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Let p ∈ Cα
loc��N� with p > 0 and let f ∈ C1��0;∞�; �0;∞�� be such that

limu↘0 f �u�/u = +∞, f is bounded at infinity, and the mapping u 7−→ f �u�/�u+β�
is decreasing on �0;∞�, for some β > 0. We prove that the problem −1u =
p�x�f �u� in �N , N > 2, has a unique positive C2+α

loc ��N� solution that vanishes
at infinity provided

∫∞
0 r8�r�dr < ∞, where 8�r� = max �p�x�y �x� = r�. Further-

more, it is showed that this condition is nearly optimal. Our results extend previous
works by Lair–Shaker and Zhang, while the proofs are based on two theorems
on bounded domains, due to Brezis–Oswald and Crandall–Rabinowitz–Tartar.
© 1999 Academic Press

1. INTRODUCTION

Consider the problem

−1u = p�x�f �u� in �N

u > 0 in �N

u�x� → 0 as � x �→ ∞;
(1)

where N > 2 and the function p satisfies the following hypotheses:

(p1) p ∈ Cαloc��N� for some α ∈ �0; 1�.
(p2) p > 0 in �N:

This problem has been intensively studied in the case where f �u� = u−γ,
with γ > 0. For instance, in the case of a bounded domain � ⊂ �N , Lazer
and McKenna proved in [7] that the problem

−1u = p�x�u−γ; in �;
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has a unique classical solution if p is a sufficiently smooth function that is
positive on �. The existence of entire positive solutions on �N for γ ∈ �0; 1�
and under certain additional hypotheses has been established by Edelson
[4] and Kusano–Swanson [5]. For instance, Edelson proved the existence of
a solution provided that∫ ∞

1
rN−1+λ�N−2�8�r�dr <∞;

for some λ ∈ �0; 1�, where 8�r� = max�x�=r p�x�. This result is generalized
for any γ > 0 via the sub- and super solutions method in Shaker [8] or by
other methods by Dalmasso [3]. Lair and Shaker continued in [6] the study
of (1) for f �u� = u−γ, γ > 0. They proved the existence of a solution under
the hypothesis

(p3)
∫∞

0 r ·8�r�dr <∞, where 8�r� = max�x�=r p�x�:
Zhang studied in [9] the case of a nonlinearity f ∈ C1��0;∞�; �0;∞��

that decreases on �0;∞� and satisfies limu↘0 f �u� = +∞.
Our aim is to extend the results of Lair, Shaker and Zhang for the case

of a nonlinearity that is not necessarily decreasing on �0;∞�. More ex-
actly, let f x �0;∞� → �0;∞� be a C1 function that satisfies the following
assumptions:

(f1) There exists β > 0 such that the mapping u 7−→ f �u�/�u+ β� is
decreasing on �0;∞�.

(f2) limu↘0 f �u�/u = +∞ and f is bounded in a neighborhood
of +∞.

Our main result is the following:

Theorem 1. Under hypotheses (f1), (f2), (p1)–(p3), problem (1) has a
unique positive global solution u ∈ C2+α

loc ��N�:

Theorem 1 shows that (p3) is sufficient for the existence of the unique
solution to problem (1). The following result shows that condition (p3) is
nearly necessary.

Theorem 2. Suppose p is a positive radial function that is continuous on
�N and satisfies ∫ ∞

0
rp�r�dr = ∞:

Then problem (1) has no positive radial solution.
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2. UNIQUENESS

Suppose u and v are arbitrary solutions of problem (1). Let us show
that u ≤ v or, equivalently, ln�u�x� + β� ≤ ln�v�x� + β�, for any x ∈ �N .
Assume the contrary. Since we have

lim
�x�→∞

�ln�u�x� + β� − ln�v�x� + β�� = 0;

we deduce that max�N �ln�u�x� + β� − ln�v�x� + β�� exists and is positive.
At that point, say x0, we have

∇�ln�u�x0� + β� − ln�v�x0� + β�� = 0;

so

1
u�x0� + β

· ∇u�x0� =
1

v�x0� + β
· ∇v�x0�: (2)

By (f1) we obtain

f �u�x0��
u�x0� + β

<
f �v�x0��
v�x0� + β

: (3)

So, by (2) and (3),

0 ≥ 1�ln�u�x0� + β� − ln�v�x0� + β��

= 1
u�x0� + β

· 1u�x0� −
1

v�x0� + β
· 1v�x0�

− 1
�u�x0� + β�2

· �∇u�x0��2 +
1

�v�x0� + β�2
· �∇v�x0��2

= 1
u�x0� + β

1u�x0� −
1

v�x0� + β
1v�x0�

= −p�x0�
(
f �u�x0��
u�x0� + β

− f �v�x0��
v�x0� + β

)
> 0;

which is a contradiction. Hence u ≤ v. A similar argument can be made to
produce v ≤ u, forcing u = v.

3. EXISTENCE

We first show that our hypothesis (f1) implies that limu↘0 f �u� exists,
finite or +∞. Indeed, since f �u�/�u+ β� is decreasing, there exists L x=
limu↘0 f �u�/�u+ β� ∈ �0;+∞�. It follows that limu↘0 f �u� = Lβ.
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To prove the existence of a solution to (1), we need to employ a corre-
sponding result by Brezis and Oswald (see [1]) for bounded domains. They
considered the problem

−1u = g�x; u� in �

u ≥ 0; u 6≡ 0 in �

u = 0 on ∂�;

(4)

where � ⊂ �N is a bounded domain with smooth boundary and g�x; u�x
�× �0;∞� → �.

Assume that

for a.e. x ∈ � the function u→ g�x; u� is continuous on �0;∞�
and the function u→ g�x; u�/u is decreasing on �0;∞�y (5)

for each u ≥ 0 the function x→ g�x; u� belongs to L∞���y (6)

∃C > 0 such that g�x; u� ≤ C�u+ 1� a.e. x ∈ �; ∀u ≥ 0: (7)

Set

a0�x� = lim
u↘0

g�x; u�/u and a∞�x� = lim
u→∞ g�x; u�/u;

so that −∞ < a0�x� ≤ +∞ and −∞ ≤ a∞�x� < +∞:
Under these hypotheses on g, Brezis and Oswald proved in [1] that there

is at most one solution of (4). Moreover, a solution of (4) exists if and only if

λ1�−1− a0�x�� < 0 (8)

and

λ1�−1− a∞�x�� > 0; (9)

where λ1�−1 − a�x�� denotes the first eigenvalue of the operator −1 −
a�x� with zero Dirichlet condition. The precise meaning of λ1�−1− a�x�� is

λ1�−1− a�x�� = inf
ϕ∈H1

0 ; �ϕ�2=1

(∫
�∇ϕ�2 −

∫
�ϕ 6=0�

aϕ2
)
:

Note that
∫
�ϕ 6=0� aϕ

2 makes sense if a�x� is any measurable function such
that either a�x� ≤ C or a�x� ≥ −C a.e. on �:

Let us consider the problem

−1uk = p�x�f �uk�; if � x �< k;
uk�x� = 0; if � x �= k:

(10)
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The following two distinct situations may occur:

Case 1: f is bounded on �0;∞�. In this case, as we have initially ob-
served, limu↘0 f �u� exists and it is finite, so f can be extended by continuity
at the origin.

To obtain a solution to problem (10), it is enough to verify that the
hypotheses of the Brezis–Oswald theorem are fulfilled. Obviously, (5) and
(6) hold. Now, using (p1), (p2), and the fact that f is bounded, we easily
deduce that (7) is satisfied. We observe that a0�x� = limu↘0 p�x�f �u�/u =
+∞ and a∞�x� = limu→+∞ p�x�f �u�/u = 0: Then (8) and (9) are also
fulfilled. Thus by Theorem 1 in [1] problem (10) has a unique solution uk,
which, by the maximum principle, is positive in �x� < k.

Case 2: limu↘0 f �u� = +∞. We will apply the method of sub- and su-
persolutions to find a solution to the problem (10). We first observe that 0
is a subsolution for this problem.

We construct in what follows a positive supersolution. By the bounded-
ness of f in a neighborhood of +∞, there exists A > 0 such that f �u� ≤ A,
for any u ∈ �1;+∞�. Let f0x �0; 1� → �0;+∞� be a continuous nonincreas-
ing function such that f0 ≥ f on �0; 1�. We can assume without loss of
generality that f0�1� = A. Set

g�u� =
{
f0�u�; if 0 < u ≤ 1;
A; if u > 1:

Then g is a continuous nonincreasing function on �0;+∞�. Let hx �0;∞�→
�0;∞� be a C1 nonincreasing function such that h ≥ g. Thus, by Theorem
1.1 in [2], the problem{−1U = p�x�h�U� if � x �< k;

U = 0; if � x �= k;
has a positive solution. Now, since h ≥ f on �0;+∞�, it follows that U is
a supersolution for problem (10).

In both cases studied above we define uk = 0 for �x� > k. Using a max-
imum principle argument as already done above to prove the uniqueness,
we can show that uk ≤ uk+1 on �N:

We now prove the existence of a positive function v ∈ C2��N� for which
uk ≤ v on �N: As in [6] we construct first a positive radially symmetric
function w such that −1w = 8�r� (r =� x �) on �N and limr→∞w�r� = 0:
We obtain

w�r� = K −
∫ r

0
ζ1−n

∫ ζ
0
σn−18�σ�dσ dζ;
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where

K =
∫ ∞

0
ζ1−n

∫ ζ
0
σn−18�σ�dσ dζ; (11)

provided the integral is finite. Integration by parts gives∫ r
0
ζ1−n

∫ ζ
0
σn−18�σ�dσ dζ

= −�n− 2�−1
∫ r

0

d

dζ
ζ2−n

∫ ζ
0
σn−18�σ�dσ dζ

= �n− 2�−1
(
−r2−n

∫ r
0
σn−18�σ�dσ +

∫ r
0
ζ8�ζ�dζ

)
: (12)

Now, by l’Hôpital’s rule, we have

lim
r→∞

(
−r2−n

∫ r
0
σn−18�σ�dσ +

∫ r
0
ζ8�ζ�dζ

)
= lim

r→∞
− ∫ r0 σn−18�σ�dσ + rn−2

∫ r
0 ζ8�ζ�dζ

rn−2

= lim
r→∞

∫ r
0
ζ8�ζ�dζ =

∫ ∞
0
ζ8�ζ�dζ <∞:

It follows that K = 1/�n− 2� · ∫∞0 ζ8�ζ�dζ <∞.
Clearly, we have

w�r� < 1
n− 2

·
∫ ∞

0
ζ8�ζ�dζ ∀r > 0:

Let v be a positive function such that w�r� = �1/c� · ∫ v�r�0 t/f �t�dt; where
c > 0 will be chosen such that Kc ≤ ∫ c0 t/f �t�dt:

We prove that we can find c > 0 with this property.
By our hypothesis (f2) we obtain that limx→∞

∫ x
0 t/f �t�dt = +∞. Now

using l’Hôpital’s rule, we have

lim
x→∞

∫ x
0 t/f �t�dt

x
= lim

x→∞
x

f �x� = +∞:

From this we deduce that there exists x1 > 0 such that
∫ x

0 t/f �t�dt ≥ Kx
for all x ≥ x1: It follows that for any c ≥ x1 we have Kc ≤ ∫ c0 t/f �t�dt:

But w is a decreasing function, and this implies that v is a decreasing
function, too. Then∫ v�r�

0

t

f �t�dt ≤
∫ v�0�

0

t

f �t�dt = c ·w�0� = c ·K ≤
∫ c

0

t

f �t�dt:

It follows that v�r� ≤ c for all r > 0.
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From w�r� → 0 as r →∞ we deduce that v�r� → 0 as r →∞:
By the choice of v we have

∇w = 1
c
· v

f �v�∇v and 1w = 1
c

v

f �v�1v +
1
c

(
v

f �v�
)′
�∇v�2: (13)

The hypothesis u 7−→ f �u�/�u+ β� is a decreasing function on �0;∞� im-
plies that u 7−→ f �u�/u is a decreasing function on �0;∞�: From (13) we
deduce that

1v < c
f �v�
v
1w = −c f �v�

v
8�r� ≤ −f �v�8�r�: (14)

By (10) and (14) and using in an essential manner the hypothesis (f1), as
already done for proving the uniqueness, we obtain that uk ≤ v for �x� ≤ k
and, hence, for all �N:

Now we have a bounded increasing sequence,

u1 ≤ u2 ≤ · · · ≤ uk ≤ uk+1 ≤ · · · ≤ v;
with v vanishing at infinity. Thus there exists a function, say u ≤ v, such
that uk→ u pointwise in �N:

Now, using the same argument as in [6], it is easy to prove that u ∈
C2+α

loc ��N�, and thus u is a classical solution of problem (1).

4. PROOF OF THEOREM 2

Suppose (1) has such a solution, u�r�: Then

u′′�r� + n− 1
r

u′�r� = −f �u�r��p�r�:

We set ln�u�r� + 1� = ũ�r� > 0 for all r > 0:

1ũ�r� = 1
u�r� + 1

1u�r� − 1
�u�r� + 1�2 �∇u�

2:

Then ũ�r� satisfies

ũ′′ + n− 1
r

ũ′ + 1
�u�r� + 1�2 �∇u�

2 = − f �u�r��
u�r� + 1

p�r�: (15)

Multiplying Eq. (15) by rn−1 and integrating on �0; ζ� yields

ũ′�ζ�ζn−1 +
∫ ζ

0

σn−1

�u�σ� + 1�2 �∇u�
2dσ = −

∫ ζ
0

f �u�σ��
u�σ� + 1

p�σ�σn−1dσ: (16)
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Now we multiply (16) by ζ1−n and integrate over �0; r�: Hence

ũ�r� − ũ�0� +
∫ r

0
ζ1−n

∫ ζ
0

σn−1

�u�σ� + 1�2 �∇u�
2dσ dζ

= −
∫ r

0
ζ1−n

∫ ζ
0

f �u�σ��
u�σ� + 1

p�σ�σn−1dσ dζ:

We observe that ũ�r� < ũ�0� ∀r > 0 implies u�r� < u�0� ∀r > 0:
If β ≥ 1 then the function u 7−→ f �u�/�u+ 1� is decreasing on �0;∞�:

This implies

f �u�σ��
u�σ� + 1

>
f �u�0��
u�0� + 1

: (17)

Since ũ is positive, we have∫ r
0
ζ1−n

∫ ζ
0

f �u�σ��
u�σ� + 1

p�σ�σn−1dσ dζ ≤ ũ�0� for all r > 0:

Substituting (17) into this expression, we obtain∫ r
0
ζ1−n

∫ ζ
0
p�σ�σn−1dσ dζ ≤ u�0� + 1

f �u�0�� ũ�0� <∞:

We can use integration by parts and l’Hôpital’s rule (as we did in proving
that the integral in (11) is finite) to rewrite this as

1
n− 2

lim
r→∞

∫ r
0
tp�t�dt ≤ u�0� + 1

f �u�0�� ũ�0� <∞;

contradicting the hypothesis.
If β < 1 then the function u 7−→ �u+ β�/�u+ 1� is increasing on �0;∞�:

In this case we have

ũ�0� >
∫ r

0
ζ1−n

∫ ζ
0

f �u�σ��
u�σ� + 1

p�σ�σn−1dσ dζ

=
∫ r

0
ζ1−n

∫ ζ
0

f �u�σ��
u�σ� + β ·

u�σ� + β
u�σ� + 1

p�σ�σn−1dσ dζ

≥ f �u�0��
u�0� + ββ

∫ r
0
ζ1−n

∫ ζ
0
p�σ�σn−1dσ dζ;

which implies∫ r
0
ζ1−n

∫ ζ
0
p�σ�σn−1dσ dζ <

ũ�0��u�0� + β�
β · f �u�0�� <∞ for all r > 0:
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We obtain again that

1
n− 2

lim
r→∞

∫ r
0
tp�t�dt ≤ u�0� + β

β · f �u�0�� ũ�0� <∞;

contradicting the hypothesis.
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