
April 25, 2021 17:43 WSPC/S0219-1997 152-CCM 2050013

Communications in Contemporary Mathematics
Vol. 23, No. 5 (2021) 2050013 (41 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219199720500133

Multi-bump solutions for quasilinear elliptic equations
with variable exponents and critical growth in R

N

Chao Ji∗,§ and Vicenţiu D. Rădulescu†,‡,¶
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In this paper, we are concerned with the existence of multi-bump solutions for the
following class of p(x)-Laplacian equations:

8>><
>>:

−div(|∇u|p(x)−2∇u) + (λV (x) + Z(x))|u|p(x)−2u

= αf(x, u) + uq(x)−1, in R
N ,

u ∈ W 1,p(x)(RN ), u > 0,

where α > 0 and λ ≥ 1 are two real parameters, the nonlinearity f : R
N × R → R is

a continuous function with subcritical growth, N > p+ = supx∈RN p(x), the exponent

q(x) can be equal to the critical exponent p∗(x) =
Np(x)

N−p(x)
at some points of R

N includ-

ing at infinity and the potentials V , Z : R
N → R are continuous functions verifying

some conditions. We show that if the zero set of V has several isolated connected com-
ponents Ω1, . . . , Ωk such that the interior of Ωi is not empty and ∂Ωi is smooth, then
for λ > 0 large enough there exists, for any non-empty subset Γ ⊂ {1, . . . , k}, a bump
solution trapped in a neighborhood of

S
j∈Γ Ωj . The proofs are based on variational and

topological methods.
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1. Introduction and Main Results

In this paper, we study the existence of multi-bump positive solutions for the fol-
lowing class of p(x)-Laplacian equations:⎧⎪⎪⎨⎪⎪⎩

−div(|∇u|p(x)−2∇u) + (λV (x) + Z(x))|u|p(x)−2u

= αf(x, u) + uq(x)−1, in R
N ,

u ∈ W 1,p(x)(RN ), u > 0,

(1.1)

where α > 0, λ ≥ 1 are two real parameters, V , Z : R
N → R are continuous

functions with V ≥ 0, p, q : R
N → (1,∞) are two log-Hölder continuous functions,

N > p+ = supx∈RN p(x), the nonlinearity f : R
N ×R → R is a continuous function

with subcritical growth, the exponent q(x) can be equal to the critical exponent
p∗(x) = Np(x)

N−p(x) at some points of R
N including at infinity.

The study of various mathematical problems with variable exponents has
received considerable attention in recent years because it appears in a lot of appli-
cations, such as the electrorheological fluids [38], image processing [11], elastic
mechanics [43] and the references therein. Besides the importance in applications,
the variable exponent problems are also very interesting from the mathematical
point of view, because they involve a lot of difficulties, for example, the variable
exponent problems possess more complicated nonlinearities than the constant expo-
nent problems. We may refer to the review papers [14, 36, 40] for the advances
and the references in this area, to [13, 19, 22, 27, 37] for the variable exponent
Lebesgue–Sobolev spaces, and to [13, 17, 23–26, 29, 35, 37, 39, 42] for the p(x)-
Laplacian equations and the corresponding variational problems. We also refer to
the pioneering regularity results and qualitative properties of solutions established
by Mingione [30, 31] and to the paper by Pucci and Zhang [34] dedicated to related
but general critical equations. The interest for nonlinear problems with critical
exponent started after the seminal paper by Brezis and Nirenberg [10].

If p(x) ≡ 2, problem (1.1) reduces to the following one:{−Δu + (λV (x) + Z(x))u = Q(u), in R
N ,

u ∈ H1(RN ), u > 0.
(1.2)

In recent years, many researchers considered the existence and multiplicity of posi-
tive solutions for problem (1.2) under various assumptions on the potential and the
nonlinearity. For example, in the case when the potential λV (x)+Z(x) is coercive,
Miyagaki [32] proved the existence of a positive solution to problem (1.2). For the
case when the potential λV (x)+Z(x) is 1-periodic, Alves et al. [2] gave the existence
of positive solutions. If λV (x) + Z(x) is radial, Alves et al. [3] also established the
existence of a positive solution. The papers cited above proved only the existence of
positive solutions, while for the multiplicity of solutions for problem (1.2) we may
refer to [7, 8, 12].
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In [15], Ding and Tanaka considered problem (1.2) for the case Q(u) = up−1,
where 2 < p < 2∗, N ≥ 3. If Ω has k connected components, the authors showed
that problem (1.2) has at least 2k−1 solutions, for large λ, established the existence
of solutions called multi-bumps. For the case Q(u) = αup−1 + u2∗−1, where α > 0
and 2 < p < 2∗, N ≥ 3, in [4], Alves et al. established the similar results. For the
case the nonlinearity Q(u) has the exponential critical growth in R

2, in [6], Alves
and Souto also gave the existence of multi-bump solutions.

If p(x) ≡ p, 2 ≤ p < N in problem (1.1), when the nonlinear term has subcritical
growth, Alves [1] considered the existence of multi-bump solutions. Since the p-
Laplacian is not linear, and some properties that occur for Laplacian operator
are not standard that they hold for the general case p ≥ 2, therefore, Alves used
different approach in some estimates. Recently, Alves and Ferreira [5] extended the
results in [1] to the p(x)-Laplace operator. The main difference is related to the fact
that for equations involving the p(x)-Laplacian operator it is not clear that Moser’s
iteration method is a good tool to get the estimates for the L∞-norm. The authors
adapted some ideas in [18, 21] to get these estimates.

Motivated by the papers [4, 5], the main goal of this paper is to investigate the
existence of multi-bump solutions to problem (1.1). However, since our problem has
the variable exponents growth, some estimates for this problem are very delicate
and different from those used in the constant exponents problems. Also for this
reason, the classical Moser’s iteration is not a good tool to obtain the estimates
for L∞-norm. On the other hand, our nonlinearity is critical growth and some
arguments developed in [5] cannot be applied. The reader is invited to see that the
way how we attach these problems in Sec. 3. As far as we know, there is no result
on multi-bump solutions for p(x)-Laplace equations with critical growth.

We make the following assumptions on p(x), q(x), V (x), Z(x) and f(x, u)
throughout this paper:

(p) 1 < p− := infRN p(x) ≤ sup
RN p(x) := p+ < N .

(q1) 1 < q(x) ≤ p∗(x) := Np(x)
N−p(x) , the critical set A := {x ∈ R

N : q(x) = p∗(x)} can
be non-empty. Moreover, q(x) is critical at infinity in the sense that q(∞) =
p(∞)∗.

(q2) q 	 p∗, on ∂Ω, that is, infx∈∂Ω(p∗(x) − q(x)) > 0.
(V1) The potential well Ω = intV −1(0) is a non-empty bounded open set with

smooth boundary ∂Ω and Ω = V −1(0), Ω can be decomposed in k connected
components Ω1, . . . , Ωk with dist(Ωi, Ωj) > 0, i 
= j.

(V2) There exists M > 0 such that

λV (x) + Z(x) ≥ M, ∀x ∈ R
N , λ ≥ 1.

(V3) There exists K > 0 such that

|Z(x)| ≤ K, ∀x ∈ R
N .
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(f1) f(x, t) = o(|t|p(x)−1) as t → 0, uniformly in x.
(f2) We have

lim sup
|t|→∞

|f(x, t)|
|t|m(x)−1

< ∞, uniformly in x ∈ R
N ,

where m ∈ C0(RN , R) with p+ < m−, m+ ≤ q+ and m 	 p∗ = Np(x)
N−p(x) . Here,

the notation “m 	 p∗” means that infx∈RN (p∗(x) − m(x)) > 0.
(f3) There is a positive constant β with p+ < β ≤ min{m−, q−} such that

0 < βF (x, t) ≤ tf(x, t), ∀x ∈ R
N , t > 0,

where F (x, t) =
∫ t

0
f(x, s)ds.

(f4) The function f(x,t)

tp+−1 is strictly increasing in t > 0, for each x ∈ R
N .

A typical example of nonlinear term f verifying (f1) − (f4) is

f(x, t) = |t|m(x)−2t, x ∈ R
N and ∀ t ∈ R,

where p+ < β ≤ min{m−, q−} and m 	 p∗.
The main result to be proved in the following theorem.

Theorem 1.1. Let (p), (q1)–(q2), (V1)–(V3), and (f1)–(f4) hold. Then, for any
non-empty subset Γ of {1, 2, . . . , k}, there exist constants α∗ > 0 and λ∗ = λ∗(α∗)
such that, for all α ≥ α∗ and λ ≥ λ∗, problem (1.1) has a family {uλ} of positive
solutions which depend on α verifying: for any sequence λn → ∞, we can extract
a subsequence λni such that uλni

converges strongly in W 1,p(x)(RN ) to a function
u which satisfies u(x) = 0 for x 
∈ ΩΓ and the restriction u|Ωj is a least energy
solution of⎧⎪⎪⎨⎪⎪⎩

−div(|∇u|p(x)−2∇u) + Z(x)|u|p(x)−2u = αf(x, u) + uq(x)−1, x ∈ Ωj ,

u > 0, x ∈ Ωj ,

u|∂Ωj = 0,

for all j ∈ Γ and ΩΓ =
⋃

j∈Γ Ωj.

Corollary 1.2. Under the assumptions of Theorem 1.1, there exist constants α∗ >

0 and λ∗ = λ∗(α∗) such that, for all α ≥ α∗ and λ ≥ λ∗, problem (1.1) has at least
2k − 1 positive solutions.

We refer to Brezis [9] for some of the main abstract tools used in this paper.

Notation. Throughout this paper, we use the following notations:

• If g is a measurable function, the integral
∫

RN g(z)dz will be denoted by
∫

g(z)dz.
• C denotes any positive constant, whose value is not relevant.
• on(1) denotes a real sequence with on(1) → 0 as n → +∞.
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2. Preliminaries

Let p ∈ L∞(RN ) and p− = ess infx∈RN p(x) ≥ 1. The variable exponent Lebesgue
space Lp(x)(RN ) is defined by

Lp(x)(RN ) =
{

u : R
N → R |u is a measurable real-valued function and∫

|u|p(x)dx < ∞
}

,

with the norm

|u|Lp(x)(RN ) = |u|p(x) = inf
{

λ > 0 :
∫ ∣∣∣u

λ

∣∣∣p(x)

dx ≤ 1
}

.

The variable exponent Sobolev space W 1,p(x)(RN ) is defined by

W 1,p(x)(RN ) = {u ∈ Lp(x)(RN ) : |∇u| ∈ Lp(x)(RN )}
with the norm

‖u‖W 1,p(x)(RN ) = |u|p(x) + |∇u|p(x).

If p− > 1, the spaces Lp(x)(RN ) and W 1,p(x)(RN ) are all separable and reflexive
Banach spaces. For the basic properties of these spaces, we refer to [13, 19, 27, 37].

For problem (1.1), we shall work in the following subspace of W 1,p(x)(RN ) given
by

Eλ =
{

u ∈ W 1,p(x)(RN ) :
∫

V (x)|u|p(x)dx < ∞
}

endowed with the norm

‖u‖λ = inf

{
λ > 0 :

∫ (∣∣∣∣∇u

λ

∣∣∣∣p(x)

+ (λV (x) + Z(x))
∣∣∣u
λ

∣∣∣p(x)
)

dx ≤ 1

}
.

For λ ≥ 1, we can easily see that Eλ is a Banach space, Eλ ⊂ W 1,p(x)(RN ) and the
following inequalities hold:

‖u‖p−
λ ≤ �λ(u) ≤ ‖u‖p+

λ , if ‖u‖λ ≥ 1,

‖u‖p+

λ ≤ �λ(u) ≤ ‖u‖p−
λ if ‖u‖λ ≤ 1,

where �λ(u) =
∫
(|∇u|p(x) + (λV (x) + Z(x))|u|p(x))dx. In particular, for a sequence

(un) in Eλ,

‖un‖λ → 0 ⇔ �λ(un) → 0, and

(un) is bounded in Eλ ⇔ �λ(un) is bounded in R.
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In view of (V2), for any open set Θ ⊂ R
N and u ∈ Eλ with λ ≥ 1, we have

�λ,Θ(u) =
∫

Θ

(|∇u|p(x) + (λV (x) + Z(x))|u|p(x))dx

≥ M

∫
Θ

|u|p(x)dx = M�p(x),Θ(u).

The following property is an immediate consequence of the above observation.

Lemma 2.1. There exist δ, ν > 0 with δ ≈ 1 and ν ≈ 0 such that for any open set
Θ ⊂ R

N

δ�λ,Θ(u) ≤ �λ,Θ(u) − ν�p(x),Θ(u), ∀u ∈ Eλ, λ ≥ 1.

Now, we list more facts which will be used later.

Lemma 2.2 (See [19, 27]). The conjugate space of Lp(x)(RN ) is Lq(x)(RN ), where
1

p(x) + 1
q(x) = 1. For any u ∈ Lp(x)(RN ) and v ∈ Lq(x)(RN ),∫

|uv|dx ≤
(

1
p−

+
1
q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

Lemma 2.3 (See [16]). Let Ω ⊂ R
N an open domain with the cone property,

p : Ω → R satisfying (p) and m ∈ L∞(Ω) and m− ≥ 1.

(i) If p is Lipschitz continuous and p ≤ m ≤ p∗, the embedding W 1,p(x)(Ω) ↪→
Lm(x)(Ω) is continuous.

(ii) If Ω is a bounded, p is continuous and m 	 p∗, the embedding W 1,p(x)(Ω) ↪→
Lm(x)(Ω) is compact.

Lemma 2.4 (See [20]). Assume that Ω ⊂ R
N is measurable, let (un) be a bounded

sequence in Lp(x)(Ω) and un → u ∈ Lp(x)(Ω) a.e. on Ω. If p(x) satisfies (p), then

lim
n→∞

∫
|un|p(x) − |un − u|p(x) =

∫
|u|p(x)dx.

Lemma 2.5 (See [39]). Assume that ∞ is critical in the sense that q(∞) =
p(∞)∗. Let (un) ⊂ D1,p(x)(RN ) be a weakly convergent to u ∈ D1,p(x)(RN ). Then
there exist two bounded measures μ and ν, an at most enumerable set of indices
I, points xi ∈ A (the critical set defined in (q1)), and positive real numbers μi, νi,

i ∈ I, such that the following convergence hold weakly in the sense of measures,

|∇un|p(x)dx ⇀ μ ≥ |∇u|p(x)dx +
∑

μiδxi ,

|un|q(x)dx ⇀ ν := |u|q(x)dx +
∑

νiδxi ,

Sxiν
1

p(xi)∗
i ≤ μ

1
p(xi)

i , for all i ∈ I,
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where Sxi is the localized Sobolev constant at the point xi defined as follows :

Sxi = lim
ε→0

S(p(·), q(·), Bxi(ε)) = sup
ε>0

S(p(·), q(·), Bxi(ε)), (2.1)

where

S(p(·), q(·), Bxi(ε)) = inf
u∈W

1,p(·)
0 (Bxi

(ε)),u�=0

|∇u|Lp(x)(Bxi
(ε))

|u|Lq(x)(Bxi
(ε))

and Bxi(ε) be a ball centered at xi with small radius ε > 0. Moreover, if we define

ν∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

|un|q(x)dx,

μ∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

|∇un|p(x)dx,

then

lim sup
n→∞

∫
RN

|∇un|p(x)dx = μ(RN ) + μ∞,

lim sup
n→∞

∫
RN

|∇un|q(x)dx = ν(RN ) + ν∞,

S∞ν
1

q(∞)∞ ≤ μ
1

p(∞)∞ ,

where S∞ is the localized Sobolev constant at infinity defined as follows:

S∞ = lim
R→+∞

S(p(·), q(·), RN\BR) = sup
R>0

S(p(·), q(·), RN\BR),

with

S(p(·), q(·), RN\BR) = inf
u∈W

1,p(·)
0 (RN\BR),u�=0

|∇u|Lp(x)(RN\BR)

|u|Lq(x)(RN\BR)

.

Lemma 2.6. The infimum S = infx∈A∪{∞} Sx is attained at some point of
A∪ {∞}.

Proof. The proof of the lemma can be found in [39], but for reader’s convenience
we include it. Here, we first prove that the function x ∈ A → Sx is lower semi-
continuous. Assume x0 ∈ A, (xn) ⊂ A such that xn → x0 and fix some ε > 0.
There exists N(ε) ∈ N such that Bxn( ε

3 ) ⊂ Bx0(ε) for n ≥ N(ε). It follows that

S(p(·), q(·), Bε(x0)) ≤ S(p(·), q(·), B ε
3
(xn)) ≤ Sxn

for n ≥ N(ε). Then lim infn→+∞ Sxn ≥ S(p(·), q(·), Bε(x0)) for any ε > 0. Letting
ε → 0, it yields that lim infn→+∞ Sxn ≥ Sx0 .

To prove the lemma, moreover, we need to show that this function is also lower
semi-continuous at infinity in the sense that for any sequence (xn) ⊂ A such that
|xn| → +∞, there holds lim infn→+∞ Sxn ≥ S∞. Fix some R > 0 and N0 ∈ N such
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that |xn| ≥ R + 1. Then, for n ≥ N0, Bxn(ε) ⊂ R
N\BR for any ε < 1. It follows

that for such n and ε, S(p(·), q(·), Bxn(ε)) ≥ S(p(·), q(·), RN\BR). Taking the limit
in ε and then in n gives lim infn→+∞ Sxn ≥ S(p(·), q(·), RN\BR). Taking the limit
R → +∞, we obtain the desired result.

Remark 2.1. From Lemma 2.2, we know that the infimum S = infx∈A∪{∞} Sx

is attained at some point of A ∪ {∞}. So, S > 0. Moreover, it is easy to see that
infx∈A Sx ≥ S > 0.

3. A Modified Problem

Since we intend to find positive solutions, throughout this paper we assume that

f(x, t) = 0, ∀x ∈ R
N , ∀ t ≤ 0.

The weak solutions of problem (1.1) are the positive critical points of the functional
Jλ : Eλ → R given by

Jλ(u) =
∫

1
p(x)

(|∇u|p(x) + (λV (x) + Z(x))|u|p(x))dx

−α

∫
F (x, u)dx −

∫ |u|q(x)

q(x)
,

where F (x, t) =
∫ t

0
f(x, s)ds.

In order to overcome the difficulties caused by the critical growth of the non-
linearity and the unboundedness of the domain, in this section, we first modify the
functional Jλ by adapting the ideas developed in del Pino and Felmer [12] (see also
[5]), then we show that, under some energy level, the modified functional satisfies
the Palais–Smale (P.S. for shortness) condition.

By (f1) and (f2), we have the following elementary observation:

f(x, t) ≤ ε|t|p(x)−1 + Cε|t|m(x)−1, ∀x ∈ R
N , t ∈ R, (3.1)

and, consequently

F (x, t) ≤ ε|t|p(x) + Cε|t|m(x), ∀x ∈ R
N , t ∈ R. (3.2)

Moreover, since for each ς > 0 fixed, we consider the function a : R
N → R given by

a(x) = min
{

a > 0 :
αf(x, a) + aq(x)−1

ap(x)−1
= ς

}
. (3.3)

From (f1) and q− > p+, it follows that a− = infx∈RN a(x) > 0.
For technical reasons, we define the function f̃ : R

N × R → R given by

f̃(x, t) =

⎧⎪⎪⎨⎪⎪⎩
0, t ≤ 0,

αf(x, t) + tq(x)−1, 0 ≤ t ≤ a(x),

ςtp(x)−1, t ≥ a(x),
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which satisfies the following inequality:

f̃(x, t) ≤ ς|t|p(x)−1, ∀x ∈ R
N , t ∈ R. (3.4)

Thus

f̃(x, t)t ≤ ς|t|p(x), ∀x ∈ R
N , t ∈ R, (3.5)

and

F̃ (x, t) ≤ ς

p(x)
|t|p(x), ∀x ∈ R

N , t ∈ R, (3.6)

where F̃ (x, t) =
∫ t

0 f̃(x, s)ds.
In virtue of (V1), for each j ∈ {1, . . . , k}, we can choose a bounded open set Ω′

j

with smooth boundary such that

Ωj ⊂ Ω′
j , and Ω′

i ∩ Ω′
j = ∅, for i 
= j. (3.7)

From now on, we fix a non-empty subset Γ ⊂ {1, . . . , k} and

ΩΓ =
⋃
j∈Γ

Ωj , Ω′
Γ =

⋃
j∈Γ

Ω′
j , χΓ(x) :=

{
1, if x ∈ Ω′

Γ,

0, if x 
∈ Ω′
Γ,

and the function

g(x, t) = χΓ(x)(αf(x, t) + tq(x)−1) + (1 − χΓ(x))f̃ (x, t) (3.8)

and

G(x, t) =
∫ t

0

g(x, s)ds = χΓ(x)
(

αF (x, t) +
tq(x)

q(x)

)
+ (1 − χΓ(x))F̃ (x, t), (3.9)

and the auxiliary problem

(Aλ)

{−div(|∇u|p(x)−2∇u) + (λV (x) + Z(x))|u|p(x)−2u = g(x, u) in R
N ,

u ∈ W 1,p(x)(RN ).

We remark that g(x, t) = αf(x, t) + tq(x)−1 for 0 ≤ t ≤ a(x) and if uλ is a solution
for (Aλ) satisfying

0 < uλ(x) ≤ a−, ∀x ∈ R
N\Ω′

Γ,

then it is a solution for the original problem (1.1).
Note that, using (f1)–(f4), it is easy to check that

(g1) g(x, t) = o(|t|p(x)−1) as t → 0, uniformly in x.
(g2) g(x, t) ≤ αf(x, t) + tq(x)−1, for all t > 0, x ∈ R

N .
(g3) (i) 0 < βG(x, t) ≤ tg(x, t), ∀x ∈ Ω′

Γ, t > 0;
(ii) 0 ≤ G(x, t) ≤ ς

p(x) t
p(x) and 0 ≤ tg(x, t) ≤ ςtp(x), ∀x ∈ R

N\Ω′
Γ, t > 0.

(g4) The function g(x,t)
tp(x)−1 is non-decreasing in t > 0, for each x ∈ R

N and is strictly
increasing in t > 0, for each x ∈ Ω′

Γ.
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Associated with problem (Aλ), we have the energy functional Φλ : Eλ → R

defined by

Φλ(u) =
∫

1
p(x)

(|∇u|p(x) + (λV (x) + Z(x))|u|p(x))dx −
∫

G(x, u)dx,

which is C1(Eλ, R) and satisfies the (PS) condition under some energy level, whereas
Jλ does not necessarily satisfy this condition. In this way, the mountain pass level
is a critical value for Φλ.

Lemma 3.1. The functional Φλ satisfies the mountain pass geometry.

Proof. From (g2) and (3.2), one has

Φλ(u) ≥ 1
p+

�λ(u) − εα

∫
|u|p(x)dx − Cεα

∫
|u|m(x)dx − 1

q−

∫
|u|q(x)dx,

for any ε > 0 and Cε be a constant depending on ε. By (V2), letting ε < M
2αp+

,
and assuming ‖u‖λ < min{1, 1

Cm
, 1

Cq
}, where |v|m(x) ≤ Cm‖v‖λ, |v|q(x) ≤ Cq‖v‖λ,

∀ v ∈ Eλ. Since p+ < m− and p+ < q−, then for ‖u‖λ small enough, we have

Φλ(u) ≥ 1
2p+

‖u‖p+
λ − C1α‖u‖m−

λ − C2‖u‖q−
λ ≥ b > 0.

Now, choosing v ∈ C∞
0 (ΩΓ) with v > 0 in ΩΓ, one has for t > 0

Φλ(tv) =
∫

tp(x)

p(x)
(|∇v|p(x) + Z(x)|v|p(x))dx −

∫
αF (x, tv)dx −

∫
tq(x)

q(x)
vq(x)dx.

If t > 1, by (f3) and q− > p+, it follows that

Φλ(tv) ≤ tp+

p−

∫
(|∇v|p(x) + Z(x)|v|p(x))dx − Cαtβ

∫
vβdx

− tq−

q+

∫
vq(x)dx → −∞

as t → +∞. The proof is complete.

Lemma 3.2. Let c > 0 and (un) be a (PS)c sequence for Φλ, then (un) is bounded
in Eλ.

Proof. Assume that (un) is a (PS)c sequence for Φλ. Without loss of generality,
we set ‖un‖λ ≥ 1 for n large, otherwise the proof is complete. On one hand, there
is n0 ∈ N such that

Φλ(un) − 1
β

Φ′
λ(un)un ≤ c + 1 + ‖un‖λ, for n ≥ n0.
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On the other hand, from (f2), (f3), (3.6) and Lemma 2.1, we have

Φλ(un) − 1
β

Φ′
λ(un)un

≥
(

1
p+

− 1
β

)
�λ(un) +

∫ (
1
β

g(x, un)un − G(x, un)
)

dx

=
(

1
p+

− 1
β

)
�λ(un) +

∫
Ω′

Γ

α

(
1
β

f(x, un)un − F (x, un)
)

dx

+
∫

Ω′
Γ

(
1
β
− 1

q(x)

)
|un|q(x)dx +

∫
RN\Ω′

Γ

(
1
β

f̃(x, un)un − F̃ (x, un)
)

dx

≥
(

1
p+

− 1
β

)
�λ(un) −

∫
RN\Ω′

Γ

F̃ (x, un)dx

≥
(

1
p+

− 1
β

)
δ�λ(un).

Hence

c + 1 + ‖un‖λ ≥
(

1
p+

− 1
β

)
δ�λ(un) ≥

(
1
p+

− 1
β

)
δ‖un‖p−

λ , ∀n ≥ n0,

this implies that (un) is bounded in Eλ.

Lemma 3.3. For c > 0, let (un) be a (PS)c-sequence for Φλ, then for each ζ > 0,

there is a number R = R(ζ) > 0 such that

lim sup
n→∞

∫
RN\BR(0)

(|∇un|p(x) + (λV (x) + Z(x))|un|p(x))dx ≤ ζ. (3.10)

Proof. Let R > 0 large such that Ω′
Γ ⊂ BR

2
(0) and ηR ∈ C∞(RN ) satisfying

ηR(x) :=

{
0, x ∈ BR

2
(0),

1, x ∈ R
N\BR(0),

and 0 ≤ ηR ≤ 1, |∇ηR| ≤ C
R , where C > 0 is a constant independent on R. From

Lemma 3.2, the sequence (un) is bounded in Eλ. Moreover, it is easy to verify
that the sequence (unηR) is also bounded in Eλ. By a simple computation, we
have∫

(|∇un|p(x) + (λV (x) + Z(x))|un|p(x))ηRdx

= Φ′
λ(un)(unηR) −

∫
un|∇un|p(x)−2∇un∇ηRdx +

∫
RN\Ω′

Γ

f̃(x, un)unηRdx.

2050013-11



April 25, 2021 17:43 WSPC/S0219-1997 152-CCM 2050013

C. Ji & V. D. Rădulescu

Denoting

L =
∫

(|∇un|p(x) + (λV (x) + Z(x))|un|p(x))ηRdx.

From the definition of ηR, the Hölder inequality and (3.5), it follows that

L ≤ Φ′
λ(un)(unηR) +

C

R

∫
|un||∇un|p(x)−1dx + ς

∫
|un|p(x)ηRdx

≤ Φ′
λ(un)(unηR) +

C

R
|un|p(x)||∇un|p(x)−1| p(x)

p(x)−1
+

ς

M
L.

Since the sequence (un) is bounded in Lp(x)(RN ), and (|∇un|p(x)−1) is bounded in

L
p(x)

p(x)−1 (RN ), we obtain∫
RN\BR(0)

(|∇un|p(x) + (λV (x) + Z(x))|un|p(x))dx ≤ on(1) +
C

R
.

Fixing ζ > 0 and passing to the limit in the last inequality, it follows that

lim sup
n→∞

∫
RN\BR(0)

(|∇un|p(x) + (λV (x) + Z(x))|un|p(x))dx ≤ C

R
< ζ

for some R sufficiently large. We complete the proof.

Next, for each fixed j ∈ Γ, let us denote by cj = infγ∈Λj maxt∈[0,1] Ij(γ(t))
the minimax level of the mountain pass geometry with the functional Ij :
W

1,p(x)
0 (Ωj) → R given by

Ij(u) =
∫

Ωj

1
p(x)

(|∇u|p(x) + Z(x)|u|p(x))dx − α

∫
Ωj

F (x, u)dx −
∫

Ωj

|u|q(x)

q(x)
,

where

Λj := {γ ∈ C([0, 1], W 1,p(x)
0 (Ωj)) : γ(0) = 0, Ij(γ(1)) < 0}.

It is well known that the positive critical points of Ij are weak solutions of the
problem

(Pλ)

⎧⎪⎨⎪⎩
−div(|∇u|p(x)−2∇u) + Z(x)|u|p(x)−2u = αf(x, u) + uq(x)−1, x ∈ Ωj ,

u > 0, x ∈ Ωj ,

u|∂Ωj = 0.

In order to prove Theorem 1.1, we shall compare between some energy levels of
the functional associated with problem (1.1) with the energy levels associated with
other modified problem related to problem (1.1), and study the behavior of some
(PS)c sequence. In this regard, we prove the following results.

Lemma 3.4. There exists α∗ > 0 such that, for all α ≥ α∗, we have

cj ∈
(

0,
1

k + 1

(
1

p+
− 1

β

)
inf
x∈A

SN
x

)
, for all j ∈ {1, . . . , k}.

2050013-12



April 25, 2021 17:43 WSPC/S0219-1997 152-CCM 2050013

Multi-bump solutions for quasilinear elliptic equations

Proof. For each j ∈ {1, . . . , k}, we choose a nonnegative function ϕj ∈
W

1,p(x)
0 (Ωj)\{0}. Note that there exits tα,j ∈ (0, +∞) depending on α such that

cj ≤ Ij(tα,jϕj) = max
t≥0

Ij(tϕj)

and thus, the following equality holds:∫
Ωj

t
p(x)−1
α,j (|∇ϕj |p(x) + Z(x)|ϕj |p(x))dx

= α

∫
Ωj

f(x, tα,jϕj)ϕjdx +
∫

Ωj

t
q(x)−1
α,j ϕ

q(x)
j dx

≥ α

∫
Ωj

f(x, tα,jϕj)ϕjdx

≥ αCtβ−1
α,j

∫
Ωj

ϕβ
j dx. (3.11)

If tα,j ≥ 1, by (3.11), we have

t
p+−1
α,j

∫
Ωj

(|∇ϕj |p(x) + Z(x)|ϕj |p(x))dx ≥ tβ−1
α,j Cα

∫
Ωj

ϕβ
j dx

which implies that (tα,j) is bounded by p+ < β. Thus, up to a subsequence, tα,j →
t0 ≥ 1 as α → ∞. On one hand, for large α, there is a constat C > 0 such that∫

Ωj

t
p(x)−1
α,j (|∇ϕj |p(x) + Z(x)|ϕj |p(x))dx ≤ C. (3.12)

On the other hand, since t0 ≥ 1, by the first equality of (3.11), one has

lim
α→+∞

(
α

∫
Ωj

f(x, tα,jϕj)ϕjdx +
∫

Ωj

t
q(x)−1
α,j ϕ

q(x)
j

)
= ∞,

which contradicts with (3.12).
If tα,j < 1, up to a subsequence, tα,j → t0 ≥ 0 as α → ∞. If 0 < t0 < 1, similar

to the above arguments, we may also obtain a contradiction. Thus, we must have
t0 = 0 and tα,j → 0 as α → +∞. Using this limit, one has

Ij(tα,jϕj) → 0, as α → +∞,

whence it follows from Remark 2.1 that there exists α∗ > 0 such that for all α ≥ α∗,

cj ∈
(

0,
1

k + 1

(
1
p+

− 1
β

)
inf
x∈A

SN
x

)
, for all j ∈ {1, . . . , k}.

Remark 3.1. In particular, for α large, the above lemma implies that
k∑

j=1

cj ∈
(

0,

(
1

p+
− 1

β

)
inf
x∈A

SN
x

)
. (3.13)

From Remark 2.1, it is easy to see that ( 1
p+

− 1
β ) infx∈A SN

x > 0.
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We shall use the above result to show the following lemma.

Lemma 3.5. For any λ ≥ 1, the functional Φλ satisfies the Palais–Smale condition
at any level c ∈ (0, ( 1

p+
− 1

β ) infx∈A SN
x ).

Proof. Let (un) ⊂ Eλ be a (PS)c sequence. Then, from Lemma 3.2, we know that
(un) is bounded in Eλ. Up to a subsequence, we may assume that⎧⎪⎪⎨⎪⎪⎩

un ⇀ u, weakly in Eλ,

un → u, strongly in L
h(x)
loc (RN ) for any 1 ≤ h(x) 	 p∗(x),

un → u, for a.e. x ∈ R
N .

From Φ′
λ(un)un → 0, it follows that∫

(|∇un|p(x) + (λV (x) + Z(x))|un|p(x))dx =
∫

g(x, un)undx + on(1). (3.14)

It is easy to know that the weak limit u is a critical point of Φλ, and so∫
(|∇u|p(x) + (λV (x) + Z(x))|u|p(x))dx =

∫
g(x, u)udx. (3.15)

Now, we claim that

lim
n→∞

∫
g(x, un)undx =

∫
g(x, u)udx. (3.16)

If (3.16) holds, by (3.14) and (3.15), we have that

lim
n→∞

∫
(|∇un|p(x) + (λV (x) + Z(x))|un|p(x))dx

=
∫

(|∇u|p(x) + (λV (x) + Z(x))|u|p(x))dx,

and un → u in Eλ.
Now let us prove (3.16). We first note by Lemma 3.3 that for each ζ > 0, there

exists R = R(ζ) > 0 such that

lim sup
n→∞

∫
RN\BR(0)

(|∇un|p(x) + (λV (x) + Z(x))|un|p(x))dx < ζ.

This inequality together with (3.5), (3.8) and the Sobolev embedding imply that,
for n large enough,∫

RN\BR(0)

g(x, un)undx ≤ ς

∫
RN\BR(0)

|un|p(x)dx

≤ ς

M

∫
RN\BR(0)

(|∇un|p(x) + (λV (x) + Z(x))|un|p(x))dx

≤ ςζ

M
.
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On the other hand, we may choose R large enough such that∫
RN\BR(0)

g(x, u)udx ≤ ζ.

By the definition of g, we know that

g(x, un)un ≤ ς|un|p(x), for any x ∈ R
N\Ω′

Γ.

Since the set BR(0)\Ω′
Γ is bounded, we can use the above estimate and a variant

of the Lebesgue Dominated Convergence theorem (see [33]) to obtain that

lim
n→∞

∫
BR(0)\Ω′

Γ

g(x, un)undx =
∫

BR(0)\Ω′
Γ

g(x, u)udx.

Finally, we claim that un → u in Lq(x)(Ω′
Γ). If it holds, we can use the

Sobolev embedding and the Lebesgue Dominated Convergence theorem to conclude
that

lim
n→∞

∫
Ω′

Γ

g(x, un)undx =
∫

Ω′
Γ

g(x, u)udx.

Using the above information, we conclude that (3.16).
It remains to prove that un → u in Lq(x)(Ω′

Γ). By Lemma 2.5, we have an at
most enumerable set of indices I, points xi ∈ A (the critical set in (q1)), and positive
real numbers μi, νi, i ∈ I, such that the following convergences hold weakly in the
sense of measures:

|∇un|p(x)dx ⇀ μ ≥ |∇u|p(x)dx +
∑

μiδxi ,

|un|q(x)dx ⇀ ν := |u|q(x)dx +
∑

νiδxi ,

Sxiν
1

p(xi)∗
i ≤ μ

1
p(xi)

i , for all i ∈ I,

where Sxi is the localized Sobolev constant at the point xi defined in Lemma 2.5.
It suffices to show that {xi}i∈I ∩Ω′

Γ = ∅. Suppose, by contradiction, that xi ∈ Ω′
Γ,

for some i ∈ I. For ε > 0 small such that B(xi, 2ε) ⊂ Ω′
Γ, define a function

φ(x) ∈ C∞
0 (RN , [0, 1]) such that φ(x) = 1 in B(xi, ε), φ(x) = 0 in R

N\B(xi, 2ε)
and |∇φ| ≤ 2

ε in R
N . Obviously, 〈Φλ(un), unφ〉 = on(1), i.e.

−
∫

un|∇un|p(x)−2∇un∇φdx + on(1)

=
∫

|∇un|p(x)φdx +
∫

(λV (x) + Z(x))|un|p(x)φdx

−α

∫
f(x, un)unφdx −

∫
|un|q(x)φdx. (3.17)
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Because of the boundedness of (un) in Eλ, using the Hölder inequality, we have
that

0 ≤ lim
ε→0

lim
n→∞

∣∣∣∣∫ un|∇un|p(x)−2∇un∇φdx

∣∣∣∣
≤ lim

ε→0
lim

n→∞

∫
|un∇φ||∇un|p(x)−1dx

≤ 2 lim
ε→0

lim
n→∞ |un∇φ|p(x)||∇un|p(x)−1| p(x)

p(x)−1

≤ C lim
ε→0

lim
n→∞ |un∇φ|p(x). (3.18)

By a variant of Lebesgue Dominated Convergence theorem (see [33]) and un → u

strongly in L
p(x)
loc (RN ), we have that

lim
n→∞

∫
|un∇φ|p(x)dx =

∫
|u∇φ|p(x)dx.

Moreover, by the Hölder inequality and the absolute continuity of the integration,
it yields

lim
ε→0

∫
|u∇φ|p(x)dx ≤ 2 lim

ε→0
||u|p(x)|

L
N

N−p(x) (B(xj,2ε)
||∇φ|p(x)| N

p(x)

≤ C lim
ε→0

||u|p(x)|
L

N
N−p(x) (B(xj,2ε))

= 0. (3.19)

Combining (3.18) and (3.19), it is easy to see that

lim
ε→0

lim
n→∞

∫
un|∇un|p(x)−2∇un∇φdx = 0. (3.20)

Since φ has compact support and f has subcritical growth, we can let n → ∞ and
ε → 0 to obtain that

lim
ε→0

lim
n→∞

∫
f(x, un)unφdx = lim

ε→0
lim

n→∞

∫
B(xi,2ε)

f(x, un)unφdx

= lim
ε→0

∫
B(xi,2ε)

f(x, u)uφdx = 0. (3.21)

Therefore, from (3.17), (3.20) and (3.21), it yields that

0 = lim
ε→0

lim
n→∞

{∫
|∇un|p(x)φdx +

∫
(λV (x) + Z(x))|un|p(x)φdx

−α

∫
f(x, un)unφdx −

∫
|un|q(x)φdx

}
≥ lim

ε→0
lim

n→∞

{∫
|∇un|p(x)φdx −

∫
|un|q(x)φdx

}
= μi − νi.
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Using the above estimate together with Lemma 2.5, we obtain νi ≥ S
p(xi)
xi ν

N−p(xi)
N

i .
This result implies that

• (1) νi = 0 or
• (2)νi ≥ SN

xi
.

If the second case νi ≥ SN
xi

holds, for some i ∈ I, then by (f3), we have

c = lim
n→∞

{
Φλ(un) − 1

β
〈Φ′

λ(un), un〉
}

= lim
n→∞

{∫ (
1

p(x)
− 1

β

)
(|∇un|p(x) + (λV (x) + Z(x))|un|p(x))dx

+ α

∫
Ω′

Γ

(
1
β

f(x, un)un − F (x, un)
)

dx +
∫

Ω′
Γ

(
1
β
− 1

q(x)

)
|un|q(x)dx

+
∫

RN\Ω′
Γ

(
1
β

f̃(x, un)un − F̃ (x, un)
)

dx

}

≥ lim
n→∞

{∫ (
1

p(x)
− 1

β

)
(|∇un|p(x) + (λV (x) + Z(x))|un|p(x))dx

+
∫

RN\Ω′
Γ

(
1
β

f̃(x, un)un − F̃ (x, un)
)

dx

}
.

If 0 ≤ un ≤ a(x), we have from the definition of f̃ and (f3) that

1
β

f̃(x, un)un − F̃ (x, un) ≥ 0, in R
N\Ω′

Γ.

If un ≥ a(x), from the definition of f̃ , it follows that

1
β

f̃(x, un)un − F̃ (x, un) =
(

ς

β
− ς

p(x)

)
|un|p(x), in R

N\Ω′
Γ.

Since ς > 0 small enough, thus we obtain(
1

p+
− 1

β

)∫
(λV (x) + Z(x))|un|p(x)dx

+
∫

RN\Ω′
Γ

(
1
β

f̃(x, un)un − F̃ (x, un)
)

dx ≥ 0.

From the above arguments and Lemma 2.5, one has

c ≥
(

1
p+

− 1
β

)
lim

n→∞

∫
|∇un|p(x)dx

≥
(

1
p+

− 1
β

)∫
|∇u|p(x)dx +

(
1

p+
− 1

β

)
μi
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≥
(

1
p+

− 1
β

)
Sp(xi)

xi
ν

N−p(xi)
N

i

≥
(

1
p+

− 1
β

)
SN

xi
,

this is impossible. So, νi = 0 for all i ∈ I and

un → u in Lq(x)(Ω′
Γ).

The proof is complete.

4. The (PS)∞ Sequence

Our next step is to study the behavior of a (PS)∞,c sequence, that is, a sequence
(un) ⊂ W 1,p(x)(RN ) satisfying

(un) ⊂ Eλn and λn ≥ 1, λn → ∞,

Φλn(un) → c, ‖Φ′
λn

(un)‖∗λn
→ 0.

Lemma 4.1. Assume that the sequence (un) ⊂ W 1,p(x)(RN ) be a (PS)∞,c sequence
with c ∈ (0, ( 1

p+
− 1

β ) infx∈A SN
x ). Then, for some subsequence, still denoted by (un),

there exists u ∈ W 1,p(x)(RN ) such that un ⇀ u in W 1,p(x)(RN ). Moreover,

(i) �λn(un − u) → 0 and, so un → u in W 1,p(x)(RN ).
(ii) u = 0 in R

N\ΩΓ, u ≥ 0 and u|Ωj
, j ∈ Γ, is a nonnegative solution for

(Pj)

⎧⎪⎨⎪⎩
−div(|∇u|p(x)−2∇u) + Z(x)|u|p(x)−2u

= αf(x, u) + |u|q(x)−2u, in Ωj ,

u ∈ W
1,p(x)
0 (Ωj).

(iii) λn

∫
V (x)|un|p(x)dx → 0 as n → ∞.

(iv) �λn,Ω′
j
(un) → ∫

Ωj
(|∇u|p(x) + Z(x)|u|p(x))dx, for j ∈ Γ.

(v) �λn,RN\ΩΓ(un) → 0.
(vi) Φλn(un) → ∫

ΩΓ

1
p(x) (|∇u|p(x) + Z(x)|u|p(x))dx − α

∫
ΩΓ

F (x, u)dx − ∫
ΩΓ

1
q(x) ×

|u|q(x)dx.

Proof. Similar to the proof of Lemma 3.2, for any (PS)∞,c sequence (un), we may
prove that

(
�λn(un)

)
is bounded in R

+. Thus, the sequence (un) is bounded in
W 1,p(x)(RN ), and for some subsequence, still denoted by (un), there exists u ∈
W 1,p(x)(RN ) such that⎧⎪⎪⎨⎪⎪⎩

un ⇀ u, weakly in W 1,p(x)(RN ),

un → u, strongly in L
h(x)
loc (RN ) for any 1 ≤ h(x) 	 p∗(x),

un → u, for a.e. x ∈ R
N .
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Now, for each m ∈ N, we define the set Cm = {x ∈ R
N : V (x) ≥ 1

m}. For n large,
we have ∫

Cm

|un|p(x)dx ≤ 2m

λn

∫
Cm

(λnV (x) + Z(x))|un|p(x)dx

≤ 2m

λn
�λn(un) ≤ 2mC

λn
.

By the Fatou’s lemma and the last inequality, we obtain∫
Cm

|u|p(x)dx = 0, ∀m ∈ N.

Thus, u(x) = 0 in
⋃∞

m=1 Cm = R
N\Ω. From this, we can prove that (i)–(vi).

(i) First of all, we know that

〈Φ′
λn

(un) − Φ′
λn

(u), un − u〉

=
∫

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)dx

+
∫

(λnV (x) + Z(x))(|un|p(x)−2un − |u|p(x)−2u)(un − u)dx

−
∫

(g(x, un) − g(x, u))(un − u)dx.

Here, we note that

〈Φ′
λn

(un), un − u〉 → 0, as n → ∞.

Moreover, the fact u = 0 in R
N\Ω and un ⇀ u weakly in W 1,p(x)(RN ) imply that

〈Φ′
λn

(u), un − u〉 → 0, as n → ∞.

Using the similar arguments explored in Lemma 3.5, we get∫
(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)dx

+
∫

(λnV (x) + Z(x))(|un|p(x)−2un − |u|p(x)−2u)(un − u)dx → 0.

Thus, �λn(un − u) → 0, which implies that un → u in W 1,p(x)(RN ).

(ii) Since u ∈ W 1,p(x)(RN ) and u = 0 in R
N\Ω, we have u|Ωj ∈ W

1,p(x)
0 (Ωj) for all

j ∈ {1, 2, . . . , k}. Moreover, the limits un → u in W 1,p(x)(RN ) and Φ′
λn

(un)ϕ → 0
for ϕ ∈ C∞

0 (Ωj) imply that∫
Ωj

(|∇u|p(x)−2∇u∇ϕ + Z(x)|u|p(x)−2uϕ)dx −
∫

Ωj

g(x, u)ϕdx = 0.
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This shows that u|Ωj , j ∈ Γ, is a solution for the problem⎧⎨⎩−div(|∇u|p(x)−2∇u) + Z(x)|u|p(x)−2u = αf(x, u) + uq(x)−1, in Ωj ,

u ∈ W
1,p(x)
0 (Ωj).

On the other hand, if j 
∈ Γ, one has∫
Ωj

(|∇u|p(x) + Z(x)|u|p(x))dx −
∫

Ωj

f̃(x, u)udx = 0.

From the above equality, Lemma 2.1 and (3.5), we obtain

0 ≥ �λ,Ωj (u) − ς�p(x),Ωj
(u) ≥ δ�λ,Ωj (u) ≥ 0.

Thus, u = 0 in R
N\ΩΓ and u ≥ 0 in R

N .

(iii) Since∫
λnV (x)|un|p(x)dx =

∫
λnV (x)|un − u|p(x)dx ≤ 2�λn(un − u).

From (i), we may get λn

∫
V (x)|un|p(x)dx → 0 as n → ∞.

(iv) From (i), �λn(un − u) → 0. So, for ∀ j ∈ Γ,

�p(x),Ω′
j
(un − u) → 0 and �p(x),Ω′

j
(∇un −∇u) → 0.

Then by Lemma 2.4, we have∫
Ω′

j

(|∇un|p(x) − |∇u|p(x))dx → 0 and

∫
Ω′

j

Z(x)(|un|p(x) − |u|p(x))dx → 0.

(4.1)

From (iii) and u = 0 in R
N\ΩΓ,∫

Ω′
j

λnV (x)(|un|p(x) − |u|p(x))dx =
∫

Ω′
j\Ωj

λnV (x)|un|p(x)dx → 0. (4.2)

(4.1) and (4.2) imply that

�λn,Ω′
j
(un) − �λn,Ω′

j
(u) → 0,

and

�λn,Ω′
j
(un) →

∫
Ωj

(|∇u|p(x) + Z(x)|u|p(x))dx.

(v) It is easy to see that �λn,RN\ΩΓ(un) → 0 from (i) and (ii).
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(vi) It is clear that

Φλn(un) =
∑
j∈Γ

∫
Ω′

j

1
p(x)

(|∇un|p(x) + (λnV (x) + Z(x))|un|p(x))dx

+
∫

RN\Ω′
Γ

1
p(x)

(|∇un|p(x) + (λnV (x) + Z(x))|un|p(x))dx

−
∫

G(x, un)dx.

From (iv), we have for any j ∈ Γ∫
Ω′

j

1
p(x)

(|∇un|p(x) + (λnV (x) + Z(x))|un|p(x))dx

→
∫

Ωj

1
p(x)

(|∇u|p(x) + Z(x)|u|p(x))dx.

From (v), one has∫
RN\Ω′

Γ

1
p(x)

(|∇un|p(x) + (λnV (x) + Z(x))|un|p(x))dx → 0.

Moreover, by (i) and (ii), un → u in W 1,p(x)(RN ) and u = 0 in R
N\ΩΓ, it yields

that ∫
G(x, un)dx → α

∫
ΩΓ

F (x, u)dx +
∫

ΩΓ

1
q(x)

|u|q(x)dx.

So, from the above arguments, we have

Φλn(un) →
∫

ΩΓ

1
p(x)

(|∇u|p(x) + Z(x)|u|p(x))dx

−α

∫
ΩΓ

F (x, u)dx −
∫

ΩΓ

1
q(x)

|u|q(x)dx.

5. The Boundedness of Solutions

In virtue of (q2) and the continuity of p(x), q(x), we can choose the appropriate
smooth bounded domain Ω′

j (j = 1, . . . , k) in (3.7) such that

Ωj ⊂ Ω′
j and Ω

′
j ∩ Ω

′
i = ∅, for i 
= j,

and for any x ∈ Ω′
j\Ωj , q(x) 	 p∗(x).

The following lemma plays a fundamental role in the study of the solutions of
problem (Aλ).
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Lemma 5.1. Let (uλ) be a family of solutions for (Aλ) such that

sup
λ≥1

Φλ(uλ) <

(
1
p+

− 1
β

)
inf
x∈A

SN
x

and uλ → 0 in W 1,p(x)(RN\ΩΓ) as λ → ∞. Then, there exists Λ0 > 0 such that
|uλ|L∞(RN\Ω′

Γ) ≤ a− for λ ≥ Λ0. In particular, uλ is a solution for problem (1.1)
for λ ≥ Λ0.

Before to prove the above lemma, we need some technical lemmas.

Lemma 5.2. There exist x1, . . . , xl ∈ ∂Ω′
Γ and corresponding δx1 , . . . , δx1 > 0 such

that

∂Ω′
Γ ⊂ N (∂Ω′

Γ) =
l⋃

i=1

B δxi
2

(xi).

Moreover,

qxi
+ ≤ (pxi− )∗, mxi

+ ≤ (pxi− )∗, (5.1)

where qxi
+ = supBδxi

(xi) q, mxi
+ = supBδxi

(xi) m, pxi− = infBδxi
(xi) p and (pxi− )∗ =

Np
xi
−

N−p
xi
−

.

Proof. Since q 	 p∗ on ∂Ω, there exists ε > 0 such that ε ≤ p∗(x) − q(x), for all
x ∈ ∂Ω. By the continuity of p and q, we may choose appropriate Ω′

j , ∀ j ∈ Γ such
that ε/3 ≤ p∗(x) − q(x) for all ∂Ω′

j, ∀ j ∈ Γ. So, there exists δ > 0 small enough
such that

Bδ(x) ⊂ R
N\Ω′

Γ, ∀x ∈ ∂Ω′
Γ.

Moreover, for each x ∈ ∂Ω′
Γ, by the continuity of p and q, we can choose 0 < δx ≤ δ

small enough such that

qx
+ ≤ (px

−)∗,

where qx
+ = supBδx (x) q, px

− = infBδx (x) p and (px
−)∗ = Npx

−
N−px

−
. Since m(x) 	 p∗(x)

for any x ∈ R
N . For the former x ∈ ∂Ω′

Γ, we may choose δx, if necessary, even
smaller such that

mx
+ ≤ (px

−)∗,

where mx
+ = supBδx (x) m.

Since ∂Ω′
Γ is compact, there exist the points x1, . . . , xl ∈ ∂Ω′

Γ such that

∂Ω′
Γ ⊂

l⋃
i=1

B δxi
2

(xi).
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Lemma 5.3. If uλ is a solution for (Aλ), then, for each Bδxi
(xi), i = 1, . . . , l,

given by Lemma 5.2, it satisfies∫
Ak,δ̄,xi

|∇uλ|p
xi
− dx

≤ C

(
(kq+ + 2)|Ak,δ̃,xi

| + (δ̃ − δ̄)−(p
xi
− )∗

∫
Ak,δ̃,xi

(uλ − k)(p
xi
− )∗dx

)
,

where 0 < δ̄ < δ̃ < δxi , k ≥ a−
4 , C = C(p−, p+, m−, m+, q−, q+, ς, δxi) > 0 is a

constant independent of k, and for any R > 0, we denote by Ak,R,xi the set

Ak,R,xi = BR(xi) ∩ {x ∈ R
N : uλ(x) > k}.

Proof. We choose arbitrarily 0 < δ̄ < δ̃ < δxi and ξ ∈ C∞(RN ) satisfying

0 ≤ ξ ≤ 1, supp ξ ⊂ Bδ̃(xi), ξ = 1, in Bδ̄(xi) and |∇ξ| ≤ 2
δ̃ − δ̄

.

For k ≥ a−
4 , we define η = ξp+(uλ − k)+. By a simple computation, we have

∇η = p+ξp+−1(uλ − k)∇ξ + ξp+∇uλ

on the set {x ∈ R
N : uλ(x) > k}. Then, we denote uλ by u and take η as a test

function, and obtain

p+

∫
Ak,δ̃,xi

ξp+−1(u − k)|∇u|p(x)−2∇u∇ξdx +
∫

Ak,δ̃,xi

ξp+ |∇u|p(x)dx

+
∫

Ak,δ̃,xi

(λV (x) + Z(x))up(x)−1ξp+(u − k)dx

=
∫

Ak,δ̃,xi

g(x, u)ξp+(u − k)dx.

Here, we denote

J =
∫

Ak,δ̃,xi

ξp+ |∇u|p(x)dx.

Since λV (x) + Z(x) ≥ M ≥ ς, for ∀x ∈ R
N , we have

J ≤ p+

∫
Ak,δ̃,xi

ξp+−1(u − k)|∇u|p(x)−1|∇ξ|dx

−
∫

Ak,δ̃,xi

ςup(x)−1ξp+(u − k)dx +
∫

Ak,δ̃,xi

g(x, u)ξp+(u − k)dx.
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From the above inequality, (3.1) and (3.4), it follows that

J ≤ p+

∫
Ak,δ̃,xi

ξp+−1(u − k)|∇u|p(x)−1|∇ξ|dx

−
∫

Ak,δ̃,xi

ςup(x)−1ξp+(u − k)dx

+
∫

Ak,δ̃,xi

ςup(x)−1ξp+(u − k)dx

+
∫

Ak,δ̃,xi

(Cςαum(x)−1 + uq(x)−1)ξp+(u − k)dx,

from where it follows

J ≤ p+

∫
Ak,δ̃,xi

ξp+−1(u − k)|∇u|p(x)−1|∇ξ|dx

+
∫

Ak,δ̃,xi

Cςu
m(x)−1(u − k)dx +

∫
Ak,δ̃,xi

uq(x)−1(u − k)dx.

Using Young’s inequality, for χ ∈ (0, 1), we obtain

J ≤ p+(p+ − 1)
p−

χ
p−

p+−1 J +
2p+p+

p−
χ−p+

∫
Ak,δ̃,xi

(
u − k

δ̃ − δ̄

)p(x)

dx

+
Cς(m+ − 1)

m−

∫
Ak,δ̃,xi

um(x)dx +
Cς(1 + δ

m+
xi )

m−

∫
Ak,δ̃,xi

(
u − k

δ̃ − δ̄

)m(x)

+
(q+ − 1)

q−

∫
Ak,δ̃,xi

uq(x)dx +
(1 + δ

q+
xi )

q−

∫
Ak,δ̃,xi

(
u − k

δ̃ − δ̄

)q(x)

.

Writing

Q =
∫

Ak,δ̃,xi

(
u − k

δ̃ − δ̄

)(p
xi
− )∗

,

for χ ≈ 0+, by (5.1), we have

J ≤ 1
2
χ

p−
p+−1 J +

2p+p+

p−
χ−p+(|Ak,δ̃,xi

| + Q)

+
Cς2m+(m+ − 1)(1 + δ

m+
xi )

m−
(|Ak,δ̃,xi

| + Q)

+
Cς2m+(m+ − 1)(1 + km+)

m−
|Ak,δ̃,xi

|
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+
Cς(1 + δ

m+
xi )

m−
(|Ak,δ̃,xi

| + Q) +
(1 + δ

q+
xi )

q−
(|Ak,δ̃,xi

| + Q)

+
2q+(q+ − 1)(1 + δ

q+
xi )

q−
(|Ak,δ̃,xi

| + Q)

+
Cς2q+(q+ − 1)(1 + kq+)

q−
|Ak,δ̃,xi

|.

Therefore, ∫
Ak,δ̃,xi

|∇u|p(x) ≤ J ≤ C[(kq+ + 1)|Ak,δ̃,xi
| + Q],

for a positive constant C = C(p−, p+, m−, m+, q−, q+, ς, δxi) which does not depend
on k. Since

|∇u|pxi
− − 1 ≤ |∇u|p(x), ∀x ∈ Bδxi

(xi),

we obtain∫
Ak,δ̃,xi

|∇u|pxi
− ≤ C[(kq+ + 1)|Ak,δ̃,xi

| + Q] + |Ak,δ̃,xi
|

≤ C

(
(kq+ + 2)|Ak,δ̃,xi

| + (δ̃ − δ̄)−(p
xi
− )∗

∫
Ak,δ̃,xi

(uλ − k)(p
xi
− )∗dx

)
,

for a positive constant C = C(p−, p+, m−, m+, q−, q+, ς, δxi) which does not depend
on k.

In order to prove the desired result, the following lemma is needed, see [28].

Lemma 5.4. Let (Jn) be a sequence of nonnegative numbers satisfying

Jn+1 ≤ CBnJ1+η
n , n = 0, 1, 2, . . . ,

where C, η > 0 and B > 1. If

J0 ≤ C− 1
η B

− 1
η2 ,

then Jn → 0, as n → ∞.

Lemma 5.5. Let (uλ) be a family of solutions for problem (Aλ) such that

sup
λ≥1

Φλ(uλ) <

(
1
p+

− 1
β

)
inf
x∈A

SN
x

and uλ → 0 in W 1,p(x)(RN\ΩΓ) as λ → ∞. Then, there exists λ∗ > 0 such that
|uλ|L∞(N (∂Ω′

Γ)) ≤ a− for λ ≥ λ∗.
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Proof. It is enough to prove the inequality in each ball B δxi
2

(xi), i = 1, . . . , l, given
by Lemma 5.2. We set

δ̃n =
δxi

2
+

δxi

2n+1
, δ̄n =

δ̃n + δ̃n+1

2
,

kn =
a−
2

(
1 − 1

2n+1

)
, ∀n = 0, 1, 2, . . . .

Then,

δ̃n ↓ δxi

2
, δ̃n+1 < δ̄n < δ̃n, kn ↑ a−

2
.

Now, we fix

Jn =
∫

Akn,δ̃n,xi

(uλ(x) − kn)(p
xi
− )∗ , n = 0, 1, 2, . . .

and ξ ∈ C1(R) such that

0 ≤ ξ ≤ 1, ξ(t) = 1, for t ≤ 1
2
, and ξ(t) = 0, for t ≥ 3

4
.

Set

ξn(x) = ξ

(
2n+1

δxi

(
|x − xi| − δxi

2

))
, x ∈ R

N , n = 0, 1, 2, . . . ,

one has ξn = 1 in Bδ̃n+1
(xi) and ξn = 0 in R

N\Bδ̄n
(xi). Denote uλ by u, we have

Jn+1 ≤
∫

Akn+1,δ̄n,xi

((u(x) − kn+1)ξn(x))(p
xi
− )∗dx

=
∫

Bδxi
(xi)

((u(x) − kn+1)+ξn(x))(p
xi
− )∗dx

≤ C(N, pxi− )

(∫
Bδxi

(xi)

|∇((u(x) − kn+1)+ξn)(x)|pxi
− dx

) (p
xi− )∗

p
xi
−

≤ C(N, pxi− )

(∫
Akn+1,δ̄n,xi

|∇u|pxi
− dx

+
∫

Akn+1,δ̄n,xi

(u − kn+1)p
xi
− |∇ξn|p

xi
− dx

) (p
xi− )∗

p
xi−

.

Since

|∇ξn| ≤ Cδxi2
n+1, ∀x ∈ R

N ,
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and writing J

p
xi−

(p
xi
− )∗

n+1 = J̃n+1, we obtain

J̃n+1 ≤ C(N, pxi− , δxi)

(∫
Akn+1,δ̄n,xi

|∇u|pxi
− dx + 2np

xi
−

∫
Akn+1,δ̄n,xi

(u − kn+1)p
xi
−

)
.

Using Lemma 5.3,

J̃n+1 ≤ C(N, pxi− , δxi)

(
(kq+

n+1 + 2)|Akn+1,δ̃n,xi
|

+
(

2n+3

δxi

)(p
xi
− )∗ ∫

Akn+1,δ̃n,xi

(u − kn+1)(p
xi
− )∗

+ 2np
xi
−

∫
Akn+1,δ̃n,xi

(u − kn+1)p
xi
−

)

≤ C(N, pxi− , δxi)

(
(kq+

n+1 + 2)|Akn+1,δ̃n,xi
|

+ 2n(p
xi
− )∗

∫
Akn+1,δ̃n,xi

(u − kn+1)(p
xi
− )∗

+ 2np
xi
−

∫
Akn+1,δ̃n,xi

(u − kn+1)p
xi
−

)
.

From Young’s inequality∫
Akn+1,δ̃n,xi

(u − kn+1)p
xi
− dx

≤ Cpxi−

(
|Akn+1,δ̃n,xi

| +
∫

Akn+1,δ̃n,xi

(u − kn+1)(p
xi
− )∗
)

.

Thus

J̃n+1 ≤ C(N, pxi− , δxi)
(((a−

2

)q+

+ 2 + 2np
xi
−
)
|Akn+1,δ̃n,xi

|

+ 2n(p
xi
− )∗Jn + 2np

xi
− Jn

)
.

Now, since

Jn ≥
∫

Akn+1,δ̃n,xi

(u − kn)(p
xi
− )∗dx ≥ (kn+1 − kn)(p

xi
− )∗ |Akn+1,δ̃n,xi

|,

it follows that

|Akn+1,δ̃n,xi
| ≤

(
2n+3

a−

)(p
xi
− )∗

Jn,
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and thus,

J̃n+1 ≤ C(N, pxi− , δxi, a−, q+)(2n(p
xi
− )∗Jn + 2n(p

xi
− +(p

xi
− )∗)Jn

+ 2n(p
xi
− )∗Jn + 2np

xi
− Jn).

Fixing α = (pxi− + (pxi− )∗), it follows that

Jn+1 ≤ C(N, pxi− , δxi , a−, q+)
(
2

α
(p

xi− )∗

p
xi−
)n

J

(p
xi− )∗

p
xi−

n ,

and thus

Jn+1 ≤ CBnJ1+η
n ,

where C = C(N, pxi− , δxi , a−, q+), B = 2
α

(p
xi− )∗

p
xi− and η =

(p
xi
− )∗

p
xi
−

− 1. Now, since

uλ → 0 in W 1,p(x)(RN\ΩΓ) as λ → ∞, there exists λi > 0 such that∫
A a−

4 ,δxi
,xi

(
uλ − a−

4

)(p
xi
− )∗

dx = J0(λ) ≤ C− 1
η B

− 1
η2 , λ ≥ λi.

From Lemma 5.4, Jn(λ) → 0 as n → ∞, for all λ ≥ λi, and so

uλ ≤ a−
2

< a−, in B δxi
2

, for all λ ≥ λi.

Now, taking λ∗ = max{λ1, . . . , λl}, we obtain that

|uλ|L∞(N (∂Ω′
Γ)) ≤ a−, for ∀λ ≥ λ∗.

Proof of Lemma 5.1. Fix λ ≥ λ∗, where λ∗ is given in Lemma 5.5, and define
ũλ : R

N\Ω′
Γ → R given by

ũλ(x) = (uλ − a−)+(x).

From Lemma 5.5, we know that ũλ ∈ W
1,p(x)
0 (RN\Ω′

Γ). Now, we are going to prove
that ũλ = 0 in R

N\Ω′
Γ. It implies

|uλ|∞,RN\Ω′
Γ
≤ a−.

Here, we may extend ũλ(x) = 0 in Ω′
Γ and take ũλ as a test function, it yields∫

RN\Ω′
Γ

|∇uλ|p(x)−2∇uλ∇ũλdx +
∫

RN\Ω′
Γ

(λV (x) + Z(x))|uλ|p(x)−2uλũλdx

=
∫

RN\Ω′
Γ

g(x, uλ)ũλdx.
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Since ∫
RN\Ω′

Γ

|∇uλ|p(x)−2∇uλ∇ũλdx =
∫

RN\Ω′
Γ

|∇ũλ|p(x)dx,

∫
RN\Ω′

Γ

(λV (x) + Z(x))|uλ|p(x)−2uλũλdx

=
∫

(RN\Ω′
Γ)+

(λV (x) + Z(x))|uλ|p(x)−2(ũλ + a−)ũλdx,

and ∫
RN\Ω′

Γ

g(x, uλ)ũλdx =
∫

RN\Ω′
Γ

f̃(x, uλ)ũλdx

=
∫

(RN\Ω′
Γ)+

f̃(x, uλ)
uλ

(ũλ + a−)ũλ,

where

(RN\Ω′
Γ)+ = {x ∈ R

N\Ω′
Γ : uλ(x) > a−}.

From the above equalities, we obtain that∫
RN\Ω′

Γ

|∇ũλ|p(x)dx

+
∫

(RN\Ω′
Γ)+

(
(λV (x) + Z(x))|uλ|p(x)−2 − f̃(x, uλ)

uλ

)
(ũλ + a−)ũλ = 0.

In virtue of (3.4), we have

(λV (x) + Z(x))|uλ|p(x)−2 − f̃(x, uλ)
uλ

≥ (M − ς)|uλ|p(x)−2

≥ 0, in (RN\Ω′
Γ)+.

Thus, ũλ = 0 in (RN\Ω′
Γ)+, and ũλ = 0 in R

N\Ω′
Γ. The proof is complete.

6. A Special Critical Value for Φλ

In this section, for each λ ≥ 1 and j ∈ Γ, let us denote by Φλ,j : W 1,p(x)(Ω′
j) → R

the functional

Φλ,j(u) =
∫

Ω′
j

1
p(x)

(|∇u|p(x) + (λV (x) + Z(x))|u|p(x))dx

−
∫

Ω′
j

F (x, u)dx −
∫

Ω′
j

1
q(x)

|u|q(x)dx.
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We know that the critical points of Φλ,j are related with the weak solutions to
the following problems:⎧⎪⎨⎪⎩

−Δp(x)u + (λV (x) + Z(x))u = f(x, u) + |u|q(x)−2u, in Ω′
j ,

∂u

∂η
= 0, on ∂Ω′

j.
(6.1)

It is easy to check that the functional Φλ,j satisfies the mountain pass geometry.
In what follows, we denote by cλ,j the minimax level related to the above functional
defined by

cλ,j = inf
γ∈Λλ,j

max
t∈[0,1]

Φλ,j(γ(t)),

where

Λλ,j = {γ ∈ C([0, 1], W 1,p(x)(Ω′
j)) : γ(0) = 0, Φλ,j(γ(1)) < 0}.

If α is large enough, similar to the arguments in Lemmas 3.4 and 3.5, we know that
the functional Ij and Φλ,j satisfy the (PS)cj and (PS)cλ,j

conditions, respectively.
Therefore, it implies that there exist two nonnegative functions wj ∈ W

1,p(x)
0 (Ωj)

and wλ,j ∈ W 1,p(x)(Ω′
j) verifying

Ij(wj) = cj and I ′j(wj) = 0,

and

Φλ,j(wλ,j) = cλ,j and Φ′
λ,j(wλ,j) = 0.

Moreover, we have the following lemma.

Lemma 6.1. (i) 0 < cλ,j ≤ cj , for λ ≥ 1, ∀ j ∈ {1, 2, . . . , k}.
(ii) cj (cλ,j , respectively) is a least energy level for Ij(u) (Φλ,j(u), respectively),

that is

cj = inf{Ij(u) : u ∈ W
1,p(x)
0 (Ωj)\{0}, I ′j(u)u = 0},

and

cλ,j = inf{Φλ,j(u) : u ∈ W 1,p(x)(Ω′
j)\{0}, Φ′

λ,j(u)u = 0}.
(iii) cj = maxt>0 Ij(twj), cλ,j = maxt>0 Φλ,j(twλ,j).
(iv) cλ,j → cj as j → ∞.

Proof. For any u ∈ W
1,p(x)
0 (Ωj), we may extend u to ũ ∈ W 1,p(x)(Ω′

j) by

ũ(x) :=

{
u(x), in Ωj ,

0, in Ω′
j\Ωj ,
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and W
1,p(x)
0 (Ωj) ⊂ W 1,p(x)(Ω′

j). Thus, we have Λj ⊂ Λλ,j and

cλ,j = inf
γ∈Λλ,j

max
t∈[0,1]

Φλ,j(γ(t))

≤ inf
γ∈Λj

max
t∈[0,1]

Φλ,j(γ(t))

= inf
γ∈Λj

max
t∈[0,1]

Ij(γ(t)) = cj .

Thus (i) holds. The proof of (ii) and (iii) is standard by using (f4).
Now, we prove (iv). Using Lemma 4.1, we may extract a subsequence λn → ∞

such that

wλn,j → u0, strongly in W 1,p(x)(Ω′
j),

where u0 ∈ W
1,p(x)
0 (Ωj) is a solution of (Pλ) and

Φλn,j(wλn,j) → Ij(u0).

By the definition of cj , we have

lim sup
λ→∞

cλ,j = lim sup
λ→∞

Φλ,j(wλ,j) ≥ Ij(u0) ≥ cj .

Together with (i), we get (iv).

In what follows, let us fix R > 1 such that∣∣∣∣Ij

(
1
R

wj

)∣∣∣∣ <
1
2
cj , ∀ j ∈ Γ

and

|Ij(Rwj) − cj | ≥ 1, ∀ j ∈ Γ.

From the definition of cj , it is easy to check that

max
s∈[ 1

R2 ,1]
Ij(sRwj) = cj , ∀ j ∈ Γ.

We consider Γ = {1, 2, . . . , l}(l ≤ k), and the maps

γ0(s1, s2, . . . , sl)(x) =
l∑

j=1

sjRwj(x) ∀(s1, s2, . . . , sl) ∈
[

1
R2

, 1
]l

, (6.2)

Λ∗ =

{
γ ∈ C

([
1

R2
, 1
]l

, Eλ\{0}
)

: γ = γ0 on ∂

([
1

R2
, 1
]l
)}

, (6.3)

and

bλ,Γ = inf
γ∈Λ∗

max
(s1,s2,...,sl)∈[ 1

R2 ,1]l
Φλ(γ(s1, s2, . . . , sl)).

2050013-31



April 25, 2021 17:43 WSPC/S0219-1997 152-CCM 2050013

C. Ji & V. D. Rădulescu

We remark that γ0 ∈ Λ∗, so Λ∗ 
= ∅ and bλ,Γ is well defined.

Lemma 6.2. For any γ ∈ Λ∗, there exists (t1, t2, . . . , tl) ∈ [ 1
R2 , 1]l → R

l such that

Φ′
λ,j(γ(t1, t2, . . . , tl))(γ(t1, t2, . . . , tl)) = 0, ∀ j ∈ {1, 2, . . . , l}.

Proof. For a given γ ∈ Λ∗, let us consider the map γ̃ : [ 1
R2 , 1]l → R

l defined by

γ̃(s1, s2, . . . , sl) = (Φ′
λ,1(γ)(γ), Φ′

λ,2(γ)(γ), . . . , Φ′
λ,l(γ)(γ)),

where

Φ′
λ,j(γ)(γ) = Φ′

λ,j(γ(s1, s2, . . . , sl))(γ(s1, s2, . . . , sl)), for all j ∈ Γ.

For any (s1, s2, . . . , sl) ∈ ∂([ 1
R2 , 1]l), it follows that

γ(s1, s2, . . . , sl) = γ0(s1, s2, . . . , sl).

Then

Φ′
λ,j(γ0(s1, s2, . . . , sl))(γ0(s1, s2, . . . , sl)) = 0.

It implies that sj 
∈ { 1
R2 , 1} for all j ∈ Γ. Otherwise,

Φ′
λ,j(γ0(s1, s2, . . . , sl))(γ0(s1, s2, . . . , sl)) = 0,

for sj = 1
R2 or sj = 1, that is

I ′j

(
1
R

wj

)(
1
R

wj

)
= 0 or I ′j(Rwj)(Rwj) = 0

implying that

Ij

(
1
R

wj

)
≥ cj or Ij(Rwj) ≥ cj ,

which contradicts the choice of R. Thus,

(0, 0, . . . , 0) 
∈ γ̃

(
∂

([
1

R2
, 1
]l
))

.

Using this fact, it follows from the topological degree

deg

(
γ̃,

(
1

R2
, 1
)l

, (0, 0, . . . , 0)

)
= (−1)l 
= 0.

Hence, there exists (t1, t2, . . . , tl) ∈ ( 1
R2 , 1)l satisfying

Φ′
λ,j(γ(t1, t2, . . . , tl))(γ(t1, t2, . . . , tl)) = 0, for all j ∈ {1, 2, . . . , l}.

The proof is completed.

In the sequel, the number cΓ =
∑l

j=1 cj ∈ (0, ( 1
p+

− 1
β ) infx∈A SN

x ) (see
Remark 3.1) is very important in the proof of Theorem 1.1. Now, we show the
relation among

∑l
j=1 cλ,j , bλ,Γ and cΓ.
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Lemma 6.3. The following facts hold :

(i)
∑l

j=1 cλ,j ≤ bλ,Γ ≤ cΓ for all λ ≥ 1.
(ii) Φλ(γ(s1, s2, . . . , sl)) < cΓ for all λ ≥ 1, γ ∈ Λ∗ and (s1, s2, . . . , sl) ∈ ∂([ 1

R2 , 1]l).

Proof. (i) Since γ0 defined in (6.2) belongs to Λ∗, we have

bλ,Γ ≤ max
(s1,s2,...,sl)∈[ 1

R2 ,1]l
Φλ(γ0(s1, s2, . . . , sl))

= max
(s1,s2,...,sl)∈[ 1

R2 ,1]l

l∑
j=1

Ij(sRwj)

=
l∑

j=1

cj = cΓ.

Fixing (t1, t2, . . . , tl) ∈ [ 1
R2 , 1]l given in Lemma 6.2 and recalling that cλ,j can be

characterized by

cλ,j = inf{Φλ,j(u) : u ∈ W 1,p(x)(Ω′
j)\{0}, Φ′

λ,j(u)u = 0}.
It follows that

Φλ,j(γ(t1, t2, . . . , tl)) ≥ cλ,j , ∀ j ∈ Γ.

On the other hand, from (3.6), Φλ,RN\Ω′
Γ
(u) ≥ 0 for all u ∈ W 1,p(x)(RN\Ω′

Γ) which
yields

Φλ(γ(s1, s2, . . . , sl)) ≥
l∑

j=1

Φλ,j(γ(s1, s2, . . . , sl)), ∀(s1, s2, . . . , sl) ∈
[

1
R2

, 1
]l

.

Thus

max
(s1,s2,...,sl)∈[ 1

R2 ,1]l
Φλ(γ(s1, s2, . . . , sl)) ≥ Φλ(γ(t1, t2, . . . , tl)) ≥

l∑
j=1

cλ,j .

From the definition of bλ,Γ, we can obtain

bλ,Γ ≥
l∑

j=1

cλ,j .

(ii) Since γ(s1, s2, . . . , sl) = γ0(s1, s2, . . . , sl) on ∂([ 1
R2 , 1]l), we have

Φλ(γ0(s1, s2, . . . , sl)) =
l∑

j=1

Ij(sjRwj).

Moreover, Ij(sjRwj) ≤ cj for all j ∈ Γ and for some j0 ∈ Γ, sj0 ∈ { 1
R2 , 1} and

Ij0(sj0Rwj0 ) ≤ cj0
2 . Therefore,

Φλ(γ0(s1, s2, . . . , sl)) ≤ cΓ − ε,

for some ε > 0. This completes the proof of Lemma 6.3(ii).
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Corollary 6.1. (i) bλ,Γ → cΓ as λ → ∞.
(ii) bλ,Γ is a critical value of Φλ for large λ.

Proof. (i) For all λ ≥ 1 and for each j, we have 0 < cλ,j ≤ cj . Using the same
arguments in the proof of Lemma 4.1, we can prove that cλ,j → cj as λ → ∞ and
thus, from Lemma 6.3, bλ,Γ → cΓ as λ → ∞.

(ii) By Corollaries 6.1 and 3.13, we may choose λ large such that

bλ,Γ, cΓ ∈
(

0,

(
1

p+
− 1

β

)
inf
x∈A

SN
x

)
.

Lemma 3.5 implies that any (PS)bλ,Γ sequence of the functional Φλ has a strongly
convergent subsequence in Eλ. We can use well-known arguments involving defor-
mation lemma [41] to conclude that bλ,Γ is a critical level to Φλ for large λ.

7. The Proof of Main Theorem

To prove Theorem 1.1, we need to find positive solution uλ for a large λ, which
approaches a least energy solution in each Ωj(j ∈ Γ) and vanishes elsewhere as
λ → ∞. To this end, we will prove two propositions that, together with the estimates
made in the previous section, imply that Theorem 1.1 holds.

Hereafter, we denote by

r = Rp+

l∑
j=1

(
1
p+

− 1
β

)−1

cj ,

B
λ

r = {u ∈ Eλ : �λ(u) ≤ r}.
For small μ > 0, we define

Aλ
μ = {u ∈ B

λ

r : �λ,RN\Ω′
Γ
(u) ≤ μ, |Φλ,j(u) − cj | ≤ μ, ∀ j ∈ Γ}.

We also use the notation

ΦcΓ
λ = {u ∈ Eλ : Φλ(u) ≤ cΓ}

and note that w =
∑l

j=1 wj ∈ Aλ
μ ∩ ΦcΓ

λ which shows that Aλ
μ ∩ ΦcΓ

λ 
= ∅. Fixing

0 < μ <
1
4

min
j∈Γ

cj . (7.1)

We have the following uniform estimate of ‖Φ′
λ(u)‖ on the annulus (Aλ

2μ\Aλ
μ)∩ΦcΓ

λ .

Proposition 7.1. Let μ > 0 satisfy (7.1). Then there exist σ0 > 0 and λ∗ ≥ 1
independent of λ such that

‖Φ′
λ(u)‖ ≥ σ0 for λ ≥ λ∗ and all u ∈ (Aλ

2μ\Aλ
μ) ∩ ΦcΓ

λ .

Proof. Arguing by contradiction, we assume that there exist λn → ∞ and
un ∈ (Aλn

2μ\Aλn
μ ) ∩ ΦcΓ

λn
such that ‖Φ′

λn
(un)‖ → 0. Since un ∈ Aλn

2μ , this implies
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that (�λ(un)) is bounded sequence, so (Φλn(un)) is also bounded. Thus, up to a
subsequence, we may assume that

Φλn(un) → c ≤ cΓ.

Applying Lemma 4.1, we can extract a subsequence (un) such that un → u in
W 1,p(x)(RN ) where u ∈ W

1,p(x)
0 (ΩΓ), and u|Ωj , j ∈ Γ is a nonnegative solution for

(Pj) with

�λn,RN\ΩΓ(un) → 0, Φλn,j(un) → Ij(u).

Since cj is the least energy level for Ij , we have two possibilities:

(i) Ij(u) = cj , for all j ∈ Γ.
(ii) Ij0(u) = 0, that is u|Ωj0

≡ 0 for some j0 ∈ Γ.

If (i) occurs, then for n large, we have

�λn,RN\ΩΓ(un) ≤ μ and |Φλn,j(un) − cj | ≤ μ, ∀ j ∈ Γ.

So, un ∈ Aλn
μ for large n, which is a contradiction to un ∈ (Aλn

2μ\Aλn
μ ).

If (ii) occurs, it follows that

|Φλn,j0(un) − cj0 | → cj0 > 4μ

which is a contradiction with the fact that un ∈ Aλn
2μ . Thus neither (i) nor (ii) can

hold, and the proof is completed.

Proposition 7.2. Let μ > 0 satisfy (7.1) and λ∗ ≥ 1 be a constant given by
in Proposition 7.1. Then, for λ ≥ λ∗, there exists a positive solution uλ of (Aλ)
satisfying uλ ∈ Aλ

μ ∩ ΦcΓ
λ .

Proof. Assuming by contradiction that there are no critical points in Aλ
μ ∩ ΦcΓ

λ ,

since the Palais–Smale condition holds for Φλ in (0, ( 1
p+

− 1
β ) infx∈A SN

x ), there
exists a constant dλ > 0 such that

‖Φ′
λ(u)‖ ≥ dλ, for all u ∈ Aλ

μ ∩ ΦcΓ
λ .

From Proposition 7.1, we also have

‖Φ′
λ(u)‖ ≥ σ0, for all u ∈ (Aλ

2μ\Aλ
μ) ∩ ΦcΓ

λ ,

where σ0 > 0 is independent of λ. In what follows, Ψ : Eλ → R is a continuous
functional verifying

Ψ(u) = 1 for u ∈ Aλ
3μ/2,

Ψ(u) = 0 for u 
∈ Aλ
2μ,

0 ≤ Ψ(u) ≤ 1 for ∀u ∈ Eλ,
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and H : ΦcΓ
λ → Eλ verifies

H(u) :=

⎧⎪⎨⎪⎩
−Ψ(u)

Y (u)
‖Y (u)‖ , u ∈ Aλ

2μ,

0, u 
∈ Aλ
2μ,

where Y is a pseudo-gradient vector field for Φλ on M = {u ∈ Eλ : Φ′
λ(u) 
= 0}.

Thus, using the properties involving Y and Φλ, we have the following inequality:

‖H(u)‖ ≤ 1, ∀λ ≥ λ∗ and u ∈ ΦcΓ
λ .

Considering the deformation flow η : [0,∞) × ΦcΓ
λ → ΦcΓ

λ defined by

dη

dt
= H(η) and η(0, u) = u ∈ ΦcΓ

λ ,

we obtain
d

dt
Φλ(η(t, u)) ≤ −1

2
Ψ(η(t, u))‖Φ′

λ(η(t, u))‖ ≤ 0, (7.2)∥∥∥∥dη

dt

∥∥∥∥
λ

= ‖H(η)‖λ ≤ 1, (7.3)

η(t, u) = u for all t ≥ 0 and u ∈ ΦcΓ
λ \Aλ

2μ. (7.4)

Let γ0(s1, s2, . . . , sl) ∈ Λ∗ be a path defined in (6.3) and we consider η(t, γ0(s1,

s2, . . . , sl)) for large t. Since for all (s1, s2, . . . , sl) ∈ ∂([ 1
R2 , 1]l), γ0(s1, s2, . . . , sl) 
∈

Aλ
2μ, thus we have by (7.4) that

η(t, γ0(s1, s2, . . . , sl)) = γ0(s1, s2, . . . , sl), for all (s1, s2, . . . , sl) ∈ ∂

([
1

R2
, 1
]l
)

and η(t, γ0(s1, s2, . . . , sl)) ∈ Λ∗ for all t ≥ 0.
Since supp(γ0(s1, s2, . . . , sl)(x)) ⊂ ΩΓ for all (s1, s2, . . . , sl) ∈ ∂([ 1

R2 , 1]l), then
Φλ(γ0(s1, s2, . . . , sl)) and ‖γ0(s1, s2, . . . , sl)‖λ,j etc. do not depend on λ ≥ 0. On
the other hand,

Φλ(γ0(s1, s2, . . . , sl)(x)) ≤ cΓ, ∀ (s1, s2, . . . , sl) ∈
[

1
R2

, 1
]l

and Φλ(γ0(s1, s2, . . . , sl)) = cΓ if and only if sj = 1
R , that is γ0(s1, s2, . . . ,

sl)(x)|Ωj
= wj for j ∈ Γ. Thus, we have that

m0 := max

{
Φλ(u) : u ∈ γ0

([
1

R2
, 1
]l
)∖

Aλ
μ

}
(7.5)

is independent of λ and m0 < cΓ.
From (7.4), it is easy to see that for any t > 0

‖η(0, γ0(s1, s2, . . . , sl)) − η(t, γ0(s1, s2, . . . , sl))‖λ ≤ t.
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Since Φλ,j(u) ∈ C1(Eλ) for all j = 1, 2, . . . , l, and from the assumptions (f1)–(f4),
it is easy to see that for a large number T > 0, there exists a positive number ρ0 > 0
which is independent of λ such that for all j = 1, 2, . . . , l and t ∈ [0, T ],

‖Φλ,j(η(t, γ0(s1, s2, . . . , sl))‖λ ≤ ρ0. (7.6)

It is easy to know that there exists K > 0 such that

|Φλ,j(u) − Φλ,j(v)| ≤ K‖u − v‖λ,Ω′
j
, u, v ∈ B

λ

r and ∀ j ∈ Γ.

We claim that for large T ,

max
(s1,s2,...,sl)∈[ 1

R2 ,1]l
Φλ(η(T, γ0(s1, s2, . . . , sl)(x))) < max

{
m0, cΓ − 1

2K
σ0μ

}
,

(7.7)

where m0 is given in (7.5).
In fact, if γ0(s1, s2, . . . , sl)(x) 
∈ Aλ

μ, then by (7.2), we have Φλ(η(T, γ0(s1,

s2, . . . , sl)(x))) ≤ m0 and thus (7.7) holds. If γ0(s1, s2, . . . , sl)(x) ∈ Aλ
μ, we need to

study the behavior of η̃(t) = η(t, γ0(s1, s2, . . . , sl)). We set d̃λ := min{dλ, σ0} and
T = σ0μ

Kd̃λ
. Now, we distinguish two cases:

(1) η̃(t) ∈ Aλ
3μ/2 for all t ∈ [0, T ].

(2) η̃(t0) ∈ ∂Aλ
3μ/2 for some t0 ∈ [0, T ].

If case (1) holds, we have Ψ(η̃(t)) ≡ 1 and ‖Φ′
λ(η̃(t))‖ ≥ d̃λ for all t ∈ [0, T ]. Thus,

by (7.2), we have

Φλ(η̃(T )) = Φλ(γ0(s1, s2, . . . , sl)) +
∫ T

0

d

ds
Φλ(η̃(t))

≤ Φλ(γ0(s1, s2, . . . , sl)) − 1
2

∫ T

0

Ψ(η̃(s))‖Φ′
λ(η̃(s))‖ds

≤ cΓ −
∫ T

0

d̃λds

= cΓ − 1
2
d̃λT

= cΓ − 1
2
σ0μ ≤ cΓ − 1

2
τ0μ.

If (2) holds, there exists 0 ≤ t1 < t2 ≤ T such that

η̃(t1) ∈ ∂Aλ
u, (7.8)

η̃(t2) ∈ ∂Aλ
3μ/2, (7.9)

η̃(t) ∈ Aλ
3μ/2\Aλ

u, for ∀ t ∈ [t1, t2]. (7.10)
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We show that

‖η̃(t2) − η̃(t1)‖ ≥ μ

2K
.

It follows from (7.9), for some j0 ∈ Γ,

‖η̃(t2)‖λ,R2\Ω′
Γ

=
3μ

2
or

|Φλ,Ω′
j0

(η̃(t2)) − cj0 | =
3μ

2
.

Now, we only consider the latter case, the former case can be obtained in a
similar way. From the definition of Aλ

μ,

|Φλ,Ω′
j0

(η̃(t1)) − cj0 | ≤ μ.

Thus, we have

‖η̃(t2) − η̃(t2)‖ ≥ 1
K

|Φλ,Ω′
j0

(η̃(t2)) − Φλ,Ω′
j0

(η̃(t1))|

≥ 1
K

(|Φλ,Ω′
j0

(η̃(t2)) − cj0 | − |Φλ,Ω′
j0

(η̃(t1)) − cj0 |)

≥ 1
2K

μ.

On the other hand, by t2 − t1 ≥ 1
2K μ and the mean value theorem, there exists

t3 ∈ (t1, t2) such that

|Φλ,Ω′
j0

(η̃(t2)) − Φλ,Ω′
j0

(η̃(t1))| =
∣∣∣∣Φ′

λ,Ω′
j0

· dη̃

dt
(t3)

∣∣∣∣ (t2 − t1),

hence

Φλ(η̃(T )) = Φλ(γ0(s1, s2, . . . , sl)) +
∫ T

0

d

ds
Φλ(η̃(t))

= Φλ(γ0(s1, s2, . . . , sl)) −
∫ T

0

Ψ(η̃(s))‖Φ′
λ(η̃(s))‖λds

≤ cΓ −
∫ t2

t1

Ψ(η̃(s))‖Φ′
λ(η̃(s))‖λds

= cΓ − σ0(t2 − t1)

≤ cΓ − 1
2K

σ0μ,

and so (7.7) is proved. Now, we recall that η̃(T ) = η(T, γ0(s1, s2, . . . , sl)) ∈ Λ∗.
Thus,

bλ,Γ ≤ Φλ(η̃(T )) ≤ max
{

m0, cΓ − 1
2K

σ0μ

}
. (7.11)
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But, by Corollary 6.1, we know that bλ,Γ → cΓ as λ → ∞, which is a contradiction
to (7.11), thus Φλ(u) has a critical point uλ ∈ Aλ

u for large λ and we complete the
proof of the proposition.

Proof of Theorem 1.1. From Proposition 7.2, there exists a family (uλ) of posi-
tive solutions to problem (Aλ) verifying the following properties:

(i) For fixed μ > 0, there exists λ∗ such that

‖uλ‖λ,R2\Ω′
Γ
≤ μ, ∀λ ≥ λ∗.

Thus, from proof of Lemma 5.5, μ fixed sufficiently small, we conclude that

‖uλ‖∞,R2\Ω′
Γ
≤ a−, ∀λ ≥ λ∗,

showing that uλ is a positive solution to problem (1.1).

(ii) Fixing λn → ∞ and μn → 0, the sequence (uλn) verifies

Φ′
λn

(uλn) = 0, ∀n ∈ N,

‖uλn‖λn,R2\Ω′
Γ
→ 0,

Φ′
λn,j(uλn) → cj , ∀ j ∈ Γ.

From Lemma 4.1, we have

uλn → u in W 1,p(x)(RN ) with u ∈ W
1,p(x)
0 (ΩΓ)

and u ≥ 0 and u|Ωj
, j ∈ Γ, is a least energy solution for{−div(|∇u|p(x)−2∇u) + Z(x)|u|p(x)−2u = αf(x, u) + |u|q(x)−2u, in Ωj ,

u ∈ W
1,p(x)
0 (Ωj).

The proof of Theorem 1.1 is now complete.
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