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Abstract

We deal with the following fractional Choquard equation

(−�)su + V (x)u = (Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s−2
u,x ∈ RN,

where Iμ(x) is the Riesz potential, s ∈ (0, 1), 2s < N �= 4s, 0 < μ < min{N, 4s} and 2∗
μ,s = 2N−μ

N−2s is the 
fractional critical Hardy-Littlewood-Sobolev exponent. By combining variational methods and the Brouwer 
degree theory, we investigate the existence and multiplicity of positive bound solutions to this equation when 
V (x) is a positive potential bounded from below. The results obtained in this paper extend and improve some 
recent works in the case where the coefficient V (x) vanishes at infinity.
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1. Introduction and main results

In this article, we are interested in the following fractional Choquard equation

(−�)su + V (x)u = (Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s−2u,x ∈RN, (1.1)

where s ∈ (0, 1), 2s < N �= 4s, 0 < μ < min{N, 4s}, 2∗
μ,s = 2N−μ

N−2s is the fractional critical 
Hardy-Littlewood-Sobolev exponent, Iμ(x) : RN →R is the Riesz potential defined by

Iμ = Aμ

|x|μ ,Aμ = �(
μ
2 )

πN/22N−μ�(
N−μ

2 )

and

(−�)sv(x) = CN,sP .V .

∫
RN

v(x) − v(y)

|x − y|N+2s dy, v ∈ S(RN),

where P.V . represent the Cauchy principal value, CN,s is a normalized constant, and S(RN) is 
the Schwartz space of rapidly decaying functions. We notice that the fractional Laplace operator 
was first introduced in the pioneering work by Laskin [24,25]. For more details about the frac-
tional Laplacian and fractional Sobolev spaces we refer the interested reader to the monograph 
[37].

When s = 1, μ = 1, N = 3, V = 1, equation (1.1) stems from the following Choquard equa-
tion

−�u + u = (I1 ∗ |u|2)u, x ∈R3. (1.2)

For studying the quantum theory of quantum polaron, equation (1.2) was introduced by Fröhlich 
[14] and Pekar [41]. As noticed by Lieb [30], Choquard used equation (1.2) as approximation to 
Hartree-Fock theory of one-component plasma. It remarked that, as a model of self gravitating 
matter and is known in that context as the Schrödinger-Newton equation, this equation was stud-
ied by Penrose [42,43]. The existence and uniqueness of positive solutions to equation (1.2) was 
investigated by Lieb and Lions in [30,33]. In [33,49], Lenzmann, Wei and Winter studied the non-
degeneracy and uniqueness of the ground state. Classification of solutions of generalized non-
linear Choquard problem was investigated by Ma and Zhao in [34]. Moroz and Van Schaftingen 
[38] completely studied the qualitative properties of solutions of generalized nonlinear Choquard 
problem. In [39], Moroz and Van Schaftingen gave a broad survey about Choquard equations. 
For more results on classical Choquard equations, we refer to [1,3,4,6,10,16,29,36,44–46] and 
the references therein. In order to be consistent with the theme of this article, in the following we 
shall recall some previous results for this case. In [18], when |V |N

2
is suitable small, Guo et al. 

studied the positive high-energy solutions for Choquard equation
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−�u+ V (x)u = (Iμ ∗ |u|2∗
μ)|u|2∗

μ−2u,u ∈ D1,2(RN), (1.3)

where 0 < μ < N if N = 3 or N = 4, and N − 4 ≤ μ < N if N ≥ 5, 2∗
μ = 2N−μ

N−2 is the upper 

Hardy-Littlewood-Sobolev critical exponent and V (x) ∈ L
N
2 (RN) ∩Cγ (RN) is nonnegative for 

some γ ∈ (0, 1). It is remarked that, under different conditions about V , Gao et al. [15] also 
studied high-energy solutions of the Choquard equation (1.3) by different methods.

Recently, Alves, Figueiredo and Molle [2] considered the following Choquard equation

{
−�u+ Vλ(x)u = (Iμ ∗ |u|2∗

μ)|u|2∗
μ−2u, in RN,

u > 0, in RN,
(1.4)

where Vλ = λ + V0 with λ ≥ 0, V0 ∈ L
N
2 (RN), 0 < μ < min{N, 4} and N ≥ 3. Under V0 and λ

are suitable small, they obtained the existence of two positive solutions to equation (1.4).
We notice that the motivation of papers [2,15,18] is due to Benci and Cerami in the semi-

nal paper [5]. In fact, the results obtained in [2,15,18] extended the results about the classical 
Schrödinger equation [5] to the Choquard equation. There are other papers similar to [5], see 
[2,7,11,15,18,20,21] and the references therein.

Compared with classical Choquard equations, there are few papers considering fractional 
Choquard equations. For instance, Frank et al. [13] studied the following equation

√−�u+ u = (|x|−1 ∗ |u|2)u,u ∈ H
1
2 (R3). (1.5)

Authors investigated analyticity and radial symmetry of ground state solutions to equation (1.5).
Next, d’Avenia, Siciliano and Squassina [12] considered the following fractional Choquard 

equation

(−�)su+ ωu = (|x|−μ ∗ |u|p)|u|p−2u, in RN, (1.6)

where ω is a positive constant, s ∈ (0, 1), 2s < N , 0 < μ < min{N, 4s}, 2N−μ
N

< p < 2∗
μ,s . The 

regularity, existence, nonexistence, symmetry as well as decay properties of weak solutions to 
equation (1.6) were obtained in [12].

Under general source terms, Shen, Gao and Yang [47] studied the following fractional 
Choquard equation

(−�)su + u = (|x|−μ ∗ F(u))f (u) in RN. (1.7)

They obtained the existence of ground state solutions to equation (1.7) when f satisfies 
Berestycki-Lions-type assumptions. Other details about fractional Choquard equation (1.7) with 
subcritical nonlinearity f (u) = |u|p−2u, p < 2∗

μ,s , we refer to [9,17,28,27,31] and the references 
therein.

On the other hand, there are some results on fractional Choquard equation with critical expo-
nent p = 2∗

μ,s . In [40], Mukherjee and Sreenadh studied the existence of weak solutions of the 
following doubly nonlocal fractional elliptic problem:
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W. Guan, V.D. Rădulescu and D.-B. Wang Journal of Differential Equations 355 (2023) 219–247
⎧⎨⎩ (−�)su =
(∫

�
|u|2∗

μ,s

|x−y|μ dy
)
|u|2∗

μ,s−2u + λu, in �,

u = 0, in RN\�,

(1.8)

where � ⊂ RN is a bounded domain with Lipschitz boundary, λ is a real parameter, 0 <μ <N

and N > 2s. They obtained some existence, nonexistence and regularity results for weak solution 
of the above problem using variational methods. By using the mountain pass lemma and the 
Lusternik-Schnirelmann theory, Ma and Zhang [35] proved that the existence and multiplicity of 
ground state solutions to equation (1.1) with V (x) = λa(x) − β .

In [21], He and Rădulescu were concerned with the qualitative analysis of positive solutions 
to the fractional Choquard equation{

(−�)su + V (x)u = (Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s−2u,x ∈ RN,

u ∈ Ds,2(RN), u(x) > 0, x ∈RN,
(1.9)

where s ∈ (0, 1), 2s < N , 0 < μ < min{N, 4s}, 2∗
μ,s = 2N−μ

N−2s and V (x) satisfies the following 
conditions:

(1) The function V is positive on a set of positive measure.
(2) V ∈ Lq(RN) for all q ∈ [p1, p2], where 1 < p1 <

2N−μ
4s−μ

< p2 with p2 < N
4s−N

if 2s <

N < 4s.
(3) We have

|V | N
2s

<
(

2
4s−μ
2N−μ − 1

)
S

(2s−N)[(N−μ)(1−s)+2s]+(2N−μ)2s
2s(N−μ+2s)

s .

By proving a version of the global compactness result of Struwe [48] for the case of fractional 
operators in RN , they showed that equation (1.9) has at least one bound state solution. Some 
similar results as in [21] were also obtained in [22,51]. We point out that the results obtained 
in [21,22,51] are strongly dependent on the condition V (x) ∈ L

N
2s (RN), which means that V (x)

may vanish at the infinity. For other details about fractional Choquard equation with critical 
exponent, we refer to [19,23] and the references therein.

Inspired by the works mentioned above, in this paper, we are interested in the existence and 
multiplicity of positive bound state solutions to Choquard equation (1.1) in which V (x) is posi-
tive bounded from below. Throughout this paper, we always suppose V (x) satisfies:

⎧⎪⎨⎪⎩
lim|x|→+∞ V (x) = V∞ > 0 (i)

V (x) ≥ V∞, x ∈RN (ii)

(V (x) − V∞) ∈ L
N
2s (RN) (iii)

(V1)

For � ⊂RN , the norm of u in Lr(�) and Lr(RN) are denoted by |u|r,� and |u|r , 1 ≤ r < ∞. 
For any s ∈ (0, 1), defined

Ds,2(RN) =
{
u ∈ L2∗

s (RN) :
∫
N

∫
N

|u(x) − u(y)|2
|x − y|N+2s dxdy < ∞

}

R R
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with the Gagliardo seminorm

‖u‖2
s = (u,u)s =

∫
RN

∫
RN

|u(x) − u(y)|2
|x − y|N+2s dxdy.

Let Ss be the best Sobolev constant for the embedding Ds,2(RN) ↪→ L2∗
s (RN), that is,

Ss = inf
u∈Ds,2(RN)\{0}

‖u‖2
s

|u|22∗
s

.

Denote by Hs(RN) the fractional Sobolev space endowed with the norm

‖u‖2 = (u,u) =
∫
RN

∫
RN

|u(x) − u(y)|2
|x − y|N+2s dxdy +

∫
RN

V∞u2dx = ‖u‖2
s +

∫
RN

V∞u2dx.

The main result in this paper establishes the following existence property of bound states. In 
the case of small perturbations from infinity of the indefinite potential we also obtain a multiplic-
ity property of positive bound states.

Theorem 1.1. Suppose that (V1) is satisfied.
(1) If |V −V∞| N

2s
�= 0, then there exists V ∗ > 0 such that for V∞ ∈ (0, V ∗), problem (1.1) has at 

least one positive bound state solution.
(2) Moreover, suppose that

0 < |V − V∞| N
2s

<
(

2
4s−μ
2N−μ − 1

)
Ss. (V2)

Then there is V∗ > 0 such that for V∞ ∈ (0, V∗), the equation (1.1) has at least two distinct 
positive bound state solutions.

Remark 1.1. Obviously, it follows from the condition (V1) that V /∈ L
N
2s (RN) and it is positive 

bounded from below. However, the results obtained in [21,22,51] are strongly dependent on the 
condition V (x) ∈ L

N
2s (RN), which means that V (x) may vanish at infinity. So, the methods used 

in [21,22,51] seem to be not valid for our case.

Remark 1.2. The proof of our results is inspired from the paper due to Cerami, Molle and Pas-
saseo [7,8], in which the authors deal with the Schrödinger-Poisson system and Schrödinger 
equation with Neumann boundary respectively. Since there are double nonlocal characteristics 
in our equation which come from the nonlocal operator (−�)s and the fractional Choquard non-
linear term, some refined estimates for our problem are very necessary and delicate. Especially, 
the most important thing we need to do is that we must extend the global compactness results in 
[7,21,22,51] to our equation when V (x) is positive and bounded from below.
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2. Preliminary results

Proposition 2.1. ([32]) Let t, r > 1 and 0 < μ < N with 1/t + μ/N + 1/r = 2, f ∈ Lt(RN)

and h ∈ Lr(RN). Then there exists a sharp constant C(t, N, μ, r) independent of f, h such that∣∣∣ ∫
RN

∫
RN

f (x)g(y)

|x − y|μ dxdy
∣∣∣ ≤ C(t,N,μ, r)|f |t · |g|r . (2.1)

If t = r = 2N
2N−μ

, then

C(t,N,μ, r) = C(N,μ) = π
μ
2

�(
π−μ

2 )

�(
2N−μ

2 )

(�(π2 )

�(N)

)−1+ μ
N
.

In this case, the equality in (2.1) is achieved if and only if f ≡ (const.)g and

g(x) = A(γ 2 + |x − a|2)− 2N−μ
2

for some A ∈C, 0 �= γ ∈R and a ∈ RN .

Proposition 2.2. ([21,38]) Let N > 2s and μ ∈ (0, N). If {un} is a bounded sequence in L2∗
s (RN)

such that un → u almost everywhere in RN as n → ∞, then∫
RN

(Iμ ∗ |un|2∗
μ,s )|un|2∗

μ,s dx −
∫
RN

(Iμ ∗ |un − u|2∗
μ,s )|un − u|2∗

μ,s dx

→
∫
RN

(Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s dx

and ∫
RN

(Iμ ∗ |un|2∗
μ,s )|un|2∗

μ,s−2undx −
∫
RN

(Iμ ∗ |un − u|2∗
μ,s )|un − u|2∗

μ,s−2(un − u)dx

→
∫
RN

(Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s−2udx, in (Ds,2(RN))′,

where (Ds,2(RN))′ is the dual space of Ds,2(RN).

Lemma 2.1. ([50]) If N ≥ 3 and W ∈ L
N
2s (RN), ψ : Ds,2(RN) → R, u �→ ∫

RN W(x)u2dx is 
weakly continuous.

Let f = g = |u|q , then by the Hardy-Littlewood-Sobolev inequality we deduce that∫
N

∫
N

|u(x)u(y)|q
|x − y|μ dxdy
R R
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is well defined if |u|q ∈ Lt(R) for some t > 1 with 2
t
+ μ

N
= 2. Therefore, for u ∈ Ds,2(RN), it 

follows from Sobolev embedding theorems that

2N − μ

N
≤ q ≤ 2N − μ

N − 2s
. (2.2)

Hence, for u ∈ Ds,2(RN), we get

( ∫
RN

(Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s dx
) 1

2∗
μ,s ≤ (AμC(N,μ))

1
2∗
μ,s |u|22∗

μ,s
.

From above arguments, the energy functional associated with equation (1.1) is defined by

J (u) = 1

2
‖u‖2

s + 1

2

∫
RN

V (x)u2dx − 1

2 · 2∗
μ,s

∫
RN

(Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s dx, u ∈ Hs(RN).

Furthermore, J (u) ∈ C1(Hs(RN), R) and

〈J ′(u), v〉 = (u, v)s +
∫
RN

V (x)uvdx −
∫
RN

(Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s−2uvdx

for u, v ∈ Hs(RN).
Define the Nehari manifold as

N := {u ∈ Hs(R3)\{0} : 〈J ′(u),u〉 = 0}.

It is easy to show that, for each u ∈ Hs(R3)\{0}, there is a unique κu > 0 satisfying κuu ∈ N
and (κuu) = maxκ>0 (κu). Here, κuu is called the projection of u on N .

Firstly, we introduce the following equation

(−�)su = (Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s−2u, in RN, (2.3)

and its energy functional J∞ : Ds,2(R3) → R defined by

J∞(u) = 1

2
‖u‖2

s − 1

2 · 2∗
μ,s

∫
RN

(Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s dx.

It follows from [26] that the positive solutions of equation (2.3) are unique, up to translations and 
scalings, and must be of the form

Uδ,y(x) = Cδ
N−2s

2

(δ2 + |x − y|2)N−2s
2

, y ∈RN, δ > 0, (2.4)

where C is a positive constant. Let
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Sμ,s := inf
u∈Ds,2(RN)\{0}

‖u‖2
s(∫

RN (Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s dx
) 1

2∗
μ,s

,

then Sμ,s is achieved if and only if u is of the form (2.4), and furthermore, one has

Sμ,s = Ss

(AμC(N,μ))
1

2∗
μ,s

,‖Uδ,y‖2
s =

∫
RN

(Iμ ∗ |Uδ,y |2∗
μ,s )|Uδ,y |2∗

μ,s dx = S
2N−μ

N−μ+2s
μ,s ,

where C(N, μ) is defined in Proposition 2.1.
Let

N∞ := {u ∈ Ds,2(RN)\{0} : 〈J ′∞(u),u〉 = 0}.

Then

J∞(Uδ,y) = min
N∞

J∞(u) = N − μ + 2s

2(2N − μ)
S

2N−μ
N−μ+2s
μ,s .

It is easy to prove that, for each u ∈ Hs(R3)\{0}, there is a unique ιu > 0 satisfying ιuu ∈ N∞. 
Furthermore, we can easily obtain the following two results from [21,22].

Lemma 2.2. If u ∈ Ds,2(RN) is a nodal solution of equation (2.3), then

J∞(u) ≥ 2
4s−μ

N−μ+2s
N − μ + 2s

2(2N − μ)
S

2N−μ
N−μ+2s
μ,s .

Lemma 2.3. If {un} ⊂ Ds,2(RN) satisfies

‖un‖2
s(∫

RN (Iμ ∗ |un|2∗
μ,s )|un|2∗

μ,s dx
) 1

2∗
μ,s

→ Sμ,s,

then there exist δn > 0 and yn ∈RN satisfying

un

|un|2∗
s

→ Uδn,yn

|Uδn,yn |2∗
s

+ on(1) in Ds,2(RN).

Lemma 2.4. Assume that u ∈ Hs(RN)\{0}, κuu and ιuu are the projections of u on N and N∞
respectively, then we have that ιu ≤ κu.

Proof. It follows from (V1) that

ι
2N−2μ+4s

N−2s
u = ‖u‖2

s∫
(I ∗ |u|2∗

μ,s )|u|2∗
μ,s dx
RN μ
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= κ
2N−2μ+4s

N−2s
u

∫
RN (Iμ ∗ |u|2∗

μ,s )|u|2∗
μ,s dx − ∫

RN V (x)u2dx∫
RN (Iμ ∗ |u|2∗

μ,s )|u|2∗
μ,s dx

≤ κ
2N−2μ+4s

N−2s
u

∫
RN (Iμ ∗ |u|2∗

μ,s )|u|2∗
μ,s dx∫

RN (Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s dx
= κ

2N−2μ+4s
N−2s

u ,

which shows that ιu ≤ κu. �
Proposition 2.3. Suppose that (V1) holds, then m := minN J (u) = N−μ+2s

2(2N−μ)
S

2N−μ
N−μ+2s
μ,s and m is 

not achieved.

Proof. For any u ∈N , we have that

‖u‖2
s ≤ ‖u‖2

s +
∫
RN

V (x)u2dx =
∫
RN

(Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s dx ≤ S
− 2N−μ

N−2s
μ,s

(
‖u‖2

s

) 2N−μ
N−2s

,

which shows that ‖u‖2
s ≥ S

2N−μ
N−μ+2s
μ,s . Thanks to u ∈N , we obtain that

J (u) = J (u) − 1

2 · 2∗
μ,s

〈J ′(u),u〉 = N − μ + 2s

2(2N − μ)
‖u‖2

s + N − μ + 2s

2(2N − μ)

∫
RN

V (x)u2dx

≥ N − μ + 2s

2(2N − μ)
‖u‖2

s ≥ N − μ + 2s

2(2N − μ)
S

2N−μ
N−μ+2s
μ,s .

So, we can conclude that m ≥ N−μ+2s
2(2N−μ)

S
2N−μ

N−μ+2s
μ,s .

In the following, we prove that m ≤ N−μ+2s
2(2N−μ)

S
2N−μ

N−μ+2s
μ,s . Let

Ũn(x) = χ(|x|)U 1
n
,0(x),

where χ ∈ C∞
0 ([0, ∞), [0, 1]) satisfying χ(t) = 1, t ∈ [0, 12 ] and χ(t) = 0, t ≥ 1.

It follows from estimates obtained in [37] that

‖Ũn‖2
s = ‖U 1

n
,0‖2

s + on(1). (2.5)∫
RN

(Iμ ∗ |Ũn|2∗
μ,s )|Ũn|2∗

μ,s dx =
∫
RN

(Iμ ∗ |U 1
n
,0|2

∗
μ,s )|U 1

n
,0|2

∗
μ,s dx + on(1). (2.6)

By using arguments as in [19], we have that∫
R3

(V (x) − V∞)Ũ2
n (x)dx = on(1). (2.7)
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In the following, we prove that

∫
R3

Ũ2
n (x)dx = on(1). (2.8)

On the one hand, if 4s > N , one has

∫
RN

|Ũn(x)|2dx =
∫
RN

|χ(|x|)U 1
n
,0(x)|2dx

≤ C1

∫
|x|≤1

( 1
n
)N−2s

( 1
n2

+ |x|2)N−2s
dx

≤ C2(
1

n
)N−2s

1∫
0

rN−1

r2N−4s dr = C2(
1

n
)3−2s

1∫
0

1

rN−4s+1 dr

≤ C3(
1

n
)N−2s .

On the other hand, if 4s < N , let λ > 0 we have

∫
RN

|Ũn(x)|2dx =
∫
RN

|χ(|x|)U 1
n
,0(x)|2dx

≤
∫
RN

|U 1
n
,0(x)|2dx = Cn−2s

∫
RN

1

(1 + |y|2)N−2s dy

= (
1

n
)2s

(
C

∫
B0(λ)

1

(1 + |nx|2)N−2s dx + C

∫
RN\B0(λ)

1

(1 + |y|2)N−2s dy
)

≤ (
1

n
)2s

(
C4 + C5

∞∫
λ

1

rN−4s+1 dx
)

≤ C6(
1

n
)2s .

Hence, by above argument, we have that (2.8) holds.
Combining with (2.5), (2.6), (2.7) and (2.8), we can conclude that

κŨn
= 1 + on(1). (2.9)

Let Ûn(x) = κ˜ Ũn(x), it follows from Ûn ∈N , (2.5), (2.6), (2.7), (2.8) and (2.9) that
Un
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m ≤ lim
n→∞J (Ûn)

= lim
n→∞

(κ2
Ũn

2
‖Ũn‖2

s +
κ2
Ũn

2

∫
R3

V (x)Ũ2
ndx −

κ
2·2∗

μ,s

Ũn

2 · 2∗
μ,s

∫
RN

(Iμ ∗ |Ũn|2∗
μ,s )|Ũn|2∗

μ,s dx
)

= N − μ + 2s

2(2N − μ)
S

2N−μ
N−μ+2s
μ,s .

Consequently, we obtain m = N−μ+2s
2(2N−μ)

S
2N−μ

N−μ+2s
μ,s .

Now, we prove that m is not achieved. Suppose that, by contradiction, there exists u� ∈ N

such that J (u�) = N−μ+2s
2(2N−μ)

S
2N−μ

N−μ+2s
μ,s . Thanks to κu� = 1, it follows from Lemma 2.4 that ιu� ≤ 1. 

Then we deduce that

N − μ + 2s

2(2N − μ)
S

2N−μ
N−μ+2s
μ,s = J (u�) = N − μ + 2s

2(2N − μ)
‖u�‖2

s + N − μ + 2s

2(2N − μ)

∫
RN

V (x)u2
�dx

>
N − μ + 2s

2(2N − μ)
‖u�‖2

s ≥ N − μ + 2s

2(2N − μ)
‖ιu�u�‖2

s

≥ N − μ + 2s

2(2N − μ)
S

2N−μ
N−μ+2s
μ,s ,

from which we obtain a contradiction. �
From Proposition 2.3, we know that the equation (1.1) does not have any ground state solution. 

So, we intend to find a bound state solution. For this purpose, we first establish the following 
global compactness result.

Lemma 2.5. Suppose that {un} is a sequence of (P.S.)c sequence for J and un ⇀ u0 in Hs(RN). 
Then, up to a subsequence, {un} satisfies either
(a) un → u0 in Hs(RN) or
(b) there are k ∈ N and nontrivial solutions u1, u2, . . . , uk for the equation (2.3), satisfying

‖un‖2 → ‖u0‖2 +
k∑

j=1

‖uj‖2
s and J (un) → J (u0) +

k∑
j=1

J∞(uj ).

Proof. For any ψ ∈ C∞
0 (R), by Proposition 2.2 and Lemma 2.1 we have that

〈J ′(un),ψ〉 =(un,ψ)s +
∫
RN

V (x)unψdx −
∫
RN

(Iμ ∗ |un|2∗
μ,s )|un|2∗

μ,s−2unψdx

=(un,ψ) +
∫
N

(V (x) − V∞)unψdx −
∫
N

(Iμ ∗ |un|2∗
μ,s )|un|2∗

μ,s−2unψdx
R R
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W. Guan, V.D. Rădulescu and D.-B. Wang Journal of Differential Equations 355 (2023) 219–247
=(u0,ψ) +
∫
RN

(V (x) − V∞)u0ψdx −
∫
RN

(Iμ ∗ |u0|2∗
μ,s )|u0|2∗

μ,s−2u0ψdx + on(1)

=〈J ′(u0),ψ〉 + on(1),

which shows 〈J ′(u0), ψ〉 = 0. That is, u0 satisfies

(−�)su0 + V (x)u0 = (Iμ ∗ |u0|2∗
μ,s )|u0|2∗

μ,s−2u, x ∈ RN.

Since un ⇀ u0 in Hs(RN), then we obtain that

un → u0 in L2
loc(R

N);un ⇀ u0 a.e. on RN.

Let v1
n = un − u0, it follows from Proposition 2.2, Lemma 2.1 and the Brezis-Lieb lemma that

JV∞(v1
n) = J (un) −J (u0) + on(1); J ′

V∞(v1
n) = J ′(un) −J ′(u0) + on(1) = on(1),

(2.10)

where

JV∞(u) := 1

2
‖u‖2

s + 1

2

∫
RN

V∞u2dx − 1

2 · 2∗
μ,s

∫
RN

(Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s dx

= J∞(u) + 1

2

∫
RN

V∞u2dx.

It follows from (2.10) that v1
n is a (P .S.) sequence for JV∞ . If v1

n → 0 in Hs(RN), we have 
done. If not, we suppose that v1

n � 0 in Hs(RN). Hence, there are C1, C2 > 0 satisfying

‖v1
n‖ >C1, |v1

n|2∗
s
> C2. (2.11)

Let RN = �i∈NQi , where Qi are hypercubes with disjoint interior and unitary sides. Set 
l1n := maxi∈N |v1

n|2∗
s ,Qi

, we have that

C
2∗
s

2 < |v1
n|2

∗
s

2∗
s
=

∞∑
i=1

|v1
n|2

∗
s

2∗
s ,Qi

≤ (l1n)
2∗
s −2|v1

n|22∗
s ,Qi

≤ C3(l
1
n)

2∗
s −2‖v1

n‖2 ≤ C4(l
1
n)

2∗
s −2.

So, we obtain that l1n > 0.
Let z1

n be the center of a hypercube so that l1n is attained. Define v̂1
n(x) = v1

n(x + z1
n). Ob-

viously, {̂v1
n} is a (P.S.) sequence for JV∞ , and then {̂v1

n} bounded in Hs(RN). So we assume 
that, up to a subsequence, there is v ∈ Hs(RN) such that v̂1

n ⇀ v in Hs(RN). Then for any 
ψ ∈ C∞

0 (R), one has that 〈J ′
V∞(v), ψ〉 = 0. That is, v satisfies

(−�)su + V∞u = (Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s−2u, x ∈RN.
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According to the Pohozaev identity [12,47], we obtain that v = 0. If v̂1
n → 0 in Hs(RN), we 

have done. If not, that is, ̂v1
n ⇀ 0 but ̂v1

n � 0 in Hs(RN). From fact that v1
n is a (P.S.) sequence 

for JV∞ , it is easy to conclude that {̂v1
n} is a (P.S.) sequence for J∞ in Ds,2(RN) and with 

v̂1
n ⇀ 0 and v̂1

n � 0 in Ds,2(RN). Then, from the results obtained in [11], there exists nontrivial
solution u1 of equation (2.3). Now, we claim that there exist {yn} ⊂ RN , {δn} ⊂ R with δn → 0
satisfying

v2
n := v̂1

n(x) − ψ
(x − yn

δ
1
2
n

)
δ
−N−2s

2
n u1

(x − yn

δn

)
⇀ 0 in Hs(RN), (2.12)

where ψ ∈ C∞
0 (RN) satisfying ψ ≡ 1, x ∈ B1(0) and ψ ≡ 0, x ∈ RN\B2(0). In fact, thanks to 

|̂v1
n|2∗

s ,Qi
> 0, we used a similar argument as in Lemma 3.3 [48] (or Theorem 3.2 in [50]) to find 

sequences of {yn}, {δn} such that v2
n exists.

Next, we prove that v2
n ⇀ 0 in Hs(RN). Let ψn(x) = ψ(δ

1
2
n x), then it is easy to see that

∣∣∣ψ(x − yn

δ
1
2
n

)
δ
−N−2s

2
n u1

(x − yn

δn

)∣∣∣2

2
= δ2s

n

∫
RN

ψ2
n |u1|2dx

≤ Cδsn

( ∫
RN

|u1|2∗
s dx

) 1
2∗
s

= on(1),

(2.13)

which together with ̂v1
n ⇀ 0 in Hs(RN) show that v2

n ⇀ 0 in L2(RN).
To our goal, we just prove v2

n ⇀ 0 in Ds,2(RN). It follows from result of (3.23) obtained in 
[11] that

∥∥∥ψ(x − yn

δ
1
2
n

)
δ
−N−2s

2
n u1

(x − yn

δn

)
− δ

−N−2s
2

n u1

(x − yn

δn

)∥∥∥
s
= ‖ψnu1 − u1‖s = on(1). (2.14)

Let û1
n = δ

−N−2s
2

n u1

(
x−yn
δn

)
, then for any ξ ∈ C∞

0 (R) with ‖ξ‖s = C > 0, we conclude 

that (̂u1
n, ξ)s = (u1, ̂ξn)s , where ξ̂n = δ

N−2s
2

n ξ(δnx + yn). Thanks to ‖̂ξn‖s = ‖ξ‖s and ξ̂n →
0 a.e. on RN , we get ̂ξn ⇀ 0 in Ds,2(RN). So, (̂u1

n, ξ)s = (u1, ̂ξn)s = on(1). As ξ is arbitrarily 
chosen, then û1

n ⇀ 0 in Ds,2(RN). Hence, by (2.14), we get that v2
n ⇀ 0 in Ds,2(RN). Conse-

quently, we conclude that v2
n ⇀ 0 in Hs(RN). Combining with (2.12), (2.13) and (2.14), it is 

easy to obtain that

JV∞(v2
n) = JV∞ (̂v1

n) −J∞(u1) + on(1), (2.15)

‖un‖2 = ‖u0‖2 + ‖v1
n‖2 + on(1) = ‖u0‖2 + ‖̂v1

n‖2 + on(1) = ‖u0‖2 + ‖u1‖2
s + ‖v2

n‖2 + on(1).

It follows from (2.10) and (2.15) that
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J (un) = J (u0) +JV∞(v1
n) + on(1) = J (u0) +JV∞ (̂v1

n) + on(1)

= J (u0) +J∞(u1) +JV∞(v2
n) + on(1).

By virtue of (2.12) and (2.15), we easily obtain that {v2
n} is a (P.S.) sequence for JV∞ . If 

v2
n → 0 in Hs(RN), we have done. If not, then we can iterate the above procedure. That is, there 

exist u1, u2, . . . , uk nontrivial solutions for equation (2.1) such that

‖un‖2 → ‖u0‖2 +
k∑

j=1

‖uj‖2
s + ‖v2

k+1‖2

and

J (un) → J (u0) +
k∑

j=1

J∞(uj ) +JV∞(vk+1).

Thanks to

0 = 〈J ′∞(uj ), uj 〉 = ‖uj‖2
s −

∫
RN

(Iμ ∗ |uj |2∗
μ,s )|uj |2∗

μ,s dx

and the definition of Sμ,s , we obtain that ‖uj‖s ≥ S
2N−μ

N−μ+2s
μ,s . Then, we conclude that the iteration 

must terminate at a finite index k ≥ 1, that is, vk+1
n → 0 in Hs(RN). �

Corollary 2.1. Let {un} be a sequence of (P .S.)c sequence for J with c ∈ (0, m), then, up to a 
subsequence, {un} converges strongly in Hs(RN).

From Lemma 2.2 and Lemma 2.5, we can east to obtain the following result.

Corollary 2.2. If c ∈ (m, 2
4s−μ

N−μ+2s m), then the functional J satisfying the (P .S.)c condition.

In the sequel, we consider the functional I : Hs(RN) → R given by

I (u) = ‖u‖2
s +

∫
RN

V (x)u2dx.

Let

M =
{
u ∈ Hs(RN) :

∫
RN

(Iμ ∗ |u|2∗
μ,s )|u|2∗

μ,s dx = 1
}
.

The next results are direct consequence of the Corollaries above.
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Lemma 2.6. If {un} ⊂ M is a sequence satisfying

I (un) → c and I ′|M(un) → 0.

Then, the sequence cn = c
N−2s

2N+4s−2μ un satisfies

J (vn) → N − μ + 2s

2(2N − μ)
c

2N−μ
N−μ+2s and J ′(un) → 0.

Lemma 2.7. Suppose that there are a sequence {un} ⊂ M and c ∈ (Sμ,s, 2
4s−μ
2N−μ Sμ,s) satisfying

I (un) → c and I ′|M(un) → 0.

Then
(i) there is u0 ∈ M such that, up to a subsequence, un → u0 in Ds,2(RN) and u0 is a critical 
point for I constrained on M;

(ii) J has a critical point v0 ∈ Hs(RN) with J (v0) = N−μ+2s
2(2N−μ)

c
2N−μ

N−μ+2s .

3. Main technique and some basic estimates

Inspired by the idea from [7,8], we introduce a barycenter type map β : Hs(RN)\{0} → RN

and a functional γ : Hs(RN)\{0} → R defined as

β(u) = 1

|u|2∗
s

2∗
s

∫
RN

x

1 + |x| |u|2∗
s dx, γ (u) = 1

|u|2∗
s

2∗
s

∫
RN

∣∣∣ x

1 + |x| − β(u)

∣∣∣|u|2∗
s dx.

Obviously, β(u) and γ (u) are continuous. Furthermore, we have

β(ρu) = β(u), γ (ρu) = γ (u), ∀ρ ∈ R, u ∈ Hs(RN)\{0}.

Proposition 3.1. Suppose that (V1) holds, then m∗ := minM I (u) = Sμ,s and m∗ is not achieved.

Proof. Since the proof is similar to that of Proposition 2.3, we omit the details here. �
Proposition 3.2. ϑ := inf{I (u) : u ∈M, β(u) = 0, γ (u) = 1

2 } > Sμ,s .

Proof. By Proposition 3.1, we have that

ϑ ≥ Sμ,s .

Suppose that ϑ = Sμ,s . Then, there is a sequence of {un} satisfying

un ∈ M, β(un) = 0, γ (un) = 1

2
, lim

n→∞ I (un) = Sμ,s . (3.1)

Thanks to V (x) > 0, one has
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Sμ,s = lim
n→∞

(
‖un‖2

s +
∫
RN

V (x)u2
ndx

)
≥ lim

n→∞‖un‖2
s

≥ Sμ,s .

So, we conclude that

lim
n→∞‖un‖2

s = Sμ,s . (3.2)

It follows from Lemma 2.3 and Theorem 2.5 in [5], we obtain that

un(x) = λUδn,yn(x) + εn(x),

where λ > 0 is constant, δn > 0, yn ∈ R3, εn → 0 in Ds,2(RN).
We claim that, passing to a subsequence if necessary,{

limn→∞ δn = δ0 > 0 (i)

limn→∞ yn = y0 ∈ RN (ii)
(3.3)

To prove (i) of (3.3), we firstly prove that {δn} is bounded. Arguing by contradiction, we suppose 
that {δn} is unbounded. Then, passing to a subsequence if necessary, we have limn→∞ δn = ∞. 
Then, for each σ > 0, we get

lim
n→∞

∫
Bσ (0)

|un|2∗
s dx = λ2∗

s lim
n→∞

∫
Bσ (0)

|Uδn,yn |2
∗
s dx = 0.

Thanks to β(un) = 0, for any μ > 0, one has

γ (un) = 1

|un|2
∗
s

2∗
s

∫
RN

|x|
1 + |x| |un|2∗

s dx

= 1

|un|2
∗
s

2∗
s

( ∫
Bσ (0)

|x|
1 + |x| |un|2∗

s dx +
∫

RN\Bσ (0)

|x|
1 + |x| |un|2∗

s dx
)

= 1

|un|2
∗
s

2∗
s ,R

N\Bσ (0)
+ on(1)

( ∫
RN\Bσ (0)

|x|
1 + |x| |un|2∗

s dx + on(1)
)

≥ σ

1 + σ
+ on(1).

Hence, we get lim infn→∞ γ (un) ≥ 1. Thanks to (3.1), we obtain a contradiction. That is, {δn} is 
bounded. Then we suppose that, in subsequence sense, limn→∞ δn = δ0 ≥ 0.
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If δ0 = 0, then for any σ > 0, we have

lim
n→∞

∫
RN\Bσ (yn)

|un|2∗
s dx = λ2∗

s lim
n→∞

∫
RN\Bσ (yn)

|Uδn,yn |2
∗
s dx = 0.

Thanks to β(un) = 0, for arbitrary σ > 0, one has

|yn|
1 + |yn| =

∣∣∣ yn

1 + |yn| − β(un)

∣∣∣
= 1

|un|2
∗
s

2∗
s

∣∣∣ ∫
RN

( yn

1 + |yn| − x

1 + |x|
)
|un|2∗

s dx
∣∣∣

≤ 1

|un|2
∗
s

2∗
s

∫
Bσ (yn)

∣∣∣ yn

1 + |yn| − x

1 + |x|
∣∣∣|un|2∗

s dx

+ 1

|un|2
∗
s

2∗
s

∫
RN\Bσ (yn)

∣∣∣ yn

1 + |yn| − x

1 + |x|
∣∣∣|un|2∗

s dx

≤ 2σ + on(1),

from which we can conclude that limn→∞ |yn| = 0.
On the other hand, for each σ > 0, we have that

0 ≤ γ (un) = 1

|un|2
∗
s

2∗
s

∫
RN

∣∣∣ x

1 + |x| − yn

1 + |yn|
∣∣∣|un|2∗

s dx + on(1) ≤ 2σ + on(1),

which shows that limn→∞ γ (un) = 0. Due to (3.1), we obtain a contradiction. That is, we prove 
that (i) of (3.3) holds.

Now, we will prove that (ii) of (3.3) holds. In fact, we just prove that {yn} is bounded. Arguing 
by contradiction, we suppose that there is a sequence of {yn} satisfying limn→∞ |yn| = ∞. Then 
for each ε > 0 and L > 0, there is n� ∈N satisfying

|x − yn| <L =⇒
∣∣∣ x

1 + |x| − yn

1 + |yn|
∣∣∣ < ε,∀n > n�, (3.4)

and ∫
RN\BL(yn)

|un|2∗
s dx = λ2∗

s

∫
RN\BL(yn)

|Uδn,yn |2
∗
s dx + on(1) < ε. (3.5)

It follows from (3.4) and (3.5) that∣∣∣β(un) − yn

1 + |yn|
∣∣∣ ≤ 1

|un|2
∗
s

2∗

∫
N

∣∣∣ x

1 + |x| − yn

1 + |yn|
∣∣∣|un|2∗

s dx
s R
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≤ 1

|un|2
∗
s

2∗
s

∫
BL(yn)

∣∣∣ x

1 + |x| − yn

1 + |yn|
∣∣∣|un|2∗

s dx

+ 1

|un|2
∗
s

2∗
s

∫
RN\BL(yn)

∣∣∣ x

1 + |x| − yn

1 + |yn|
∣∣∣|un|2∗

s dx

≤ ε + 2ε

|un|2
∗
s

2∗
s

+ on(1).

Then, we conclude that limn→∞ |β(un)| = 1. Thanks to (3.1), we also obtain a contradiction. 
That is, (ii) of (3.3) is satisfied.

Consequently, we have

Sμ,s = lim
n→∞

(
‖un‖2

s +
∫
RN

V (x)u2
ndx

)

= λ2
(
‖Uδ0,y0‖2

s +
∫
RN

V (x)U2
δ0,y0

dx
)

> λ2‖Uδ0,y0‖2
s = Sμ,s .

So, we get a contradiction. �
Proposition 3.3. ν := inf{I (u) : u ∈ M, β(u) = 0, γ (u) ≥ 1

2 } > Sμ,s .

Proof. By Proposition 3.1, ν ≥ Sμ,s . If ν = Sμ,s , Then, there is a sequence of {un} satisfying

un ∈M, β(un) = 0, γ (un) ≥ 1

2
, lim

n→∞ I (un) = Sμ,s . (3.6)

By the same argument as in Proposition 3.2, we can obtain that

un(x) = λUδn,yn(x) + εn(x),

where λ > 0, δn > 0, yn ∈ R3, εn → 0 in Ds,2(RN). Furthermore, we can obtain limn→∞ δn =
δ0 ∈ (0, ∞] and limn→∞ yn = y0 in RN . In the following, we prove δ0 ∈ (0, ∞). Otherwise, one 
has

Sμ,s = lim
n→∞

(
‖un‖2

s +
∫
RN

V (x)u2
ndx

)

≥ lim inf
n→∞

(
‖un‖2

s +
∫

B√
δn

(yn)

V∞u2
ndx

)

≥
(
Sμ,s + λ2V∞ lim inf

n→∞ δn

∫
U2

1,0dx
)

B1(0)
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= ∞.

That is, we obtained that δ0 ∈ (0, ∞). Hence, one has

Sμ,s = lim
n→∞

(
‖un‖2

s +
∫
RN

V (x)u2
ndx

)

≥ λ2
(
‖Uδ0,y0‖2

s + V∞δ0

∫
Bδ0 (y0)

V (x)U2
δ0,y0

dx
)

> λ2‖Uδ0,y0‖2
s = Sμ,s,

which is a contradiction. �
Let α ∈ (0, 1) be such that

|V − V∞| N
2s

<
(

2α
4s−μ
2N−μ − 1

)
Ss (3.7)

and c� satisfying

Sμ,s < c� < min
(Sμ,s + ϑ

2
,2(1−α)

4s−μ
2N−μ Sμ,s

)
. (3.8)

Let ζ(x) be a function satisfying:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(i) ζ ∈ C∞

0 (B1(0));
(ii) ζ(x) ≥ 0,∀x ∈ B1(0);
(iii) ζ ∈ M and ‖ζ‖2

s = � ∈ (Sμ,s, c
�);

(iv) ζ(x) = ζ(|x|) and |x1| < |x2| ⇒ ζ(x1) > ζ(x2).

(3.9)

For every δ > 0 and y ∈ RN , let ζδ,y(x) = 0 if x /∈ Bδ(y) and ζδ,y(x) = δ−N−2s
2 ζ(

x−y
δ

) if 
x ∈ Bδ(y). Obviously, one has∫

RN

|ζδ,y |2∗
s dx =

∫
Bδ(y)

|ζδ,y |2∗
s dx =

∫
B1(0)

|ζ |2∗
s dx;

∫
RN

(Iμ ∗ |ζδ,y |2∗
μ,s )|ζδ,y |2∗

μ,s dx =
∫
RN

(Iμ ∗ |ζ |2∗
μ,s )|ζ |2∗

μ,s dx = 1.

Furthermore, we have

ζδ,y ∈ M, and ‖ζδ,y‖2
s = � ∈ (Sμ,s, c

�) ∀δ > 0 and ∀y ∈ RN.
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Lemma 3.1. The following equalities hold

(a) limδ→0 sup
{∫

RN (V (x) − V∞)|ζδ,y |2dx : y ∈ RN
}

= 0;

(b) limδ→∞ sup
{∫

RN (V (x) − V∞)|ζδ,y |2dx : y ∈RN
}

= 0;

(c) limr→∞ sup
{∫

RN (V (x) − V∞)|ζδ,y |2dx : |y| = r, δ > 0, y ∈RN
}

= 0.

Proof. Let W(x) = V (x) − V∞. For any y ∈ RN and δ > 0, it follows from Hölder inequality 
that ∫

RN

W(x)|ζδ,y |2dx =
∫

Bδ(y)

W(x)|ζδ,y |2dx ≤ |W | N
2s ,Bδ(y)

|ζ |22∗
s ,B1(0) ≤ C|W | N

2s ,Bδ(y)
,

where positive constant C is independent of δ.
Hence, we have that

sup
y∈RN

∫
RN

W(x)|ζδ,y |2dx ≤ C sup
{
|W | N

2s ,Bδ(y)
: y ∈ RN

}
. (3.10)

It follows from

lim
δ→0

|W | N
2s ,Bδ(y)

= 0 uniformly in y ∈ RN

that (a) hold.
Now, we will prove (b). Fixed arbitrarily y ∈ RN , for each σ > 0 and δ > 0 one has∫

RN

W(x)|ζδ,y |2dx =
∫

Bσ (0)

W(x)|ζδ,y |2dx +
∫

RN\Bσ (0)

W(x)|ζδ,y |2dx

≤ |W | N
2s ,Bσ (0)

|ζδ,y |22∗
s ,Bσ (0) + |W | N

2s ,R
N\Bσ (0)

|ζδ,y |22∗
s ,R

N\Bσ (0)

≤ |W | N
2s ,Bσ (0)

sup
y∈RN

|ζδ,y |22∗
s ,Bσ (0) + C|W | 3

2s ,R
3\Bσ (0)

where positive constant C is independent of δ and σ .
Thanks to

lim
δ→∞|ζδ,y |22∗

s ,Bσ (0) = 0 uniformly in y ∈RN,

then for each σ > 0, we get

lim
δ→∞ sup

y∈RN

∫
RN

W(x)|ζδ,y |2dx ≤ C|W | N
2s ,R

N\Bσ (0)
.

Then, let σ → ∞ in the inequality above, (b) is verified.
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Lastly, we prove (c) by an indirect procedure, that is, suppose that there exist sequences of 
{yn} ⊂ RN and {δn} ⊂ R+\{0} such that

lim
n→∞|yn| → ∞, (3.11)

lim
n→∞

∫
RN

W(x)|ζδn,yn |2dx > 0. (3.12)

Combining with (a) and (b), we obtain that limn→∞ δn = δ̃ > 0. Due to W ∈ L
N
2s (RN), it 

follows from (3.11) that

lim
n→∞|W | N

2s ,Bδn (yn)
= 0.

Consequently, we conclude that

lim
n→∞

∫
RN

W(x)|ζδn,yn |2dx ≤
(
|W | N

2s ,Bδn (yn)
· |ζδ,y |22∗

s ,Bδn (yn)

)
= 0

contradicting (3.12). �
Lemma 3.2. The following relations hold
(a) limδ→0 sup{γ (ζδ,y) : y ∈ RN } = 0;
(b) limδ→∞ inf{γ (ζδ,y) : y ∈RN, |y| ≤ r} = 1, ∀r > 0;
(c) (β(ζδ,y), y)RN > 0, ∀y ∈ RN, ∀δ > 0, where (x, y)RN denotes the inner product of x, y ∈
RN .

Proof. For any δ > 0 and y ∈ RN , one has

0 ≤ γ (ζδ,y) = 1

|ζδ,y |2
∗
s

2∗
s ,Bδ(y)

∫
Bδ(y)

∣∣∣ x

1 + |x| − β(ζδ,y)

∣∣∣|ζδ,y |2∗
s dx

≤ 1

|ζδ,y |2
∗
s

2∗
s ,Bδ(y)

∫
Bδ(y)

∣∣∣ x

1 + |x| − y

1 + |y|
∣∣∣|ζδ,y |2∗

s dx +
∣∣∣ y

1 + |y| − β(ζδ,y)

∣∣∣
≤ 1

|ζδ,y |2
∗
s

2∗
s ,Bδ(y)

(
2

∫
Bδ(y)

∣∣∣ x

1 + |x| − y

1 + |y|
∣∣∣|ζδ,y |2∗

s dx
)

≤ 4δ.

Hence 0 ≤ sup{γ (ζδ,y) : y ∈RN } ≤ 4δ. It follows that (a) holds.
To prove (b), we first show that, for each r > 0 and y ∈ RN with |y| ≤ r ,

lim
δ→∞ sup

|y|≤r

β(ζδ,y) = 0. (3.13)

It follows from β(ζδ,0) = 0 and the definition of ζδ,y that
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|β(ζδ,y)| = 1

|ζδ,y |2
∗
s

2∗
s

∣∣∣ ∫
RN

x

1 + |x| |ζδ,y |
2∗
s dx

∣∣∣
= 1

|ζδ,0|2
∗
s

2∗
s

∣∣∣ ∫
RN

x

1 + |x| (|ζδ,y |
2∗
s − |ζδ,0|2∗

s )dx
∣∣∣

≤ 1

|ζδ,0|2
∗
s

2∗
s

∫
RN

|x|
1 + |x|

∣∣∣|ζδ,y |2∗
s − |ζδ,0|2∗

s

∣∣∣dx
≤ C

∫
RN

∣∣∣|ζ1, y
δ
|2∗

s − |ζ1,0|2∗
s

∣∣∣dx
which shows that (3.13) holds.

For each δ > 0,

γ (ζδ,y) = 1

|ζδ,y |2
∗
s

2∗
s

∫
RN

∣∣∣ x

1 + |x| − β(ζδ,y)

∣∣∣|ζδ,y |2∗
s dx ≤ 1 + |β(ζδ,y)|.

Together with (3.13), we deduce that

lim sup
δ→∞

inf{γ (ζδ,y) : y ∈RN, |y| ≤ r} ≤ 1.

If the following holds

lim sup
δ→∞

inf{γ (ζδ,y) : y ∈RN, |y| ≤ r} < 1. (3.14)

Choosing {yn} and {δn} satisfying |yn| ≤ r, δn → ∞ and

lim
n→∞γ (ζδn,yn) < 1. (3.15)

Thanks to (3.13) and fact that |ζδ,y |2∗
s ,Bσ (0) → 0 as δ → ∞, for each σ > 0 we have that

γ (ζδn,yn) = 1

|ζδn,yn |2
∗
s

2∗
s

∫
RN

∣∣∣ x

1 + |x| − β(ζδn,yn)

∣∣∣|ζδn,yn |2∗
s dx

≥ 1

|ζδn,yn |2
∗
s

2∗
s ,R

N\Bσ (0)
+ on(1)

∫
RN\Bσ (0)

|x|
1 + |x| |ζδn,yn |

2∗
s dx − |β(ζδn,yn)|

≥ 1

|ζδn,yn |2
∗
s

2∗
s ,R

N\Bσ (0)
+ on(1)

∫
RN\Bσ (0)

|x|
1 + |x| |ζδn,yn |

2∗
s dx − on(1)

≥ σ

1 + σ
− on(1).
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W. Guan, V.D. Rădulescu and D.-B. Wang Journal of Differential Equations 355 (2023) 219–247
Let σ → ∞, we can conclude that

lim
n→∞γ (ζδn,yn) ≥ 1

which is an absurd due to (3.15). Hence, the proof of (b) has finished.
At last, we show that (c) holds. (c) obviously holds if 0 /∈ Bδ(y). If 0 ∈ Bδ(y), for each x ∈

Bδ(y) satisfying (x, y)RN < 0, then −x ∈ Bδ(y) so that (−x, y)RN > 0 and ζδ,y(−x) > ζδ,y(x). 
Hence, (c) holds. �
4. The proof of main results

Lemma 4.1. There are r > 0 and 0 < δ1 < 1
2 < δ2 satisfying

γ (ζδ1,y) <
1

2
, ∀y ∈RN ; γ (ζδ2,y) >

1

2
, ∀y ∈ RN, |y| < r (4.1)

and

sup{I0(ζδ,y) : (δ, y) ∈ ∂�} < c�, (4.2)

where � := {(δ, y) ∈ R+ ×RN : δ ∈ [δ1, δ2], |y| < r} and I0 : Ds,2(RN) → R be defined by

I0(u) = ‖u‖2
s +

∫
RN

(V (x) − V∞)u2dx,u ∈ Ds,2(RN).

Proof. It follows from (a) and (b) of Lemma 3.2 that there are r > 0 and 0 < δ1 < 1
2 < δ2

such that (4.1) holds. On the other hand, by Lemma 3.1 and the characteristic of ζδ,y , we could 
conclude that (4.2) is satisfied. �
Lemma 4.2. Let δ1, δ2, r and � be defined as in Lemma 4.1. Then there is (̃δ, ̃y) ∈ ∂� and 
(δ, y) ∈ �̊ such that

β(ζ̃δ,̃y) = 0, γ (ζ̃δ,̃y) >
1

2
; (4.3)

β(ζδ,y) = 0, γ (ζδ,y) = 1

2
. (4.4)

Proof. Thanks to Lemma 4.1, choosing (̃δ, ̃y) = (δ2, 0), then (4.3) holds.
For any (δ, y) ∈ � and ς ∈ [0, 1], we define θ(δ, y) := (γ (ζδ,y), β(ζδ,y)) and ω : [0, 1] ×

∂� → R ×R3 by

ω(δ, y, ς) := (1 − ς)(δ, y) + ςθ(δ, y). (4.5)

To prove the (4.4), we just prove that
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W. Guan, V.D. Rădulescu and D.-B. Wang Journal of Differential Equations 355 (2023) 219–247
deg(θ, �̊, (
1

2
,0)) = 1. (4.6)

Indeed, thanks to deg(id, �̊, ( 1
2 , 0)) = 1, if we prove that for every (δ, y) ∈ ∂� and ς ∈ [0, 1], 

ω(δ, y, ς) �= ( 1
2 , 0), then it follows from the topological degree theory that deg(θ, �̊, ( 1

2 , 0)) = 1
is satisfied. Hence, we only to show that

((1 − ς)δ + sγ (ζδ,y), (1 − ς)y + ςβ(ζδ,y)) �= (
1

2
,0), ∀(δ, y) ∈ ∂�, ∀ς ∈ [0,1].

Set

�i = {(δ, y) ∈ ∂� : |y| ≤ r, δ = δi}, i = 1,2;
�3 = {(δ, y) ∈ ∂� : |y| = r, δ ∈ [δ1, δ2]}.

Obviously, ∂� = �1 ∪ �2 ∪ �3. It follows from (4.1) that, for any (δ, y) ∈ �1,

(1 − ς)δ1 + ςγ (ζδ1,y) <
1

2
(1 − ς) + ς

2
<

1

2
.

By virtue of (4.1), for any (δ, y) ∈ �2 we conclude

(1 − ς)δ2 + ςγ (ζδ2,y) >
1

2
(1 − ς) + ς

2
>

1

2
.

For any (δ, y) ∈ �3, we used (c) of Lemma 3.2 to get that

((1 − ς)y + ςβ(ζδ,y), y)R3 = (1 − ς)|y|2 + ς(β(ζδ,y), y)R3 > 0,

which shows that (1 − ς)y + ςβ(ζδ,y) �= 0. �
Lemma 4.3. Let δ1, δ2, r and � be defined as in Lemma 4.1. Suppose that (V2) holds, then we 
have

sup{I0(ζδ,y) : (δ, y) ∈ �} < 2
4s−μ
2N−μ Sμ,s . (4.7)

Proof. For any (δ, y) ∈ �, it follows from (3.7) and (3.8) that

I0(ζδ,y) = ‖ζδ,y‖2
s +

∫
RN

(V (x) − V∞)ζ 2
δ,ydx

≤ ‖ζδ,y‖2
s + |V − V∞| N

2s
|ζδ,y |22∗

s

≤ ‖ζδ,y‖2
s + 1

Ss

|V − V∞| N
2s

‖ζδ,y‖2
s (4.8)

=
(

1 + 1 |V − V∞| N

)
�

Ss 2s
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<
(

1 + 1

Ss

|V − V∞| N
2s

)
c�

< 2
4s−μ
2N−μ Sμ,s .

The proof is now complete. �
Lemma 4.4. Let δ1, δ2, r and � be defined as in Lemma 4.1. There is a constant V ∗ > 0 satisfy-
ing if V∞ ∈ (0, V ∗) then

γ (ζδ1,y) <
1

2
, γ (ζδ2,y) >

1

2
,∀y ∈ RN, |y| < r (4.9)

L := sup{I (ζδ,y) : (δ, y) ∈ ∂�} < c�. (4.10)

Proof. According to definition of ζδ,y ,∫
R3

V∞ζ 2
δ,ydx = V∞δ2s

∫
B1(0)

ζ 2dx.

Then, we have

I (ζδ,y) = I0(ζδ,y) + V∞δ2s
∫

B1(0)

ζ 2dx,

which together with (4.2) we can conclude that if V∞ small enough, then (4.9) and (4.10) are 
satisfied. �

By the same argument as in Lemma 4.4 and Lemma 4.3, we can obtain the following result.

Lemma 4.5. Let δ1, δ2, r and � be defined as in Lemma 4.1. Suppose that (V2) holds, then there 
is a constant V 1∗ > 0 satisfying if V∞ ∈ (0, V 1∗ ) we have

A := sup{I (ζδ,y) : (δ, y) ∈ �} < 2
4s−μ
2N−μ Sμ,s . (4.11)

4.1. Proof of Theorem 1.1

Let

I c = {u ∈ M : I (u) ≤ c},

where c ∈R.
Firstly, we will show that I restricted on M has a critical level in (Sμ,s, c∗). Let V∞ ∈ (0, V ∗), 

it follows from the definition of c�, Proposition 3.3, Lemma 4.4 that

Sμ,s < ν ≤ I (ζ̃ ) ≤ L< c� < ϑ.
δ,̃y
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In what follows, we prove that I constrained on M has a critical level in the interval (ν, L). 
Argue by contradiction that is not true. Thanks to Lemma 2.7, I satisfies PS condition in (ν, L). 
Therefore, according to Lemma 2.3 in [50], there is τ1 > 0 such that

Sμ,s < ν − τ1, c
� > L+ τ1

and a continuous function ψ : [0, 1] × IL+τ1 → IL+τ1 satisfying

I ◦ ψ(ς,u) ≤ I (u),∀ς ∈ [0,1],∀u ∈ IL+τ1, (4.12)

ψ(1, IL+τ1) ⊂ I ν−τ1 . (4.13)

By virtue of (4.10) and (4.13), we obtain

(δ, y) ∈ ∂� ⇒ I (ζδ,y) ≤ L ⇒ I ◦ ψ(1, ζδ,y) ≤ ν − τ1. (4.14)

For ς ∈ [0, 1] and (δ, y) ∈ �, set

ϒ(δ, y, ς) =

⎧⎪⎪⎨⎪⎪⎩
ω(δ, y,2ς), ς ∈ [0, 1

2
],

(γ ◦ ψ(2ς − 1, ζδ,y), β ◦ ψ(2ς − 1, ζδ,y)), ς ∈ [1

2
,1],

(4.15)

where ω is defined as (4.5). Via Lemma 4.2, we have

ϒ(δ, y, ς) �= (
1

2
,0),∀ς ∈ [0, 1

2
],∀(δ, y) ∈ ∂�. (4.16)

It follows from (4.12) and (4.14) that

I ◦ ψ(2ς − 1, ζδ,y) ≤ I (ζδ,y) ≤ L< c� < ϑ,∀ς ∈ [1

2
,1],∀(δ, y) ∈ ∂�,

from which we get that

ϒ(δ, y, ς) �= (
1

2
,0),∀ς ∈ [1

2
,1],∀(δ, y) ∈ ∂�. (4.17)

Combining with (4.16), (4.17) and continuity of ϒ we conclude that there exists (δ�, y∗) ∈ ∂�

satisfying

β ◦ ψ(1, ζδ�,y∗) = 0, γ ◦ ψ(1, ζδ�,y∗) ≥ 1

2
.

Together with Proposition 3.3, we obtain

I ◦ ψ(1, ζδ�,y∗) ≥ ν,
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which contradicts to (4.14). That is, for each V∞ ∈ (0, V ∗),  has at least a critical point ̃u ∈ M
satisfying ν < I (̃u) < L. Moreover, it follows from strong maximum principle that ̃u> 0.

Next, we intend prove that there is the critical level in (c∗, 2
4s−μ
2N−μ Sμ,s). It follows from the 

definition of c�, Proposition 3.2 and (4.11) that if V∞ ∈ (0, V 1∗ ), then

c� < ϑ ≤ I (ζδ,y) ≤ A< 2
4s−μ
2N−μ Sμ,s .

We assert that I constrained on M has a critical level in the interval (ϑ, A). If not, thanks to 
Lemma 2.7 and Lemma 2.3 [50], I satisfies PS condition in (ϑ, A) and there is τ2 > 0 satisfying

c� < ϑ − τ2, 2
4s−μ
2N−μ Sμ,s >A+ τ2

and a continuous function ψ : [0, 1] × IA+τ2 → Iϑ−τ2 such that ψ(u) = u, ∀u ∈ Iϑ−τ2 . Noticed 
that ψ(δ, y) is well defined on � and I ◦ ψ(ζδ,y) ≤ ϑ − τ2, ∀(δ, y) ∈ �. Then, we obtain

E(δ, y) := (γ ◦ ψ(ζδ,y), β ◦ ψ(ζδ,y)) �= (
1

2
,0),∀(δ, y) ∈ �. (4.18)

Then, together with (4.10), for each V∞ ∈ (0, V∗) where V∗ = min{V 1∗ , V ∗}, we conclude

I (ζδ,y) < c� < ϑ − τ2, ∀(δ, y) ∈ ∂�,

which shows ψ(ζδ,y) = ζδ,y, ∀(δ, y) ∈ ∂�. Then we have

E(δ, y) = θ(δ, y) = (γ (ζδ,y), β(ζδ,y)), ∀(δ, y) ∈ ∂�.

It follows from proof of Lemma 4.2 and degree theory that

deg(E, �̊, (
1

2
,0)) = deg(θ, �̊, (

1

2
,0)) = 1.

So, there exists (δ�, y∗) ∈ � satisfying

E(δ�, y∗) = (
1

2
,0).

Via (4.18), we get a contradiction. That is, I has at least a positive critical point ̂u ∈ M satisfying

c� < I (̂u) < 2
4s−μ
2N−μ Sμ,s .

The proof is now complete. �
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was supported by a grant of the Romanian Ministry of Research, Innovation and Digitization, 
CNCS/CCCDI-UEFISCDI, project number PCE 137/2021, within PNCDI III. Da-Bin Wang is 
supported by the National Natural Science Foundation of China (11561043) and STU Scientific 
Research Initiation Grant (NTF22031).

References

[1] C.O. Alves, F. Gao, M. Squassina, M. Yang, Singularly perturbed critical Choquard equations, J. Differ. Equ. 263 
(2017) 3943–3988.

[2] C.O. Alves, G.M. Figueiredo, R. Molle, Multiple positive bound state solutions for a critical Choquard equation, 
Discrete Contin. Dyn. Syst. 41 (2021) 4887–4919.

[3] C.O. Alves, A.B. N’Obrega, M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, 
Calc. Var. Partial Differ. Equ. 55 (2016) 28.

[4] C.O. Alves, M. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation, J. 
Differ. Equ. 257 (2014) 4133–4164.

[5] V. Benci, G. Cerami, Existence of positive solutions of the equation −�u + a(x)u = u
N+2
N−2 in RN , J. Funct. Anal. 

88 (1990) 90–117.
[6] D. Cassani, J. Zhang, Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth, Adv. Non-

linear Anal. 8 (1) (2019) 1184–1212.
[7] G. Cerami, R. Molle, Multiple positive bound states for critical Schrödinger-Poisson systems, ESAIM Control 

Optim. Calc. Var. 25 (2019) 73.
[8] G. Cerami, D. Passaseo, Nonminimizing positive solutions for equations with critical exponents in the half-space, 

SIAM J. Math. Anal. 28 (1997) 867–885.
[9] Y. Chen, C. Liu, Ground state solutions for non-autonomous fractional Choquard equations, Nonlinearity 29 (2016) 

1827–1842.
[10] S. Cingolani, M. Clapp, S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. 

Phys. 63 (2012) 233–248.
[11] J.N. Correia, G.M. Figueiredo, Existence of positive solution of the equation (−�)su + a(x)u = |u|2∗

s −2u, Calc. 
Var. Partial Differ. Equ. 63 (2019) 58.

[12] P. d’Avenia, G. Siciliano, M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci. 25 
(2015) 1447–1476.

[13] R.L. Frank, E. Lenzmann, On ground states for the L2 -critical boson star equation, arXiv :0910 .2721v2, 2009.
[14] H. Fröhlich, Theory of electrical breakdown in ionic crystal, Proc. R. Soc. Edinb., Sect. A 160 (901) (1937) 230–241.
[15] F. Gao, Edcarlos D. da Silva, M.B. Yang, J. Zhou, Existence of solutions for critical Choquard equations via the 

concentration-compactness method, Proc. R. Soc. Edinb., Sect. A 150 (2020) 921–954.
[16] F. Gao, M. Yang, On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math. 

61 (2018) 1219–1242.
[17] L. Guo, T. Hu, Existence and asymptotic behavior of the least energy solutions for fractional Choquard equations 

with potential well, Math. Methods Appl. Sci. 41 (2018) 1145–1161.
[18] L. Guo, T. Hu, S.J. Peng, W. Shuai, Existence and uniqueness of solutions for Choquard equation involving Hardy-

Littlewood-Sobolev critical exponent, Calc. Var. Partial Differ. Equ. 58 (2019) 128.
[19] L. Guo, Q. Li, Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-Sobolev 

critical exponent, J. Math. Phys. 61 (2020) 121501.
[20] L. Guo, Q. Li, Multiple high energy solutions for fractional Schrödinger equation with critical growth, Calc. Var. 

Partial Differ. Equ. 61 (2022) 15.
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