → R be defined by f(t) = min{t+ − sin(πt+), 2(m − 1)}

where m ∈ N\{1} is fixed and t+ = max{t, 0}. Clearly, (f1) is satisfied, while
for µ0 = 1, the assumption (f3) also holds. Indeed, the function t 7→ F̃1(t) has
precisely m global minima: 0, 2, . . . , 2(m − 1). Moreover, mint∈R F̃1(t) = 0.
Therefore, one can apply Theorems 1.3 and 1.4.

In the next section we recall some basic facts on Sobolev spaces defined
on compact Riemannian manifolds. In Section 3 we prove Theorems 1.1 and
1.2 while in the last section we deal with the proofs of Theorems 1.3 and 1.4.

2. Preliminaries. Let (M, g) be a smooth compact d-dimensional Rie-
mannian manifold without boundary, d ≥ 3, and let α ∈ C∞(M) be a
positive function. For every ω ∈ C∞(M), set

‖ω‖2H2
α

=
�

M

〈∇ω,∇ω〉 dσg +
�

M

α(σ)〈ω, ω〉 dσg,

where 〈·, ·〉 is the inner product on covariant tensor fields associated to g,
∇ω is the covariant derivative of ω, and dσg is the Riemannian measure. The
Sobolev space H2

α(M) is defined as the completion of C∞(M) with respect
to the norm ‖ · ‖H2

α
. Clearly, H2

α(M) is a Hilbert space endowed with the
inner product

〈ω1, ω2〉H2
α

=
�

M

〈∇ω1,∇ω2〉 dσg +
�

M

α(σ)〈ω1, ω2〉 dσg, ω1, ω2 ∈ H2
α(M).

Since α is positive, the norm ‖ · ‖H2
α

is equivalent to the standard norm
‖ · ‖H2

1
; actually, the latter is just ‖ · ‖H2

α
with α = 1. Moreover, we have

(2.1) min{1,min
M

α1/2}‖ω‖H2
1
≤ ‖ω‖H2

α
≤ max{1, ‖α‖1/2∞ }‖ω‖H2

1

for ω ∈ H2
α(M). Note that H2

α(M) is compactly embedded in Lp(M) for
every p ∈ [1, 2d/(d − 2)); the Sobolev embedding constant will be denoted
by Sp > 0.

Let λ > 0. The energy functional Eλ : H2
1 (M) → R associated with

problem (P )λ is

(2.2) Eλ(ω) =
1
2
‖ω‖2H2

α
−

�

M

K̃(λ, σ)F (ω(σ)) dσg,
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where F (t) =
	t
0 f(τ) dτ. Due to our initial assumptions (A1), (A2) and

(f1), the functional Eλ is well-defined, it belongs to C1(H2
1 (M),R), and

its critical points are precisely the weak (so classical) solutions of problem
(P )λ. By (f1), for every ε > 0 sufficiently small there is c(ε) > 0 such that
|f(t)| ≤ ε|t|+ c(ε) for every t ∈ R. Consequently, for every ω ∈ H2

1 (M), we
have

Eλ(ω) ≥ 1
2

(1− ε‖K̃(λ, ·)‖∞S2
2)‖ω‖2H2

α
− c(ε)‖K̃(λ, ·)‖∞S1‖ω‖H2

α
.

Therefore, the functional Eλ is coercive and bounded from below on H2
1 (M).

Moreover, it satisfies the standard Palais–Smale condition (see Zeidler [10,
Example 38.25]).

3. Proof of Theorems 1.1 and 1.2. In this section we assume the
hypotheses of Theorem 1.1 hold. We define N ,F : H2

1 (M)→ R by

(3.1) N (ω) =
1
2
‖ω‖2H2

α
and F(ω) =

�

M

K(σ)F (ω(σ)) dσg, ω ∈ H2
1 (M).

Proposition 3.1. lim%→0+ sup{F(ω)/N (ω) : 0 < N (ω) < %} = 0.

Proof. Due to (f2), for small ε > 0 there exists δ(ε) > 0 such that
|f(t)| < ε(2‖K‖∞S2

2)−1|t| for every |t| < δ(ε). On account of (f1), one may
fix 1 < ν < (d+ 2)/(d− 2) and c(ε) > 0 such that |f(t)| < c(ε)|t|ν for every
|t| ≥ δ(ε). Combining these two facts, after an integration, we obtain

|F (t)| ≤ ε(4‖K‖∞S2
2)−1t2 + c(ε)(ν + 1)−1|t|ν+1 for every t ∈ R.

Fix a % > 0 and any ω ∈ H2
α(M) with N (ω) < %. By the above estimate,

F(ω) ≤ ε

4
‖ω‖2H2

α
+

c(ε)
ν + 1

‖K‖∞Sν+1
ν+1‖ω‖

ν+1
H2
α

<
ε

4
‖ω‖2H2

α
+

c(ε)
ν + 1

‖K‖∞Sν+1
ν+1(2%)(ν−1)/2‖ω‖2H2

α

= (ε/4 + c′(ε)%(ν−1)/2)‖ω‖2H2
α
.

Thus there exists %(ε) > 0 such that for every 0 < % < %(ε), we have

0 ≤ sup{F(ω)/N (ω) : 0 < N (ω) < %} ≤ ε/2 + 2c′(ε)%(ν−1)/2 < ε,

which completes the proof.

Proof of Theorem 1.1. Let us define

λ̃ = inf{N (ω)/F(ω) : F(ω) > 0}.
Fix λ > λ̃. On one hand, there exists ω0

λ ∈ H2
1 (M) such that F(ω0

λ) > 0 and
λ > N (ω0

λ)/F(ω0
λ). On account of (2.2) and (3.1), we have

(3.2) Eλ(ω0
λ) = N (ω0

λ)− λF(ω0
λ) < 0.
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On the other hand, due to Proposition 3.1, there exists δ > 0 such that for
all % ∈ (0, δ) one has

sup{F(ω)/N (ω) : 0 < N (ω) < %} < 1/λ.

In other words, for every ω ∈ H2
1 (M) \ {0} satisfying N (ω) < % we have

F(ω)/N (ω) < 1/λ and hence

Eλ(ω) = N (ω)− λF(ω) > 0 = Eλ(0).

Consequently, 0 ∈ H2
1 (M) is a local minimum point for Eλ, but not a global

one, in view of (3.2). Since the functional Eλ is bounded from below on
H2

1 (M) and it satisfies the standard Palais–Smale condition, the global min-
imum of Eλ is achieved. Applying [6, Theorems 1 and 4], we obtain a third
critical point of Eλ which is not 0. This concludes our proof.

Proof of Theorem 1.2. Let us choose (M, g) = (Sd, g0), and α(σ) =
s(1−s−d) for every σ ∈ Sd in Theorem 1.1. Thus, for every λ > λ̃, problem
(1.1)λ has at least two distinct, nontrivial solutions ω1

λ, ω
2
λ ∈ H2

1 (Sd). On
account of (1.1), the elements uiλ(x) = |x|sωiλ(x/|x|), i ∈ {1, 2}, are solutions
of (EF )λ.

Remark 3.1. For every k ∈ {1, . . . , d−2}, let Gk = O(k+1)×O(d−k) ⊂
O(d + 1). The action of the group Gk on H2

1 (Sd) is defined by gω(σ) =
ω(g−1σ) for every g ∈ Gk, ω ∈ H2

1 (Sd), σ ∈ Sd. Assume that K in (1.1)λ
is constant. One can prove that the energy functional Eλ : H2

1 (Sd) → R
is Gk-invariant for every k ∈ {1, . . . , d − 2}, i.e., Eλ(gω) = Eλ(ω) for every
g ∈ Gk and ω ∈ H2

1 (Sd). Now, let

HGk(Sd) = {ω ∈ H2
1 (Sd) : gω = ω for every g ∈ Gk}

be the fixed point space of H2
1 (Sd) under the action of Gk. Let EGkλ be the

restriction of the functional Eλ to the space HGk(Sd). Now, we follow the
same arguments as in Theorem 1.1 with EGkλ and HGk(Sd) instead of Eλ
and H2

1 (Sd), respectively. Therefore, for every λ > λ̃ and k ∈ {1, . . . , d− 2}
we can guarantee the existence of at least two different, nontrivial critical
points of EGkλ belonging to HGk(Sd). On the other hand, the principle of
symmetric criticality of Palais implies that every critical point of EGkλ will
also be a critical point of Eλ, thus a solution of (1.1)λ. If such a solution is
not constant, say ωλ,k ∈ HGk(Sd), it cannot belong to HGl(S

d) whenever
l 6= k. Indeed, when k 6= l, the group generated topologically by Gk and Gl
acts transitively on Sd, that is, the orbit of every element from Sd under that
group is the whole sphere Sd. Consequently, HGk(Sd) ∩ HGl(S

d) contains
only the a.e. constant functions defined on Sd. Therefore, a nonconstant
solution of (1.1)λ which belongs to HGk(Sd) will not appear in HGl(S

d),
l 6= k. In this way, the number of solutions of (1.1)λ and (EF )λ can increase.
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4. Proof of Theorems 1.3 and 1.4. We assume the hypotheses of
Theorem 1.3 hold. Using the notation from the previous section (see (3.1)),
we define the functional Nµ0 : H2

1 (M)→ R by

Nµ0(ω) = N (ω)− µ0

�

M

α(σ)F (ω(σ)) dσg, ω ∈ H2
1 (M).

Proposition 4.1. The set of all global minima of the functional Nµ0

has at least m connected components in the weak topology on H2
1 (M).

Proof. First, for every ω ∈ H2
1 (M) we have

Nµ0(ω) =
1
2
‖ω‖2H2

α
− µ0

�

M

α(σ)F (ω(σ)) dσg

=
1
2

�

M

|∇ω|2 dσg +
�

M

α(σ)F̃µ0(ω(σ)) dσg

≥ ‖α‖1 inf
t∈R

F̃µ0(t).

Moreover, if we consider ω(σ) = ωt̃(σ) = t̃ for a.e. σ ∈ M, where t̃ ∈ R is
a minimum point of the function t 7→ F̃µ0(t), then we have equality in the
previous estimate. Thus,

inf
ω∈H2

1 (M)
Nµ0(ω) = ‖α‖1 inf

t∈R
F̃µ0(t).

Moreover, if ω ∈ H2
1 (M) is not a constant function, then |∇ω|2 = gij∂iω∂jω

> 0 on a positive measure set in M. In this case,

Nµ0(ω) =
1
2

�

M

|∇ω|2 dσg +
�

M

α(σ)F̃µ0(ω(σ)) dσg > ‖α‖1 inf
t∈R

F̃µ0(t).

Consequently, there is a one-to-one correspondence between the sets

Min(Nµ0) = {ω ∈ H2
1 (M) : Nµ0(ω) = inf

ω∈H2
1 (M)

Nµ0(ω)}

and
Min(F̃µ0) = {t ∈ R : F̃µ0(t) = inf

t∈R
F̃µ0(t)}.

Indeed, let θ be the function that associates to every t ∈ R the equivalence
class of those functions which are a.e. equal to t on the whole M. Then
θ : Min(F̃µ0) → Min(Nµ0) is actually a homeomorphism, where Min(Nµ0)
is considered with the relativization of the weak topology on H2

1 (M). On
account of the hypothesis (f3), the set Min(F̃µ0) has at least m ≥ 2 con-
nected components. Therefore, the same is true for the set Min(Nµ0), which
completes the proof.

Since K̃(λ, σ) = λK(σ) + µ0α(σ), the energy functional associated to
(P )λ has the form Eλ = Nµ0 − λF , where F comes from (3.1). In order
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to prove Theorem 1.3, we recall a recent critical point result of Ricceri [7,
Theorem 8].

Theorem 4.1. Let H be a separable and reflexive real Banach space,
and let N ,G : H → R be two sequentially weakly lower semicontinuous and
continuously Gâteaux differentiable functionals, with N coercive. Assume
that the functional N + λG satisfies the Palais–Smale condition for every
λ > 0 small enough and that the set of all global minima of N has at least
m connected components in the weak topology , with m ≥ 2. Then, for every
η > infH N , there exists λ > 0 such that for every λ ∈ (0, λ), the functional
N +λG has at least m+ 1 critical points, m of which are in N−1((−∞, η)).

Proof of Theorem 1.3. Let us choose H = H2
1 (M), N = Nµ0 and G =

−F in Theorem 4.1. Due to Proposition 4.1 and to basic properties of the
functions Nµ0 , F , all the hypotheses of Theorem 4.1 are satisfied.

Then, for every η > max{0, ‖α‖1 mint∈R F̃µ0(t)}(≥ infω∈H2
1 (M)Nµ0(ω)})

there is a λ̃η > 0 such that for every λ ∈ (0, λ̃η) the function Nµ0−λF has at
least m+1 critical points; let us denote them by ω1,η

λ , . . . , ωm+1,η
λ ∈ H2

1 (M).
Clearly, they are solutions of problem (P )λ, which proves (a).

We know in addition that m elements among ω1,η
λ , . . . , ωm+1,η

λ belong to
the set N−1

µ0
((−∞, η)). Let ω̃ be such an element, i.e.,

(4.1) Nµ0(ω̃) =
1
2
‖ω̃‖2H2

α
− µ0

�

M

α(σ)F (ω̃(σ)) dσg < η.

Assume that (f q,c1 ) holds. Then |F (t)| ≤ c
q+1 |t|

q+1 for every t ∈ R. By the
Hölder inequality, one has

(4.2)
�

M

α(σ)|ω̃(σ)|q+1 dσg ≤ ‖α‖(1−q)/21 ‖ω̃‖q+1
H2
α
.

Since η > 0, the equation

(4.3)
1
2
t2 − µ0c‖α‖(1−q)/21

q + 1
|t|q+1 − η = 0

always has a positive solution. On account of (4.1) and (4.2), the number
‖ω̃‖H2

α
is less than the greatest solution tη,q,c > 0 of (4.3). It remains to

apply (2.1) to prove (b).

Proof of Theorem 1.4. It follows directly by Theorem 1.3.
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