Existence and Non-existence Results for a Quasilinear Problem with Nonlinear Boundary Condition

Florica-Corina Şt. Cîrstea and Vicenţiu D. Rădulescu
Department of Mathematics, University of Craiova, 1100 Craiova, Romania

Submitted by R. E. Showalter
Received December 23, 1998

We study the problem

$$
\begin{gathered}
-\operatorname{div}\left(a(x)|\nabla u|^{p-2} \nabla u\right)=\lambda(1+|x|)^{\alpha_{1}}|u|^{q-2} u-h(x)|u|^{r-2} u \quad \text { in } \Omega \subset \mathbb{R}^{N}, \\
a(x)|\nabla u|^{p-2} \nabla u \cdot n+b(x) \cdot|u|^{p-2} u=\theta g(x, u) \quad \text { on } \Gamma, \\
u \geq 0 \quad \text { in } \Omega
\end{gathered}
$$

where Ω is an unbounded domain with smooth boundary Γ, n denotes the unit outward normal vector on Γ, and $\lambda>0, \theta$ are real parameters. We assume throughout that $p<q<r<p^{*}=\frac{p N}{N-p}, 1<p<N,-N<\alpha_{1}<q \cdot \frac{N-p}{p}-N$, while a, b, and h are positive functions. We show that there exist an open interval I and $\lambda^{*}>0$ such that the problem has no solution if $\theta \in I$ and $\lambda \in\left(0, \lambda^{*}\right)$. Furthermore, there exist an open interval $J \subset I$ and $\lambda_{0}>0$ such that, for any $\theta \in J$, the above problem has at least a solution if $\lambda \geq \lambda_{0}$, but it has no solution provided that $\lambda \in\left(0, \lambda_{0}\right)$. Our paper extends previous results obtained by \mathbf{J}. Chabrowski and K. Pflüger. © 2000 Academic Press

1. PRELIMINARIES

Let $\Omega \subset \mathbb{R}^{N}$ be an unbounded domain with smooth boundary Γ. We assume throughout this paper that p, q, r, and α_{1} are real numbers satisfying

$$
\begin{gather*}
1<p<N, \quad p<q<r<p^{*}:=\frac{p N}{N-p} \\
-N<\alpha_{1}<q \cdot \frac{N-p}{p}-N \tag{1}
\end{gather*}
$$

Denote by $C_{\delta}^{\infty}(\Omega)$ the space of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$-functions restricted to Ω. We define the weighted Sobolev space E as the completion of $C_{\delta}^{\infty}(\Omega)$ in the norm

$$
\|u\|_{E}=\left(\int_{\Omega}|\nabla u(x)|^{p}+\frac{1}{(1+|x|)^{p}}|u(x)|^{p} d x\right)^{1 / p} .
$$

Denote by $L^{q}\left(\Omega ; w_{1}\right)$ and $L^{m}\left(\Gamma ; w_{2}\right)$ the weighted Lebesgue spaces with weight functions

$$
\begin{equation*}
w_{i}(x)=(1+|x|)^{\alpha_{i}}, \quad i=1,2, \quad \alpha_{i} \in \mathbb{R} \tag{2}
\end{equation*}
$$

and norms defined by

$$
\|u\|_{q, w_{1}}^{q}=\int_{\Omega} w_{1}|u(x)|^{q} d x \quad \text { and } \quad\|u\|_{m, w_{2}}^{m}=\int_{\Gamma} w_{2}|u(x)|^{m} d \Gamma .
$$

The following embedding and trace result holds.
Proposition 1. Assume (1) holds. Then the embedding $E \subset L^{q}\left(\Omega ; w_{1}\right)$ is compact. If

$$
\begin{equation*}
p \leq m \leq p \cdot \frac{N-1}{N-p} \text { and }-N<\alpha_{2} \leq m \cdot \frac{N-p}{p}-N+1, \tag{3}
\end{equation*}
$$

then the trace operator $E \rightarrow L^{m}\left(\Gamma ; w_{2}\right)$ is continuous. If the upper bounds for m in (3) are strict, then the trace is compact.

This proposition is a consequence of Theorem 2 and Corollary 6 of [4]. We assume throughout that $a \in L^{\infty}(\Omega)$ and $b \in L^{\infty}(\Gamma)$ such that

$$
\begin{equation*}
a(x) \geq a_{0}>0 \quad \text { for a.e. } x \in \Omega \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{c}{(1+|x|)^{p-1}} \leq b(x) & \leq \frac{C}{(1+|x|)^{p-1}}, \\
& \text { for a.e. } x \in \Gamma, \text { where } c, C>0 . \tag{5}
\end{align*}
$$

Lemma 1. The quantity

$$
\|u\|_{b}^{p}=\int_{\Omega} a(x)|\nabla u|^{p} d x+\int_{\Gamma} b(x)|u|^{p} d \Gamma
$$

defines an equivalent norm on E.

For the proof of this result we refer to [3, Lemma 2].
Let $h: \Omega \rightarrow \mathbb{R}$ be a positive and continuous function satisfying

$$
\begin{equation*}
\int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x<\infty \tag{6}
\end{equation*}
$$

We assume that $g: \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function that satisfies the following conditions:
(g1) $g(\cdot, 0)=0, g(x, s)+g(x,-s) \geq 0$ for a.e. $x \in \Gamma$ and for any $s \in \mathbb{R}$;
(g2) $|g(x, s)| \leq g_{0}(x)+g_{1}(x)|s|^{m-1}, p \leq m<p \cdot \frac{N-1}{N-p}$, where g_{i} are nonnegative, measurable functions such that

$$
0 \leq g_{i}(x) \leq C_{g} w_{2} \quad \text { a.e., } \quad g_{0} \in L^{m /(m-1)}\left(\Gamma ; w_{2}^{1 /(1-m)}\right),
$$

where $-N<\alpha_{2}<m \cdot \frac{N-p}{p}-N+1$ and w_{2} is defined as in (2).
Let G be the primitive function of g with respect to the second variable. We denote by N_{g}, N_{G} the corresponding Nemytskii operators.

Lemma 2. The operators

$$
N_{g}: L^{m}\left(\Gamma ; w_{2}\right) \rightarrow L^{m /(m-1)}\left(\Gamma ; w_{2}^{1 /(1-m)}\right), \quad N_{G}: L^{m}\left(\Gamma ; w_{2}\right) \rightarrow L^{1}(\Gamma)
$$

are bounded and continuous.
Proof. Let $m^{\prime}=m /(m-1)$ and $u \in L^{m}\left(\Gamma ; w_{2}\right)$. Then, by (g2),

$$
\begin{aligned}
& \int_{\Gamma}\left|N_{g}(u)\right|^{m^{\prime}} \cdot w_{2}^{1 /(1-m)} d \Gamma \\
& \quad \leq 2^{m^{\prime}-1}\left(\int_{\Gamma} g_{0}^{m^{\prime}} \cdot w_{2}^{1 /(1-m)} d \Gamma+\int_{\Gamma} g_{1}^{m^{\prime}}|u|^{m} \cdot w_{2}^{1 /(1-m)} d \Gamma\right) \\
& \quad \leq 2^{m^{\prime}-1}\left(C+C_{g} \cdot \int_{\Gamma}|u|^{m} \cdot w_{2} d \Gamma\right),
\end{aligned}
$$

which shows that N_{g} is bounded. In a similar way we obtain

$$
\begin{aligned}
\int_{\Gamma}\left|N_{G}(u)\right| d \Gamma \leq & \int_{\Gamma} g_{0}|u| d \Gamma+\int_{\Gamma} g_{1}|u|^{m} d \Gamma \\
\leq & \left(\int_{\Gamma} g_{0}^{m^{\prime}} \cdot w_{2}^{1 /(1-m)} d \Gamma\right)^{1 / m^{\prime}} \cdot\left(\int_{\Gamma}|u|^{m} \cdot w_{2} d \Gamma\right)^{1 / m} \\
& +C_{g} \cdot \int_{\Gamma}|u|^{m} \cdot w_{2} d \Gamma
\end{aligned}
$$

and we claim that N_{G} is bounded.

From the usual properties of Nemytskii operators we deduce the continuity of these operators.

Set

$$
X=\left\{u \in E: \int_{\Omega} h(x)|u|^{r} d x<\infty\right\}
$$

endowed with the norm

$$
\|u\|_{X}^{p}=\|u\|_{b}^{p}+\left(\int_{\Omega} h(x)|u(x)|^{r} d x\right)^{p / r} .
$$

We observe that X is a Banach space.
Consider the problem

$$
\left(1_{\lambda, \theta}\right)\left\{\begin{array}{l}
-\operatorname{div}\left(a(x)|\nabla u|^{p-2} \nabla u\right)=\lambda(1+|x|)^{\alpha_{1}}|u|^{q-2} u-h(x)|u|^{r-2} u \\
\text { in } \Omega \subset \mathbb{R}^{N}, \\
a(x)|\nabla u|^{p-2} \nabla u \cdot n+b(x) \cdot|u|^{p-2} u=\theta g(x, u) \\
\text { on } \Gamma, \\
u \geq 0 \quad \text { in } \Omega .
\end{array}\right.
$$

The energy functional corresponding to $\left(1_{\lambda, \theta}\right)$ is given by $\Phi: X \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\Phi(u)= & \frac{1}{p} \int_{\Omega} a(x)|\nabla u|^{p} d x+\frac{1}{p} \int_{\Gamma} b(x)|u|^{p} d \Gamma-\frac{\lambda}{q} \int_{\Omega} w_{1}|u|^{q} d x \\
& +\frac{1}{r} \int_{\Omega} h(x)|u|^{r} d x-\theta \int_{\Gamma} G(x, u) d \Gamma .
\end{aligned}
$$

Proposition 1 shows that the embedding $E \subset L^{q}\left(\Omega ; w_{1}\right)$ is continuous. This implies that the functional Φ is well defined. Solutions to problem ($1_{\lambda, \theta}$) will be found as critical points of Φ. Therefore, a function $u \in X$ is a solution of the problem ($1_{\lambda, \theta}$) provided that, for any $v \in X$,

$$
\begin{aligned}
& \int_{\Omega} a|\nabla u|^{p-2} \nabla u \cdot \nabla v+\int_{\Gamma} b|u|^{p-2} u v \\
& \quad=\lambda \int_{\Omega} w_{1}|u|^{q-2} u v-\int_{\Omega} h|u|^{r-2} u v+\theta \int_{\Gamma} g v .
\end{aligned}
$$

2. MAIN RESULTS

Theorem 1. Assume hypotheses (1), (4), (5), (6), (g1), and (g2) hold. Then there exist real numbers θ_{*}, θ^{*}, and $\lambda^{*}>0$ such that the problem
$\left(1_{\lambda, \theta}\right)$ does not have a nontrivial solution, for any $\theta_{*}<\theta<\theta^{*}$ and $0<\lambda$ $<\lambda^{*}$.

Proof. Suppose that u is a solution in X of $\left(1_{\lambda, \theta}\right)$. Then u satisfies

$$
\begin{align*}
& \int_{\Omega} a(x)|\nabla u|^{p} d x+\int_{\Gamma} b(x)|u|^{p} d \Gamma-\theta \int_{\Gamma} g(x, u) u d \Gamma+\int_{\Omega} h(x)|u|^{r} d x \\
& \quad=\lambda \int_{\Omega} w_{1}|u|^{q} d x \tag{7}
\end{align*}
$$

It follows from the Young inequality that

$$
\begin{aligned}
\lambda \int_{\Omega} w_{1}|u|^{q} d x & =\int_{\Omega} \frac{\lambda w_{1}}{h^{q / r}} \cdot h^{q / r}|u|^{q} d x \\
& \leq \frac{r-q}{r} \lambda^{r /(r-q)} \int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x+\frac{q}{r} \int_{\Omega} h|u|^{r} d x .
\end{aligned}
$$

This combined with (7) gives

$$
\begin{align*}
\|u\|_{b}^{p}-\theta \int_{\Gamma} g(x, u) u d \Gamma & \leq \frac{r-q}{r} \lambda^{r /(r-q)} \int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x+\frac{q-r}{r} \int_{\Omega} h|u|^{r} d x \\
& \leq \frac{r-q}{r} \lambda^{r /(r-q)} \int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x . \tag{8}
\end{align*}
$$

Set

$$
\begin{gather*}
A=\left\{u \in X: \int_{\Gamma} g(x, u) u d \Gamma<0\right\}, \\
B=\left\{u \in X: \int_{\Gamma} g(x, u) u d \Gamma>0\right\} \tag{9}\\
\theta_{*}=\sup _{u \in A} \frac{\|u\|_{b}^{p}}{\int_{\Gamma} g(x, u) u d \Gamma}, \quad \theta^{*}=\inf _{u \in B} \frac{\|u\|_{b}^{p}}{\int_{\Gamma} g(x, u) u d \Gamma} .
\end{gather*}
$$

We introduce the convention that if $A=\varnothing$ then $\theta_{*}=-\infty$ and if $B=\varnothing$ then $\theta^{*}=+\infty$.

We show that if we take $\theta_{*}<\theta<\theta^{*}$ then there exists $C_{0}>0$ such that

$$
\begin{equation*}
C_{0}\|u\|_{b}^{p} \leq\|u\|_{b}^{p}-\theta \int_{\Gamma} g(x, u) u d \Gamma \quad \text { for all } u \in X . \tag{10}
\end{equation*}
$$

If $\theta<\theta^{*}$ then there exists a constant $C_{1} \in(0,1)$ such that

$$
\theta \leq\left(1-C_{1}\right) \theta^{*} \leq\left(1-C_{1}\right) \frac{\|u\|_{b}^{p}}{\int_{\Gamma} g(x, u) u d \Gamma} \quad \text { for all } u \in B
$$

which implies that

$$
\begin{equation*}
\|u\|_{b}^{p}-\theta \int_{\Gamma} g(x, u) u d \Gamma \geq C_{1}\|u\|_{b}^{p} \quad \text { for all } u \in B . \tag{11}
\end{equation*}
$$

If $\theta_{*}<\theta$ then there exists a constant $C_{2} \in(0,1)$ such that

$$
\left(1-C_{2}\right) \frac{\|u\|_{b}^{p}}{\int_{\Gamma} g(x, u) u d \Gamma} \leq\left(1-C_{2}\right) \theta_{*} \leq \theta \quad \text { for all } u \in A
$$

which yields

$$
\begin{equation*}
\|u\|_{b}^{p}-\theta \int_{\Gamma} g(x, u) u d \Gamma \geq C_{2}\|u\|_{b}^{p} \quad \text { for all } u \in A \tag{12}
\end{equation*}
$$

From (11) and (12) we conclude that

$$
\|u\|_{b}^{p}-\theta \int_{\Gamma} g(x, u) u d \Gamma \geq \min \left\{C_{1}, C_{2}\right\}\|u\|_{b}^{p} \quad \text { for all } u \in X
$$

and taking $C_{0}=\min \left\{C_{1}, C_{2}\right\}$ we obtain (10).
By (7), (10), and Proposition 1 we have

$$
\begin{equation*}
C_{0} \bar{C}\left(\int_{\Omega} w_{1}|u|^{q} d x\right)^{p / q} \leq C_{0}\|u\|_{b}^{p} \leq \lambda \int_{\Omega} w_{1}|u|^{q} d x \tag{13}
\end{equation*}
$$

for some constant $\bar{C}>0$. This inequality implies

$$
\left(\bar{C} \lambda^{-1} C_{0}\right)^{q /(q-p)} \leq \int_{\Omega} w_{1}|u|^{q} d x
$$

which combined with (13) leads to the inequality

$$
C_{0} \bar{C}\left(\bar{C} \lambda^{-1} C_{0}\right)^{p /(q-p)} \leq C_{0}\|u\|_{b}^{p} .
$$

Combining this with (8) and (10) we obtain that

$$
C_{0} \bar{C}\left(\bar{C} \lambda^{-1} C_{0}\right)^{p /(q-p)} \leq \frac{r-q}{r} \lambda^{r /(r-q)} \int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x .
$$

If we take

$$
\lambda^{*}=\left(\left(C_{0} \bar{C}\right)^{q /(q-p)} \frac{r}{r-q}\left(\int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x\right)^{-1}\right)^{(r-q)(q-p) / q(r-p)}
$$

the result follows.
Set

$$
\begin{align*}
U=\left\{u \in X: \int_{\Gamma} G(x, u) d \Gamma<0\right\}, & V=\left\{u \in X: \int_{\Gamma} G(x, u) d \Gamma>0\right\} \\
\theta_{-}=\sup _{u \in U} \frac{\|u\|_{b}^{p}}{p \int_{\Gamma} G(x, u) d \Gamma}, & \theta^{+}=\inf _{u \in V} \frac{\|u\|_{b}^{p}}{p \int_{\Gamma} G(x, u) d \Gamma} . \tag{14}
\end{align*}
$$

If $U=\varnothing\left(\right.$ resp. $V=\varnothing$) then we set $\theta_{-}=-\infty$ (resp. $\left.\theta^{+}=+\infty\right)$. Proceeding in the same manner as we did for proving (10) we can show that if we take $\theta_{-}<\theta<\theta^{+}$then there exists $c>0$ such that

$$
\begin{equation*}
\frac{1}{p}\|u\|_{b}^{p}-\theta \int_{\Gamma} G(x, u) d \Gamma \geq c\|u\|_{b}^{p} \quad \text { for all } u \in X . \tag{15}
\end{equation*}
$$

In what follows, we shall employ the following elementary inequality: for every $h>0, k>0$, and $0<\beta<\gamma$ we have

$$
\begin{equation*}
k|u|^{\beta}-h|u|^{\gamma} \leq C_{\beta, \gamma} k\left(\frac{k}{h}\right)^{\beta /(\gamma-\beta)} \tag{16}
\end{equation*}
$$

for all $u \in \mathbb{R}$, where $C_{\beta, \gamma}>0$ is a constant depending on β and γ.
Proposition 2. If $\theta_{-}<\theta<\theta^{+}$then the functional Φ is coercive.
Proof. By virtue of (16) we write the estimate

$$
\begin{aligned}
\int_{\Omega}\left(\frac{\lambda}{q}|u|^{q} w_{1}-\frac{h}{2 r}|u|^{r}\right) d x & \leq C_{r, q} \int_{\Omega} \lambda w_{1}\left(\frac{\lambda w_{1}}{h}\right)^{q /(r-q)} d x \\
& =C_{r, q} \lambda^{r /(r-q)} \int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x
\end{aligned}
$$

Using (15) it follows that

$$
\begin{aligned}
\Phi(u)= & \frac{1}{p}\|u\|_{b}^{p}-\theta \int_{\Gamma} G(x, u) d \Gamma-\int_{\Omega}\left(\frac{\lambda}{q}|u|^{q} w_{1}-\frac{h}{2 r}|u|^{r}\right) d x \\
& +\frac{1}{2 r} \int_{\Omega} h|u|^{r} d x \\
\geq & c\|u\|_{b}^{p}+\frac{1}{2 r} \int_{\Omega} h|u|^{r} d x-C_{1}
\end{aligned}
$$

and the coercivity follows.
Proposition 3. Suppose $\theta_{-}<\theta<\theta^{+}$and let $\left\{u_{n}\right\}$ be a sequence in X such that $\Phi\left(u_{n}\right)$ is bounded. Then there exists a subsequence of $\left\{u_{n}\right\}$, relabelled again by $\left\{u_{n}\right\}$, such that $u_{n} \rightharpoonup u_{0}$ in X and

$$
\Phi\left(u_{0}\right) \leq \liminf _{n \rightarrow \infty} \Phi\left(u_{n}\right) .
$$

Proof. Since Φ is coercive in X we see that the boundedness of $\Phi\left(u_{n}\right)$ implies that $\left\|u_{n}\right\|_{b}$ and $\int_{\Omega} h\left|u_{n}\right|^{r} d x$ are bounded. From Proposition 1 we have that the embedding $E \subset L^{q}\left(\Omega ; w_{1}\right)$ is compact and using the fact that $\left\{u_{n}\right\}$ is bounded in E we may assume that $u_{n} \rightharpoonup u_{0}$ in E and $u_{n} \rightarrow u_{0}$ in $L^{q}\left(\Omega ; w_{1}\right)$.

Set $F(x, u)=\frac{\lambda}{q}|u|^{q} w_{1}-\frac{1}{r} h|u|^{r}$ and $f(x, u)=F_{u}(x, u)$.
A simple computation yields

$$
\begin{align*}
f_{u}(x, u) & =(q-1) \lambda|u|^{q-2} w_{1}-(r-1) h|u|^{r-2} \\
& \leq C_{r, q} \lambda w_{1}\left(\frac{\lambda w_{1}}{h}\right)^{(q-2) /(r-q)}, \tag{17}
\end{align*}
$$

where the last inequality follows from (16) and $C_{r, q}>0$ is a constant depending only on r and q. We now use (17) to derive the estimate for $\Phi\left(u_{0}\right)-\Phi\left(u_{n}\right)$,

$$
\begin{aligned}
\Phi\left(u_{0}\right) & -\Phi\left(u_{n}\right) \\
= & \frac{1}{p} \int_{\Omega} a(x)\left|\nabla u_{0}\right|^{p} d x+\frac{1}{p} \int_{\Gamma} b(x)\left|u_{0}\right|^{p} d \Gamma \\
& -\frac{1}{p} \int_{\Omega} a(x)\left|\nabla u_{n}\right|^{p} d x-\frac{1}{p} \int_{\Gamma} b(x)\left|u_{n}\right|^{p} d \Gamma
\end{aligned}
$$

$$
\begin{aligned}
&-\theta \int_{\Gamma} G\left(x, u_{0}\right) d \Gamma+\theta \int_{\Gamma} G\left(x, u_{n}\right) d \Gamma \\
&+\int_{\Omega}\left(F\left(x, u_{n}\right)-F\left(x, u_{0}\right)\right) d x \\
&= \frac{1}{p}\left(\left\|u_{0}\right\|_{b}^{p}-\left\|u_{n}\right\|_{b}^{p}\right) \\
&+\theta\left(\int_{\Gamma} G\left(x, u_{n}\right) d \Gamma-\int_{\Gamma} G\left(x, u_{0}\right) d \Gamma\right) \\
&+\int_{\Omega}\left(\int_{0}^{1} \int_{0}^{s} f_{u}\left(x, u_{0}+t\left(u_{n}-u_{0}\right)\right) d t d s\right) \\
& \quad \times\left(u_{n}-u_{0}\right)^{2} d x \\
& \leq \frac{1}{p}\left(\left\|u_{0}\right\|_{b}^{p}-\left\|_{n}\right\|_{b}^{p}\right)+\theta\left(\int_{\Gamma} G\left(x, u_{n}\right) d \Gamma-\int_{\Gamma} G\left(x, u_{0}\right) d \Gamma\right) \\
&+C_{2} \int_{\Omega}\left(u_{n}-u_{0}\right)^{2} \frac{w_{1}^{(r-2) /(r-q)}}{h^{(q-2) /(r-q)}} d x,
\end{aligned}
$$

where $C_{2}=\frac{1}{2} C_{r, q} \lambda^{(r-2) /(r-q)}$. We show that the last integral tends to 0 as $n \rightarrow \infty$. Indeed, applying Hölder's inequality we obtain

$$
\begin{aligned}
\int_{\Omega}\left(u_{n}-u_{0}\right)^{2} \frac{w_{1}^{(r-2) /(r-q)}}{h^{(q-2) /(r-q)}} d x \leq & \left(\int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x\right)^{(q-2) / q} \\
& \cdot\left(\int_{\Omega} w_{1}\left|u_{n}-u_{0}\right|^{q} d x\right)^{2 / q}
\end{aligned}
$$

Since $u_{n} \rightarrow u_{0}$ in $L^{q}\left(\Omega ; w_{1}\right)$ we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left(u_{n}-u_{0}\right)^{2} \frac{w_{1}^{(r-2) /(r-q)}}{h^{(q-2) /(r-q)}} d x=0 \tag{18}
\end{equation*}
$$

The compactness of the trace operator $E \rightarrow L^{m}\left(\Gamma ; w_{2}\right)$ and the continuity of the Nemytskii operator $N_{G}: L^{m}\left(\Gamma ; w_{2}\right) \rightarrow L^{1}(\Gamma)$ imply $N_{G}\left(u_{n}\right) \rightarrow N_{G}\left(u_{0}\right)$ in $L^{1}(\Gamma)$, i.e., $\int_{\Gamma}\left|N_{G}\left(u_{n}\right)-N_{G}\left(u_{0}\right)\right| d \Gamma \rightarrow 0$ as $n \rightarrow \infty$. It follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Gamma} G\left(x, u_{n}\right) d \Gamma=\int_{\Gamma} G\left(x, u_{0}\right) d \Gamma \tag{19}
\end{equation*}
$$

Since the norm in E is lower semicontinuous with respect to the weak topology we deduce from (18) and (19) that

$$
\Phi\left(u_{0}\right) \leq \liminf _{n \rightarrow \infty} \Phi\left(u_{n}\right) .
$$

Proposition 4. If $\theta_{*}<\theta<\theta^{*}$ and u is a solution of problem $\left(1_{\lambda, \theta}\right)$, then

$$
C_{0}\|u\|_{b}^{p}+\frac{r-q}{r} \int_{\Omega} h|u|^{r} d x \leq \frac{r-q}{r} \lambda^{r /(r-q)} \int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x
$$

and

$$
\|u\|_{b} \geq K \lambda^{-1 /(q-p)},
$$

where $K>0$ is a constant independent of u.
Proof. If u is a solution of $\left(1_{\lambda, \theta}\right)$ then

$$
\begin{aligned}
\|u\|_{b}^{p} & -\theta \int_{\Gamma} g(x, u) u d \Gamma+\int_{\Omega} h|u|^{r} d x \\
& =\lambda \int_{\Omega} w_{1}|u|^{q} d x \\
& \leq \frac{r-q}{r} \lambda^{r /(r-q)} \int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x+\frac{q}{r} \int_{\Omega} h|u|^{r} d x .
\end{aligned}
$$

Using (10) we obtain the first part of the assertion.
From Proposition 1 we have that there exists $C_{q}>0$ such that

$$
\|u\|_{L^{q}\left(\Omega ; w_{1}\right)}^{q} \leq C_{1}\|u\|_{b}^{q}, \quad \text { for all } u \in E .
$$

This inequality and (10) imply that

$$
\|u\|_{b} \geq C_{0}^{1 /(q-p)} C_{q}^{-1 /(q-p)} \lambda^{-1 /(q-p)}
$$

and taking $K=C_{0}^{1 /(q-p)} C_{q}^{-1 /(q-p)}$ the second part follows.
Theorem 2. Assume hypotheses (1), (4), (5), (6), (g1), and (g2) hold. Set $\underline{\theta}=\max \left\{\theta_{*}, \theta_{-}\right\}, \bar{\theta}=\min \left\{\theta^{*}, \theta^{+}\right\}$, and $J=(\underline{\theta}, \bar{\theta})$. There exists $\lambda_{0}>0$ such that the following hold:
(i) the problem ($1_{\lambda, \theta}$) admits a nontrivial solution, for any $\lambda \geq \lambda_{0}$ and every $\theta \in J$;
(ii) the problem $\left(1_{\lambda, \theta}\right)$ does not have any nontrivial solution, provided that $0<\lambda<\lambda_{0}$ and $\theta \in J$.

Proof. According to Propositions 2 and 3, Φ is coercive and lower semicontinuous. Therefore there exists $\tilde{u} \in X$ such that $\Phi(\tilde{u})=\inf _{X} \Phi(u)$. To ensure that $\tilde{u} \not \equiv 0$ we shall prove that $\inf _{X} \Phi<0$. We set

$$
\begin{array}{r}
\tilde{\lambda}:=\inf \left\{\frac{q}{p}\|u\|_{b}^{p}-q \theta \int_{\Gamma} G(x, u) d \Gamma+\frac{q}{r} \int_{\Omega} h|u|^{r} d x: u \in X,\right. \\
\left.\int_{\Omega} w_{1}|u|^{q} d x=1\right\} .
\end{array}
$$

First we check that $\tilde{\lambda}>0$. In order to prove that we consider the constrained minimization problem

$$
M:=\inf \left\{\int_{\Omega} a(x)|\nabla u|^{p} d x+\int_{\Gamma} b(x)|u|^{p} d \Gamma: u \in E, \int_{\Omega} w_{1}|u|^{q} d x=1\right\} .
$$

Clearly, $M>0$. Since X is embedded in E, we have

$$
\int_{\Omega} a(x)|\nabla u|^{p} d x+\int_{\Gamma} b(x)|u|^{p} d \Gamma \geq M
$$

for all $u \in X$ with $\int_{\Omega} w_{1}|u|^{q} d x=1$. Now, applying the Hölder inequality we find

$$
\begin{align*}
1 & =\int_{\Omega} w_{1}|u|^{q} d x=\int_{\Omega} \frac{w_{1}}{h^{q / r}} h^{q / r}|u|^{q} d x \\
& \leq\left(\int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x\right)^{(r-q) / r} \cdot\left(\int_{\Omega} h|u|^{r} d x\right)^{q / r} . \tag{20}
\end{align*}
$$

Relation (15) implies that

$$
\frac{q}{p}\|u\|_{b}^{p}-q \theta \int_{\Gamma} G(x, u) d \Gamma \geq q c\|u\|_{b}^{p} .
$$

By virtue of (20) we have

$$
\begin{aligned}
& \frac{q}{p}\|u\|_{b}^{p}-q \theta \int_{\Gamma} G(x, u) d \Gamma+\frac{q}{r} \int_{\Omega} h|u|^{r} d x \\
& \quad \geq q c\|u\|_{b}^{p}+\frac{q}{r} \int_{\Omega} h|u|^{r} d x \\
& \quad \geq q c M+\frac{q}{r}\left(\int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x\right)^{-(r-q) / q}
\end{aligned}
$$

for all $u \in X$ with $\int_{\Omega} w_{1}|u|^{q} d x=1$. It follows that

$$
\tilde{\lambda} \geq q c M+\frac{q}{r}\left(\int_{\Omega} \frac{w_{1}^{r /(r-q)}}{h^{q /(r-q)}} d x\right)^{-(r-q) / q}
$$

and our claim follows.
Let $\lambda>\tilde{\lambda}$. Then there exists a function $u \in X$ with $\int_{\Omega} w_{1}|u|^{q} d x=1$ such that

$$
\lambda>\frac{q}{p}\|u\|_{b}^{p}-q \theta \int_{\Gamma} G(x, u) d \Gamma+\frac{q}{r} \int_{\Omega} h|u|^{r} d x .
$$

This can be rewritten as

$$
\Phi(u)=\frac{1}{p}\|u\|_{b}^{p}-\theta \int_{\Gamma} G(x, u) d \Gamma+\frac{1}{r} \int_{\Omega} h|u|^{r} d x-\frac{\lambda}{q} \int_{\Omega} w_{1}|u|^{q} d x<0
$$

and consequently $\inf _{u \in X} \Phi(u)<0$. By Propositions 2 and 3 it follows that the problem $\left(1_{\lambda, \theta}\right)$ has a solution.
We set

$$
\lambda_{0}=\inf \left\{\lambda>0:\left(1_{\lambda, \theta}\right) \text { admits a solution }\right\} .
$$

Suppose $\lambda_{0}=0$. Then taking $\lambda_{1} \in\left(0, \lambda^{*}\right)$ (where λ^{*} is given by Theorem 1) we have that there is $\bar{\lambda}$ such that the problem ($1_{\bar{\lambda}, \theta}$) admits a solution. But this is a contradiction, according to Theorem 1. Consequently, $\lambda_{0}>0$.

We now show that for each $\lambda>\lambda_{0}$ problem ($1_{\lambda, \theta}$) admits a solution. Indeed, for every $\lambda>\lambda_{0}$ there exists $\rho \in\left(\lambda_{0}, \lambda\right)$ such that the problem $\left(1_{\rho, \theta}\right)$ has a solution u_{ρ} which is a subsolution of problem ($1_{\lambda, \theta}$). We consider the variational problem

$$
\inf \left\{\Phi(u): u \in X \text { and } u \geq u_{\rho}\right\} .
$$

By Propositions 2 and 3 this problem admits a solution \bar{u}. This minimizer \bar{u} is a solution of problem $\left(1_{\lambda, \theta}\right)$. Since the hypothesis $g(x, s)+g(x,-s) \geq 0$ for a.e. $x \in \Gamma$ and for all $s \in \mathbb{R}$ implies that $G(x,|\bar{u}|) \geq G(x, \bar{u})$ (that is, $\Phi(|\bar{u}|) \leq \Phi(\bar{u}))$ we may assume that $\bar{u} \geq 0$ on Ω. It remains to show that problem ($1_{\lambda_{0}, \theta}$) also has a solution. Let $\lambda_{n} \rightarrow \lambda_{0}$ and $\lambda_{n}>\lambda_{0}$ for each n. Problem ($1_{\lambda_{n}, \theta}$) has a solution u_{n} for each n. By Proposition 4 the sequence $\left\{u_{n}\right\}$ is bounded in X. Therefore we may assume that $u_{n} \rightharpoonup u_{0}$ in X and $u_{n} \rightarrow u_{0}$ in $L^{q}\left(\Omega ; w_{1}\right)$. We have that u_{0} is a solution of $\left(1_{\lambda_{0}, \theta}\right)$.

Since u_{n} and u_{0} are solutions of $\left(1_{\lambda_{n}, \theta}\right)$ and $\left(1_{\lambda_{0}, \theta}\right)$, respectively, we have

$$
\begin{aligned}
& \int_{\Omega} a(x)\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}\right)\left(\nabla u_{n}-\nabla u_{0}\right) d x \\
& \quad+\int_{\Gamma} b(x)\left(\left|u_{n}\right|^{p-2} u_{n}-\left|u_{0}\right|^{p-2} u_{0}\right)\left(u_{n}-u_{0}\right) d \Gamma \\
& \quad+\int_{\Omega} h\left(\left|u_{n}\right|^{r-2} u_{n}-\left|u_{0}\right|^{r-2} u_{0}\right)\left(u_{n}-u_{0}\right) d x \\
& = \\
& \lambda_{n} \int_{\Omega} w_{1}\left(\left|u_{n}\right|^{q-2} u_{n}-\left|u_{0}\right|^{q-2} u_{0}\right)\left(u_{n}-u_{0}\right) d x \\
& \quad+\left(\lambda_{n}-\lambda_{0}\right) \int_{\Omega} w_{1}\left|u_{0}\right|^{q-2} u_{0}\left(u_{n}-u_{0}\right) d x \\
& \quad+\theta \int_{\Gamma}\left(g\left(x, u_{n}\right)-g\left(x, u_{0}\right)\right)\left(u_{n}-u_{0}\right) d \Gamma \\
& = \\
& J_{1, n}+J_{2, n}+J_{3, n}
\end{aligned}
$$

where

$$
\begin{aligned}
& J_{1, n}=\lambda_{n} \int_{\Omega} w_{1}\left(\left|u_{n}\right|^{q-2} u_{n}-\left|u_{0}\right|^{q-2} u_{0}\right)\left(u_{n}-u_{0}\right) d x, \\
& J_{2, n}=\left(\lambda_{n}-\lambda_{0}\right) \int_{\Omega} w_{1}\left|u_{0}\right|^{q-2} u_{0}\left(u_{n}-u_{0}\right) d x, \\
& J_{3, n}=\theta \int_{\Gamma}\left(g\left(x, u_{n}\right)-g\left(x, u_{0}\right)\right)\left(u_{n}-u_{0}\right) d \Gamma .
\end{aligned}
$$

We have

$$
\left|J_{1, n}\right| \leq \sup _{n \geq 1} \lambda_{n}\left(\int_{\Omega} w_{1}\left|u_{n}\right|^{q-1}\left|u_{n}-u_{0}\right| d x+\int_{\Omega} w_{1}\left|u_{0}\right|^{q-1}\left|u_{n}-u_{0}\right| d x\right)
$$

and it follows from the Hölder inequality that

$$
\begin{aligned}
\left|J_{1, n}\right| \leq \sup _{n \geq 1} \lambda_{n} & {\left[\left(\int_{\Omega} w_{1}\left|u_{n}\right|^{q} d x\right)^{(q-1) / q} \cdot\left(\int_{\Omega} w_{1}\left|u_{n}-u_{0}\right|^{q} d x\right)^{1 / q}\right.} \\
& \left.+\left(\int_{\Omega} w_{1}\left|u_{0}\right|^{q} d x\right)^{(q-1) / q} \cdot\left(\int_{\Omega} w_{1}\left|u_{n}-u_{0}\right|^{q} d x\right)^{1 / q}\right] .
\end{aligned}
$$

We easily observe that $J_{1, n} \rightarrow 0$ as $n \rightarrow \infty$.

From the estimate

$$
\left|J_{2, n}\right| \leq\left|\lambda_{n}-\lambda_{0}\right|\left(\int_{\Omega} w_{1}\left|u_{0}\right|^{q} d x\right)^{(q-1) / q} \cdot\left(\int_{\Omega} w_{1}\left|u_{n}-u_{0}\right|^{q} d x\right)^{1 / q}
$$

we obtain that $J_{2, n} \rightarrow 0$ as $n \rightarrow \infty$.
Using the compactness of the trace operator $E \rightarrow L^{m}\left(\Gamma ; w_{2}\right)$, the continuity of Nemytskii operator $N_{g}: L^{m}\left(\Gamma ; w_{2}\right) \rightarrow L^{m /(m-1)}\left(\Gamma ; w_{2}^{1 /(1-m)}\right)$, and the estimate

$$
\begin{aligned}
& \int_{\Gamma}\left|g\left(x, u_{n}\right)-g\left(x, u_{0}\right)\right| \cdot\left|u_{n}-u_{0}\right| d \Gamma \\
& \leq\left(\int_{\Gamma}\left|g\left(x, u_{n}\right)-g\left(x, u_{0}\right)\right|^{m /(m-1)} w_{2}^{1 /(1-m)} d \Gamma\right)^{(m-1) / m} \\
& \cdot\left(\int_{\Gamma} w_{2}\left|u_{n}-u_{0}\right|^{m} d \Gamma\right)^{1 / m}
\end{aligned}
$$

we see that $J_{3, n} \rightarrow 0$ as $n \rightarrow \infty$.
We have so proved that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\int_{\Omega} a(x)\right. & \left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}\right)\left(\nabla u_{n}-\nabla u_{0}\right) d x \\
& \left.+\int_{\Gamma} b(x)\left(\left|u_{n}\right|^{p-2} u_{n}-\left|u_{0}\right|^{p-2} u_{0}\right)\left(u_{n}-u_{0}\right) d \Gamma\right)=0
\end{aligned}
$$

Now we apply the following inequality for $\xi, \zeta \in \mathbb{R}^{N}$ (see [2, Lemma 4.10])

$$
|\xi-\zeta|^{p} \leq C\left(|\xi|^{p-2} \xi-|\zeta|^{p-2} \zeta\right)(\xi-\zeta), \quad \text { for } p \geq 2
$$

Then we obtain

$$
\begin{aligned}
&\left\|u_{n}-u_{0}\right\|_{b}^{p}= \int_{\Omega} a(x)\left|\nabla u_{n}-\nabla u_{0}\right|^{p} d x+\int_{\Gamma} b(x)\left|u_{n}-u_{0}\right|^{p} d x \\
& \leq C\left(\int_{\Omega} a(x)\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}\right)\left(\nabla u_{n}-\nabla u_{0}\right) d x\right. \\
&\left.+\int_{\Gamma} b(x)\left(\left|u_{n}\right|^{p-2} u_{n}-\left|u_{0}\right|^{p-2} u_{0}\right)\left(u_{n}-u_{0}\right) d \Gamma\right) \rightarrow 0 \\
& \text { as } n \rightarrow \infty
\end{aligned}
$$

which shows that $\left\|u_{n}\right\|_{b} \rightarrow\left\|u_{0}\right\|_{b}$ and, by Proposition $4, u_{0} \not \equiv 0$. In the case $1<p<2$ we obtain the same conclusion, by using the corresponding
inequality (see [2, Lemma 4.10])

$$
|\xi-\zeta|^{2} \leq C\left(|\xi|^{p-2} \xi-|\zeta|^{p-2} \zeta\right)(\xi-\zeta)(|\xi|+|\zeta|)^{2-p},
$$

for any $\xi, \zeta \in \mathbb{R}^{N}$. This concludes our proof.

REFERENCES

1. J. Chabrowski, Elliptic variational problems with indefinite nonlinearities, Topol. Methods Nonlinear Anal. 9 (1997), 221-231.
2. J. I. Diaz, "Nonlinear Partial Differential Equations and Free Boundaries. Elliptic Equations," Pitman, Boston, 1986.
3. K. Pflüger, Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electron. J. Differential Equations 10 (1998), 1-13.
4. K. Pflüger, Compact traces in weighted Sobolev spaces, Analysis 18 (1998), 65-83.
