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We consider the following class of fractional problems with unbalanced growth:

{
(−Δ)spu + (−Δ)squ + V (ε x)(|u|p−2u + |u|q−2u) = f(u) in RN ,

u ∈ W s,p(RN ) ∩W s,q(RN ), u > 0 in RN ,

where ε > 0 is a small parameter, s ∈ (0, 1), 2 ≤ p < q < N
s

, (−Δ)st (with 
t ∈ {p, q}) is the fractional t-Laplacian operator, V : RN → R is a continuous 
potential satisfying local conditions, and f : R → R is a continuous nonlinearity 
with subcritical growth. Applying suitable variational and topological arguments, 
we obtain multiple positive solutions for ε > 0 sufficiently small as well as related 
concentration properties, in relationship with the set where the potential V attains 
its minimum.

© 2020 Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cet article on considère la classe suivante de problèmes fractionnaires à double 
phase :

{
(−Δ)spu + (−Δ)squ + V (ε x)(|u|p−2u + |u|q−2u) = f(u) dans RN ,

u ∈ W s,p(RN ) ∩W s,q(RN ), u > 0 dans RN ,

où ε > 0 est un petit paramètre, s ∈ (0, 1), 2 ≤ p < q < N
s

, (−Δ)st (avec t ∈ {p, q}) 
est l’opérateur t-fractionnaire de Laplace, V : RN → R est un potentiel continu 
satisfaisant des conditions locales et f : R → R est une non linéarité continue à 
croissance sous-critique. En appliquant des arguments variationnels et topologiques 
appropriés, nous obtenons l’existence de plusieurs solutions positives pour ε > 0
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suffisamment petit ainsi que des propriétés de concentration connexes, en relation 
avec l’ensemble où le potentiel V atteint son minimum.

© 2020 Elsevier Masson SAS. All rights reserved.

1. Introduction and the main result

1.1. Double-phase problems: an overview

The present paper was motivated by recent fundamental progress in the mathematical analysis of various 
nonlinear patterns with unbalanced growth. To the best of our knowledge, the first studies in this field 
are due to Ball [15,16] who was interested in models arising in nonlinear elasticity and their qualitative 
properties (cavitations, discontinuous equilibrium solutions, etc.).

We start by recalling some basic facts concerning double-phase problems. Let Ω ⊂ RN (N ≥ 2) be a 
bounded domain with smooth boundary. Let u : Ω → RN denote the displacement and assume that Du is 
the N ×N matrix associated to the deformation gradient. It follows that the total energy is described by 
an integral of the type

I(u) =
ˆ

Ω

f(x,Du(x))dx, (1)

where the potential f = f(x, ξ) : Ω ×RN×N → R is quasiconvex with respect to the second variable.
Ball [15,16] was interested in potentials given by

f(ξ) = g(ξ) + h(det ξ),

where det ξ denotes the determinant of the N × N matrix ξ. It is assumed that g and h are nonnegative 
convex functions satisfying the growth hypotheses

g(ξ) ≥ c1 |ξ|p and lim
t→+∞

h(t) = +∞,

where c1 > 0 and 1 < p ≤ N . We point out that the assumption p ≤ N was necessary in order to study 
the existence of cavities for equilibrium solutions, that is, minima of the energy functional (1) which are 
discontinuous at one point where a cavity appears. In fact, every function u with finite energy belongs to 
the function space W 1,p(Ω, RN ), hence it is continuous if p > N .

Accordingly, Marcellini [53,54] considered functions f = f(x, ξ) with different growth near the origin and 
at infinity (unbalanced growth), which satisfy the hypothesis

c1 |ξ|p ≤ |f(x, ξ)| ≤ c2 (1 + |ξ|q) for all (x, ξ) ∈ Ω ×R,

where c1, c2 are positive constants and 1 ≤ p ≤ q. Regularity and existence of solutions of elliptic equations 
with (p, q)–growth conditions were studied in [54].

The analysis of non-autonomous energy functionals with energy density changing its ellipticity and growth 
properties according to the point was developed in several remarkable papers by Mingione et al. [17–19,
21,29,30]. These contributions are related to the works of Zhikov [73,74], and they describe the nature of 
certain phenomena arising in nonlinear elasticity. For instance, Zhikov was interested in providing models 
for strongly anisotropic materials in the framework of homogenization. The associated functionals also 
demonstrated their importance in the study of duality theory as well as in the context of the Lavrentiev 
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phenomenon [74]. In relationship with these research directions, Zhikov introduced three different model 
functionals, mainly in the context of the Lavrentiev phenomenon. These models are the following:

M(u) :=
ˆ

Ω

c(x)|Du|2dx, 0 < 1/c(·) ∈ Lt(Ω), t > 1

V(u) :=
ˆ

Ω

|Du|p(x)dx, 1 < p(x) < ∞

Pp,q(u) :=
ˆ

Ω

(|Du|p + a(x)|Du|q) dx, 0 ≤ a(x) ≤ L, 1 < p < q.

(2)

The functional M is characterized by a loss of ellipticity on the subset of Ω where the potential c vanishes. 
This functional has been studied in relationship with nonlinear equations involving Muckenhoupt weights. 
The functional V is still the object of great interest nowadays and several relevant papers have been developed 
about it. We refer to Acerbi and Mingione [1] in the context of gradient estimates and contributions to the 
qualitative analysis of minimizers of nonstandard energy functionals with variable coefficients. The energy 
functional defined by V has been used to build consistent models for strongly anisotropic materials: in a 
material made of different components, the exponent p(x) dictates the geometry of a composite that changes 
its hardening exponent according to the point. The functional Pp,q defined in (2) appears as un upgraded 
version of V. Again, in this case, the modulating potential a(x) controls the geometry of the composite 
made by two differential materials, with corresponding hardening exponents p and q.

Following Marcellini’s terminology, the functionals defined in (2) belong to the realm of energy functionals 
with nonstandard growth conditions of (p, q)–type. These are functionals of the type defined in relation (1), 
where the energy density satisfies

|ξ|p ≤ f(x, ξ) ≤ |ξ|q + 1, 1 ≤ p ≤ q.

An alternative relevant example of a functional having (p, q)–growth is given by

u �→
ˆ

Ω

|Du|p log(1 + |Du|) dx, for p ≥ 1,

which can be seen as a logarithmic perturbation of the classical p-Dirichlet energy.
The main feature of our paper is the study of a class of fractional unbalanced double-phase problems. 

Such patterns are strictly connected with the analysis of nonlinear problems and stationary waves for mod-
els arising in mathematical physics (composite materials, stability of nonlinear damped Kirchhoff systems, 
fractional quantum mechanics in the study of particles on stochastic fields, fractional superdiffusion, frac-
tional white-noise limit, etc.); see, e.g., [64,65]. For various types of double-phase problems, we refer to the 
recent papers [32,55,56,14,62,63,72].

1.2. Statement of the problem and further comments

In this paper we deal with the existence, multiplicity and concentration behavior of positive solutions for 
the following class of fractional p&q-Laplacian problems:

{
(−Δ)spu + (−Δ)squ + V (ε x)(|u|p−2u + |u|q−2u) = f(u) in RN ,

u ∈ W s,p(RN ) ∩W s,q(RN ), u > 0 in RN ,
(3)
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where ε > 0 is a small parameter, s ∈ (0, 1), 2 ≤ p < q < N
s , V : RN → R and f : R → R are continuous 

functions. The operator (−Δ)st , with t ∈ {p, q}, is the so called fractional t-Laplacian operator which, up to 
normalization factors, may be defined for every function u ∈ C∞

c (RN ) as

(−Δ)stu(x) = 2 lim
r→0

ˆ

RN\Br(x)

|u(x) − u(y)|t−2(u(x) − u(y))
|x− y|N+st

dy (x ∈ RN ).

Problems of this type appear in the case of two different materials that involve power hardening exponents 
p and q. In this case, the fractional operator (−Δ)st (with t ∈ {p, q}) described the geometry of a composite 
of two materials.

We point out that in these last years, a considerable attention has been devoted to the study of nonlocal 
problems driven by fractional operators, both for their interesting theoretical structure and in view of 
concrete applications, such as, for instance, thin obstacle problem, finance, phase transitions, optimization, 
anomalous diffusion, conservation laws, image processing, and many others. For more details, we refer the 
interested reader to [37,58] for an elementary introduction on this subject.

In the local case s = 1, (3) becomes a p&q-Laplacian equation of the form:

−Δpu− Δqu + |u|p−2u + |u|q−2u = f(x, u) in RN .

The above class of problems comes from a general reaction-diffusion system:

ut = div(D(u)∇u) + c(x, u) and D(u) = |∇u|p−2 + |∇u|q−2,

which has a wide spectrum of applications in physics and related sciences such as biophysics, plasma 
physics, solid state physics, and chemical reaction design. In such applications, u represents a concentration, 
div(D(u)∇u) is the diffusion with diffusion coefficient D(u), and the reaction term c(x, u) relates to source 
and loss processes. Usually, in chemical and biological applications, the reaction term c(x, u) is a polynomial 
of u with variable coefficients; see [27].

Several results for p&q-Laplacian problems set in bounded domains and in the whole of RN can be found 
in [2,20,24,41,42,46,47,52,60] and the references therein.

On the other hand, in the nonlocal framework, only few recent works deal with fractional p&q-Laplacian 
problems. For instance, in [26] the authors studied existence, nonexistence and multiplicity for a nonlocal 
p&q-subcritical problem. The first author [11] proved an existence result for a critical fractional p&q-problem 
via mountain pass theorem. The existence of infinitely many nontrivial solutions for a class of fractional 
p&q-equations involving concave-critical nonlinearities in bounded domains has been investigated in [23]. In 
[33] the authors establish a Hölder regularity result for nonlocal double phase equations. We also mention 
[3,12,45] for other interesting results.

We stress that, when p = q = 2, equation (3) boils down a fractional Schrödinger equation (see [51]) of 
the type

ε2s(−Δ)su + V (x)u = f(x, u) in RN , (4)

which has been extensively considered by several authors; see [44,40,57,67]. In particular way, a great 
attention has been devoted to the study of solutions of (4) which concentrate around critical points of the 
potential V as ε → 0; see [6,9,10,39,31].

When p = q �= 2 and ε = 1 in (3), then we obtain a class of fractional p-Laplacian equations:

(−Δ)spu + V (x)|u|p−2u = f(x, u) in RN ,
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for which several existence and multiplicity results have been obtained in this last decade; see for instance 
[8,13,34,61,65,71] and the references therein, and [36,48] for some interesting regularity results. From of 
the mathematical point of view, the fractional p-Laplacian has a great attractive since two phenomena are 
present in it: the nonlinearity of the operator and its nonlocal character. Indeed, some standard tools used 
to investigate the linear case p = 2 seem not to be trivially adaptable in the case p �= 2 due to the lack of 
Hilbertian structure of W s,p(RN ) for p �= 2.

1.3. Multiplicity and concentration of solutions

Particularly motivated by [6,9], in this paper we are interested in the multiplicity and concentration 
behavior of positive solutions to (3).

Next, we introduce the assumptions on the potential V and the nonlinearity f . Along the paper, we 
assume that V ∈ C0(RN , R) satisfies the following del Pino-Felmer type conditions [35]:

(V1) there exists V0 > 0 such that V0 := infx∈RN V (x),
(V2) there exists an open bounded set Λ ⊂ RN such that

V0 < min
∂Λ

V and M := {x ∈ Λ : V (x) = V0} �= ∅,

while f ∈ C0(R, R) fulfills the following hypotheses:

(f1) lim
|t|→0

|f(t)|
|t|p−1 = 0;

(f2) there exists ν ∈ (q, q∗s ) such that lim
|t|→∞

|f(t)|
|t|ν−1 = 0, where q∗s := Nq

N−sq ;

(f3) there exists ϑ ∈ (q, q∗s ) such that 0 < ϑF (t) := ϑ

tˆ

0

f(τ) dτ ≤ tf(t) for all t > 0;

(f4) the map t �→ f(t)
tq−1 is increasing for t > 0.

Due to the fact that we look for positive solutions to (3), we assume that f(t) = 0 for t ≤ 0.
To be more precise, in [35] the authors assumed (V1), and

inf
Λ

V < min
∂Λ

V (5)

instead of (V2), and they showed that the following nonlinear Schrödinger equation

− ε2 Δu + V (x)u = f(u) in RN , (6)

admits a single-peak solution which concentrates around the minimum points of V in Λ. Their result can 
be seen as the localized version of the result of Rabinowitz [66] and Wang [69], who proved the existence of 
positive solutions to (6) for small ε > 0, by assuming the following global condition

lim inf
|x|→∞

V (x) > V0. (7)

The relevance of (5) is that no restriction on the global behavior of V is required other that (V1), and, in 
particular, V is not required to be bounded or to belong to a Kato class.
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Later, Cingolani and Lazzo [28], assuming (7), proved that the multiplicity of solutions to (6) is related 
to topology richness of the set K := {x ∈ RN : V (x) = V0}. Subsequently, motivated by [28,35], in [4] the 
authors assumed (V1)–(V2) and obtained multiple positive solutions for a quasilinear p-Laplacian problem.

In this paper, in order to get a multiplicity result for (3), we assume (V1)–(V2) as in [4]. Since we aim to 
relate the number of solutions of (3) with the topology of the set M of minima of the potential, it is worth 
recalling that if Y is a given closed set of a topological space X, we denote by catX(Y ) the Ljusternik-
Schnirelmann category of Y in X, that is the least number of closed and contractible sets in X which 
cover Y ; see [70] for more details.

Therefore, our main theorem can be stated as follows:

Theorem 1.1. Assume that (V1)–(V2) and (f1)–(f4) hold true. Then, for any δ > 0 such that

Mδ := {x ∈ RN : dist(x,M) ≤ δ} ⊂ Λ,

there exists εδ > 0 such that, for any ε ∈ (0, εδ), problem (3) has at least catMδ
(M) positive solutions. 

Moreover, if uε denotes one of these solutions and xε ∈ RN is a global maximum point of uε, then

lim
ε→0

V (ε xε) = V0.

The proof of Theorem 1.1 is obtained by applying suitable variational and topological arguments. Since 
no information on the behavior of V at infinity are available, we adapt the penalization method in [35], which 
consists in making a suitable modification on f , solving an auxiliary problem and then check that, for ε > 0
small enough, the solutions of the new problem are indeed solutions of the original one. To obtain multiple 
solutions of the modified problem, we make use of some well-known topological techniques proposed in [22], 
by means of accurate comparisons between the category of some sublevel sets of the modified functional and 
the category of the set M . Anyway, due to the fact that the nonlinearity is only continuous, one can not 
apply standard C1-Nehari manifold arguments due to the lack of differentiability of the associated Nehari 
manifold. This difficulty will be overcome by using some abstract critical point results obtained in [68]. 
Compared with the local case s = 1, we point out that our result improves Theorem 1.1 in [2] in which the 
authors investigated the multiplicity of positive solutions for a very general class of quasilinear problems 
with potentials satisfying (V1)–(V2) and involving C1-subcritical nonlinearities. Indeed, we can not repeat 
the same arguments developed in [2] but we take inspiration by some ideas developed in [43,68] (see also 
[9,13]). However, due to the combination of two nonhomogeneous fractional involved operators, our analysis 
is rather delicate and more fine estimates will be needed to achieve our result. Moreover, in order to show 
that the solutions of the modified problem are also solutions to (3), we can not adapt in our setting the 
arguments in [2,5,46], due to the nonlocal character of fractional p&q-Laplacian operators, and also fails 
the strategy used in [6] to study (4) based on some useful estimates coming from the good properties of the 
Bessel kernel established in [40].

In our situation, we develop a suitable Moser iteration scheme [59] to deduce L∞-estimates and we 
establish a Hölder regularity result which extends in the fractional p&q-case the interior regularity result 
proved in [48] (see also [36]) for the fractional p-Laplacian. Indeed, the restriction p ≥ 2 is related to the 
use of this regularity result because all variational and topological arguments used to obtain the existence 
and multiplicity of solutions for the modified problem hold for all 1 < p < q < N

s . As far as we know, the 
multiplicity of concentrating solutions to the fractional p&q-Laplacian problem obtained in this paper has 
not been established in the literature. Moreover, we suspect that our results can be extended to a more 
general class of anisotropic non-local problems. They should be the local analog of those that in the local 
case are given by functionals of the type
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w �→
ˆ

Ω

ϕ1(|Dw|) + ϕ2(|Dw|) dx,

where the conditions satisfied by ϕi(t) are typically given by

1 < i ≤ ϕ′
i(t)t
ϕi(t)

≤ s. (8)

In the present case it is

ϕ1(t) = tp ϕ2(t) = tq.

The corresponding nonlocal version can be found emulating the nonlinear operators considered in [50]. In 
this situation, conditions (f1)–(f4) on the nonlinearity f have to be modified in terms of the numbers i and 
s appearing in (8); see for instance [2]. Further classes of anisotropic operators that can be considered are 
described in [21].

The structure of the paper is the following. In Section 2, we introduce some notations and we prove some 
regularity results for (−Δ)sp +(−Δ)sq. Next, we consider the modified problem and we prove a first existence 
result for it. In Section 3 we study the limiting problem associated with (3) and we introduce some tools 
needed to obtain a multiplicity result for the auxiliary problem. The last section is devoted to the proof of 
Theorem 1.1.

2. Preliminaries

2.1. Notations and useful results

Let s ∈ (0, 1) and 1 < p < ∞. Let us indicate by W s,p(RN ) the set of functions u ∈ Lp(RN ) such that

[u]ps,p :=
¨

R2N

|u(x) − u(y)|p
|x− y|N+sp

dxdy < ∞

endowed with the norm

‖u‖W s,p(RN ) := (|u|pp + [u]ps,p)
1
p .

For u, v ∈ W s,p(RN ), we put

〈u, v〉s,p :=
¨

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x− y|N+sp

dxdy.

When N > sp, we also know that, for any t ∈ [p, p∗s], there exists C > 0 such that

|u|t ≤ C‖u‖W s,p(RN ) ∀u ∈ W s,p(RN ), (9)

and that the embedding W s,p(RN ) ⊂ Lt(K) is compact for all t ∈ [1, p∗s] and any compact K ⊂ RN . In 
order to deal with fractional p&q-Laplacian problems, we consider the space

W := W s,p(RN ) ∩W s,q(RN )

endowed with the norm



108 V. Ambrosio, V.D. Rădulescu / J. Math. Pures Appl. 142 (2020) 101–145
‖u‖W := ‖u‖W s,p(RN ) + ‖u‖W s,q(RN ).

Since W s,r(RN ), with 1 < r < ∞, is a separable reflexive Banach space, we deduce that W is a separable 
reflexive Banach space.

In what follows, we establish some useful regularity results for fractional p&q-Laplace problems. To do 
this we follow the approach in [48] used to study the regularity for the fractional p-Laplacian.

From now on, we will assume that 2 ≤ p < q < N
s . We define

W s,t(Ω) := {u ∈ Lt(Ω) : ‖u‖W s,t(Ω) < ∞},

where

‖u‖tW s,t(Ω) :=
¨

Ω×Ω

|u(x) − u(y)|p
|x− y|N+sp

dxdy +
ˆ

Ω

|u|t dx,

and

W s,t
0 (Ω) := {u ∈ W s,t(Ω) : u = 0 in Ωc}.

If Ω ⊂ RN is bounded we set

W̃ s,t(Ω) :=

⎧⎨⎩u ∈ Lt
loc(RN ) : ∃U � Ω : ‖u‖W s,t(Ω) +

ˆ

RN

|u(x)|t−1

(1 + |x|)N+st
dx < ∞

⎫⎬⎭ ,

and if Ω is unbounded, we set

W̃ s,t
loc(Ω) := {u ∈ Lt

loc(RN ) : u ∈ W̃ s,t(Ω′) for any bounded Ω′ ⊆ Ω}.

Let u : RN → R be any measurable function. We recall that the non-local tail centered at x ∈ RN with 
radius R > 0 is defined (see [36]) as:

Tailt(u;x;R) :=

⎛⎜⎝Rst

ˆ

Bc
R(x)

|u(y)|t−1

|x− y|N+st
dy

⎞⎟⎠
1

t−1

.

When x0 = 0, we write Tailt(u; R) := Tailt(u; 0; R).
Along this section, in order to give advantages in readability, we use the following notation: for all a ∈ R

and t > 0, we set at := |a|t−1a.
Now we give the following definitions:

Definition 2.1. Let Ω be bounded, u ∈ W̃ s,p(Ω) ∩ W̃ s,q(Ω) and f ∈ (W s,p
0 (Ω) ∩W s,q

0 (Ω))∗. We say that u is 
a weak solution of (−Δ)spu + (−Δ)squ = f in Ω if, for all ϕ ∈ W s,p

0 (Ω) ∩W s,q
0 (Ω),

¨

R2N

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))
|x− y|N+sp

dxdy +
¨

R2N

(u(x) − u(y))q−1(ϕ(x) − ϕ(y))
|x− y|N+sq

dxdy = 〈f, ϕ〉

If Ω is unbounded, we say that u ∈ W̃ s,p
loc (Ω) ∩ W̃ s,q

loc (Ω) solves (−Δ)spu + (−Δ)squ = f in Ω if it does so in 
any bounded open set Ω′ ⊆ Ω.
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The inequality (−Δ)spu + (−Δ)squ ≤ f weakly in f will mean that

¨

R2N

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))
|x− y|N+sp

dxdy +
¨

R2N

(u(x) − u(y))q−1(ϕ(x) − ϕ(y))
|x− y|N+sq

dxdy ≤ 〈f, ϕ〉

for all ϕ ∈ W s,p
0 (Ω) ∩W s,q

0 (Ω), ϕ ≥ 0, and similarly for (−Δ)spu + (−Δ)squ ≥ f . Moreover, given K > 0 and 
Ω bounded, we say that |(−Δ)spu + (−Δ)squ| ≥ K weakly in Ω, if −K ≤ (−Δ)spu + (−Δ)squ ≤ K weakly in 
Ω. Arguing as in the proof of Lemma 2.3 in [48], we can prove that the above definitions make sense.

The next result can be obtained following the same lines of the proof of Lemma 2.8 in [48].

Lemma 2.1. Suppose u ∈ W̃ s,p
loc (Ω) ∩W̃ s,q

loc (Ω) solves (−Δ)spu +(−Δ)squ = f weakly in Ω, for some f ∈ L1
loc(Ω). 

Let v ∈ L1
loc(Ω) be such that

dist(supp(v),Ω) > 0,
ˆ

Ω

|v(x)|t−1

(1 + |x|N+st) dx < ∞ ∀t ∈ {p, q},

and define for a.e. Lebesgue point x ∈ Ω of u

ht(x) = 2
ˆ

supp(v)

(u(x) − u(y) − v(y))t−1 − (u(x) − u(y))t−1

|x− y|N+st
dy ∀t ∈ {p, q}.

Then, u + v ∈ W̃ s,p
loc (Ω) ∩ W̃ s,q

loc (Ω) and it solves (−Δ)sp(u + v) + (−Δ)sq(u + v) = f + hp + hq weakly in Ω.

We also have the following comparison principle whose proof is similar to the one in Proposition 2.10 in 
[48].

Lemma 2.2. Let Ω be bounded, u, v ∈ W̃ s,p(Ω) ∩ W̃ s,q(Ω) such that u ≤ v in Ωc and, for all ϕ ∈ W s,p
0 (Ω) ∩

W s,q
0 (Ω), ϕ ≥ 0 in Ω,

¨

R2N

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))
|x− y|N+sp

dxdy +
¨

R2N

(u(x) − u(y))q−1(ϕ(x) − ϕ(y))
|x− y|N+sq

dxdy

≤
¨

R2N

(v(x) − v(y))p−1(ϕ(x) − ϕ(y))
|x− y|N+sp

dxdy +
¨

R2N

(v(x) − v(y))q−1(ϕ(x) − ϕ(y))
|x− y|N+sq

dxdy.

Then u ≤ v in Ω.

Next we prove a weak Harnack-type inequality for non-negative supersolutions.

Theorem 2.1. There exists universal σ ∈ (0, 1), C̃ > 0 with the following property: if u ∈ W̃ s,p(BR/3) ∩
W̃ s,q(BR/3) satisfies weakly

{
(−Δ)spu + (−Δ)squ ≥ −K in BR/3,

u ≥ 0 in RN ,

for some K ≥ 0, then
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inf
BR/4

u ≥ σ

⎛⎜⎝ −
ˆ

BR\BR/2

up−1 dx

⎞⎟⎠
1

p−1

− C̃(KRsq)
1

q−1 .

Proof. The proof follows the same lines of the proof of Theorem 5.2 in [48]. Note that by Lemma 2.1 and 
the following elementary inequality

at − (a− b)t ≥ 21−tbt ∀a ∈ R, b ≥ 0, t ≥ 1,

we have weakly in BR/3

(−Δ)spw + (−Δ)sqw = (−Δ)sp(σLϕR) + (−Δ)sq(σLϕR) + hp + hq

≤ C1(σL)p−1

Rsp
+ C1(σL)q−1

Rsq
− C2L

p−1

Rsp
− C3L

q−1

Rsq

≤ −C2L
p−1

2Rsp
− C3L

q−1

2Rsq

≤ −C3L
q−1

2Rsq
=: −C̃−(q−1)L

q−1

Rsq
,

provided that

σ < min
{

1,
(

C2

2C1

) 1
p−1

,

(
C3

2C1

) 1
q−1

}
.

Here, L :=
(
−́BR\BR/2

up−1 dx
) 1

p−1 and w := σLϕR + χBR\BR/2u, where ϕR is as in Theorem 5.2 in [48]. 

Finally, one uses Lemma 2.2 instead of Proposition 2.10 in [48] to study the case L > C̃(KRsq)
1

q−1 . �
As in [48], we extend Theorem 2.1 to supersolutions which are only non-negative in a ball. To do this, 

we introduce a tail term (see [36]).

Lemma 2.3. There exist σ ∈ (0, 1), C̃ > 0, and for all ε > 0 a constant Cε > 0 with the following property: 
if u ∈ W̃ s,p(BR/3) ∩ W̃ s,q(BR/3) ∩ L∞(RN ) satisfies weakly

{
(−Δ)spu + (−Δ)squ ≥ −K in BR/3,

u ≥ 0 in BR,

for some K ≥ 0, then there exists M > 0 such that

inf
BR/4

u ≥ σ

⎛⎜⎝ −
ˆ

BR\BR/2

up−1 dx

⎞⎟⎠
1

p−1

− C̃(KRsq)
1

q−1 − CεTailq(u−;R) − ε sup
BR

u−R
(q−p)s
q−1 M(ε+Cε).

Proof. The proof follows the same lines of the proof of Lemma 5.3 in [48]. For this reason, we only point 
out the differences. Applying Lemma 2.1 to functions u and v = u− so that u + v = u+ and Ω = BR/3, we 
have weakly in BR/3
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(−Δ)spu+ + (−Δ)squ+ = (−Δ)spu + (−Δ)squ + hp + hq

= −K + 2
ˆ

Bc
R/3

(u(x) − u(y) − u−(y))p−1 − (u(x) − u(y))p−1

|x− y|N+sp
dy

+ 2
ˆ

Bc
R/3

(u(x) − u(y) − u−(y))q−1 − (u(x) − u(y))q−1

|x− y|N+sq
dy

≥ −K + 2
ˆ

{u<0}

(u(x))p−1 − (u(x) − u(y))p−1

|x− y|N+sp
dy

+ 2
ˆ

{u<0}

(u(x))q−1 − (u(x) − u(y))q−1

|x− y|N+sq
dy

≥ −K + C

ˆ

{u<0}

(u(x))p−1 − (u(x) − u(y))p−1

|y|N+sp
dy

+ C

ˆ

{u<0}

(u(x))q−1 − (u(x) − u(y))q−1

|y|N+sq
dy,

where in the last inequality we used that |x − y| ≥ |y| − |x| ≥ 2
3 |y| for all x ∈ BR/3 and y ∈ {u < 0} ⊂ Bc

R. 
Now, using

(a + b)t − at ≤ θat + Cθb
t ∀a, b ≥ 0, t ≥ 1, Cθ → ∞ as θ → 0,

we can see that for all θ > 0 there exists Cθ > 0 such that weakly in BR/3

(−Δ)spu+ + (−Δ)squ+ ≥ −K − θ(sup
BR

u)p−1
ˆ

Bc
R

dy

|y|N+sp
− Cθ

Rsp
Tailp(u−;R)p−1

− θ(sup
BR

u)q−1
ˆ

Bc
R

dy

|y|N+sq
− Cθ

Rsq
Tailq(u−;R)q−1

≥ −K − Cθ

Rsp
(sup
BR

u)p−1 − Cθ

Rsp
Tailp(u−;R)p−1

− Cθ

Rsq
(sup
BR

u)q−1 − Cθ

Rsq
Tailq(u−;R)q−1 =: −K̃.

Hence, applying Theorem 2.1 to u+ we have

inf
BR/4

u ≥ σ

⎛⎜⎝ ˆ

BR\BR/2

up−1 dx

⎞⎟⎠
1

p−1

− C̃(K̃Rsq)
1

q−1 . (10)

On the other hand, recalling that ‖u‖L∞(RN ) ≤ C0, it follows that

(supu)
p−1
q−1 ≤ C

p−1
q−1
0 and (Tailp(u−;R))

p−1
q−1 ≤

(
ωN−1

) 1
q−1

C
p−1
q−1
0 .
BR
sp
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Take M = max
{

1,
(

ωN−1
sp

) 1
q−1

}
C

p−1
q−1
0 . Therefore, using 0 < 1

q−1 ≤ 1 (q > p ≥ 2) and that

(a + b)t ≤ at + bt ∀a, b ≥ 0, 0 < t ≤ 1,

we obtain

(K̃Rsq)
1

q−1 ≤ (KRsq)
1

q−1 + (Cθ)
1

q−1 (sup
BR

u) + C
1

q−1
θ Tailq(u−;R)

+ (CθRs(q−p))
1

q−1 (sup
BR

u)
p−1
q−1 + (CθR

s(q−p))
1

q−1 (Tailp(u−;R))
p−1
q−1

≤ (KRsq)
1

q−1 + (Cθ)
1

q−1 (sup
BR

u) + C
1

q−1
θ Tailq(u−;R)

+ R
(q−p)s
q−1 M((Cθ)

1
q−1 + C

1
q−1
θ ).

(11)

Then, for any ε > 0 and θ > 0 such that C̃(Cθ)
1

q−1 < ε, it follows from (10) and (11) that

inf
BR/4

u ≥ σ

⎛⎜⎝ ˆ

BR\BR/2

up−1 dx

⎞⎟⎠
1

p−1

− C̃(KRsq)
1

q−1

− CεTailq(u−;R) − ε sup
BR

u−R
(q−p)s
q−1 M(ε+Cε). �

Remark 1. Note that differently from Lemma 5.3 in [48], the presence of fractional p&q-Laplacians forces to 
require that u ∈ L∞(RN ) in order to estimate the “additional terms” (supBR

u)
p−1
q−1 and (Tailp(u−; R))

p−1
q−1 .

In view of the above results, we can deduce an estimate of the oscillation of a bounded function u such 
that (−Δ)spu + (−Δ)squ is locally bounded. For R > 0 and x0 ∈ RN , we define

Q(u;x0;R) := ‖u‖L∞(BR(x0)) + Tailq(u;x0;R)

and if x0 = 0 we use the notation Q(u; R) := Q(u; 0; R). In what follows, for a universal constant, we mean 
a constant C = C(N, s, p, q), that depends only on N, s, p, q.

Theorem 2.2. There exist universal α ∈ (0, 1), C > 0 with the following property: if u ∈ W̃ s,p(BR0) ∩
W̃ s,q(BR0) ∩ L∞(RN ) satisfies |(−Δ)spu + (−Δ)squ| ≤ K weakly in BR0 for some R0 > 0, then for all 
r ∈ (0, R0),

oscBr
u ≤ C

[
(KRsq

0 ) 1
q − 1 + Q(u;R0) + R

(q−p)s
q−1

0

]
rα

Rα
0
.

Proof. We argue as in the proof of Theorem 5.4 in [48]. For any j ≥ 0, we denote by Rj := R0
4j , Bj := BRj

. 
As in [48], we verify that there exists a universal α ∈ (0, 1) and a number λ > 0 (depending on all the data), 
a nondecreasing sequence {mj}j∈N , a nonincreasing sequence {Mj}j∈N such that

mj ≤ inf
Bj

u ≤ sup
Bj

u ≤ Mj , Mj −mj = λRα
j .

Note that, Step 0 (that is j = 0) is similar to the one in [48]. Concerning Inductive step in [48], we proceed 
as follows. Fix σ ∈ (0, 1). Then, using Lemma 2.3, it follows that formula (5.5) in [48] becomes
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σ(Mj −mj) ≤ inf
Bj+1

(Mj − u) + inf
Bj+1

(u−mj) + 2C̃(KRsq
j )

1
q−1

+ Cε[Tailq((Mj − u)−;Rj) + Tailq((u−mj)−;Rj)]

+ ε[sup
Bj

(Mj − u) + sup
Bj

(u−mj)] + 2M(Cε + ε)R
s(q−p)
q−1

j .

Take ε = σ
4 and set C := max{2C̃, Cε, 2M(Cε + ε)}. Then, formula (5.6) in [48] becomes

oscBj+1u ≤
(
1 − σ

2

)
(Mj −mj)

+ C[(KRsq
j )

1
q−1 + Tailq((Mj − u)−;Rj) + Tailq((u−mj)−;Rj) + R

s(q−p)
q−1

j ].

Choosing α < s(q−p)
q−1 < sq

q−1 , as in [48], we can see that

Tailq((u−mj)−;Rj) ≤ C

[
λS(α)

1
q−1 + Q(u;R0)

Rα
0

]
Rα

j

where S(α) :=
∑∞

h=1
(4αh−1)q−1

4sqh → 0 as α → 0+. A similar estimate holds for Tailq((Mj − u)−; Rj). 
Consequently, noting that Rj = R0/4j and Rj+1 = Rj/4, we get

oscBj+1u ≤
(
1 − σ

2

)
λRα

j + C

[
(KRsq

j )
1

q−1 + λS(α)
1

q−1Rα
j + Q(u;R0)

Rα
0

Rα
j + R

s(q−p)
q−1

j

]
≤ 4α

[(
1 − σ

2

)
+ CS(α)

1
q−1

]
λRα

j+1 + 4αC
[
R

sq
q−1−α

0 K
1

q−1 + Q(u;R0)
Rα

0
+ R

s(q−p)
q−1 −α

0

]
Rα

j+1.

Choose α ∈ (0, s(q−p)
q−1 ) such that

4α
[(

1 − σ

2

)
+ CS(α)

1
q−1

]
≤ 1 − σ

4

and we set

λ := 4α+1

σ
C

[
R

sq
q−1−α

0 K
1

q−1 + Q(u;R0)
Rα

0
+ R

s(q−p)
q−1 −α

0

]
, (12)

so that

oscBj+1u ≤ λRα
j+1.

Then, we may pick mj+1 and Mj+1 such that

mj ≤ mj+1 ≤ inf
Bj+1

u ≤ sup
Bj+1

u ≤ Mj+1 ≤ Mj , Mj+1 −mj+1 = λRα
j+1.

Now, fix r ∈ (0, R0) and find an integer j ≥ 0 such that Rj+1 ≤ r < Rj , thus Rj ≤ 4r. Hence, by the above 
claim and (12) we can deduce that

oscBr
u ≤ oscBj

u ≤ λRα
j ≤ C

[
R

sq
q−1
0 K

1
q−1 + Q(u;R0) + R

s(q−p)
q−1

0

]
rα

α . �

R0
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In the light of Theorem 2.2, we can argue as in the proof of Corollary 5.5 in [48] to obtain the following 
result:

Corollary 2.1. There exist universal α ∈ (0, 1), C > 0 with the following property: if u ∈ W̃ s,p(B2R0(x0)) ∩
W̃ s,q(B2R0(x0)) ∩ L∞(RN ) satisfies |(−Δ)spu + (−Δ)squ| ≤ K weakly in B2R0(x0),

[u]Cα(BR0 (x0)) ≤ C

[
(KRsq

0 )
1

q−1 + Q(u;x0; 2R0) + R
(q−p)s
q−1

0

]
R−α

0 ,

where [u]Cα(Ω) = supx,y∈Ω,x �=y
|u(x)−u(y)|

|x−y|α .

2.2. The modified problem

Now, we adapt the penalization method introduced in [35] to study our problem. First of all, without 
loss of generality, we will assume that

0 ∈ Λ and V (0) = V0.

We note that f(t)
tp−1+tq−1 is increasing for t > 0. Indeed,

f(t)
tp−1 + tq−1 = f(t)

tq−1
tq−1

tp−1 + tq−1 ,

f(t)
tq−1 is increasing for t > 0 by (f4), and tq−1

tp−1+tq−1 is increasing for t > 0 since q > p.
Let

K >
q

p

(
ϑ− p

ϑ− q

)
and a > 0 be such that

f(a) = V0

K
(ap−1 + aq−1)

and we define

f̃(t) :=

⎧⎨⎩ f(t) if t ≤ a,
V0

K
(tp−1 + tq−1) if t > a,

and

g(x, t) :=
{

χΛ(x)f(t) + (1 − χΛ(x))f̃(t) if t > 0,
0 if t ≤ 0.

It is easy to check that g satisfies the following properties:

(g1) lim
t→0+

g(x, t)
tp−1 = 0 uniformly with respect to x ∈ RN ,

(g2) g(x, t) ≤ f(t) for all x ∈ RN , t > 0,
(g3) (i) 0 < ϑG(x, t) < g(x, t)t for all x ∈ Λ and t > 0,

(ii) 0 ≤ pG(x, t) < g(x, t)t ≤ V0 (tp + tq) for all x ∈ Λc and t > 0,
K
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(g4) for each x ∈ Λ the function t �→ g(x, t)
(tp−1 + tq−1) is increasing in (0, ∞), and for each x ∈ Λc the function 

t �→ g(x, t)
(tp−1 + tq−1) is increasing in (0, a).

We stress that if uε is a solution to

{
(−Δ)spu + (−Δ)squ + V (ε x)(|u|p−2u + |u|q−2u) = g(ε x, u) in RN ,

u ∈ W s,p(RN ) ∩W s,q(RN ), u > 0 in RN ,
(13)

having the property that uε(x) ≤ a for all x ∈ Λc
ε, where Λε := {x ∈ RN : ε x ∈ Λ}, then g(ε x, uε) = f(uε), 

and thus uε is also a solution to (3).
For any ε > 0, we define the space

Xε :=

⎧⎨⎩u ∈ W :
ˆ

RN

V (ε x) (|u|p + |u|q) dx < ∞

⎫⎬⎭
endowed with the norm

‖u‖Xε
:= ‖u‖Vε,p + ‖u‖Vε,q,

where

‖u‖Vε,t :=

⎛⎝[u]ts,t +
ˆ

RN

V (ε x)|u|t dx

⎞⎠
1
t

for all t > 1.

In order to study (13), we look for critical points of the functional Iε : Xε → R defined as

Iε(u) := 1
p
‖u‖pVε,p

+ 1
q
‖u‖qVε,q

−
ˆ

RN

G(ε x, u) dx.

It is standard to verify that Iε ∈ C1(Xε, R) and its differential is given by

〈I ′
ε(u), ϕ〉 = 〈u, ϕ〉s,p +

ˆ

RN

V (ε x)|u|p−2uϕdx + 〈u, ϕ〉s,q

+
ˆ

RN

V (ε x)|u|q−2uϕdx−
ˆ

RN

g(ε x, u)ϕdx

for any u, ϕ ∈ Xε.
Next, we show that Iε possesses a mountain pass geometry [7].

Lemma 2.4. The functional Iε satisfies the following conditions:

(i) there exist α, ρ > 0 such that Iε(u) ≥ α for ‖u‖Xε
= ρ;

(ii) there exists e ∈ Xε with ‖e‖Xε
> ρ and Iε(e) < 0.
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Proof. (i) By (g1), (g2), (f1) and (f2), for any given ζ > 0 there exists Cζ > 0 such that

|g(x, t)| ≤ ζ|t|p−1 + Cζ |t|ν−1 ∀(x, t) ∈ RN ×R.

Take ζ ∈ (0, V0). Then we have

Iε(u) ≥ 1
p
‖u‖pVε,p

+ 1
q
‖u‖qVε,q

− ζ

p
|u|pp −

Cζ

ν
|u|νν

≥ C1‖u‖pVε,p
+ 1

q
‖u‖qVε,q

− Cζ

ν
|u|νν .

Choosing ‖u‖Xε
= ρ ∈ (0, 1) and using 1 < p < q, we have ‖u‖Vε,p < 1 and then ‖u‖pVε,p

≥ ‖u‖qVε,p
. This 

fact combined with

at + bt ≥ Ct(a + b)t ∀a, b ≥ 0 ∀t > 1,

and Sobolev embeddings yield

Iε(u) ≥ C2‖u‖qXε
− Cζ

ν
|u|νν ≥ C2‖u‖qXε

− C3‖u‖νXε
.

Since ν > q, we can find α > 0 such that Iε(u) ≥ α for ‖u‖Xε
= ρ.

(ii) Take u ∈ C∞
c (RN ) such that u ≥ 0, u �≡ 0 and supp(u) ⊂ Λε. Using (f3) we know that

F (t) ≥ Atϑ −B ∀t > 0.

Hence,

Iε(tu) ≤ tp

p
‖u‖pε,p + tq

q
‖u‖qε,q −Atϑ

ˆ

Λε

uϑ dx + B1 → −∞ as t → ∞

where we used ϑ > q > p. �
By Lemma 2.4, we can define the minimax level

cε := inf
γ∈Γε

max
t∈[0,1]

Iε(γ(t)) where Γε :=
{
γ ∈ C0([0, 1],Xε) : γ(0) = 0, Iε(γ(1)) < 0

}
.

Next, we show that the modified functional satisfies the Palais-Smale condition.

Lemma 2.5. Iε verifies the Palais-Smale condition at any level c ∈ R.

Proof. Let {un}n∈N ⊂ Xε be a (PS)c sequence at the level c, that is

Iε(un) = c + on(1) and I ′
ε(un) = on(1).

Let us prove that {un}n∈N is bounded in Xε. Using (g3) and q > p we can see that

C0(1 + ‖un‖Xε
) ≥ Iε(un) − 1

ϑ
〈I ′

ε(un), un〉

=
(

1
p
− 1

ϑ

)
‖un‖pVε,p

+
(

1
q
− 1

ϑ

)
‖un‖qVε,q

+ 1
ϑ

ˆ
c

[g(ε x, un)un − ϑG(ε x, un)] dx

Λε
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+ 1
ϑ

ˆ

Λε

[g(ε x, un)un − ϑG(ε x, un)] dx

≥
(

1
q
− 1

ϑ

)
[‖un‖pVε,p

+ ‖un‖qVε,q
] −

(
1
p
− 1

ϑ

)
1
K

ˆ

Λc
ε

V (ε x)(|un|p + |un|q) dx

≥
[(

1
q
− 1

ϑ

)
−

(
1
p
− 1

ϑ

)
1
K

]
(‖un‖pVε,p

+ ‖un‖qVε,q
) =: C̃(‖un‖pVε,p

+ ‖un‖qVε,q
)

where C̃ > 0 because of K >
(

ϑ−p
ϑ−q

)
q
p .

Now, assume by contradiction that ‖un‖Xε
→ ∞. Then we have the following cases:

Case 1. ‖un‖Vε,p → ∞ and ‖un‖Vε,q → ∞.

Then, for n large, we have ‖un‖q−p
Vε,q

≥ 1, that is ‖un‖qVε,q
≥ ‖un‖pVε,q

which implies that

C0(1 + ‖un‖Xε
) ≥ C̃(‖un‖pVε,p

+ ‖un‖pVε,q
) ≥ C1(‖un‖Vε,p + ‖un‖Vε,q)p = C1‖un‖pXε

and this gives a contradiction.

Case 2. ‖un‖Vε,p → ∞ and ‖un‖Vε,q is bounded.

Therefore,

C0(1 + ‖un‖Vε,p + ‖un‖Vε,q) = C0(1 + ‖un‖Xε
) ≥ C̃‖un‖pVε,p

and thus

C0

(
1

‖un‖pVε,p

+ 1
‖un‖p−1

Vε,p

+ ‖un‖Vε,q

‖un‖pVε,p

)
≥ C̃.

Since p > 1 and passing to the limit as n → ∞ we deduce that 0 < C̃ ≤ 0 and this is a contradiction.

Case 3. ‖un‖Vε,q → ∞ and ‖un‖Vε,p is bounded.

We can proceed as in Case 2.
Consequently, {un}n∈N is bounded in Xε, and we may assume that un ⇀ u in Xε and un → u in Lr

loc(RN )
for all r ∈ [1, q∗s ). Next, we show that the weak limit u is a critical point of Iε.

Consider the sequence

hn(x, y) := |un(x) − un(y)|p−2(un(x) − un(y))

|x− y|
N+sp

p′
,

and let

h(x, y) := |u(x) − u(y)|p−2(u(x) − u(y))
|x− y|

N+sp
p′

,

where p′ = p
p−1 . It is easy to check that {hn}n∈N is a bounded sequence in Lp′(R2N ) with hn → h a.e. in 

R2N . Since Lp′(R2N ) is a reflexive space, there exists a subsequence, still denoted by {hn}n∈N , such that 
hn ⇀ h in Lp′(R2N ), that is
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¨

R2N

hn(x, y)k(x, y)dxdy →
¨

R2N

h(x, y)k(x, y)dxdy ∀k ∈ Lp(R2N ).

Then, for any φ ∈ C∞
c (RN ), taking

k(x, y) = (φ(x) − φ(y))
|x− y|

N+sp
p

∈ Lp(R2N ),

and we can see that

¨

R2N

|un(x) − un(y)|p−2(un(x) − un(y))(φ(x) − φ(y))
|x− y|N+sp

dxdy

→
¨

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))
|x− y|N+sp

dxdy.

In a similar way we can prove that

¨

R2N

|un(x) − un(y)|q−2(un(x) − un(y))(φ(x) − φ(y))
|x− y|N+sq

dxdy

→
¨

R2N

|u(x) − u(y)|q−2(u(x) − u(y))(φ(x) − φ(y))
|x− y|N+sq

dxdy.

Taking into account that

ˆ

RN

V (ε x)|un|p−2unφdx →
ˆ

RN

V (ε x)|u|p−2uφ dx,

ˆ

RN

V (ε x)|un|q−2unφdx →
ˆ

RN

V (ε x)|u|q−2uφ dx,

ˆ

RN

g(ε x, un)φdx →
ˆ

RN

g(ε x, u)φdx,

and that 〈I ′
ε(un), φ〉 = on(1), we can deduce that 〈I ′

ε(u), φ〉 = 0 for any φ ∈ C∞
c (RN ), which together with 

the density of C∞
c (RN ) in Xε implies that u is a critical point of Iε. In particular, 〈I ′

ε(u), u〉 = 0. In order 
to prove the strong convergence, we show the next claim:

Claim. For any η > 0 there exists R = R(η) > 0 such that

lim sup
n→∞

ˆ

Bc
R

⎛⎝ˆ

RN

|un(x) − un(y)|p
|x− y|N+sp

+ |un(x) − un(y)|q
|x− y|N+sq

dy + V (ε x)(|un|p + |un|q)

⎞⎠ dx < η. (14)

For any R > 0, let ψR ∈ C∞(RN ) be such that 0 ≤ ψR ≤ 1, ψR = 0 in BR
2
, ψR = 1 in Bc

R, and |∇ψR| ≤ C
R , 

for some constant C > 0 independent of R.
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Since {ψRun}n∈N is bounded in Xε, it follows that 〈I ′
ε(un), ψRun〉 = on(1), that is

¨

R2N

|un(x) − un(y)|p
|x− y|N+sp

ψR(x) dxdy +
¨

R2N

|un(x) − un(y)|q
|x− y|N+sq

ψR(x) dxdy

+
ˆ

RN

V (ε x)|un|pψR dx +
ˆ

RN

V (ε x)|un|qψR dx

= on(1) +
ˆ

RN

g(ε x, un)ψRun dx

−
¨

R2N

|un(x) − un(y)|p−2(un(x) − un(y))(ψR(x) − ψR(y))
|x− y|N+sp

un(y) dxdy

−
¨

R2N

|un(x) − un(y)|q−2(un(x) − un(y))(ψR(x) − ψR(y))
|x− y|N+sq

un(y) dxdy

Take R > 0 such that Λε ⊂ BR
2
. By the definition of ψR and (g3)–(ii) we get

¨

R2N

|un(x) − un(y)|p
|x− y|N+sp

ψR(x) dxdy +
¨

R2N

|un(x) − un(y)|q
|x− y|N+sq

ψR(x) dxdy

+
(

1 − 1
K

) ˆ

RN

V (ε x)(|un|p + |un|q)ψR dx

≤ on(1) −
¨

R2N

|un(x) − un(y)|p−2(un(x) − un(y))(ψR(x) − ψR(y))
|x− y|N+sp

un(y) dxdy

−
¨

R2N

|un(x) − un(y)|q−2(un(x) − un(y))(ψR(x) − ψR(y))
|x− y|N+sq

un(y) dxdy.

(15)

Now, using the Hölder inequality and the boundedness of {un}n∈N in Xε we have

∣∣∣∣∣∣
¨

R2N

|un(x) − un(y)|p−2(un(x) − un(y))(ψR(x) − ψR(y))
|x− y|N+sp

un(y) dxdy

∣∣∣∣∣∣
≤ C

⎛⎝¨

R2N

|ψR(x) − ψR(y)|p
|x− y|N+sp

|un(y)|p dxdy

⎞⎠
1
p

. (16)

On the other hand, using the definition of ψR, polar coordinates and the boundedness of {un}n∈N in Xε, 
we can see that

¨

R2N

|ψR(x) − ψR(y)|p
|x− y|N+sp

|un(x)|pdxdy

=
ˆ
N

ˆ |ψR(x) − ψR(y)|p
|x− y|N+sp

|un(x)|pdxdy +
ˆ
N

ˆ |ψR(x) − ψR(y)|p
|x− y|N+sp

|un(x)|pdxdy

R |y−x|>R R |y−x|≤R
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≤ C

ˆ

RN

|un(x)|p

⎛⎜⎝ ˆ

|y−x|>R

dy

|x− y|N+sp

⎞⎟⎠ dx + C

Rp

ˆ

RN

|un(x)|p

⎛⎜⎝ ˆ

|y−x|≤R

dy

|x− y|N+sp−p

⎞⎟⎠ dx

≤ C

ˆ

RN

|un(x)|p

⎛⎜⎝ ˆ

|z|>R

dz

|z|N+sp

⎞⎟⎠ dx + C

Rp

ˆ

RN

|un(x)|p

⎛⎜⎝ ˆ

|z|≤R

dz

|z|N+sp−p

⎞⎟⎠ dx

≤ C

ˆ

RN

|un(x)|pdx

⎛⎝ ∞̂

R

dρ

ρsp+1

⎞⎠ + C

Rp

ˆ

RN

|un(x)|pdx

⎛⎝ R̂

0

dρ

ρsp−p+1

⎞⎠
≤ C

Rsp

ˆ

RN

|un(x)|pdx + C

Rp
R−sp+p

ˆ

RN

|un(x)|pdx

≤ C

Rsp

ˆ

RN

|un(x)|pdx ≤ C

Rsp
,

which together with (16) implies that∣∣∣∣∣∣
¨

R2N

|un(x) − un(y)|p−2(un(x) − un(y))(ψR(x) − ψR(y))
|x− y|N+sp

un(y) dxdy

∣∣∣∣∣∣ ≤ C

Rs
. (17)

In a similar way, we can prove that∣∣∣∣∣∣
¨

R2N

|un(x) − un(y)|q−2(un(x) − un(y))(ψR(x) − ψR(y))
|x− y|N+sq

un(y) dxdy

∣∣∣∣∣∣ ≤ C

Rs
. (18)

Putting together (15), (17) and (18) we can infer that (14) is verified.
From (14), we can also deduce that un → u in Lp(RN ). Indeed, for any η > 0 there exits R = R(η) > 0

for which (14) holds true, and using the locally compact embedding Xε � Lp
loc(RN ) we get for n large

|un − u|pp = |un − u|pLp(BR) + |un − u|pLp(Bc
R)

≤ η + |un − u|pLp(Bc
R)

≤ η + 2p−1(|un|pLp(Bc
R) + |u|pLp(Bc

R))

≤ η + 2p−1

V0

⎡⎢⎣ˆ
Bc

R

⎛⎝ ˆ

RN

|un(x) − un(y)|p
|x− y|N+sp

dy + V (ε x)|un|p
⎞⎠ dx

+
ˆ

Bc
R

⎛⎝ ˆ

RN

|u(x) − u(y)|p
|x− y|N+sp

dy + V (ε x)|u|p
⎞⎠ dx

⎤⎥⎦ < η + 2p

V0
η =: κη.

By the arbitrariness of η, we get the assertion. Moreover, by interpolation, it holds that un → u in Lσ(RN )
for any σ ∈ [p, q∗s). Consequently, from (f1), (f2) and (g2) we have

ˆ

RN

g(ε x, un)un dx →
ˆ

RN

g(ε x, u)u dx. (19)
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On the other hand, using 〈I ′
ε(un), un〉 = on(1) and 〈I ′

ε(u), u〉 = 0, we know that

‖un‖pVε,p
+ ‖un‖qVε,q

=
ˆ

RN

g(ε x, un)un dx + on(1)

and

‖u‖pVε,p
+ ‖u‖qVε,q

=
ˆ

RN

g(ε x, u)u dx

which combined with (19) yield

‖un‖pVε,p
+ ‖un‖qVε,q

= ‖u‖pVε,p
+ ‖u‖qVε,q

+ on(1).

In view of the Brezis-Lieb Lemma [25], we know that

‖un − u‖pVε,p
= ‖un‖pVε,p

− ‖u‖pVε,p
+ on(1) and ‖un − u‖qVε,q

= ‖un‖qVε,q
− ‖u‖qVε,q

+ on(1),

so we can deduce that

‖un − u‖pVε,p
+ ‖un − u‖qVε,q

= on(1)

which gives ‖un − u‖Xε
= on(1) as n → ∞. This ends the proof of lemma. �

Theorem 2.3. Suppose that (V1)–(V2) and (f1)–(f4) hold. Then, for any ε > 0, (13) has a nontrivial non-
negative solution.

Proof. In view of Lemma 2.4 and Lemma 2.5, we can apply the mountain pass theorem [7] to deduce 
that, for all ε > 0, there exists uε ∈ Xε such that Iε(uε) = cε and I ′

ε(uε) = 0. Moreover, uε ≥ 0 in RN . 
Indeed, using 〈I ′

ε(uε), u−
ε 〉 = 0, where u−

ε = min{uε, 0}, g(ε ·, t) = 0 for t ≤ 0, and the following elementary 
inequality,

|x− y|t−2(x− y)(x− − y−) ≥ |x− − y−|t ∀x, y ∈ R ∀t > 1,

we can see that

‖u−‖pVε,p
+ ‖u−‖qVε,q

≤ 0

which implies that u−
ε = 0, that is uε ≥ 0 in RN and u �≡ 0. �

Since we are interested in multiple critical points of the functional Iε, we introduce the Nehari manifold 
associated with (13), namely

Nε := {u ∈ Xε : 〈I ′
ε(u), u〉 = 0}.

Let us define

X+
ε := {u ∈ Xε : |supp(u+) ∩ Λε| > 0}

and S+
ε := Sε∩X+

ε , where Sε := {u ∈ Xε : ‖u‖Xε
= 1} is the unit sphere in Xε. Note that S+

ε is a incomplete 
C1,1-manifold of codimension one, hence Xε = TuS+

ε ⊕Ru for all u ∈ S+
ε , where
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TuS
+
ε :=

⎧⎨⎩v ∈ Xε : 〈u, v〉s,p + 〈u, v〉s,q +
ˆ

RN

V (ε x)(|u|p−2uv + |u|q−2uv) dx = 0

⎫⎬⎭ .

Since f is only continuous, the next two results will be fundamental to overcome the non-differentiability 
of Nε and the incompleteness of S+

ε .

Lemma 2.6. Assume that (V1)–(V2) and (f1)–(f4) hold true. Then, we have the following results:

(i) For each u ∈ X+
ε , let hu : R+ → R be defined by hu(t) = Iε(tu). Then, there is a unique tu > 0 such 

that

h′
u(t) > 0 for all t ∈ (0, tu)

h′
u(t) < 0 for all t ∈ (tu,∞);

(ii) there exists τ > 0 independent of u such that tu ≥ τ for any u ∈ S+
ε . Moreover, for each compact set 

K ⊂ S+
ε , there is a positive constant CK such that tu ≤ CK for any u ∈ K;

(iii) The map m̂ε : X+
ε → Nε given by m̂ε(u) = tuu is continuous and mε := m̂ε|S+

ε
is a homeomorphism 

between S+
ε and Nε. Moreover m−1

ε (u) = u
‖u‖Xε

;
(iv) If there is a sequence {un}n∈N ⊂ S+

ε such that dist(un, ∂S+
ε ) → 0 then ‖mε(un)‖Xε

→ ∞ and 
Iε(mε(un)) → ∞.

Proof. (i) Arguing as in the proof of Lemma 2.4, we can see that hu(0) = 0, hu(t) > 0 for t > 0 small 
enough and hu(t) < 0 for t > 0 sufficiently large. Then there exists a global maximum point tu > 0 for hu

such that h′
u(tu) = 0, that is tuu ∈ Nε. Next we show the uniqueness of a such tu. Assume by contradiction 

that there exist t1 > t2 > 0 such that h′
u(t1) = h′

u(t2) = 0, or equivalently

tp−1
1 ‖u‖pVε,p

+ tq−1
1 ‖u‖qVε,q

=
ˆ

RN

g(ε x, t1u)u dx (20)

tp−1
2 ‖u‖pVε,p

+ tq−1
2 ‖u‖qVε,q

=
ˆ

RN

g(ε x, t2u)u dx. (21)

Dividing (20) by tq−1
1 and (21) by tq−1

2 respectively, we get

‖u‖pVε,p

tq−p
1

+ ‖u‖qVε,q
=

ˆ

RN

g(ε x, t1u)
(t1u)q−1 uqdx,

and

‖u‖pVε,p

tq−p
2

+ ‖u‖qVε,q
=

ˆ

RN

g(ε x, t2u)
(t2u)q−1 uqdx.

Subtracting the above identities and using (g4) and (f4) we obtain

(
1

tq−p
1

− 1
tq−p
2

)
‖u‖pVε,p

=
ˆ [

g(ε x, t1u)
(t1u)q−1 − g(ε x, t2u)

(t2u)q−1

]
uqdx
RN
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≥
ˆ

Λc
ε∩{t2u>a}

[
g(ε x, t1u)
(t1u)q−1 − g(ε x, t2u)

(t2u)q−1

]
uqdx

+
ˆ

Λc
ε∩{t2u≤a<t1u}

[
g(ε x, t1u)
(t1u)q−1 − g(ε x, t2u)

(t2u)q−1

]
uqdx

+
ˆ

Λc
ε∩{t1u<a}

[
g(ε x, t1u)
(t1u)q−1 − g(ε x, t2u)

(t2u)q−1

]
uqdx

≥ V0

K

(
1

tq−p
1

− 1
tq−p
2

) ˆ

Λc
ε∩{t2u>a}

updx

+
ˆ

Λc
ε∩{t2u≤a<t1u}

[
V0

K

(
1

(t1u)q−p
+ 1

)
− f(t2u)

(t2u)q−1

]
uqdx.

In view of t1 > t2 and q > p we have

‖u‖pε,p ≤ V0

K

ˆ

Λc
ε∩{t2u>a}

updx + (t1t2)q−p

tq−p
2 − tq−p

1

ˆ

Λc
ε∩{t2u≤a<t1u}

[
V0

K

(
1

(t1u)q−p
+ 1

)
− f(t2u)

(t2u)q−1

]
uqdx

= 1
K

ˆ

Λc
ε∩{t2u>a}

V0u
pdx

− tq−p
2

tq−p
1 − tq−p

2

ˆ

Λc
ε∩{t2u≤a<t1u}

V0

K
updx + (t1t2)q−p

tq−p
2 − tq−p

q

ˆ

Λc
ε∩{t2u≤a<t1u}

[
V0

K
− f(t2u)

(t2u)q−1

]
uqdx

≤ 1
K

ˆ

Λc
ε

V0u
pdx + tq−p

1

tq−p
2 − tq−p

1

ˆ

Λc
ε∩{t2u≤a<t1u}

V0

K
updx

≤ 1
K

ˆ

Λc
ε

V0u
pdx ≤ 1

K
‖u‖pε,p

where we used the fact that

f(t2u)
(t2u)q−1 = f(t2u)

(t2u)p−1 + (t2u)q−1
(t2u)p−1 + (t2u)q−1

(t2u)q−1

≤ V0

K

(
1

(t2u)q−p
+ 1

)
in Λc

ε ∩ {t2u ≤ a < t1u}.

Since u �= 0 and K > 1, we get a contradiction.
(ii) Let u ∈ S+

ε . By (i) there exists tu > 0 such that h′
u(tu) = 0, or equivalently

tp−1
u ‖u‖pVε,p

+ tq−1
u ‖u‖qVε,q

=
ˆ

RN

g(ε x, tuu)u dx.

From (g1)–(g2) and (9), for all ξ > 0 we obtain

tp−1
u ‖u‖pVε,p

+ tq−1
u ‖u‖qVε,q

≤
ˆ

R3

g(ε x, tuu)u dx ≤ ξtp−1
u ‖u‖pVε,p

+ Cξt
ν−1
u ‖u‖νVε,q,
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and choosing ξ sufficiently small, we have

Ctp−1
u ‖u‖pVε,p

+ tq−1
u ‖u‖qVε,q

≤ Ctν−1
u ‖u‖νVε,q ≤ Ctν−1

u .

Now, if tu ≤ 1, then tq−1
u ≤ tp−1

u , and using the facts that 1 = ‖u‖Xε
≥ ‖u‖Vε,p and q > p imply that 

‖u‖pVε,p
≥ ‖u‖qVε,p

, we deduce that

Ctq−1
u = Ctq−1

u ‖u‖qXε
≤ tq−1

u (C‖u‖qVε,p
+ ‖u‖qVε,q

) ≤ tq−1
u (C‖u‖pVε,p

+ ‖u‖qVε,q
) ≤ Ctν−1

u .

Since ν > q, we can find τ > 0, independent of u, such that tu ≥ τ .
When tu > 1, then tq−1

u > tp−1
u , and using again the fact that 1 = ‖u‖Xε

≥ ‖u‖Vε,p and q > p imply that 
‖u‖pVε,p

≥ ‖u‖qVε,p
, we get

Ctp−1
u = Ctp−1

u ‖u‖qXε
≤ tp−1

u (C‖u‖qVε,p
+ ‖u‖qVε,q

) ≤ tp−1
u (C‖u‖pVε,p

+ ‖u‖qVε,q
) ≤ Ctν−1

u .

Thanks to ν > q > p, there exists τ > 0, independent of u, such that tu ≥ τ .
Now, let K ⊂ S+

ε be a compact set, and assume by contradiction that there exists a sequence {un}n∈N ⊂ K

such that tn := tun
→ ∞. Therefore, there exists u ∈ K such that un → u in Xε. From the proof of (ii) in 

Lemma 2.4, we know that

Iε(tnun) → −∞. (22)

On the other hand, fixed v ∈ Nε, by 〈I ′
ε(v), v〉 = 0 and (g3) we can see that

Iε(v) = Iε(v) −
1
ϑ
〈I ′

ε(v), v〉

≥ C̃(‖v‖pVε,p
+ ‖v‖qVε,q

).

Taking vn = tun
un ∈ Nε in the above inequality we obtain

Iε(tnun) ≥ C̃(‖vn‖pVε,p
+ ‖vn‖qVε,q

).

Since ‖vn‖Xε
= tn → ∞ and ‖vn‖Xε

= ‖vn‖ε,p + ‖vn‖ε,q, we can use (22) to obtain a contradiction.
(iii) Firstly, we note that m̂ε, mε and m−1

ε are well defined. Indeed, by (i), for each u ∈ X+
ε there exists a 

unique mε(u) ∈ Nε. On the other hand, if u ∈ Nε then u ∈ X+
ε . Otherwise, if u /∈ X+

ε , we get

| supp(u+) ∩ Λε| = 0,

which together with (g3)–(ii) yields

‖u‖pVε,p
+ ‖u‖qVε,q

=
ˆ

RN

g(ε x, u)u dx =
ˆ

Λc
ε

g(ε x, u)u dx +
ˆ

Λε

g(ε x, u)u dx

=
ˆ

Λc
ε

g(ε x, u+)u+ dx

≤ 1
K

ˆ

Λc
ε

V (ε x)(|u|p + |u|q)dx

≤ 1
K

(‖u‖pVε,p
+ ‖u‖qVε,q

) (23)
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and this leads to a contradiction because K > 1. Consequently, m−1
ε (u) = u

‖u‖Xε
∈ S+

ε , m−1
ε is well defined 

and continuous. From u ∈ S+
ε , we can see that

m−1
ε (mε(u)) = m−1

ε (tuu) = tuu

‖tuu‖Xε

= u

‖u‖Xε

= u

which implies that mε is a bijection.
Next, we prove that m̂ε is a continuous function. Let {un}n∈N ⊂ X+

ε and u ∈ X+
ε such that un → u in 

Xε. Since m̂(tu) = m̂(u) for all t > 0, we may assume that ‖un‖Xε
= ‖u‖Xε

= 1 for all n ∈ N. In view of 
(ii), there exists t0 > 0 such that tn := tun

→ t0. Since tnun ∈ Nε, we have

tpn‖un‖pVε,p
+ tqn‖un‖qVε,q

=
ˆ

RN

g(ε x, tnun) tnun dx,

and letting n → ∞ we obtain

tp0‖u‖
p
Vε,p

+ tq0‖u‖
q
Vε,q

=
ˆ

RN

g(ε x, t0u) t0u dx,

which implies that t0u ∈ Nε. By (i), we deduce that tu = t0 and this shows that m̂ε(un) → m̂ε(u) in X+
ε . 

Therefore, m̂ε and mε are continuous functions.
(iv) Let {un}n∈N ⊂ S+

ε be such that dist(un, ∂S+
ε ) → 0. Observing that for each r ∈ [p, q∗s ] and n ∈ N it 

holds

|u+
n |Lr(Λε) ≤ inf

v∈∂S+
ε

|un − v|Lr(Λε)

≤ Cr inf
v∈∂S+

ε

‖un − v‖Xε
,

and using (g1), (g2), and (g3)–(ii), we can see that for all t > 0
ˆ

RN

G(ε x, tun) dx =
ˆ

Λc
ε

G(ε x, tun) dx +
ˆ

Λε

G(ε x, tun) dx

≤ V0

Kp

ˆ

Λc
ε

(tp|un|p + tq|un|q)dx +
ˆ

Λε

F (tun) dx

≤ tp

Kp

ˆ

RN

V (ε x)|un|p dx + tq

Kp

ˆ

RN

V (ε x)|un|q dx

+ C1t
p

ˆ

Λε

(u+
n )pdx + C2t

ν

ˆ

Λε

(u+
n )νdx

≤ tp

Kp

ˆ

RN

V (ε x)|un|p dx + tq

Kp

ˆ

RN

V (ε x)|un|q dx

+ C ′
pt

pdist(un, ∂S
+
ε )p + C ′

νt
νdist(un, ∂S

+
ε )ν .

Accordingly,
ˆ

G(ε x, tun) dx ≤ tp

Kp

ˆ
V (ε x)|un|p dx + tq

Kp

ˆ
V (ε x)|un|q dx + on(1). (24)
R3 RN RN
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Now, we recall that K > q
p > 1, and that 1 = ‖un‖Xε

≥ ‖un‖Vε,p implies that ‖un‖pVε,p
≥ ‖un‖qVε,p

. Then, 
for all t > 1, we deduce that

tp

p
‖un‖pε,p + tq

q
‖un‖qε,q −

tp

Kp

ˆ

RN

V (ε x)|un|p dx− tq

Kp

ˆ

RN

V (ε x)|un|q dx

= tp

p
[un]ps,p + tp

(
1
p
− 1

Kp

) ˆ

RN

V (ε x)|un|p dx + tq

q
[un]qs,q + tq

(
1
q
− 1

Kp

) ˆ

RN

V (ε x)|un|q dx

≥ C1t
p‖un‖pVε,p

+ C2t
q‖un‖qVε,q

≥ C1t
p‖un‖qVε,p

+ C2t
q‖un‖qVε,q

≥ C1t
p‖un‖qVε,p

+ C2t
p‖un‖qVε,q

≥ C3t
p(‖un‖Vε,p + ‖un‖Vε,q)q = C3t

p.

(25)

Taking in mind the definition of mε(un) and using (24), (25) we have

lim inf
n→∞

Iε(mε(un)) ≥ lim inf
n→∞

Iε(tun) ≥ C3t
p ∀t > 1

which implies that

lim
n→∞

Iε(mε(un)) = ∞.

On the other hand, by the definition of Iε,

lim inf
n→∞

{
1
p
‖mε(un)‖pVε,p

+ 1
q
‖mε(un)‖qVε,q

}
≥ lim inf

n→∞
Iε(mε(un)) = ∞

so that ‖mε(un)‖Xε
→ ∞ as n → ∞. This ends the proof of lemma. �

Let us define the maps

ψ̂ε : X+
ε → R and ψε : S+

ε → R,

by ψ̂ε(u) := Iε(m̂ε(u)) and ψε := ψ̂ε|S+
ε
. The next result is a consequence of Lemma 2.6 and Corollary 2.3 

in [68].

Proposition 2.1. Assume that (V1)–(V2) and (f1)–(f4) hold true. Then,

(a) ψ̂ε ∈ C1(X+
ε , R) and

〈ψ̂′
ε(u), v〉 = ‖m̂ε(u)‖Xε

‖u‖Xε

〈I ′
ε(m̂ε(u)), v〉 ∀u ∈ X+

ε ∀v ∈ Xε;

(b) ψε ∈ C1(S+
ε , R) and

〈ψ′
ε(u), v〉 = ‖mε(u)‖Xε

〈I ′
ε(mε(u)), v〉, ∀v ∈ TuS

+
ε ;

(c) if {un}n∈N is a (PS)d sequence for ψε, then {mε(un)}n∈N is a (PS)d sequence for Iε. If {un}n∈N ⊂ Nε

is a bounded (PS)d sequence for Iε, then {m−1
ε (un)}n∈N is a (PS)d sequence for the functional ψε;
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(d) u is a critical point of ψε if, and only if, mε(u) is a critical point for Iε. Moreover, the corresponding 
critical values coincide and

inf
u∈S+

ε

ψε(u) = inf
u∈Nε

Iε(u).

Remark 2. As in [68], cε has the following variational characterization:

cε = inf
u∈Nε

Iε(u) = inf
u∈X+

ε

max
t>0

Iε(tu) = inf
u∈S+

ε

max
t>0

Iε(tu).

We conclude this section by showing a result which will be used later.

Corollary 2.2. The functional ψε verifies the (PS)d condition on S+
ε .

Proof. Let {un}n∈N ⊂ S+
ε be a (PS) sequence for ψε at the level d. Then

ψε(un) → d and ψ′
ε(un) → 0 in (Tun

S+
ε )′.

By Proposition 2.1-(c), it follows that {mε(un)}n∈N is a (PS)d sequence for Iε in Xε. Then, by Lemma 2.5, 
we can see that Iε satisfies the (PS)d condition in Xε, so there exists u ∈ S+

ε such that, up to a subsequence,

mε(un) → mε(u) in Xε.

Applying Lemma 2.6-(iii), we conclude that un → u in S+
ε . �

3. A multiplicity property for the modified problem

3.1. The limiting problem

Let us consider the limiting problem associated with (3), that is{
(−Δ)spu + (−Δ)squ + V0(|u|p−2u + |u|q−2u) = f(u) in RN ,

u ∈ W s,p(RN ) ∩W s,q(RN ), u > 0 in RN .
(26)

The corresponding energy functional is given by

EV0(u) := 1
p
[u]ps,p + 1

q
[u]qs,q + V0

[
1
p
|u|pp + 1

q
|u|qq

]
−

ˆ

RN

F (u) dx

which is well-defined on the space YV0 = W s,p(RN ) ∩W s,q(RN ) endowed with the norm

‖u‖YV0
:= ‖u‖s,p + ‖u‖s,q,

where

‖u‖s,t :=
(
[u]ts,t + V0|u|tt

) 1
t for all t ≥ 1.

It is easy to check that EV0 ∈ C1(YV0 , R) and its differential is given by
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〈E ′
V0

(u), ϕ〉 = 〈u, ϕ〉s,p + 〈u, ϕ〉s,q + V0

⎡⎣ˆ

RN

|u|p−2uϕdx +
ˆ

RN

|u|q−2uϕdx

⎤⎦ −
ˆ

RN

f(u)ϕdx

for any u, ϕ ∈ YV0 . Let us define the Nehari manifold associated with EV0

MV0 := {u ∈ YV0 \ {0} : 〈E ′
V0

(u), u〉 = 0},

and dV0 := infu∈MV0
EV0(u).

We denote by Y+
V0

the open subset of YV0 defined as

Y+
V0

:= {u ∈ YV0 : | supp(u+)| > 0},

and S+
V0

:= SV0 ∩ Y+
V0

, where SV0 is the unit sphere of YV0 . We note that S+
V0

is a incomplete C1,1-manifold 
of codimension 1 modeled on YV0 and contained in Y+

V0
. Thus, YV0 = TuS

+
V0

⊕Ru for each u ∈ S+
V0

, where

TuS
+
V0

:=

⎧⎨⎩v ∈ YV0 : 〈u, v〉s,p + 〈u, v〉s,q + V0

ˆ

RN

(|u|p−2u + |u|q−2u)v dx = 0

⎫⎬⎭ .

As in Section 2, we can see that the following results hold.

Lemma 3.1. Assume that (f1)–(f4) hold true. Then,

(i) For each u ∈ Y+
V0

, let h : R+ → R be defined by hu(t) = EV0(tu). Then, there is a unique tu > 0 such 
that

h′
u(t) > 0 for all t ∈ (0, tu)

h′
u(t) < 0 for all t ∈ (tu,∞);

(ii) there exists τ > 0 independent of u such that tu ≥ τ for any u ∈ S+
V0

. Moreover, for each compact set 
K ⊂ S+

V0
there is a positive constant CK such that tu ≤ CK for any u ∈ K;

(iii) The map m̂μ : Y+
V0

→ MV0 given by m̂V0(u) = tuu is continuous and mV0 := m̂V0 |S+
V0

is a homeomor-
phism between S+

V0
and MV0 . Moreover m−1

V0
(u) = u

‖u‖YV0
;

(iv) If there is a sequence {un}n∈N ⊂ S+
V0

such that dist(un, ∂S
+
V0

) → 0 then ‖mV0(un)‖YV0
→ ∞ and 

EV0(mV0(un)) → ∞.

Let us define the maps

ψ̂μ : Y+
V0

→ R and ψμ : S+
V0

→ R,

by ψ̂V0(u) := EV0(m̂V0(u)) and ψV0 := ψ̂V0 |S+
V0

.

Proposition 3.1. Assume that (f1)–(f4) hold true. Then,

(a) ψ̂V0 ∈ C1(Y+
V0
, R) and

〈ψ̂′
V0

(u), v〉 =
‖m̂V0(u)‖YV0

‖u‖ 〈E ′
V0

(m̂V0(u)), v〉 ∀u ∈ Y+
V0

∀v ∈ YV0 ;

YV0
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(b) ψV0 ∈ C1(S+
V0
, R) and

〈ψ′
V0

(u), v〉 = ‖mV0(u)‖YV0
〈E ′

V0
(mV0(u)), v〉, ∀v ∈ TuS

+
V0

;

(c) If {un}n∈N is a (PS)d sequence for ψV0 , then {mV0(un)}n∈N is a (PS)d sequence for EV0 . If {un}n∈N ⊂
MV0 is a bounded (PS)d sequence for EV0 , then {m−1

V0
(un)}n∈N is a (PS)d sequence for the functional 

ψV0 ;
(d) u is a critical point of ψV0 if, and only if, mV0(u) is a nontrivial critical point for EV0 . Moreover, the 

corresponding critical values coincide and

inf
u∈S+

V0

ψV0(u) = inf
u∈MV0

EV0(u).

Remark 3. We have the following variational characterization for dV0 :

dV0 = inf
u∈MV0

EV0(u) = inf
u∈Y+

V0

max
t>0

EV0(tu) = inf
u∈S+

V0

max
t>0

EV0(tu) > 0.

The next lemma allows us to assume that the weak limit of a (PS)dV0
sequence of EV0 is nontrivial.

Lemma 3.2. Let {un}n∈N ⊂ YV0 be a (PS)dV0
sequence for EV0 such that un ⇀ 0 in YV0 . Then, one and 

only one of the following alternatives occurs:

(a) un → 0 in YV0 , or
(b) there is a sequence {yn}n∈N ⊂ RN and constants R, β > 0 such that

lim inf
n→∞

ˆ

BR(yn)

|un|q dx ≥ β.

Proof. Assume by contradiction that (b) is not true. Then, by Lemma 2.2 in [3], it follows that

un → 0 in Lσ(RN ) for all σ ∈ (p, q∗s ). (27)

Using (27) and (f1)–(f2), we have
ˆ

RN

f(un)un dx = on(1) as n → ∞.

On the other hand, arguing as in Lemma 2.5, we know that {un}n∈N is bounded in YV0 , and we may assume 
that un ⇀ u in YV0 . Taking into account the above facts and that 〈E ′

V0
(un), un〉 = on(1), we get

‖un‖ps,p + ‖un‖qs,q =
ˆ

RN

f(un)un dx = on(1),

which implies that ‖un‖μ → 0 as n → ∞, and this is a contradiction because of EV0(un) → dV0 > 0. 
Consequently, (a) holds true. �

Now, we prove an existence result for (26).

Theorem 3.1. Problem (26) admits a positive ground state solution.
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Proof. Using a variant of the mountain-pass theorem without the (PS)-condition (see [70]), there exists a 
Palais-Smale sequence {un}n∈N ⊂ YV0 for EV0 at the level dV0 . Arguing as in Lemma 2.5, we know that 
{un}n∈N is bounded in YV0 , so we may assume that

un ⇀ u in YV0 ,

un → u in Lσ
loc(RN ) for all σ ∈ [1, p∗s).

Proceeding as in the proof of Lemma 2.5, we can show that E ′
V0

(u) = 0.
Now, if u �= 0, then u is a nontrivial solution to (26). Assume that u = 0. Then ‖un‖YV0

�→ 0 in YV0 . By 
Lemma 3.2, we can find a sequence {yn}n∈N ⊂ RN and constants R, β > 0 such that

lim inf
n→∞

ˆ

BR(yn)

|un|qdx ≥ β > 0. (28)

Let us define

ṽn(x) := un(x + yn).

From the invariance by translations of RN , it is clear that ‖ṽn‖YV0
= ‖un‖YV0

, so {ṽn}n∈N is bounded in 
YV0 and there exists ṽ such that ṽn ⇀ ṽ in YV0 , ṽn → ṽ in Lm

loc(RN ) for any m ∈ [1, q∗s ) and ṽ �= 0 in view 
of (28). Moreover, EV0(ṽn) = EV0(un) and E ′

V0
(ṽn) = on(1), and arguing as before it is easy to check that 

E ′
V0

(ṽ) = 0.
Now, let u be the solution obtained before and we prove that u is a ground state solution. It is clear that 

dV0 ≤ EV0(u). On the other hand, by Fatou’s Lemma and (f3)–(f4), we can see that

Eμ(u) = EV0(u) − 1
q
〈E ′

V0
(u), u〉 ≤ lim inf

n→∞

[
EV0(un) − 1

q
〈E ′

V0
(un), un〉

]
= dV0

which yields dV0 = EV0(u).
Finally, we prove that the ground state is positive. Let u− := min{u, 0}. Using 〈E ′

V0
(u), u−〉 = 0, f(t) = 0

for t ≤ 0, and

|x− y|t−2(x− y)(x− − y−) ≥ |x− − y−|t ∀x, y ∈ R ∀t > 1,

we have

‖u−‖ps,p + ‖u−‖qs,q ≤ 0

which gives u− = 0, that is u ≥ 0 in RN . Therefore, u ≥ 0 and u �≡ 0 in RN . Arguing as in Lemma 4.1, we 
can deduce that u ∈ L∞(RN ). Moreover, by Corollary 2.1, we obtain that u ∈ C0(RN ). Arguing as in the 
proof of Theorem 1.1-(ii) in [49], we conclude that u > 0 in RN . �

Next we give a compactness result for the autonomous problem which will be used in the sequel.

Lemma 3.3. Let {un}n∈N ⊂ MV0 be a sequence such that EV0(un) → dV0 . Then, {un}n∈N has a convergent 
subsequence in YV0 .

Proof. Since {un}n∈N ⊂ MV0 and Eμ(un) → dV0 , we apply Lemma 3.1-(iii), Proposition 3.1-(d) and use 
the definition of dV0 to infer that
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vn := m−1
V0

(un) = un

‖un‖YV0

∈ S+
V0

∀n ∈ N

and

ψV0(vn) = Eμ(un) → dV0 = inf
v∈S+

V0

ψV0(v).

Let us define F : S+
V0

→ R ∪ {∞} as

F(u) :=
{
ψμ(u) if u ∈ S+

V0

∞ if u ∈ ∂S+
V0
.

We note that

• (S+
V0
, δV0), where δV0(u, v) := ‖u − v‖YV0

, is a complete metric space;
• F ∈ C(S+

V0
, R ∪ {∞}), by Lemma 3.1-(iv);

• F is bounded below, by Proposition 3.1-(d).

Applying the Ekeland variational principle [38] to F , we can find {v̂n}n∈N ⊂ S+
V0

such that {v̂n}n∈N is a 
(PS)dV0

sequence for ψV0 on S+
V0

and ‖v̂n − vn‖YV0
= on(1). Then, using Proposition 3.1, Theorem 3.1 and 

arguing as in the proof of Corollary 2.2, we obtain the thesis. �
3.2. The barycenter map

In this subsection, we establish a relation between the topology of M and the number of positive solutions 
to (13). For this reason, we take δ > 0 such that

Mδ = {x ∈ RN : dist(x,M) ≤ δ} ⊂ Λ,

and consider η ∈ C∞([0, ∞), [0, 1]) non increasing such that η(t) = 1 if 0 ≤ t ≤ δ
2 and η(t) = 0 if t ≥ δ and 

|η′(t)| ≤ c for some c > 0.
For any y ∈ M , we define

Ψε,y(x) := η(| ε x− y|)w
(
ε x− y

ε

)
where w ∈ YV0 is a positive ground state solution to the autonomous problem (26) (whose existence is 
guaranteed by Theorem 3.1). Let tε > 0 be the unique number such that

max
t≥0

Iε(tΨε,y) = Iε(tεΨε,y),

and consider Φε : M → Nε defined as

Φε(y) := tεΨε,y.

Lemma 3.4. The functional Φε satisfies

lim Iε(Φε(y)) = dV0 uniformly in y ∈ M.

ε→0
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Proof. Assume by contradiction that there exist δ0 > 0, {yn}n∈N ⊂ M and εn → 0 such that

|Iεn(Φεn(yn)) − dV0 | ≥ δ0. (29)

Note that, for each n ∈ N and for all z ∈ B δ
εn

, we have εn z ∈ Bδ. Then, εn z + yn ∈ Bδ(yn) ⊂ Mδ ⊂ Λ. 
Using the change of variable z = εn x−yn

εn
, and recalling that G = F in Λ and η(t) = 0 for t ≥ δ, we can 

write

Iεn(Φεn(yn)) =
tpεn
p

‖Ψεn,yn
‖pVεn ,p +

tqεn
q
‖Ψεn,yn

‖qVεn ,q −
ˆ

RN

G(εn x, tεnΨεn,yn
) dx

=
tpεn
p

⎛⎝[η(| εn ·|)w]ps,p +
ˆ

RN

V (εn z + yn)(η(| εn z|)w(z))p dz

⎞⎠
+

tqεn
q

⎛⎝[η(| εn ·|)w]qs,q +
ˆ

RN

V (εn z + yn)(η(| εn z|)w(z))q dz

⎞⎠
−

ˆ

RN

F (tεnη(| εn z|)w(z)) dz. (30)

In what follows, we show that the sequence {tεn}n∈N satisfies tεn → 1 as εn → 0. Firstly, we show that 
tεn → t0 ∈ [0, ∞). By the definition of tεn , it follows that 〈I ′

εn(Φεn(yn)), Φεn(yn)〉 = 0, which gives

1
tpεn

‖Ψεn,yn
‖pVεn ,p + ‖Ψεn,yn

‖qVεn ,q =
ˆ

RN

[ f(tεnη(| εn z|)w(z))
(tεnη(| εn z|)w(z))q−1

]
(η(| εn z|)w(z))q dz, (31)

where we used the fact that g = f on Λ. Since η(|x|) = 1 for x ∈ B δ
2

and B δ
2
⊂ B δ

εn
for n large enough, 

from (31) it follows that

tp−q
εn ‖Ψεn,yn

‖pVεn ,p + ‖Ψεn,yn
‖qVεn ,q ≥

ˆ

B δ
2

[ f(tεnw(z))
(tεnw(z))q−1

]
|w(z)|q dz.

Since w is continuous and positive in RN , we can find a vector ẑ ∈ RN such that

w(ẑ) = min
z∈B δ

2

w(z) > 0.

Then, by (f4), we deduce that

tp−q
εn ‖Ψεn,yn

‖pVεn ,p + ‖Ψεn,yn
‖qVεn ,q ≥

[ f(tεnw(ẑ))
(tεnw(ẑ))q−1

]
|w(ẑ)|q|B δ

2
|. (32)

Suppose by contradiction that tεn → ∞. Let us observe that Lemma 2.3 in [3] yields

‖Ψεn,yn
‖Vεn ,r → ‖w‖s,r ∈ (0,∞) ∀r ∈ {p, q}. (33)

On the other hand, from tεn → ∞, q > p and (33), it follows that

tp−q
εn ‖Ψεn,yn

‖pVεn ,p + ‖Ψεn,yn
‖qVεn ,q → ‖w‖qs,q, (34)
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and by (f3) we have

lim
n→∞

f(tεnw(ẑ))
(tεnw(ẑ))q−1 = ∞. (35)

Putting together (32), (34) and (35) we reach a contradiction. Therefore, {tεn}n∈N is bounded and, up to 
a subsequence, we may assume that tεn → t0 for some t0 ≥ 0. Indeed, using (31), (33), (f1)–(f2), we can 
verify that t0 > 0.

Hence, letting n → ∞ in (31), and using (33) and the dominated convergence theorem, we get

tp−q
0 ‖w‖ps,p + ‖w‖qs,q =

ˆ

RN

f(t0w)
(t0w)q−1 wq dx. (36)

Since w ∈ NV0 , we can see that

‖w‖ps,p + ‖w‖qs,q =
ˆ

RN

f(w)w dx. (37)

Putting together (36) and (37) we can deduce that

(tp−q
0 − 1)‖w‖ps,p =

ˆ

RN

[
f(t0w)

(t0w)q−1 − f(w)
wq−1

]
wq dx

which combined with (f4) yields t0 = 1. Accordingly, taking the limit as n → ∞ in (30), we obtain

lim
n→∞

Iεn(Φεn,yn
) = EV0(w) = dV0 ,

that is a contradiction thanks to (29). �
Next we prove a compactness result which will be fundamental to prove that the solutions of (13) are 

indeed solutions to (3).

Lemma 3.5. Let εn → 0 and {un}n∈N ⊂ Nεn be such that Iεn(un) → dV0 . Then there exists {ỹn}n∈N ⊂ RN

such that the translated sequence

ũn(x) := un(x + ỹn)

has a subsequence which converges in YV0. Moreover, up to a subsequence, {yn}n∈N := {εn ỹn}n∈N is such 
that yn → y0 ∈ M .

Proof. Since 〈I ′
εn(un), un〉 = 0 and Iεn(un) → dV0 , we can argue as in the proof of Lemma 2.5 to show that 

{un}n∈N is bounded in Xεn . Let us observe that ‖un‖Xεn
� 0 since dV0 > 0. Therefore, proceeding as in 

Lemma 3.2, we can find a sequence {ỹn}n∈N ⊂ RN and constants R, β > 0 such that

lim inf
n→∞

ˆ

BR(ỹn)

|un|qdx ≥ β.

Set ũn(x) := un(x + ỹn). Clearly, {ũn}n∈N is bounded in YV0 , and we may assume that
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ũn ⇀ ũ weakly in YV0 ,

for some ũ �= 0. Let {tn}n∈N ⊂ (0, ∞) be such that ṽn := tnũn ∈ MV0 (see Lemma 3.1-(i)), and set 
yn := εn ỹn. Then, by un ∈ Nεn and (g2), it follows that

dV0 ≤ EV0(ṽn) ≤ 1
p
[ṽn]ps,p + 1

q
[ṽn]qs,q +

ˆ

RN

V (εn x + yn)
(

1
p
|ṽn|p + 1

q
|ṽn|q

)
dx−

ˆ

RN

F (ṽn) dx

≤ tpn
p

[un]ps,p + tqn
q

[un]qs,q +
ˆ

RN

V (εn x)
(
tpn
p
|un|p + tqn

q
|un|q

)
dx−

ˆ

RN

G(εn x, tnun) dx

= Iεn(tnun) ≤ Iεn(un) = dV0 + on(1),

which gives

EV0(ṽn) → dV0 and {ṽn}n∈N ⊂ MV0 . (38)

Moreover, (38) implies that {ṽn}n∈N is bounded in YV0 , so we may assume that ṽn ⇀ ṽ. Obviously, 
{tn}n∈N is bounded and it holds tn → t0 ≥ 0. If t0 = 0, from the boundedness of {ũn}n∈N , we get 
‖ṽn‖YV0

= tn‖ũn‖YV0
→ 0, that is EV0(ṽn) → 0 in contrast with the fact dV0 > 0. Then, t0 > 0. From the 

uniqueness of the weak limit, we have ṽ = t0ũ and ũ �= 0. By Lemma 3.3, we infer that

ṽn → ṽ in YV0 , (39)

and consequently ũn → ũ in YV0 . Furthermore,

EV0(ṽ) = dV0 and 〈E ′
V0

(ṽ), ṽ〉 = 0.

Next, we show that {yn}n∈N has a subsequence, still denoted by itself, such that yn → y0 ∈ M . We begin 
by proving the boundedness of {yn}n∈N . Suppose by contradiction that {yn}n∈N is not bounded, that is 
there exists a subsequence, still denoted by {yn}n∈N , such that |yn| → ∞. Take R > 0 such that Λ ⊂ BR. 
We may suppose that |yn| > 2R for n large enough, so, for any x ∈ BR/ εn we get

| εn x + yn| ≥ |yn| − | εn x| > R.

Then,

‖ũn‖ps,p + ‖ũn‖qs,q ≤
ˆ

RN

g(εn x + yn, ũn)ũn dx

≤
ˆ

BR/ εn

f̃(ũn)ũn dx +
ˆ

Bc
R/ εn

f(ũn)ũn dx.

Since ũn → ũ in YV0 , it follows from the dominated convergence theorem that
ˆ

Bc
R/ εn

f(ũn)ũn dx = on(1).

On the other hand, noticing that f̃(ũn)ũn ≤ V0 (|ũn|p + |ũn|q), we get
K
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‖ũn‖ps,p + ‖ũn‖qs,q ≤ 1
K

ˆ

BR/ εn

V0(|ũn|p + |ũn|q) dx + on(1).

Therefore, (
1 − 1

K

)
(‖ũn‖ps,p + ‖ũn‖qs,q) ≤ on(1),

and recalling that ũn → ũ �= 0, we obtain a contradiction.
Thus, {yn}n∈N is bounded in RN and, up to a subsequence, we may assume that yn → y0. If y0 /∈ Λ, 

then there exists r > 0 such that yn ∈ Br/2(y0) ⊂ Λc for any n large enough. Reasoning as before, we 
get a contradiction. Hence, y ∈ Λ. In order to prove that V (y0) = V0, we assume by contradiction that 
V (y0) > V0. Taking into account (39), Fatou’s Lemma and the invariance of RN by translations, we have

dV0 = EV0(ṽ) < lim inf
n→∞

[1
p
[ṽn]ps,p + 1

q
[ṽn]qs,q +

ˆ

RN

V (εn x + yn)
(

1
p
|ṽn|p + 1

q
|ṽn|q

)
dx−

ˆ

RN

F (ṽn) dx
]

≤ lim inf
n→∞

Iεn(tnun) ≤ lim inf
n→∞

Iεn(un) = dV0

which does not make sense. By (V2) we conclude that y0 ∈ M . �
Now, we introduce the following subset of Nε:

Ñε := {u ∈ Nε : Iε(u) ≤ dV0 + h1(ε)} ,

where h1(ε) := supy∈M |Iε(Φε(y)) − dV0 |. By Lemma 3.4, it follows that h1(ε) → 0 as ε → 0. By the 

definition of h1(ε), we know that, for all y ∈ M and ε > 0, Φε(y) ∈ Ñε and then Ñε �= ∅.
For any δ > 0 given by Lemma 3.4, we take ρ = ρ(δ) > 0 such that Mδ ⊂ Bρ, and we consider 

Υ : RN → RN given by

Υ (x) :=
{

x if |x| < ρ
ρx
|x| if |x| ≥ ρ.

We define the barycenter map βε : Nε → RN by

βε(u) :=

ˆ

RN

Υ (ε x)(|u(x)|p + |u(x)|q) dx

ˆ

RN

(|u(x)|p + |u(x)|q) dx
.

Let us note that βε has the following property.

Lemma 3.6. The function βε verifies the following limit

lim
ε→0

βε(Φε(y)) = y uniformly in y ∈ M.

Proof. Suppose by contradiction that there exist δ0 > 0, {yn}n∈N ⊂ M and εn → 0 such that

|βεn(Φεn(yn)) − yn| ≥ δ0. (40)
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Using the definitions of Φεn(yn), βεn , ψ and the change of variable z = εn x−yn

εn
, we can see that

βεn(Φεn(yn)) = yn +
´
RN [Υ (εn z + yn) − yn](|η(| εn z|)ω(z)|p + |η(| εn z|)ω(z)|q) dz´

RN (|η(| εn z|)ω(z)|p + |η(| εn z|)ω(z)|q) dz .

Taking into account {yn}n∈N ⊂ M ⊂ Bρ and applying the dominated convergence theorem, we infer that

|βεn(Φεn(yn)) − yn| = on(1)

which contradicts (40). �
Lemma 3.7. For any δ > 0, there holds that

lim
ε→0

sup
u∈Ñε

dist(βε(u),Mδ) = 0.

Proof. Let εn → 0 as n → ∞. Then there exists {un}n∈N ⊂ Ñεn such that

sup
u∈Ñεn

inf
y∈Mδ

|βεn(u) − y| = inf
y∈Mδ

|βεn(un) − y| + on(1).

Our claim is to show that there is a sequence {yn}n∈N ⊂ Mδ such that

lim
n→∞

|βεn(un) − yn| = 0. (41)

Recalling that {un}n∈N ⊂ Ñεn ⊂ Nεn , we deduce that

dV0 ≤ cεn ≤ Iεn(un) ≤ dV0 + h(εn)

which implies that Iεn(un) → dV0 . By Lemma 3.5, there exists {ỹn} ⊂ RN such that yn = εn ỹn ∈ Mδ for 
n sufficiently large. Thus

βεn(un) = yn +

ˆ

RN

[Υ (εn z + yn) − yn](|un(z + ỹn)|p + |un(z + ỹn)|q) dz

ˆ

RN

(|un(z + ỹn)|p + |un(z + ỹn)|q) dz
.

Since un(· + ỹn) strongly converges in YV0 and εn z + yn → y ∈ M , we deduce that βεn(un) = yn + on(1), 
that is (41) holds. �
3.3. Multiple solutions for (13)

In this subsection we give a relation between the topology of M and the number of solutions to (13). Since 
S+
ε is not complete, we can not apply directly standard Ljusternik-Schnirelmann theory, but we overcome 

this difficulty using the abstract results in [68].

Theorem 3.2. Assume that (V1)–(V2) and (f1)–(f4) hold true. Then, given δ > 0 such that Mδ ⊂ Λ, there 
exists ε̄δ > 0 such that, for any ε ∈ (0, ̄εδ), problem (13) has at least catMδ

(M) positive solutions.
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Proof. For any ε > 0, we consider the map αε : M → S+
ε defined as αε(y) := m−1

ε (Φε(y)).
By Lemma 3.4, it holds that

lim
ε→0

ψε(αε(y)) = lim
ε→0

Iε(Φε(y)) = dV0 uniformly in y ∈ M. (42)

Set

S̃+
ε := {w ∈ S+

ε : ψε(w) ≤ dV0 + h1(ε)},

where h1(ε) := supy∈M |ψε(αε(y)) − dV0 | → 0 as ε → 0 in view of (42). Since ψε(αε(y)) ∈ S̃+
ε we deduce 

that S̃+
ε �= ∅.

In the light of Lemma 3.4, Lemma 2.6-(iii), Lemma 3.7 and Lemma 3.6, we can find ε̄ = ε̄δ > 0 such 
that the following diagram is well defined for any ε ∈ (0, ̄ε):

M
Φε→ Φε(M) m−1

ε→ αε(M) mε→ Φε(M) βε→ Mδ.

By Lemma 3.6, and decreasing ε̄ if necessary, we obtain that βε(Φε(y)) = y + θ(ε, y) for all y ∈ M , for 
some function θ(ε, y) satisfying |θ(ε, y)| < δ

2 uniformly in y ∈ M and for all ε ∈ (0, ̄ε). Then, H(t, y) =
y + (1 − t)θ(ε, y) with (t, y) ∈ [0, 1] ×M , is a homotopy between βε ◦ Φε = (βε ◦mε) ◦ (m−1

ε ◦ Φε) and the 
inclusion map id : M → Mδ. Consequently,

catαε(M)αε(M) ≥ catMδ
(M). (43)

Applying Corollary 2.2 and Theorem 27 in [68], with c = cε ≤ dV0 + h1(ε) = d and K = αε(M), we obtain 
that Ψε has at least catαε(M)αε(M) critical points on S̃+

ε . Combining Proposition 2.1-(d) with (43), we can 
infer that Iε admits at least catMδ

(M) critical points in Ñε. �
4. Proof of Theorem 1.1

This last section is devoted to the main result of this work. The idea is to show that the solutions obtained 
in Theorem 3.2 satisfy, for ε > 0 small enough, the estimate uε(x) ≤ a for all x ∈ Λc

ε. This fact implies that 
these solutions are indeed solutions of the original problem (3). To achieve our purpose, we first provide 
the following result which plays a fundamental role to study the behavior of the maximum points of the 
solutions.

Lemma 4.1. Let εn → 0 and un ∈ Ñεn be a solution to (13). Then Iεn(un) → dV0 , and there exists 
{ỹn}n∈N ⊂ RN such that ũn := un(· + ỹn) ∈ L∞(RN ) and |ũn|∞ ≤ C for all n ∈ N, for some C > 0. 
Moreover,

ũn(x) → 0 as |x| → ∞ uniformly in n ∈ N. (44)

Proof. Since {un}n∈N ⊂ Ñεn , we can argue as in the proof of Lemma 3.7 to see that Iεn(un) → dV0 . 
By Lemma 3.5, we can find {ỹn}n∈N ⊂ RN such that ũn := un(· + ỹn) strongly converges in YV0 and 
yn := εn ỹn → y0 ∈ M . Now we develop a Moser iteration argument [59]. For any L > 0 and β > 1, we take

γ(ũn) := ũnũ
q(β−1)
n,L ∈ Xε,

where ũn,L := min{ũn, L}, as test function in the problem solved by ũn and we have
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¨

R2N

|ũn(x) − ũn(y)|p−2(ũn(x) − ũn(y))((ũnũ
q(β−1)
n,L )(x) − (ũnũ

q(β−1)
n,L )(y))

|x− y|N+sp
dxdy

+
¨

R2N

|ũn(x) − ũn(y)|q−2(ũn(x) − ũn(y))((ũnũ
q(β−1)
n,L )(x) − (ũnũ

q(β−1)
n,L )(y))

|x− y|N+sq
dxdy

+
ˆ

RN

V (εn x + εn ỹn)|ũn|pũq(β−1)
n,L dx +

ˆ

RN

V (εn x + εn ỹn)|ũn|qũq(β−1)
n,L dx

=
ˆ

RN

g(εn x + εn ỹn, ũn)ũnũ
q(β−1)
n,L dx.

From the growth assumptions on g, we know that for all ξ > 0 there exists Cξ > 0 such that

|g(x, t)| ≤ ξ|t|p−1 + Cξ|t|q
∗
s−1 ∀(x, t) ∈ RN ×R.

Using the above inequality, (V1) and choosing ξ ∈ (0, V0), we obtain

¨

R2N

|ũn(x) − ũn(y)|p−2(ũn(x) − ũn(y))((ũnũ
q(β−1)
n,L )(x) − (ũnũ

q(β−1)
n,L )(y))

|x− y|N+sp
dxdy

+
¨

R2N

|ũn(x) − ũn(y)|q−2(ũn(x) − ũn(y))((ũnũ
q(β−1)
n,L )(x) − (ũnũ

q(β−1)
n,L )(y))

|x− y|N+sq
dxdy

≤ C

ˆ

RN

|ũn|q
∗
s ũ

q(β−1)
n,L dx. (45)

Let us define

λ(t) := |t|q
q

and Γ(t) :=
tˆ

0

(γ′(τ))
1
q dτ.

Since γ is an increasing function, we can infer

(a− b)(γ(a) − γ(b)) ≥ 0 for any a, b ∈ R.

Combining the above inequality with the Jensen inequality we have

λ′(a− b)(γ(a) − γ(b)) ≥ |Γ(a) − Γ(b)|q for any a, b ∈ R,

from which

|Γ(ũn)(x) − Γ(ũn)(y)|q ≤ |ũn(x) − ũn(y)|q−2(ũn(x) − ũn(y))((ũnũ
q(β−1)
n,L )(x) − (ũnũ

q(β−1)
n,L )(y)).

We can also note that Γ(ũn) ≥ 1
β ũnũ

β−1
n,L . Thus, by the Sobolev inequality we deduce that

¨ |ũn(x) − ũn(y)|q−2(ũn(x) − ũn(y))((ũnũ
q(β−1)
n,L )(x) − (ũnũ

q(β−1)
n,L )(y))

|x− y|N+sq
dxdy
R2N
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≥ [Γ(ũn)]qs,q ≥ S∗|Γ(ũn)|qq∗s ≥ S∗
βq

|ũnũ
β−1
n,L |qq∗s , (46)

where S∗ denotes the Sobolev constant of the embedding W s,q(RN ) ⊂ Lq∗s (RN ).
On the other hand, we can see that

¨

R2N

|ũn(x) − ũn(y)|p−2(ũn(x) − ũn(y))((ũnũ
q(β−1)
n,L )(x) − (ũnũ

q(β−1)
n,L )(y))

|x− y|N+sp
dxdy

=
¨

R2N

|ũn(x) − ũn(y)|p−2(ũn(x) − ũn(y))[(ũn(x) − ũn(y))ũq(β−1)
n,L (x) + ũn(y)(ũq(β−1)

n,L (x) − ũ
q(β−1)
n,L (y))]

|x− y|N+sp
dxdy

=
¨

R2N

|ũn(x) − ũn(y)|p
|x− y|N+sp

ũ
q(β−1)
n,L (x) dxdy

+
¨

R2N

|ũn(x) − ũn(y)|p−2 (ũn(x) − ũn(y)) ũn(y) (ũq(β−1)
n,L (x) − ũ

q(β−1)
n,L (y))

|x− y|N+sp
dxdy ≥ 0. (47)

Indeed,

¨

R2N

|ũn(x) − ũn(y)|p−2 (ũn(x) − ũn(y)) ũn(y) (ũq(β−1)
n,L (x) − ũ

q(β−1)
n,L (y))

|x− y|N+sp
dxdy

=
ˆ

{ũn(x)≥L}

ˆ

{ũn(y)≤L}

|ũn(x) − ũn(y)|p−2 (ũn(x) − ũn(y)) ũn(y) (ũq(β−1)
n,L (x) − ũ

q(β−1)
n,L (y))

|x− y|N+sp
dxdy

+
ˆ

{ũn(x)≤L}

ˆ

{ũn(y)≤L}

|ũn(x) − ũn(y)|p−2 (ũn(x) − ũn(y)) ũn(y) (ũq(β−1)
n,L (x) − ũ

q(β−1)
n,L (y))

|x− y|N+sp
dxdy

+
ˆ

{ũn(x)≥L}

ˆ

{ũn(y)≥L}

|ũn(x) − ũn(y)|p−2 (ũn(x) − ũn(y)) ũn(y) (ũq(β−1)
n,L (x) − ũ

q(β−1)
n,L (y))

|x− y|N+sp
dxdy

+
ˆ

{ũn(x)≤L}

ˆ

{ũn(y)≥L}

|ũn(x) − ũn(y)|p−2 (ũn(x) − ũn(y)) ũn(y) (ũq(β−1)
n,L (x) − ũ

q(β−1)
n,L (y))

|x− y|N+sp
dxdy

=: I + II + III + IV.

Note that III = 0, and that I ≥ 0. Indeed, when ũn(x) ≥ L and ũn(y) ≤ L we have

ũn(x) − ũn(y) ≥ ũn(x) − L ≥ 0 and ũ
q(β−1)
n,L (x) − ũ

q(β−1)
n,L (y) = Lq(β−1) − ũq(β−1)

n (y) ≥ 0.

On the other hand, when ũn(x) ≤ L and ũn(y) ≤ L, we can see that

(ũn(x) − ũn(y))(ũq(β−1)
n,L (x) − ũ

q(β−1)
n,L (y)) = (ũn(x) − ũn(y))(ũq(β−1)

n (x) − ũq(β−1)
n (y)) ≥ 0,

then II ≥ 0. Finally, when ũn(x) ≤ L and ũn(y) ≥ L, we have

ũn(x) − ũn(y) ≤ L− ũn(y) ≤ 0 and ũ
q(β−1)
n,L (x) − ũ

q(β−1)
n,L (y) = ũq(β−1)

n (x) − Lq(β−1) ≤ 0,
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which gives IV ≥ 0. Putting together (45), (46) and (47), we conclude that

|ũnũ
β−1
n,L |qq∗s ≤ Cβq

ˆ

RN

ũ
q∗s
n ũ

q(β−1)
n,L dx. (48)

Take β = q∗s
q and fix R > 0. Then,

ˆ

RN

ũ
q∗s
n ũ

q∗s−q
n,L dx =

ˆ

RN

ũ
q∗s−q
n

(
ũnũ

q∗s−q

q

n,L

)q

dx

=
ˆ

{ũn≤R}

ũ
q∗s−q
n

(
ũnũ

q∗s−q

q

n,L

)q

dx +
ˆ

{ũn≥R}

ũ
q∗s−q
n

(
ũnũ

q∗s−q

q

n,L

)q

dx

=: I1 + I2.

Since 0 ≤ ũn,L ≤ ũn, we can see that

I1 ≤
ˆ

{ũn≤R}

Rq∗s−qũ
q∗s
n dx,

and applying Hölder’s inequality with q∗s
q∗s−q and q

∗
s

q , we have

I2 ≤

⎛⎜⎝ ˆ

{ũn≥R}

ũ
q∗s
n dx

⎞⎟⎠
q∗s−q

q∗s ⎛⎝ ˆ

RN

(ũnũ
q∗s−q

q∗s
n,L )q

∗
s dx

⎞⎠
q
q∗s

.

Since {ũn}n∈N strongly converges in YV0 , we can take R sufficiently large such that

⎛⎜⎝ ˆ

{ũn≥R}

ũ
q∗s
n dx

⎞⎟⎠
q∗s−q

q∗s

≤ εβ−q,

and consequently

I2 ≤ εβ−q

⎛⎝ ˆ

RN

(ũnũ
q∗s−q

q∗s
n,L )q

∗
s dx

⎞⎠
q
q∗s

.

Summing up, by the estimates for I1 and I2, we obtain

ˆ

RN

ũ
q∗s
n ũ

q∗s−q
n,L dx ≤

ˆ

RN

Rq∗s−qũ
q∗s
n dx + εβ−q

⎛⎝ ˆ

RN

(ũnũ
q∗s−q

q∗s
n,L )q

∗
s dx

⎞⎠
q
q∗s

. (49)

Combining (48) with (49) we can infer that⎛⎝ ˆ

RN

(ũnũ
q∗s−q

q

n,L )q
∗
s dx

⎞⎠
q
q∗s

≤ Cβq

ˆ

RN

Rq∗s−qũ
q∗s
n dx + Cε

⎛⎝ ˆ

RN

(ũnũ
q∗s−q

q∗s
n,L )q

∗
s dx

⎞⎠
q
q∗s

.
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Note that, choosing 0 < ε < 1
C , we have

⎛⎝ ˆ

RN

(ũnũ
q∗s−q

q

n,L )q
∗
s dx

⎞⎠
q
q∗s

≤ C̄βq

ˆ

RN

Rq∗s−qũ
q∗s
n dx < ∞,

and taking the limit as L → ∞ we deduce that ũn ∈ L
(q∗s )2

q (RN ).
Using 0 ≤ ũn,L ≤ ũn and letting L → ∞ in (48), we get

|ũn|βqβq∗s ≤ Cβq

ˆ

RN

ũ
q∗s+q(β−1)
n dx,

which yields

⎛⎝ ˆ

RN

ũ
βq∗s
n dx

⎞⎠
1

q(β−1)

≤ (C̄β)
1

β−1

⎛⎝ ˆ

RN

ũ
q∗s+q(β−1)
n dx

⎞⎠
1

q(β−1)

. (50)

For m ≥ 1, we set

q∗s + q(βm+1 − 1) = βm q∗s and β1 = q∗s
q
.

In particular

βm+1 = βm
1 (β1 − 1) + 1,

and limm→∞ βm = ∞. Let us define

Km :=

⎛⎝ ˆ

RN

ũ
q∗sβm
n dx

⎞⎠
1

q∗s (βm−1)

.

Then (50) reads as

Km+1 ≤ (C̄βm+1)
1

βm+1−1Km.

A standard iteration argument shows that there exists C0 > 0, independent of m, such that

Km+1 ≤
m∏

k=1

(C̄βk+1)
1

βk+1−1 K1 ≤ C0K1.

Taking the limit as m → ∞ we conclude that |ũn|∞ ≤ C uniformly in n ∈ N. Now, we note that ũn is such 
that

(−Δ)spũn + (−Δ)sqũn = hn in RN ,

where

hn := −V (εn x + εn ỹn)(ũp−1
n + ũq−1

n ) + g(εn x + εn ỹn, ũn).
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Using the growth assumptions on g, Corollary 2.1, and that {ũn}n∈N is uniformly bounded in L∞(RN ) ∩YV0 , 
we can deduce that ũn(x) → 0 as |x| → ∞ uniformly in n ∈ N. �

Finally, we give the proof of the main result of this work.

Proof of Theorem 1.1. Fix δ > 0 sufficiently small such that Mδ ⊂ Λ.

Claim. There exists ε̃δ > 0 such that for any ε ∈ (0, ̃εδ) and any solution uε ∈ Ñε of (13), it holds

|uε|L∞(Λc
ε) < a. (51)

We argue by contradiction. Thus, there exists a subsequence {εn}n∈N such that εn → 0, uεn ∈ Ñεn such 
that I ′

εn(uεn) = 0 and

|uεn |L∞(Λc
εn

) ≥ a. (52)

It is clear that Iεn(uεn) → dV0 as in the first part of the proof of Lemma 3.5. Then, by Lemma 3.5, we can 
find {ỹn}n∈N ⊂ RN such that ũn := uεn(· + ỹn) → ũ in YV0 and εn ỹn → y0 ∈ M .

Now, taking r > 0 such that Br(y0) ⊂ B2r(y0) ⊂ Λ, we get B r
εn

( y0
εn

) ⊂ Λεn . Moreover, for any y ∈
B r

εn
(ỹn), it holds

∣∣∣∣y − y0

εn

∣∣∣∣ ≤ |y − ỹn| +
∣∣∣∣ỹn − y0

εn

∣∣∣∣ < 1
εn

(r + on(1)) < 2r
εn

for n sufficiently large.

For these values of n, we have Λc
εn ⊂ Bc

r
εn

(ỹn). On the other hand, by (44), we know that

ũn(x) → 0 as |x| → ∞ uniformly in n ∈ N,

so we can find R > 0 such that

ũn(x) < a for any |x| ≥ R ,n ∈ N.

Accordingly,

uεn(x) < a for any x ∈ Bc
R(ỹn) , n ∈ N.

On the other hand, there exists ν ∈ N such that for any n ≥ ν it holds

Λc
εn ⊂ Bc

r
εn

(ỹn) ⊂ Bc
R(ỹn).

Therefore, we deduce that uεn(x) < a for any x ∈ Λc
εn and n ≥ ν, which is impossible due to (52). This 

ends the proof of the claim.
Let ε̄δ > 0 given by Theorem 3.2, and fix ε ∈ (0, εδ), where εδ := min{ε̃δ, ̄εδ}. In the light of Theorem 3.2, 

we know that (13) admits at least catMδ
(M) nontrivial solutions. Let us denote by uε one of these solutions. 

Since uε ∈ Ñε satisfies (51), by the definition of g it follows that uε is also a solution of (3). Hence, (3) has 
at least catMδ

(M) nontrivial solutions.
Next, we study the behavior of the maximum points of solutions of (3). Take εn → 0 and consider a 

sequence {un}n∈N ⊂ Xεn of solutions to (13) as above. Let us observe that (g1) implies that we can find 
γ ∈ (0, a) such that
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g(ε x, t)t ≤ V0

K
(tp + tq) for any x ∈ RN , 0 ≤ t ≤ γ. (53)

Arguing as before, we can find R > 0 such that

|un|L∞(Bc
R(ỹn)) < γ. (54)

Moreover, up to extract a subsequence, we may assume that

|un|L∞(BR(ỹn)) ≥ γ. (55)

Indeed, if (55) does not hold, it follows from (54) that |un|∞ < γ. Then, combining 〈I ′
εn(un), un〉 = 0 with 

(53), we obtain

‖un‖pVεn ,p + ‖un‖qVεn ,q ≤
ˆ

RN

g(εn x, un)un dx ≤ V0

K

ˆ

RN

(|un|p + |un|q) dx

that is ‖un‖Xεn
= 0, which does not make sense. Accordingly, (55) holds true.

Taking into account (54) and (55), we can deduce that if pn is a global maximum point of un then 
pn = ỹn + qn, for some qn ∈ BR. Consequently, εn pn → y0 ∈ M and using the continuity of V we obtain 
that V (εn pn) → V (y0) = V0 as n → ∞. This ends the proof of Theorem 1.1. �
Remark 4. We suspect that it is possible to prove that the solutions u of (3) have a polynomial decay at 
infinity of the type 0 < u(x) ≤ C

|x|σ for |x| � 1, where σ = σ(N, s, p, q) > 0.
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