
TOPOLOGICAL METHODS

IN

NONLINEAR ANALYSIS

Vol. 59, No. 1 March 2022

UNBALANCED FRACTIONAL ELLIPTIC PROBLEMS

WITH EXPONENTIAL NONLINEARITY:

SUBCRITICAL AND CRITICAL CASES

Deepak Kumar — Vicenţiu D. Rădulescu — Konijeti Sreenadh
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Abstract. This paper deals with the qualitative analysis of solutions to
the following (p, q)-fractional equation:

(−∆)s1p u+ (−∆)s2q u+ V (x)
(
|u|p−2u+ |u|q−2u

)
= K(x)

f(u)

|x|β
in RN ,

where 1 < q < p, 0 < s2 ≤ s1 < 1, ps1 = N , β ∈ [0, N), and V,K : RN →
R, f : R→ R are continuous functions satisfying some natural hypotheses.
We are concerned both with the case when f has a subcritical growth and
with the critical framework with respect to the exponential nonlinearity.

By combining a Moser–Trudinger type inequality for fractional Sobolev
spaces with Schwarz symmetrization techniques and related variational and

topological methods, we prove the existence of nonnegative solutions.
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The research of Vicenţiu D. Rădulescu was supported by a grant of the Romanian Ministry

of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI, project number PCE

137/2021, within PNCDI III.

277



Author’s personal copy
278 D. Kumar — V.D. Rădulescu — K. Sreenadh

1. Introduction

In this paper, we are concerned with the study of a nonlinear nonlocal prob-

lem whose features are the following:

(a) the presence of several differential operators with different growth, which

generates a double phase associated energy;

(b) the reaction combines the multiple effects generated by a Hardy singular

potential and a term with subcritical or critical growth with respect to

the exponential nonlinearity;

(c) due to the unboundedness of the domain, Cerami sequences do not have

the compactness property;

(d) we overcome the lack of compactness by exploiting the special properties

of the associated potential;

(e) the proofs combine refined techniques, including a Moser–Trudinger type

inequality for fractional Sobolev spaces and Schwarz symmetrization

tools.

Summarizing, this paper is concerned with the refined qualitative analysis of

solutions for a class of singular nonlocal problems driven by differential operators

with unbalanced growth. The arguments cover both the subcritical and critical

cases.

We recall in what follows some basic contributions to the study of unbalanced

integral functionals and double phase problems. We first refer to the pioneering

contributions of Marcellini [30], [31], [32] who studied lower semicontinuity and

regularity properties of minimizers of certain quasiconvex integrals. Problems of

this type arise in nonlinear elasticity and are connected with the deformation of

an elastic body, cf. Ball [8], [9]. We also refer to Fusco and Sbordone [22] for the

study of regularity of minima of anisotropic integrals.

In order to recall the roots of double phase problems, let us assume that Ω

is a bounded domain in Rn (n ≥ 2) with smooth boundary. If u : Ω→ Rn is the

displacement and if Du is the n × n matrix of the deformation gradient, then

the total energy can be represented by an integral of the type

(1.1) I(u) =

∫
Ω

f(x,Du(x)) dx,

where the energy function f = f(x, ξ) : Ω×Rn×n → R is quasiconvex with respect

to ξ. One of the simplest examples considered by Ball is given by functions f of

the type

f(ξ) = g(ξ) + h(det ξ),

where det ξ is the determinant of the n × n matrix ξ, and g, h are nonnegative

convex functions, which satisfy the growth conditions

g(ξ) ≥ c1|ξ|p, lim
t→+∞

h(t) = +∞,
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where c1 is a positive constant and 1 < p < n. The condition p < n is necessary

to study the existence of equilibrium solutions with cavities, that is, minima of

the integral (1.1) that are discontinuous at one point where a cavity forms; in fact,

every u with finite energy belongs to the Sobolev space W 1,p(Ω,Rn), and thus

it is a continuous function if p > n. In accordance with these problems arising

in nonlinear elasticity, Marcellini [30], [31] considered continuous functions f =

f(x, u) with unbalanced growth that satisfy

c1 |u|p ≤ |f(x, u)| ≤ c2 (1 + |u|q) for all (x, u) ∈ Ω× R,

where c1, c2 are positive constants and 1 ≤ p ≤ q. Regularity and existence

properties of solutions to nonlinear elliptic equations with p, q-growth conditions

were studied in [31].

The study of non-autonomous functionals characterized by the fact that the

energy density changes its ellipticity and growth properties according to the

point has been continued in a series of remarkable papers by Mingione et al. [10],

[11], [12]. These contributions are in relationship with the works of Zhikov [48],

in order to describe the behavior of phenomena arising in nonlinear elasticity. In

fact, Zhikov intended to provide models for strongly anisotropic materials in the

context of homogenisation. In particular, Zhikov considered the following model

of functional in relationship to the Lavrentiev phenomenon:

Pp,q(u) :=

∫
Ω

(|∇u|p + a(x)|∇u|q) dx, 0 ≤ a(x) ≤ L, 1 < p < q.

In this functional, the modulating coefficient a(x) dictates the geometry of the

composite made by two differential materials, with hardening exponents p and q,

respectively.

The functional Pp,q falls in the realm of the so-called functionals with non-

standard growth conditions of (p, q)-type, according to Marcellini’s terminology.

This is a functional of the type in (1.1), where the energy density satisfies

|ξ|p ≤ |f(x, ξ)| ≤ |ξ|q + 1, 1 ≤ p ≤ q.

Another significant model example of a functional with (p, q)-growth studied by

Mingione et al. is given by

u 7→
∫

Ω

|∇u|p log(1 + |∇u|) dx, p ≥ 1,

which is a logarithmic perturbation of the p-Dirichlet energy.

Recent contributions to the study of nonlinear problems with nonstandard

growth can be found in [5], [7], [28], [34], [39]–[41] (local case) and [6], [25], [47]

(nonlocal case). We also refer to [14], [17] for the study of nonlinear fractional

Schrödinger equations involving nonlinearities with critical exponential growth.
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2. Statement of the problem and abstract setting

In this paper, we are concerned with the existence of solutions to the following

singular (p, q)-fractional equation:

(P) (−∆)s1p u+ (−∆)s2q u+ V (x)
(
|u|p−2u+ |u|q−2u

)
= K(x)

f(u)

|x|β
in RN ,

where 1 < q < p, 0 < s2 ≤ s1 < 1, 2 ≤ N = ps1, β ∈ [0, N), and V,K : RN → R,

f : R → R are continuous functions satisfying some natural assumptions. Let

(−∆)sp denote the fractional p-Laplace operator defined as

(−∆)spu(x) = 2 lim
ε→0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(y)− u(x))

|x− y|N+ps
dy.

Problems involving the fractional Laplacian, as in (P), arise from a wide range

of real world applications such as optimization, phase transition, anomalous dif-

fusion, image processing, soft thin films, conservation laws and water waves,

for a list of more bibliography and other details on this topic we refer to [38].

The main motivation to study problems with leading operators given in (P)

comes when s1 = s2 = 1, which is the local case. Here the leading operator,

known as (p, q)-Laplacian, arises while studying the stationary solutions of gen-

eral reaction-diffusion equation

(2.1) ut = div[A(u)∇u] + r(x, u),

where A(u) = |∇u|p−2 + |∇u|q−2.

Problem (2.1) has applications to biophysics, plasma physics and chemical

reactions, where u corresponds to the concentration term, the first term on the

right-hand side represents diffusion with a diffusion coefficient A(u) and the

second term is the reaction, which relates to sources and loss processes. For

more details, readers are referred to [29].

In the local case, that is, when s1 = s2 = 1, problem (P) is motivated by

the famous Moser–Trudinger inequality. This differential inequality is important

because of the fact that W 1,N (RN ) is embedded into Lp(RN ) for all N ≤ p <∞
but not in L∞(Ω), hence in this case the critical nonlinearity is considered to

have exponential type growth condition. Problems of this type were studied

by several authors; see e.g. [1], [15], [24]. As far as problems with singular

exponential nonlinearity are concerned, Adimurthi and Sandeep [2] proved that

the embedding

W 1,N
0 (Ω) 3 u 7→ |x|−βeα|u|

N/(N−1)

∈ L1(Ω)

is compact if α/αN + β/N < 1 and is continuous if α/αN + β/N = 1. Using

this result they studied problems having singular exponential-type nonlinearity

in a bounded domain.
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In the case of the entire Euclidean space, Adimurthi and Yang [3] considered

the following singular problem

−∆Nu+ V (x)|u|N−2u =
f(x, u)

|x|β
+ εh(x) in RN ,

where among other assumptions, f has exponential growth condition and h is in

the dual ofW 1,N (RN ). Here, the authors established a singular Moser–Trudinger

type inequality for whole RN and obtained the existence of a mountain pass

solution when ε > 0 is small. Subsequently, Yang [45] and Goyal and Sree-

nadh [26] studied similar singular problems in the whole RN . In the latter work,

the authors proved existence and multiplicity properties of solutions by using

the Nehari manifold method.

Regarding the problems involving operators with unbalanced growth condi-

tions, we mention the recent work of Figueiredo and Nunes [19]. Using Nehari

manifold analysis the authors proved the existence of a solution for (N, p)-type

equations in bounded domains. In [21], Fiscella and Pucci studied the following

(N, p)-equation:

−∆pu−∆Nu+ |u|p−2u+ |u|N−2u = λh(x)uq−1
+ + γf(x, u) in RN ,

where 1 < q, p < N < ∞, N ≥ 2, h(x) ≥ 0, λ, γ > 0 are parameters and

the function f has exponential type growth condition. In this work the authors

proved the existence of multiple solutions for small λ > 0 and large γ. We also

refer to Figueiredo and Rădulescu [20] for problems with exponential critical

growth driven by the mean curvature operator. Multi-bump solutions for the

nonlinear magnetic Schrödinger equation with exponential critical growth have

been studied by Ji and Rădulescu [27].

In the nonlocal setting, we mention the work of Giacomoni et al. [23]. Here,

the authors proved existence of multiple solutions using Nehari manifold analysis

for the 1/2-Laplacian problem in bounded domains. Subsequently, Zhang [46]

established Moser–Trudinger type inequality in fractional Sobolev–Slobodeck̆ı

spaces W s,p(RN ) and proved existence and multiplicity of solutions for the fol-

lowing fractional Laplacian equation

(−∆)spu+ V (x)|u|p−2u = f(x, u) + εh(x) in RN ,

when ε > 0 is sufficiently small. Recently, Mingqi, Rădulescu and Zhang [35],

[36] and Xiang, Zhang and Repovš [44] studied fractional Kirchhoff problems

with exponential nonlinearity.

Problems of the type (P) involving potential K and exponential-type non-

linearity have been studied by do Ó et al. [18] for the case N = 1 and s = 1/2.

In this work, authors considered the following problem:

(−∆)1/2u+ u = K(x)g(u) in R.



Author’s personal copy
282 D. Kumar — V.D. Rădulescu — K. Sreenadh

Under certain conditions on K, the authors proved compactness results, which

were absent due to unboundedness of the domain, and obtained existence of

a nontrivial nonnegative solution in the cases when g possesses subcritical or

critical growth condition. Subsequently, this work was generalized by Miyagaki

and Pucci [37] for Kirchhoff problems in the one-dimensional case.

3. Main results: subcritical and critical cases

The main purpose in the present paper is to obtain the existence of nontrivial

nonnegative solutions to (P) under the following assumptions on V,K : RN → R.

(i) The function V is continuous and there exists a constant V0 > 0 such

that V (x) ≥ V0 > 0 for all x ∈ RN .

(ii) The function K satisfies K ∈ C(RN ) ∩ L∞(RN ) and is positive in RN .

(iii) For any sequence {An} of measurable sets of RN with |An| ≤ R, for all

n ∈ N and some R > 0, the following holds

(3.1) lim
r→∞

∫
An∩Bc

r(0)

K(x) dx = 0 uniformly w.r.t. n ∈ N.

To define the natural function space that contains all the solutions of prob-

lem (P), we first recall some basic fractional Sobolev spaces.

For 1 < p <∞ and 0 < s < 1, the fractional Sobolev space is defined as

W s,p(RN ) =
{
u ∈ Lp(RN ) : [u]s,p < +∞

}
endowed with the norm ‖u‖W s,p(RN ) = ‖u‖Lp(RN ) + [u]s,p, where

[u]ps,p =

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
dx dy.

Let W̃ s1,p
V (RN ) be the space defined as

W̃ s1,p
V (RN ) :=

{
u ∈W s1,p(RN ) :

∫
RN

V (x)|u(x)|p dx <∞
}
,

which is a reflexive Banach space when endowed with the norm

‖u‖s1,p =

(
[u]ps1,p +

∫
RN

V (x)|u(x)|p dx
)1/p

and analogously we define W̃ s2,q
V (RN ). From [43], we have the following con-

tinuous embedding result

(3.2) W̃ s1,p
V (RN ) ↪→W s1,p(RN ) ↪→ Lm(RN ), for all m ≥ p = Ns1.

Let X := W̃ s1,p
V (RN ) ∩ W̃ s2,q

V (RN ) endowed with the norm

‖u‖ := ‖u‖s1,p + ‖u‖s2,q.

In order to deal with problem (P), we prove the following singular version of

the Moser-Trudinger inequality for fractional Sobolev spaces in whole RN . For
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this we first obtain a related inequality for bounded domains in the spirit of

Adimurthi and Sandeep [2, Theorem 2.1]. Then, using the Schwarz symmetriza-

tion technique we prove our theorem. For convenience, we denote

Φα(t) = eα|t|
N/(N−s)

−
∑

0≤j<N/s−1
j∈N

αj

j!
|t|jN/(N−s), for t ∈ R.

We state as follows our first result.

Theorem 3.1. Let N ≥ 2, s ∈ (0, 1) and p = N/s. For all α > 0, β ∈ [0, N)

and u ∈W s,p(RN ), the following inequality holds∫
RN

Φα(u)

|x|β
dx <∞.

Furthermore, for all α <
(
1− β/N

)
αN,s and τ > 0,

sup

{∫
RN

Φα(u)

|x|β
dx : u ∈W s,p(RN ), ‖u‖s,p,τ ≤ 1

}
<∞,

where

‖u‖s,p,τ =

(
[u]ps,p + τ

∫
RN

|u|p
)1/p

and αN,s > 0 is defined in Section 4 (see Theorem 4.3).

The function f is said to satisfy a subcritical growth condition with respect

the exponential nonlinearity if it satisfies (f2) (see below). We say that the growth

is critical if f satisfies (f2)′. Furthermore, we assume the following hypotheses:

(f1) The function f : R→ [0,∞) is continuous with f(t) = 0 for all t ≤ 0 and

lim
t→0+

f(t)

tp−1
= 0.

(f2) (Subcritical growth condition) For all α > 0, the following holds

lim
t→∞

f(t)

Φα(t)
= 0.

(f3) The map t 7→ t1−pf(t) is nondecreasing in (0,∞) and

lim
t→∞

t−pF (t) =∞, where F (t) =

∫ t

0

f(τ) dτ.

For the critical growth condition, we assume that f satisfies the following

hypotheses in addition to (f1):

(f2)′ (Critical growth) There exists α0 > 0 such that

lim
t→∞

f(t)

Φα(t)
= 0 for all α > α0 and lim sup

t→∞

f(t)

Φα(t)
=∞ for all α < α0.

(f3)′ The map t 7→ t1−pf(t) is nondecreasing in (0,∞) and there exists δ > p

such that F (t) ≥ Cδtδ for all t ∈ R+, for Cδ > 0 sufficiently large (a lower

bound is given in Lemma 4.11).
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(AR) (Ambrosetti–Rabinowitz-type condition) There exists ν > p such that

νF (t) ≤ tf(t) for all t ∈ R+.

Due to the unbounded nature of the domain, Cerami sequences do not have

the compactness property. We restore this compactness by exploiting the special

property of the potential K, namely (3.1) (see Lemma 4.6). This helps us to

prove the strong convergence of Cerami sequences and hence to obtain nontrivial

solutions. The existence of such sequences is obtained by using the mountain pass

lemma. In the subcritical case, we do not assume the Ambrosetti–Rabinowitz

type condition on f , which makes difficult to prove the boundedness of Cerami

sequences. The non-homogeneous nature of the leading operator in (P) creates

additional difficulty to establish the boundedness of the Cerami sequence and its

strong convergence result.

We now state our main theorem, which to the best of our knowledge, is new

even for the case β = 0.

Theorem 3.2. There exists a nonnegative nontrivial solution of problem (P) in

the following cases:

(a) if (f1), (f2) and (f3) are satisfied;

(b) if (f1), (f2)′, (f3)′ and (AR) are satisfied, provided that Cδ appearing

in (f3)′, is sufficiently large.

Remark 3.3. We remark that the results of Theorems 3.1 and 3.2 are valid

for equations of the type (P) involving a more general class of operators, for

instance, operators of the form

LKr,su(x) = 2 lim
ε→0

∫
RN\Bε(x)

|u(x)− u(y)|r−2(u(y)− u(x))Kr,s(x− y) dy,

where (r, s) ∈ {(p, s1), (q, s2)} with 1 < q < p = N/s1 and 0 < s2 ≤ s1 < 1.

Here, the singular kernel Kr,s : RN \ {0} → R+ is such that

(a) mKr,s ∈ L1(RN ), where m(x) := min{1, |x|r}.
(b) There exist cp > 0 and cq ≥ 0 such that Kp,s1(x) ≥ cp|x|−(N+ps1) and

Kq,s2(x) ≥ cq|x|−(N+qs2) for x ∈ RN \ {0}.
The corresponding energy space is defined as X := W̃ s1,p

V (RN ) ∩ W̃ s2,q
V (RN ),

where in the definition of W̃ s,r
V (RN ), the term |x − y|−(N+rs) is replaced by

Kr,s(x − y). For example, one can take Kr,s(x) = ar(x)|x|−(N+rs), where

ar : RN → R are non-negative bounded functions, for r ∈ {p, q}, where ap is

bounded away from zero.

Notation. We denote A1 : W s1,p(RN )×W s1,p(RN )→ R

A1(u, v) =

∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps1
dx dy,
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and analogously A2 : W s2,p(RN )×W s2,p(RN )→ R.

Definition 3.4. A function u ∈ X is said to be a solution of problem (P), if for

all v ∈ X

A1(u, v) +A2(u, v) +

∫
RN

V (x)
(
|u|p−2 + |u|q−2

)
uv dx−

∫
RN

K(x)f(u)v

|x|β
dx = 0.

The Euler functional J : X → R associated to the problem (P) is defined as

J (u) =
1

p
‖u‖ps1,p +

∫
RN

V (x)|u|p dx+
1

q
‖u‖qs2,q

+

∫
RN

V (x)|u|q dx−
∫
RN

K(x)F (u(x))

|x|β
dx.

4. Some technical results

In this section, we first establish some compact embedding results for the

space X. Let us define the following weighted Lebesgue space

LpV (RN ) :=

{
u : RN → R : u measurable

and ‖u‖pp,V =

∫
RN

V (x)|u(x)|p dx <∞
}
,

which is a Banach space when equipped with the norm ‖ · ‖p,V , for 0 < V

in C(RN ).

Remarks 4.1. (a) Due to the fact 0 ≤ β < N , one can easily get that the

embedding X ↪→ Lm(RN ; |x|−β) is continuous for all m ≥ p, that is, for all

m ≥ p there exists Cm > 0 such that for all u ∈ X,∫
RN

|u(x)|m|x|−β dx ≤ Cm‖u‖m.

(b) Let Ω ⊂ RN be a bounded domain. Arguments similar to that of [18,

Remark 2.1] imply that X is compactly embedded into Lm(Ω). Indeed, by [16,

Theorem 7.1] we have that W s1,p(RN ) is compactly embedded into Lp(Ω) and

then using (3.2) and a standard interpolation argument, we can prove that X is

compactly embedded into Lm(Ω) for all m ≥ p. The aforementioned compact

embedding result with a straightforward verification, yields that X is compactly

embedded into Lm(Ω; |x|−β) for all m ≥ p.

Proposition 4.2. The space X is compactly embedded into LmK(RN ) for all

m ∈ (p,∞).

Proof. The proof given here is an adaptation of the proof of [37, Proposition 2.1]

for N = 1. For the convenience of the reader, we provide only a sketch of the

proof. For fixed r > m > p and ε > 0, there exist τ0 = τ0(ε) and τ1 = τ1(ε) with
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0 < τ0 < τ1, C = C(ε) > 0 and C0 > 0 depending only on K, such that for all

x ∈ RN and t ∈ R,

(4.1) K(x)|t|m ≤ εC0

(
V (x)|t|p + |t|r

)
+ CK(x)χ[τ0,τ1](|t|)|t|m.

Let {un} ⊂ X be a bounded sequence, then by reflexivity of X, there exists

u ∈ X such that un ⇀ u weakly in X. From the continuous embedding of X

into Lr(RN ) and boundedness of the sequence {‖un‖}, for some M > 0, we have

‖un‖pp,V ≤M and ‖un‖γγ ≤M for all n ∈ N and γ ∈ {m, r}.

Therefore, Q(un) := C0

(
‖un‖pp,V + ‖un‖rr

)
≤ 2C0M for all n ∈ N. Set

Anε :=
{
x ∈ RN : τ0 ≤ |un(x)| ≤ τ1

}
.

Then, by the fact that {un} is bounded in Lm(RN ), it is easy to observe that

{|Anε |} is bounded with regard to n. Again, by (3.1), for ε > 0, there exists

rε > 0 such that ∫
An

ε∩Bc
rε

(0)

K(x) dx <
ε

Cτm1
, for all n ∈ N.

Using this together with the observation that Q(un) is bounded, (4.1) gives us

(4.2)

∫
Bc

rε
(0)

K(x)|un|m ≤ 2C0Mε+ Cτm1

∫
An

ε∩Bc
rε

(0)

K(x) dx < (2C0M + 1)ε,

for all n ∈ N. Moreover, by compact embedding of the space X into Lγ(Brε(0))

for all γ ≥ p (see Remark 4.1), we get

(4.3) lim
n→∞

∫
Brε (0)

K(x)|un|m =

∫
Brε (0)

K(x)|u|m.

Combining relations (4.2) and (4.3), we obtain

lim
n→∞

∫
RN

K(x)|un|m =

∫
RN

K(x)|u|m.

From the above equation, it is easy to deduce that un → u in LmK(RN ), as

n→∞. �

We state the following Moser–Trudinger type inequality for fractional Sobolev

spaces in case of bounded domain.

Theorem 4.3 ([42], [33]). Let Ω be a bounded domain in RN (N ≥ 2) with

Lipschitz boundary, and s1 ∈ (0, 1), ps1 = N . Let W̃ s1,p
0 (Ω) be the space defined

as the completion of C∞c (Ω) with respect to ‖ · ‖W s1,p(RN ) norm. Then, there

exists αN,s1 > 0 such that, for α ∈ [0, αN,s1),

sup

{∫
Ω

exp
(
α|u|N/(N−s1)

)
: u ∈ W̃ s1,p

0 (Ω), ‖u‖p,s1 ≤ 1

}
<∞.
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Moreover,

sup

{∫
Ω

exp
(
α|u|N/(N−s1)

)
: u ∈ W̃ s1,p

0 (Ω), ‖u‖p,s1 ≤ 1

}
=∞

for α ∈ (α∗N,s1 ,∞), where

α∗N,s1 = N

(
2(NωN )2 Γ(p+ 1)

N !

∞∑
k=0

(N + k − 1)!

k!

1

(N + 2k)p

)s1/(N−s1)

,

with ωN as the volume of the N -dimensional unit ball.

Similar to the result of [2], we prove the following singular Moser–Trudinger

inequality for fractional Sobolev spaces in bounded domains, which will help us

to prove our Theorem 3.1.

Lemma 4.4. Let Ω ⊂ RN (N ≥ 2) be a bounded domain with Lipschitz boundary

and let u ∈W s1,p
0 (Ω). Then, for every α > 0 and β ∈ [0, N),∫

Ω

eα|u|
N/(N−s1)

|x|β
dx <∞.

Moreover, if α/αN,s1 + β/N < 1, then

(4.4) sup
‖u‖Ws1,p(Ω)≤1

∫
Ω

eα|u|
N/(N−s1)

|x|β
dx <∞.

Proof. Let t > 1 be such that βt < N , then using Hölder inequality and

Theorem 4.3, we deduce that∫
Ω

eα|u|
N/(N−s1)

|x|β
dx ≤

(∫
Ω

eαt
′|u|N/(N−s1)

dx

)1/t′(∫
Ω

1

|x|βt
dx

)1/t

<∞.

For the second part of the theorem, we first observe that there exist α̃ ∈
(α, αN,s1) and t > 1 such that α/α̃ + βt/N = 1 (this can be done by first

choosing α̃ < αN,s1 such that α/αN,s1 + β/N < α/α̃ + β/N < 1). Now, by

Hölder inequality, we have

sup
[u]s1,p≤1

∫
Ω

eα|u|
N/(N−s1)

|x|β
dx

≤ sup
[u]s1,p≤1

(∫
Ω

eα̃|u|
N/(N−s1)

dx

)α/α̃(∫
Ω

1

|x|N/t

)βt/N
,

since α̃ < αN,s1 and t > 1, by Theorem 4.3, we get that the right-hand side

quantity is finite. �

Before proving Theorem 3.1, we state the following radial lemma.
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Lemma 4.5. Let N ≥ 2 and u ∈ Lp(RN ), with 1 ≤ p < ∞, be a radially

symmetric non-increasing function. Then

|u(x)| ≤ |x|−N/p
(

N

ωN−1

)1/p

‖u‖p, for x 6= 0,

where ωN−1 is the (N − 1) dimensional measure of (N − 1) sphere.

Proof of of Theorem 3.1. Without loss of generality, we assume u ≥ 0 and

let u∗ be the Schwarz symmetrization of u. Then by ([4], [13]), for any continuous

and increasing function G : [0,∞)→ [0,∞), there holds∫
RN

G(u∗(x)) dx =

∫
RN

G(u(x)) dx.

Moreover, for all u ∈W s,p(RN ) and 1 ≤ m <∞, u∗ ∈W s,p(RN ) with

(4.5)

∫
RN

∫
RN

|u∗(x)− u∗(y)|p

|x− y|2N
dx dy ≤

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|2N
dx dy

and ‖u∗‖m = ‖u‖m. Therefore, by the Hardy–Littlewood inequality for sym-

metrization and the fact that
(
1/|x|β

)∗
= 1/|x|β , we get

(4.6)

∫
RN

Φα(u)

|x|β
dx ≤

∫
RN

Φα(u∗)

|x|β
dx.

Fix R > 0 (to be specified later), we have

(4.7)

∫
|x|>R

Φα(u∗)

|x|β
dx =

∫
|x|>R

1

|x|β
∞∑
j=k0

αj

j!
|u∗|jp

′
dx,

where k0 is the smallest integer such that k0 ≥ p − 1 and p′ = p/(p − 1) is the

Hölder conjugate of p.

Now we consider the following cases.

Case 1. For all j ≥ k0 > p− 1. Using Lemma 4.5 and (4.5), we obtain∫
|x|>R

|u∗|jp′

|x|β
≤
∫
|x|>R

|x|−Nj/(p−1)−β
(

N

ωN−1

)j/(p−1)

‖u∗‖jp
′

p(4.8)

≤
(

N

ωN−1

)j/(p−1)

‖u‖jp
′

p RN−Nj/(p−1)−β .

Case 2. For k0 = p− 1. Using (4.5), we obtain

(4.9)

∫
|x|>R

|u∗|k0p
′

|x|β
≤
∫
|x|>R

|u∗(x)|p

|x|β
≤ 1

Rβ

∫
RN

|u∗(x)|p dx =
‖u‖pp
Rβ

.

Then, coupling (4.8) and (4.9) in (4.7), we get∫
|x|>R

Φα(u∗)

|x|β
≤ 1

Rβ

(
Cα‖u‖pp+

∞∑
j=k0+1

αj

j!

(
N

ωN−1

)j/(p−1)

‖u‖jp
′

p RN−Nj/(p−1)

)
.



Author’s personal copy
Unbalanced Fractional Elliptic Problems 289

For fixed u ∈W s,p(RN ), we choose R > 0 such that

R−N/(p−1)

(
N

ωN−1

)1/(p−1)

‖u‖p
′

p = 1,

this implies

(4.10)

∫
|x|>R

Φα(u∗)

|x|β
≤ 1

Rβ
C(N, s, α, ‖u‖p) <∞.

Next, for p′ = N/(N − s), there exists B = B(N, s) > 0 such that for all ε > 0,

(4.11) (u+ v)p
′
≤ up

′
+Bup

′−1v + vp
′
, and uγvγ ≤ εu+ ε−γ/γ

′
v

for all u, v ≥ 0 and γ, γ′ > 0 satisfying γ + γ′ = 1. For fixed x0 ∈ RN with

|x0| = 1, define

v(x) =

u∗(x)− u∗(Rx0) if x ∈ BR(0),

0 if x ∈ RN \BR(0).

Then, since u∗ is radially decreasing function, we have v ≥ 0 and by [44, Lem-

ma 2.2], [v]ps,p ≤ [u∗]ps,p ≤ [u]ps,p < ∞. Therefore, v ∈ W s,p(RN ) with v = 0

almost everywhere in RN \BR(0). Using (4.11), for x ∈ BR(0), we deduce that

|u∗(x)|p
′

= |v + u∗(Rx0)|p
′
≤ vp

′
+Bvp

′−1u∗(Rx0) + u∗(Rx0)p
′
,

vp
′−1u∗(Rx0) = (vp

′
)(p′−1)/p′(u∗(Rx0)p

′
)1/p′≤ ε

A
vp
′
+

(
ε

A

)−1/(p′−1)

u∗(Rx0)p
′
.

Thus,

|u∗(x)|p
′
≤ (1 + ε) vp

′
+ C(ε, s,N)u∗(Rx0)p

′
,

where C(ε, s,N) = 1 +
(
A/ε

)1/(p′−1)
. Therefore, using Lemma 4.4, we obtain

(4.12)

∫
|x|≤R

Φα(u∗)

|x|β

≤
∫
|x|≤R

eα|u
∗|p
′

|x|β
≤ eαC(ε,s,N)|u∗(Rx0)|p

′
∫
|x|≤R

eα(1+ε)|v|p
′

|x|β
<∞.

This together with (4.10) and (4.6) proves the first part of the theorem.

For the second part, we consider u ∈W s,p(RN ) such that ‖u‖s,p,τ ≤ 1. From

(4.8), we have∫
|x|>R

|u∗|jp′

|x|β
≤
(

N

ωN−1

)j/(p−1)

‖u‖jp
′

p RN−Nj/(p−1)−β(4.13)

≤ RN−β
(

N

ωN−1

)j/(p−1)

τ−j/(p−1)R−Nj/(p−1),
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where in the last inequality we used the fact ‖u‖s,p,τ ≤ 1. Choosing R > 0 such

that

R−N
N

ωN−1τ
= 1,

then, on account of (4.13), we deduce from (4.7) that

(4.14)

∫
|x|>R

Φα(u∗)

|x|β
≤ RN−β

∞∑
j=k0

αj

j!
≤ C(N, s, α, β, τ).

Now, due to the fact that ‖u‖s,p,τ ≤ 1 and v(x) ≤ u∗(x) in BR(0), we have

‖v‖ps,p,τ = [v]ps,p + τ‖v‖pp ≤ [u∗]ps,p + τ‖u∗‖pp ≤ [u]ps,p + τ‖u‖pp ≤ 1,

and by using the radial lemma 4.5, we obtain

u∗(Rx0)p
′
≤ |Rx0|−N/(p−1)

(
N

ωN−1

)1/(p−1)

‖u∗‖p
′

p

≤ R−N/(p−1)

(
N

ωN−1τ

)1/(p−1)

.

Therefore, from (4.12) and (4.4), we get

(4.15)

∫
|x|≤R

Φα(u∗)

|x|β

≤ eC(ε,s,N,τ,α,β)

∫
|x|≤R

1

|x|β
exp

{
α(1 + ε)‖v‖p

′

s,p,τ

∣∣∣∣ v

‖v‖s,p,τ

∣∣∣∣p′}
≤ C(N, s, τ, α, β),

if we choose ε > 0 such that α(1 + ε) <
(
1− β/N

)
αN,s.

Taking into account (4.14), (4.15) and (4.6), we complete the proof of the

second part of the theorem. �

Next, we establish the compactness result under the assumption that (f1)

through (f3) hold, that is, the subcritical case.

Lemma 4.6. Let {un} ⊂ X be a sequence such that un ⇀ u weakly in X, for

some u ∈ X. Then up to a subsequence, the following properties hold :

lim
n→∞

∫
RN

K(x)|x|−βF (un(x)) dx =

∫
RN

K(x)|x|−βF (u(x))dx,

lim
n→∞

∫
RN

K(x)|x|−βf(un(x))un(x) dx =

∫
RN

K(x)|x|−βf(u(x))u(x) dx

lim
n→∞

∫
RN

K(x)|x|−βf(un(x)) v(x) dx =

∫
RN

K(x)|x|−βf(u(x)) v(x) dx,

for all v ∈ X.
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Proof. Set M = sup
n
‖un‖. For

0 < α <

(
1− β

N

)
αN,s1

MN/(N−s1)
,

from (f1) and (f2), we get

lim sup
t→∞

f(t)t

Φα(t)
= lim sup

t→∞

F (t)

Φα(t)
= 0, and lim sup

t→0

f(t)t

|t|p
= lim sup

t→0

F (t)

|t|p
= 0.

Therefore, for ε > 0 and δ > p, there exist ρ0 = ρ0(ε), ρ1 = ρ1(ε) with 0 < ρ0 <

ρ1, C = Cε > 0 and C0 > 0 depending only on K, such that for all x ∈ RN and

t ∈ R, the following hold

(4.16)
|K(x)F (t)| ≤ εC0

(
|t|p + Φα(t)

)
+ CK(x)χ[ρ0,ρ1](|t|)|t|δ,

|K(x)f(t)t| ≤ εC0

(
|t|p + Φα(t)

)
+ CK(x)χ[ρ0,ρ1](|t|)|t|δ.

By the embedding results of X into Lm(RN ) (and hence into Lm(RN ; |x|−β), for

0 ≤ β < N), we have

(4.17) sup
n

∫
RN

|un|p

|x|β
≤ M̃,

for some M̃ ≥M > 0. Now, for

α <

(
1− β

N

)
αN,s1

MN/(N−s1)
,

we have

α‖un‖N/(N−s1) ≤ αMN/(N−s1) < (1− β/N)αN,s1 ,

therefore, by Theorem 3.1 and the fact that Φα is increasing with respect to α,

we obtain

(4.18) sup
n

∫
RN

Φα(un)

|x|β
≤ sup

n

∫
RN

ΦαMN/(N−s1)(un/‖un‖)
|x|β

≤ M̃.

Let Anε :=
{
x ∈ RN : ρ0 ≤ |un(x)| ≤ ρ1

}
. Then, as {|Anε |} is bounded with

respect to n, using (3.1), we deduce that

lim
r→∞

∣∣∣∣ ∫
An

ε∩Bc
r(0)

K(x)

|x|β
dx

∣∣∣∣ ≤ lim
r→∞

1

rβ

∣∣∣∣ ∫
An

ε∩Bc
r(0)

K(x) dx
∣∣ = 0,

uniformly with respect to n ∈ N. Therefore, for ε > 0, there exists Rε > 0 such

that

(4.19)

∫
An

ε∩Bc
Rε

(0)

K(x)

|x|β
dx <

ε

Cρδ1
for all n ∈ N.
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Taking into account (4.16) through (4.19), we obtain

(4.20)

∫
Bc

Rε
(0)

K(x)F (un(x))

|x|β
dx

≤ 2C0M̃ε+ Cρδ1

∫
An

ε∩Bc
Rε

(0)

K(x)

|x|β
dx < (2C0M̃ + 1)ε,∫

Bc
Rε

(0)

K(x)f(un(x))un(x)

|x|β
dx

≤ 2C0M̃ε+ Cρδ1

∫
An

ε∩Bc
Rε

(0)

K(x)

|x|β
dx < (2C0M̃ + 1)ε,

for all n ∈ N. Furthermore, from (f1) and (f2), it is easy to observe that

|f(t)| ≤ C1

(
|t|p + Φα(t)

)
, for all t ∈ R,

where C1 > 0 is a constant. Therefore, using the fact that K ∈ L∞(RN ), we get∣∣∣∣ ∫
BRε (0)

K(x)f(un)(un − u)

|x|β
dx

∣∣∣∣
≤ C

(∫
BRε (0)

|un|p|un − u|
|x|β

+

∫
BRε (0)

Φα(un)|un − u|
|x|β

)
.

We choose γ > 1 close to 1 such that

γ′ > p and γα <

(
1− β

N

)
αN,s1

MN/(N−s1)
.

Using Hölder’s inequality, Theorem 3.1 and the fact that {‖un‖} is bounded, we

deduce that∣∣∣∣ ∫
BRε (0)

K(x)f(un)(un − u)

|x|β
dx

∣∣∣∣
≤ C

[(∫
RN

|un|γp

|x|β

)1/γ

+

(∫
RN

Φα(un)γ

|x|β

)1/γ](∫
BRε (0)

|un − u|γ
′

|x|β

)1/γ′

≤ C
(∫

BRε (0)

|un − u|γ
′

|x|β

)1/γ′

→ 0

as n → ∞, where in the last line we have used the compact embedding result

of X as in Remark 4.1. Hence,

lim
n→∞

∫
BRε (0)

K(x)f(un)un
|x|β

dx =

∫
BRε (0)

K(x)f(un)un
|x|β

dx.

Using (f3), one can easily verify that pF (t) ≤ f(t)t for all t ∈ RN . Therefore,

by generalized Lebesgue dominated convergence theorem, similar convergence

result holds for F also. Thus, using (4.20), we get the required convergence

result of the first two integrals of the lemma.
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Next, to prove the last convergence result of the lemma, we set

En :=
{
x ∈ RN : |un(x)| ≤ 1

}
and E :=

{
x ∈ RN : |u(x)| ≤ 1

}
.

We first claim that the sequence {K(x)f(un)χEn
} is uniformly bounded in

Lr
′(RN ; |x|−β

)
, where r′ is the Hölder conjugate of r. By (f1), it is easy to

see that |f(t)| ≤ C|t|p−1 for all |t| ≤ 1 and some C > 0. Therefore,

|f(un)| ≤ C|un|p−1 in En, for all n ∈ N.

Using the fact that X ↪→ Lp
(
RN ; |x|−β

)
is continuous and {‖un‖} is bounded,

we obtain∫
En

|K(x)f(un)|p′

|x|β
≤ C

∫
En

|un|p

|x|β
≤ C‖un‖p ≤ C, for all n ∈ N.

This together with the pointwise convergence gives us

lim
n→∞

∫
En

K(x)f(un)φ

|x|β
dx =

∫
E

K(x)f(un)φ

|x|β
dx for all φ ∈ Lp

(
RN ; |x|−β

)
.

Now, for any v ∈ X, we have v ∈ Lr
(
RN ; |x|−β

)
and hence

lim
n→∞

∫
En

K(x)f(un)v

|x|β
dx =

∫
E

K(x)f(un)v

|x|β
dx.

Similarly, by (f2), for m ≥ 1, we obtain

|f(un(x))|m ≤ CΦα(un(x))m ≤ CΦmα(un(x)) for x ∈ Ecn and for all n ∈ N.

We choose m > 1 close to 1 such that

m′ > p and mα <

(
1− β

N

)
αN,s1

MN/(N−s1)
.

Then, by Theorem 3.1, we get∫
Ec

n

|K(x)f(un)|m

|x|β
is uniformly bounded.

Therefore, for v ∈ X, we have v ∈ Lm′
(
RN ; |x|−β

)
and pointwise convergence

yields

lim
n→∞

∫
Ec

n

K(x)f(un)v

|x|β
dx =

∫
Ec

K(x)f(un)v

|x|β
dx.

This completes proof of the lemma. �

Without loss of generality, we may assume α0 =
(
1− β/N

)
αN,s1 , appearing

in (f2)′. Then, we have similar compactness result if the conditions (f1), (f2)′

and (f3)′ hold, that is, the critical case.

Corollary 4.7. Let {vn} ⊂ X be a sequence such that vn ⇀ v weakly in X,

for some v ∈ X and L := sup
n
‖vn‖ ∈ (0, 1). Then, the convergence results of the

Lemma 4.6 are true in this case, too.
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Proof. Since L ∈ (0, 1), there exists αL > αN,s1(1− β/N) such that

αL <

(
1− β

N

)
αN,s1

LN/(N−s1)
.

Then, by (f1) and (f2)′, results similar to (4.16) hold in this case too, with α

replaced by αL. Furthermore, Theorem 3.1 can be applied to obtain boundedness

results as in (4.17) and (4.18). Now, rest of the proof follows similar to that of

the lemma with α replaced by αL. �

It is easy to verify that the functional J is of class C1(X). Now, we verify

the mountain pass geometry for J .

Lemma 4.8. The functional J satisfies the following properties:

(a) there exists v0 ∈ X \ {0} with ‖v0‖ ≥ 2 such that J (v0) < 0;

(b) there exist η > 0 and ρ ∈ (0, 1) such that J (v) ≥ η for all v ∈ X with

‖v‖ = ρ.

Proof. (a) Proof of this part is a standard procedure and follows by the super-

linear nature of the nonlinearity F with respect to p.

(b) For fixed ρ0 ∈ (0, 1), we choose α > 0 such that

αN,s1

(
1− β

N

)
< α <

(
1− β

N

)
αN,s1

ρ
N/(N−s1)
0

.

Now, by the fact that K ∈ L∞
(
RN
)
, (f1) and (f2) (or (f2)′), for δ > p, we have

(4.21) K(x)F (t) ≤ 1

2ppCpp
tp + C2Φα(t)tδ for all t ∈ R+ and x ∈ RN ,

where C2 > 0 is a constant and Cp appears in Remark 4.1 (a). We choose m > 1

close to 1 such that

m′ > p and mα <

(
1− β

N

)
αN,s1

ρ
N/(N−s1)
0

,

then by Theorem 3.1 and the embedding of X into Lγ(RN ; |x|−β), for γ ≥ p, we

obtain ∫
RN

Φα(w)|w|δ

|x|β
≤
(∫

RN

|Φα(w)|m

|x|β

)1/m(∫
RN

|w|δm′

|x|β

)1/m′

(4.22)

≤ C3

(∫
RN

Φmα(w)

|x|β

)1/r

‖w‖δ ≤ C4‖w‖δ,

for all w ∈ X with ‖w‖ = ρ ≤ ρ0, where C3, C4 > 0 are constants independent

of w. Therefore, using (4.21), (4.22) and Remark 4.1 (a), we deduce that

J (w) ≥ 1

p
‖w‖ps1,p +

1

q
‖w‖qs2,q −

1

p2pCpp

∫
RN

|w|p

|x|β
− C2

∫
RN

Φα(w)|w|δ

|x|β

≥ 21−p

p
‖w‖p − 1

p2pCpp
Cpp‖w‖p − C4‖w‖δ =

2−p

p
‖w‖p − C4‖w‖δ,
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where we have used the fact that ‖w‖s1,p, ‖w‖s2,q ≤ ‖w‖ < 1 and Ci’s are positive

constants. By the fact that δ > p, there exists η > 0 and ρ small enough such

that J (w) ≥ η for all w ∈ X with ‖w‖ = ρ. �

The mountain pass lemma ensures the existence of a Cerami sequence at the

mountain pass level, that is, there exists a sequence {un} ⊂ X such that

J (un)→ c and (1 + ‖un‖)‖J ′(un)‖ → 0, as n→∞,

where c := inf
g∈Γ

max
t∈[0,1]

J (g(t)) with

Γ = {g ∈ C([0, 1], X) : g(0) = 0 and J (g(1)) < 0}.

Lemma 4.9. Every solution u of (P) is nonnegative and if {un} ⊂ X is a Cerami

sequence, then ‖u−n ‖ → 0, as n→∞.

Proof. The proof follows using the inequalities:

(u(x)− u(y))(u−(x)− u−(y)) ≤ −|u−(x)− u−(y)|2,

|u(x)− u(y)| ≥ |u−(x)− u−(y)|.

Applying these inequalities one can deduce that

A2(u, u−) +

∫
RN

V (x)|u|q−2uu− ≤ 0.

The rest of the proof follows similarly to [37, Lemma 2.9]. �

Following the standard procedure, we can prove the following result.

Lemma 4.10. Suppose the function f satisfies (f1), (f3)′ and (AR). Then any

Cerami sequence of J at level c is bounded.

Lemma 4.11. Let the function f satisfies (f1), (f2)′, (f3)′ and (AR). Then, for

any Cerami sequence {un} ⊂ X for J at the mountain pass level c, the following

holds

sup
n∈N
‖un‖ ∈ (0, 1),

if the constant Cδ, appearing in (f3)′, is sufficiently large.

Proof. Fix ψ ∈ C∞c (RN ) with ‖ψ‖ > 0. For δ > p, set K0 := inf
supp(ψ)

K > 0

and Sδ = ‖ψ‖/‖ψ‖δ > 0. Now, using (f3)′, for l > 1, we have

J (lψ) =
lp

p
‖ψ‖ps1,p +

lq

q
‖ψ‖qs2,q −

∫
RN

K(x)F (lψ(x))

|x|β

≤ lp

q
‖ψ‖p −K0Cδl

δS−δδ ‖ψ‖
δ.

Since δ > p, there exists lδ > 0 sufficiently large such that J (lδψ) < 0. Therefore,

c = inf
γ∈Γ

max
t∈[0,1]

J (γ(t)) ≤ max
t∈[0,1]

J (tlδψ) ≤ sup
t∈R+

J (tψ).(4.23)
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Consider h : [0,∞)→ R defined by

h(t) :=
tp

p
‖ψ‖p +

tq

q
‖ψ‖q − C(δ)tδ‖ψ‖δ,

where C(δ) = K0CδS
−δ
δ . Then an easy computation yields

sup
t≥0

h(t) ≤ sup
t≥0

(
tp

p
‖ψ‖p − 1

2
C(δ)tδ‖ψ‖δ

)
+ sup

t≥0

(
tq

q
‖ψ‖q − 1

2
C(δ)tδ‖ψ‖δ

)
=

(
2

C(δ)

)p/(δ−p)(
1

p
− 1

δ

)(
‖ψ‖p−δ

)δ/(δ−p)
+

(
2

C(δ)

)q/(δ−q)(
1

q
− 1

δ

)(
‖ψ‖q−δ

)δ/(δ−q)
≤
(

1

q
− 1

δ

)
2p/(δ−p)(
K0S

−δ
δ

)γ ‖ψ‖−δ
C
δ/(δ−q)
δ

,

where we assumed Cδ > 1 and
(
K0S

−δ
δ

)γ
= min

{(
K0S

−δ
δ

)p
,
(
K0S

−δ
δ

)q}
. There-

fore, from (4.23), we observe that

(4.24) c ≤ sup
t≥0
J (tψ) ≤ sup

t≥0
h(t) ≤

(
1

q
− 1

δ

)
2p/(δ−p)(
K0S

−δ
δ

)γ ‖ψ‖−δ
C
δ/(δ−q)
δ

.

By (AR) and the fact that {un} is a Cerami sequence, we get

c = lim
n→∞

(
J (un)− 1

ν
J ′(un)un

)
≥ lim sup

n→∞

((
1

p
− 1

ν

)
‖un‖ps1,p +

(
1

q
− 1

ν

)
‖un‖qs2,q

)
≥ lim sup

n→∞

(
1

p
− 1

ν

)
‖un‖γs,γ ,

where (s, γ) ∈ {(s1, p), (s2, q)}. Then, using (4.24), we obtain

lim sup
n→∞

‖un‖γs,γ ≤
pν

ν − p
c ≤ pν

ν − p

(
1

q
− 1

δ

)
2p/(δ−p)(
K0S

−δ
δ

)γ ‖ψ‖−δ
C
δ/(δ−q)
δ

<
1

2γ
,

provided Cδ is sufficiently large. Then, the proof of the lemma follows by using

the definition of ‖un‖. �

In the subcritical case, we prove the boundedness of Cerami sequences. The

proof differs from the critical case due to absence of Ambrosetti–Rabinowitz type

condition for this case.

Lemma 4.12. Suppose that (f1)–(f3) hold. Then, any Cerami sequence of J at

the mountain pass level c is bounded.
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Proof. Let {vn} ⊂ X be a Cerami sequence of J at level c. Then, as in the

proof of lemma 4.11, there exists tn ∈ [0, 1] such that

(4.25) J (tnvn) = max
t∈[0,1]

J (tvn).

We claim that the sequence {J (tnvn)} is bounded. The claim is obvious if tn = 0

or 1, therefore we assume tn ∈ (0, 1). Also, we assume vn ≥ 0. Setting

H(t) := tf(t)− pF (t) for t ∈ R,

and since t1−pf(t) is nondecreasing and differentiable (due to (f1) and (f3)), we

get that H is nondecreasing in R. Now, from (4.25), we have

d

dt
J (tvn)

∣∣∣∣
t=tn

= 0,

and hence

pJ (tnvn) =

(
p

q
− 1

)
tqn‖vn‖qs2,q +

∫
RN

K(x)H(tnvn)

|x|β

≤
(
p

q
− 1

)
‖vn‖qs2,q +

∫
RN

K(x)H(vn)

|x|β

= pJ (vn)− J ′(vn)vn = pc+ on(1),

this proves the claim. To prove the lemma, on the contrary, we assume that up

to a subsequence ‖vn‖ → ∞ as n → ∞ and ‖vn‖ ≥ 1 for all n ∈ N. Then,

there exists w ∈ X such that wn ⇀ w weakly in X, where wn = vn/‖vn‖. We

claim that w = 0 almost everywhere in RN . Indeed, since J (vn) = c + on(1)

and ‖vn‖ → ∞, we get

(4.26)
1

p

‖vn‖ps1,p
‖vn‖p

+
1

q

‖vn‖qs2,q
‖vn‖p

−
∫
RN

K(x)F (vn)

‖vn‖p|x|β
= on(1).

Since lim
t→∞

t−pF (t) =∞, for every τ > 0, there exists ξ > 0 such that

F (t) ≥ τ |t|p for all |t| ≥ ξ.

Therefore, from (4.26) and noting that q < p, we obtain

on(1) +
1

p
≥
∫
|vn|≥ξ

K(x)F (vn)wn(x)p

|vn(x)|p|x|β
≥ τ

∫
RN

K(x)wn(x)p

|x|β
χ{|vn|≥ξ/‖vn‖}.

By Fatou’s lemma, for all τ > 0, we deduce that

τ

∫
RN

K(x)w(x)p

|x|β
≤ 1

p
,

which implies w = 0 almost everywhere in RN . Let T > 0, then there exists

nT ∈ N such that for all n ≥ nT , T‖vn‖−1 ∈ (0, 1). Now, from (4.25) and the
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fact that ‖wn‖ ≤ 1 (follows from w = 0), we get

J (tnvn) ≥ J (Twn) =
T p

p
‖wn‖ps1,p +

T q

q
‖wn‖qs2,q −

∫
RN

K(x)F (Twn)

|x|β

≥ 21−p T γ

p
‖wn‖p −

∫
RN

K(x)F (Twn)

|x|β
,

where T γ = min{T p, T q}. Then, by the compactness Lemma 4.6, we have∫
RN

K(x)F (Twn)

|x|β
→ 0, as n→∞.

Thus,

lim inf
n→∞

J (tnvn) ≥ 21−pT γ

p
,

which is a contradiction, if we choose T such that T =
(
2pp sup

n
{J (tnvn)}

)1/γ
.

This proves the lemma. �

5. Proof of the main result

The functional J satisfies mountain pass geometry in both the cases. There-

fore, there exist Cerami sequences {un} ⊂ X and {vn} ⊂ X in the subcritical

and critical cases, respectively. Furthermore, {un} and {vn} are bounded in X.

Therefore, up to a subsequence un ⇀ u and vn ⇀ v weakly in X, for some

u, v ∈ X.

5.1. The subcritical case. By the compactness Lemma 4.6, we see that∫
RN

K(x)f(un)

|x|β
(un − u)→ 0 as n→∞.

Moreover, since 〈J ′(un), un − u〉 → 0 as n→∞, it follows that

A1(un, un − u) +A2(un, un − u)

+

∫
RN

V (x)
(
|un|p−2un + |un|q−2un

)
(un − u) = on(1).

On the other hand for fixed u ∈ X, it is easy to observe that Θu,p +Θu,q ∈ X ′,
where

Θu,p(v) := A1(u, v) +

∫
RN

V (x)|u|p−2uv dx

for all v ∈ X and Θu,q is analogously defined. Therefore, using the fact that

un ⇀ u weakly in X, we get

A1(u, un − u) +A2(u, un − u) +

∫
RN

V (x)
(
|u|p−2u+ |u|q−2u

)
(un − u) = on(1).
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Coupling these, we obtain

A1(un, un − u) −A1(u, un − u)(5.1)

+

∫
RN

V (x)
(
|un|p−2un − |u|p−2u

)
(un − u)

+A2(un, un − u)−A2(u, un − u)

+

∫
RN

V (x)
(
|un|q−2un − |u|q−2u

)
(un − u) = on(1).

Now, we consider the cases when q ≥ 2 and 1 < q < 2 (note that p ≥ 2).

Case 1. q ≥ 2. Using the inequality |a − b|l ≤ 2l−2(|a|l−2a − |b|l−2b)(a − b)
for a, b ∈ Rn and l ≥ 2, from (5.1), it follows that

[un − u]ps1,p +

∫
RN

V (x)|un − u|p + [un − u]qs2,q +

∫
RN

V (x)|un − u|q ≤ on(1),

that is ‖un − u‖ps1,p + ‖un − u‖qs2,q = on(1), hence un → u in X.

Case 2. 1 < q < 2. As we know that for a, b ∈ Rn and 1 < m < 2, there

exists Cm > 0 a constant such that

|a− b|m ≤ Cm
((
|a|m−2a− |b|m−2b

)
(a− b)

)m/2
(|a|m + |b|m)(2−m)/2.

Set a = uk(x) − uk(y), b = u(x) − u(y) and then using Hölder inequality, we

deduce that

[un − u]qs2,q ≤ C
(
A2(un, un − u)−A2(u, un − u)

)q/2(
[un]qs2,q + [u]qs2,q

)(2−q)/2
and boundedness of {un} in X, implies

[un − u]2s2,q ≤ C
(
A2(un, un − u)−A2(u, un − u)

)
.

Therefore, using (5.1) and proceeding similarly as in the previous case, we obtain

un → u in W̃ s1,p
V (RN ) as well as in W̃ s2,q

V (RN ), which gives us the required strong

convergence of un to u in X. Using the fact that c > 0 and strong convergence,

we get that u 6≡ 0. By Lemma 4.9, u is a nontrivial nonnegative solution of (P).

5.2. The critical case. We observe that if we choose Cδ > 0 such that

Lemma 4.11 is satisfied, then the compactness results of Corollary 4.7 hold.

Now, we can proceed similarly to prove that vn → v in X and v 6≡ 0, hence v is

a nontrivial weak solution of problem (P). �
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