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Abstract

We study the following class of stationary Schrödinger equations of Choquard type

−�u + V (x)u = [|x|−μ ∗ (Q(x)F (u))
]
Q(x)f (u), x ∈R2,

where the potential V and the weight Q decay to zero at infinity like (1 + |x|γ )−1 and (1 + |x|β)−1 for 
some (γ, β) in variously different ranges, ∗ denotes the convolution operator with μ ∈ (0, 2), and F is the 
primitive of f that fulfills a critical exponential growth in the Trudinger-Moser sense. By establishing a 
version of the weighted Trudinger-Moser inequality, we investigate the existence of nontrivial solutions of 
mountain-pass type for the given problem. Furthermore, we shall establish that the nontrivial solution is a 
bound state, namely a solution belonging to H 1(R2), for some particular (γ, β).
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1. Introduction and main results

In the present paper, we are interested in the existence of solutions for the following stationary 
Schrödinger equation of Choquard type

−�u + V (x)u = [|x|−μ ∗ (Q(x)F (u))]Q(x)f (u), x ∈ R2, (1.1)

where the potential V and the weight Q decay to zero at infinity like (1 + |x|γ )−1 and (1 +
|x|β)−1 for some (γ, β) in various different ranges, ∗ denotes the convolution operator with μ ∈
(0, 2) and F is the primitive of f , which fulfills a critical exponential growth in the Trudinger-
Moser sense.

We assume that the potential V and the weight Q satisfy the following hypotheses:

(K) V , Q ∈ C(R2) and there exist some positive constants γ, β, a, A and b such that

a

1 + |x|γ ≤ V (x) ≤ A and 0 <Q(x) ≤ b

1 + |x|β ,

where V (x) ∼ |x|−γ and Q(x) ∼ |x|−β as |x| → +∞ and (γ, β) satisfies one of the follow-
ing assumptions:

(i) 0 < γ < 2 and (4 − μ)γ/4 ≤ β < +∞, or 0 < γ ≤ 4β/(4 −μ) < 2, where 0 <μ < 2;
(ii) γ = 2 and (4 −μ)/2 ≤ β < +∞;

(iii) γ > 2 and (4 −μ)/2 ≤ β < +∞.

Inspired by the Trudinger-Moser inequality, we say that a function f (s) possesses critical 
exponential growth if there exists a constant α0 > 0 such that

lim|s|→+∞
|f (s)|
eαs

2 =
{

0, ∀α > α0,

+∞, ∀α < α0.
(1.2)

This definition was introduced by Adimurthi and Yadava [3], see also de Figueiredo, Miyagaki 
and Ruf [16] for example.

We suppose that the nonlinearity f satisfies (1.2) and the following assumptions

(f1) f ∈ C1(R), f (s) ≡ 0 for all s ≤ 0 and f (s) = o(s
2−μ

2 );
(f2) there exists a constant δ ∈ [0, 1) such that

F(s)f ′(s)
f 2(s)

≥ δ, ∀s > 0, where F(s) =
sˆ

0

f (t)dt;

(f3) there exists some constants s0 > 0, M0 > 0 and ϑ ∈ (0, 1] such that

0 < sϑF(s) ≤ M0f (s), ∀s ≥ s0;

(f4) lim infs→+∞ F(s)/eα0s
2 � β0 > 0.
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It is widely known that the term |x|−μ ∗ (Q(x)F (u)) can be regarded as the convolution 
between the Riesz potential |x|−μ and Q(x)F (u). Thus, problem (1.1) is closely related to the 
Choquard equation arising from the study of Bose-Einstein condensation and can be exploited 
to describe the finite-range many-body interactions between particles. For N ≥ 3, the Choquard 
equation under the convolution of the Riesz potential is simply of the form

−�u+ u = (|x|−μ ∗ |u|p)|u|p−2u, x ∈ RN. (1.3)

In the relevant physical case in which N = 3, μ = 1 and p = 2, Eq. (1.3) turns into the Choquard-
Pekar equation, which was used by Pekar [39] to describe a polaron at rest in the quantum field 
theory. It was also investigated by Choquard to characterization an electron trapped in its own 
hole as an approximation to the Hartree-Fock theory for a one component plasma [24]. Subse-
quently, Lieb [22] and Lions [25] obtained the existence and uniqueness of positive solutions to 
(1.3) by variational methods. The authors in [28,32] verified the regularity, positivity and radial 
symmetry of the ground state solutions and established the decay property at infinity. It should be 
pointed out that Eq. (1.3) was also proposed by Moroz et al. in [31] as a model for self-gravitating 
particles in that context it can be viewed as the classical Schrödinger-Newton equation, see e.g. 
[13,40,43].

To review the research history of the Choquard equation as (1.3), let us recall the Hardy-
Littlewood-Sobolev inequality, which will play a vital role throughout this paper.

Proposition 1.1. (Hardy-Littlewood-Sobolev inequality [23, Theorem 4.3]). Suppose that s, r >

1 and 0 <μ < N with 1/s + μ/N + 1/r = 2, g ∈ Ls(RN) and h ∈ Lr(RN). Then, there exists 
a sharp constant C = C(s, N, μ, r) > 0, independent of g and h, such that

ˆ

RN

[|x|−μ ∗ g(x)]h(x)dx ≤ C|g|s |h|r . (1.4)

Suppose that g(x) = h(x) = |u(x)|p in (1.4) for every u ∈ H 1(RN) with N ≥ 3. To preserve 
the variational structure, the Sobolev imbedding theorem, namely H 1(RN) ↪→ Lt(RN) for all 
2 ≤ t ≤ 2∗ = 2N/(N − 2), indicates that the exponent p in Eq. (1.3) should satisfy

2N − μ

N
≤ p ≤ 2N − μ

N − 2
.

For (2N − μ)/N < p < (2N − μ)/(N − 2), the authors [32] considered the existence of ground 
state solutions for Eq. (1.3), where the Pohoz̆aev identity was also established. After it, they in-
vestigated the existence and nonexistence of solutions to the equation with nonconstant potential 
by minimizing arguments for the lower critical exponent case, i.e. p = (2N − μ)/N , in [33]. 
Gao-Yang studied the upper critical exponent case for p = (2N − μ)/(N − 2) in [17]. In fact, 
Eq. (1.3) and its variants have received a great number of attentions by many mathematicians 
because of the appearance of the convolution type nonlinearities over the past several decades. 
We refer the reader to [1,8,19,20,32,47–49] and the references therein for the consideration of 
existence, multiplicity, nodal, semiclassic state and concentrating behavior of different type of 
solutions, even if these references are far to be exhaustive. For the convenience of the inter-
ested reader, we shall suggest [34] for a very abundant and meaningful review of the Choquard 
equations.
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However, the case N = 2 is very different and special since 2∗ = ∞ in this situation and 
H 1(R2) �↪→ L∞(R2). As a matter of fact, although the Sobolev imbedding theorem ensures that 
H 1

0 (	) ↪→ Lp(	) with 1 ≤ p < +∞ for all bounded domain 	 ⊂ R2, we have that H 1
0 (	) �↪→

L∞(	). Loosely speaking, if one tends to deal with the problem (1.1) variationally, by (1.4), it 
has to make sure that

ˆ

R2

[|x|−μ(Q(x)F (u))]Q(x)F (u)dx

is well-defined if Q(x)F (u) ∈ Lt(R2) for every u ∈ H 1(R2)\{0} and t > 1 induced by 2/t +
μ/2 = 2. Because f (s) satisfies (1.2) and H 1(R2) �↪→ L∞(R2), to overcome the obstacle in 
this limiting case, the celebrated Trudinger-Moser inequality [30,41,44] may be treated as a 
suitable substitute of the Sobolev inequality. Firstly, we will introduce the case bounded domain 
	 instead of the whole space R2. The authors in [30,41,44] established the following sharp 
maximal exponential integrability for functions in H 1

0 (	):

sup
u∈H 1

0 (	):‖∇u‖
L2(	)

≤1

ˆ

	

eαu
2
dx ≤ C|	| if α ≤ 4π, (1.5)

where C > 0 depends only on α, and |	| denotes the Lebesgue measure of 	. Subsequently, this 
inequality was generalized by P. L. Lions in [26]: Let {un} be a sequence of functions in H 1

0 (	)

with ‖∇un‖L2(	) = 1 such that un ⇀ u0 weakly in H 1
0 (	), then for all p < 1

(1−‖∇u0‖2
2)

, there 

holds

lim sup
n→∞

ˆ

	

e4πpu2
ndx < +∞.

Unfortunately, the supremum in (1.5) becomes infinite for domains 	 with |	| = ∞, and 
therefore the Trudinger-Moser inequality is not available for the unbounded domains. As to the 
whole space R2, the author in [9] established the following version of the Trudinger-Moser 
inequality (see also [11] for example):

eαu
2 − 1 ∈ L1(R2), ∀α > 0 and u ∈ H 1(R2).

Moreover, for all u ∈ H 1(R2) with ‖u‖L2(R2) ≤ M < +∞, there exists a positive constant C =
C(M, α) such that

sup
u∈H 1(R2):‖∇u‖

L2(R2)≤1

ˆ

R2

(
eαu

2 − 1
)
dx ≤ C if α < 4π.

Concerning some other generalizations, extensions and applications of the Trudinger-Moser in-
equalities for bounded and unbounded domains, we refer to [16] and its references therein.

It should be noted that the inequality by Cao [11] holds only strictly for α < 4π , i.e. with 
subcritical growth. For the sharp case, based on symmetrization and blow-up analysis, Ruf [38], 
Li and Ruf [21] proved that
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sup
u∈W 1,N

0 (RN),‖u‖N
LN +‖∇u‖N

LN ≤1

ˆ

RN

(
eα|u| N

N−1 −
N−2∑
k=0

αk|u|kN/(N−1)

k!

)
dx < ∞, if α ≤ αN,

by replacing the LN norm of ∇u in the supremum with the standard Sobolev norm. This inequal-
ity was improved by Souza and do Ó[14] for N = 2. Let (un) be in W 1,N

0 (RN) with ‖un‖ = 1

and suppose that un ⇀ u0 in W 1,N
0 (RN). Then for all 0 <p < 4π

1−‖u0‖2 , the authors proved that

sup
n

ˆ

R2

(epu
2
n − 1)dx < ∞.

We refer the reader to the references in this paper for more information about the advances on 
the elliptic equations with critical exponential growth.

Concerning the Choquard equation in R2 with critical exponential growth, Alves et al. [7]
studied the existence of ground state solution for Eq. (1.1) with Q(x) ≡ 1 if the potential V (x)

satisfies

(V1) V (x) is a 1-periodic continuous function in R2 and infx∈R2 V (x) > 0

and the nonlinearity f (s) meets the Ambrosetti-Rabinowitz condition ((AR) in short)

(AR) there exists a constant K > 1 such that f (s)s ≥ KF(s) for all s > 0.

Moreover, the authors in [7] also considered the semiclassic state solution under the assumption

(V2) V ∈ C(R2), V (x) ≥ infx∈R2 V (x) � V0 > 0 and V0 <V∞ = lim inf|x|→+∞ < +∞.

Very recently, by still supposing (AR), Qin-Tang [37] generalize the counterpart in [7] to the 
indefinite case, i.e. the potential V (x) verifies

(V3) V (x) is a 1-periodic continuous function in R2 and 0 lies in a gap of the spectrum −� +V .

Besides, Albuquerque et al. [5] investigated the existence of nontrivial solutions and ground state 
solutions for the problem (1.1) by supposing that

(V4) V ∈ C(0, ∞), V (r) > 0 for r > 0 and there exist a0 > −2 and a > −2 such that

lim sup
r→0+

V (r)/ra0 < ∞ and lim sup
r→+∞

V (r)/ra > 0;

(Q) Q ∈ C(0, ∞), V (r) > 0 for r > 0 and there exist b0 > −(4 − μ)/2 and b < a(4 − μ)/4
such that

lim sup
+

Q(r)/rb0 < ∞ and lim supQ(r)/rb > 0.

r→0 r→+∞
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It should be pointed out that (AR) is necessary and indispensable in [5]. For some other inter-
esting works with respect to the Choquard equation in R2 involving critical exponential growth, 
please see e.g. [5,7,37] and the references therein. We remark that the semilinear Schrödinger 
equation involving the decaying potentials and weights are firstly considered in the pioneer work 
of Ambrosetti-Felli-Malchiodi [6], later studied in [27,42] and the references therein.

Motivated by all of the above mentioned works, particularly by [5,7,37], we shall consider 
the nonlocal problem (1.1) under (K), (1.2) and (f1) − (f4), and aim to study the existence of 
nontrivial solutions and bound state solutions, i.e. a solution belonging to H 1(R2). We have to 
point out that the features of the functions V (x) and Q(x) vanishing at infinity together with the 
critical exponential growth for the problem bring some new difficulties in our analysis, which 
can be summarized as follows:

(i). The radial potentials V and weights Q satisfying (K) with γ < 2 and (4 − μ)γ/4 < β

was studied by Albuquerque et al. in [5], where the growth conditions on (V4) and (Q) are less 
restrictive than (K), but a complicated and rigorous interpretation of the function space setting 
considered was necessary. Moreover, there exist still some questions worth thinking about left 
over: (1) whether the conclusions in [5] for the non-radial potentials V and weights Q remain 
true; (2) what would happen whenever γ or β gets the endpoint of (i) ((ii), or (iii)) in (K) such as 
γ ≥ 2, or (4 − μ)γ/4 = β? (3) whether the nontrivial solution established in [5] is a mountain-
pass type, even a bound state?

(ii). To obtain the boundedness of the (C)c sequence of J , different from the cited papers 
[5,7,37], the (AR) is absent such that we have to propose some new ideas to bridge over this 
difficulty.

(iii). Restoring the lack of compactness caused by critical exponential growth and the whole 
space R2, could we control the minimax level by a suitable threshold which is independent of γ
and β?

Before stating the main results briefly, we give several notations and definitions. Let (X, ‖ ·‖X)
be a Banach space with its dual space (X−1, ‖ · ‖X−1), and � be its functional on X. The Cerami 
sequence at a level c ∈ R ((C)c sequence in short) corresponding to � means that �(xn) → c

and (1 + ‖�′(xn)‖X−1)‖un‖X → 0 as n → ∞, where {xn} ⊂ X. The space Lp(R2) stands for 
the usual Lebesgue space with the norm | · |p with 1 ≤ p ≤ +∞. Throughout this paper, we shall 
denote by C and Ci (i = 1, 2, · · · ) for various positive constants whose exact value may change 
from lines to lines but are never essential to the analysis of the problem. We use “→” and “⇀” 
to denote the strong and weak convergence in the function spaces, respectively. Let |A| stand 
for the Lebesgue measure of the Lebesgue measurable set A ⊂ R2. For all x ∈ R2 and ρ > 0, 
Bρ(x) � {y ∈ R2 : |y − x| < ρ} and Bc

ρ(x) �R2\Bρ(x).
We introduce the following work space

E �
{
u ∈ D1,2(RN)|

ˆ

R2

V (x)u2dx < +∞
}

endowed with the norm

‖u‖2 �
ˆ

R2

[|∇u|2 + V (x)u2]dx

is a Banach space. Indeed, as a consequence of the fact that
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V ∈ C(R2), V (x) > 0 in R2 and V (x) → 0 as |x| → +∞,

one has that the imbedding E ↪→ H 1
loc(R

2) is continuous which together with the definition of 
Cauchy sequence and Fatou’s lemma enables us to verify that (E, ‖ · ‖) is complete. Note that 
the norm ‖ · ‖ can also be induced by the inner product

〈u,v〉�
ˆ

R2

[∇u∇v + V (x)uv]dx, ∀u,v ∈ E.

Moreover, we can say that a function u0 ∈ E is a weak solution of Eq. (1.1) in the sense that

ˆ

R2

[∇u0∇v + V (x)u0v]dx =
ˆ

R2

[|x|−μ ∗ (Q(x)F (u0))]Q(x)f (u0)vdx, ∀v ∈ E. (1.6)

Now, we are ready to state the main results in the present paper. The first result is the following 
weighted Sobolev imbedding theorem.

Theorem 1.2. Suppose that (K) holds true, for all 4−μ
2 < p < +∞, the imbedding Er ↪→

L
pμ

Qμ(R2) � {u : R2 → R is Lebesgue measurable| ́ R2 Q
μ(x)|u|pμ

dx < +∞} is compact with 

Er � {u ∈ E|u(x) = u(|x|)} and Qμ = Q4/(4−μ)(x), pμ = 4p/(4 − μ). If (i), (ii) and (iii) in 
(K) are replaced by

(i)′ 0 < γ < 2 and (4 − μ)γ/4 < β < +∞, or 0 < γ < 4β/(4 − μ) < 2, here 0 <μ < 2;
(ii)′ γ = 2 and (4 −μ)/2 < β < +∞;
(iii)′ γ > 2 and (4 −μ)/2 < β < +∞,

respectively, we denote the (K) by (K)′. Therefore, E ↪→ L
pμ

Qμ(R2) is compact for every 4−μ
2 ≤

p < +∞ if (K)′ holds.

As stated before, by Theorem 1.2, it is natural to establish the corresponding weighted 
Trudinger-Moser inequality of the form as follows

Theorem 1.3. Suppose that (K) holds true, for all α > 0, 0 <μ < 2 and u ∈ E, we have

ˆ

R2

Q
4

4−μ (x)(eαu
2 − 1)dx < +∞. (1.7)

Moreover, if we consider the supremum

Sα = Sα(μ,V,Q)� sup
u∈E,‖u‖≤1

ˆ

R2

Q
4

4−μ (x)(eαu
2 − 1)dx, ∀α > 0,

then there exists a constant C = C(α, μ, V, Q) > 0 such that

Sα ≤ C, ∀α < 4π (1.8)
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and

Sα = +∞, ∀α > 4π. (1.9)

Remark 1.4. According to Theorem 1.2, if β = (4 −μ)γ/4 in (i) (resp. (ii), or (iii)), the imbed-
ding E ↪→ L

pμ

Qμ(R2) for each 4−μ
2 ≤ p < +∞ may not be compact. Consequently, this case is 

called by the critical case, and we shall understand the case in (i)′ (resp. (ii)′, or (iii)′) should 
correspond to the subcritical case, respectively. Similarly, we can also regard as the inequality 
obtained in Theorem 1.3 is subcritical in the sense that the supremum holds only for the open 
interval (0, 4π). Even if our result does not cover the critical case α = 4π , the subcritical in-
equality expressed in Theorem 1.3 is enough to study the existence of nontrivial solutions for Eq. 
(1.1).

Combining Theorems 1.2 and 1.3, we establish the following existence result.

Theorem 1.5. Suppose that (K) with V and Q being radially symmetric, or (K)′, holds true. 
If f satisfies (1.2) and (f1) − (f4), then Eq. (1.1) admits at least a nontrivial solution u0 ∈ E. 
Moreover, if δ = 0 in (f2), we deduce that J (u0) = infu∈N J (u), where the functional J : E → R
defined by

J (u)� 1

2

ˆ

R2

[|∇u|2 + V (x)u2]dx − 1

2

ˆ

R2

[|x|−μ ∗ (Q(x)F (u))]Q(x)F (u)dx, ∀u ∈ E (1.10)

and N � {u ∈ E\{0}|〈J ′(u), u〉 = 0}.

Remark 1.6. Proceeding as [32,45], one can conclude that the variational functional J defined 
by (1.10) is of class C1 and then the Nehari manifold N is well-defined. We mention here that 
the condition (f2) is motivated by [12], where the case δ ∈ (0, 1) was investigated. However, 
δ = 0 may occur in Theorem 1.5, therefore some new analytic techniques have to put forward 
to overcome this obstacle. It’s worthy pointing out that the case δ = 0 is a generalization and 
supplement to the (AR) exploited in [5,7,37]. Indeed, by (f2), one derives f ′(s) ≥ 0 for all 
s > 0 and then f is nondecreasing on s ∈ (0, +∞). As a consequence, there holds

0 <F(s) =
sˆ

0

f (t)dt ≤ f (s)s, ∀s > 0 (1.11)

which is the (AR) with the constant K ≡ 1. Besides, we can use (f2) and (1.11) to show that

0 <F(s) ≤ (1 − δ)f (s)s, ∀s > 0. (1.12)

Since (f2) indicates that (F (s)/f (s))′ ≤ 1 − δ for any s > 0, then for all ε ∈ (0, s), one has

F(s)

f (s)
− F(ε)

f (ε)
=

sˆ
d

dt

(
F(t)

f (t)

)
dt ≤ (1 − δ)

sˆ
dt = (1 − δ)(s − ε)
ε ε
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which together with limε→0+ F(ε)/f (ε) = 0 by (1.11) yields that (1.12). Moreover, we conclude 
that

f (s)s − F(s) is nondecreasing on s ∈ (0,+∞). (1.13)

In fact, for all 0 < s1 < s2, since f is nondecreasing on s ∈ (0, +∞), we obtain

F(s2) − F(s1) =
s2ˆ

s1

f (t)dt ≤ f (s2)(s2 − s1) ≤ f (s2)s2 − f (s1)s1

showing the desired result.

Because we have explained in Remark 1.4, the cases in (K)′ are subcritical which allow us to 
verify that the energy of u0 established by Theorem 1.5 equals to the mountain-pass energy of 
J , i.e.

J (u0) = c� inf
γ∈� max

t∈[0,1]J (γ (t)), (1.14)

where � � {γ ∈ C([0, 1], E)|γ (0) = 0, J (γ (1)) < 0}. However, concerning the cases in (K)

which are critical, we cannot derive that (1.14) holds immediately. To solve this difficulty, mo-
tivated by [14,26], we have to establish a version of concentration-compactness principle in our 
analysis settings. More precisely, we prove the following theorem.

Theorem 1.7. Suppose that (K) holds true and {un} ⊂ E to be a sequence satisfying ‖un‖ ≡ 1
and un ⇀ u �= 0 in E, then

sup
n∈N

ˆ

R2

Q
4

4−μ (x)(e4πp|un|2 − 1)dx < +∞, ∀0 <p < Pα0(u), (1.15)

where the sharp constant Pα0 is defined by

Pα0(u) =
{

1
1−‖u‖2 , if ‖u‖ < 1,

+∞, if ‖u‖ = 1.

As a by-product of Theorem 1.7, we obtain the following result.

Corollary 1.8. Suppose that (K) with V and Q being radially symmetric, or (K)′, holds true. 
If f satisfies (1.2) and (f1) − (f4), then Eq. (1.1) possesses a nontrivial solution u0 ∈ E with 
J (u0) = c.

For our next existence result, we replace the conditions (f4) by the following condition
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(f5) there are constants q > (4 −μ)/2 and Cq > 0 such that f (s) ≥ Cqs
q−1 for all s > 0, where

Cq >

√
qSμ,q

(
(q − 1)Sμ,qα0

(4 − μ)πq

) q−1
2

and

Sμ,q � inf
u∈E\{0}

´
R2[|∇u|2 + V (x)u2]dx

(
´
R2[|x|−μ ∗ (Q(x)|u|q)]Q(x)|u|qdx)1/q

> 0. (1.16)

Theorem 1.9. Suppose that (K) with V and Q being radially symmetric, or (K)′, holds true. If f
fulfills (1.2) and (f1) − (f3) with (f5), the conclusions in Theorem 1.5, or Corollary 1.8, remain 
true.

Remark 1.10. It follows from (K) or (K)′ that 0 <Q(x) ≤ b for all x ∈ R2. Then, by 4q/(4 −
μ) > 2, we can apply (1.4) and Theorem 1.2 to conclude that

ˆ

R2

[|x|−μ ∗ (Q(x)|u|q)]Q(x)|u|qdx ≤ C

(ˆ

R2

Q
4

4−μ (x)|u| 4q
4−μ dx

) 4−μ
2

≤ C̃

(ˆ

R2

[|∇u|2 + V (x)u2]dx
)q

indicating that Sμ,q > 0 presented by (1.16) is well-defined. Moreover, arguing as [32] together 
with Theorem 1.2, we derive the constant Sμ,q can be attained by a nontrivial function belonging 
to E.

Finally, we are concerned with the existence of bound state solutions of Eq. (1.1).

Theorem 1.11. Let (K′) with (i)′ hold true and u0 ∈ E be the nontrivial solution established by 
Theorem 1.5 of Eq. (1.1), i.e. u0 satisfies (1.6), then u0 ∈ L2(R2) and hence u0 ∈ H 1(R2).

Let’s recall the celebrated paper by A. Ambrosetti et al. in [6], the so-called bound state
solutions have important physics meaning if they exist. For instance, from the physical point 
of view, according to the well-known probabilistic interpretation of quantum mechanics, the 
standing wave solutions u0 which possesses a finite L2-norm of nonlinear Choquard equations 
(1.1) are the most relevant because they correspond to localized elementary particles in space by 
proving that lim|x|→∞ u0(x) = 0.

In the sequel, we shall say that (γ, β) ∈ (i)′ (resp. (γ, β) ∈ (ii)′, or (γ, β) ∈ (iii)′) if γ, β
satisfy (i)′ (resp. (ii)′, or (iii)′) in this paper, for simplicity.

The paper is organized as follows. In Section 2, we introduce some useful preliminaries and 
present the proofs of Theorems 1.2 and 1.3. Section 3 is devoted to the proofs of existence results 
in Theorem 1.5, Corollary 1.8 and Theorem 1.9 and the concentration-compactness principle in 
Theorem 1.7. In Section 4, we show that some particular nontrivial solutions of Eq. (1.1) are 
bound state solutions.
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2. Preliminaries and the weighted Trudinger-Moser inequality

In this section, we mainly focus on the proofs of the imbedding E ↪→ L
pμ

Qμ(R2) with 
2 ≤ p < +∞ and the weighted Trudinger-Moser inequality expressed in Theorems 1.2 and 1.3, 
respectively. As far as we are concerned, the results in Theorems 1.2 and 1.3 are new and we do 
believe that they would be utilized in some other fields of the nonlinear Choquard equation like 
Eq. (1.1) involving vanishing potentials at infinity.

Since the proof of Theorem 1.2 can be learnt from the proof of Theorem 1.3, we shall firstly 
prove Theorem 1.3 in detail and then take some necessary modifications to show Theorem 1.2. 
To obtain the proof of (1.8) in Theorem 1.3, we could combine the ideas introduced by Kufner 
and Opic in [35] together with the procedures concerning a local version of the classic Trudinger-
Moser inequality proposed by Y. Yang and X. Zhu in [46].

Proposition 2.1. (see [46]) There exists a constant C > 0 such that for every y ∈ R2, R > 0 and 
any u ∈ H 1

0 (BR(y)) with |∇u|2 ≤ 1, we have

ˆ

BR(y)

(e4πu2 − 1)dx ≤ CR2
ˆ

BR(y)

|∇u|2dx.

Moreover, we also need the following well-known global result.

Proposition 2.2. (see e.g. [2,9,36]) There exists a constant Cα > 0 such that

sup
u∈H 1(R2),|∇u|2≤1

1

|u|22

ˆ

R2

(eαu
2 − 1)dx

{ ≤ Cα, if 0 < α < 4π,
= +∞, if α ≥ 4π.

As to the proof of (1.9) in Theorem 1.3, we depend on the sharpness of the following 
Trudinger-Moser inequality due to B. Ruf [38].

Proposition 2.3. (see [38]) Let 	 ⊂ R2 be a domain (possibly unbounded) and let τ > 0. For 
every α ∈ [0, 4π], there exists a constant Cτ > 0 such that

Rα(τ,	)� sup
u∈H 1

0 (	),|∇u|22+τ |u|22≤1

ˆ

	

(eαu
2 − 1)dx ≤ Cτ

and the above inequality is shape, i.e.

Rα(τ,	) = +∞, ∀α > 4π.

Now, we begin to give the proof of Theorem 1.3. Firstly, we verify (1.9) in Theorem 1.3:

Proof of (1.9) in Theorem 1.3. Since V, Q ∈ C(R2) are positive and continuous by (K), we 
can define

V1 � max V (x) ∈ (0,+∞) and Q1 � min Q(x) ∈ (0,+∞)

x∈B1(0) x∈B1(0)
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indicating that

Sα ≥ Q
4

4−μ

1 sup
u∈H 1

0 (B1(0)),‖u‖≤1

ˆ

B1(0)

(eαu
2 − 1)dx, ∀α > 4π.

Recalling that the continuous imbedding H 1
0 (B1(0)) ↪→ H 1(R2) ↪→ E, one has

‖u‖2 ≤ |u|22 + V1|u|22, ∀u ∈ H 1
0 (B1(0)).

Therefore, we can conclude that

Sα ≥Q
4

4−μ

1 sup
u∈H 1

0 (B1(0)),|u|22+V1|u|22≤1

ˆ

B1(0)

(eαu
2 − 1)dx

= Q
4

4−μ

1 Rα(V1,B1(0)) = +∞, ∀α > 4π,

where we have applied Proposition 2.3 with τ = V1 and 	 = B1(0). The proof is complete. �
Next, we concentrate on the proof of (1.8) in Theorem 1.3. To end it, we split it into three 

cases.

2.1. Case 1: 0 < γ < 2 and (4 − μ)γ/4 ≤ β < +∞, or 0 < γ ≤ 4β/(4 − μ) < 2

In this case, the assumption 0 < γ < 2 plays a significant role so that we only consider (1.8)
when 0 < γ < 2 and (4 − μ)γ/4 ≤ β < +∞. Throughout this case, for every α ∈ (0, 4π), we 
take the fixed small constants ε ∈ (0, 1) and δ ∈ (0, ε) such that

α = 4π(1 − ε) and α < 4π(1 − δ). (2.1)

Let u ∈ E with ‖u‖ ≤ 1 and choose a sufficiently large constant R > 0 determined later, then

ˆ

R2

Q
4

4−μ (x)(eαu
2 − 1)dx

=
ˆ

BR(0)

Q
4

4−μ (x)(eαu
2 − 1)dx +

ˆ

Bc
R(0)

Q
4

4−μ (x)(eαu
2 − 1)dx

≤ b
4

4−μ

ˆ

BR(0)

(eαu
2 − 1)dx +

ˆ

Bc
R(0)

Q
4

4−μ (x)(eαu
2 − 1)dx, (2.2)

where we have exploited the fact 0 < Q(x) ≤ b for all x ∈ R2. To estimate the first integral in 
(2.2), proceeding as [46], we assume ψ ∈ C∞

0 (B2R(0)) to be a cutoff function satisfying

0 ≤ ψ ≤ 1 in B2R(0), ψ ≡ 1 in BR(0) and |∇ψ | ≤ C
in B2R(0) (2.3)
R
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for some universal constant C > 0. Clearly, ψu ∈ H 1
0 (B2R(0)). As V (x)(1 +(2R)γ ) ≥ V (x)(1 +

|x|γ ) ≥ a > 0 in B2R(0) by (K), it follows from the Young’s inequality that

ˆ

B2R(0)

|∇(ψu)|2dx

≤ (1 + ε)

ˆ

B2R(0)

ψ2|∇u|2dx +
(

1 + 1

ε

) ˆ

B2R(0)

u2|∇ψ |2dx

≤ (1 + ε)

ˆ

B2R(0)

|∇u|2dx +
(

1 + 1

ε

)
C2

R2

ˆ

B2R(0)

u2dx

≤ (1 + ε)

ˆ

B2R(0)

|∇u|2dx +
(

1 + 1

ε

)
C2(1 + (2R)γ )

aR2

ˆ

B2R(0)

V (x)u2dx.

Since γ < 2, there is a constant R = R(ε, a, γ, C) > 0 independent of u ∈ E such that(
1 + 1

ε

)
C2(1 + (2R)γ )

aR
2 ≤ 1 + ε

which implies that

ˆ

B2R(0)

|∇(ψu)|2dx ≤ (1 + ε)

ˆ

B2R(0)

(|∇u|2 + V (x)u2)dx ≤ 1 + ε, ∀R ≥ R.

So, set v �
√

1 − εψu ∈ H 1
0 (B2R(0)) and then |∇v|22 ≤ 1 − ε2 < 1. By Proposition 2.1, for 

R ≥ R,

ˆ

BR(0)

(e4π(1−ε)u2 − 1)dx =
ˆ

BR(0)

(e4π(1−ε)(ψu)2 − 1)dx ≤
ˆ

B2R(0)

(e4πv2 − 1)dx ≤ C1R
2.(2.4)

Then, we estimate the second integral in (2.2). To achieve this purpose, motivated by [6], 
we shall apply the Besicovitch covering lemma (see e.g. [18]). More precisely, let n ∈ N+ be a 
sufficiently large constant chosen later. For any fixed n ≥ n, we introduce the covering of Bc

n(0)
of all annuli Aσ

n with σ > n defined by

Aσ
n � {x ∈R2|n < |x| < σ } ⊂ Bc

n(0).

For any σ > n, by means of the Besicovitch covering lemma, there is a sequence of points 
{xk} ⊂ Aσ

n and a universal constant ϑ > 0 such that

• Aσ
n ⊂ ∪kU

1/2
k , where U1/2

k � B|xk |/6(xk);
• ∑

χU (x) ≤ ϑ for any x ∈R2, where χU is the characteristic function of Uk � B|x |/3(xk).
k k k k
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Arguing as [35], we introduce the following set of indices

Kn,σ � {k ∈N+|U1/2
k ∩ Bc

3n �= ∅}.
For all σ > 3n, it’s simple to see that

Aσ
3n ⊂ Aσ

n ⊂
⋃

k∈N+
U

1/2
k =

⋃
k∈Kn,σ

U
1/2
k ⊂

⋃
k∈Kn,σ

Uk ⊂ Bc
n(0) ⊂ Bc

n(0) (2.5)

indicating that

ˆ

Aσ
3n

Q
4

4−μ (x)(eαu
2 − 1)dx ≤

∑
k∈Kn,σ

ˆ

U
1/2
k

Q
4

4−μ (x)(eαu
2 − 1)dx. (2.6)

Let’s observe that 2|xk|/3 ≤ |y| ≤ 4|xk|/3 for all y ∈ Uk , then by (K), one has

V (y) ≥ a

1 + Cγ |xk|γ and Q(y) ≤ b

1 + Cβ |xk|β , ∀y ∈ Uk, (2.7)

where Cγ = (4/3)γ and Cβ = (2/3)β . Consequently, by (2.7), we obtain

ˆ

U
1/2
k

Q
4

4−μ (x)(eαu
2 − 1)dx ≤ b

4
4−μ

(1 + Cβ |xk|β)
4

4−μ

ˆ

U
1/2
k

(eαu
2 − 1)dx. (2.8)

Proceeding as before, to estimate the integral eαu
2 − 1 over U1/2

k , assume ψk ∈ C∞
0 (Uk) to be 

a cutoff function satisfying

0 ≤ ψk ≤ 1 in Uk, ψk ≡ 1 in U
1/2
k and |∇ψk| ≤ C

|xk| in Uk

for a universal constant C > 0. Clearly, ψku ∈ H 1
0 (Uk). In view of the constant δ in (2.1), by 

(2.7)

ˆ

Uk

|∇(ψku)|2dx ≤ (1 + δ)

ˆ

Uk

ψ2
k |∇u|2dx +

(
1 + 1

δ

)ˆ

Uk

u2|∇ψk|2dx

≤ (1 + δ)

ˆ

Uk

|∇u|2dx +
(

1 + 1

δ

)
C2

|xk|2
ˆ

Uk

u2dx

≤ (1 + δ)

ˆ

Uk

|∇u|2dx +
(

1 + 1

δ

)
C2(1 + Cγ |xk|γ )

a|xk|2
ˆ

Uk

V (x)u2dx.

Given a k ∈ Kn,σ , then xk ∈ Bc
n. Since γ < 2, there exists a sufficiently large n = n(δ, a, γ, C) ∈

N+ with {xk} ⊂ Aσ such that
n
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L. Shen, V.D. Rădulescu and M. Yang Journal of Differential Equations 329 (2022) 206–254
ˆ

Uk

|∇(ψku)|2dx ≤ (1 + δ)

ˆ

Uk

(|∇u|2 + V (x)u2)dx ≤ 1 + δ, ∀k ∈ Kn,σ and n ≥ n.

Therefore, let’s define vk �
√

1 − δψku ∈ H 1
0 (Uk) ⊂ H 1(R2) and then |∇vk|22 ≤ 1 − δ2 < 1. 

Recalling that α/(1 − δ) < 4π by (2.1), then it follows from Proposition 2.2 that

ˆ

U
1/2
k

(eαu
2 − 1)dx =

ˆ

U
1/2
k

(eα(ψku)
2 − 1)dx ≤

ˆ

Uk

(e[α/(1−δ)]v2
k − 1)dx ≤ C1

ˆ

R2

|vk|2dx

for some positive constant C1 independent of u ∈ E. So, by means of (2.7) again, we derive

ˆ

U
1/2
k

Q
4

4−μ (x)(eαu
2 − 1)dx ≤ b

4
4−μ

(1 + Cβ |xk|β)
4

4−μ

ˆ

U
1/2
k

(eαu
2 − 1)dx

≤ C1(1 − δ)b
4

4−μ

(1 + Cβ |xk|β)
4

4−μ

ˆ

Uk

u2dx ≤ C(1 − δ)b
4

4−μ (1 + Cγ |xk|γ )
a(1 + Cβ |xk|β)

4
4−μ

ˆ

Uk

V (x)u2dx

which together with (2.6) implies that

ˆ

Aσ
3n

Q
4

4−μ (x)(eαu
2 − 1)dx ≤ C(1 − δ)b

4
4−μ

a

∑
k∈Kn,σ

1 + Cγ |xk|γ
(1 + Cβ |xk|β)

4
4−μ

ˆ

Uk

V (x)u2dx

≤ C(1 − δ)b
4

4−μ

a

∑
k∈Kn,σ

1 + Cγ |xk|γ
(1 + Cβ |xk|β)

4
4−μ

ˆ

Bc
n

V (x)u2χUk
(x)dx.

In view of (2.5), we have

1 + Cγ |xk|γ
(1 + Cβ |xk|β)

4
4−μ

≤ Bn � sup
x∈Bc

n

1 + Cγ |x|γ
(1 + Cβ |x|β) 4

4−μ

, ∀k ∈ Kn,σ .

As a consequence, in view of the constant ϑ in the Besicovitch covering lemma, we have

ˆ

Aσ
3n

Q
4

4−μ (x)(eαu
2 − 1)dx ≤ C(1 − δ)b

4
4−μBnϑ

a

ˆ

Bc
n

V (x)u2dx.

Letting σ → +∞, there holds

ˆ

Bc

Q
4

4−μ (x)(eαu
2 − 1)dx ≤ C(1 − δ)b

4
4−μBnϑ

a

ˆ

Bc

V (x)u2dx. (2.9)
3n n
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Let’s recall that (4 −μ)γ/4 ≤ β , i.e. γ ≤ 4β/(4 − μ), one has

lim
n→+∞Bn = lim

n→+∞
1 + Cγ n

γ

(1 + Cβnβ)
4

4−μ

=
{

0, if γ < 4β/(4 − μ)

Cγ /C
4/(4−μ)
β , if γ = 4β/(4 − μ).

(2.10)

Combining (2.2), (2.4) and (2.9)-(2.10), we can finish the proof in this case.

2.2. Case 2: γ = 2 and (4 − μ)/2 ≤ β < +∞

Let u ∈ E\{0} satisfy ‖u‖ ≤ 1, denoting �j � {x ∈ R2 : 2j ≤ |x| < 2j+1} for every j ∈
N+ ∪ {0},
ˆ

R2

Q
4

4−μ (x)(eαu
2 − 1)dx =

ˆ

B1(0)

Q
4

4−μ (x)(eαu
2 − 1)dx +

∞∑
j=0

ˆ

�j

Q
4

4−μ (x)(eαu
2 − 1)dx. (2.11)

Since Q ∈ C(R2) is positive, then maxx∈B1(0) Q(x) = Q1 ∈ (0, +∞) and

ˆ

B1(0)

Q
4

4−μ (x)(eαu
2 − 1)dx ≤ (Q1)

4
4−μ

ˆ

B1(0)

(eαu
2 − 1)dx. (2.12)

To estimate the right term of the above formula, arguing as before, for a constant R > 1 de-
fined later, we chose ψ ∈ C∞

0 (B2R(0)) to be a cutoff function satisfying (2.3). So, ψu ∈
H 1

0 (B2R(0)) ⊂ H 1
0 (B2(0)). By (V ), it simply concludes that 5V (x) ≥ (1 + |x|2)V (x) ≥ a on 

B2(0), then

ˆ

B2(0)

|∇(ψu)|2dx ≤ (1 + ε)

ˆ

B2(0)

ψ2|∇u|2dx +
(

1 + 1

ε

) ˆ

B2(0)

u2|∇ψ |2dx

≤ (1 + ε)

ˆ

B2R(0)

|∇u|2dx +
(

1 + 1

ε

)
5

a

ˆ

B2(0)

V (x)u2|∇ψ |2dx

≤ (1 + ε)

ˆ

B2R(0)

|∇u|2dx +
(

1 + 1

ε

)
5C2

aR2

ˆ

B2R(0)

V (x)u2dx

≤ (1 + ε)

ˆ

B2R(0)

(|∇u|2 + V (x)u2)dx ≤ 1 + ε

provided that we pick the constant R = R(ε, a, C) > 1 independent of u ∈ E large enough such 
that (

1 + 1
)

5C2

2 ≤ 1 + ε,

ε aR
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where ε is given by (2.1). Thereby, we would define v �
√

1 − εψu ∈ H 1
0 (B2(0)) and |∇v|22 ≤

1 −ε2 < 1 immediately. Recalling that R >R, then ψ ≡ 1 in B1(0). By (2.1) and Proposition 2.1, 
we obtain

ˆ

B1(0)

(eαu
2 − 1)dx =

ˆ

B1(0)

(e4π(1−ε)(ψu)2 − 1)dx ≤
ˆ

B2(0)

(e4πv2 − 1)dx ≤ C < +∞,

where C > 0 is independent of u ∈ E with ‖u‖ = 1, which together with (2.12) yields that

ˆ

B1(0)

Q
4

4−μ (x)(eαu
2 − 1)dx ≤ C + ∞. (2.13)

Next, let’s take the estimate for the third term in (2.11). By (K), one has

0 <Q(x) ≤ b

1 + |x|β ≤ b

2βj
, ∀x ∈ �j = {x ∈ R2 : 2j ≤ |x| < 2j+1}

showing that

ˆ

�j

Q
4

4−μ (x)(eαu
2 − 1)dx

≤ b
4

4−μ

2
2(2β−(4−μ))j

4−μ

ˆ

�0

(e
αu2

j − 1)dy = b
4

4−μ Cj
ˆ

�0

(e
αu2

j − 1)dy, (2.14)

where a change of variables y = 2−j x is performed with uj (y) = u(2j y) and

0 < Cj ≤ 1, ∀j ∈ N+ ∪ {0} and lim
j→+∞Cj = lim

j→+∞
1

2
2(2β−(4−μ))j

4−μ

= 0, if β > (4 − μ)/2. (2.15)

In order to estimate for the integral term in (2.11), we shall firstly observe that �0 ⊂
∪y∈�0BRy/2(y), where Ry � dist(y, ∂�0). Clearly, BRy (y) ⊂ �0 and there are finitely many, say 
k ∈N+, such balls to cover �0 form the compactness of �0 in R2, that is, �0 ⊂ ∪k

i=1BRyi
/2(yi). 

Given an i ∈ {1, 2, · · · , k}, we can pick the constant Ri > Ryi determined later and chose the 
corresponding cutoff function ψi ∈ C∞

0 (BRi
(yi)) such that

0 ≤ ψi ≤ 1 in BRi
(yi), ψi ≡ 1 in BRi/2(yi) and |∇ψi | ≤ C

Ri

in BRi
(yi)

for some universal constant C > 0. So, one concludes that ψiuj ∈ H 1
0 (BRi

(yi)) ⊂ H 1
0 (BRyi

(yi)). 
In view of (K), it simply gets that 22(j+2)V (x) ≥ (1 + |x|2)V (x) ≥ a on �j for all j ∈N ∪ {0}. 
Then in view of the constant ε > 0 given by (2.1), as a consequence of Young’s inequality one 
has
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ˆ

BRyi
(yi )

|∇(ψiuj )|2dy ≤ (1 + ε)

ˆ

BRyi
(yi )

ψ2
i |∇uj |2dy +

(
1 + 1

ε

) ˆ

BRyi
(yi )

u2
j |∇ψi |2dy

≤ (1 + ε)

ˆ

�0

|∇uj |2dy +
(

1 + 1

ε

)
C2

R2
i

ˆ

�0

u2
j dy

= (1 + ε)

ˆ

�j

|∇u|2dx +
(

1 + 1

ε

)
C2

22jR2
i

ˆ

�j

u2dx

≤ (1 + ε)

ˆ

�j

|∇u|2dx +
(

1 + 1

ε

)
16C2

aR2
i

ˆ

�j

V (x)u2dx

≤ (1 + ε)

ˆ

�j

(|∇u|2 + V (x)u2)dx ≤ 1 + ε

provided that we chose a constant Ri = Ri(ε, a, C) > 1 independent of u ∈ E large enough such 
that (

1 + 1

ε

)
16C2

aR2
i

≤ 1 + ε.

So, we also define vij �
√

1 − εψiuj ∈ H 1
0 (BRyi

(yi)) and |∇vij |22 ≤ 1 − ε2 < 1 immediately. 
Recalling that Ri > Ryi , then ψi ≡ 1 in BRyi

/2(yi) and it follows from Proposition 2.1 that

ˆ

BRyi
/2(yi )

(e
αu2

j − 1)dy =
ˆ

BRyi
/2(yi )

(e4π(1−ε)(ψiuj )
2 − 1)dy ≤

ˆ

BRyi
(yi )

(e
4πv2

ij − 1)dy

≤ CR2
yi

ˆ

�j

(|∇u|2 + V (x)u2)dx ≤ C

ˆ

�j

(|∇u|2 + V (x)u2)dx

where C > 0 is independent of u ∈ E with ‖u‖ = 1. Since �0 ⊂ ∪k
i=1BRyi

/2(yi), we obtain

ˆ

�0

(e
αu2

j − 1)dy ≤
k∑

i=1

ˆ

BRyi
/2(yi )

(e
αu2

j − 1)dy ≤ C

ˆ

�j

(|∇u|2 + V (x)u2)dx

which together with (2.14)-(2.15) indicates that

∞∑
j=0

ˆ

�j

Q
4

4−μ (x)(eαu
2 − 1)dx ≤ Cb

4
4−μ

∞∑
j=0

ˆ

�j

Cj (|∇u|2 + V (x)u2)dx ≤ C < +∞. (2.16)

Combining (2.11), (2.13) and (2.16), we can finish the proof in this case.
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2.3. Case 3: γ > 2 and (4 − μ)/2 ≤ β < +∞

Let u ∈ E\{0} satisfy ‖u‖ ≤ 1, denoting �j � {x ∈ R2 : 2j ≤ |x| < 2j+1} for every j ∈
N+ ∪ {0}. Assume (2.11) and (2.12) still to be satisfied in this case, for a constant R > 1 chosen 
later, we let ψ be a cutoff function given as in (2.3). Suppose λ1 > 0 to be the principle eigenvalue 
of the Dirichlet problem (−�, H 1

0 (B2(0))), for ε > 0 in (2.1), we apply the Young’s inequality 
to derive

ˆ

B2(0)

|∇(ψu)|2dx ≤
(

1 + ε

2

) ˆ

B2(0)

ψ2|∇u|2dx +
(

1 + 2

ε

) ˆ

B2(0)

u2|∇ψ |2dx

≤
(

1 + ε

2

) ˆ

B2(0)

|∇u|2dx +
(

1 + 2

ε

)
C2

R2

ˆ

B2(0)

u2dx

≤ 1 + ε

2
+

(
1 + 2

ε

)
C2

λ1R2

ˆ

B2(0)

|∇u|2dx

≤ 1 + ε

2
+

(
1 + 2

ε

)
C2

λ1R2 ≤ 1 + ε

if we chose the constant R′ = R′(ε, λ1, C) > 1 independent of u ∈ E large enough such that

(
1 + 1

ε

)
5C2

λ1(R′)2 ≤ ε

2
.

The remaining part is totally similar to the proof of Case 2, we omit it here. Consequently, we 
would finish the proof in this case.

Proof of (1.8) in Theorem 1.3. In summary, we have verified the validity of (1.8) in the Cases 
1, 2 and 3, respectively. So, the proof is complete. �

Now, we end the proof of Theorem 1.3 by showing (1.9). For this purpose, with the help of 
the density of C∞

0 (R2) into E (see the Appendix A), we shall combine (1.8) and the Young’s 
inequality to receive this goal. Consequently, we derive the following

Proof of (1.9) in Theorem 1.3. For every α > 0 and u ∈ E, there exists a function u0 ∈ C∞
0 (R2)

such that ‖u − u0‖ ≤ α−1/2. Moreover, u2 ≤ 2(u − u0)
2 + 2u2

0. By choosing R > 0 to be such 
that suppu0 ⊂ BR(0), then

ˆ

R2

Q
4

4−μ (x)(eαu
2 − 1)dx ≤

ˆ

R2

Q
4

4−μ (x)(e2α(u−u0)
2
e2αu2

0 − 1)dx

≤ 1

2

ˆ

2

Q
4

4−μ (x)(e4α‖u−u0‖2(|u−u0|2/‖u−u0‖2) − 1)dx + 1

2

ˆ
Q

4
4−μ (x)(e4αu2

0 − 1)dx
R BR(0)
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≤ 1

2
S4 + b

4
4−μ

2
|BR(0)|e4α|u0|2∞ < +∞,

where we depend on the fact that 4α‖u − u0‖2 ≤ 4 < 4π in (1.8). The proof is complete. �
After showing the proof of Theorem 1.3 successfully, we turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. If (K) holds, proceeding as [5], we would omit the proof of Er ↪→
L

pμ

Qμ(R2) with (4 − μ)/2 < p < +∞. Now, we would suppose that (K′) holds. For this goal, 
if um ⇀ u in E, we aim to conclude that um → u in L4p/(4−μ)(R2) after passing to a subse-
quence if necessary. As we know, um → u in L4p/(4−μ)(	) for every bounded domain 	 ⊂R2. 
We just need to obtain that um → u in L4p/(4−μ)(Bc

R(0)) for some sufficiently large R > 0. 
Without loss of generality, we assume that u ≡ 0 for simplicity. To end it, we split it into three 
cases.

(i)′ Proceeding as the Case 1 in Section 2.1, we only consider 0 < γ < 2 and (4 − μ)γ/4 <
β < +∞. We recall the process in Section 2.1 to derive

ˆ

Aσ
3n

Q
4

4−μ (x)|um| 4p
4−μ dx ≤ b

4
4−μ

∑
k∈Kn,σ

1 + Cγ |xk|γ
(1 + Cβ |xk|β)

4
4−μ

ˆ

Bc
n

V (x)u2
mχUk

(x)dx.

Letting σ → +∞ and ‖um‖2 ≤ C < +∞ uniformly in m ∈N+, there holds

ˆ

Bc
3n

Q
4

4−μ (x)|um| 4p
4−μ dx ≤ b

4
4−μBnϑ

ˆ

Bc
n

V (x)u2
mdx ≤ b

4
4−μBnϑ‖um‖2 ≤ b

4
4−μ CBnϑ.

In view of (2.10), for all ε > 0, there exists an integer m0 > 0 such that

ˆ

Bc
3n

Q
4

4−μ (x)|um| 4p
4−μ dx ≤ ε, ∀m ≥ m0

yielding the desired result since ε > 0 is arbitrary.
(ii)′ We still exploit the ideas in Section 2.2, then

ˆ

�j

Q
4

4−μ (x)|um| 4p
4−μ dx ≤ b

4
4−μ

2
2(2β−(4−μ))j

4−μ

ˆ

�0

|(um)j |
4p

4−μ dy = b
4

4−μ Cj
ˆ

�0

|(um)j |
4p

4−μ dy

where (um)j = um(2j y) and Cj satisfies (2.15). Let’s observe that H 1(�0) ↪→ L4p/(4−μ)(�0)

because 4p/(4 − μ) ≥ 2, there exists a constant C > 0 such that

ˆ

�

Q
4−μ

4 (x)|um| 4p
4−μ dx ≤ Cb

4
4−μ Cj

(ˆ

�

[|∇(um)j |2 + |(um)j |2]dx
) 2p

4−μ
j 0
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= Cb
4

4−μ Cj
(ˆ

�j

[|∇um|2 + 2−2j |um|2]dx
) 2p

4−μ

≤ Cb
4

4−μ Cj
(ˆ

�j

[|∇um|2 + 16a−1V (x)|um|2]dx
) 2p

4−μ

≤ Cb
4

4−μ Cj
(ˆ

�j

[|∇um|2 + V (x)|um|2]dx
) 2p

4−μ

which together with the fact that the map s �→ s2p/(4−μ) is super additive indicates that

∞∑
j=0

ˆ

�j

Q
4−μ

4 (x)|um| 4p
4−μ dx ≤ Cb

4
4−μ

∞∑
j=0

Cj
(ˆ

�j

[|∇um|2 + V (x)|um|2]
) 2p

4−μ

.

Recalling that (2.15), for all ε > 0, there exists a j0 ∈N+ such that

∞∑
j=j0

ˆ

�j

Q
4−μ

4 (x)|um| 4p
4−μ dx ≤ Cb

4
4−μ ε

∞∑
j=j0

(ˆ

�j

[|∇um|2 + V (x)|um|2]
) 2p

4−μ

≤ Cb
4

4−μ ‖um‖ 4p
4−μ ε

yielding the desired result since ε > 0 is arbitrary.
(iii)′ Since �0 is bounded, we can exploit H 1(�0) under the norm |∇ · |2 to obtain

ˆ

�j

Q
4−μ

4 (x)|um| 4p
4−μ dx ≤ b

4
4−μ Cj

ˆ

�0

|(um)j |
4p

4−μ dx ≤ Cb
4

4−μ Cj
(ˆ

�0

|∇(um)j |2dx
) 2p

4−μ

= Cb
4

4−μ Cj
(ˆ

�j

|∇um|2dx
) 2p

4−μ ≤ Cb
4

4−μ Cj
(ˆ

�j

[|∇um|2 + V (x)|um|2]dx
) 2p

4−μ

.

The remainder is totally similar to (ii)′, we omit it here. So, the proof of Theorem 1.2 is fin-
ished. �
3. The existence result

In this section, we try to investigate the existence of nontrivial solutions of Eq. (1.1). To this 
aim, the critical point theorem introduced in [10,29] will be used to search for the existence of 
solutions.
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Proposition 3.1. Let (X, ‖ · ‖X) be a real Banach space and � ∈ C1(X, R) satisfy the condition

inf{u∈X|‖u‖X=ρ}�(u) ≥ � > η = max{�(0),�(γ (1))}

for some constants �, η and ρ > 0 with ‖γ (1)‖X > ρ and γ given by (1.14). Let c ≥ � be char-
acterized by (1.14), then there exists a sequence (C)c sequence {un} ⊂ X of �.

Firstly, we formulate the functional setting for a variational approach to Eq. (1.1). Since the 
nonlinearity f satisfies (1.2), f (0) = 0 and (f1), for fixed α > α0, q ≥ 1 and for all ε > 0 we 
have

|f (s)| ≤ ε|s| 2−μ
2 + C(α,q, ε)|s|q−1(eαs

2 − 1), ∀s ∈R. (3.1)

As a consequence of (1.11), there holds

|F(s)| ≤ ε|s| 4−μ
2 + C(α,q, ε)|s|q(eαs2 − 1), ∀s ∈R. (3.2)

Given a function u ∈ E, by (1.4), we utilized (3.2) with α > α0 and q ≥ 2 to obtain

ˆ

R2

[|x|−μ ∗ (Q(x)F (u))]Q(x)F (u)dx ≤ C

(ˆ

R2

Q
4

4−μ (x)F
4

4−μ (u)dx

) 4−μ
2

≤ C

(ˆ

R2

Q
4

4−μ (x)|u| 4q
4−μ (e

4α
4−μ

u2 − 1)dx

) 4−μ
2 + C

(ˆ

R2

Q
4

4−μ (x)|u| 4
4−μ

· 4−μ
2 dx

) 4−μ
2

≤ C

(ˆ

R2

Q
4

4−μ (x)|u| 4qν′
4−μ

) 4−μ

2v′ (ˆ

R2

Q
4

4−μ (x)(e
4αν
4−μ

u2 − 1)dx

) 4−μ
2ν + C‖u‖4−μ

≤ C‖u‖2q
(ˆ

R2

Q
4

4−μ (x)(e
4αν
4−μ

u2 − 1)dx

) 4−μ
2ν + C‖u‖4−μ < +∞, (3.3)

where we have exploited Theorem 1.2 and (1.7) together with ν > 1 and 1/ν + 1/ν′ = 1. Conse-
quently, the functional J defined by (1.10) is well-defined and J is of class C1.

From now on, for simplicity, we rewrite the assumptions in Theorem 1.5 in this paper as 
follows

(H1) Let (K) with V and Q being radially symmetric, or (K)′, hold true;
(H2) f satisfies (1.2) and (f1) − (f4) with δ ∈ (0, 1) in (f2);
(H3) f satisfies (1.2) and (f1) − (f4) with δ = 0 in (f2);
(H4) f satisfies (1.2) and (f1) − (f3) with (f5).

Now, we show that the functional J defined by (1.10) possesses the mountain-pass geometry.

Lemma 3.2. Suppose that (H1) and one of (H2), (H3) and (H4) hold true, then
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(i) there exist � > 0 and ρ > 0 such that J (u) ≥ � for all u ∈ E with ‖u‖ = ρ;
(ii) there exists a function e ∈ E with ‖e‖ > ρ such that J (e) < 0.

Proof. (i). In view of (3.3), we can proceed as [7, Lemma 3.1] to get the desired result.
(ii). Obviously, we would deduce that lim|s|→∞ F(s)/s = +∞ either from (f4) or (f5). 

Let’s choose a positive function ψ with support in B1(0) belonging to C∞
c (R2). Since Q1 =

minx∈B1(0) Q(x) ∈ (0, +∞), by means of the Fatou’s lemma, we obtain

1

t2

ˆ

B1(0)

( ˆ

B1(0)

Q(y)F (tψ(y))

|x − y|μ dy

)
Q(x)F (tψ(x))dx ≥ Q2

1

2

( ˆ

B1(0)

F (tψ)

tψ
ψdx

)2

→ −∞

yielding that limt→+∞ J (tu) = −∞. We’ll finish the proof by letting e = t0ψ with a large t0 >

0. �
As a consequence of Proposition 3.1 and Lemma 3.2, we obtain the existence of (C) sequence 

of J at the level c defined by (1.14), that is, J (un) → c and (1 + ‖un‖)‖J ′(un)‖E−1 → 0. To 
restore the compactness of {un}, we firstly derive the upper estimate for the mountain-pass level 
c. With this aim in mind, we shall deal with it by (f3) − (f4) and (f5), respectively. Inspired by 
[4,7,9,15,16], we consider the Moser sequence defined by

wn(x)�
1√
2π

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
logn, if 0 ≤ |x| ≤ 1

n
,

log( 1
|x| )√

logn
, if 1

n
< |x| ≤ 1,

0, if |x| > 1.

Lemma 3.3. Suppose that (H1) and one of (H2), (H3) and (H4) hold true, then 0 < c < c∗ �
(4−μ)π

2α0
.

Proof. It follows Lemma 3.2-(i) that c > 0. Thanks to Lemma 3.2-(ii), we shall easily conclude 
that c = infγ∈� maxt∈(0,1] J (γ (t)) ≤ infu∈E\{0} maxt>0 J (tu). As a consequence, it suffices to 
derive that there exists a function w ∈ E\{0} such that maxt>0 J (tw) < c∗. Proceeding as [7], 
we obtain

‖wn‖2 =
ˆ

B1(0)

|∇wn|2dx +
ˆ

B1(0)

V (x)|wn|2dx = 1 +
ˆ

B1(0)

V (x)|wn|2dx

≤ 1 + A

1/nˆ

0

r logndr + A

1ˆ

1/n

log2(1/r)

logn
rdr = 1 + δn,

where A > 0 is a constant given by (K) or (K)′ and

δn �A

(
1 − 1

2 − 1
2

)
> 0. (3.4)
4 logn 4n logn 2n
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Then, we set wn � wn/
√

1 + δn ∈ E\{0} with ‖wn‖ ≤ 1. We claim that there is a n ∈ N+ such 
that

max
t>0

J (twn) < c∗. (3.5)

Otherwise, for all n ∈ N+, there exists a tn > 0 corresponding to the maximum point of 
maxt>0 J (twn)

〈J ′(tnwn), tnwn〉 = 0 and J (tnwn) = max
t>0

J (twn) ≥ c∗ (3.6)

in which of the first formula together with ‖wn‖ ≤ 1 implies that

t2
n ≥

ˆ

R2

(|x|−μ ∗ (Q(x)F (tnwn)))Q(x)f (tnwn)tnwndx. (3.7)

Since F(s) ≥ 0 for all s ∈R, we infer from the second formula in (3.6) and ‖wn‖ ≤ 1 that

t2
n ≥ 2c∗ = (4 − μ)π/α0, ∀n ∈ N+. (3.8)

If (f3) and (f4) hold true in (H2) or (H3), for all ε ∈ (0, β0), there is a constant Rε > 0 such that

F(s)f (s)s ≥ M−1
0 (β0 − ε)sϑ+1e2α0s

2
, ∀s ≥ Rε. (3.9)

Notice that minx∈B1/n(0) Q(x) ≥ minx∈B1(0) Q(x) = Q1 > 0, by (3.7), (3.8) and (3.9), we obtain

t2
n ≥ Q2

1

ˆ

B1/n(0)

( ˆ

B1/n(0)

F (tnwn(y))

|x − y|μ dy

)
f (tnwn(x))tnwn(x)dx

= F

(
tn

√
logn√

2π
√

1 + δn

)
f

(
tn

√
logn√

2π
√

1 + δn

)
tn

√
logn√

2π
√

1 + δn

ˆ

B1/n(0)

ˆ

B1/n(0)

1

|x − y|μ dydx

≥ M−1
0 (β0 − ε)tϑ+1

n

(
logn

2π(1 + δn)

) ϑ+1
2

(
eα0t

2
nπ

−1(1+δn)
−1 logn

)
nμ

2
|B1/n(0)|2

= π2

2M0
(β0 − ε)tϑ+1

n

(
1

2π(1 + δn)

) ϑ+1
2

e[α0t
2
nπ

−1(1+δn)
−1−(4−μ)] logn+ ϑ+1

2 log(logn). (3.10)

By (3.8) and (ϑ + 1) log(logn)/2 > 0, we can deduce that

(1 − ϑ) log tn ≥ log

[
π2

2M0
(β0 − ε)

(
1

2π(1 + δn)

) ϑ+1
2

]
+ [α0t

2
nπ

−1(1 + δn)
−1 − (4 − μ)] logn. (3.11)

If {tn} is unbounded, up to a subsequence if necessary, we can assume that tn → +∞ and then
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(1 − ϑ) log tn

t2
n

≥t−2
n log

[
π2

2M0
(β0 − ε)

(
1

2π(1 + δn)

) ϑ+1
2

]
+ [α0π

−1(1 + δn)
−1 − t−2

n (4 − μ)] logn

which together with δn → 0 in (3.4) yields a contradiction if we tend n → ∞. Thereby, passing 
to a subsequence if necessary, there exists a positive constant t0 such that

lim
n→∞ t2

n = t2
0 ≥ (4 − μ)π/α0,

where (3.8) gives the inequality. Moreover, we conclude that t2
0 = (4 − μ)π/α0. Otherwise, we 

obtain a contradiction by letting n → ∞ in (3.11). Let’s tend n → ∞ in (3.10), there holds

(4 − μ)π/α0 = t2
0 ≥ π2

2M0
(β0 − ε)tϑ+1

0

(
1

2π

) ϑ+1
2

lim
n→∞ e

ϑ+1
2 log(logn) = +∞,

a contradiction. So, (3.5) holds true.
Next, we suppose (H3) to verify that c < c∗ still holds true. In view of Remark 1.10, the 

constant Sμ,q defined by (1.16) can be attained by a nontrivial ψ ∈ E, that is,

‖ψ‖2 = Sμ,q and
ˆ

R2

[|x|−μ ∗ (Q(x)|ψ |q)]Q(x)|ψ |qdx = 1. (3.12)

Since 2q > 4 − μ > 2, it’s easy to prove that limt→+∞ J (tψ) = −∞ which indicates the exis-
tence of a sufficient large t0 > 0 such that J (t0ψ) < 0. Thus, γ0(t) = t t0ψ ∈ �. It follows from 
the definition of c given by (1.14) that

c ≤ max
t∈(0,1]

J (tt0ψ) ≤ max
t∈(0,+∞)

J (tψ),

which together with (f5) and (3.12) gives that

c ≤ max
t∈(0,+∞)

(
Sμ,q

2
t2 − C2

q

2q2 t
2q

)
= (q − 1)Sμ,q

2q

(
qSμ,q

C2
q

)1/(q−1)

<
(4 − μ)π

2α0
= c∗,

where the constant Cq > 0 comes from (f5). The proof is complete. �
Before investigating the boundness of the (C)c sequence {un} ⊂ E, we shall establish the 

following lemma which is very significant in the present paper. We emphasize here that this 
lemma does not require the assumption that {un} is a (C)c sequence. Thereby, it can be regarded 
as an generalization to [7, Lemma 2.4].

Lemma 3.4. Suppose that (H1) and one of (H2), (H3) and (H4) hold true. If {un} ⊂ E satisfies 
un ⇀ u0 in E as n → ∞ and there is a constant K0 > 0 such that

sup
n∈N

ˆ

2

[|x|−μ ∗ (Q(x)F (un))]Q(x)f (un)undx ≤ K0. (3.13)
R
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Then, going to a subsequence if necessary, there holds

lim
n→∞

ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)F (un)dx

=
ˆ

R2

[|x|−μ ∗ (Q(x)F (u0))]Q(x)F (u0)dx. (3.14)

Moreover, for all ψ ∈ C∞
0 (R2), going to a subsequence if necessary, we can conclude that

lim
n→∞

ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)f (un)ψdx

=
ˆ

R2

[|x|−μ ∗ (Q(x)F (u0))]Q(x)f (u0)ψdx. (3.15)

Proof. Combining (3.13) and the Fatou’s lemma, one has

ˆ

R2

[|x|−μ ∗ (Q(x)F (u0))]Q(x)f (u0)u0dx ≤ K0. (3.16)

In view of (f3) in one of (H2), (H3) and (H4), it follows that

0 ≤ lim
s→+∞

F(s)

f (s)s
≤ lim

s→+∞
M0

sϑ+1 = 0

and for all ε > 0, there exists a constant s = s(ε) > 1 such that

F(s) ≤ εf (s)s, ∀s ≥ s

which together with (3.13) and (3.16) gives that

sup
n∈N

ˆ

|un|≥s

[|x|−μ ∗ (Q(x)F (un))]Q(x)F (un)dx ≤ K0ε (3.17)

and

ˆ

|u0|≥s

[|x|−μ ∗ (Q(x)F (u0))]Q(x)F (u0)dx ≤ K0ε. (3.18)

Let’s define
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�n �
ˆ

|un|<s

[|x|−μ ∗ (Q(x)F (un))]Q(x)F (un)dx

=
ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)F (un)χ{|un|<s}dx

=
ˆ

R2

[|x|−μ ∗ (Q(x)F (un)χ{|un|<s})]Q(x)F (un)dx =
ˆ

R2

Q(x)ξnF (un)dx

and similarly

�0 �
ˆ

|u0|<s

[|x|−μ ∗ (Q(x)F (u0))]Q(x)F (u0)dx =
ˆ

R2

Q(x)ξ0F(u0)dx,

where

ξn(x)� |x|−μ ∗ (Q(x)F (un)χ{|un|<s}) =
ˆ

R2

Q(y)F (un)χ{|un|<s}
|x − y|μ dy, x ∈R2

and

ξ0(x)� |x|−μ ∗ (Q(x)F (u0)χ{|u0|<s}) =
ˆ

R2

Q(y)F (u0)χ{|u0|<s}
|x − y|μ dy, x ∈ R2.

Claim 1. {ξn} is uniformly bounded in n ∈N and ξn → ξ0 a.e. in R2.
Verification: Let ε = 1 and q = 1 in (3.2), then there exists a constant C(s) > 0 such that

|F(s)| ≤ C(s)|s|(4−μ)/2, ∀|s| ≤ s. (3.19)

Combining the Hölder’s inequality and (3.19), we obtain

|ξn| ≤
( ˆ

|x−y|≤1

∣∣Q(y)F (un)χ{|un|<s}
∣∣ 2+μ

2−μ dy

) 2−μ
2+μ

( ˆ

|x−y|≤1

1

|x − y| 2+μ
2

dy

) 2μ
2+μ

+
( ˆ

|x−y|>1

∣∣Q(y)F (un)χ{|un|<s}
∣∣ 4−μ

2(2−μ) dy

) 2(2−μ)
4−μ

( ˆ

|x−y|>1

1

|x − y|4−μ
dy

) μ
4−μ

≤
(

4

2 − μ

)2μ/(2+μ)

bπ max
|s|≤s

F (s)

+ C(s)b
μ2

(4−μ)2

(
2π

2 − μ

) μ
4−μ

(ˆ

2

Q
4

4−μ (x)|un|
4

4−μ
· (4−μ)3

16(2−μ) dx

) 2(2−μ)
4−μ
R
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≤
(

4

2 − μ

)2μ/(2+μ)

bπ max
|s|≤s

F (s)

+ CC(s)b
μ2

(4−μ)2

(
2π

2 − μ

) μ
4−μ ‖un‖ 4−μ

2 ≤ C < +∞,

where we have exploited Theorem 1.2 because (4 − μ)3/[16(2 − μ)] > (4 − μ)/2. Then, we 
will deduce that ξn → ξ0 a.e. in R2. Recalling that {‖un‖} is bounded, there is a constant Cμ ∈
(0, +∞) such that ‖un‖(4−μ)/2 + ‖u0‖(4−μ)/2 ≤ Cμ. As a consequence, for every R > 0, we 
shall apply the Hölder’s inequality and (3.19) again to derive

|ξn − ξ0| ≤
( ˆ

|x−y|≤R

∣∣Q(y)[F(un)χ{|un|<s} − F(u0)χ{|u0|<s}]
∣∣ 2+μ

2−μ dy

) 2−μ
2+μ

×
( ˆ

|x−y|≤R

1

|x − y| 2+μ
2

dy

) 2μ
2+μ

+
( ˆ

|x−y|>R

∣∣Q(y)[F(un)χ{|un|<s} − F(u0)χ{|u0|<s}]
∣∣ 4−μ

2(2−μ) dy

) 2(2−μ)
4−μ

×
( ˆ

|x−y|>R

1

|x − y|4−μ
dy

) μ
4−μ

≤
(

4πR(2−μ)/2

2 − μ

)2μ/(2+μ)

b
μ(6−μ)

(4−μ)(2+μ) C(s)

×
(ˆ

R2

Q
4

4−μ (x)|un − u0|
4

4−μ
· (4−μ)2(2+μ)

8(2−μ) dx

) 2−μ
2+μ

+ CC(s)b
μ2

(4−μ)2

(
2π

(2 − μ)R2−μ

) μ
4−μ (‖un‖ 4−μ

2 + ‖u0‖ 4−μ
2

)
.

Because (4 − μ)2(2 + μ)/[8(2 − μ)] > (4 − μ)/2, we can let n → ∞ in the above formula by 
Theorem 1.2, and then the claim would be true by tending R → ∞.

Claim 2. �n → �0 as n → ∞.
Verification: Because un ⇀ u0 in E together with (4 −μ)2(2 + μ)/[8(2 − μ)] > (4 − μ)/2

and (4 −μ)3/[16(2 −μ)] > (4 −μ)/2, up to a subsequence if necessary, combining the Lebesgue 
theorem and Theorem 1.2, there exists functions g, h ∈ L1(R2) such that

Q
4

4−μ (x)|un|
4

4−μ
· (4−μ)2(2+μ)

8(2−μ) ≤ |g| and Q
4

4−μ (x)|un|
4

4−μ
· (4−μ)3

16(2−μ) ≤ |h| a.e. in R2. (3.20)

Arguing as in the proof of Claim 1, we have that
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|ξn| ≤
( ˆ

|x−y|≤1

∣∣Q(y)F (un)χ{|un|<s}
∣∣ 2+μ

2−μ dy

) 2−μ
2+μ

( ˆ

|x−y|≤1

1

|x − y| 2+μ
2

dy

) 2μ
2+μ

+
( ˆ

|x−y|>1

∣∣Q(y)F (un)χ{|un|<s}
∣∣ 4−μ

2(2−μ) dy

) 2(2−μ)
4−μ

( ˆ

|x−y|>1

1

|x − y|4−μ
dy

) μ
4−μ

≤
(

4π

2 − μ

)2μ/(2+μ)

b
μ(6−μ)

(4−μ)(2+μ) C(s)

(ˆ

R2

Q
4

4−μ (x)|un|
4

4−μ
· (4−μ)2(2+μ)

8(2−μ) dx

) 2−μ
2+μ

+
(

2π

2 − μ

) μ
4−μ

b
μ2

(4−μ)2 C(s)

(ˆ

R2

Q
4

4−μ (x)|un|
4

4−μ
· (4−μ)3

16(2−μ) dx

) 2(2−μ)
4−μ

. (3.21)

It’s simple to observe that

|Q(x)ξnF (un)χ{|un|<s}| ≤ bmax
|s|<s

F (s)|ξn|

which together with Claim 1, (3.20)-(3.21) and the Dominated Convergence theorem yields that

lim
n→∞

ˆ

R2

Q(x)ξnF (un)χ{|un|<s}dx =
ˆ

R2

Q(x)ξ0F(u0)χ{|u0|<s}dx. (3.22)

In view of (3.17)-(3.18), we apply (3.22) to deduce that

lim
n→∞|�n − �0|

= lim
n→∞

∣∣∣∣ ˆ

|un|≥s

Q(x)ξnF (un)dx +
ˆ

|un|<s

Q(x)ξnF (un)dx

−
ˆ

|u0|≥s

Q(x)ξ0F(u0)dx −
ˆ

|u0|<s

Q(x)ξ0F(u0)dx

∣∣∣∣
≤ 2K0ε + lim

n→∞

∣∣∣∣ ˆ

|un|<s

Q(x)ξnF (un)dx −
ˆ

|u0|<s

Q(x)ξ0F(u0)dx

∣∣∣∣
= 2K0ε + lim

n→∞

∣∣∣∣ˆ
R2

Q(x)ξnF (un)χ{|un|<s}dx −
ˆ

R2

Q(x)ξ0F(u0)χ{|u0|<s}dx
∣∣∣∣

= 2K0ε

showing the Claim 2 since ε > 0 is arbitrary. In consideration of the given ε > 0, there is a 
sufficiently large n0 ∈ N+ such that |�n − �0| ≤ ε for all n ≥ n0. Now, as a consequence of 
(3.17)-(3.18),
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∣∣∣∣ˆ
R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)F (un)dx

−
ˆ

R2

[|x|−μ ∗ (Q(x)F (u0))]Q(x)F (u0)dx

∣∣∣∣
≤

ˆ

|un|≥s

[|x|−μ ∗ (Q(x)F (un))]Q(x)F (un)dx

+
ˆ

|u0|≥s

[|x|−μ ∗ (Q(x)F (u0))]Q(x)F (u0)dx

+
∣∣∣∣ ˆ

|un|<s

[|x|−μ ∗ (Q(x)F (un))]Q(x)F (un)dx

−
ˆ

|u0|<s

[|x|−μ ∗ (Q(x)F (u0))]Q(x)F (u0)dx

∣∣∣∣
≤ (2K0 + 1)ε, ∀n ≥ n0.

So, (3.14) holds true.
For all ε > 0, denoting sε � ε−1(K0 + 1)|ψ |∞, by means of (3.13), one easily observes that

ˆ

|un|≥sε

∣∣[|x|−μ ∗ (Q(x)F (un))]Q(x)f (un)ψ
∣∣dx

≤ ε

K0 + 1

ˆ

|un|≥sε

[|x|−μ ∗ (Q(x)F (un))]Q(x)f (un)undx < ε.

(3.23)

Similarly, in view of (3.16), there holds

ˆ

|un|≥sε

∣∣[|x|−μ ∗ (Q(x)F (u0))]Q(x)f (u0)ψ
∣∣dx < ε. (3.24)

Define 	 � suppψ , then |	| < +∞. Combining (3.23) and (3.24), we have

∣∣∣∣ˆ
R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)f (un)ψdx −
ˆ

R2

[|x|−μ ∗ (Q(x)F (u0))]Q(x)f (u0)ψdx

∣∣∣∣
=

∣∣∣∣ˆ [|x|−μ ∗ (Q(x)F (un))]Q(x)f (un)ψdx −
ˆ

[|x|−μ ∗ (Q(x)F (u0))]Q(x)f (u0)ψdx

∣∣∣∣
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L. Shen, V.D. Rădulescu and M. Yang Journal of Differential Equations 329 (2022) 206–254
≤ 2ε +
∣∣∣∣ ˆ

	∩{|un|<sε}
[|x|−μ ∗ (Q(x)F (un))]Q(x)f (un)ψdx

−
ˆ

	∩{|u0|<sε}
[|x|−μ ∗ (Q(x)F (u0))]Q(x)f (u0)ψdx

∣∣∣∣
= 2ε +

∣∣∣∣ˆ
	

Q(x)ξnF (un)dx −
ˆ

	

Q(x)ξ0F(u0)dx

∣∣∣∣,
where

ξn � |x|−μ ∗ (Q(x)f (un)ψχ{|un|<sε} and ξ0 � |x|−μ ∗ (Q(x)f (u0)ψχ{|u0|<sε}, x ∈ 	.

To arrive at (3.15), it suffices to show that Q(x)ξnF (un) → Q(x)ξ0F(u0) in L1(	) for every 
fixed ε > 0. Since |	| < ∞, going to a subsequence if necessary, un → u0 in L2(	), there exists 
a function ϕ ∈ L1(	) such that |un|2 ≤ ϕ a.e. in 	. Similar to (3.19), there exists a constant 
sε > 0 such that

|f (s)| ≤ C(sε)|s|(2−μ)/2, ∀|s| ≤ sε. (3.25)

Combining (1.11) and (3.13), we apply the Cauchy-Schwarz inequality in [23] and (3.25) to 
obtain ∣∣∣∣ˆ

	

Q(x)ξnF (un)dx

∣∣∣∣
≤ K

1
2

0

(ˆ

	

[|x|−μ ∗ (Q(x)f (un)ψχ{|un|<sε})]Q(x)f (un)ψχ{|un|<sε}dx
) 1

2

≤ K
1
2

0 bC(sε)
∣∣|un|(2−μ)/2ψ

∣∣
4/(4−μ)

≤ K
1
2

0 bC(sε)

(ˆ

	

|un|2dx
) 2−μ

4
(ˆ

	

|ψ |2dx
) 1

2

≤ K
1
2

0 bC(sε)

(ˆ

	

ϕdx

) 2−μ
4

(ˆ

	

|ψ |2dx
) 1

2

indicating that {Q(x)ξnF (un)} is uniformly integrable on 	. Proceeding as the Claim 2, one 
derives ξn → ξ0 a.e. in 	. Consequently, we can exploit the Vitali’s Convergence theorem to 
conclude that Q(x)ξnF (un) → Q(x)ξ0F(u0) in L1(	) for every fixed ε > 0. The proof is com-
plete. �

Now, we begin to verify that any (C)c sequence {un} ⊂ E of J is bounded.

Lemma 3.5. Suppose that (H1) and (H2) hold, then any (C)c sequence {un} ⊂ E of J is 
bounded.
236
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Proof. Let {un} ⊂ E be a (C)c sequence of J , that is, J (un) → c and (1 +‖un‖)‖J ′(un)‖E−1 →
0

1

2
‖un‖2 − 1

2

ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)F (un)dx = c + on(1) (3.26)

and for all {ψn} ⊂ E, there holds∣∣∣∣〈un,ψn〉 −
ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)f (un)ψndx

∣∣∣∣ ≤ on(1)‖ψn‖, (3.27)

where on(1) → 0 as n → ∞.
Without loss of generality, we can suppose that un �= 0. Inspired by [12], we let ψn �

F(un)/f (un). Since {un} ⊂ E, by using (1.11), one has

ˆ

R2

V (x)ψ2
ndx ≤

ˆ

R2

V (x)u2
ndx < +∞

and the computation ∇vn = [f 2(un) − F(un)f
′(un)]∇un/f

2(un) with (f2) gives that

ˆ

R2

|∇ψn|2dx ≤ (1 − δ)2
ˆ

R2

|∇un|2dx ≤
ˆ

R2

|∇un|2dx < +∞.

So, {ψn} ⊂ E and can be applied in (3.27). Moreover, by (f2) and (1.12) it’s easy to calculate 
that

〈un,ψn〉 =
ˆ

R2

[
f 2(un) − F(un)f

′(un)

f 2(un)
|∇un|2 + V (x)

F (un)un

f (un)

]
dx ≤ (1 − δ)‖un‖2

which together with (3.26) and (3.27) indicates that

‖un‖2 ≤ 2c + on(1) + 〈un,ψn〉 + on(1)‖ψn‖ ≤ 2c + on(1) + (1 − δ)‖un‖2 + on(1)‖un‖,

where we have used the fact that ‖ψn‖ ≤ ‖un‖. Because δ ∈ (0, 1) in (H2), we derive that {‖un‖}
is bounded. �
Lemma 3.6. Suppose that (H1) and (H3) hold, then any (C)c sequence {un} ⊂ E of J is 
bounded.

Proof. We argue it by the contradiction and assume, up to a subsequence if necessary, that 
‖un‖ → ∞. Define vn = σun/‖un‖ with σ = √

c + c∗, according to Lemma 3.3, then we have 
that

2c < ‖vn‖2 = σ 2 = c + c∗ < 2c∗ = (4 − μ)π/α0. (3.28)
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Thereby, we shall chose α > α0 sufficiently close to α0 and ν > 1 sufficiently close to 1 in such 
a way that 1/v + 1/v′ = 1 and

4αν‖vn‖2

4 − μ
< 4π(1 − ε) for some suitable ε ∈ (0,1). (3.29)

With this choice of α > α0 and ν > 1, combining (1.4) and (1.11), we apply (3.1) and (3.29) to 
derive

ˆ

R2

[|x|−μ ∗ (Q(x)F (vn))]Q(x)f (vn)vndx ≤ C

(ˆ

R2

Q
4

4−μ (x)(f (vn)vn)
4

4−μ dx

) 4−μ
2

≤ C‖vn‖2q
(ˆ

R2

Q
4

4−μ (x)(e
4αν‖vn‖2

4−μ
(v2

n/‖vn‖2) − 1)dx

) 4−μ
2ν + C‖vn‖4−μ

≤ Cσ 2qS
4−μ
2ν

4π/(1−ε) + Cσ
4−μ

2 < +∞.

(3.30)

Going to a subsequence if necessary, there exists a function v ∈ E such that vn ⇀ v in E. We 
claim that v �= 0 in R2, otherwise, we should suppose that v ≡ 0 a.e. in R2. By means of (3.14)
and (3.30),

lim
n→∞

ˆ

R2

[|x|−μ ∗ (Q(x)F (vn))]Q(x)F (vn)dx = 0

which indicates that

lim
n→∞J (vn) = σ 2

2
− lim

n→∞

ˆ

R2

[|x|−μ ∗ (Q(x)F (vn))]Q(x)F (vn)dx = σ 2

2
. (3.31)

Since ‖un‖ → +∞ as n → ∞, σ/‖un‖ ∈ (0, 1) for some sufficiently large n ∈ N . It’s clear to 
compute that maxt∈(0,1] J (tun) can be achieved at some tn ∈ (0, 1] and then 〈J ′(tnun), tnun〉 = 0. 
Thereby, it follows from (1.13) that

J (vn) = J (σ‖un‖−1un) ≤ max
t∈(0,1]

J (tun) = J (tnun) = J (tnun) − 1

2
〈J ′(tnun), tnun〉

= 1

2

ˆ

R2

[|x|−μ ∗ (Q(x)F (tnun))]Q(x)[f (tnun)tnun − F(tnun)]dx

≤ 1

2

ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)[f (un)un − F(un)]dx

= J (un) − 1

2
〈J ′(un), un〉. (3.32)
238
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Let’s recall that {un} is a (C)c sequence of J , taking the limit n → ∞ in (3.32), we would 
conclude that σ 2 ≤ 2c by (3.31), a contradiction to (3.28). Consequently, v �= 0 in R2 and then 
there exists a constant R > 0 such that BR(0) ∩ ϒ admits positive Lebesgue measure, where 
ϒ � {x ∈ R2|v(x) �= 0}. Since ‖un‖ → ∞, one knows |un| → ∞ on BR(0) ∩ ϒ. It infers from 
(f4) that F(un)/|un| → +∞ as |un| → ∞. Let’s denote Qmin,R � minx∈BR(0) > 0 by (H1), then 
via the Fatou’s lemma, we have

1

‖un‖2

ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)F (un)dx

=
ˆ

R2

(ˆ

R2

Q(y)F (un(y))

|x − y|μ‖un‖ dy

)
Q(x)F (un(x))

‖un‖ dx

≥ Q2
min,R

2Rμ

( ˆ

BR(0)∩ϒ

F(un)

|un| |vn|dx
)2

→ +∞ as n → ∞.

Recalling that {un} is a (C)c sequence, then

0 = lim inf
n→∞

J (un)

‖un‖2 ≤ 1

2
− lim sup

n→∞
1

‖un‖2

ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)F (un)dx = −∞,

a contradiction. The proof of this lemma is now complete. �
Proof of Theorem 1.5. By the discussions above, there exist a bounded (C)c sequence {un} of 
J and a function u0 ∈ E such that un ⇀ u0 in E in the sense of a subsequence. Moreover, 
let us chose {ψn} to be {un}, there exists a constant K0 > 0 such that (3.13) holds true. Since 
C∞

0 (R2) is dense in E, one knows that J ′(u0) = 0 by (3.15). Now, we would affirm that u0 �= 0. 
Otherwise, thanks to (3.14) and (3.26), we apply Lemma 3.3 to obtain lim supn→∞ ‖un‖2 = 2c <

2c∗. Proceeding as (3.28), (3.29) and (3.30), we can obtain a constant K0 > 0 such that

sup
n∈N

ˆ

R2

[|x|−μ ∗ (Q(x)f (un)un)]Q(x)f (un)undx ≤ K0. (3.33)

By using (3.14) again, we use (3.33) and the Cauchy-Schwarz inequality in [23] to have that∣∣∣∣ˆ
R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)f (un)undx

∣∣∣∣
≤

(ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)F (un)dx

) 1
2

×
(ˆ

2

[|x|−μ ∗ (Q(x)f (un)un)]Q(x)f (un)undx

) 1
2

R
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≤ K0

(ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)F (un)dx

) 1
2 → 0

which together with 〈J ′(un), un〉 → 0 yields that ‖un‖ → 0. Thus, c = limn→∞ J (un) = 0, vio-
lating to Lemma 3.3. So, u0 �= 0 and it is a nontrivial solution of Eq. (1.1). If δ = 0 in (f2), by 
(1.11)

c = lim inf
n→∞ J (un) = lim inf

n→∞ [J (un) − 1

2
〈J ′(un), un〉]

= 1

2
lim inf
n→∞

ˆ

R2

(|x|−μ ∗ (Q(x)F (un)))Q(x)[f (un)un − F(un)]dx

≥ 1

2

ˆ

R2

(|x|−μ ∗ (Q(x)F (u0)))Q(x)[f (u0)u0 − F(u0)]dx = J (u0) − 1

2
〈J ′(u0), u0〉

= J (u0)

which completes the last part of the theorem. �
Next, we are concerned with the proof of Theorem 1.7.

Proof of Theorem 1.7. Since ‖u‖ ≤ lim infn→∞ ‖un‖ ≡ 1, we can split the proof into two cases.
Case 1: ‖u‖ < 1. Arguing it by contradiction that for some 0 <p1 <Pα0(u), where Pα0(u) is 

given by (1.15), there holds

sup
n∈N

ˆ

R2

Q
4

4−μ (x)(e4πp1|un|2 − 1)dx = +∞. (3.34)

In light of a constant L ∈ (0, +∞) which is determined later and v ∈ E, set

GL(v) =
⎧⎨⎩

L, if v > L,

−L, if v < −L,

v, if |v| ≤ L,

and TL(v) = v − GL(v).

Plainly, there exists a constant ε ∈ (0, 1) such that

p1(1 + ε)2 <
1

1 − ‖u‖2 .

Obviously, ‖GL(u)‖ → ‖u‖ as L → +∞, then one can choose a sufficiently large L > 0 such 
that

p1(1 + ε)2 <
1

1 − ‖GL(u)‖2 . (3.35)

We claim that
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lim sup
n→∞

ˆ

R2

[|∇TL(un)|2 + V (x)|TL(un)|2]dx <
1

p1(1 + ε)
. (3.36)

Suppose that (3.36) doesn’t hold, then going to a subsequence of {TL(un)} if necessary, we have

‖TL(un)‖2 =
ˆ

R2

[|∇TL(un)|2 + V (x)|TL(un)|2]dx ≥ 1

p1(1 + ε)2 , ∀n ∈ N+

which together with the facts TL(un)GL(un) ≥ 0 and ∇TL(un)∇GL(un) ≡ 0 yields that

1 = ‖un‖2 ≥ ‖TL(un)‖2 + ‖GL(un)‖2 ≥ 1

p1(1 + ε)2 + ‖GL(un)‖2.

Since {GL(un)} is bounded in E and GL(un) ⇀ GL(u) in E, by using the above formula, we 
derive

p1(1 + ε)2 ≥ 1

1 − ‖GL(un)‖2

which is in contradicts with (3.36). So, (3.36) holds true. Up to a subsequence if necessary, we 
can suppose that 4πp1(1 + ε)2‖TL(un)‖2 < 4π for all n ∈N . In view of (1.8), we obtain

sup
n∈N

ˆ

	n,L

Q
4

4−μ (x)(e4πp1(1+ε)2|un−L|2 − 1)dx

≤ sup
n∈N

ˆ

R2

Q
4

4−μ (x)(e4πp1(1+ε)2‖TL(un)‖2(|TL(un)|2/‖TL(un)‖2) − 1)dx < +∞,

(3.37)

where 	n,L � {x ∈R2 : |un(x)| ≥ L}. By means of Theorem 1.2, we derive

|	n,L|Qμ �
ˆ

	n,L

Q
4

4−μ (x)dx ≤ 1

L2

ˆ

	n,L

Q
4

4−μ (x)|un|2dx ≤ C‖un‖2

L2 = C

L2 < +∞, (3.38)

where C > 0 is a constant dependent of n by the imbedding of E ↪→ L2
Qμ(R2). To get a contra-

diction, let’s write

ˆ

R2

Q
4

4−μ (x)(e4πp1|un|2 − 1)dx =
ˆ

	n,L

Q
4

4−μ (x)(e4πp1|un|2 − 1)dx

+
ˆ

	c
n,L

Q
4

4−μ (x)(e4πp1|un|2 − 1)dx.

Combining (3.37) and (3.38), we apply the following two type Young’s inequalities
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|un|2 = |un − L + L|2 ≤ (1 + ε)|un − L|2 + (1 + ε−1)|L|2

and

ab − 1 ≤ 1

1 + ε
(a1+ε − 1)+ ε

1 + ε
(b

1+ε
ε − 1), ∀a, b > 0

to conclude that for all n ∈N+
ˆ

	n,L

Q
4

4−μ (x)(e4πp1|un|2 − 1)dx ≤
ˆ

	n,L

Q
4

4−μ (x)(e4πp1[(1+ε)|un−L|2+(1+ε−1)|L|2] − 1)dx

≤ 1

1 + ε

ˆ

	n,L

Q
4

4−μ (x)(e4πp1(1+ε)2|un−L|2 − 1)dx

+ ε

1 + ε

ˆ

	n,L

Q
4

4−μ (x)(e4πp1(1+ε)2ε−2|L|2 − 1)dx

≤ 1

1 + ε

ˆ

	n,L

Q
4

4−μ (x)(e4πp1(1+ε)2|un−L|2 − 1)dx

+ ε

1 + ε
(e4πp1(1+ε)2ε−2|L|2 − 1)|	n,L|Qμ ≤ C < +∞.

On the other hand, in view of Theorem 1.2, we have that for all n ∈N+

ˆ

	c
n,L

Q
4

4−μ (x)(e4πp1|un|2 − 1)dx =
ˆ

{|un(x)|<L}
Q

4
4−μ (x)(e4πp1|un|2 − 1)dx

=
ˆ

{|un(x)|<L}
Q

4
4−μ (x)

∞∑
j=1

(4πp1L
2)j

j !
∣∣∣∣un

L

∣∣∣∣2j

dx

≤
∞∑
j=1

(4πp1L
2)j

j !
ˆ

R2

Q
4

4−μ (x)

∣∣∣∣un

L

∣∣∣∣ 4
4−μ

· 4−μ
2

dx

≤ C

∥∥∥∥un

L

∥∥∥∥2 ∞∑
j=1

(4πp1L
2)j

j ! = CL−2
∞∑
j=1

(4πp1L
2)j

j ! = CL−2(e4πp1L
2 − 1) ≤ C < +∞.

The above two formulas reveal a contradiction to (3.34). So, the theorem in this case holds true.
Case 2: ‖u‖ = 1. Since un ⇀ u in E, one derives limn→∞ ‖un − u‖2 = limn→∞ ‖un‖2 −

‖u‖2 = 0 which shows that un → u in E. Recalling that the Lebesgue theorem, there is a function 
v ∈ E such that |un| ≤ v a.e. in RN which together with (1.7) yields (1.15).

Next, we turn to focus on the sharpness of Pα0(u), that is, there is a sequence {un} ⊂ E

satisfying ‖un‖ ≡ 1 and un ⇀ u �= 0 in E such that the supremum given by (1.15) is infinite for 
each p ≥ Pα (u). To this aim, for some constants r > 0 and R = 3r , we define wn(x) as
0
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wn(x)�
1√
2π

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2− 1

2 n
1
2 , if 0 ≤ |x| ≤ re− n

2 ,

2
1
2 log(r/|x|)n− 1

2 , if re− n
2 < |x| ≤ r,

0, if |x| > r,

and u ∈ E as

u�

⎧⎪⎪⎨⎪⎪⎩
A, if 0 ≤ |x| ≤ 2

3R,

3A(1 − |x|
R
), if 2

3R < |x| ≤ R,

0, if |x| >R,

respectively. Here, the constant A> 0 is chosen in such a way that ‖u‖ = σ < 1. We set

un = (1 − σ 2)1/2wn + u.

Let’s recall the constant A > 0 appearing in (K), it’s simple to compute that

ˆ

R2

|∇wn|2dx = 1

πn

ˆ

re
− n

2 <|x|≤r

1

|x|2 dx = 2

n

rˆ

re−n/2

1

ρ
dρ = 1,

0 ≤
ˆ

R2

V (x)|wn|2dx ≤ Anr2

4en
+ Ar2

4n

(
2 − n2 + 2n + 2

en

)
� δn → 0 as n → ∞.

(3.39)

Since Br(0) ∩ Bc
2R/3(0) = ∅ by R = 3r , one has ∇wn∇u ≡ 0 for all x ∈R2 and then

ˆ

R2

|∇un|2dx = (1 − σ 2)

ˆ

R2

|∇wn|2dx +
ˆ

R2

|∇u|2dx = (1 − σ 2) +
ˆ

R2

|∇u|2dx (3.40)

It can be inferred from (3.39) and the Holder’s inequality that

ˆ

R2

V (x)|un|2dx = (1 − σ 2)

ˆ

R2

V (x)|wn|2dx

+
ˆ

R2

V (x)|u|2dx + 2(1 − σ 2)1/2
ˆ

R2

V (x)wnudx

≤
ˆ

R2

V (x)|u|2dx + [(1 − σ 2) + 2(1 − σ 2)1/2σ 1/2]δ1/2
n . (3.41)

So, we can derive that ‖un‖2 ≤ 1 +[(1 − σ 2) + 2(1 − σ 2)1/2σ 1/2]δ1/2
n � 1 + τn with τn → 0 by 

(3.39). Actually, we’ll also verify that ‖u ‖ → 1 via (3.40) and (3.41). Therefore, without loss 
n
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of generality, we may suppose that ‖un‖ = 1 + τn. Now, we shall define un � un/(1 + τn)
1/2. 

Clearly,

‖un‖ ≡ 1 and un ⇀ u �= 0 as n → ∞.

As a consequence, for all ε0 ≥ 0 and pε0 = (1 + ε0)Pα0(u) = (1 + ε0)/(1 − σ 2) ≥ Pα0(u), we 
obtain

ˆ

R2

Q
4

4−μ (x)(e4πpε0 |un|2 − 1)dx =
ˆ

R2

Q
4

4−μ (x)(e4π(1+ε0)(1−σ 2)−1|un|2 − 1)dx

≥ Q
4

4−μ

1

ˆ

B
re−n/2 (0)

(e4π(1+ε0)(1−σ 2)−1(A+(1−σ 2)1/2wn)
2 − 1)dx

≥ Q
4

4−μ

1

ˆ

B
re−n/2 (0)

(e4πCσ,A(1+ε0)(1−σ 2)−1(1+wn)
2 − 1)dx

≥ Q
4

4−μ

1 (e4πCσ,A(1+ε0)(1−σ 2)−1(1+√
n)2 − 1)|Bre−n/2(0)|

= πr2Q
4

4−μ

1 (e4πCσ,A(1+ε0)(1−σ 2)−1(1+√
n)2 − 1)e−n → +∞ as n → ∞,

where Q1 = minx∈B1(0) Q(x) > 0 and Cσ,A = min{1 − σ 2, A2} > 0. The proof is complete. �
As a by-product of Theorem 1.7, we will certify that the functional J satisfies the so-called 

(C)c condition, i.e. every (C)c sequence {un} ⊂ E of the functional J contains a strongly con-
vergent subsequence.

Lemma 3.7. Let (H1) and one of (H2), (H3) and (H4) hold true, then J satisfies the (C)c
condition.

Proof. Let {un} ⊂ E be a (C)c sequence of J , then {un} is bounded by Lemmas 3.5 and 3.6. 
Chosen ψn to be un in (3.27), we obtain (3.13). Passing to a subsequence if necessary, there 
exists a function u0 ∈ E such that un ⇀ u0 in E. Thereby, according to (3.13), we derive (3.14)
and (3.15) by Lemma 3.4. As a consequence, we have that J ′(u0) = 0 by (3.15) which together 
with (1.11) indicates that

J (u0) = J (u0) − 1

2
〈J ′(u0), u0〉

= 1

2

ˆ

R2

[|x|−μ ∗ (Q(x)F (u0))]Q(x)[f (u0)u0 − F(u0)]dx ≥ 0. (3.42)

Since c > 0 by Lemma 3.3, we only have to the following two cases.
Case 1: u0 ≡ 0. We apply (3.14) with u0 = 0 and (3.26) together with Lemma 3.3 to obtain

lim sup‖un‖2 = 2c < 2c∗.

n→∞
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Proceeding as in the proof of Theorem 1.5, one has ‖un‖ → 0 which is a contradict with the fact 
that c > 0.

Case 2: u0 �= 0. By the Fatou’s lemma, there holds

0 < ‖u0‖ ≤ lim inf
n→∞ ‖un‖. (3.43)

Up to a subsequence if necessary, we define

vn �
un

‖un‖ and v = u0

limn→∞ ‖un‖ .

Obviously, 0 < ‖v‖ ≤ 1 by (3.43). If ‖v‖ = 1, we have ‖un‖ → ‖u0‖ which together with un ⇀

u0 in E yields that un → u0 in E. Thereby, the proof is finished. Let’s suppose that 0 < ‖v‖ <
1. In this situation, combining Lemma 3.3, (3.42), (3.26), (3.14) and the Fatou’s lemma, we 
conclude that

2c∗ > 2c ≥ 2[c − J (u0)] = lim sup
n→∞

(‖un‖2 − ‖u0‖2) = lim sup
n→∞

‖un‖2
(

1 −
∥∥∥∥ u0

‖un‖
∥∥∥∥2)

≥ (1 − ‖v‖2) lim sup
n→∞

‖un‖2

which gives that

lim sup
n→∞

‖un‖2 <
(4 − μ)π

α0(1 − ‖v‖2)
.

Then, we would choose α > α0 sufficiently close to α0 and ν > 1 sufficiently close to 1 in such 
a way that 1/v + 1/v′ = 1 and

4αν‖un‖2

4 − μ
<

4π(1 − ε)

1 − ‖v‖2 � 4πpε, for some suitable ε ∈ (0,1),

where 0 < pε = (1 − ε)/(1 − ‖v‖2) < Pα0(v). So, by (1.15) and |un|2 = ‖un‖2|vn|2, we have 
that

sup
n∈N

ˆ

R2

Q
4

4−μ (x)(e
4αν
4−μ

|un|2 − 1)dx ≤ sup
n∈N

ˆ

R2

Q
4

4−μ (x)(e4πpε |vn|2 − 1)dx < +∞. (3.44)

To finish the proof, we claim that

ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)f (un)(un − u0)dx → 0. (3.45)

Indeed, since 〈J ′(un), u0 − un〉 → 0, we apply the convexity of the functional I (u) � ‖u‖2/2 to 
get
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1

2
‖u0‖2 = I (u0) ≥ I (un) + 〈I ′(un), u0 − un〉

= 1

2
‖un‖2 +

ˆ

R2

[∇un∇(u0 − un) + V (x)un(u0 − un)]dx

= 1

2
‖un‖2 + 〈J ′(un), u0 − un〉 −

ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)f (un)(un − u0)dx

which indicates that lim supn→∞ ‖un‖2 ≤ ‖u0‖2. So, we derive un → u0 in E by Fatou’s lemma.
The remainder is to verify the validity of (3.45). In view of (1.4), there holds∣∣∣∣ˆ

R2

[|x|−μ ∗ (Q(x)F (un))]Q(x)f (un)(un − u0)dx

∣∣∣∣
≤ C|Q(x)F (un)| 4

4−μ
|Q(x)f (un)(un − u0)| 4

4−μ
� CJ 1

n J
2
n .

Combining (3.2) and (3.44) together with Theorem 1.2, one sees that

(J 1
n )

4
4−μ ≤ C

ˆ

R2

Q
4

4−μ (x)|un|
4q

4−μ (e
4α

4−μ
|un|2 − 1)dx + C

ˆ

R2

Q
4

4−μ (x)|un|
4

4−μ
· 4−μ

2 dx

≤ C

(ˆ

R2

Q
4

4−μ (x)|un|
4qν′
4−μ

) 1
v′ (ˆ

R2

Q
4

4−μ (x)(e
4αν
4−μ

|un|2 − 1)dx

) 1
ν + C‖un‖2

≤ C‖un‖
4q

4−μ

(ˆ

R2

Q
4

4−μ (x)(e
4αν
4−μ

|un|2 − 1)dx

) 1
ν + C‖un‖2 ≤ C < +∞.

On the other hand, for all ε > 0 and q = ν′ > (4 − μ)/2 (⇔ ν = q/(q − 1)) in (3.1), by (3.44),

(J 2
n )

4
4−μ ≤ Cε

ˆ

R2

Q
4

4−μ (x)|un − u0|
4

4−μ |un|
4(q−1)

4−μ (e
4α

4−μ
u2
n − 1)dx

+ ε‖un‖
2(2−μ)

4−μ

(ˆ

R2

Q
4

4−μ (x)|un − u0|2dx
) 2

4−μ

≤ C

(ˆ

R2

Q
4

4−μ (x)|un − u0|
4q

4−μ

) 1
q
(ˆ

R2

Q
4

4−μ (x)|un|
4q

4−μ (e
4να
4−μ

u2
n − 1)dx

) q−1
q

+ ε‖un‖
2(2−μ)

4−μ

(ˆ

R2

Q
4

4−μ (x)|un − u0|2dx
) 2

4−μ

.
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Letting n → ∞ by Theorem 1.2 and then ε → 0+, hence J 2
n → 0. Combining the above three 

formulas, we can get (3.45). The proof is complete. �
With Lemma 3.7 in hand, arguing as the proof of Theorem 1.5, it’s simple to prove Corol-

lary 1.8 and Theorem 1.9, respectively. So, we omit the details.

4. Bound state solution

The aim of this section is to verify that the nontrivial solution u0 ∈ E obtained in Theorem 1.5, 
or Corollary 1.8 and Theorem 1.9, is a bound state, that is, u0 ∈ H 1(R2). For this purpose, 
we need to establish some integration estimates on u0, which are essentially motivated by [6]. 
However, we should mention that in the proof of the following Lemmas 4.1 and 4.2, it is crucial 
to estimate the integration on the nonlinearity properly. It seems some difficulties to have the 
desired because of the appearance of the nonlocal term with critical exponential growth.

Lemma 4.1. Let (K)′ with (γ, β) ∈ (i)′ and α ∈ (0, 4π), then for each v ∈ E\{0} with ‖v‖ ≤ 1
and any ε > 0, there exists a constant n = n(α, a, γ ) > 1 independent of v such that for every 
n ≥ n

ˆ

Bc
3n(0)

Q
4

4−μ (x)(eα|v|2 − 1)dx ≤ ε. (4.1)

Proof. In view of (2.9)-(2.10), the proof can be obtained immediately. �
Combining Lemma 4.1 and [6, Proposition 11], we establish the following result.

Lemma 4.2. Suppose that (K)′ with (γ, β) ∈ (i)′ hold true and let α > 0 and u ∈ E\{0} be fixed, 
then for all ε > 0, there exists a constant R = R(u, α, a, γ ) such that

ˆ

Bc
R(0)

Q
4

4−μ (x)(eα|u|2 − 1)dx ≤ ε, ∀R ≥ R. (4.2)

Proof. Given a constant R > 1, let ψR : R+ → [0, 1] be a smooth nondecreasing function such 
that

ψR(r)�
{

0, if 0 ≤ r ≤ R − Rγ/2,

1, if r ≥ R,
and |ψ ′

R(r)| ≤
2

Rγ/2 , ∀r > 0.

Define, in polar coordinates (r, θ) ∈ [0, +∞) × S1,

uR(r, θ)�

⎧⎨⎩
0, if 0 ≤ r ≤ R − Rγ/2,

ψR(r)u(2R − r, θ), if R − Rγ/2 ≤ r ≤ R,

u(r, θ), if r ≥ R.

Let’s recall [6, Proposition 11], one has the following result
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ˆ

AR

[|∇uR|2 + V (x)|uR|2]dx ≤ C

ˆ

Bc
R(0)

[|∇uR|2 + V (x)|uR|2]dx,

where AR � {x ∈ R2|R − Rγ/2 ≤ |x| ≤ R}. Consequently, since AR ∩ Bc
R(0) = ∅, we obtain

‖uR‖2 =
ˆ

Bc

R−Rγ/2 (0)

[|∇uR|2 + V (x)|uR|2]dx =
(ˆ

AR

+
ˆ

Bc
R(0)

)
[|∇uR|2 + V (x)|uR|2]dx

≤ (1 + C)

ˆ

Bc
R(0)

[|∇uR|2 + V (x)|uR|2]dx. (4.3)

According to u ∈ E, there exists a sufficiently large constant R = R(u, α) > 1 such that

ˆ

Bc

R
(0)

[|∇uR|2 + V (x)|uR|2]dx =
ˆ

Bc

R
(0)

[|∇u|2 + V (x)|u|2]dx <
4π

(1 + C)α

which together with (4.3) indicates that α‖uR‖2 < 4π for every R ≥ R. Therefore, to apply 
Lemma 4.1, we can choose an R = R(u, α, a, γ ) > 0 large enough such that R −R

γ/2 ≥ 3n and 
v = uR/‖uR‖ in (4.1), we have

ˆ

Bc
R(0)

Q
4

4−μ (x)(eα|u|2 − 1)dx =
ˆ

Bc
R(0)

Q
4

4−μ (x)(eα‖uR‖2(|uR |2/‖uR‖2) − 1)dx

≤
ˆ

Bc

R−Rγ/2 (0)

Q
4

4−μ (x)(eα‖uR‖2(|uR |2/‖uR‖2) − 1)dx ≤ ε, ∀R ≥ R.

The proof is complete. �
Let’s denote u0 ∈ E\{0} by the nontrivial solution of Eq. (1.1) throughout this section. Now, 

we can prove the following lemma.

Lemma 4.3. There exists a constant R̃ > 0 such that for any n ∈N+ satisfying Rn � n2/(2−γ ) ≥
R̃, there holds

ˆ

Bc
Rn+1

(0)

[|∇u0|2 + V (x)u2
0]dx ≤ 3

4

ˆ

Bc
Rn

(0)

[|∇u0|2 + V (x)|u0|2]dx

Proof. Arguing as [6, Proposition 17], let χn be a piecewise affine function such that

χn(x)�
{

0, if |x| ≤ Rn,

1, if |x| ≤ R .
n+1
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Moreover, one can prove that

|∇χn(x)|2 ≤ V (x)

and

ˆ

Bc
Rn+1

(0)

[|∇u0|2 + V (x)u2
0]dx ≤

ˆ

Bc
Rn

(0)

[|∇u0|2 + V (x)u2
0]χndx.

Taking v = χnu0 ∈ E in (1.6), exploiting it with the above two formulas, we may apply the 
Hölder’s equality to obtain

ˆ

Bc
Rn+1

(0)

[|∇u0|2 + V (x)u2
0]dx ≤

ˆ

Bc
Rn

(0)

[|∇u0|2 + V (x)u2
0]χndx

=
ˆ

Bc
Rn

(0)

[|x|−μ ∗ (Q(x)F (u0))]Q(x)f (u0)u0χndx −
ˆ

Bc
Rn

(0)

u0∇u0∇χndx

≤
ˆ

Bc
Rn

(0)

[|x|−μ ∗ (Q(x)F (u0))]Q(x)f (u0)u0dx + 1

2

( ˆ

Bc
Rn

(0)

(|∇u0|2 + |∇χn|2|u0|2)dx
)

≤
ˆ

Bc
Rn

(0)

[|x|−μ ∗ (Q(x)F (u0))]Q(x)f (u0)u0dx + 1

2

( ˆ

Bc
Rn

(0)

[|∇u0|2 + V (x)|u0|2]dx
)
.

(4.4)
Next, we are concerned with the estimate for 

´
Bc
Rn

(0)[|x|−μ ∗ (Q(x)F (u0))]Q(x)f (u0)u0dx. By 

(3.2),

|f (u0)u0| ≤ C(α)|s|(eαs2 − 1), ∀|s| ≥ R̃ (4.5)

for some R̃ > 1. Combining (1.11) and (1.4) with (4.5), we have that

ˆ

Bc
Rn

(0)

[|x|−μ ∗ (Q(x)F (u0))]Q(x)f (u0)u0dx ≤ C

( ˆ

Bc
Rn

(0)

|Q(x)f (u0)u0|
4

4−μ dx

) 4−μ
2

≤ CC(α)2
( ˆ

Bc
Rn

(0)

Q
4

4−μ (x)|u0|
4

4−μ (e
4α

4−μ
|u0|2 − 1)dx

) 4−μ
2

≤ C

( ˆ

Bc (0)

Q
4

4−μ (x)|u0|2dx
)( ˆ

Bc (0)

Q
4

4−μ (x)(e
4α

2−μ
|u0|2 − 1)dx

) 2−μ
2

Rn Rn

249
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≤
ˆ

Bc
Rn

(0)

Q
4

4−μ (x)|u0|2dx ≤ B(R̃)

ˆ

Bc
Rn

(0)

V (x)|u0|2dx

≤ B(R̃)

ˆ

Bc
Rn

(0)

[|∇u0|2 + V (x)|u0|2]dx, (4.6)

where we have used (4.2) with ε ∈ (0, C2/(μ−2)) in the fourth inequality and

B(R̃)� b
4

4−μ (1 + R̃γ )

a(1 + R̃β)4/(4−μ)
≥ sup

x∈Bc

R̃
(0)

b
4

4−μ (1 + |x|γ )
a(1 + |x|β)4/(4−μ)

≥ sup
x∈Bc

R̃
(0)

Q
4

4−μ (x)

V (x)
≥ sup

x∈Bc
Rn

(0)

Q
4

4−μ (x)

V (x)
.

Since γ < 4β/(4 − μ), one sees that limR̃→+∞ B(R̃) = 0 which indicates that B(R̃) ≤ 1/4 for 
some sufficiently large R̃ > 0. As a consequence of (4.4) and (4.6), we accomplish the proof. �
Lemma 4.4. There exist constants R̃ > 0 and C > 0 such that for all ζ > 2R̃, there holds

ˆ

Bc
ζ (0)

[|∇u0|2 + V (x)|u0|2]dx ≤ Ce(log 3
4 )ζ

(2−γ )/2
.

Proof. With Lemma 4.3 in hand, we can obtain the desired result immediately followed by [6, 
Lemma 18]. For the reader’s convenience, we present it here in detail. Let R̃ and {Rn} be as in 
Lemma 4.3 and ζ > 2R̃, there exist two positive integers n> ñ such that

Rñ ≤ R̃ ≤ Rñ+1 and Rn−1 ≤ ζ ≤ Rn

and then

n − ñ = R
(2−γ )/2
n − R

(2−γ )/2
ñ ≥ ζ (2−γ )/2 − R̃(2−γ )/2 > R̃(2−γ )/2(2(2−γ )/2 − 1) > 2

provided R̃ > 0 is sufficiently large. So, n− ñ ≥ 3 and Rn−2 ≥ Rñ+1 ≥ R̃. By Lemma 4.3,

ˆ

Bc
ζ (0)

[|∇u0|2 + V (x)|u0|2]dx ≤
ˆ

Bc
Rn−1

(0)

[|∇u0|2 + V (x)|u0|2]dx

≤ 3

4

ˆ

Bc
Rn−2

(0)

[|∇u0|2 + V (x)|u0|2]dx ≤ · · ·

≤
(

3

4

)n−ñ−2 ˆ

Bc
R (0)

[|∇u0|2 + V (x)|u0|2]dx

ñ+1
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≤
(

3

4

)n−ñ−2 ˆ

Bc

R̃
(0)

[|∇u0|2 + V (x)|u0|2]dx

= C(R̃)e(log 3
4 )ζ

(2−γ )/2
ˆ

Bc

R̃
(0)

[|∇u0|2 + V (x)|u0|2]dx

showing the desired result. The proof is complete. �
Now, we are in a position to give the proof of Theorem 1.11.

Proof of Theorem 1.11. Since V (x)(1 + 2γ ) ≥ V (x)(1 + |x|γ ) ≥ a for all x ∈ B2(0), one has

ˆ

B2(0)

u2
0dx ≤ 1 + 2γ

a

ˆ

B2(0)

V (x)u2
0dx < +∞.

Hence, to derive u0 ∈ L2(R2), it suffices to verify 
´
Bc

2(0)
u2

0dx < +∞. Let’s denote �j = {x ∈
R2|2j ≤ |x| < 2j+1} with j ∈ N+ as before. Since 2(j+2)γ V (x) ≥ (1 + |x|γ )V (x) ≥ a on �j , 
we obtain

ˆ

�j

u2
0dx ≤ 2(j+2)γ

a

ˆ

�j

V (x)u2
0dx ≤ 2(j+2)γ

a

ˆ

�j

[|∇u0|2 + V (x)u2
0]dx

≤ 2(j+2)γ

a

ˆ

Bc

2j
(0)

[|∇u0|2 + V (x)u2
0]dx ≤ 2(j+2)γ

a
Ce(log 3

4 )2
(2−γ )j/2

(4.7)

for each ζ � 2j ≥ 2R̃ in Lemma 4.4. Therefore, there exists an integral j0 > 0 such that (4.7)
holds true for every j ≥ j0 + 1. As a consequence, with the help of γ < 2 and log(3/4) < 0, we 
have

ˆ

Bc
2(0)

u2
0dx =

∞∑
j=1

ˆ

�j

u2
0dx =

j0∑
j=1

ˆ

�j

u2
0dx +

∞∑
j=j0+1

ˆ

�j

u2
0dx

≤
j0∑

j=1

ˆ

�j

u2
0dx + C

a

∞∑
j=j0+1

2(j+2)γ e(log 3
4 )2

(2−γ )j/2
< +∞.

The proof is now complete. �
Remark 4.5. It is worthy mentioning here that our approach simplifies the proof that the nontriv-
ial solution u0 ∈ E is indeed a bound state whence (γ, β) ∈ (i)′ since the references, [6, Proof 
of Theorem 16] and [27, Proof of Theorem 1.1], strongly relied on the Borel finite covering 
lemma with respect to the domain B5(0)\B2(0). In addition, as explained by Su et al. in [42, 
Remark 2], one could show the exponential decay of u0 for each (γ, β) ∈ (i)′ which indicates 
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that lim|x|→∞ u0(x) = 0, however, u0 cannot have this exponential decay if (γ, β) ∈ (ii)′, or 
(γ, β) ∈ (iii)′, by a comparison argument concerning an explicit solution to −�u + c|x|−2u = 0.

Appendix A. Suppose that hypothesis (K) holds. Then C∞
0 (R2) is dense in E under the norm 

‖ · ‖.

Proof. Motivated by [27, Lemma 2.3], we know that the space E0 � {u ∈ E|u has a compact 
support} is dense in E under the norm ‖ · ‖. Let us point out that C∞

0 (R2) is dense in (E0, ‖ · ‖). 
So, to finish the proof of this lemma, it suffices to obtain that E0 is dense in E.

For every R > 1, we can choose a function ψR ∈ C∞
0 (R2, [0, 1]) to satisfy ψR(x) ≡ 1 for 

all |x| ≤ R, ψR(x) ≡ 1 for each |x| ≥ 2R, and |∇ψR| ≤ 2/R for every x ∈ R2. Considered a 
function u ∈ E, it’s simple to find that ψRu ∈ E0 for each fixed R > 1. Next, we shall conclude 
that ‖ψRu − u‖ → 0 as R → ∞.

Obviously, V 1/2(x)(ψR − 1)u → 0 a.e. in R2 as R → ∞ and V 1/2(x)|ψRu − u| ≤
2V 1/2(x)u ∈ L2(R2), then by means of the Lebesgue Dominated Convergence theorem, one 
has ˆ

R2

V (x)|ψRu − u|2dx → 0 as R → ∞. (4.8)

Similarly, by the fact that |∇u|2 ∈ L1(R2) since u ∈ E, we can derive that

ˆ

R2

|(ψR − 1)∇u|2dx → 0 as R → ∞. (4.9)

Now, we claim that
ˆ

R2

|u∇ψR|2dx → 0 as R → ∞ (4.10)

whose proof is postponed. If (4.10) holds true, we deduce that |∇(ψRu − u)| → 0 in L2(R2) by 
(4.9) and the Young’s inequality. In view of (4.8), one sees immediately that ‖ψRu − u‖ → 0 as 
R → ∞.

Let’s focus on showing (4.10). Define

λ12 � inf

{ ˆ

B2(0)\B1(0)

|∇v|2dx
∣∣∣∣v ∈ H 1

0 (B2(0)\B1(0)) and
ˆ

B2(0)\B1(0)

|v|2dx = 1

}
.

As a consequence, we have

ˆ

R2

|u∇ψR|2dx =
ˆ

B2R(0)\BR(0)

|u∇ψR|2dx ≤ 4

R2

ˆ

B2R(0)\BR(0)

|u|2dx

= 4
ˆ

|uR(y)|2dy ≤ 4

λ12

ˆ
|∇uR|2dy
B2(0)\B1(0) B2(0)\B1(0)
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= 4

λ12

ˆ

B2R(0)\BR(0)

|∇u|2dx → 0 as R → ∞

yielding (4.10), where uR(y) = u(Ry). The proof is complete. �
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