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MULTIPLICITY RESULTS FOR A NONLINEAR ROBIN
PROBLEM WITH VARIABLE EXPONENT

SOMAYEH SAIEDINEZHAD AND VICENTIU D. RADULESCU

ABSTRACT. The nonlinear weighted Robin problem

—div (a(z)|VulP®~2Vu) + b(x) |u| 7@ ~2u(x)

(@)l Pu(@) = fz,u); i Q,

|Vu|P) =208 4 B(2)|VaulP™) "2y = 0, on 0N
is studied in the present paper. We are concerned with maximum or minimum
growth of the corresponding energy functional by various conditions on p, ¢, 7. We
also obtain qualitative properties about the behavior of energy functional and,
by applying some variational methods, several existence results for the sequence

of weak solutions are deduced. Finally, we study our problem by modeling as a
nonlinear eigenvalue problem.

1. INTRODUCTION AND MAIN RESULTS

The variational approach is one of the main ways to study the nonlinear problems.
Establishing the behavior of the energy functional corresponding to a certain partial
differential equation is a key principle in variational methods and by accepting the
weak solution as an acceptable solution, we need to seek the solutions in some
appropriate function space.

The Sobolev space WP (), where p is constant, is suitable for studying of many
problems in physics and mechanics. Whereas, by introducing problems with p(z)-
growth conditions that arise by studying some materials with inhomogeneities such
as electrorheological fluids, the classical Sobolev space does not work and so the
variable exponent Lebesgue space LP()(Q) and variable exponent Sobolev space
WmP()(Q) are defined, where p(-) is an appropriate function.

Despite the sufficient reasons for developing the Lebesgue and so the Sobolev
spaces, the variable exponent Lebesgue and Sobolev spaces can be seen as a math-
ematical generalization of the classical space which are with constant exponent.

Hence the considerable attention of mathematicians be involved in problems with
p(x)-growth conditions, for examples see [2,3,5,8,11,12,14-16, 18, 23]. Moreover
let us stress [17,20] and also let us to point that Zhikov in [24] obtained conditions
to satisfy Meyers type estimates, for variational problems related to an integrand
that have variable exponent p(x). Let us mention the study made by Coscia and
Mingione [6] where Hélder continuous functions p(z) are considered to prove Holder
continuity for local minimizers of some kind of functional. Also, among the many
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related papers that there are in the literature, in a noncomprehensive way, we recall
the study made by Acerbi and Mingione in [1].
In this article, we examine the nonlinear weighted problem

—div (a(z)|Vu[PD) =2V u) + b(z)|u|?®)~2u(z)
(P) @)l O () = fzu); i 9

Va2 4 §(a)| Va2 =0, on 09;
with Robin boundary value condition. We study maximum or minimum growth
of the corresponding energy functional with respect to some functional of ||u||. So
by some conditions on p(z),q(x),r(x) we conclude various results about the be-
havior of energy functional and hence by applying some variational methods such
as mountain pass lemma, Ekeland’s variational principle, or fountain theorem, sev-
eral existence results for the sequence of weak solutions are obtained. Finally we

study problem (P), by modellins as a nonlinear eigenvalue problem and using the
Ljusternik-Schnirelmann principle.

2. PRELIMINARY AND AUXILIARY RESULTS

In this paper we suppose
(Q) Qis open, bounded subset of R with smooth boundary.
(p) pe C(Q), 1 <p :=essinf, gp(x) < pT := esssup,qp(z) < co.
Let

E :=LP@)(Q) = {u :u:Q — R is measurable, / lulP® de < oo}
Q

and X := WP@)(Q) = {u € E; |Vu| € E}.
We refer to [9,10] for basic information about variable exponent Lebesgue and
Sobolev spaces, nevertheless we recall some basic properties.

(i) The space F is a separable, uniform convex Banach space with the norm
|u|p = inf {a >0: / |E\p(x)dx < 1}
0O 0

and its conjugate space is E' := L4(*)(Q), where + L. = 1. Moreover

L
q(z) ' p(z)

for any u € F and v € E' we have,

1 1
’/uvdw’ < <i + f)|u’E|U’E'7
QO p q

which we named it by generalized Holder inequality.

(ii) If p1,po € C(Q) and 1 < py(x) < po(z) for any x € Q, then LP2(®)(Q) —
LP(*)(Q) which is continuous embedding.

(iif)

. + - + -
min(fuff [l ) < [ P@de < max(alf ulf)

(iv) X is a separable, reflexive Banach space with the norm ||u||x = |u|g+|Vulg.
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(v) There is a compact embedding X — L) (Q); where ¢ € C(Q), 1 < q(z) <
p*(x) for all z € Q and

Np(z) .
p@) = N—pla) P
0; p(z) >

(vi) There is a constant C' > 0, such that
lulg < C|Vulg Yue€ E.

Thus we can use |Vu|g as an equivalent norm for |ju||x.

(vii) If © possesses the smooth boundary 9 and p € C(Q) then there exists a
compact embedding X — LI0)(99Q); where ¢ € C(09Q), 1 < q(z) < p?(z)
for any x € 092 and

(N = Dp(z)
Py ={ Noplw) - P
00; p(z) > N.

By considering problem (P), for any v € X we have

/—div( (2)|VuP®) 2 Vu)vde = — Z/ ) VulP® =2, ), vdx
Q

ou

— p(x)=2,7 "4
/aQ a(x)|Vu| v, 0
+/ a(z)|VuP®) 2V uVod.
Q

Thus, by letting F(x, z) fO x,t)dt, the energy functional corresponding to
problem (P) is defined by

Bxtu) = [ A upas s [ PO pego . [ U g,

p(z) q(x)

—)\/Q;Eg]uvmdx—/QF(a:,u)dx;

which it is known that the weak solutions of (P) are correspond to the critical points
of E/\.
We study problem (P) under the following general conditions.
(qr) q,r € C(), 1 < g ,r~ and ¢(x),r(z) < p*(z) .
(abc) 0 < a,b,c e L*(Q); a”,c” #0.
()0<6€L“@m
(f1) f € CY(Q xR) and there exist 0,y € L>®(Q2) with p™ < = and 0(z),y(z) <
p*(x) where for all € > 0 there exists C'(¢) > 0 such that

(21) F(z,2) < el2"® + O()]@
(f2) There exist u > pT,¢",r~ such that

(2.2) 0 < pF(x,2) <zf(x,z); |z|#0,z¢€Q.
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(f3) f(x,t) = —f(x, —t); for all (z,t) € RY x R.

The main results are given by the following theorems.

Theorem 2.1. Suppose that r~ > max(p™,q") and v~ > pT. Then for any X > 0,
problem (P) has unbounded sequence of weak solutions.

Theorem 2.2. Suppose that r* < min(p~,q~). Then for any A > 0, problem
(P) has a sequence of weak solutions {un} such that Ex(u,) < 0, up, # 0 and

Theorem 2.3. Suppose that max(rt,vT) < min(p~,q~). Then there exists \* > 0
such that problem (P) has nontrivial weak solution for any A € (0,\*); i.e., X €
(0, \*) is an eigenvalue for the problem (P).

Theorem 2.4. Suppose that r~ > max(p™,q") and max(r*,y*) > 6%. Then for
any A > 0, problem (P) has a sequence of weak solutions {u,} such that Ex(uy,) — 0
as n — +00.

Theorem 2.5. Suppose that r™ < p~, v+ < max(p~,q~) and p* > ~v~. Then for
any A > 0, problem (P) has a sequence of weak solutions {uy} such that Ex(u,) <0
and Ex\(u,) = 0 as n — oco.

Let us first prove some propositions which investigate the behavior of the energy
functional F) under suitable conditions on the functions p(x), ¢(z),r(z).

Proposition 2.6. If min(y~,r~) > p™ then for any X\ > 0 there exist some r,{ > 0
such that Ex(u) > ¢ > 0 for all w € X with ||ul| = 7.

Proof. Since from (f1) and (gr), we have that 6(x),v(x),r(xz) < p*(z), there exist
positive constants Cyp, Cy and C such that |ulge)q) < Collull, [ulgy0 @) < Cyllull
and [ulgr() gy < Cr|lulf; for all w € X. Let us assume that [[u| < 1; then by (f1) for
every € > 0 we have,

E)(u) 2/ a(gc)\vmp(‘”)da:—)\/ c($)u|r(x)dx—/F(x,u)da:
Q Q Q

p(z) r(z)

- +
>0 [ vards - 25 [
pT Ja r Q
—5/ \u|9(x)dx—0(5)/ Y@ dx
Q Q

(2~3) a + At + - -
> P’ — S max(CF [lull”, O ull ")
p T
+ + - -
—emax(C§ [[ul®, 8 ul®)
— C(e) max(CY [Ju]”",C ull7)

a” et o N _
pr ul|P* —70 lull"™ = eCollull?" — C(e)Cyllull”".

I

In which C(g) is introduced in (f2) and the last inequality derives from pt < 6~
and Cp := max(C§ ,CY") , C, = max(C;ﬁ, 1) and C, := max(CI",C7).
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Therefore, if 7~ > v~ > p* we have

AetC,

Ex(u) > [ulp” (%5 — <Gy — (S 4 0@ ) Jull ™),

and in the case v~ >r~ > pt,

At C,

) 2 [l (%5 — <Gy~ (F 2+ O ) Jul ).

Hence in the both cases for some fixed € € (0, I%) there exists ¢ > 0 such that for
0
all u € X with ||u|| = r small enough, Ey(u) > ¢ > 0. O

Proposition 2.7. Let X1 be a finite dimensional subspace of X. Then the set
S :={u € X1, Ex(u) > 0} is bounded, provided that r~ > max(p™,q").

Proof. By compact embedding X — LP(')(8Q), there exist a positive constant Cy
such that |u|p0) 90y < Collull. So for [[uf > 1 we have,
|Vul? x)dl'—i-/ bl

Exu) < / 8 p()w
+/Q%\u|q@ A/Q;figy 7@ dz:
</ | VulP@ dm+ﬁ+/ |u|P@ do

+/mmw /’V

6 a’ bt Ac”
§< C’a) a +—C’ " _ 2C min(|u P71
i I [[ul " ([ulres [ulyo);

Dz o) g

+

A + —
where by similar notation as in previous proposition let Cs := max(C} ,Cg ). If
u € X1, by equivalency of any two norms on finite dimensional space we have

at BT . bt Ac™ -
By(w) < (5= + 2=Co) Jull + = Collul|*” — k2 Jull"";
p p q r

for some positive constant k. Thus, if u € S, since 7~ > max(p™, q"), we obtain
that the set S would be bounded. O

Proposition 2.8. Suppose p~ > r* or r= > max(p*,q") then for any X > 0,
E)\ satisfies the Palais-Smale condition, that is, if {un} is a sequence in X with
|Ex(un)| < M, VEx\(u,) — 0 as n — oo, where M is positive constant; then {u,}
contains a convergent subsequence in X .
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Proof. Firstly, we claim that {u,}22 is bounded in X. By using (f2), for |Ju,|| > 1
we have

M > Ejy(up) > / @Wunv)(r)dx
o ()

Bx)a(z), )y o [ U2)) 4@ g
t o Syl o+ [

N GO .
)\/Qr(:v)|un| dx M/Qf(m,un)undx

11 N
= /Q <— - —)a(:c)|Vun|p( )dx

p(x) p

(2.4) 4 /(9 ) (p(lx) _ ;)ﬁ(:c)a(xﬂun\p(m)da

@)
/1 1 - 1 1 N
> (o= el = A(E + 3 )e ol
Pt on T

1
- ;llVE(un)llHunH.
Thus when p~ > 7+ we obtain {||u,||}32, is necessary bounded.

In the case 7~ > max(p*,¢"), since VE)(u,) — 0 as n — oo, there exist N3 > 0
such that for any n > N; we have |VE)(uy)| < 1 and so

| < VEx(un),v>[ <[], YveX, n>N.

By letting v := u,, we get
~ funll — / ()| Vtn @ i — / B(@)al() un]P@ do
9] o0
_/b(m)’un’q(x)dx-i-/ f(a?,un)undx < _A/ C(Q})‘un‘r(z)dx;
Q Q Q

for any n > Nj. Hence by (2.4)

11 11
N p(@) (L1 p(@)
M > Ex(up) > a (p+ r)/ﬂywny dz + B~ a (p+ r>/39’“"| do
11 11
(- _ = qa(@) - = _
+b <q+ r_)/ﬂ]uﬂ dx—l—(T_ M)/Qf(m,un)undx llwnll
11 -
> (= - = P )
>a (p+ F)H“n” [[unll;

and so {||u,|}52; is bounded.
Hence for two cases p~ > r™ and r~ > max(p™,¢") we can say, up to a subse-
quence, {u,}5° ; converges weakly in X to some u € X. Since VE(u,) — 0, there
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exists a strictly decreasing sequence {e,}72, such that lim,_,~ €, = 0 and
(2.5) (B (un), )| < enllvll;  Yoe X,neN

Using v := u, — u in (2.5), we obtain

’ / )|V, PP 2V, (Vu, — Vu)dz
/ B(z)a(z)|un P @ 2up (up — u)do
+ /Q b(2) |un| " 20y, (up, — w)da — A /Q (@) [un | 2y (up — u)da
- [ o) = wyda| < e~

On the other hand, by compact embeddings X «— LP0)(9Q), X — LI0(Q) and
X — L"0(Q) we can deduce u,, — u strongly in LP(9Q), L4(Q) and L"(Q). Hence

lim B(z)a(@) |[un|P®2up (up — u)do

n—oo o0

= lim [ b(@)un|"™® 20, (uy — u)da
n—oo Q

= lim | e(@)]un|" ™ 2u, (u, — u)dz = 0.

n—oo Q

Moreover by the hypotheses on f we have lim, o0 [q (2, un)(un — u)dz = 0.
Hence

lim sup ‘/ )|V [PD) 2V u, (Vu, — Vu)da:‘ =0.

n—oo

Since (VE)\(u), uy, — u) — 0 as n — oo we have
(2.6)  limsup ’ / )(|Vtn P92V, — |VulP®=2Vu) (Vu, — Vu)da:‘ = 0.

n—oo
Set I,(z) := [ a(z)(|Vu, PP 2Vu, — [Vu[P®~2Vu)(Vu, — Vu). We recall two
known 1nequahtles
o [1EP26 =0 =) > il p>2

(1€/P728 = P2 m) (€ = (gl + mD)* P = (p = DIg —nlPs  1<p<2.
By applying two inequalities of (2.7) in (2.6 ), we get

a(x -
In(x) > (215(2) |V, — Vul™ >)XQ+ ()

(2:8) |\Vu, — Vu|2

+ -1
where QT = {z € Q;p(z) > 2} and Q= = Q\Q*". Then we have

(2.9) / IV, — VulP®de < H/ I, (z)dz;
O+

Q

o-(2);
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for a some positive constant k£ and from the last term in (2.8), we get

/ Vg — VulP@de < K;/ In(2)5 (|Vun| + [Va)) &P 4y = g, ().
Q- Q-

Since limy, o0 I (z) = 0, we can consider 0 < fQ I, (z)dz < 1, and by Young
inequality, we have

T = [ 1@ ([ L) (Tud V)@ 1)) e

<([ i)’ [ n<x>( [ 1w )
2 —

p(x)
T(|Vun| + | Vul )P

/Q L)1+ /Q (IVtn] + [Vl ).

Hence by using (2.9), we obtain
/ Vi, — Vuf@da < ,.;(/ )dy)i (1 /(|Vun| + [V P@dg).
Q Q Q

Thus [, [Vu, — VulP®dz — 0 as n — 0, and so u,, — v in X. O

( p(x)

D=

For each n, denote by I'j,, the family of closed symmetric subset Y of X such
that 0 ¢ Y and v(Y) > n, where y(Y) is the genus of Y, i.e.,

v(A) :==inf{n € N;3h : A — R" \ {0} such that h is continuous and odd}.
Now, consider the following proposition.

Proposition 2.9. Suppose r* < min{p~,q"} and fix A > 0, then for each n € N
there exists Yy, € 'y, such that sup,cy, Ex(u) < 0.

Proof. Let u,...,u, € CX(Q) such that spt(u;) N spt(u;) = 0 and |spt(u;)| > 0
for i,7 € {1,...,n} and i # j. Take F,, the subspace generated by {ui,...,up}.
Denote S := {u € X, ||ul|} =1 and for any ¢ € (0,1] let Y,,(¢) := {tu;u € SN F,},
then obviously (Y, (t)) = n, for all ¢ and we have

SUPyey,, (1) (1) = supyesnp, Ex(tu)

a(z) p(z)
< sup,, / —L (@) |7y P e +/ @)y |P@) g
e fop) (@)

+/ b( )tq x)‘ |P$ x—)\/c(x)tr(x)‘u|r($)d.%'
) or(®)

q(x

P at P~ Btat
< SUDyer, / VP dz + ﬂ / uP@) do
p Q P

a0
4 pt M e
+ —— /]u|q<m)daj— +C /|u|r($)d:ﬁ
q Q r Q

#at 0 frat .
< SUDyeSNE, - + P 08
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ot Atﬁ ")y
+ | |

q

Thus since v € F,, dim(F,) < oo and r+ < min{p~, ¢~} we can conclude the
desired result for t,, € (0, 1] which is small enough. O

Proposition 2.10. If max(r*,y") < min(p—,q~), for any ¢ € (0, ﬁ) there exist
R,(, \* > 0 such that Ex(u) > (>0, for allu € X with ||u|| = R and X\ € (0, \*).

Proof. Without loss of generality suppose that max(r*, %) = r*. Hence by use of
(2.3), for |lul| > 1 we have,

Bw) 2 (% = <C) il — (25 016 )

=l (% = <Gl = (326 +0))).

I

(2.10)

— 77‘_)'_

5 1 2 _eCy)RP —C(e)Cy)r—
Let R > max (1, (%) p—rt ), then for fixed \ € (O, (G ==Co) e ©) )
oF —<C0 et
there exists ¢ > 0 such that Eyx(u) > ¢ >0. O
Remark 2.11. If ¥~ < min(p—,¢~) and r~ < 4~ then for any ¢ € (0, ﬁ) with
0

H‘Cl(ai)dz < 1 there exist R,(,\* > 0 such that Ey(u) > ¢ > 0, for all w € X with

¢
pt 0

|lul| = R and X € (0, \*).
Proof. In this case by using (2.3) for ||u|| < 1 we have

Bw) 2 ™ (& = <Co) ™ = (256 +0(1G) ).

a A ppt e -
(p—_‘_—ng)Rp —C(e)Cy)r

Ce)Cy \ e
Let (?e(;g)ﬁ < R < 1, then for fixed A € (0, p—e )
there exists ¢ > 0 such that Ey(u) > ¢ > 0. O

Proposition 2.12. Suppose r~— < min(p~,q~) and fix X > 0 then there exists
u€ X, u>0,uz0 such that Ex(tu) <0 for t small enough.

Proof. Since r~ < min(p~, g~ ), there exists £g > 0 such that

(2.11) r~ +eo <min(p,q );

and since r € C(Q), there exists an open set {9 C €2 such that [r(z) —r~| < o
for all z € Qp. Take v € C(Q) which Qy C spt(v), v(z) = 1 for z € Qy and
0 <wv(z) <1in Q. Without loss of generality we may assume ||v|| = 1. Note that,
by this construction of v, we have fﬂ—0|v|r(x)dx = |Qo|, then for all ¢t € (0,1) we

obtain
tP +
Vg + ——— 5 ¢ / |v|P@) do
o0

+ / 0] 7@ da; — )\/ @ |y @) dy
Qo

E\(tv) <
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P gt P Btat . t4 pt . o teoe—
— + 6_ Co+—Cy— A — 0.
p p q r
Hence by (2.11), we conclude the proposition. O

Since X is separable, there exist two sequences {e,} C X and {e}} C X* such

that
N 1, n=m;
e ’6 =
<ﬂ m> {07 7175 ’

X = span{e,; n=1,2,...} and X* = span"” {e’; n=1,2,...}. Forany k € N
denote, Xy := span{ex}, Yy := ®F 1 X; and Z = @, X;. Now consider the
following proposition.

Proposition 2.13. Fiz A > 0, then for any k € N there exist R > ri > 0 such
that
(i) inf{Ex(u);u € Zg,|lul| = m} — 400 as k — oo provided that
max(rt,y) > 0T,
(i) max{E\(u);u € Y|lu|]| = R} < 0 provided that max(r—, u) > max(p*,q™").

Proof. For |lu|| > 1 we obtain

(2.12) Ex(u) > %nuup = / fuf @ dz — ¢ / [’ @ dz — C(e) / @z
Q Q

Let
r g = sup{|ul Lre) ()i u € Z, [Jull < 1};
oo, = sup{|u| o) ()i u € Zy, [lul| < 1};
and
0k = sup{|ul v ()3 u € Zg, ||ul| < 1}
Hence for any u € Zy; |u| @) () < orgllull, [ulpoe ) < ooxllull and [ulpy@ g) <
oy kllul-
First we show that o, — 0 as k — co. We have Z;1 C Zj so {o,x}72,
is positive decreasing real sequence and hence for some nonnegative constant o,;
ork — op as k — oo. For any k, we can choose u; € Zj such that |uk|LT(m>(Q) — oy

as k — oo and so there exists a subsequence of {ug}, still denoted by {ug} such
that up — u. Moreover
<€],U> klggo@;‘,uk) =0; J=12..
which implies © = 0 and so ux — 0 in X and hence u; — 0 in E. So we get o, = 0.
By similar argument we get oy, 0, — 0 as k — o0.
Now we can deduce for u € Z,

)

a - ct + +
Ew)zﬁuuup A aullull™ — eaprllul® - ),
cT
>l — (Ao~ ous — Oy ) ull "

where m = max(r,y7).
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a 1

_ - 2pt ot
Let [Ju]| = 4 : (AC+(W e v A

we obtain

- p —
2pt m—pt [ @
Ey(u) > ( ) ( ) s oo
) )\ﬁ—fo'nk —eogr — C(e)oyk 2p*

as k — oo since 0y, 09k, 0,1 — 0. So the proof of (i) is completed.
For (ii), denote F(t) = F(x’tz); for every ¢ > 0. Then using (f3) we get,

tH

F(t) = tutl [tzf(z,tz) — pF(z,t2)] >0, Vt>0.

Thus, we deduce for any ¢t > 1, F(t) > F(1); i.e., F(x,tz) > t'F(z,z), for z # 0.
Now let v € Yy with ||v]| =1 and ¢ > 1 then we have

+ +qt + -

E\(tv) < " (ai + C’aﬁ il ) + tq+équ - )\tr_i/ |o|"@) da — t“/ |v|*dz;
p p q rJa Q

which implies for sufficiently large ¢ > 1, such as tx, Ex(txv) < 0 since max(r—, ) >

max(p',q"). Note that in this proposition, the condition p > p*,¢", 7~ is not

necessary. Thus the proof of assertion (ii) is completed by letting Ry := . g

Proposition 2.14. Fix A > 0 then for any k € N, there exist Ry > r > 0 such
that
(i) inf{E\(u);u € Zy, ||u|| = Rx} > 0 provided that p™ > max(r—,v7).
(i) max{E\(u);u € Yi, ||u|]| = rr} <0 provided that r* < max(p~—,q").
(iii) inf{Ex(u);u € Z, ||lu|| < Rx} — 0 as k — oo provided that r* < max(p~,q~).

Proof. Let v € Zj with ||v|| =1 and let ¢ € (0,1) then by using the same notation
as in Proposition 2.13 and considering (2.12) we can deduce

p— + _ _ _
Ex(to) > “t?" — Aot —eoput? — C(e)oy it
P T

+

>t = (k= <o — Cle)oy )"
where m = maz(r=,y7).
Taking
a_ ( 1 )
- 1
Rk — B( ~ p ) pt—m 7

A=0rk — €09 — C(e)oyk
then for sufficiently large k, Ry < 1. Moreover for u = Riv we have E)(u) > 0.
For (ii), let v € Y}, with |[v|| =1 and let ¢ € (0,1). Then

+ +
Ex(tv) < (p+5ca) th C,— 2" tr*/ 0] @ dz:

Which r* < max(p~,q~) implies that E)(tv) < 0, for small enough ¢. So there
exists r € (0, Rg) such that for t = r, and v = rpv, Ex(u) < 0.
Now let v € Zj, with ||v]| =1 and ¢ € [0, Rg] then by (2.12) we obtain

+ _ _ —_
E\(tv) > _Acio-nktr — 509,kt9 — C(e)oykt” .
r
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Since Yy N Zy # 0 and r; < Ry by using assertion (ii) we get
inf{Ey(u);u € Zy, |u|| < R} <max{Ex(u);u € Yz, ||lul]| =} <O0.

Hence 0 > E)\(tv) > —Aﬁ—fo,ﬂ,kt’r —sag,ktm —C(e)oykt? ; which shows Ej(u) — 0
by attending k — oo and u € Zj, with |lu|| < Ry, thus the proof is completed.
O
3. PROOF OF THE MAIN RESULTS

Now we are ready to conclude the main results that are listed at the end of first
section.

Proof of Theorem 2.1:

Proof. By considering Proposition 2.6, Proposition 2.7, Proposition 2.8 and apply-
ing Ze-symmetric version of mountain pass theorem [13], we conclude the result. [

Proof of Theorem 2.2:

Proof. By considering Proposition 2.8 and Proposition 2.9 with applying the sym-
metric version of the mountain pass theorem [4], we conclude the assertion. U

Proof of Theorem 2.3:

Proof. By Proposition 2.10, we obtain infsp, o) Ey\(u) > 0, on the other hand by
Proposition 2.12, there exists v € X such that Ey(tv) < 0 for ¢ > 0 small enough.
Moreover for u € Bg(0), by (2.10) we have

Ey(u) > (& —Co)llulr” = A=Cr+ CECIul™5 ull > 1,
= a” A + ct A 5 r=
(& —eCy)llul”” = CECr +CEC)lull™: lul < 1.

Thus —c0 < ¢y := inme)\(u) < 0. Hence the functional E) : Br(0) — R is

bounded below and continuously differentiable on Br(0). Fix € such that
(31) O<e< infaBR(O) E,\(u) — inme)\(u).

Then by Ekeland’s variational principle [7], there exists u. € Bgr(0) such that
E)(ue) —e < cy and

(3.2) 0 < Ex(u) — Ex(ue) + €llu —uel|; w7 Ue.

So by using (3.1), we deduce u, € Bgr(0). Now, define Iy : Br(0) — R with
I(u) = Ex(u) + €||lu — ue||. By (3.2), it is obvious that u, is minimum point of I
and thus

I)\(u€ + tv) - IA(’LLG) . EA(Ug + tv) - E)\(UE)

t B t

for small ¢ > 0 and any v € B1(0). Thus by letting ¢ — 0 we obtain [|E} (u)|| < e.
So the hypothesis of Palais-Smale condition is obtained, that is there exist {u,} C
Bgr(0) such that E)(u,) — ¢y and E}(u,) — 0. Now by applying Proposition
2.8 we have {u,}, up to a subsequence converges strongly to some ug € X and
since By, € C1(X,R), we get Ex(up) = cx < 0 and E}(up) = 0. Hence ug is

+ €||v|| > 0;
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nontrivial weak solution for (P) and since F)(|ug|) = Ex(up) the problem (P) has
a nonnegative one. Il

Remark 3.1. In the case r~ < min(p~,¢~) and r~ < 77, the assertion of Theorem
2.3 is hold provided that the condition of Remark 2.11 is satisfied .

Proof. By Remark 2.11, we have for some R € (0,1), infgp, ) > 0. Note that for
any u € Br(0), ||u]] < 1 and so by using the same argument as in the proof of
Theorem 2.3, we conclude the result. Il

Proof of Theorem 2.4:

Proof. By considering Proposition 2.8, Proposition 2.13 and applying Fountain the-
orem [19], we get the result. O

Proof of Theorem 2.5:

Proof. By considering Proposition 2.8, Proposition 2.14 and applying Dual Fountain
theorem [19], we obtain the result. O

4. MODELLING AS AN EIGENVALUE PROBLEM

In this section we study the problem (P) as an eigenvalue problem by Ljusternik-
Schnirelmann principle argument ( [21,22]), which is one of the more used to find the
eigenpair sequences in nonlinear problems, and so we claim the following theorem:

Theorem 4.1. Consider problem (P) with condition:

(f3) 0< f(x,2)z < F(x, 2);

instead of (f2) and not necessarily p* < 0~ in (f1). Then for any s > 0 there
exists nondecreasing sequence of nonnegative eigenvalue {\, s} of (R) such that
Ans = L 5 00 as n — oo, where each Hn,s 15 an eigenvalue of the corresponding

. Hn,s
equation

@' (u) = pg' (u)
Pp(u) =s, peR;

which o(u) = [ ;Ei; lu|" @ dz and
_ [ al®) o ) B(x)alx)  p)
ow = [ SVl e s [ S s
+ [ 2o - [ Fouda,
Q Q

For this purpose, first we consider the following proposition.
Proposition 4.2.

(i) ¢’ is strongly continuous, i.e.; uy, — u in X implies @' (uy) — ¢'(u).

(il) ¢ is continuous, bounded and satisfies (Sy) condition, i.e.; as n — 0o,

Up = u, ¢ (uy) = v, (¢ (up),un) = (v,u) implies wu, — u.
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(iii) for any s > 0, the set {u € X;¢(u) = s} is bounded provided that p~ >
max (0, yT).

Proof. (i): Let u, — v in X hence u, — u in L") (Q) and so for any v € X,
) = @@, =] [ @l = " o

< C+Cr|Hun’T m)_lun - ’u|'r 2) UHLT/(T) HUH

(4.1)

Note that '(z) = T(Tx()le, and since u, — u in L"(Q), |up|"® 1w, — |u| @1y in

L”(®)(Q). Thus the last term in (4.1) tends to zero as n — co.

(ii):

16"l x+ = sup{| < ¢'(u),v > [:||v] < 1}

= sup ‘/ |Vu\p 2Vqudx—|—/ B(x )|u|p(z)_2uvda

—i—/gb(a;)|u]q(x uvdar—/f(x,u)vda:‘
< Kla™||VulP) 1|Lp "(@)(Q HU||‘|'5Jr ™) 1|Lp'(x>(ag)|U|Lp<z>(aQ)
+b+|‘u|q _1|LQ’(Z)(Q)’7}|LQ<T)(Q)]
< 00;
since X — LP(®)(Q), LP(*)(09Q), LI@) (Q).
(iii): For |lu| > 1 and gb(u) = s by using (2.1) we have,

5= (u) = |ulP” = eCollull”" = C)C, llull”;

"6

And since p~ > max(6T,7") we obtain that the set {u € X;¢(u) = s} would be
bounded. U

Proof of Theorem 4.1:

Proof. Tt is obvious that ¢, ¢ are even functionals and ¢, ¢ € C*(Q) with ¢(0) =
¢»(0) = 0. Moreover for t > 1 and u # 0, by using (2.1) we have

" @) o @) gy B@)a(@), ) g 1 4 g0 [ O a@) gy
ot 2 [ [ S ar s [ S o) o [ S

—t9+5/ |u|9($)dx—t7+0(e)/ lu|" @ dz —s oo;
Q Q

as n — 0o, since max(p~, ¢~ ) > max(#T,yT). Also it is easy to see that, for u € X
with ¢(u) = s we have

@@= s+ [ (Pla) - flauu)ds
Q
and hence inf{(¢'(u),u); d(u) = s} > 0.
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Now, by considering Proposition 4.2 and applying the Ljusternik-Schnirelmann
principle, [21,22], we get the result.
O
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