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Zhisu Liu a, Vicenţiu D. Rădulescu b,c,∗, Chunlei Tang d, Jianjun Zhang e

a Center for Mathematical Sciences, China University of Geosciences, Wuhan, Hubei, 430074, PR China
b Faculty of Applied Mathematics, AGH University of Science and Technology, 30-059 Kraków, Poland

c Department of Mathematics, University of Craiova, 200585 Craiova, Romania
d School of Mathematics and Statistics, Southwest University, Chongqing 400715, PR China

e College of Mathematics and Statistics, Chongqing Jiaotong University Chongqing 400074, PR China

Received 28 February 2022; accepted 21 April 2022

Abstract

In this paper, we focus on the existence of positive solutions to the following planar Schrödinger-Newton 
system with general subcritical growth

{ −�u + u + φu = f (u) in R2,

�φ = u2 in R2,

where f is a smooth reaction. We introduce a new variational approach, which enables us to study the 
above problem in the Sobolev space H 1(R2). The analysis developed in this paper also allows to investigate 
the relationship between a Schrödinger-Newton system of Riesz-type and a Schrödinger-Newton system of 
logarithmic-type. Furthermore, this new approach can provide a new look at the planar Schrödinger-Newton 
system and may it have some potential applications in various related problems.
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1. Introduction and results

1.1. Overview

The Schrödinger-Newton system was intensively studied by Penrose [41] and it can be used 
to describe the quantum mechanics of a polaron at rest. Penrose also derived these equations as 
a model of self-gravitating matter, in which quantum state reduction is understood as a gravi-
tational phenomenon. The underlying idea is that a linear superposition of two quantum states 
would give rise to two space-time geometries, which poses serious conceptual problems from 
the viewpoint of general relativity; see Penrose [40]. Penrose thus suggested that the collapse 
of the wave function might be related to gravitational effects, and proposed the (stationary) 
Schrödinger-Newton system as a possible candidate for such gravitationally-induced collapse. 
The Schrödinger-Newton system was also used by Choquard to describe an electron trapped in 
its own hole in a certain approximating to Hartree-Fock theory of one component plasma; see 
Lieb [29].

Consider the following nonlinear Schrödinger-Newton system

⎧⎨
⎩ ih̄

∂ψ

∂t
= h̄2

2m
�ψ − φψ + |ψ |p−2ψ in Rd ×R,

−�φ = λ|ψ |2 in Rd ×R,

(1.1)

where λ = 1 if d ≥ 3, λ = −1 if d = 2, i is the imaginary unit, h̄ is the Planck constant. For d = 3, 
m > 0 stands for the mass of the particle, ψ : R3 × [0, T ] → C is a wave function and such a 
system often appears in quantum mechanics models and semiconductor theory (see [31,32]) and 
also arises, for example, as a model of the interaction of a charged particle with the electrostatic 
field (see [5,8]).

The Schrödinger-Newton system is a usual Schrödinger equation coupled with a Newtonian 
potential, satisfying the Poisson equation and representing the interaction of the particle with its 
own gravitational field. In the literature, the Schrödinger-Newton system is also referred to as the 
Schrödinger-Poisson system. One of most interesting questions about problem (1.1) concerns the 

existence of stationary solutions ψ(x, t) = u(x)e
− iEt

h̄ (for any (x, t) ∈ Rd ×R), where u :Rd →
R is a real function to be found. Thus, u must solve

⎧⎨
⎩ − h̄2

2m
�u + V (x)u + φu = f (u) in Rd,

−�φ = λu2 in Rd .

(1.2)

The second equation in system (1.2) is called the Poisson equation, which can be solved by

φ(x) = λ�d(x) ∗ u2(x) = λ

∫
d

�d(x − y)u2(y)dy,
R
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where �d is the Newtonian kernel in dimension d , and is expressed by

�d(x) =
{

1
2π

ln 1
|x| , d = 2,

1
d(d−2)ωd

|x|2−d , d ≥ 3.

Here, ωd is the volume of the unit d-ball.
Under such a formal inversion of the second equation in system (1.2), we obtain the following 

non-local equation

−�u + V (x)u + λ(�d ∗ |u|2)u = f (u) in Rd . (1.3)

Formally, problem (1.3) has a variational structure with the associated energy functional

Id(u) = 1

2

∫
Rd

(
|∇u|2 + V (x)u2

)
dx + λ

4

∫
Rd

∫
Rd

�d

(
|x − y|2

)
u2(x)u2(y)dxdy −

∫
Rd

F (u)dx,

where F(u) = ∫ u

0 f (s)ds.
In the case d = 3, Id is well defined and of class C1 in H 1(Rd), provided that V ∈ L∞(Rd). 

In the literature, by applying variational and topological methods, the existence, nonexistence, 
multiplicity and concentrating results of (1.3) have been investigated when f and V satisfy 
various assumptions, see e.g. [4,7,8,17,26,28,33,34,42,45] and the references therein. However, 
compared with the higher dimensional case d ≥ 3, in dimension two, the fundamental solution 
�2(x) = 1

2π
ln |x| is sign-changing and presents singularities at zero and infinity. So, the two-

dimensional case seems much more delicate. In particular, unlike the higher dimensional cases, 
in the planar case d = 2, the corresponding energy functional is not well-defined on H 1(R2). 
Precisely, the energy functional I2 involves a convolution term

∫
R2

∫
R2

ln(|x − y|)u2(x)u2(y)dxdy,

which is not well defined for all u ∈ H 1(R2). Therefore, the approaches dealing with higher 
dimensional cases seem difficult to be adapted to the case d = 2. So, the rigorous study of the 
planar Schrödinger-Newton system had remained open for a long time. This is why much less is 
known in the case d = 2. Recall that Choquard, Stubbe and Vuffray [22] proved the existence of 
a unique positive radially symmetric solution to (1.3) with d = 2 and f (x, u) = 0 by applying 
a shooting method. In [43], Stubbe introduced a variational framework for (1.3) with d = 2 and 
V (x) ≡ 1 by setting a weighted Sobolev space

X :=

⎧⎪⎨
⎪⎩u ∈ H 1(R2) :

∫
R2

ln(1 + |x|)|u(x)|2dx < +∞

⎫⎪⎬
⎪⎭ ,

endowed with the norm
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‖u‖2
X =

∫
R2

(
|∇u|2 + |u|2

)
dx +

∫
R2

ln(1 + |x|)|u(x)|2dx,

which yields that the associated energy functional is well-defined and continuously differentiable 
on the space X. One of the main ingredients in [43] is to set a suitable working space for the 
planar Schrödinger-Newton system. Formally, one has the following decomposition

∫
R2

∫
R2

ln(|x − y|)u2(x)u2(y)dxdy +
∫
R2

∫
R2

ln

(
1 + 1

|x − y|
)

u2(x)u2(y)dxdy

=
∫
R2

∫
R2

ln (1 + |x − y|) u2(x)u2(y)dxdy.

By the Hardy-Littlewood-Sobolev inequality [30], for any u ∈ H 1(R2), the quantity∫
R2

∫
R2

ln(|x − y|)u2(x)u2(y)dxdy

is finite if ∫
R2

ln(1 + |x|)u2(x)dx

is finite. When f (u) = 0 and d = 2 in (1.3), Stubbe used strict rearrangement inequalities to 
prove that (1.3) has a unique ground state solution which is a positive and spherically symmetric 
decreasing function. In studying the planar Schrödinger-Newton system in the underlying space 
X, one of main obstacles is that the norm ‖ ·‖X lacks translation invariance. This makes problems 
tough in verifying the compactness via the concentration-compactness principle. This difficulty 
can be overcome via the symmetric bilinear form∫

R2

∫
R2

ln (1 + |x − y|)u(x)v(y)dxdy.

When f (u) = |u|p−2u and d = 2 in problem (1.3), a sequence of higher energy solutions are 
obtained by Cingolani and Weth [23] for p ≥ 4 in a periodic setting, where the corresponding en-
ergy functional is invariant under Z2-translations. For p ∈ (2, 4), we refer to Du and Weth [24]. 
Under the above variational framework in [43], Chen and Tang in [20] considered the planar 
Schrödinger-Newton system in the axially symmetric setting. By using Jeanjean’s monotonicity 
trick [27] and a Nehari-Pohozaev manifold, they proved that there exists at least a ground state 
solution to (1.3), see also [19]. When f (u) satisfies some suitable super-quadratic growth as-
sumptions, Chen, Shi and Tang [18] proved that (1.3) has a nontrivial solution of mountain-pass 
type and a ground state solution of Nehari-Pohozaev type. Very recently, Cao, Dai and Zhang 
[14] considered the following Schrödinger-Newton equations in the two dimensional case

−�u + a(x)u + γ (
ln(| · |) ∗ |u|p) |u|p−2u = b|u|q−2u in R2,
2π
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where infR2 a > 0, γ > 0, b ≥ 0, p ≥ 2 and q ≥ 2. They introduced the following working space

X : =

⎧⎪⎨
⎪⎩u ∈ H 1

(
R2

)
:
∫
R2

ln(1 + |x|)|u|p(x)dx < ∞

⎫⎪⎬
⎪⎭ , (1.4)

and obtained the existence of ground state solutions and mountain pass solutions to the above 
equations for p ≥ 2 and q ≥ 2p − 2 via variational methods. For some other related works to the 
two dimensional case, see [2,3,6,10,12,21,44] and so on.

In all the results mentioned above for the planar Schrödinger-Newton system, we emphasize 
that the weighted function space X plays a fundamental role in ensuring that the energy func-
tional is well defined and continuously differentiable. A natural question for us is

Whether does there exist another variational framework to deal with problem (1.3) with d = 2?

Particularly, of much interest is that ones can investigate the non-local equation (1.3) by applying 
the variational approaches in the standard Sobolev space H 1(R2). The main purpose of this paper 
is to give this question an affirmative answer. Our study can be seen as a new approach different 
from the works mentioned above for the two dimensional case.

1.2. Main results

In this paper, we aim to establish a novel variational approach to study the existence of positive 
solutions to the following Schrödinger-Newton equation with general nonlinear growth

−�u + u + (ln(| · |) ∗ |u|2)u = f (u) in R2. (1.5)

Throughout this paper, in order to find positive solutions of equation (1.5), we assume that 
f ∈ C1(R, R+), f (s) ≡ 0 for s ≤ 0 and f (s) > 0 for s > 0. Assume that f satisfies the following 
hypotheses.

(f1) For every θ > 0, there exists Cθ > 0 such that |f (s)| ≤ Cθ min{1, s}eθs2
for any s > 0.

(f2) The function f (s)

s3 is nondecreasing for s > 0.

Remark 1.1. It follows from conditions (f2) that 0 < 4F(s) ≤ f (s)s for s > 0, where F(s) =∫ s

0 f (τ)dτ . Moreover, (f2) implies that f (s) = o(s) as s → 0+.

Remark 1.2. As a prototype of (f1)-(f2), f (s) = |s|p−2s, p > 4.

The first main result in this paper establishes the following property.

Theorem 1.3. Assume (f1)-(f2) hold, equation (1.5) has at least a positive solution u ∈ H 1(R2)

satisfying ∣∣∣∣∣∣∣
∫

2

∫
2

ln |x − y|u2(x)u2(y)dxdy

∣∣∣∣∣∣∣ < +∞. (1.6)
R R
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In the following, we also consider the case containing p ∈ [3, 4) as well as p ∈ (2, 3). Pre-
cisely,

Theorem 1.4. Assume that the following hypotheses hold

(f3) f (s) = o(s) as s → 0.
(f4) |f (s)| ≤ C(1 + |s|p−1) for p ∈ (3, +∞).
(f5) There exists μ ∈ (3, 4) such that 0 < μF(s) ≤ f (s)s for s > 0.

Then equation (1.5) has at least a positive solution u ∈ H 1
r (R2) satisfying (1.6), where H 1

r (R2)

denotes the subspace of radially symmetric functions in H 1(R2).

Theorem 1.5. Equation (1.5) with f (u) = u2 has at least a positive solution u ∈ H 1
r (R2) sat-

isfying (1.6).

Theorem 1.6. Assume (f3) and the following hypothesis hold

(f6) |f (s)| ≤ C(1 + |s|p−1) for p ∈ (2, 3).
(f7) There exists μ > 2 such that 0 < μF(s) ≤ f (s)s for s > 0.

Then equation (1.5) has at least a positive solution u ∈ H 1
r (R2) satisfying (1.6).

1.3. Main difficulty and strategy

In this present paper, our main aim is to investigate problem (1.5) in the standard Sobolev 
space H 1(R2) by variational methods. The main difficulty is due to the sign-changing prop-
erty of the Newtonian kernel �d(x) = 1

2π
ln |x|, which leads to failure in setting the variational 

framework in H 1(R2). In order to overcome this difficulty, motivated by the fact that

lim
α→0+ Gα(x) := lim

α→0+
|x|−α − 1

α
= − ln |x|

for x ∈ R2 \ {0}, we modified equation (1.5) as follows

−�u + u − (Gα(| · |) ∗ u2)u = f (u) in R2, (1.7)

where α ∈ (0, 1) is a parameter. The corresponding energy functional to (1.7) becomes to be 
well defined in H 1(R2) for fixed α ∈ (0, 1), which enables us to use critical point theory (such 
as the well-known mountain pass theorem) to study the existence of positive solutions for (1.7)
in H 1(R2). By passing to the limit, a convergence argument within H 1(R2) allows us to get 
positive solutions of the original equation (1.5).

Remark 1.7. Similar modification was also used in [47], where Z.-Q. Wang and C. Zhang reveal 
an interesting relation between power-law nonlinear scalar field equations

−�u + λu = |u|p−2u in RN (1.8)
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and logarithmic-law scalar field equations

−�u = λu ln(|u|) in RN. (1.9)

They show that as p ↓ 2, the unique positive solution of (1.8), after a unique re-scaling, converges 
to the unique (up to translations) positive solution U(x) = eN/2e−λ|x|2/4 of (1.9).

In the limit process above as α → 0+, one of main difficulties in the current paper is the lack 
of compactness and the appearance of singularity at α = 0. Here we point out that in [47], term ∫
RN u2 ln |u|dx can be estimated by the associated logarithmic Sobolev inequality (see [30]). 

Besides, uniqueness of positive solutions of (1.8) and (1.9) also plays an crucial role in getting 
compactness as p ↓ 2. However, as α → 0+, it is completely different from [47] that, on the one 
hand, compared with the logarithmic Schrödinger equation (1.9), it seems much difficult to use 
the associated logarithmic Sobolev inequality to give an upper bound estimate for

∫
R2

∫
R2

ln(|x − y|)u2(x)u2(y)dxdy.

Hence, energy estimates of the associated functional become more complicated. On the other 
hand, (1.5) and (1.7) are nothing but the original problem and the perturbation problem respec-
tively investigated in the present paper, and uniqueness of their solutions (even for existence) is 
unknown. So it seems impossible that one can get the compactness with the help of the logarith-
mic Sobolev inequality or the information of uniqueness to the perturbation and limit problems 
similarly as in [47].

In order to overcome their obstacles, in the proof of Theorem 1.3, we firstly use the 
concentration-compactness principle to prove the modified equation (1.7) has a positive moun-
tain pass solution uα . Moreover, the mountain pass value cα is uniformly bounded from below 
and above as α → 0+. We then use the moving plane method to show that uα is radially sym-
metric and strictly decreasing with respect to the origin. With these conclusions at hand, we 
employ Moser’s iteration argument to verify uα is uniformly bounded in the L∞-norm and ex-
ponentially decay uniformly with respect to the parameter α, which, together with the Lebesgue 
dominated convergence theorem, enables us to get the Frechet derivative of the corresponding 
energy functional is weakly sequence continuous and then get compactness.

As for the proofs of Theorem 1.4-1.6, apart from the lack of compactness and the singularity 
on the parameter α, another difficulty arises in verifying the boundedness of the Palais-Smale 
sequences, even though the well-known Ambrosetti-Rabinowitz condition (f7) is involved. Sim-
ilarly to Schrödinger-Newton systems in the three dimensional case, due to the convolution term 
Gα(| · |) ∗ u2, it is not easy to show Palais-Smale sequences are bounded if μ < 4 in (f7). In 
the literature, Jeanjean’s monotonicity trick [27] is a powerful tool, which was frequently used 
to obtain bounded Palais-Smale sequences. However, it seems not valid in this case. Because of 
the singularity at α = 0, it seems no hopeful to give a uniform upper bound of the mountain pass 
value as α → 0+. To bypass this obstacle, we adopt a perturbation argument introduced in [34]
(see also [36]) by inserting a nonlocal perturbation term
71
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λ

⎛
⎜⎝∫
R2

u2dx

⎞
⎟⎠

1
4

u

in the left side of the modified equation (1.7) and a higher order perturbation term λ|u|r−2u in 
the right side of (1.7). These two additional perturbation terms can guarantee the boundedness of 
Palais-Smale sequences. Then as λ, α → 0+, a limit argument yields one solution of the original 
problem (1.5). We note that, in these cases, we need to restrict the energy functional in the radial 
function space H 1

r (R2), which is useful in proving uniformly exponential decay of solutions on 
the parameter α.

This paper is organized as follows. Firstly, some preliminaries are given in Section 2, and Sec-
tion 3 is devoted to the existence of mountain pass type solutions to the modified equation. Then 
in Section 4, we use a variant of the moving plane method to prove the symmetry of positive so-
lutions to the modified equation. In Section 5–8, we complete the proofs of Theorem 1.3, 1.4-1.6.

2. Preliminary results

Let us fix some notations. The letter C will be repeatedly used to denote various positive 
constants, whose exact values are irrelevant. For every 1 ≤ s ≤ +∞, we denote by ‖ · ‖s the 
usual norm of the Lebesgue space Ls(R2). The function space

H 1(R2) := {u ∈ L2(R2) : |∇u| ∈ L2(R2)}
is the usual Sobolev space endowed with the norm

‖u‖ :=
⎛
⎜⎝∫
R2

(|∇u|2 + u2)dx

⎞
⎟⎠

1
2

.

The formal variational functional associated with (1.5) is

I (u) = 1

2

∫
R2

(|∇u|2 + u2)dx + 1

4

∫
R4

ln(|x − y|)u2(y)u2(x)dxdy −
∫
R2

F(u)dx. (2.1)

In what follows, we recall the Hardy-Littlewood-Sobolev inequality, see [30], which will be 
frequently used throughout this paper.

Lemma 2.1. (Hardy-Littlewood-Sobolev inequality [30]) Let s, r > 1 and α ∈ (0, d) with 1/s +
α/d +1/r = 2, f ∈ Ls(Rd) and h ∈ Lr(Rd). There exists a sharp constant Cs,N,α,r independent 
of f, h, such that

∫
Rd

[
1

|x|α ∗ f (x)

]
h(x)dx ≤ Cs,d,α,r‖f ‖s‖h‖r .

If r = s = 2d , then
2d−α
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Cs,d,α,r = Cd,α = πα/2 �(d
2 − α

2 )

�(d − α
2 )

{
�(d

2 )

�(d)

}−1+ α
d

,

and if d = 2, α ∈ (0, 1], then C2,α ≤ 2
√

π .

Lemma 2.2. (Moser-Trudinger inequality [1,13]) For any β ∈ (0, 4π), there exists C = Cβ > 0
such that for every u ∈ H 1(R2) satisfying 

∫
R2 |∇u|2dx ≤ 1, one has

∫
R2

min{1, u2}eβ|u|2 dx ≤ Cβ

∫
R2

|u|2dx.

Lemma 2.3. The following conclusions hold.

(1) Assume u ∈ H 1(R2), then for fixed λ ∈ (0, 1], we have

∫
R2

u2(y)

|x − y|λ dy → 0, as |x| → +∞.

(2) There exists {un} ⊂ H 1
r (R2) such that un ⇀ u0 in H 1

r (R2), then as |x| → ∞, one has

∫
|x−y|≤1

u2
n(y)

|x − y|dy → 0

uniformly for n.

Proof. (1) Consider |x| ≥ 1. We note that

∫
R2

u2(y)

|x − y|λ dy − ‖u‖2
2

|x|λ =
∫
R2

(
1

|x − y|λ − 1

|x|λ
)

u2(y)dy.

Define f (x, y) := 1
|x−y|λ − 1

|x|λ , x, y ∈R2 and x �= y, x �= 0. Observe that f (x, y) → 0 as |x| →
∞ for every y ∈R2. Moreover,

−1 ≤ f (x, y)1|x−y|≥ 1
2
(y) ≤ 2λ for x, y ∈R2 with |x| ≥ 1.

Since u ∈ H 1(R2), it follows from Lebesgue’s theorem that

∫
|y−x|≥ 1

2

f (x, y)u2(y)dy → 0 as |x| → ∞.

Moreover, by u ∈ H 1(R2) we have
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0 ≤ 1

|x|λ
∫

|x−y|≤ 1
2

u2(y)dy ≤ 1

|x|λ ‖u‖2
2 → 0, as |x| → ∞,

and

0 ≤
∫

|x−y|≤ 1
2

1

|x − y|λ u2(y)dy ≤ Cλ‖u‖2
L6(B 1

2
(x))

→ 0, as |x| → ∞,

for some constant Cλ > 0. Based on the above estimates, we infer that

∫
R2

f (x, y)u2(y)dy → 0 as |x| → ∞.

(2) Note that un → u0 in L6(R2), then using the Hölder inequality we have

0 ≤
∫

|x−y|≤1

1

|x − y|u
2
n(y)dy ≤ C‖un‖2

L6(B 1
2
(x))

→ 0, as |x| → ∞.

The proof is complete. �
3. The modified problem

Since the fact that I is not well defined on H 1(R2), we introduce a perturbation technique 
to overcome this difficulty by modifying Schrödinger-Newton systems. We state the following 
modified problem

−�u + u − (Gα(| · |) ∗ u2)u = f (u), (3.1)

where α ∈ (0, 1) is a parameter and Gα(x) = |x|−α−1
α

, x ∈ R2 \ {0}. Its associated functional is

Iα(u) = 1

2
‖u‖2 − 1

4

∫
R2

(Gα(x) ∗ u2)u2dx −
∫
R2

F(u)dx.

According to the definition of Gα , using the Hardy-Littlewood-Sobolev inequality, it is not hard 
to show that for any given α, the perturbation functional Iα is well-defined on H 1(R2) and 
belongs to C1(H 1(R2), R),

I ′
α(u)v =

∫
R2

(∇u∇v + uv)dx −
∫
R2

(Gα(x) ∗ u2)uvdx −
∫
R2

f (u)vdx

for u, v ∈ H 1(R2). We call u is a weak solution of (3.1) if u ∈ H 1(R2) is a critical point of Iα .
Now we provide a Pohozaev type identity for equation (3.1). The strategy of the proof is 

similar as in [9].
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Lemma 3.1. Suppose that u ∈ H 1(R2) is a weak solution to equation (3.1). Then we have the 
following identity

Pα(u) :=
∫
R2

u2dx + 1

α
‖u‖4

2 − 4 − α

4α
Q(u) − 2

∫
R2

F(u)dx = 0,

where Q(u) := ∫
R2

∫
R2

u2(x)u2(y)
|x−y|α dxdy.

In order to study (3.1) as α → 0+, we need some preliminaries. The following lemma is to 
describe the behavior of Gα .

Lemma 3.2. [47, Lemma 2.1] For any β ∈ (0, ∞), there exists Cβ > 0 such that

s−α − 1

α
≤ Cβs−β, s > 0

holds for all α ∈ (0, β).

Lemma 3.3. Suppose (f1) -(f2) hold, then
(i) there exist ρ, δ0 > 0 (independent of α) such that Iα|Sρ (u) ≥ δ0 for every u ∈ Sρ = {u ∈
H 1(R2) : ‖u‖ = ρ};
(ii) there is e ∈ C∞

0 (R2) with ‖e‖ > ρ such that Iα(e) < 0, where e does not depend on α.

Proof. (i) For every θ ∈ (0, 4π), it follows from (f1)-(f2) that, for any ε > 0, there exists Cε,θ >

0 such that

|f (s)| ≤ ε min{1, |s|}eθ |s|2 + Cε,θ |s|p−1 for some p > 2. (3.2)

We assume u ∈ H 1(R2) and ‖u‖2 < 1. Obviously, 
∫
R2 |∇u|2 < 1. So by Moser-Trudinger’s 

inequality, one has

∫
R2

F(u)dx ≤ Cε,θ

∫
R2

|u|pdx + ε

∫
R2

min{1, |u|2}eθ |u|2dx

≤ Cε,θ

∫
R2

|u|pdx + εCθ

∫
R2

|u|2dx.

(3.3)

From (3.3), Lemma 3.2 and Hardy-Littlewood-Sobolev’s inequality we deduce that
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Iα(u) = 1

2
‖u‖2 − 1

4

∫
R2

∫
R2

|x − y|−α − 1

α
u2(y)u2(x)dydx −

∫
R2

F(u)dx

≥ 1 − 2εCθ

2
‖u‖2 − 1

4

∫ ∫
|x−y|≤1

|x − y|−α − 1

α
u2(y)u2(x)dydx − Cε,θ

∫
R2

|u|pdx

≥ 1 − 2εCθ

2
‖u‖2 − 1

4

∫ ∫
|x−y|≤1

u2(y)u2(x)

|x − y| dxdy − Cε,θC‖u‖p

≥ 1 − 2εCθ

2
‖u‖2 − C

4
‖u‖4 − Cε,θC‖u‖p.

(3.4)

So, by fixed ε ∈ (0, 1
2Cθ

) and letting ‖u‖ = ρ > 0 small enough, it is easy to check that there 
exists δ0 > 0 such that Iα(u) ≥ δ0 for every u ∈ Sρ .
(ii) Take e0 ∈ C∞

0 (R2) such that e0(x) ≡ 1 for x ∈ B 1
8
(0), e0(x) ≡ 0 for x ∈ R2 \ B 1

4
(0) and 

|∇e0(x)| ≤ C. Note that

s−α − 1

α
≥ ln

1

s
, for s ∈ (0,1].

It then follows from the definition of Iα that

Iα(se0) = s2

2
‖e0‖2 − s4

4

∫
R2

∫
R2

|x − y|−α − 1

α
e2

0(y)e2
0(x)dydx −

∫
R2

F(se0)dx

≤ s2

2
‖e0‖2 − s4

4

∫
|x|≤ 1

4

∫
|y|≤ 1

4

|x − y|−α − 1

α
e2

0(y)e2
0(x)dydx

≤ s2

2
‖e0‖2 − s4

4

∫
|x|≤ 1

4

∫
|y|≤ 1

4

ln
1

|x − y|e
2
0(y)e2

0(x)dydx

≤ s2

2
‖e0‖2 − s4 ln 2

4

(∫
R2

e2
0(x)dx

)2

,

(3.5)

which implies that there exists t0 > 0 large enough such that Iα(t0e0) < 0. �
Based on the mountain pass theorem without the Palais-Smale condition (see [46]), there 

exists a (PS)cα sequence {un} ⊂ H 1(R2), that is,

Iα(un) → cα and I ′
α(un) → 0. (3.6)

Here cα is the mountain pass level characterized by

cα = inf max Iα(γ (t)) (3.7)

γ∈� t∈[0,1]
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with

� := {γ ∈ C1([0,1],H 1(R2)) : γ (0) = 0 and γ (1) = e},

where e has been given in Lemma 3.3.

Remark 3.4. Observe from Lemma 3.3 that there exist two constants a, b > 0 independent of α
such that a < cα < b.

We state the following splitting lemma to the Palais-Smale sequences of Iα.

Lemma 3.5. Assume that {un} is a bounded (PS)cα sequence of Iα for fixed α ∈ (0, 1), then there 
exist B ∈R, a number k ∈ N ∪ {0}, and a finite sequence

(u0,w
1, ...,wk) ⊂ H 1(R2), wj �≡ 0, for j = 1, ..., k

of critical points for the following functional

JB,α(u) := 1

2
‖u‖2 + B

2α

∫
R2

|un|2dx − 1

4α

∫
R2

(
1

|x|α ∗ u2
)

u2dx −
∫
R2

F(u)dx (3.8)

and k sequences of points {yj
n} ⊂ R2, 1 ≤ j ≤ k, such that if k ≥ 1,

(i) |yj
n | → +∞, |yj

n − yi
n| → +∞ if i �= j, n → +∞,

(ii) ‖un − u0 −
k∑

j=1
wj(· − y

j
n)‖ → 0, cα + B2

4α
= JB,α(u0) +

k∑
j=1

JB,α(wj )

(iii) B = ‖u0‖2
2 +

k∑
j=1

‖wj‖2
2.

Otherwise, if k = 0, then un → u0 in H 1(R2).

Proof. Since {un} is a bounded sequence in H 1(R2), up to subsequence, there exist u0 ∈ H 1(R2)

and B ∈ R such that un ⇀ u0 weakly in H 1(R2) and 
∫
R2 |un|2dx → B as n → ∞. By (f1)-(f2) 

and Moser-Trudinger’s inequality, we deduce that for n → +∞,

∫
R2

f (un)ϕdx →
∫
R2

f (u0)ϕdx, ϕ ∈ C∞
0 (R2). (3.9)

Then it follows from I ′
α(un) → 0 in H−1 that J ′

B,α(u0) = 0. Observe that

Iα(un) = JB,α(un) − B2

+ o(1),

4α
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and so JB,α(un) → cα + B2

4α
and J ′

B,α(un) → 0 in H−1 as n → ∞. Moreover, v1
n ⇀ 0 in H 1(R2)

if we define v1
n := un − u0. By the Brezis-Lieb lemma [11], it follows that

‖un‖2 = ‖v1
n‖2 + ‖u0‖2 + o(1),∫

R2

( 1

|x|α ∗ u2
n

)
u2

ndx =
∫
R2

( 1

|x|α ∗ u2
0

)
u2

0dx +
∫
R2

( 1

|x|α ∗ (v1
n)

2)(v1
n)

2dx + o(1).
(3.10)

Moreover, similarly to Lemma 5.2 in [35], we have for any ϕ ∈ C∞
0 (R2)

∫
R2

F(un)dx =
∫
R2

F(v1
n)dx +

∫
R2

F(u0)dx + o(1),

∫
R2

f (un)undx =
∫
R2

f (v1
n)v

1
ndx +

∫
R2

f (u0)u0dx + o(1),

∫
R2

f (un)ϕdx =
∫
R2

f (v1
n)ϕdx +

∫
R2

f (u0)ϕdx + o(1).

(3.11)

Using (3.11) and (3.10), we immediately obtain

JB,α(v1
n) = JB,α(un) − JB,α(u0) + o(1),

J ′
B,α(v1

n)v
1
n = J ′

B,α(un)un − J ′
B,α(u0)u0 + o(1) = o(1)

J ′
B,α(v1

n)ϕ = J ′
B,α(un)ϕ − J ′

B,α(u0)ϕ + o(1) = o(1).

(3.12)

Consider sequence {v1
n}. One of the following conclusions holds.

(v1) v1
n → 0 in H 1(R2) as n → ∞, or

(v2) there exist r ′, m > 0 and {y1
n} ⊂ R2 such that for q ∈ (2, +∞),

lim inf
n→∞

∫
Br′ (y1

n)

|v1
n|qdx ≥ m > 0. (3.13)

Indeed, if (v2) is false, then for any r > 0, we have

lim
n→∞ sup

y∈RN

∫
Br(y)

|v1
n|qdx = 0. (3.14)

Recalling the well-known Lions’ lemma, (3.14) implies that v1
n → 0 in Lq(R2) for q ∈ (2, +∞). 

And so, using the Hardy-Littlewood-Sobolev inequality, we have 
∫
R2

( 1
|x|α ∗ (v1

n)
2
)
(v1

n)
2dx =

o(1). Thanks to Moser-Trudinger’s inequality and (f1) and (f2), we have 
∫
R2 f (v1

n)v
1
ndx = o(1). 

From the above estimates and J ′ (v1)v1 = o(1) in (3.12), we deduce that
B,α n n
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v1
n → 0 in H 1(R2),

and (v1) holds for {v1
n}, Lemma 3.5 holds with k = 0. Let us now suppose that (v2) holds, that 

is, (3.13) is true. Then there exists w1 ∈ H 1(R2) such that v1
n(· + y1

n) ⇀ w1 in H 1(R2). Using 
conclusion (v2), we have

∫
Br′ (0)

|v1
n(x + y1

n)|qdx ≥ m

for n large. From the Rellich theorem it follows that

∫
Br′ (0)

|w1(x)|qdx ≥ m,

and thus, w1 �= 0. Recalling that v1
n ⇀ 0 in H 1(R2), we find that {y1

n} must be unbounded. That 
is, |y1

n| → +∞. Let us now show that J ′
B,α(w1) = 0. Indeed, it suffices to show that J ′

B,α(v1
n(· +

y1
n))ϕ → 0 for fixed ϕ ∈ C∞

0 (R2). Since v1
n = un −u0 ⇀ 0 in H 1(R2) as n → ∞, it follows that 

J ′
B,α(v1

n) → 0 in H−1, and then J ′
B,α(v1

n)ϕ(· − y1
n) → 0. Thus, it follows that as n → ∞,

J ′
B,α(v1

n(· + y1
n))ϕ

=
∫
R2

∇v1
n(x + y1

n)∇ϕ + v1
n(x + y1

n)ϕdx + B

α

∫
R2

v1
n(x + y1

n)ϕdx (3.15)

− 1

α

∫
R2

[
1

|x|α ∗ (v1
n(· + y1

n))2
]
v1
n(x + y1

n)ϕdx −
∫
R2

f (v1
n(x + y1

n))ϕdx → 0.

So, J ′
B,α(w1) = 0. Set

v2
n(x) = v1

n(x) − w1(x − y1
n), (3.16)

then using the fact that v2
n(· + y1

n) ⇀ 0, we have v2
n ⇀ 0 in H 1(R2). Using again the Brezis-Lieb 

lemma we obtain

‖un‖2 = ‖w1‖2 + ‖u0‖2 + ‖v2
n‖2 + o(1),∫

R2

( 1

|x|α ∗ u2
n

)
u2

ndx =
∫
R2

( 1

|x|α ∗ u2
0

)
u2

0dx +
∫
R2

( 1

|x|α ∗ (w1)2)(w1)2dx

+
∫
R2

( 1

|x|α ∗ (v2
n)

2)(v2
n)

2dx + o(1).

(3.17)

Similarly to (3.11), one has for any ϕ ∈ C∞(R2)
0
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∫
R2

F(un)dx =
∫
R2

F(w1)dx +
∫
R2

F(u0)dx +
∫
R2

F(v2
n)dx + o(1),

∫
R2

f (un)undx =
∫
R2

f (w1)w1dx +
∫
R2

f (u0)u0dx +
∫
R2

f (v2
n)v

2
ndx + o(1)

∫
R2

f (un)ϕdx =
∫
R2

f (w1)ϕdx +
∫
R2

f (v1
n)ϕdx +

∫
R2

f (u0)ϕdx + o(1).

(3.18)

By virtue of the above estimates, we deduce that

(1) JB,α(v2
n) = JB,α(un) − JB,α(u0) − JB,α(w1) + o(1),

(2) J ′
B,α(v2

n)v
2
n = J ′

B,α(un)un − J ′
B,α(u0)u0 − J ′

B,α(w1)w1 + o(1) = o(1)

(3) J ′
B,α(v1

n)ϕ = J ′
B,α(un)ϕ − J ′

B,α(u0)ϕ − J ′
B,α(w1)ϕ + o(1) = o(1).

(3.19)

Let us now study {v2
n}. Since {v2

n} is bounded in H 1(R2), one of (v1) and (v2) holds for {v2
n}. 

The same arguments used before imply that Lemma 3.5 holds with k = 1 if v2
n → 0 in H 1(R2). 

Otherwise, (v2) holds for {v2
n}. We repeat the arguments above. Iterating this procedure, there 

exists yj
n ∈ R2 such that |yj

n | → +∞, |yj
n − yi

n| → +∞ if i �= j as n → +∞ and vj
n = v

j−1
n −

wj−1(x − y
j−1
n ) (like (3.16)), vj

n(· + y
j
n) ⇀ wj �= 0 with j ≥ 2 such that

v
j
n ⇀ 0 in H 1(R2), J ′

B,α(wj ) = 0.

Moreover, by the properties of the weak convergence, we get

(a) ‖un‖2 = ‖u0‖2 +
j∑

i=1

‖wi‖2 + ‖un − u0 −
j∑

i=1

wi(· − yi
n)‖2 + o(1),

(b) cα + B2

4α
= JB,α(u0) +

j−1∑
i=1

JB,α(wi) + JB,α(v
j
n) + o(1),

(c) B = ‖u0‖2
2 +

j∑
i=1

‖wi‖2
2 + ‖un − u0 −

j∑
i=1

wi(· − yi
n)‖2

2 + o(1).

(3.20)

Due to J ′
B,α(wi)wi = 0, (3.2), Hardy-Littlewood-Sobolev’s inequality, Moser-Trudinger’s in-

equality and Lemma 3.2, one finds that for any ε > 0, there exists Cε > 0 such that

‖wi‖2 ≤
∫ ∫

|x−y|≤1

|x − y|−α − 1

α
|wi(x)|2|wi(y)|2dxdy +

∫
R2

f (wi)widx

≤
∫
R2

∫
R2

|wi(x)|2|wi(y)|2
|x − y| dxdy + Cε‖wi‖p

p + ε‖wi‖2
2

≤ C‖wi‖4 + εC‖wi‖2 + C ‖wi‖p, p ∈ (2 + ∞).
ε
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Taking ε = 1
2C

in the above estimate, we conclude that there exists C > 0 such that ‖wi‖2 ≥ C. 
Recall that {un} is bounded in H 1(R2), from (3.20)(a) we deduce that the iteration must stop at 
some finite index k. And so vk+1

n → 0 in H 1(R2) as n → ∞. The proof is complete. �
Lemma 3.6. Assume that conditions (f1)-(f2) hold. Let {un} ⊂ H 1(R2) be a (PS)cα sequence of 
Iα for fixed α ∈ (0, 1), then there exists u0 ∈ H 1(R2) \ {0} such that I ′

α(u0) = 0.

Proof. By assumption (f2), one has

cα = lim
n→∞

(
Iα(un) − 1

4
I ′
α(un)un

)
= 1

4
‖un‖2 −

∫
R2

[
1

4
f (un)un − F(un)

]
dx,

which implies that {un} is bounded in H 1(R2). So there is u0 ∈ H 1(R2) such that un ⇀ u0

weakly in H 1(R2). There also exists B ≥ 0 such that

‖un‖2
2 → B, as n → ∞, (3.21)

from which we deduce that J ′
B,α(un) → 0 in H−1 and J ′

B,α(u0) = 0. In view of Lemma 3.5, for 
each nontrivial critical point u ∈ {u0, wj(j = 1, ..., k)} of JB,α , the following relation holds

‖u‖2 + 1

α
‖u‖4

2 − 1

α

∫
R2

(
1

|x|α ∗ u2)u2dx −
∫
R2

f (u)udx ≤ 0, (3.22)

which means I ′
α(u)u ≤ 0. By assumptions (f1)-(f2), we conclude that g(t) := I ′

α(ut )ut > 0 for 
small t > 0. Here, ut = tu(x). Thus, there exists t0 ∈ (0, 1] such that Iα(ut0) = max

t∈[0,1] Iα(ut ). 

Using again (f2) one has for t > 1

g(t) = t4
(

1

t2 ‖∇u‖2
2 + 1

t2 ‖u‖2
2 + 1

α
‖u‖4

2 − 1

α

∫
R2

(
1

|x|α ∗ u2)u2dx −
∫
R2

f (tu)

t3u3 u4dx

)
< 0,

(3.23)
which implies that there exists t1 > 1 such that Iα(ut1) < 0 and Iα(ut0) = max

t∈[0,t1]
Iα(ut ). It is easy 

to see that γ (t) := utt1 ∈ �, which has been defined in (3.7). As a result, cα ≤ Iα(ut0) and a direct 
calculation yields
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JB,α(u) =JB,α(u) − 1

4
J ′

B,α(u)u

=1

4
‖u‖2

2 + B

4α
‖u‖2

2 +
∫
R2

1

4
f (u)u − F(u)dx

≥ t2
0

4
‖u‖2

2 + B

4α
‖u‖2

2 +
∫
R2

1

4
f (t0u)t0u − F(t0u)dx

=Iα(ut0) − 1

4
I ′
α(ut0)ut0 + B

4α
‖u‖2

2

≥cα + B

4α
‖u‖2

2,

(3.24)

where we have used the fact that 1
4f (s)s −F(s) is nondecreasing at s > 0. Then from Lemma 3.5

we conclude that

cα + B2

4α
= JB,α(u0) +

k∑
j=1

JB,α(wj )

≥ kcα + B

4α

∫
R2

|u0|2dx + B

4α

k∑
j=1

∫
R2

|wj |2dx

≥ kcα + B2

4α
,

(3.25)

where wj �= 0 for j = 1, ..., k. Observe that k > 1 is impossible.

• If k = 0, we are done. Then it follows that JB,α(u0) = Iα(u0) + B2

4α
and un → u0 strongly 

in H 1(R2).

• If k = 1 and u0 �= 0, then we have

JB,α(u0) ≥ 1

4

[
B

α

∫
R2

|u0|2dx + ‖∇u0‖2
2

]

and then the first inequality in (3.25) strictly holds. This yields a contradiction.

• If k = 1 and u0 = 0, then by conclusion (iii) of Lemma 3.5, we get B = ‖w1‖2
2 and I ′

α(w1) =
0 in H 1(R2). The proof is complete. �
Remark 3.7. We emphasize that it is not difficult to get a positive mountain pass type solution 
for equation (3.1). Indeed, we can modify properly equation (3.1) to be the following equation

−�u + u + 1

α
‖u‖2

2u − 1

α
[| · |−α ∗ (u+)2]u+ = f (u), (3.26)

whose energy functional is
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I+
α (u) = 1

2

∫
R2

(|∇u|2 + u2)dx + 1

4α

∫
R2

|u|4dx − 1

4α

∫
R4

(u+)2(y)(u+)2(x)

|x − y|α dxdy −
∫
R2

F(u)dx.

It is easy to check that I+ is of C1 class and

I+
α (u)v =

∫
R2

(∇u∇v + uv)dx + 1

α
‖u‖2

2

∫
R2

uvdx − 1

α

∫
R4

(u+)2(y)dy

|x − y|α u+vdx −
∫
R2

f (u)vdx,

where u+ = max{u, 0}, u− = min{u, 0} and v ∈ H 1(R2), then all the above calculations can be 
repeated word by word. So I+

α has a nontrivial mountain pass type critical point u ∈ H 1(R2) for 
fixed α ∈ (0, 1). Using u− as a test function to equation (3.26), we have immediately u ≥ 0 and 
then the maximum principle yields u > 0.

4. Symmetry of positive solutions

In this section, we are concerned with the symmetry of positive mountain pass solutions of 
the modified equation. More precisely, we will use a variant of the moving plane method (see 
[15,16,25,37]) to prove a symmetry result for the following modified equation.

−�u + u = (Gα(| · |) ∗ u2)u + f (u), x ∈ R2. (4.1)

Observe that f : R → R is locally Lipschitz continuous with f (0) = 0 due to the fact that f ∈
C1(R, R). Assume uα is a positive solution of (4.1) such that Iα(uα) = cα for fixed α ∈ (0, 1). 
Using the well-known Nash-Moser’s iteration arguments, one can prove uα ∈ L∞(R2) and

uα(x) ≤ Cαe−cα |x|, x ∈ R2, (4.2)

where Cα, cα > 0 depend on the parameter α.

Lemma 4.1. There exist positive numbers ω, α0 ∈ (0, 1) such that

‖uα‖2
2 ≥ ω for α ∈ (0, α0), (4.3)

where ω is independent of α.

Proof. Assume by contradiction that there exists {αn} with αn → 0+ such that ‖uαn‖2
2 → 0. 

By assumption (f2) and cαn ∈ (a, b) in Remark 3.4, we have immediately ‖uαn‖ ≤ C for some 
C independent of α. As a consequence, recalling (3.3) together with the Sobolev interpolation 
inequality yields∫

R2

F(uαn)dx ≤ Cε,θ

∫
R2

|uαn |pdx + ε

∫
R2

min{1, |uαn |2}eθ |uαn |2 dx

≤ Cε,θ

∫
R2

|uαn |pdx + εCθ

∫
R2

|uαn |2dx

= o(1), (p > 2),

(4.4)
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where θ is choosen small enough. We can also similarly obtain

∫
R2

f (uαn)uαndx = o(1). (4.5)

Moreover, using the Hardy-Littlewood-Sobolev inequality and the Sobolev interpolation inequal-
ity, we have

Q(uαn) =
∫
R2

∫
R2

u2
αn

(x)u2
αn

(y)

|x − y|α dxdy

=
∫ ∫

|x−y|≤1

u2
αn

(x)u2
αn

(y)

|x − y|α dxdy +
∫ ∫

|x−y|≥1

u2
αn

(x)u2
αn

(y)

|x − y|α dxdy

≤
∫ ∫

|x−y|≤1

u2
αn

(x)u2
αn

(y)

|x − y| dxdy +
∫ ∫

|x−y|≥1

u2
αn

(x)u2
αn

(y)dxdy

≤ C‖uαn‖4
8/3 + ‖uαn‖4

2 = o(1).

(4.6)

Recalling the Pohozaev type identity in Lemma 3.1, by (4.4) and (4.6), we have

∫
R2

(Gαn(x) ∗ u2
αn

)u2
αn

dx = o(1), (4.7)

which, together with (4.5) and I ′
αn

(uαn)uαn = 0, implies that ‖uαn‖ → 0 as αn → 0+. Hence, it 
follows from the definition of Iαn , (4.4) and (4.7) that cαn → 0 as αn → 0+. This is a contradic-
tion. �

Our aim in this section is to prove the following result.

Theorem 4.2. Assume uα ∈ H 1(R2) is a positive classical solution of (4.1), then there exists 
α1 ∈ (0, 1] such that for α ∈ (0, α1), uα is radially symmetric up to translation and strictly 
decreasing in the distance from the symmetry center.

Now we use a variant of the moving plane method (see [15,16,25,37]) to prove this theorem. 
For simplicity, we write uα as u. For β ∈ R, we set

Hβ := {x ∈R2 : x1 > β}, ∂Hβ = {x ∈R2 : x1 = β}.
Moreover, for any x ∈R2, denote by xβ the reflection of x with respect to ∂Hβ . Set

uβ(x) = u(xβ), wβ(x) = w(xβ) for x ∈ R2, β ∈R,

where w(x) = 1
α
( 1
|x|α ∗ u2). Set uβ = uβ − u and wβ = wβ − w, then the following equation 

holds
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−�uβ + uβ = wβuβ + (w − 1

α
‖u‖2

2 + hβ)uβ, x ∈ Hβ, (4.8)

where

hβ =
{

f (uβ(x))−f (u(x))
uβ(x)

, uβ(x) �= 0,

f ′(u(x)), uβ(x) = 0.

Recalling that f ∈ C1(R, R), there exists C = C(u) > 0 such that ‖hβ‖L∞(Hβ) ≤ C for any 
β ∈R. From the definition of w, we deduce that

wβ =
∫
Hβ

(
1

α|x − y|α − 1

α|x − yβ |α
)

(uβ(y) + u(y))uβ(y)dy

for Hβ . Since |x−yβ |
|x−y| > 1 for any x, y ∈ Hβ , we have wβ ≥ 0 in Hβ if uβ ≥ 0 in Hβ for every 

β ∈ R. In what follows, we define the negative part of v by v− := min{v, 0}. Notice that w− is 
a non-positive function with the convention. The following lemma contains a key estimate we 
need in the sequel.

Lemma 4.3. There exists a constant κα > 0 such that

‖w−
β ‖L2(Hβ) ≤ καcα,β‖u−

β ‖L2(Hβ)

for every β ∈ R, where

cα,β =
( ∫

Mβ

(y1 − β)
α

1−α u
1

1−α (y)dy

)1−α

, Mβ := {x ∈ Hβ : uβ(x) < 0}.

Proof. Observe that for x, y ∈ Hβ ,

1

|x − y|α − 1

|x − yβ |α = |x − yβ |α − |x − y|α
|x − y|α · |x − yβ |α

≤
(|x − yβ | − |x − y|)α

|x − y|2α

≤ |y − yβ |α
|x − y|2α

= 2α(y1 − β)α

|x − y|2α
.

When uβ < 0, we have 0 ≤ uβ(y) ≤ u(y). By the integral representation of wβ , we conclude that 
for x ∈ Hβ

−w−
β (x) ≤ −

∫
M

2α(y1 − β)α

α|x − y|2α
(uβ(y) + u(y))u−

β (y)dy
β
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≤ −2α+1
∫

Mβ

(y1 − β)α

α|x − y|2α
u(y)u−

β (y)dy.

It follows from Hardy-Littlewood-Sobolev’s inequality and (4.2) that

‖w−
β ‖2

L2(Hβ)
≤ κα

( ∫
Mβ

(
(y1 − β)αu(y)u−

β (y)

) 2
3−2α

dy

) 3−2α
2 ‖w−

β ‖L2(Hβ)

≤ κα

( ∫
Mβ

(y1 − β)
α

1−α u
1

1−α (y)dy

)1−α(∫
Hβ

|u−
β |2dy

) 1
2 ‖w−

β ‖L2(Hβ)

≤ cα,βκα‖w−
β ‖L2(Hβ)‖u−

β ‖L2(Hβ).

The conclusion follows immediately and the proof is complete. �
Lemma 4.4. There exist α2, β1 > 0 such that uβ ≥ 0 in Hβ for β ∈ [β1, +∞) and α ∈ (0, α1).

Proof. By Lemma 2.3 and 4.1, we may choose β2 > 0 large enough and α1 > 0 small enough 
such that

w − 1

α
‖u‖2

2 + hβ ≤ 0, forβ ≥ β2, 0 < α < α1.

Here, we used the fact that hβ ∈ L∞(R2). Multiplying the modified equation (4.8) by u−
β and 

then integrating, from Lemma 4.3 we have

‖u−
β ‖2

L2(Hβ)
≤ ‖u−

β ‖2
H 1(Hβ)

=
∫
Hβ

(
wβuβu−

β + (w − 1

α
‖u‖2

2 + hβ)uβu−
β

)
dx

≤
∫
Hβ

w−
β uβu−

β dx ≤ ‖w−
β ‖L2(Hβ)‖uβ‖L∞(R2)‖u−

β ‖L2(Hβ)

≤ cα,βκα‖uβ‖L∞(R2)‖u−
β ‖2

L2(Hβ)
.

Observe that cα,β → 0 as β → ∞ for fixed α. Then there exists β1 > β2 such that
cα,βκα‖uβ‖L∞(R2) < 1 for β > β1, and so u−

β ≡ 0 on Hβ for β > β1 and α ∈ (0, α1). The 
proof is complete. �

We have the following auxiliary property, whose proof is based on standard arguments, see 
[14].

Lemma 4.5. Either uβ ≡ 0 ≡ wβ or uβ > 0, wβ > 0 on Hβ and ∂u
∂x1

< 0, ∂w
∂x1

< 0 on ∂Hβ .

Lemma 4.6. Let β ∈ R. If uβ > 0 in Hβ , then there exists ε > 0 such that uλ ≥ 0 in Hλ for 
λ ∈ (β − ε, β).
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4.1. Proof of Theorem 4.2 completed

Recalling Lemma 4.4, we set

β1 := inf{β ∈ R : uβ ≥ 0 in Hβ},
and β1 < ∞. It follows from (4.2) that β1 > −∞. According to Lemmas 4.5 and 4.6, we get 
uβ1 ≡ 0 and wβ1 ≡ 0. We use the same arguments to the second coordinate direction x2, we 
can find β2 ∈ R such that uβ2 ≡ 0 and wβ2 ≡ 0. Consider β = (β1, β2), then ũ(x) := u(x − β)

and w̃(x) := w(x − β) is a solution of equation (4.8). By the invariance of translation, we can 
assume that ũ(x) = ũ(−x) and w̃(x) := w(−x) for x ∈ R2. So it is not hard to check that each 
symmetry hyperplane of ũ(x) and w̃(x) contains the origin. Thus, repeating the above arguments 
in an arbitrary direction to replace the x1-coordinate direction, we get that ũ(x) and w̃(x) are 
symmetric at any hyperplane containing the origin, and so radially symmetric. Moreover, ũ(x)

and w̃(x) are also strictly decreasing in the distance from the symmetry center. The proof is 
complete.

5. Proof of Theorem 1.3

By Lemma 3.6, there is a mountain pass type critical point uα > 0 of Iα with Iα(uα) = cα . In 
view of Remark 3.4, by (f2) we have that sequence {uα}α∈(0,α0] is uniformly bounded in H 1(R2)

for α. Up to a subsequence, we assume

uα ⇀ u0 in H 1(R2),

uα → u0 a.e. in R2,

uα → u0 in Lp(R2), p > 2

(5.1)

as α → 0+. It follows from Theorem 4.2 that uα is radially symmetric and strictly decreasing in 
r = |x|. Thus we can obtain the following lemma.

Lemma 5.1. For fixed α ∈ (0, 1), there exists C > 0 independent of α such that ‖uα‖∞ ≤ C.

Proof. Since uα is positive, by equation (3.1) and Lemma 3.2 we obtain

−�uα + uα ≤
∫

|x−y|≤1

|x − y|−α − 1

α
u2

α(y)dyuα(x) + f (uα)

≤ C

∫
|x−y|≤1

u2
α(y)

|x − y|dyuα(x) + f (uα).

(5.2)

In the spirit of [38], for any R > 0, r ∈ (0, R2 ], set η ∈ C∞(R2), 0 ≤ η ≤ 1 with η(x) = 0 if 
|x| ≤ R − r and η(x) = 1 if |x| ≥ R and |∇η| ≤ 2

r
. For K > 0, let

uK,α(x) =
{

uα(x), uα(x) ≤ K,

K, u (x) ≥ K,
α

87
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and

vK,α = η2u
2(γ−1)

K,α uα and wK,α = ηuαu
γ−1
K,α .

Here γ > 2 will be determined later. Multiplying vK,α in two sides of (5.2) and then integrating 
over the whole space, we obtain

∫
R2

|∇uα|2η2u
2(γ−1)

K,α dx +
∫
R2

u2
αη2u

2(γ−1)

K,α dx

≤C

∫
R2

∫
|x−y|≤1

u2
α(y)

|x − y|u
2
α(x)η2u

2(γ−1)

K,α dxdy +
∫
R2

f (uα)uαη2u
2(γ−1)

K,α dx

− 2(γ − 1)

∫
R2

uαu
2γ−3
K,α η2∇uα∇uK,αdx − 2

∫
R2

ηu
2(γ−1)

K,α uα∇uα∇ηdx.

(5.3)

Using Lemma 2.3(2), taking R > 0 (independent of α) large enough, we know that

C

∫
R2

∫
|x−y|≤1

u2
α(y)dy

|x − y| u2
α(x)η2u

2(γ−1)

K,α dx ≤ 1

4

∫
R2

u2
α(x)η2u

2(γ−1)

K,α dx. (5.4)

It follows from (f1)-(f2) that, for any ε > 0, there exists Cε > 0 such that

|f (uα)| ≤ εuα + CεCθuα(eθ |uα |2 − 1), (5.5)

where θ is chosen small enough. Thus, using Young’s inequality and combining (5.3) with (5.4), 
we get

∫
R2

|∇uα|2η2u
2(γ−1)

K,α dx +
∫
R2

u2
αη2u

2(γ−1)

K,α dx

≤C

∫
R2

u2
α|∇η|2u2(γ−1)

K,α dx + C

∫
R2

(eθ |u|2 − 1)u2
αη2u

2(γ−1)

K,α dx.

(5.6)

Observe that

∇wK,α = ∇ηuαu
γ−1
K,α + η∇uαu

γ−1
K,α + (γ − 1)ηuαu

γ−2
K,α ∇uK,α,

then by (5.3)-(5.6), we have
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∫
R2

|∇wK,α|2dx ≤
∫
R2

(∣∣∇η
∣∣uαu

γ−1
K,α + γ η

∣∣∇uα

∣∣uγ−1
K,α

)2dx

≤ Cγ 2
(∫
R2

u2
α|∇η|2u2(γ−1)

K,α dx +
∫
R2

|∇uα|2η2u
2(γ−1)

K,α dx

)

≤ Cγ 2
(∫
R2

u2
α|∇η|2u2(γ−1)

K,α dx +
∫
R2

(eθ |uα |2 − 1)u2
αη2u

2(γ−1)

K,α dx

)
.

(5.7)

Let us fix t > 2 and θ > 0 small, then by Lemma 2.2, there exists C > 0 (independent of α) such 
that

‖eθ |uα |2 − 1‖ t
t−2

≤ C, (5.8)

which, together with Hölder’s inequality, implies that

∫
R2

|∇wK,α|2dx ≤ Cγ 2
(∫
R2

u2
α|∇η|2u2(γ−1)

K,α dx + ( ∫
R2

wt
K,αdx

)2/t
)

. (5.9)

For some fixed s > t , by Gagliardo-Nirenberg’s inequality and combining with Hölder’s inequal-
ity, we have

‖wK,α‖s

≤ C(‖∇wK,α‖2 + ‖wK,α‖t )

≤ Cγ

( ∫
R≥|x|≥R−r

u2
αu

2(γ−1)

K,α dx +
[ ∫
|x|≥R−r

ut
αu

(γ−1)t

K,α dx

]2/t) 1
2

≤ Cγ

([ ∫
R≥|x|≥R−r

ut
αu

(γ−1)t

K,α dx

]2/t[ ∫
R≥|x|≥R−r

1dx

] t−2
t +

[ ∫
|x|≥R−r

ut
αu

(γ−1)t

K,α dx

]2/t) 1
2

≤ Cγ

( ∫
|x|≥R−r

ut
αu

(γ−1)t

K,α dx

)1/t

.

(5.10)
Based on the above inequality, we check that

( ∫
|x|≥R

u
γ s

K,αdx

)1/s

≤
( ∫

|x|≥R−r

ηsu
γ s

K,αdx

)1/s

≤
( ∫

|x|≥R−r

ws
K,αdx

)1/s

≤ Cγ

( ∫
|x|≥R−r

uγ t
α dx

)1/t

.

(5.11)

Letting K → +∞ and applying Fatou’s Lemma, we get
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( ∫
|x|≥R

uγ s
α dx

) 1
γ s ≤ C

1
γ γ

1
γ

( ∫
|x|≥R−r

uγ t
α dx

) 1
γ t

. (5.12)

Take κ = s/t > 1, γ = κn, so that

( ∫
|x|≥R

utκn+1

α dx

) 1
tκn+1 ≤ C

1
κn κ

n
κn

( ∫
|x|≥R−r

utκn

α dx

) 1
tκn

. (5.13)

Finally, we obtain

( ∫
|x|≥R

utκn+1

α dx

) 1
tκn+1 ≤ C

n∑
i=0

1
κi

κ

n∑
i=0

i

κi

( ∫
|x|≥R−r

ut
αdx

) 1
t

, (5.14)

from which recalling that uα is bounded in H 1(R2) uniformly for α, we deduce

‖uα‖L∞(|x|≥R) ≤ C1‖uα‖Lt (|x|≥R/2) ≤ C2, (5.15)

which C1, C2 > 0 are independent of α. Moreover, by taking η ∈ C∞
0 (R2, [0, 1]) satisfying 

η(x) ≡ 1 if |x| ≤ R̄ and η(x) = 0 if |x| ≥ 2R̄ and |∇η| ≤ 2
R̄

, we can use a similar argument 
to deduce that there is C > 0 independent of α such that

‖uα‖L∞(|x|≤R̄) ≤ C. (5.16)

Indeed, in this case, (5.6) can be rewritten as∫
R2

|∇uα|2η2u
2(γ−1)

K,α dx +
∫
R2

u2
αη2u

2(γ−1)

K,α dx

≤C

∫
R2

∫
R2

u2
α(y)dy

|x − y| u2
α(x)η2u

2(γ−1)

K,α dx + C

∫
R2

u2
α|∇η|2u2(γ−1)

K,α dx

+ C

∫
R2

(eθ |u|2 − 1)u2
αη2u

2(γ−1)

K,α dx.

(5.17)

Moreover, by Hardy-Littlewood-Sobolev’s inequality, we can easy to get that there exists C > 0
(independent of α) such that

∫
|x|≤2R̄

(∫
R2

u2
α(y)dy

|x − y|
) t

t−2

dx ≤ C. (5.18)

It follows from (5.8), (5.17) and (5.18) that (5.9) holds also true for this case. Arguing as above, 
we obtain (5.16). Together with (5.15) and (5.16), we have ‖uα‖∞ ≤ C uniformly for α. The 
proof is complete. �
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Lemma 5.2. There exist c, C > 0 such that

uα(x) ≤ C exp(−c|x|) for x ∈R2

for α ∈ (0, α1). Here, C, c are independent of α and α1 has been given in Theorem 4.2.

Proof. We have known that uα is radially symmetric and strictly decreasing in r = |x| for any 
fixed α ∈ (0, α1). Now recalling Radial Lemma A.IV in [9], there exists C > 0 independent of α
such that

|uα(x)| ≤ C|x|−1‖uα‖ ≤ C|x|−1, x �= 0

which implies that

lim|x|→∞|uα(x)| = 0 uniformly for α ∈ (0, α1).

By the uniform boundedness of uα in L∞(R2) (see Lemma 5.1), and a comparison principle (see 
[39]), there exist C, c > 0 (independent of α) such that

uα(x) ≤ C exp(−c|x|) for x ∈ R2.

The proof is complete. �
The proof of Theorem 1.3. Now we are ready to use the Lebesgue dominated convergence the-
orem to prove that I ′

α is weakly sequence continuous in H 1(R2). For any ϕ ∈ C∞
0 (R2), we have

I ′
α(uα)ϕ =

∫
R2

∇uα∇ϕdx +
∫
R2

uαϕdx −
∫
R2

∫
R2

|x − y|−α − 1

α
u2

α(y)dyuα(x)ϕ(x)dx

−
∫
R2

f (uα)ϕdx.

(5.19)

If |x − y| ≤ 1, then it follows from Lemma 3.2 that

0 ≤
∣∣∣∣ |x − y|−α − 1

α
u2

α(y)uα(x)ϕ(x)

∣∣∣∣
≤

∣∣∣∣ 1

|x − y|u
2
α(y)uα(x)ϕ(x)

∣∣∣∣ := gα(x, y).

(5.20)

Using the Hardy-Littlewood-Sobolev inequality, (5.1) and the fact that ϕ has a compact support, 
we deduce that sequence {gα(x, y)}α∈(0,1) ⊂ L1(R2 × R2) has a strongly convergent subse-
quence in L1(R2 ×R2). Thus, by (5.20) and the Lebesgue dominated convergence theorem,
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∫ ∫
|x−y|≤1

|x − y|−α − 1

α
u2

α(y)dyuα(x)ϕ(x)dx → −
∫ ∫

|x−y|≤1

ln(|x −y|)u2
0(y)dyu0(x)ϕ(x)dx.

(5.21)
When |x − y| ≥ 1, there exists τ = τ(|x − y|) ∈ (0, 1) such that

0 ≥ Gα(x − y) = |x − y|−α − 1

α
= −|x − y|−τα ln |x − y|, (5.22)

where τ depends upon |x − y|. Since ϕ has a compact support, it follows from Lemma 5.2 that,

∣∣∣∣ |x − y|−α − 1

α
u2

α(y)uα(x)ϕ(x)

∣∣∣∣
=

∣∣∣∣|x − y|−τα ln |x − y|u2
α(y)uα(x)ϕ(x)

∣∣∣∣
≤

∣∣∣∣(|x| + |y|)u2
α(y)uα(x)ϕ(x)

∣∣∣∣, for any x ∈ spt(ϕ).

(5.23)

Using Lemma 5.2, combining (5.22) with (5.23), similarly to (5.21), by the Lebesgue dominated 
convergence theorem, one has

∫ ∫
|x−y|≥1

|x − y|−α − 1

α
u2

α(y)dyuα(x)ϕ(x)dx

→ −
∫ ∫

|x−y|≥1

ln |x − y|u2
0(y)dyu0(x)ϕ(x)dx.

(5.24)

Moreover, by Fatou’s lemma, we have

∣∣∣∣
∫
R2

∫
R2

log |x − y|u2
0(y)dyu2

0(x)dx

∣∣∣∣
≤ lim inf

α→0

(∫ ∫
|x−y|≤1

Gα(x − y)u2
α(y)dyu2

α(x)dx

−
∫ ∫

|x−y|≥1

Gα(x − y)u2
α(y)dyu2

α(x)dx

)
.

(5.25)

Similarly to (5.20), we can use Hardy-Littlewood-Sobolev’s inequality to get

∫ ∫
|x−y|≤1

Gα(x − y)u2
α(y)dyu2

α(x)dx < +∞ (5.26)

uniformly for α. So by Remark 3.4, we further deduce that
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Z. Liu, V.D. Rădulescu, C. Tang et al. Journal of Differential Equations 328 (2022) 65–104
∫ ∫
|x−y|≥1

Gα(x − y)u2
α(y)dyu2

α(x)dx

≤ Iα(uα) +
∫ ∫

|x−y|≤1

Gα(x − y)u2
α(y)dyu2

α(x)dx +
∫
R2

F(x,uα)dx − 1

2
‖uα‖2

< +∞.

(5.27)

Together (5.25), (5.26) with (5.27), we have∣∣∣∣
∫
R2

∫
R2

ln |x − y|u2
0(y)dyu2

0(x)dx

∣∣∣∣ < +∞. (5.28)

Based on (5.21), (5.24) and (5.28), by taking the limit in (5.19), we have I ′(u0) = 0 with I (u0) <
+∞, that is, u0 ∈ H 1(R2) solves equation (1.5).
We now claim u0 �= 0. Assume on the contrary that uα ⇀ 0 in H 1(R2), and so uα → 0 in Ls(R2)

for s ∈ (2, +∞). So by (3.9), Lemma 3.2 and Hardy-Littlewood-Sobolev’s inequality, we have

I ′
α(uα)uα = ‖uα‖2 −

∫
R2

∫
R2

Gα(x − y)u2
α(y)u2

α(x)dxdy −
∫
R2

f (x,uα)uαdx

≥ ‖uα‖2 −
∫ ∫

|x−y|≤1

Gα(x − y)u2
α(y)u2

α(x)dxdy + oα(1)

≥ ‖uα‖2 −
∫
R2

∫
R2

1

|x − y|u
2
α(y)u2

α(x)dxdy + oα(1)

≥ ‖uα‖2 − C‖uα‖4
8
3
+ oα(1),

which means uα → 0 in H 1(R2). Then by Remark 3.4, we have

a ≤ Iα(uα)

= 1

2
‖uα‖2 − 1

4

∫
R2

∫
R2

Gα(x − y)u2
α(y)u2

α(x)dxdy −
∫
R2

F(x,uα)dx

= −1

4

∫
R2

∫
R2

Gα(x − y)u2
α(y)u2

α(x)dxdy + oα(1)

= oα(1),

which yields a contradiction. Furthermore, similarly to (5.21), (5.24), by Lemma 5.2 and the 
Lebesgue dominated convergence theorem, we have

∫
2

∫
2

|x − y|−α − 1

α
u2

α(y)u2
α(x)dydx → −

∫
2

∫
2

ln |x − y|u2
0(y)u2

0(x)dxdy, (5.29)
R R R R
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which implies that uα → u0 in H 1(R2) as α → 0+. Thus, u0 is a positive solution of (1.5). �
6. Proof of Theorem 1.4

In this section, we are ready to restrict the energy functional to the radial space H 1
r (R2) in 

studying the existence of nontrivial solutions to equation (1.5) with nonlinearity f satisfying 
(f3)-(f5). It follows from (f3) and (f4) that for any ε > 0, there exists Cε > 0 such that

|f (t)| ≤ ε|t | + Cε|t |p−1, t ∈ R, p ∈ (3,+∞). (6.1)

Here, we also study the modified equation (3.1) by using perturbation fashion, since the fact 
that I is not well defined on H 1(R2). Since we do not impose the well-known 4-Ambrosetti-
Rabinowitz condition, the boundedness of the Palais-Smale sequence becomes complicated. In 
order to overcome this difficulty, we add another perturbation technique developed in [34,36] to 
equation (3.1). We now give more details to describe such a technique. Set

λ ∈ (0,1], r ∈ (max{p,4},+∞)

and Gα(x) = |x|−α−1
α

, α ∈ (0, 1), x ∈ R2 \ {0}. Consider the following modified problem

−�u + u − (Gα(x) ∗ u2)u + λ

⎛
⎜⎝∫
R2

u2dx

⎞
⎟⎠

1
4

u = f (u) + λ|u|r−2u,u ∈ H 1
r (R2), (6.2)

whose associated functional is given by

Iα,λ(u) = 1

2
‖u‖2 − 1

4

∫
R2

(Gα(x) ∗ u2)u2dx + 2λ

5
‖u‖

5
2
2 −

∫
R2

F(u)dx − λ

r
‖u‖r

r .

According to the definition of Gα , using the Hardy-Littlewood-Sobolev inequality, it is not hard 
for fixed α > 0 to show that the perturbation functional Iα,λ is well-defined on H 1(R2) and 
Iα,λ ∈ C1(H 1

r (R2), R) and

I ′
α,λ(u)v = I ′

α(u)v + λ‖u‖
1
2
2

∫
R2

uvdx − λ

∫
R2

|u|r−2uvdx

for u, v ∈ H 1
r (R2). For any critical point u ∈ H 1

r (R2) of Iα,λ, the following Pohozaev identity 
holds

Pα,λ(u) := ‖u‖2
2 + 1

α
‖u‖4

2 − 4 − α

4α
Q(u) + λ‖u‖

5
2
2 − 2

∫
R2

(F (u) + λ

r
|u|r )dx = 0. (6.3)

The conditions (f3)-(f5) imply that the perturbed functional Iα,λ satisfies the mountain pass 
geometry. More precisely,
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Lemma 6.1. Suppose (f3)-(f5) hold, then
(i) there exist ρ, δ0 > 0 such that Iα,λ|Sρ (u) ≥ δ0 for every u ∈ Sρ = {u ∈ H 1

r (R2) : ‖u‖ = ρ};
(ii) there is e ∈ H 1(R2) with ‖e‖ > ρ such that Iα,λ(e) < 0.

Proof. The proof of conclusion (i) is similar to that of Lemma 3.3, so we omit it. It remains to 
prove conclusion (ii). Arguing as that of Lemma 3.3, we take e0 ∈ H 1

r (R2) ∩ C∞
0 (R2) such that 

e0(x) ≡ 1 for x ∈ B 1
8
(0), e0(x) ≡ 0 for x ∈R2 \ B 1

4
(0) and |∇e0(x)| ≤ C. Then we have

Iα,λ(se0) ≤ s2

2
‖e0‖2 − s4

4

∫
R2

∫
R2

|x − y|−α − 1

α
e2

0(y)e2
0(x)dydx + 2s5/2

5
‖e0‖

5
2
2 − 1

2

∫
R2

F(se0)dx

≤ s2

2
‖e0‖2 − s4

4

∫
|x|≤ 1

4

∫
|y|≤ 1

4

ln
1

|x − y|e
2
0(y)e2

0(x)dydx + 2s5/2

5
‖e0‖

5
2
2 (6.4)

≤ s2

2
‖e0‖2 − s4 ln 2

4

(∫
R2

e2
0(x)dx

)2

+ 2s5/2

5
‖e0‖

5
2
2 ,

which implies that there exists s0 > 0 large enough such that Iα,λ(s0e0) < 0. �
Recall the well-known mountain pass theorem (see [46]), then there exists a (PS)cα,λ sequence 

{un} ⊂ H 1
r (R2), that is,

Iα,λ(un) → cα,λ and I ′
α,λ(un) → 0, (6.5)

where cα,λ is the mountain pass level characterized by

cα,λ = inf
γ∈�

max
t∈[0,1] Iα,λ(γ (t)) (6.6)

with

� := {γ ∈ C1([0,1],H 1
r (R2)) : γ (0) = 0 and γ (1) = e},

where e has been given in Lemma 6.1. It is easy to see from Lemma 6.1 that there exist a, b > 0
independent of α, λ such that a < cα,λ < b. We state the following lemma to ensure that func-
tional Iα,λ has at least a critical point u ∈ H 1

r (R2) at the mountain pass level cα,λ.

Lemma 6.2. For fixed λ ∈ (0, 1], let {un} ⊂ H 1
r (R2) be a (PS)cα,λ sequence of Iα,λ. Then there 

exists u ∈ H 1
r (R2) such that I ′

α,λ(u) = 0 and Iα,λ(u) = cα,λ.

Proof. We first show that the sequence {un} is bounded in H 1
r (R2). Obviously, there exist 

C1, C2 > 0 such that
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C1 + C2‖un‖ ≥ Iα,λ(un) − 1

4
I ′
α,λ(un)un

= 1

4
‖un‖2 + 3λ

20
‖un‖

5
2
2 +

∫
R2

(
1

4
f (un)un − F(un))dx + r − 4

4r
λ

∫
R2

|un|rdx.

By (6.1) it follows that

C1 + C2‖un‖ ≥ 1

8
‖un‖2 + 3λ

20
‖un‖

5
2
2 − C3

∫
R2

|un|pdx + r − 4

4r
λ

∫
R2

|un|rdx. (6.7)

Observe that for any large B1 > 0, there exists B2 > 0 such that

3

20
‖un‖

5
2
2 ≥ B1‖un‖2

2 − B2,

which implies by (6.7) that

C1 + λB2 + C2‖un‖ ≥1

8
‖un‖2 +

∫
R2

(
λB1|un|2 − C3|un|p + r − 4

4r
λ|un|r

)
dx. (6.8)

We remark that λB1t
2 − C3t

p + r−4
4r

λtr ≥ 0 for t ≥ 0, since B1 can be chosen arbitrary large. 
Thus, it follows from (6.8) that ‖un‖ ≤ C for some C independently of n. It remains to prove the 
strong convergence of sequence {un}. Up to a subsequence, we assume that there is u ∈ H 1

r (R2)

such that

un ⇀ u weakly inH 1
r (R2),

un → u inLp(R2), 3 < p < +∞,

‖un‖2
2 → B for some B ≥ 0.

(6.9)

Observe that

JB,α,λ(un) → cα,λ + B2

4α
+ λB5/4

10

and J ′
B,α,λ(un) → 0 in H−1

r with J ′
B,α,λ(u0) = 0, where

JB,α,λ(u) :=1

2
‖u‖2 + (

B

2α
+ B1/4λ

2
)

∫
R2

|u|2dx − 1

4α

∫
R2

( 1

|x|α ∗ u2)u2dx

−
∫
R2

F(u)dx − λ

∫
R2

|u|rdx.

(6.10)

In view of (f3) and (f4), one has
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∫
R2

F(un) →
∫
R2

F(u0),

∫
R2

f (un)un →
∫
R2

f (u0)u0. (6.11)

Moreover, Hardy-Littlewood-Sobolev’s inequality together with (6.9) implies that

Q(un) → Q(u0). (6.12)

From (6.9), (6.11) and (6.12), we deduce that un → u in H 1
r (R2). Thus, u is a positive critical 

point of Iα,λ and Iα,λ(u) = cα,λ. �
Based on Lemma 6.2, for fixed λ ∈ (0, 1], there exists uλ ∈ H 1

r (R2) \ {0} such that I ′
α,λ(uλ) =

0. Choosing a sequence {λn} ⊂ (0, 1] satisfying λn → 0+, then we find a sequence of nontrivial 
critical points sequence {uλn} (still denoted by {un}) of Iα,λn with Iα,λn(un) = cα,λn .

Lemma 6.3. For fixed α ∈ (0, 1), there exists v ∈ H 1
r (R2) \ {0} such that I ′

α(v) = 0.

Proof. We now claim sequence {un} is bounded in H 1
r (R2). Indeed, by I ′

α,λn
(un)un = 0, we 

have

∫
R2

(|∇un|2 + u2
n)dx + 1

α
‖un‖4

2 − 1

α
Q(un) −

∫
R2

[f (un)un + λn|un|r ]dx + λn‖un‖
5
2
2 = 0.

(6.13)
Recalling hypothesis (f5), it follows from (6.13) that for any a > 0,

a

∫
R2

F(un) ≤ a

μ

∫
R2

(|∇un|2 + u2
n)dx + a

αμ
‖un‖4

2 − a

αμ
Q(un)

+ aλn

μ
‖un‖

5
2
2 − aλn

μ

∫
R2

|un|rdx.

(6.14)

Combining (6.14) with (6.3), we have for any b ∈R

(a + b)

∫
R2

F(un)dx ≤ a

μ

∫
R2

|∇un|2dx + (
a

μ
+ b

2
)

∫
R2

|un|2dx

+
(

a

μα
+ b

2α

)
‖un‖4

2 −
(

a

αμ
+ 4 − α

8α
b

)
Q(un)

+ (
a

μ
+ b

2
)λn‖un‖

5
2
2 − (

a

μ
+ b

2r
)λn‖un‖r

r .

(6.15)

Take a = 1 − b in (6.15), then it follows from the definition of Iα,λn that
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cα,λn =Iα,λn(un)

≥
(

1

2
− 1 − b

μ

)∫
R2

|∇un|2dx +
(

1

2
− b

2
− 1 − b

μ

)∫
R2

|un|2dx

+
(

1

4α
− 1 − b

αμ
− b

2α

)
‖un‖4

2 +
(

2

5
− 1 − b

μ
− b

2

)
λn‖un‖

5
2
2

+
(−1

4α
+ 1 − b

αμ
+ 4 − α

8α
b

)
Q(un)

+
(−1

r
+ 1 − b

μ
+ b

2r

)
λn‖un‖r

r .

(6.16)

By choosing b = μ−4
2(μ−2)

, it is easy to check that all the coefficients are nonnegative, that is,

• 1

2
− 1 − b

μ
> 0, since μ ∈ (3, 4);

• 1

2
− b

2
− 1 − b

μ
> 0, since μ ∈ (3, 4);

• 1

4α
− 1 − b

αμ
− b

2α
= 0;

• 2

5
− 1 − b

μ
− b

2
> 0 since μ ∈ (3, 4);

• −1

4α
+ 1 − b

αμ
+ 4 − α

8α
b > 0;

• −1

r
+ 1 − b

μ
+ b

2r
> 0 since μ ∈ (3, 4).

Let limn→+∞ cα,λn = cα ∈ [a, b], then we have Iα,λn(un) = cα + o(1). From (6.16) we have 
‖un‖ ≤ C for some C independent of n. Moreover, for any ϕ ∈ C∞

0 (R2), we have

I ′
α,λn

(un)ϕ = I ′
α(un)ϕ + λn‖un‖

1
2
2

∫
R2

unϕdx + λn

∫
R2

|un|r−2unϕdx = 0.

Thus, {un} is a bounded Palais-Smale sequence of Iα with level cα . Observe that JB,α(un) →
cα + B2

4α
and J ′

B,α(un) → 0 in H−1
r , where JB,α has been defined in (3.8). Thus, arguing similarly 

as in the proof of Lemma 6.2, there exists v ∈ H 1
r (R2) such that I ′

α(v) = 0 and Iα(v) = cα . �
6.1. Proof of Theorem 1.4 completed

In view of Lemma 6.3, we have that for fixed α ∈ (0, 1), there exists uα ∈ H 1
r (R2) \ {0} such 

that I ′
α(uα) = 0. As can be seen in the proof of Lemma 6.3, we can also prove that {uα}α∈(0,1)

is bounded in H 1
r (R2) uniformly for α ∈ (0, 1). Now recalling Radial Lemma A.II in [9], there 

exists C1, C2 > 0 independent of α such that

|uα(x)| ≤ C|x| −1
2 ‖uα‖ ≤ C1|x| −1

2 for |x| ≥ C2,
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which implies that

lim|x|→∞ |uα(x)| = 0 uniformly for α ∈ (0,1).

Moreover, the uniform boundedness of uα in L∞(R2) can be obtained by a slight modification 
of the proof of Lemma 5.1. Based on above, by a comparison principle (see [39]), there exist 
C, c > 0 (independent of α) such that

uα(x) ≤ C exp(−c|x|) for x ∈ R2.

Furthermore, as arguing in the proof of Theorem 1.3, we prove that (1.5) has at least a positive 
radial solution u0 ∈ H 1

r (R2). �
7. Proof of Theorem 1.5

In this section, we turn to prove Theorem 1.5, where gives the existence of positive solutions 
for a class of concrete nonlinearities that F(u) = 

3 |u|3,  > 0. In the following, we will use the 
same procedure as that of Theorem 1.4 to study this case. But a key difference from the previous 
case is the proof of the boundedness of solution sequence with respect to the perturbation pa-
rameters α, λ. More precisely, observe that Lemmas 6.1 and 6.2 still hold in this case. Therefore, 
the mountain pass theorem (see [46]) implies that for fixed λ ∈ (0, 1], there exists uα,λ ∈ H 1

r (R2)

such that I ′
α,λ(uα,λ) = 0 with Iα,λ(uα,λ) = cα,λ, where cα,λ is a mountain pass level characterized 

by

cα,λ = inf
γ∈�

max
t∈[0,1] Iα,λ(γ (t)) (7.1)

with

� :=
{
γ ∈ C1([0,1],H 1

r (R2)) : γ (0) = 0 and Iα,λ(γ (1)) < 0

}
.

Let us stress that, there exist a, b > 0 independently of α, λ such that a < cα,λ < b. Now we es-
tablish the following lemma to get the boundedness of solution uα,λ uniformly for α, λ. Choosing 
a sequence {λn} ⊂ (0, 1] satisfying λn → 0+, denote {uα,λn} by {un}.

Lemma 7.1. Sequence {un} is a bounded sequence in H 1
r (R2) uniformly for n.

Proof. Multiplying Iα,λn(un), I ′
α,λn

(un)un = 0 and Pα,λn(un) = 0 by 1, −1/2 and 1/4 respec-
tively and adding them up, we get

Iα,λn(un) =1

4

∫
R2

u2
ndx + 1

16
Q(un) + 3λn

20
‖un‖

5
2
2

+ 1

2

∫
2

f (un)un − 3F(un)dx + (r − 3)λn

2r

∫
2

|un|rdx,

(7.2)
R R
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which implies that {un} is bounded in L2(R2) uniformly for α, λn. We now prove that there exists 
C > 0 independent of α, n such that

‖∇un‖2 ≤ C. (7.3)

Arguing by contradiction, suppose that, up to subsequence, ‖∇un‖2 → ∞ as n → ∞. Set kn :=
‖∇un‖

−1
2

2 , then kn → 0. Let us define zn ∈ H 1
r (R2) by zn(x) := k2

nun(knx), and then we have

‖∇zn‖2
2 = 1, ‖zn‖s

s = k2s−2
n ‖un‖s

s (7.4)

for all n ∈N and s ∈ [1, +∞). In particular, ‖zn‖2
2 = k2

n‖un‖2
2 → 0 as n → ∞. On the one hand, 

multiplying Iα,λn(un) by k4
n, we deduce from (7.2) and (7.4) that there exists K > 0 such that

Kk4
n ≥k2

n

4

∫
R2

z2
ndx + 1

16kα
n

∫
R4

z2
n(x)z2

n(y)

|x − y|α dxdy

+ 3λnk
3/2
n

20
‖zn‖

5
2
2 + (r − 3)λnk

6−2r
n

2r

∫
R2

|zn|rdx.

(7.5)

Hence,

‖zn‖2 = o(kτ
n),

∫
R4

z2
n(x)z2

n(y)

|x − y|α dx = o(k3+τ+α
n ), λn‖zn‖r

r = o(k2r−3+τ
n ), 0 < τ < 1. (7.6)

On the other hand, multiplying the corresponding Pohozaev identity Pα,λn(un) = 0 by k4
n, by 

(7.4) we have

k2
n‖zn‖2

2 + 1

α
‖zn‖4

2 − 4 − α

4α

1

kα
n

∫
R4

z2
n(x)z2

n(y)

|x − y|α dxdy

− 2k4
n

∫
R2

F(un)dx + λnk
3/2
n ‖zn‖

5
2
2 + 2λnk

6−2r
n

r
‖zn‖r

r = 0.

(7.7)

Observe that

0 ≤ k4
n

∫
R2

F(un)dx = k4
n

∫
R2



3
|un|3dx = 

3
‖zn‖3

3. (7.8)

Moreover, we use the Gagliardo-Nirenberg inequality and (7.4) to get

‖zn‖3
3 ≤ C‖zn‖2

2‖∇zn‖2 ≤ C‖zn‖2
2

for n ∈N . Together (7.6) with (7.7) and (7.8), we infer that
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k4
n

∫
R2

F(un)dx = o(1),

∣∣∣∣
∫
R4

( |x − y|−α

αkα
n

− 1

α

)
z2
n(x)z2

n(y)dxdy

∣∣∣∣ = o(1). (7.9)

By I ′
α,λn

(un)un = 0, we also have

0 = k4
n

(
‖∇un‖2

2 + ‖un‖2
2 −

∫
R4

|x − y|−α − 1

α
u2

n(x)u2
n(y)dxdy

−
∫
R2

f (un)undx + λn‖un‖
5
2
2 − λn‖un‖r

r

)
.

(7.10)

It follows from (7.4)-(7.10) that

0 = 1 + k2
n‖zn‖2

2 + o(1) −
∫
R4

(λn|x − y|−α

αkα
n

− 1

α

)
z2
n(x)z2

n(y)dxdy − λnk
4
n

∫
R2

f (un)undx

= 1 + o(1) − λnk
4
n

∫
R2

f (un)undx.

(7.11)
Similar to (7.8), we infer that

λnk
4
n

∫
R2

f (un)undx = o(1),

which contradicts with (7.11). We thus conclude that (7.3) holds. The proof is complete. �
The proof of Theorem 1.5. Based on Lemma 7.1, arguing similarly as in the proof of Lemma 6.2,
we obtain that for any fixed α ∈ (0, 1), there exists uα ∈ H 1

r (R2) such that I ′(uα) = 0 and 
I (uα) = cα with cα ∈ [a, b]. In view of Lemma 7.1, it is easy to check by an easy modification 
that {uα}α∈(0,1) is bounded in H 1

r (R2). The remaining proof is the same as that of Theorem 1.3, 
we omit it. �
8. Proof of Theorem 1.6

In this section, we are ready to prove the existence of positive solutions to (1.5) under that 
f satisfies (f3) and (f6)-(f7). Here we still use the same perturbation fashion as that of Theo-
rem 1.4 and Theorem 1.5 to prove the boundedness of (PS) sequences. That is to say, we study 
the perturbation equation (6.2) in this section under that f satisfies (f3), (f6) and (f7). However, 
some new tricks will be used to deal with the boundedness of solution sequences with respect to 
the perturbation parameters α, λ. It is easy to check that Lemma 6.1 and 6.2 is still valid in this 
case. Therefore, for fixed λ ∈ (0, 1], there exists a mountain pass solution uα,λ ∈ H 1

r (R2) such 
that I ′

α,λ(uα,λ) = 0 with Iα,λ(uα,λ) = cα,λ. Moreover, there exist a, b > 0 independent of α, λ
such that a < cα,λ < b.
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Lemma 8.1. Assume (f3), (f6) and (f7) hold, then for fixed α ∈ (0, 1), there exists v ∈ H 1
r (R2) \

{0} such that I ′
α(v) = 0.

Proof. Choosing a sequence {λn} ⊂ (0, 1] satisfying λn → 0+, then we find a sequence of non-
trivial critical points sequence {uλn} (still denoted by {un}) of Iα,λn with Iα,λn(un) = cα,λn . Now 
we claim sequence {un} is bounded in H 1

r (R2). According to the definition of I ′
α,λn

(un)un = 0, 
we have

Q(un) = α(‖∇un‖2
2 +‖un‖2

2)+‖un‖4
2 +λnα‖un‖

5
2
2 −α

∫
R2

f (un)undx −λnα

∫
R2

|un|rdx. (8.1)

It then follows from (7.2) that

Iα,λn(un) ≥(
1

4
+ α

16
)

∫
R2

u2
ndx + 1

16
‖un‖4

2 + (
αλn

16
+ 3λn

20
)‖un‖

5
2
2

+
∫
R2

[ 7

16
f (un)un − 3

2
F(un)]dx + (

(r − 3)λn

2r
− αλn

16
)

∫
R2

|un|rdx,

(8.2)

which, together with (f6), yields that

1

4
‖un‖2

2 + 1

16
‖un‖4

2 ≤ C(1 + ‖un‖p
p), p ∈ (2,3). (8.3)

We first prove that there exists C > 0 independent of α, n such that ‖un‖p
p ≤ C. Suppose by 

contradiction that ‖un‖p
p → ∞ as n → ∞. By (8.3) we get that there exists C > 0 independent 

of α, n such that

‖un‖p
p ≥ C‖un‖4

2,

which implies

‖un‖2 ≤ C‖un‖
p
4
p . (8.4)

Observe that

Iα,λn(un) =1

4
(‖∇un‖2

2 + ‖un‖2
2) + 3λn

20
‖un‖

5
2
2

+
∫
R2

1

4
f (un)un − F(un)dx + (r − 4)λn

4r

∫
R2

|un|rdx,
(8.5)

which, together with (f3) and (f6), implies that there exists C > 0 independent of α, n such that

C‖∇un‖2
2 ≤ ‖un‖p

p. (8.6)

By the Gagliardo-Nirenberg inequality and (8.4)-(8.6) we have
102
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‖un‖p
p ≤ C‖un‖2

2‖∇un‖p−2
2 = C‖un‖

p(p−1)
2

p

which is a contradiction. Thus, un is bounded in Lp(R2) uniformly for n. And by (8.4) and (8.6), 
we know that {un} is bounded in H 1

r (R2) uniformly for n. The remaining proof is the same as 
that of Lemma 6.2, we omit it. �
8.1. Proof of Theorem 1.6 completed

Since there exist a, b > 0 independent of α, λ such that a < cα,λ < b, as can be seen in the 
proof of Lemma 8.1, by an easy modification, we can also prove that {uα}α∈(0,1) is bounded in 
H 1

r (R2) uniformly for α ∈ (0, 1). As arguing in the proof of Theorem 1.4, we prove that (1.5)
has at least a positive radial solution u0 ∈ H 1

r (R2). �
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