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ABSTRACT
In this paper, we study the existence of infinitely many solutions for a fractional Kirchhoff–Schrödinger–Poisson system. Based
on variational methods, especially the fountain theorem for the subcritical case and the symmetric mountain pass theorem
established by Kajikiya for the critical case, we obtain infinitely many solutions for the system under certain assumptions. The
novelties of this article lie in the appearance of the possibly degenerate Kirchhoff function and weak assumptions on the nonlinear
term which are quite mild.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5019677

I. INTRODUCTION AND MAIN RESULTS

In this paper, we are concerned with the multiplicity of solutions for the nonlinear fractional Schrödinger–Poisson system
of Kirchhoff type,




M([u]2
s )(−∆)su + V(x)u + φ(x)u = λf(x, u) in R3,

(−∆)tφ(x) = u2 in R3,
(1.1)

where

[u]2
s =

∫
R3
|(−∆)

s
2 u |2dx =

∫
R3

∫
R3

|u(x) − u(y) |2

|x − y |3+2s
dxdy,

s, t ∈ (0, 1) with 2t+4s > 3, M : R+
0 → R+ is a continuous function satisfying certain assumptions, the potential function V : R3

→ R+

is continuous, f : R3
× R → R satisfies a Carathéodory condition, λ is a positive parameter, and (−∆)s is the fractional Laplace

operator which, up to a normalization constant, is defined as

(−∆)sϕ(x) = 2 lim
ε→0+

∫
R3
\Bε (x)

ϕ(x) − ϕ(y)
|x − y |3+2s

dy, x ∈ R3,

along functions ϕ ∈ C∞0 (R3), where Bε(x) denotes the ball of R3 centered at x ∈ R3 and with radius ε > 0. It is worth pointing
out that the fractional Laplace operator (−∆)τ becomes the classic Laplace operator −∆ as τ → 1−; see Ref. 17, Proposition 4.4.
From a probabilistic point of view, the fractional Laplace operator could be viewed as the infinitesimal generator of a Lévy pro-
cess; cf. Ref. 9. This operator arises in the description of various phenomena in the applied sciences, such as plasma physics,23
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flame propagation,12 finance,16 free boundary obstacle problems,13 Signorini problems,37 Hamilton-Jacobi equation with critical
fractional diffusion,38 or phase transitions in the Gamma convergence framework.1 For more details on the nonlocal fractional
Laplace operator, we refer the readers to Refs. 17 and 29 and the references therein.

For our problem, we assume that the Kirchhoff function M : R+
0 → R+

0 is a continuous function satisfying the following
conditions:

(M1) M is nondecreasing, and there exists m0 > 0 such that inft∈R+
0

M(t) ≥ m0 > 0.

(M̃1) For any τ > 0, there exists κ = κ(τ) > 0 such that M(t) ≥ κ for all t ≥ τ.
(M2) There exists θ ∈ [ 2, 3

3−2s ) such that θM(t) B θ ∫
t

0 M(τ)dτ ≥ M(t)t for all t ∈ R+
0.

(M3) M̃(ωt) ≤ M̃(t) for all ω ∈ [0, 1], where M̃(t) = θM(t) −M(t)t for all t ∈ R+
0.

A typical example for M is given by M(t) = b0 + b1tθ−1 for t ≥ 0, where θ ∈ [ 2, 3
3−2s ), b0 ≥ 0, b1 ≥ 0, and b0 + b1 > 0. Note that (M2)

implies that s > 3
4 , and hence this leads to 2t + 4s > 3. The Kirchhoff problem is called non-degenerate if M(0) > 0, while it is

named degenerate if M(0) = 0; see Ref. 33 for some physical explanations about degenerate Kirchhoff problems. For the physical
background of the fractional Kirchhoff model, we refer to Ref. 20, Appendix A.

Obviously, assumptions (M1)–(M3) are automatic in the non-degenerate case. Meanwhile, (M̃1), (M2), and (M3) cover the
degenerate case. It is worth stressing that the degenerate case is rather interesting and is treated in well-known papers in
the Kirchhoff theory; see, for example, Ref. 18. In the vast literature on degenerate Kirchhoff problems, the transverse oscillations
of a stretched string, with nonlocal flexural rigidity, depends continuously on the Sobolev deflection norm of u via M([u]2

s ).

In recent years, Kirchhoff–type problems, which arise in various models of physical and biological systems, have received
more and more attention. More precisely, Kirchhoff established a model given by

ρ
∂2u
∂t2
− *

,

p0

h
+

E
2L

∫ L

0

�����
∂u
∂x

�����

2

dx+
-

∂2u
∂x2

= 0, (1.2)

where ρ, p0, h, E, L are constants which represent some physical meanings, respectively. Here (1.2) extends the classical
D’Alembert wave equation by considering the effects of the changes in the length of the strings during the vibrations. Note
that the presence of the nonlocal Kirchhoff function M makes (1.2) no longer a pointwise identity. Recently, Fiscella and Valdinoci
in Ref. 20 first proposed a stationary Kirchhoff model involving the fractional Laplacian by taking into account the nonlocal aspect
of the tension arising from nonlocal measurements of the fractional length of the string; see Ref. 20, Appendix A for more details.
In this case, M measures the change in the tension on the string caused by the change in its length during the vibration. From
this point of view, the fact that M(0) = 0 means that the base tension of the string is zero, a seemingly feasible model.

On the one hand, the study of a system like (1.1) has been motivated by the following Schrödinger–Poisson type system:




−∆u + V(x)u + φu = f(x, u) in R3,
−∆φ = u2 in R3, (1.3)

which was introduced by Benci and Fortunato in Ref. 7 as a physical model describing solitary waves for nonlinear Schrödinger
type equations interacting with an unknown electrostatic field. The first equation of (1.3) is coupled with a Poisson equation,
which means that the potential is determined by the charge of the wave function. The term φu is nonlocal and concerns the
interaction with the electric field. For more details on the physical background of system (1.3), we refer the readers to Refs. 8 and
35 and the references cited there.

In the last decades, many researchers have devoted to the existence and multiplicity of solutions for the system like (1.1) via
critical point theory under various assumptions on the potential V and the nonlinearity; for example, see Ref. 25. In particular,
Li et al. considered the following Schrödinger–Maxwell system:




−∆u + V(x)u + φu = f(x, u) in R3,
−∆φ = u2 in R3.

Using the variant fountain theorem introduced by Zou in Ref. 50, under certain assumptions on V and f, the authors got infinitely
many large solutions for the above system. We refer to Refs. 15 and 39 for the applications of the same method. Zhao et al. in
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Ref. 47 studied the following Kirchhoff–Schrödinger–Poisson system:




[
a + b

∫
R3

( |∇u |2 + V(x) |u |2)dx
]
(−∆u + V(x)u) + λl(x)φu = f(x, u), x ∈ R3,

−∆φ = λl(x)u2, x ∈ R3,
(1.4)

where a > 0, b ≥ 0, and λ ≥ 0. Indeed, they obtained infinitely many solutions of (1.4) by using the symmetric mountain pass
theorem established by Kajikiya in Ref. 22.

On the other hand, Zhang et al. in Ref. 48 considered the following fractional Schrödinger–Poisson system:




(−∆)su + λφu = g(u) in R3,
(−∆)tφ = λu2 in R3,

where λ > 0 and g satisfies subcritical or critical growth conditions. By using a perturbation approach, the authors in Ref. 48
obtained the existence of positive solutions for small λ and studied the asymptotic of solutions for λ→ 0+. In Ref. 40, Teng studied
the following fractional Schrödinger–Poisson system:




(−∆)su + V(x)u + φu = µ |u |q−1u + |u |2
∗
s−2u in R3,

(−∆)tφ = u2 in R3,
(1.5)

where µ > 0 is a parameter, 1 < q < 2∗s−1, and 2s + 4t > 3. In that paper, when µ is large enough, the existence of a nontrivial ground
state solution was obtained by using the method of Pohozaev–Nehari manifold and the arguments of Brézis–Nirenberg, the
monotonic trick and global compactness Lemma. However, only the existence of solutions in the above papers was investigated.
In Ref. 43, Wei studied the following fractional Schrödinger–Maxwell equations:




(−∆)su + V(x)u + φu = f(x, u) in R3,
(−∆)sφ = Ksu2 in R3,

(1.6)

where Ks is a positive constant only depending on s. Consequently, with the help of the fountain theorem, the existence of
infinitely many (but possibly sign changing) solutions under suitable assumptions on the nonlinearity term was obtained. We
refer the interested reader to Refs. 14 and 36 for more recent results about the fractional Schrödinger–Poisson system. In Ref. 44,
Xiang and Wang first considered the following fractional Schrödinger–Poisson–Kirchhoff system:




M
(
[u]2

s +
∫
R3

V(x) |u |2dx
)
[(−∆)su + V(x)u] + φρ(x) |u |2

∗
s,t−2u

= λh(x) |u |p−2u + |u |2
∗
s−2u in R3,

(−∆)tφ = ρ(x) |u |2
∗
s,t in R3,

where [u]s is the Gagliardo norm of u and M satisfies (M̃1), (M2), and the following hypothesis: there exists m0 > 0 such that M(η)
≥ m0η

θ−1 for all η ∈ [0, 1]. Concerning the multiplicity of solutions, the authors in Ref. 44 just considered the existence of two
non-negative solutions for the above system by the mountain pass theorem and the Ekeland variational principle. By utilizing
the minimax argument, Ambrosio in Ref. 3 obtained the existence of solutions for the fractional Kirchhoff–Schrödinger–Poisson
system with Berestycki-Lions type nonlinearities.

In the scalar case, we just collect some recent advances related to our problems and methods in the literature. By employing
the symmetric mountain pass theorem, Molica Bisci28 obtained the existence of infinitely many solutions for the fractional Lapla-
cian problem with zero boundary condition. In Ref. 45, Xiang et al. used the fountain theorem to study the existence of infinitely
many solutions for subcritical Kirchhoff type equations involving the fractional Laplacian with homogeneous Dirichlet boundary
conditions. See also Ref. 11 for some related results obtained by the fountain theorem. The existence of infinitely many solutions
is still proved in Refs. 10, 24, 27 and 33 by using Krasnoselskii’s genus theory under degenerate frameworks. Moreover, to get
infinitely many solutions, Krasnoselskii’s genus theory is used in Ref. 19 for a critical Kirchhoff type fractional problem but just
on the non-degenerate case. In Ref. 42, applying Kajikiya’s new version of the symmetric mountain pass lemma, the existence of
infinitely many solutions for a critical Kirchhoff type fractional equation was proved under a non-degenerate situation. Finally,
the symmetric mountain pass theorem was applied to study a fractional Schrödinger–Kirchhoff equation in Ref. 31, a degenerate
Kirchhoff–type Schrödinger–Choquard equation in Ref. 26, and a subcritical degenerate Kirchhoff system on a bounded domain
Ω in Ref. 46 (see also Refs. 30 and 49).

Motivated by the above studies, we are interested in multiplicity of solutions for (1.1) in the Kirchhoff context. In the non-
degenerate case, we will use the fountain theorem to study the existence of infinitely many solutions for problem (1.1) in the
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subcritical case. In the possibly degenerate case, we will apply the symmetric mountain pass theorem established by Kajikiya
to investigate problem (1.1) for the critical case. To the best of our knowledge, there are few results in the literature about
the fractional Kirchhoff–Schrödinger–Poisson systems like (1.1). Here we need to overcome the lack of compactness due to the
presence of critical exponents as well as the possibly degenerate nature of the Kirchhoff function.

Throughout the paper, we suppose on the potential function V that

(V1) V ∈ C(R3) satisfies infx∈R3 V(x) > V0 > 0, where V0 is a constant.

(V2) meas{x ∈ R3 : −∞ < V(x) ≤ h} < +∞ for all h ∈ R.

Note that if V is coercive, a.e. lim|x |→∞V(x) = +∞, then assumption (V2) is satisfied.

Moreover, we impose the following assumptions on the nonlinearity f. Let us denote F(x, t) = ∫ t
0 f(x,µ)dµ and let the real

number θ be given in (M2).

(F1) f : R3
×R → R satisfies the Carathéodory condition in the sense that f(x, ·) is continuous for almost all x ∈ R3 and f(·, t) is

measurable for all t ∈ R.
(F2) There exist non-negative functions ρ(x) ∈ L2 ∩ L∞(R3) and σ(x) ∈ L∞(R3) such that, for all (x, t) ∈ R3

×R,

|f(x, t) | ≤ ρ(x) + σ(x) |t |q−1, q ∈ (2θ, 2∗s).

(F3) lim|t|→∞
F(x;t)
|t|2θ = ∞ uniformly for a.e. x ∈ R3.

(F4) There exist ν ≥ 1 and C > 0 such that

νF(x, t) ≥ F(x,ηt) − C for all (x, t) ∈ R3
×R,η ∈ [0, 1],

where F(x, t) = f(x, t)t − 2θF(x, t).
(F5) There exist µ > 2θ and ς > 0 such that, for all (x, t) ∈ R3

×R,

µF(x, t) ≤ tf(x, t) + ςt2.

Before stating our main results, we introduce some notations. The fractional Sobolev space Hs(R3) can be described by means
of the Fourier transform as follows:

Hs(R3) =
{
u ∈ L2(R3) :

∫
R3

( |ξ |2s + 1) |û |2dξ < ∞
}
,

which is endowed with the standard scalar product and norm

(u, v) =
∫
R3

( |ξ |2s + 1)û ¯̂vdξ , ‖u‖2
Hs(R3)

=

∫
R3

( |ξ |2s + 1) |û |2dξ .

In view of Plancherel’s theorem (see, for example, Ref. 17, Sec. 3), we have

(u, v) =
∫
R3

((−∆)
s
2 u(−∆)

s
2 v + uv)dx, ‖u‖2

Hs(R3)
=

∫
R3

( |(−∆)
s
2 u |2 + |u |2)dx.

The homogeneous fractional Sobolev space Ds(R3) = {u ∈ L2∗s (R3) : ∫R3 |ξ |2s |û |2dξ < ∞} is the completion of C∞0 (R3) with respect

to the norm [u]2
s . According to Theorem 6.5 in Ref. 17, Hs(R3) is continuously embedded into Lp(R3) for 2 ≤ p ≤ 2∗s , and for any s ∈

(0, 1), there exists a best constant Ss > 0 such that

Ss = inf
u∈Ds(R3)\{0}

∫
R3
|(−∆)

s
2 u |2dx( ∫

R3
|u |2∗s dx

)2/2∗s
. (1.7)

The natural solution space for problem (1.1) is E, which is defined as

E =



u ∈ Hs(R3) : ‖u‖E =
( ∫

R3
( |(−∆)

s
2 u |2 + V(x) |u |2)dx

) 1
2
< ∞




.

In the subcritical case, we will apply the fountain theorem to study the existence of infinitely many solutions for problem
(1.1). As a consequence, we obtain the following results.
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Theorem 1.1. Let s, t ∈ (0, 1) with s > 3/4. Assume that (V1) and (V2), (M1)–(M3), and (F1)–(F4) hold. If f(x, −t) = −f(x, t) holds for all
(x, t) ∈ R3

×R, then for any λ > 0, problem (1.1) has a sequence of nontrivial weak solutions {un }n ⊂ E such that Iλ(un)→∞ as n→∞.

Theorem 1.2. Let s, t ∈ (0, 1) with s > 3/4. Assume that (V1) and (V2), (M1) and (M2), and (F1)–(F3), (F5) hold. If f(x, −t) = −f(x, t)
holds for all (x, t) ∈ R3

×R, then for any λ > 0, problem (1.1) has a sequence of nontrivial weak solutions {un }n ⊂ E such that Iλ(un)→∞
as n→∞.

Remark 1.1. The hypothesis (F4) without the constant C, which was proposed by Jeanjean in Ref. 21, is slightly stronger than
(F4). Moreover, the condition (F5) is much weaker than (F5) with ς = 0, while the latter assumption was proposed by Ambrosetti
and Rabinowiz in Ref. 2.

Next, we consider the critical case in the possibly degenerate Kirchhoff setting. More precisely, we consider a special case
λf(x, u) = λh(x) |u |p−2u + |u |2

∗
s−2u, that is,




M([u]2
s )(−∆)su + V(x)u + φ(x)u = λh(x) |u |p−2u + |u |2

∗
s−2u in R3,

(−∆)tφ(x) = u2 in R3,
(1.8)

where 2∗s = 6/(3 − 2s) and 1 < p < 2. Now we are in a position to state the corresponding result as follows.

Theorem 1.3. Let s, t ∈ (0, 1) with s > 3/4. Supposed that (V1) and (V2) and (M̃1), (M2) hold. Then there exists λ0 > 0 such that if 0
< λ < λ0, problem (1.8) has a sequence of solutions {un }n ⊂ E with Iλ(un) < 0, Iλ(un)→ 0, and limn→∞un → 0.

Remark 1.2. As far as we know, Theorems 1.1–1.3 are new even in the Laplacian case. Although the methods adopted in this
article are used before, we need to study carefully some properties of the term φ(x)u and the effect of the (degenerate) Kirchhoff
term.

It is natural to ask the following question: what about the existence of infinitely many solutions for problem (1.8) if 2 ≤ p < 2∗s?
It is still open to be solved in the future.

The paper is organized as follows. In Sec. II, we introduce some notations and preliminaries and give the variational formu-
lation for problem (1.1). In Sec. III, we prove Theorems 1.1 and 1.2 in the subcritical case by using the fountain theorem under the
Cerami condition. In Sec. IV, we will apply the symmetric mountain pass lemma established by Kajikiya to prove Theorem 1.3 in
the critical case.

II. PRELIMINARIES AND VARIATIONAL SETTING

In the following, we outline the variational framework for problem (1.1) and investigate some properties of the nonlocal term
φu appearing in problem (1.1).

It is well known that problem (1.1) can be reduced to a single equation with a nonlocal term. Since s, t ∈ (0, 1) satisfy 2t + 4s > 3,
there holds 12

3+2t <
6

3−2s and thus Hs(R3) ↪→ L
12

3+2t (R3). For all u ∈ Ht(R3), let us define the linear functional Lu by

Lu(v) =
∫
R3

u2v dx, ∀v ∈ Dt(R3).

Then, from the Hölder inequality and (1.7), there exist C1, C2 > 0 such that

|Lu(v) | ≤
( ∫

R3
|u(x)2 |

6
3+2t dx

) 3+2t
6

( ∫
R3
|v(x) |

6
3−2t dx

) 3−2t
6

≤ C1S
− 1

2
t ‖u‖

2
Ht(R3)

[v]t = C2 ‖u‖2Ht(R3)
[v]t.

(2.1)

Hence, from the Lax–Milgram theorem, for every u ∈ Ht(R3), there exists a unique φt
u ∈ Dt(R3) such that∫

R3
u2v dx =

∫
R3

(−∆)
t
2 φt

u · (−∆)
t
2 v dx (2.2)
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for any v ∈ Dt(R3), that is, φt
u is a weak solution of

(−∆)tφt
u = u2 in R3,

and the representation formula

φt
u = ct

∫
R3

u2(y)
|x − y |3−2t

dy = ct
1

|x |3−2t
∗ u2, ∀x ∈ R3 (2.3)

holds, which is called the t-Riesz potential, where

ct =
Γ(3 − 2t)
π3/222tΓ(t)

.

Then, φt
u > 0 for all u , 0. Moreover, by (2.1) and (2.2) and the Sobolev inequality, there exist C3, C4, C5 > 0 such that

[φt
u]t ≤ C3 ‖u‖2Ht(R3)

, ‖φt
u ‖L2∗t (R3)

≤ C4[φt
u]t, (2.4)

and ∫
R3

∫
R3

1
|x − y |3−2t

u2(x)u2(y)dxdy =
∫
R3
φt

uu2dx ≤ C5 ‖u‖
4
Ht(R3)

. (2.5)

Substituting φt
u in problem (1.1), we get the following fractional Schrödinger equation:

M([u]2
s )(−∆)su + V(x)u + φt

u(x)u = λf(x, u) in R3. (2.6)

Obviously, solutions of problem (2.6) can be obtained by looking for critical points of the functional I : Hs(R3)→ R defined by

Iλ(u) =
1
2
M([u]2

s ) +
∫
R3

V(x) |u |2dx +
1
4

∫
R3
φt

u(x)u2dx − λ
∫
R3

F(x, u)dx.

In addition, it is standard to show that (2.4) and (2.5) imply that Iλ is a well-defined C1 functional, and for all v ∈ Hs(R3), we get

〈I′λ(u), v〉 =
∫
R3

(M([u]2
s )(−∆)

s
2 u(−∆)

s
2 v + V(x)uv)dx +

∫
R3
φt

uuvdx − λ
∫
R3

f(x, u)vdx.

Hence, if u ∈ Hs(R3) is a critical point of I, then the pair (u,φt
u), with φt

u as in (2.3), is a (weak) solution of problem (1.1).

Let us define the operator Φ : Ht(R3)→ Dt(R3) as follows: Φ[u] = φt
u. In the next lemma, we summarize some properties of Φ,

which is useful for the study of our problem. The proof follows the same lines of Refs. 40, 41, and 48.

Lemma 2.1. For any u ∈ Ht(R3), we have that

(1) Φ is continuous;
(2) Φ maps bounded sets into bounded sets;
(3) if un ⇀ u in Ht(R3), then Φ[un] ⇀ Φ[u] in Dt(R3);
(4) Φ[θu] = θ2Φ[u] for all θ ∈ R.
(5) if un ⇀ u in E and un → u in Lr(R3) for 2 ≤ r < 2∗t , then∫

R3
φt

un
(x)unvdx→

∫
R3
φt

u(x)uvdx for all v ∈ E

and ∫
R3
φt

un
(x)u2

ndx→
∫
R3
φt

u(x)u2dx.

Since V(x) satisfies the conditions (V1) and (V2), we can recall the following continuous or compact embedding theorem in
Ref. 32, Lemma 1.

Lemma 2.2. Let 0 < s < 1 with s < N/2. Suppose that (V1) and (V2) hold. If r ∈ [2, 2∗s], then the embeddings

E ↪→ Ds(R3) ↪→ Lr(R3)
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are continuous with [u]s ≤ C‖u‖E for all u ∈ E, where C is a generic constant. In particular, for r ∈ [2, 2∗s], there exists a constant Cr > 0
such that ‖u‖Lr(R3) ≤ Cr ‖u‖E for all u ∈ E. If r ∈ [2, 2∗s), then the embedding

E ↪→↪→ Lr(R3)

is compact.

III. THE SUBCRITICAL CASE

Now, we prove that the functional Iλ satisfies the Cerami condition [(C)c-condition for short], i.e., for c ∈ R, any sequence
{un }n ⊂ E such that Iλ(un)→ c and ‖I′λ(un)‖E′ (1 + ‖un ‖E)→ 0 as n→∞ has a convergent subsequence. Here, E′ is a dual space of E.
This plays a key role in obtaining the existence of nontrivial weak solutions for the given problem.

Lemma 3.1. Let s, t ∈ (0, 1) satisfy 2t + 4s > 3. Assume that (M1)–(M3), (V1) and (V2), and (F1)–(F4) hold. Then the functional Iλ
satisfies the (C)c-condition for any λ > 0.

Proof. For c ∈ R, let {un }n be a (C)c-sequence in E. This implies that

c = Iλ(un) + on(1) and 〈Iλ(un), un〉 = on(1), (3.1)

where on(1) → 0 as n → ∞. If {un }n is bounded in E, it follows from the proceeding as in the proof of Lemma 6 in Ref. 32 that
{un }n converges strongly to u in E. Hence, it suffices to verify that the sequence {un }n is bounded in E. We argue by contradiction.
Suppose that the sequence {un }n is unbounded in E. We may assume that

‖un ‖E > 1 and ‖un ‖E → ∞, as n→ ∞. (3.2)

Define a sequence {vn }n by vn =
un
‖un ‖E

. Then it is obvious that {vn }n ⊂ E and ‖vn ‖E = 1. Hence, up to a subsequence, still denoted
by {vn }n, by Lemma 2.2, we have that as n→∞,

vn ⇀ v in E,
vn → v a.e. in R3,
vn → v in Lr(R3) for 2 ≤ r < 2∗s .

(3.3)

According to (3.1), it is easy to see that

c = Iλ(un) + on(1)

=
1
2

[
M([un]2

s ) +
∫
R3

V(x) |un |
2dx

]
+

1
4

∫
R3
φt

un
u2

ndx − λ
∫
R3

F(x, un)dx + on(1).

Since ‖un ‖E → ∞ as n→∞, by (M1) and (M2), we assert that∫
R3

F(x, un)dx = 1
2λ

[
M([un]2

s ) +
∫
R3

V(x) |un |
2dx

]
+ 1

4λ

∫
R3
φt

un
u2

ndx − c
λ + on(1)

≥
M([un]2

s )[un]2
s

θ +
∫
R3

V(x) |un |
2dx − c

λ + on(1)

≥
min{m0 ,1}

θ ‖u‖2E −
c
λ + on(1)

→ ∞

(3.4)

as n→∞. Hence by (3.4), we get

0 <
1

2λ
≤

∫
R3

lim sup
n→∞

|F(x, un) |

M([un]2
s ) + ∫R3 V(x) |un |2dx + 1

2 ∫R3 φt
un

u2
ndx

dx. (3.5)

The assumption (F3) implies that there exists t0 > 1 such that F(x, t) > |t|2θ for all x ∈ R3 and |t| > t0. From assumptions (F1) and
(F2), we have that there exists a positive constant C such that |F(x, t)| ≥ C for all (x, t) ∈ R3

× [−t0, t0]. Therefore we can choose a
real number C0 such that F(x, t) ≥ C0 for all (x, t) ∈ R3

×R, and hence

F(x, un) − C0

M([un]2
s ) + ∫R3 V(x) |un |2dx + 1

2 ∫R3 φt
un

u2
ndx

≥ 0 (3.6)
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for all x ∈ R3. Set Ω = {x ∈ R3 : v(x) , 0}. By (3.3), we know that |un(x) | = |vn(x) | · ‖un ‖E → ∞ as n→ ∞ for all x ∈ Ω. So it follows
from assumptions (M1), (M2), (F3), (2.5), (3.2), and (3.4) that for all x ∈ Ω, we have that

lim
n→∞

F(x,un)
M([un]2

s )+∫R3 V(x)|un |2dx+ 1
2 ∫R3 φ

t
un u2

ndx

≥ lim
n→∞

F(x,un)
M(1)‖un ‖

2θ
E +∫R3 V(x)|un |2dx+ 1

2 ‖un ‖
4
E

≥ lim
n→∞

F(x,un)
(M(1)+1)‖un ‖

2θ
E + 1

2 ‖un ‖
2θ
E

= lim
n→∞

1
M(1)+3/2 ·

F(x,un)
|un |2θ

· |vn |
2θ

= ∞,

(3.7)

where we use the fact that M([un]2
s ) ≤M(‖un ‖

2
E) ≤M(1)‖un ‖

2θ
E , which is easily deduced from assumptions (M1) and (M2). Hence

we get that meas(Ω) = 0. Indeed, if meas(Ω) , 0, according to (2.5), (3.4)–(3.7), and Fatou’s lemma, we deduce that

1
λ = lim inf

n→∞

∫R3 F(x,un)dx
λ ∫R3 F(x,un)dx+c−on(1)

= lim inf
n→∞

∫R3 F(x,un)dx
1
2 (M([un]2

s )+∫R3 V(x)|un |2dx)+ 1
4 ∫R3 φ

t
un u2

ndx

≥ lim inf
n→∞

∫
Ω

F(x,un)−C0
1
2 (M([un]2

s )+∫R3 V(x)|un |2dx)+ 1
4 ‖un ‖

4
E

dx

≥

∫
Ω

lim inf
n→∞

F(x,un)−C0
1
2 (M([un]2

s )+∫R3 V(x)|un |2dx)+ 1
4 ‖un ‖

4
E

dx = ∞,

(3.8)

which is a contradiction. Thus, v(x) = 0 for almost all x ∈ R3. Furthermore, by (3.3), we get for 2 ≤ r < 2∗s ,

vn → 0 in Lr(R3) and vn(x)→ 0 a.e. in R3 as n→ ∞. (3.9)

As in Ref. 21, we choose a sequence {tn }n ⊂ [0, 1] such that Iλ(tnun) = maxt∈[0,1]Iλ(tun). For any positive integer m, we can choose

τ =
√

2m such that τ ‖un ‖
−1
E ∈ (0, 1) as n is large enough. Since vn → 0 in Lr(R3) and (F1) by the continuity of the Nemiskii operator,

we know that F(·, τvn)→ 0 in L1(R3), which implies that

lim
n→∞

∫
R3

F(x,τvn)dx = 0. (3.10)

Hence, for large enough n, it follows from (3.10) and (M1) that

Iλ(tnun) ≥ Iλ(τ ‖un ‖
−1
E un) = Iλ(τvn) ≥ min{m0, 1}m −

∫
R3

F(x,τvn)dx,

from which we deduce that Iλ(tnun)→ +∞ as n→∞. But Iλ(0) = 0, Iλ(un)→ c, so tn ∈ (0, 1) and

〈Iλ(tnun), tnun〉 = tn
d
dt

����t=tn

Iλ(tun) = 0.

Now using (F4) and (M3), we get

1
ν Iλ(tnun) = 1

ν

[
Iλ(tnun) − 1

2θ 〈I
′
λ(tnun), tnun〉

]
+ on(1)

≤ 1
2ν

[
1

2θ M̃([tnun]2
s ) +

(
1
2 −

1
2θ

) ∫
R3

V(x) |un |
2dx

+
(

1
4 −

1
2θ

) ∫
R3
φu2

n
(un)2dx +

∫
R3

1
2θF(x, tnun)dx

]
+ on(1)

≤ 1
ν

[
1

2θ M̃([un]2
s ) +

(
1
2 −

1
2θ

) ∫
R3

V(x) |un |
2dx

+
(

1
4 −

1
2θ

) ∫
R3
φu2

n
u2

ndx +
∫
R3

1
2θ (νF(x, un) + C)dx

]
+ on(1)

≤ Iλ(un) − 1
2θ 〈I

′
λ(un), un〉 + C

2νθ + on(1) = c + C
2νθ + on(1).

This contradicts the fact that Iλ(tnun)→ +∞ as n→∞. Thus, {un }n is bounded in E. �
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Lemma 3.2. Let s, t ∈ (0, 1) satisfy 2t + 4s > 3. Assume that (M1) and (M2), (V1) and (V2), (F1)–(F3), and (F5) hold. Then the functional
Iλ satisfies the (C)c-condition for any λ > 0.

Proof. Let {un }n be a (C)c-sequence in E. As in the proof of Lemma 3.1, we only need to prove that {un }n is bounded in E.
Suppose that ‖un ‖E → ∞ as n→ ∞. Let vn =

un
‖un ‖E

. Then ‖vn ‖E = 1 and ‖vn ‖Lr(R3) ≤ Cr ‖vn ‖E = Cr for 2 ≤ r ≤ 2∗s by the continuous

embedding in Lemma 2.2. Passing to a subsequence, again by Lemma 2.2, we may assume that vn ⇀ v in E, vn → v a.e. in R3, vn →

v in Lr(R3) for 2 ≤ r < 2∗s . By the assumptions (M1), (M2), and (F5), one has

c + 1 ≥ Iλ(un) − 1
µ 〈I
′(un), un〉

= 1
2M([un]2

s ) + 1
2

∫
R3

V(x) |un |
2dx + 1

4

∫
R3
φt

un
u2

ndx − λ
∫
R3

F(x, un)dx

− 1
µM([un]2

s )[un]2
s −

1
µ

∫
R3

V(x) |un |
2dx − 1

µ

∫
R3
φt

un
u2

ndx + λ
µ

∫
R3

f(x, un)undx

≥
(

1
2θ −

1
µ

)
M([un]2

s )[un]2
s +

(
1
2 −

1
µ

) ∫
R3

V(x) |un |
2dx +

(
1
4 −

1
µ

) ∫
R3
φt

un
u2

ndx

+λ
∫
R3

1
µ f(x, un)un − F(x, un)dx

≥
(

1
2θ −

1
µ

)
min{1, m0 } ‖un ‖

2
E −

1
µ λς

∫
R3
|un |

2dx,

(3.11)

which implies that
1 ≤ λς2θ

min{1,m0 }(µ−2θ ) lim sup
n→∞

‖vn ‖
2
L2(R3)

=
λς2θ

min{1,m0 }(µ−2θ ) ‖v‖
2
L2(R3)

. (3.12)

Hence, it follows from (3.12) that v , 0. From the same argument as that in Lemma 3.1, we can check the relations (3.4), (3.6), and
(3.7) and hence yield the relation (3.8). Therefore we arrive at a contradiction. Thus, {un }n is bounded in E.

�
Next, using the oddity on f and applying the fountain theorem of Bartsch,5 we demonstrate the existence of infinitely many

weak solutions for problem (1.1). To do this, let X be a separable and reflexive Banach space. It is well known that there are
{en }n ⊆ X and {f∗n }n ⊆ X∗ such that

X = span{en : n = 1, 2, · · · }, X∗ = span{f∗n : n = 1, 2, · · · },

and

〈f∗i , ej〉 =

{
1 if i = j
0 if i , j .

Let us denote Xn = span{en }, Yk =
⊕k

n=1 Xn and Zk =
⊕∞

n=k Xn. Then we can state the fountain theorem under the Cerami condition
as follows.

Proposition 3.1. Let X be a real reflexive Banach space, I ∈ C1(X,R) satisfies the (C)c-condition for any c > 0, and I is even. If for
each sufficiently large k ∈ N, there exist ρk > rk > 0 such that the following conditions hold:

(1) ak B max{I(u): u ∈ Yk, ‖u‖X = ρk} ≤ 0 and
(2) bk B inf{I(u): u ∈ Zk, ‖u‖X = rk}→∞ as k→∞,

then the functional I has an unbounded sequence of critical values, i.e., there exists a sequence {un }n ⊂ X such that I′(un) = 0 and I(un)
→∞ as n→∞.

Proof of Theorem 1.1. Obviously, Iλ is an even functional and satisfies the (C)c-condition by Lemma 3.1. Note that E is
a separable and reflexive Banach space. According to Proposition 3.1 with X = E, and the same notation about Yk and
Zk (see Ref. 33, Appendix), it suffices to show that there exist ρk > rk > 0 such that (1) and (2) in Proposition 3.1 are
satisfied.

Denote

αk B sup
u∈Zk ;‖u‖E=1

( ∫
R3
|u(x) |qdx

) 1
q
, 1 < q < 2∗s .
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Then we have αk → 0 as k→∞. In fact, suppose to the contrary that there exist ε0 > 0 and the sequence {uk }k in Zk such that

‖uk ‖E = 1,
∫
R3
|uk(x) |qdx ≥ ε0

for all k ≥ k0. Since the sequence {uk }k is bounded in E, there exists u ∈ E such that uk ⇀ u in E as k→∞ and

〈f∗i , u〉 = lim
k→∞
〈f∗i , uk〉 = 0

for i = 1, 2, . . .. Hence we get u = 0 since f∗i , 0. Then we obtain

0 <
1
q
ε0 ≤ lim

k→∞

∫
R3

1
q
|uk(x) |qdx =

∫
R3

1
q
|u(x) |qdx = 0,

which is a contradiction.

For any u ∈ Zk, it follows from condition (M2), (F2), and the Hölder inequality that

Iλ(u) = 1
2M([u]2

s ) + 1
2

∫
R3

V(x) |u |2dx + 1
4

∫
R3
φt

uu2dx − λ
∫
R3

F(x, u)dx

≥ 1
2M([u]2

s ) + 1
2

∫
R3

V(x) |u |2dx + 1
4

∫
R3
φt

uu2dx − λ
∫
R3
|ρ(x) | |u |dx − λ

∫
R3

σ(x)
q |u(x) |qdx

≥ 1
2M([u]2

s ) + 1
2

∫
R3

V(x) |u |2dx + 1
4

∫
R3
φt

uu2dx

−λ‖ρ ‖L2(R3) ‖u‖L2(R3) −
λ
q ‖σ(x)‖L∞(R3)

∫
R3
|u(x) |qdx

≥ 1
2M([u]2

s ) + 1
2

∫
R3

V(x) |u |2dx + 1
4

∫
R3
φt

uu2dx − λC2 ‖u‖E − λ
q C3

∫
R3
|u(x) |qdx

≥ 1
2 min

{
1, m0

θ

}
‖u‖2E − λC2 ‖u‖E − λC3α

q
k ‖u‖

q
E .

(3.13)

Set rk = (4λC3α
q
k/min{1, m0/θ })1/(2−q). Since 2θ < q and αk → 0 as k → ∞, we assert that rk → ∞ as k → ∞. Hence, if u ∈ Zk and

‖u‖E = rk, then we deduce that
Iλ(u) ≥ 1

2 min
{
1, m0

θ

}
‖u‖2E − λC3α

q
k ‖u‖

q
E − λC2 ‖u‖E

= 1
4 min

{
1, m0

θ

}
r2

k − λC2rk → ∞ as k→ ∞,

which implies (2) of Proposition 3.1.

Assume that condition (1) in Proposition 3.1 does not hold for some k. Then there exists a sequence {un }n in Yk such that

‖un ‖E > 1 and ‖un ‖E → ∞ as n→ ∞ and Iλ(un) > 0. (3.14)

Let vn =
un
‖un ‖E

. Then ‖vn ‖E = 1. Since dimYk < ∞, there exists v ∈ Yk\{0} such that, up to a subsequence,

‖vn − v‖E → 0 and vn(x)→ v(x) for almost all x ∈ R3 as n→ ∞.

For x ∈ Ω B {x ∈ R3 : v(x) , 0}, we get |un(x)|→∞ as n→∞. Hence it follows from (M1), (M2), and (F3) that

lim
n→∞

F(x,un)
M([un]2

s )+∫R3 V(x)|un |2dx+ 1
2 ∫R3 φ

t
un u2

ndx

≥ lim
n→∞

F(x,un)
(M(1)+1)‖un ‖

2θ
E + 1

2 ‖un ‖
4
E

≥ lim
n→∞

F(x,un)
(M(1)+1)‖un ‖

2θ
E + 1

2 ‖un ‖
2θ
E

= lim
n→∞

1
(M(1)+3/2) ·

F(x,un)
|un |2θ

· |wn |
2θ = ∞.

(3.15)

Since meas(Ω) , 0, we get

lim
n→∞

∫
Ω

F(x,un)
M([un]2

s )+∫R3 V(x)|un |2dx+ 1
2 ∫R3 φ

t
un u2

ndx
dx ≥ ∞. (3.16)
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Therefore, we have

Iλ(un) = 1
2M([un]2

s ) + 1
2

∫
R3

V(x) |un |
2dx + 1

4

∫
R3
φt

un
u2

ndx − λ
∫
Ω

F(x, un)dx

≤
M([un]2

s )+∫R3 V(x)|un |
2dx+ 1

2 ∫R3 φ
t
un u2

ndx
2 ·

[
1 − 2λ

∫
Ω

F(x,un)
M([un]2

s )+∫R3 V(x)|u|2dx+ 1
2 ∫R3 φ

t
un u2

ndx
dx

]

→ −∞ as n→ ∞,

which contradicts (3.14). This completes the proof. �

Proof of Theorem 1.2. By Lemma 3.2 and Proposition 3.1, although we replace (F4) with (F5) in the assumption of Theorem 1.2,
we also get that problem (1.1) possesses an unbounded sequence of nontrivial weak solutions {un }n in E such that Iλ(un)→∞ as n
→∞. �

IV. THE CRITICAL CASE

In order to find nontrivial critical points of Iλ in the case that λf(x, u) = λh(x) |u |p−2u + |u |2
∗
s−2u, 1 < p < 2, we will apply the

symmetric mountain pass lemma due to Kajikiya to prove Theorem 1.3. Let X be a Banach space and Σ be the class of subsets of
X\{0} which are closed and symmetric with respect to the origin. For A ∈ Σ, we define the genus γ(A) by

γ(A) = inf{n ∈ N : ∃φ ∈ C(A,Rn
\ {0}),φ(z) = −φ(−z)},

Nδ (A) = {x ∈ X : dist(x − A) ≤ δ }, here dist(x − A) = inf{ ‖x − y‖X : y ∈ A}.

If there is no mapping as above for any n ∈ N, then γ(A) = +∞. Let Σn denote the family of closed symmetric subsets A of X such
that 0 < A and γ(A) ≥ n. We summarize the property of genus, which will be used in the proof of Theorem 1.3. We refer the readers
to Ref. 34 for the proof of the next lemma.

Proposition 4.1. Let A and B be closed symmetric subsets of X which do not contain the origin. Then the following conditions
hold.

(1) If there exists an odd continuous mapping from A to B, then γ(A) ≤ γ(B).
(2) If there is an odd homeomorphism from A to B, then γ(A) = γ(B).
(3) If γ(B) < ∞, then γ(A \ B) ≥ γ(A) − γ(B).
(4) Then n-dimensional sphere Sn has a genus of n + 1 by the Borsuk-Ulam Theorem.
(5) If A is compact, thenγ(A) <∞ and there exists δ > 0 such that Nδ (A) ⊂ Σ andγ(Nδ (A)) =γ(A), with Nδ (A) =

{
x ∈ X : dist(x, A) ≤ δ

}
.

The following version of the symmetric mountain-pass lemma was proposed by Kajikiya.22

Proposition 4.2. Let E be an infinite-dimensional space and J ∈ C1(E,R) and suppose the following conditions hold.

(J1) J(u) is even, bounded from below, J(0) = 0 and J(u) satisfies the local Palais-Smale condition, i.e., for some c̄ > 0, in the case
when every sequence {un }n in E satisfying lim

n→∞
J(un) = c < c̄ and lim

n→∞
‖J′(un)‖E′ = 0 has a convergent subsequence.

(J2) For each n ∈ N, there exists an An ∈ Σn such that sup
u∈An

J(u) < 0.

Then either (i) or (ii) below holds.

(i) There exists a sequence {un }n such that J′(un) = 0, J(un) < 0, and {un }n converges to zero.
(ii) There exist two sequences {un }n and {vn }n such that J′(un) = 0, J(un) = 0, un , 0, lim

n→∞
un = 0; J′(vn) = 0, J(vn) < 0, lim

n→∞
J(vn) = 0;

and {vn }n converges to a non-zero limit.

Remark 4.1. In view of Proposition 4.2, we know that a sequence {un }n of critical points satisfies Iλ(un) ≤ 0, un , 0, and
limn→∞un = 0.

In order to get infinitely many solutions, we need to verify the compact condition.
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Lemma 4.1. Let 0 < s, t < 1, s ≥ 3/4. Assume that (V1) and (V2), (M̃1), (M2), and λf(x, u) = λh(x) |u |p−2u + |u |2
∗
s−2u hold. h(x) ∈

L
2∗s

2∗s−p (R3), 1 < p < 2. Then there exists λ0 > 0 such that the functional Iλ satisfies the (PS)c-condition for any λ ∈ (0, λ0).

Proof. For c ∈ R, fix any sequence {un }n which is a (PS)c-sequence in E, that is,

Iλ(un)→ c and I′λ(un)→ 0 as n→ ∞. (4.1)

In the following, we divide the proof into two parts.

• Case infn∈N ‖un ‖E = d > 0. We first show that {un }n is bounded. By (M̃1), and the assumptions that θ < 2∗s/2 and 1 < p < 2,
we get

c + on(1)‖un ‖E ≥ Iλ(un) − 1
2∗s
〈I′λ(un), un〉

≥

(
1

2θ −
1

2∗s

)
M([un]2

s )[un]2
s +

(
1
2 −

1
2∗s

) ∫
R3

V(x) |un |
2dx

+
(

1
4 −

1
2∗s

) ∫
R3
φt

un
u2

ndx − λ
(

1
p −

1
2∗s

) ∫
R3

h(x) |un |
pdx

≥

(
1

2θ −
1

2∗s

)
min{κ, 1} ‖un ‖

2
E − λ

(
1
p −

1
2∗s

)
‖h(x)‖Lp′ (R3) ‖un ‖

p
ES−2/p

s .

(4.2)

This yields at once that {un }n is bounded in E.

Next we show that Iλ satisfies the (PS) condition. Since {un }n is bounded in E, then by Lemma 2.1, there exist uλ ∈ E and a
subsequence, still denoted by {un }n, such that

un ⇀ uλ weakly in E, ‖un ‖E → αλ ,
un ⇀ uλ weakly in L2∗s (R3),
φun ⇀ φuλ weakly in L2∗s (R3),
un → uλ a.e. in R3.

Thus, using Lemma 2.2, (2.4), and (2.5), we have∫
R3

(φt
un

un − φ
t
uλuλ)(un − uλ)dx

≤

( ∫
R3

(φt
un

un − φ
t
uλuλ)2dx

) 1
2
( ∫

R3

(
|un − uλ |2dx

) 1
2

≤

[
2
∫
R3

( |φt
un

un |
2 + |φt

uλuλ |2)dx
] 1

2
( ∫

R3

(
|un − uλ |2dx

) 1
2

≤ C
(
‖φt

un
‖

2
L6(R3) ‖un ‖

2
L6(R3)

+ ‖φt
uλ ‖

2
L6(R3) ‖uλ ‖

2
L3(R3)

) 1
2
‖un − uλ ‖L2(R3)

≤ C
(
‖un ‖Ht (R3)4 + ‖uλ ‖4Ht(R3)

) 1
2
‖un − uλ ‖L2(R3) → 0

(4.3)

as n→∞.

Since h ∈ L
2∗s

2∗s−p (R3), for any ε > 0, there exists Rε > 0 such that∫
R3
\BRε

h
2∗s

2∗s−p (x)dx ≤ ε.

Also, for any measurable subset U ⊂ BRε , we have∫
U

h(x) |un |
pdx ≤

( ∫
U

h
2∗s

2∗s−p (x)dx
) 2∗s−p

2∗s
( ∫

U
|un |

2∗s dx
) p

2∗s ≤ C
∫

U
h

2∗s
2∗s−p (x)dx

) 2∗s−p
2∗s ,

which implies that {h(x) |un |
p }n is equi-integrable in BRε . By un → uλ a.e. in R3, we have h(x)|un|p → h(x)|uλ |p a.e. in R3. Then the

Vitali convergence theorem yields ∫
BRε

h(x) | |un |
p − |uλ |p |dx = 0.

Note that
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∫
R3

h(x) | |un |
p − |uλ |p |dx

≤

∫
BRε

h(x) | |un |
p − |uλ |p |dx +

∫
R3
\BRε

h(x) | |un |
p − |uλ |p |dx

≤

∫
BRε

h(x) | |un |
p − |uλ |p |dx + Cε

2∗s−p
2∗s .

Letting n→∞ and using the arbitrary of ε, one has

lim
n→∞

∫
R3

h(x) | |un |
p − |uλ |p |dx = 0. (4.4)

This together with the following Brézis–Lieb lemma

lim
n→∞

∫
R3

( |un |
p − |un − uλ |p)dx =

∫
R3
|uλ |pdx (4.5)

yields that

lim
n→∞

∫
R3

h(x) |un − uλ |pdx = 0. (4.6)

Note that for any measurable subset U ⊂ R3, we have

∫
U
|un |

2∗s−2unuλdx ≤ ‖un ‖

2∗s−1
2∗s

2∗s
‖uλ ‖L2∗s (U) ≤ C‖uλ ‖L2∗s (U),

which implies that {un |
2∗s−2unuλ }n is equi-integrable in R3. Observe that

|un |
2∗s−2unuλ → |uλ |2

∗
s a.e. in R3,

then the Vitali convergence theorem yields that as n→∞,

|un |
2∗s−2unuλ → |uλ |2

∗
s in L1(R3),

that is, ∫
R3
|un |

2∗s−2unuλdx =
∫
R3
|uλ |2

∗
s dx + on(1). (4.7)

The weak convergence of {un }n in E gives that as n→∞

〈uλ , un − uλ〉E → 0. (4.8)

Since {un }n is bounded in E, we have for any v ∈ E
〈un, v〉E → 〈uλ , v〉E (4.9)

as n→∞. Since I′
λ
(un)→ 0 as n→∞, we have 〈I′

λ
(un), uλ〉 → 0. Then by (4.3), (4.6), and (4.8), we obtain

M(α2
λ)[uλ]2

s +
∫
R3

V(x) |uλ |2dx +
∫
R3
φt

uλu2
λdx − λ

∫
R3

h(x) |uλ |pdx −
∫
R3
|uλ |2

∗
s dx = 0,

which means that 〈I′αλ (uλ), uλ〉 = 0. Here Iαλ is defined as follows:

Iαλ (v) =
1
2

M(α2
λ)[v]2

s +
1
2

∫
R3

V(x) |v |2dx +
1
4

∫
R3
φt

vv2dx −
λ

p

∫
R3

h(x) |v |pdx −
1

2∗s

∫
R3
|v |2

∗
s dx

for any v ∈ E. By the Brézis–Lieb lemma, one has

lim
n→∞

∫
R3

( |un |
2∗s − |un − uλ |2

∗
s )dx =

∫
R3
|uλ |2

∗
s dx, (4.10)

‖un ‖
2
E = ‖un − uλ ‖2E + ‖uλ ‖2E + on(1). (4.11)
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Since {un }n is a (PS) sequence, we deduce from (4.3), (4.6)–(4.8), (4.10), and (4.11) that

on(1) = 〈I′λ(un) − I′αλ (uλ), un − uλ〉E

= M([un]2
s )[un]2

s −M([un]2
s )
∫
R3

(−∆)
s
2 un(−∆)

s
2 uλdx −M(α2

λ)
∫
R3

(−∆)
s
2 un(−∆)

s
2 (un − uλ)dx

+
∫
R3

V(x)(un − uλ)2dx +
∫
R3

(φt
un

un − φ
t
uλuλ)(un − uλ)dx

−λ

∫
R3

h(x)( |un |
p−2un − |uλ |p−2uλ)(un − uλ)dx

−

∫
R3

( |un |
2∗s−2un − |uλ |2

∗
s−2uλ)(un − uλ)dx

≥ min{M(α2
λ), 1} ‖un − uλ ‖2E −

∫
R3
|un − uλ |2

∗
s dx + on(1).

(4.12)

It follows from (4.12) that

lim
n→∞

min{M(α2
λ), 1} ‖un − uλ ‖2E = lim

n→∞

∫
R3
|un − uλ |2

∗
s dx. (4.13)

On the other hand, it follows from Lemma 2.1 (5) that∫
R3
φt

un
(x)u2

ndx→
∫
R3
φt

u(x)u2dx. (4.14)

Therefore, by (M2), (4.4), (4.10), (4.11), and (4.14), we have

c + on(1) = Iλ(un) − 1
2θ 〈I

′
αλ

(uλ), uλ〉

≥ 1
2θ M(α2

λ)[un]2
s + 1

2θ

∫
R3

V(x)u2
ndx − 1

2θ M(α2
λ)[uλ]2

s + 1
2θ

∫
R3

V(x)u2
λdx

+
(

1
4 −

1
2θ

) ∫
R3
φt

uλu2
λdx − λ

(
1
p −

1
2θ

) ∫
R3

h(x) |uλ |pdx

− 1
2∗s

∫
R3

( |un − uλ |2
∗
s + |uλ |2

∗
s )dx − 1

2θ

∫
R3
|uλ |2

∗
s dx + on(1)

≥ 1
2θ M(α2

λ)([un]2
s − [uλ]2

s ) + 1
2θ

∫
R3

V(x)(u2
n − u2

λ)dx

−λ
(

1
p −

1
2θ

) ∫
R3

h(x) |uλ |pdx − 1
2∗s

∫
R3
|un − uλ |2

∗
s dx +

(
1

2θ −
1

2∗s

) ∫
R3
|uλ |2

∗
s dx + on(1)

≥ 1
2θ min{M(α2

λ), 1} ‖un − uλ ‖2E − λ
(

1
p −

1
2θ

) ∫
R3

h(x) |uλ |pdx

− 1
2∗s

∫
R3
|un − uλ |2

∗
s dx +

(
1

2θ −
1

2∗s

) ∫
R3
|uλ |2

∗
s dx + on(1).

Thanks to the assumption θ < 2∗s/2, we obtain by (4.13)

c + on(1)

≥

(
1

2θ
−

1
2∗s

) ∫
R3

( |un − uλ |2
∗
s + |uλ |2

∗
s )dx − λ

(
1
p
−

1
2θ

) ∫
R3

h(x) |uλ |pdx. (4.15)

Combining the Hölder inequality and the Young inequality, since 1 < p < 2 < θ, we have for any ε > 0

λ
(

1
p −

1
2θ

) ∫
R3

h(x) |uλ |pdx ≤
(

1
ε

) p
2∗s

(
λ
p −

λ
2θ

)
‖h(x)‖ 2∗s

2∗s−p

· ε
p

2∗s ‖uλ ‖
p
2∗s

≤ ε ‖uλ ‖
2∗s
2∗s

+ ε
−

p
2∗s−p *

,

(
λ
p −

λ
2θ

)
‖h(x)‖ 2∗s

2∗s−p

+
-

2∗s
2∗s−p

.

Taking ε = 1/(2θ) − 1/2∗s in the above inequality and putting it in (4.15), we arrive at

c + on(1) ≥

(
1

2θ −
1

2∗s

) ∫
R3
|un − uλ |2

∗
s dx

−

(
1

2θ −
1

2∗s

)− p
2∗s−p *

,

(
1
p −

1
2θ

)
λ‖h(x)‖ 2∗s

2∗s−p

+
-

2∗s
2∗s−p

.
(4.16)
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Thus, (
1

2θ
−

1
2∗s

) ∫
R3
|un − uλ |2

∗
s dx

≤

(
1

2θ
−

1
2∗s

)− p
2∗s−p *

,

(
1
p
−

1
2θ

)
λ‖h(x)‖ 2∗s

2∗s−p

+
-

2∗s
2∗s−p

+ c + on(1),

which together with 1 < p < 2 and c < 0 yields that

(
1

2θ −
1

2∗s

) ∫
R3
|un − uλ |2

∗
s dx ≤

(
1

2θ −
1

2∗s

)− p
2∗s−p *

,

(
1
p −

1
2θ

)
‖h(x)‖ 2∗s

2∗s−p

+
-

2∗s
2∗s−p

λ
2∗s

2∗s−p .

Thus, we conclude that

lim
λ→0

lim
n→∞

∫
R3
|un − uλ |2

∗
s dx = 0. (4.17)

Then by (4.13), we get
lim
λ→0

lim
n→∞

‖un − uλ ‖E = 0. (4.18)

This yields that un → uλ strongly in E as n → ∞ and λ → 0, i.e., there exists λ0 > 0 such that the functional Iλ satisfies the
(PS)c-condition for any λ ∈ (0, λ0).

• Case infn∈N ‖un ‖E = d > 0. If 0 is an isolated point for the real sequence { ‖un ‖E }n, then there is a subsequence {unk }k such
that infk∈N ‖unk ‖E = d > 0, and we can proceed as before. Otherwise, 0 is an accumulation point of the sequence { ‖un ‖E }n, and so
there exists a subsequence {unk }k of {un }n such that unk → 0 strongly in E as n→∞.

In conclusion, Iλ satisfies the (PS)c-condition for any λ ∈ (0, λ0) in E. �

We also need some technical lemmas. Let Iλ(u) be the functional defined as before, 1 < p < 2. Then, one has

Iλ(u) = 1
2M([u]2

s ) + 1
2

∫
R3

V(x) |u |2dx + 1
4

∫
R3
φt

u(x) |u |2dx

− 1
2∗s

∫
R3
|u |2

∗
s dx − λ

2

∫
R3

h(x) |u |pdx

≥ 1
2θ M([u]2

s )[u]2
s + 1

2

∫
R3

V(x) |u |2dx − 1
2∗s

(
S−1 ‖u‖2E

) 2∗s
2
− λ

p ‖h(x)‖ 2∗s
2∗s−2

‖u‖
2

2∗s
2∗s

≥ 1
2θ min{κ, 1} ‖u‖2E −

1
2∗s

S−
2∗s
2 ‖u‖2

∗
s

E −
λ
p ‖h(x)‖ 2∗s

2∗s−2

S
−

p
2

s ‖u‖
p
E

≥ C1 ‖u‖2E − C2 ‖u‖
2∗s
E − λC3 ‖u‖

p
E.

Define
g(t) = C1t2 − C2t2∗s − λC3tp.

Then, since 1 < p < 2, it is easy to see that there exists λ∗ > 0 so small that if 0 < λ < λ∗, there exists 0 < t0 < t1 such that g(t) < 0
for 0 < t < t0; g(t) > 0 for t0 < t < t1; and g(t) < 0 for t > t1.

Clearly, g(t0) = 0 = g(t1). Following the same idea as in Ref. 4, we consider the truncated functional

Ĩλ(u) = 1
2M([u]2

s ) + 1
2

∫
R3

V(x) |u |2dx + 1
4

∫
R3
φt

u(x) |u |2dx

− 1
2∗s
ψ(u)

∫
R3
|u |2

∗
s dx − λ

p

∫
R3

h(x) |u |pdx,

where ψ(u) = τ(‖u‖E) and τ : R+
→ [0, 1] is a non-increasing C∞ function such that τ(t) = 1 if t ≤ t0 and τ(t) = 0 if t ≥ t1. Obviously,

Ĩλ(u) is even. Thus, it follows from Lemma 4.1, and we can get the following result.

Lemma 4.2. Let c < 0 and 1 < p < 2. Then

(1) Ĩλ ∈ C1 and Ĩλ is bounded from below.
(2) If Ĩλ(u) <0, then ‖u‖E < t0 and Ĩλ(u) = Iλ(u).
(3) There exists λ̃∗ such that if 0 < λ < λ̃∗, then Ĩλ satisfies (PS)c.
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Proof. Obviously, (1) and (2) are immediate. To prove (3), observe that all (PS)c sequences for Ĩλ with c < 0 must be bounded,
similar to the proof of Lemma 4.1, there exists a strong convergent subsequence in E. �

Remark 4.2. Denote Kc = {u ∈ E; Ĩ′λ(u) = 0, Ĩλ(u) = c}. If λ are as in (3) above, then it follows from (PS)c that Kc(c < 0) is compact.

Lemma 4.3. Denote Ĩc
λ := {u ∈ E; Ĩ′λ(u) = 0, Ĩλ(u) ≤ c}. Given n ∈ N, there exists εn < 0 such that

γ(Ĩεn
λ ) B γ({u ∈ E : Ĩλ(u) ≤ εn }) ≥ n.

Proof. Let Xn be an n-dimensional subspace of E. For any u ∈ Xn, u , 0, write u = rnw with w ∈ Xn, ‖w‖E = 1 and then rn = ‖u‖E.
From the assumptions h(x), it is easy to see that, for every w ∈ Xn with ‖w‖E = 1, there exists dn > 0 such that ∫R3 h(x) |w |pdx ≥ dn.
Thus for 0 < rn < t0, by the continuity of M, we have

Ĩλ(w) = 1
2M([w]2

s ) + 1
2

∫
R3

V(x) |w |2dx + 1
4

∫
R3
φt

w(x) |w |2dx

− 1
2∗s
ψ(w)

∫
R3
|w |2

∗
s dx − λ

p

∫
R3

h(x) |w |pdx

≤ 1
2 r2

nM([w]2
s ) + 1

2

∫
R3

V(x) |w |2dx − 1
2∗s

r2∗s
n

∫
R3
|w |2

∗
s dx − λ

p rp
n

∫
R3

h(x) |w |pdx

≤
C1
2 r2

n −
1

2∗s
r2∗s

n

∫
R3
|w |2

∗
s dx − λ

2 dnrp
n

= εn.

Therefore we can choose rn ∈ (0, t0) so small that Ĩλ(u) ≤ εn < 0. Let

Srn = {u ∈ Xn : ‖u‖E = rn }. (4.19)

Then Srn ∩ Xn ⊂ Ĩεn
λ . Hence by Proposition 4.1,

γ(Ĩεn
λ ) ≥ γ(Srn ∩ Xn) = n

as desired. �

According to Lemma 4.2, we denote Σn = {A ∈ Σ: γ(A) ≥ n} and let

cn = inf
A∈Σn

sup
u∈A

Ĩλ(u). (4.20)

Then
−∞ < cn ≤ εn < 0 (4.21)

because Ĩεn
λ ∈ Σn and Ĩλ is bounded from below.

Lemma 4.4. Let λ be as in (3) of Lemma 4.2. Then all cn [given by (4.20)] are critical values of Ĩλ and cn → 0.

Proof. Since Σn+1 ⊂ Σn, it is clear that cn ≤ cn+1. By (4.21), we have cn < 0. Hence there is a c̄ ≤ 0 such that cn → c̄ ≤ 0.
Moreover, since that all cn are critical values of Ĩλ (see Ref. 34), we claim that c̄ = 0. If c̄ < 0, then by Remark 4.2, Kc̄ = {u ∈
E; Ĩ′λ(u) = 0, Ĩλ(u) = c̄} is compact and Kc̄ ∈ Σ, then γ(Kc̄) = n0 < +∞, and there exists δ > 0 such that γ(Kc̄) = γ(Nδ (Kc̄)) = n0, where
Nδ (Kc̄) = {x ∈ X; ‖x − Kc̄ ‖ ≤ δ }. By the deformation lemma (see Ref. 6, Theorem 3.4), there exist ε > 0 (c̄ + ε < 0) and an odd
homeomorphism η: E→ E such that

η(Ĩc̄+ε
λ \Nδ (Kc̄)) ⊂ Ĩc̄−ε

λ .

Since cn is increasing and converges to c̄, there exists n ∈ N such that cn > c̄ − ε and cn+n0 ≤ c̄. Choose A ∈ Σn+n0 such that
supu∈A Ĩλ(u) < c̄ + ε , that is, A ⊂ Ĩc̄+ε

λ . By the properties of γ, we have

γ(A \Nδ (Kc̄)) ≥ γ(A) − γ(Nδ (Kc̄))
)
≥ n, γ(η(A \Nδ (Kc̄))) ≥ n.

J. Math. Phys. 60, 011506 (2019); doi: 10.1063/1.5019677 60, 011506-16

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Hence, we have η(A \Nδ (Kc̄)) ∈ Σn. Consequently, supu∈η(A\Nδ (Kc̄)) Ĩλ(u) ≥ cn > c̄ − ε , which is a contradiction; hence, cn → 0. �

Proof of Theorem 1.3. By Lemma 4.2 (2), Ĩλ(u) = Iλ(u) if Ĩλ(u) < 0. Then, by Lemmas 4.2–4.4, one can see that all the assumptions
of the new version of symmetric mountain pass lemma proposed by Kajikiya22 are satisfied. Hence, the proof is complete. �
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