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related papers that there are in the literature, in a noncomprehensive way, we recall
the study made by Acerbi and Mingione in [1].

In this article, we examine the nonlinear weighted problem

(P)


−div (a(x)|∇u|p(x)−2∇u) + b(x)|u|q(x)−2u(x)

−λc(x)|u|r(x)−2u(x) = f(x, u); in Ω,

|∇u|p(x)−2 ∂u
∂ν + β(x)|∇u|p(x)−2u = 0, on ∂Ω;

with Robin boundary value condition. We study maximum or minimum growth
of the corresponding energy functional with respect to some functional of ∥u∥. So
by some conditions on p(x), q(x), r(x) we conclude various results about the be-
havior of energy functional and hence by applying some variational methods such
as mountain pass lemma, Ekeland’s variational principle, or fountain theorem, sev-
eral existence results for the sequence of weak solutions are obtained. Finally we
study problem (P), by modellins as a nonlinear eigenvalue problem and using the
Ljusternik-Schnirelmann principle.

2. Preliminary and auxiliary results

In this paper we suppose

(Ω) Ω is open, bounded subset of RN with smooth boundary.
(p) p ∈ C(Ω), 1 < p− := essinfx∈Ω̄p(x) ≤ p+ := esssupx∈Ω̄p(x) < ∞.

Let

E := Lp(x)(Ω) =
{
u : u : Ω −→ R is measurable,

∫
Ω
|u|p(x)dx < ∞

}
and X := W 1,p(x)(Ω) = {u ∈ E; |∇u| ∈ E}.

We refer to [9, 10] for basic information about variable exponent Lebesgue and
Sobolev spaces, nevertheless we recall some basic properties.

(i) The space E is a separable, uniform convex Banach space with the norm

|u|E = inf
{
σ > 0 :

∫
Ω
|u
σ
|p(x)dx ≤ 1

}
and its conjugate space is E′ := Lq(x)(Ω), where 1

q(x) +
1

p(x) = 1. Moreover

for any u ∈ E and v ∈ E′ we have,∣∣∣ ∫
Ω
uvdx

∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|E |u|E′ ;

which we named it by generalized Holder inequality.
(ii) If p1, p2 ∈ C(Ω) and 1 < p1(x) ≤ p2(x) for any x ∈ Ω, then Lp2(x)(Ω) ↪→

Lp1(x)(Ω) which is continuous embedding.
(iii)

min(|u|p
+

E , |u|p
−

E ) ≤
∫
Ω
|u|p(x)dx ≤ max(|u|p

+

E , |u|p
−

E ).

(iv) X is a separable, reflexive Banach space with the norm ∥u∥X = |u|E+|∇u|E .
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(v) There is a compact embedding X ↪→ Lq(.)(Ω); where q ∈ C(Ω), 1 ≤ q(x) <
p∗(x) for all x ∈ Ω and

p∗(x) =


Np(x)

N − p(x)
; p(x) < N

∞; p(x) ≥ N.

(vi) There is a constant C > 0, such that

|u|E ≤ C|∇u|E ∀u ∈ E.

Thus we can use |∇u|E as an equivalent norm for ∥u∥X .
(vii) If Ω possesses the smooth boundary ∂Ω and p ∈ C(Ω) then there exists a

compact embedding X ↪→ Lq(.)(∂Ω); where q ∈ C(∂Ω), 1 ≤ q(x) < p∂(x)
for any x ∈ ∂Ω and

p∂(x) =


(N − 1)p(x)

N − p(x)
; p(x) < N

∞; p(x) ≥ N.

By considering problem (P), for any v ∈ X we have∫
Ω
−div (a(x)|∇u|p(x)−2∇u)vdx = −

N∑
i=1

∫
Ω
(a(x)|∇u|p(x)−2uxi)xivdx

=

∫
∂Ω

a(x)|∇u|p(x)−2v
∂u

∂ν
dσ

+

∫
Ω
a(x)|∇u|p(x)−2∇u∇vdx.

Thus, by letting F (x, z) =
∫ z
0 f(x, t)dt, the energy functional corresponding to

problem (P) is defined by

Eλ(u) =

∫
Ω

a(x)

p(x)
|∇u|p(x)dx+

∫
∂Ω

β(x)a(x)

p(x)
|u|p(x)dσ +

∫
Ω

b(x)

q(x)
|u|q(x)dx

− λ

∫
Ω

c(x)

r(x)
|u|r(x)dx−

∫
Ω
F (x, u)dx;

which it is known that the weak solutions of (P ) are correspond to the critical points
of Eλ.

We study problem (P ) under the following general conditions.

(qr) q, r ∈ C(Ω), 1 < q−, r− and q(x), r(x) < p∗(x) .
(abc) 0 ≤ a, b, c ∈ L∞(Ω); a−, c− ̸= 0.
(β) 0 < β ∈ L∞(∂Ω).
(f1) f ∈ C1(Ω×R) and there exist θ, γ ∈ L∞(Ω) with p+ < θ− and θ(x), γ(x) <

p∗(x) where for all ε > 0 there exists C(ε) > 0 such that

(2.1) F (x, z) ≤ ε|z|θ(x) + C(ε)|z|γ(x).
(f2) There exist µ > p+, q+, r− such that

(2.2) 0 < µF (x, z) ≤ zf(x, z); |z| ̸= 0, x ∈ Ω.
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(f3) f(x, t) = −f(x,−t); for all (x, t) ∈ RN × R.
The main results are given by the following theorems.

Theorem 2.1. Suppose that r− > max(p+, q+) and γ− > p+. Then for any λ > 0,
problem (P ) has unbounded sequence of weak solutions.

Theorem 2.2. Suppose that r+ < min(p−, q−). Then for any λ > 0, problem
(P ) has a sequence of weak solutions {un} such that Eλ(un) < 0, un ̸≡ 0 and
limn→∞ un = 0.

Theorem 2.3. Suppose that max(r+, γ+) < min(p−, q−). Then there exists λ∗ > 0
such that problem (P ) has nontrivial weak solution for any λ ∈ (0, λ∗); i.e., λ ∈
(0, λ∗) is an eigenvalue for the problem (P ).

Theorem 2.4. Suppose that r− > max(p+, q+) and max(r+, γ+) > θ+. Then for
any λ > 0, problem (P ) has a sequence of weak solutions {un} such that Eλ(un) → 0
as n → +∞.

Theorem 2.5. Suppose that r+ < p−, r+ < max(p−, q−) and p+ > γ−. Then for
any λ > 0, problem (P ) has a sequence of weak solutions {un} such that Eλ(un) < 0
and Eλ(un) → 0 as n → ∞.

Let us first prove some propositions which investigate the behavior of the energy
functional Eλ under suitable conditions on the functions p(x), q(x), r(x).

Proposition 2.6. If min(γ−, r−) > p+ then for any λ > 0 there exist some r, ζ > 0
such that Eλ(u) ≥ ζ > 0 for all u ∈ X with ∥u∥ = r.

Proof. Since from (f1) and (qr), we have that θ(x), γ(x), r(x) < p∗(x), there exist
positive constants Cθ, Cγ and Cr such that |u|Lθ(.)(Ω) ≤ Cθ∥u∥, |u|Lγ(.)(Ω) ≤ Cγ∥u∥
and |u|Lr(.)(Ω) ≤ Cr∥u∥; for all u ∈ X. Let us assume that ∥u∥ < 1; then by (f1) for

every ε > 0 we have,

(2.3)

Eλ(u) ≥
∫
Ω

a(x)

p(x)
|∇u|p(x)dx− λ

∫
Ω

c(x)

r(x)
|u|r(x)dx−

∫
Ω
F (x, u)dx

≥ a−

p+

∫
Ω
|∇u|p(x)dx− λc+

r−

∫
Ω
|u|r(x)dx

− ε

∫
Ω
|u|θ(x)dx− C(ε)

∫
Ω
|u|γ(x)dx

≥ a−

p+
∥u∥p+ − λc+

r−
max(Cr+

r ∥u∥r+ , Cr−
r ∥u∥r−)

− εmax(Cθ+

θ ∥u∥θ+ , Cθ−
θ ∥u∥θ−)

− C(ε)max(Cγ+

γ ∥u∥γ+
, Cγ−

γ ∥u∥γ−
)

≥ a−

p+
∥u∥p+ − λc+

r−
Ĉr∥u∥r

− − εĈθ∥u∥p
+ − C(ε)Ĉγ∥u∥γ

−
.

In which C(ε) is introduced in (f2) and the last inequality derives from p+ < θ−

and Ĉθ := max(Cθ+

θ , Cθ−
θ ) , Ĉγ := max(Cγ+

γ , Cγ−
γ ) and Ĉr := max(Cr+

r , Cr−
r ).
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Therefore, if r− > γ− > p+ we have

Eλ(u) ≥ ∥u∥p+
(a−
p+

− εĈθ −
(λc+Ĉr

r−
+ C(ε)Ĉγ

)
∥u∥γ−−p+

)
,

and in the case γ− > r− > p+,

Eλ(u) ≥ ∥u∥p+
(a−
p+

− εĈθ −
(λc+Ĉr

r−
+ C(ε)Ĉγ

)
∥u∥r−−p+

)
.

Hence in the both cases for some fixed ε ∈ (0, a−

p+C̃θ
) there exists ζ > 0 such that for

all u ∈ X with ∥u∥ = r small enough, Eλ(u) ≥ ζ > 0. □

Proposition 2.7. Let X1 be a finite dimensional subspace of X. Then the set
S := {u ∈ X1, Eλ(u) ≥ 0} is bounded, provided that r− > max(p+, q+).

Proof. By compact embedding X ↪→ Lp(·)(∂Ω), there exist a positive constant C∂

such that |u|Lp(·)(∂Ω) ≤ C∂∥u∥. So for ∥u∥ > 1 we have,

Eλ(u) ≤
∫
Ω

a(x)

p(x)
|∇u|p(x)dx+

∫
∂Ω

β(x)a(x)

p(x)
|u|p(x)dσ

+

∫
Ω

b(x)

q(x)
|u|q(x)dx− λ

∫
Ω

c(x)

r(x)
|u|r(x)dx

≤ a+

p−

∫
Ω
|∇u|p(x)dx+

β+a+

p−

∫
∂Ω

|u|p(x)dσ

+
b+

q−

∫
Ω
|u|q(x)dx− λc−

r+

∫
Ω
|u|r(x)dx

≤
(a+
p−

+
β+a+

p−
Ĉ∂

)
∥u∥p+ +

b+

q−
Ĉq∥u∥q

+ − λc−

r+
min(|u|r+

Lr(.) , |u|r
−

Lr(.));

where by similar notation as in previous proposition let Ĉδ := max(Cp+

∂ , Cp−

∂ ). If
u ∈ X1, by equivalency of any two norms on finite dimensional space we have

Eλ(u) ≤
(a+
p−

+
β+

p−
Ĉ∂

)
∥u∥p+ +

b+

q−
Ĉ∂∥u∥q

+ − κ
λc−

r+
∥u∥r− ;

for some positive constant κ. Thus, if u ∈ S, since r− > max(p+, q+), we obtain
that the set S would be bounded. □

Proposition 2.8. Suppose p− > r+ or r− > max(p+, q+) then for any λ > 0,
Eλ satisfies the Palais-Smale condition, that is, if {un} is a sequence in X with
|Eλ(un)| < M , ∇Eλ(un) → 0 as n → ∞, where M is positive constant; then {un}
contains a convergent subsequence in X.
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Proof. Firstly, we claim that {un}∞n=1 is bounded in X. By using (f2), for ∥un∥ > 1
we have

(2.4)

M > Eλ(un) ≥
∫
Ω

a(x)

p(x)
|∇un|p(x)dx

+

∫
∂Ω

β(x)a(x)

p(x)
|un|p(x)dσ +

∫
Ω

b(x)

q(x)
|un|q(x)dx

− λ

∫
Ω

c(x)

r(x)
|un|r(x)dx− 1

µ

∫
Ω
f(x, un)undx

=

∫
Ω

( 1

p(x)
− 1

µ

)
a(x)|∇un|p(x)dx

+

∫
∂Ω

( 1

p(x)
− 1

µ

)
β(x)a(x)|un|p(x)dσ

+

∫
Ω

( 1

q(x)
− 1

µ

)
b(x)|un|q(x)dx

− λ

∫
Ω

( 1

r(x)
+

1

µ

)
c(x)|un|r(x)dx+

1

µ
⟨∇Eλ(un), un⟩

≥ a−
( 1

p+
− 1

µ

)
∥un∥p

− − λ
( 1

r−
+

1

µ

)
c+Ĉr∥un∥r

+

− 1

µ
∥∇E(un)∥∥un∥.

Thus when p− > r+ we obtain {∥un∥}∞n=1 is necessary bounded.
In the case r− > max(p+, q+), since ∇Eλ(un) → 0 as n → ∞, there exist N1 > 0

such that for any n > N1 we have ∥∇Eλ(un)∥ ≤ 1 and so

| < ∇Eλ(un), v > | ≤ ∥v∥, ∀v ∈ X, n > N1.

By letting v := un we get

− ∥un∥ −
∫
Ω
a(x)|∇un|p(x)dx−

∫
∂Ω

β(x)a(x)|un|p(x)dσ

−
∫
Ω
b(x)|un|q(x)dx+

∫
Ω
f(x, un)undx ≤ −λ

∫
Ω
c(x)|un|r(x)dx;

for any n > N1. Hence by (2.4)

M > Eλ(un) ≥ a−
( 1

p+
− 1

r−

)∫
Ω
|∇un|p(x)dx+ β−a−

( 1

p+
− 1

r−

)∫
∂Ω

|un|p(x)dσ

+ b−
( 1

q+
− 1

r−

)∫
Ω
|un|q(x)dx+

( 1

r−
− 1

µ

)∫
Ω
f(x, un)undx− ∥un∥

≥ a−
( 1

p+
− 1

r−

)
∥un∥p

− − ∥un∥;

and so {∥un∥}∞n=1 is bounded.
Hence for two cases p− > r+ and r− > max(p+, q+) we can say, up to a subse-

quence, {un}∞n=1 converges weakly in X to some u ∈ X. Since ∇E(un) −→ 0, there
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exists a strictly decreasing sequence {εn}∞n=1, such that limn→∞ εn = 0 and

(2.5) |⟨E′(un), v⟩| ≤ εn∥v∥; ∀v ∈ X,n ∈ N.

Using v := un − u in (2.5), we obtain∣∣∣ ∫
Ω
a(x)|∇un|p(x)−2∇un(∇un −∇u)dx

+

∫
∂Ω

β(x)a(x)|un|p(x)−2un(un − u)dσ

+

∫
Ω
b(x)|un|q(x)−2un(un − u)dx− λ

∫
Ω
c(x)|un|r(x)−2un(un − u)dx

−
∫
Ω
f(x, un)(un − u)dx

∣∣∣ ≤ εn∥un − u∥.

On the other hand, by compact embeddings X ↪→ Lp(·)(∂Ω), X ↪→ Lq(.)(Ω) and

X ↪→ Lr(.)(Ω) we can deduce un −→ u strongly in Lp(∂Ω),Lq(Ω) and Lr(Ω). Hence

lim
n→∞

∫
∂Ω

β(x)a(x)|un|p(x)−2un(un − u)dσ

= lim
n→∞

∫
Ω
b(x)|un|q(x)−2un(un − u)dx

= lim
n→∞

∫
Ω
c(x)|un|r(x)−2un(un − u)dx = 0.

Moreover by the hypotheses on f we have limn→∞
∫
Ω f(x, un)(un − u)dx = 0.

Hence

lim sup
n→∞

∣∣∣ ∫
Ω
a(x)|∇un|p(x)−2∇un(∇un −∇u)dx

∣∣∣ = 0.

Since ⟨∇Eλ(u), un − u⟩ → 0 as n → ∞ we have

(2.6) lim sup
n→∞

∣∣∣ ∫
Ω
a(x)(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)dx

∣∣∣ = 0.

Set In(x) :=
∫
Ω a(x)(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un − ∇u). We recall two

known inequalities

(2.7)

{
(|ξ|p−2ξ − |η|p−2η)(ξ − η) ≥ 1

2p |ξ − η|p; p ≥ 2

(|ξ|p−2ξ − |η|p−2η)(ξ − η)(|ξ|+ |η|)2−p ≥ (p− 1)|ξ − η|p; 1 < p < 2.

By applying two inequalities of (2.7) in (2.6 ), we get

(2.8)

In(x) ≥
( a(x)

2p(x)
|∇un −∇u|p(x)

)
χΩ+(x)

+ a(x)(p(x)− 1)
|∇un −∇u|2

(|∇un|+ |∇u|)2−p(x)
χΩ−(x);

where Ω+ = {x ∈ Ω; p(x) ≥ 2} and Ω− = Ω\Ω+. Then we have

(2.9)

∫
Ω+

|∇un −∇u|p(x)dx ≤ κ

∫
Ω
In(x)dx;
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for a some positive constant κ and from the last term in (2.8), we get∫
Ω−

|∇un −∇u|p(x)dx ≤ κ

∫
Ω−

In(x)
p(x)
2 (|∇un|+ |∇u|)(2−p(x))

p(x)
2 dx := κJn(x).

Since limn→∞ In(x) = 0, we can consider 0 ≤
∫
Ω In(x)dx < 1, and by Young

inequality, we have

Jn(x)=

∫
Ω−

In(x)
p(x)
2

(∫
Ω
In(y)dy

)− p(x)
2
(|∇un|+|∇u|)(2−p(x))

p(x)
2

(∫
Ω
In(y)dy

) p(x)
2
dx

≤
(∫

Ω
In(y)dy

) 1
2

∫
Ω−

p(x)

2
(In(x)

(∫
Ω
In(y)dy)

−1
)

+
2− p(x)

2
(|∇un|+ |∇u|)p(x)dx

≤
(∫

Ω
In(y)dy

) 1
2
(1 +

∫
Ω
(|∇un|+ |∇u|)p(x)dx).

Hence by using (2.9), we obtain∫
Ω
|∇un −∇u|p(x)dx ≤ κ(

∫
Ω
In(y)dy)

1
2 (1 +

∫
Ω
(|∇un|+ |∇u|)p(x)dx).

Thus
∫
Ω |∇un −∇u|p(x)dx → 0 as n → 0, and so un → u in X. □

For each n, denote by Γn, the family of closed symmetric subset Y of X such
that 0 ̸∈ Y and γ(Y ) ≥ n, where γ(Y ) is the genus of Y , i.e.,

γ(A) := inf{n ∈ N; ∃h : A −→ Rn \ {0} such that h is continuous and odd}.
Now, consider the following proposition.

Proposition 2.9. Suppose r+ < min{p−, q−} and fix λ > 0, then for each n ∈ N
there exists Yn ∈ Γn such that supu∈Yn

Eλ(u) < 0.

Proof. Let u1, . . . , un ∈ C∞
c (Ω) such that spt(ui) ∩ spt(uj) = ∅ and |spt(ui)| > 0

for i, j ∈ {1, . . . , n} and i ̸= j. Take Fn the subspace generated by {u1, . . . , un}.
Denote S := {u ∈ X, ∥u∥} = 1 and for any t ∈ (0, 1] let Yn(t) := {tu;u ∈ S ∩ Fn},
then obviously γ(Yn(t)) = n, for all t and we have

supu∈Yn(t)Eλ(u) = supu∈S∩Fn
Eλ(tu)

≤ supu∈S∩Fn

∫
Ω

a(x)

p(x)
tp(x)|∇u|p(x)dx+

∫
∂Ω

β(x)

p(x)
tp(x)|u|p(x)dσ

+

∫
Ω

b(x)

q(x)
tq(x)|u|p(x)dx− λ

∫
Ω

c(x)

r(x)
tr(x)|u|r(x)dx

≤ supu∈S∩Fn

tp
−
a+

p−

∫
Ω
|∇u|p(x)dx+

tp
−
β+a+

p−

∫
∂Ω

|u|p(x)dσ

+
tq

−
b+

q−

∫
Ω
|u|q(x)dx− λtr

+
c−

r+

∫
Ω
|u|r(x)dx

≤ supu∈S∩Fn

tp
−
a+

p−
+

tp
−
β+a+

p−
Ĉ∂
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+
tq

−
b+

q−
Ĉq −

λtr
+
c−

r+

∫
Ω
|u|r(x)dx.

Thus since u ∈ Fn, dim(Fn) < ∞ and r+ < min{p−, q−} we can conclude the
desired result for tn ∈ (0, 1] which is small enough. □

Proposition 2.10. If max(r+, γ+) < min(p−, q−), for any ε ∈ (0, a−

p+ĉθ
) there exist

R, ζ, λ∗ > 0 such that Eλ(u) ≥ ζ > 0, for all u ∈ X with ∥u∥ = R and λ ∈ (0, λ∗).

Proof. Without loss of generality suppose that max(r+, γ+) = r+. Hence by use of
(2.3), for ∥u∥ > 1 we have,

(2.10)

Eλ(u) ≥
(a−
p+

− εĈθ

)
∥u∥p− −

(λc+
r−

Ĉr + C(ε)Ĉγ

)
∥u∥r+

= ∥u∥r+
((a−

p+
− εĈθ

)
∥u∥p−−r+ −

(λc+
r−

Ĉr + C(ε)Ĉγ

))
.

LetR > max
(
1,
( C(ε)Ĉγ

a−
p+

−εĈθ

) 1
p−−r+

)
, then for fixed λ ∈

(
0,

((a
−

p+
−εĈθ)R

p−−r+−C(ε)Ĉγ)r−

c+Ĉr

)
there exists ζ > 0 such that Eλ(u) ≥ ζ > 0. □

Remark 2.11. If r− < min(p−, q−) and r− < γ− then for any ε ∈ (0, a−

p+Ĉθ
) with

C(ε)Ĉγ

a−
p+

−εĈθ

< 1 there exist R, ζ, λ∗ > 0 such that Eλ(u) ≥ ζ > 0, for all u ∈ X with

∥u∥ = R and λ ∈ (0, λ∗).

Proof. In this case by using (2.3) for ∥u∥ < 1 we have

Eλ(u) ≥ ∥u∥r−
((a−

p+
− εĈθ

)
∥u∥p+−r− −

(λc+
r−

Ĉr + C(ε)Ĉγ

))
.

Let
( C(ε)Ĉγ

a−
p+

−εĈθ

) 1
p+−r− < R < 1, then for fixed λ ∈

(
0,

(a
−

p+
−εĈθ)R

p+−r−−C(ε)Ĉγ)r−

c+Ĉr

)
there exists ζ > 0 such that Eλ(u) ≥ ζ > 0. □
Proposition 2.12. Suppose r− < min(p−, q−) and fix λ > 0 then there exists
u ∈ X, u ≥ 0, u ̸≡ 0 such that Eλ(tu) < 0 for t small enough.

Proof. Since r− < min(p−, q−), there exists ε0 > 0 such that

(2.11) r− + ε0 < min(p−, q−);

and since r ∈ C(Ω), there exists an open set Ω0 ⊂ Ω such that |r(x) − r−| < ε0
for all x ∈ Ω0. Take v ∈ C∞

c (Ω) which Ω0 ⊂ spt(v), v(x) = 1 for x ∈ Ω0 and
0 ≤ v(x) ≤ 1 in Ω. Without loss of generality we may assume ∥v∥ = 1. Note that,

by this construction of v, we have
∫
Ω0

|v|r(x)dx = |Ω0|, then for all t ∈ (0, 1) we
obtain

Eλ(tv) ≤
tp

−
a+

p−

∫
Ω
|∇v|p(x)dx+

tp
−
β+a+

p−

∫
∂Ω

|v|p(x)dσ

+
tq

−
b+

q−

∫
Ω
|v|q(x)dx− λ

c−

r+

∫
Ω0

tr(x)|v|r(x)dx
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≤ tp
−
a+

p−
+

tp
−
β+a+

p−
Ĉ∂ +

tq
−
b+

q−
Ĉq − λ

tr
−+ε0c−

r+
|Ω0|.

Hence by (2.11), we conclude the proposition. □
Since X is separable, there exist two sequences {en} ⊂ X and {e∗n} ⊂ X∗ such

that

⟨en, e∗m⟩ =

{
1, n = m;

0, n ̸= m,

X = span{en; n = 1, 2, . . . } and X∗ = spanW ∗{e∗n; n = 1, 2, . . . }. For any k ∈ N
denote, Xk := span{ek}, Yk := ⊕k

i=1Xi and Zk := ⊕∞
i=kXi. Now consider the

following proposition.

Proposition 2.13. Fix λ > 0, then for any k ∈ N there exist Rk > rk > 0 such
that

(i) inf{Eλ(u);u ∈ Zk, ∥u∥ = rk} −→ +∞ as k → ∞ provided that
max(r+, γ+) > θ+.

(ii) max{Eλ(u);u ∈ Yk∥u∥ = Rk} ≤ 0 provided that max(r−, µ) > max(p+, q+).

Proof. For ∥u∥ ≥ 1 we obtain

(2.12) Eλ(u) ≥
a−

p+
∥u∥p− − λ

c+

r−

∫
Ω
|u|r(x)dx− ε

∫
Ω
|u|θ(x)dx− C(ε)

∫
Ω
|u|γ(x)dx.

Let

σr,k := sup{|u|Lr(x)(Ω);u ∈ Zk, ∥u∥ ≤ 1};
σθ,k := sup{|u|Lθ(x)(Ω);u ∈ Zk, ∥u∥ ≤ 1};

and

σγ,k := sup{|u|Lγ(x)(Ω);u ∈ Zk, ∥u∥ ≤ 1}.
Hence for any u ∈ Zk; |u|Lr(x)(Ω) ≤ σr,k∥u∥, |u|Lθ(x)(Ω) ≤ σθ,k∥u∥ and |u|Lγ(x)(Ω) ≤

σγ,k∥u∥.
First we show that σr,k −→ 0 as k −→ ∞. We have Zk+1 ⊂ Zk so {σr,k}∞k=1

is positive decreasing real sequence and hence for some nonnegative constant σr;
σr,k → σr as k → ∞. For any k, we can choose uk ∈ Zk such that |uk|Lr(x)(Ω) → σr
as k → ∞ and so there exists a subsequence of {uk}, still denoted by {uk} such
that uk ⇀ u. Moreover

⟨e∗j , u⟩ = lim
k→∞

⟨e∗j , uk⟩ = 0; j = 1, 2, . . . ;

which implies u = 0 and so uk ⇀ 0 in X and hence uk → 0 in E. So we get σr = 0.
By similar argument we get σθ,k, σγ,k → 0 as k → ∞.

Now we can deduce for u ∈ Zk,

Eλ(u) ≥
a−

p+
∥u∥p− − λ

c+

r−
σr,k∥u∥r

+ − εσθ,k∥u∥θ
+ − C(ε)σγ,k∥u∥γ

+

≥ a−

p+
∥u∥p− −

(
λ
c+

r−
σr,k − εσθ,k − C(ε)σγ,k

)
∥u∥m

where m = max(r+, γ+).
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Let ∥u∥ = rk :=
( a−

2p+

λ c+

r− σr,k−εσθ,k−C(ε)σγ,k

) 1
m−p+

we obtain

Eλ(u) ≥
( a−

2p+

λ c+

r−σr,k − εσθ,k − C(ε)σγ,k

) p+

m−p+
( a−

2p+

)
−→ +∞;

as k → ∞ since σr,k, σθ,k, σγ,k → 0. So the proof of (i) is completed.

For (ii), denote F(t) = F (x,tz)
tµ ; for every t > 0. Then using (f3) we get,

F ′(t) =
1

tµ+1
[tzf(x, tz)− µF (x, tz)] ≥ 0, ∀t > 0.

Thus, we deduce for any t ≥ 1, F(t) ≥ F(1); i.e., F (x, tz) ≥ tµF (x, z), for z ̸= 0.
Now let v ∈ Yk with ∥v∥ = 1 and t > 1 then we have

Eλ(tv) ≤ tp
+
(a+
p−

+ Ĉ∂
β+a+

p−

)
+ tq

+
Ĉq

b+

q−
− λtr

− c−

r+

∫
Ω
|v|r(x)dx− tµ

∫
Ω
|v|µdx;

which implies for sufficiently large t > 1, such as tk, Eλ(tkv) < 0 since max(r−, µ) >
max(p+, q+). Note that in this proposition, the condition µ > p+, q+, r− is not
necessary. Thus the proof of assertion (ii) is completed by letting Rk := tk. □
Proposition 2.14. Fix λ > 0 then for any k ∈ N, there exist Rk > rk > 0 such
that

(i) inf{Eλ(u);u ∈ Zk, ∥u∥ = Rk} ≥ 0 provided that p+ > max(r−, γ−).
(ii) max{Eλ(u);u ∈ Yk, ∥u∥ = rk} < 0 provided that r+ < max(p−, q−).
(iii) inf{Eλ(u);u ∈ Zk, ∥u∥ ≤ Rk} → 0 as k → ∞ provided that r+ < max(p−, q−).

Proof. Let v ∈ Zk with ∥v∥ = 1 and let t ∈ (0, 1) then by using the same notation
as in Proposition 2.13 and considering (2.12) we can deduce

Eλ(tv) ≥
a−

p+
tp

+ − λ
c+

r−
σr,kt

r− − εσθ,kt
θ− − C(ε)σγ,kt

γ−

≥ a−

p+
tp

+ − (λ
c+

r−
σr,k − εσθ,k − C(ε)σγ,k)t

m

where m = max(r−, γ−).
Taking

Rk = B
( a−

p+

λ c+

r−σr,k − εσθ,k − C(ε)σγ,k

)( 1
p+−m

)
,

then for sufficiently large k, Rk < 1. Moreover for u = Rkv we have Eλ(u) ≥ 0.
For (ii), let v ∈ Yk with ∥v∥ = 1 and let t ∈ (0, 1). Then

Eλ(tv) ≤
(a+
p−

+
β+

p−
Ĉ∂

)
tp

−
+

b+

q−
tq

−
Ĉq − λ

c−

r+
tr

+

∫
Ω
|v|r(x)dx.

Which r+ < max(p−, q−) implies that Eλ(tv) < 0, for small enough t. So there
exists rk ∈ (0, Rk) such that for t = rk, and u = rkv, Eλ(u) < 0.

Now let v ∈ Zk with ∥v∥ = 1 and t ∈ [0, Rk] then by (2.12) we obtain

Eλ(tv) ≥ −λ
c+

r−
σr,kt

r− − εσθ,kt
θ− − C(ε)σγ,kt

γ−
.
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Since Yk ∩ Zk ̸= ∅ and rk < Rk by using assertion (ii) we get

inf{Eλ(u);u ∈ Zk, ∥u∥ ≤ Rk} ≤ max{Eλ(u);u ∈ Yk, ∥u∥ = rk} < 0.

Hence 0 > Eλ(tv) ≥ −λ c+

r−σr,kt
r− − εσθ,kt

θ− −C(ε)σγ,kt
γ−

; which shows Eλ(u) → 0
by attending k → ∞ and u ∈ Zk with ∥u∥ ≤ Rk, thus the proof is completed.

□

3. Proof of the main results

Now we are ready to conclude the main results that are listed at the end of first
section.

Proof of Theorem 2.1:

Proof. By considering Proposition 2.6, Proposition 2.7, Proposition 2.8 and apply-
ing Z2-symmetric version of mountain pass theorem [13], we conclude the result. □

Proof of Theorem 2.2:

Proof. By considering Proposition 2.8 and Proposition 2.9 with applying the sym-
metric version of the mountain pass theorem [4], we conclude the assertion. □

Proof of Theorem 2.3:

Proof. By Proposition 2.10, we obtain inf∂BR(0)Eλ(u) > 0, on the other hand by
Proposition 2.12, there exists v ∈ X such that Eλ(tv) < 0 for t > 0 small enough.
Moreover for u ∈ BR(0), by (2.10) we have

Eλ(u) ≥

{
(a

−

p+
− εĈθ)∥u∥p

− − (λc
+

r− Ĉr + C(ε)Ĉγ)∥u∥r
+
; ∥u∥ ≥ 1,

(a
−

p+
− εĈθ)∥u∥p

+ − (λc
+

r− Ĉr + C(ε)Ĉγ)∥u∥r
−
; ∥u∥ < 1.

Thus −∞ < cλ := inf
BR(0)

Eλ(u) < 0. Hence the functional Eλ : BR(0) → R is

bounded below and continuously differentiable on BR(0). Fix ϵ such that

(3.1) 0 < ϵ < inf∂BR(0)Eλ(u)− inf
BR(0)

Eλ(u).

Then by Ekeland’s variational principle [7], there exists uϵ ∈ BR(0) such that
Eλ(uϵ)− ϵ ≤ cλ and

(3.2) 0 < Eλ(u)− Eλ(uϵ) + ϵ∥u− uϵ∥; u ̸= uϵ.

So by using (3.1), we deduce uϵ ∈ BR(0). Now, define Iλ : BR(0) → R with
Iλ(u) = Eλ(u) + ϵ∥u − uϵ∥. By (3.2), it is obvious that uϵ is minimum point of Iλ
and thus

Iλ(uϵ + tv)− Iλ(uϵ)

t
=

Eλ(uϵ + tv)− Eλ(uϵ)

t
+ ϵ∥v∥ ≥ 0;

for small t > 0 and any v ∈ B1(0). Thus by letting t → 0 we obtain ∥E′
λ(uϵ)∥ ≤ ϵ.

So the hypothesis of Palais-Smale condition is obtained, that is there exist {un} ⊂
BR(0) such that Eλ(un) −→ cλ and E′

λ(un) −→ 0. Now by applying Proposition
2.8 we have {un}, up to a subsequence converges strongly to some u0 ∈ X and
since Eλ ∈ C1(X,R), we get Eλ(u0) = cλ < 0 and E′

λ(u0) = 0. Hence u0 is
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nontrivial weak solution for (P ) and since Eλ(|u0|) = Eλ(u0) the problem (P ) has
a nonnegative one. □
Remark 3.1. In the case r− < min(p−, q−) and r− < γ−, the assertion of Theorem
2.3 is hold provided that the condition of Remark 2.11 is satisfied .

Proof. By Remark 2.11, we have for some R ∈ (0, 1), inf∂BR(0) > 0. Note that for
any u ∈ BR(0), ∥u∥ < 1 and so by using the same argument as in the proof of
Theorem 2.3, we conclude the result. □

Proof of Theorem 2.4:

Proof. By considering Proposition 2.8, Proposition 2.13 and applying Fountain the-
orem [19], we get the result. □

Proof of Theorem 2.5:

Proof. By considering Proposition 2.8, Proposition 2.14 and applying Dual Fountain
theorem [19], we obtain the result. □

4. Modelling as an eigenvalue problem

In this section we study the problem (P ) as an eigenvalue problem by Ljusternik-
Schnirelmann principle argument ( [21,22]), which is one of the more used to find the
eigenpair sequences in nonlinear problems, and so we claim the following theorem:

Theorem 4.1. Consider problem (P ) with condition:

(f ′
2) 0 ≤ f(x, z)z ≤ F (x, z);

instead of (f2) and not necessarily p+ < θ− in (f1). Then for any s > 0 there
exists nondecreasing sequence of nonnegative eigenvalue {λn,s} of (R) such that
λn,s =

1
µn,s

→ ∞ as n → ∞, where each µn,s is an eigenvalue of the corresponding

equation {
φ′(u) = µϕ′(u)

ϕ(u) = s, µ ∈ R;

which φ(u) =
∫
Ω

c(x)
r(x) |u|

r(x)dx and

ϕ(u) =

∫
Ω

a(x)

p(x)
|∇u|p(x)dx+

∫
∂Ω

β(x)a(x)

p(x)
|u|p(x)dσ

+

∫
Ω

b(x)

q(x)
|u|q(x)dx−

∫
Ω
F (x, u)dx.

For this purpose, first we consider the following proposition.

Proposition 4.2.

(i) φ′ is strongly continuous, i.e.; un ⇀ u in X implies φ′(un) → φ′(u).

(ii) ϕ′ is continuous, bounded and satisfies (S0) condition, i.e.; as n → ∞,

un ⇀ u, ϕ′(un) ⇀ v, ⟨ϕ′(un), un⟩ → ⟨v, u⟩ implies un → u.
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(iii) for any s > 0, the set {u ∈ X;ϕ(u) = s} is bounded provided that p− >
max(θ+, γ+).

Proof. (i): Let un ⇀ u in X hence un → u in Lr(.)(Ω) and so for any v ∈ X,

(4.1)
|⟨φ′(un)− φ′(u), v⟩| =

∣∣∣ ∫
Ω
c(x)(|un|r(x)−1un − |u|r(x)−1u)vdx

∣∣∣
≤ c+Cr∥|un|r(x)−1un − |u|r(x)−1u∥Lr′(x)(Ω)∥v∥.

Note that r′(x) = r(x)
r(x)−1 , and since un → u in Lr(.)(Ω), |un|r(x)−1un → |u|r(x)−1u in

Lr′(x)(Ω). Thus the last term in (4.1) tends to zero as n → ∞.

(ii):

∥ϕ′∥X∗ = sup{| < ϕ′(u), v > |; ∥v∥ ≤ 1}

= sup
∣∣∣ ∫

Ω
a(x)|∇u|p(x)−2∇u∇vdx+

∫
∂Ω

β(x)a(x)|u|p(x)−2uvdσ

+

∫
Ω
b(x)|u|q(x)−2uvdx−

∫
Ω
f(x, u)vdx

∣∣∣
≤ κ[a+||∇u|p(x)−1|Lp′(x)(Ω)∥v∥+ β+a+||u|p(x)−1|Lp′(x)(∂Ω)|v|Lp(x)(∂Ω)

+ b+||u|q(x)−1|Lq′(x)(Ω)|v|Lq(x)(Ω)]

< ∞;

since X ↪→ Lp(x)(Ω), Lp(x)(∂Ω), Lq(x)(Ω).

(iii): For ∥u∥ > 1 and ϕ(u) = s by using (2.1) we have,

s = ϕ(u) ≥ a−

p+
∥u∥p− − εĈθ∥u∥θ

+ − C(ε)Ĉγ∥u∥γ
+
;

And since p− > max(θ+, γ+) we obtain that the set {u ∈ X;ϕ(u) = s} would be
bounded. □

Proof of Theorem 4.1:

Proof. It is obvious that φ, ϕ are even functionals and φ, ϕ ∈ C1(Ω) with φ(0) =
ϕ(0) = 0. Moreover for t > 1 and u ̸= 0, by using (2.1) we have

ϕ(tu) ≥
[ ∫

Ω

a(x)

p(x)
|∇u|p(x)dx+

∫
∂Ω

β(x)a(x)

p(x)
|u|p(x)dσ

]
tp

−
+ tq

−
∫
Ω

b(x)

q(x)
|u|q(x)dx

− tθ
+
ε

∫
Ω
|u|θ(x)dx− tγ

+
C(ε)

∫
Ω
|u|γ(x)dx −→ ∞;

as n → ∞, since max(p−, q−) > max(θ+, γ+). Also it is easy to see that, for u ∈ X
with ϕ(u) = s we have

⟨ϕ′(u), u⟩ ≥ s+

∫
Ω
(F (x, u)− f(x, u)u)dx;

and hence inf{⟨ϕ′(u), u⟩;ϕ(u) = s} > 0.
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Now, by considering Proposition 4.2 and applying the Ljusternik-Schnirelmann
principle, [21, 22], we get the result.

□
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[17] D. Repovš, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl.
(Singap.) 13 (2015), 645–661.

[18] S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and
singular operators, Integral Transforms Spec. Funct. 16 (2005), 461–482.

[19] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
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