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Abstract

This paper focuses on the study of multiplicity and concentration phenomena of positive solutions for the 
singularly perturbed double phase problem with nonlocal Choquard reaction

{
−εp�pu− εq�qu+ V (x)(|u|p−2u+ |u|q−2u)= εμ−N ( 1

|x|μ ∗G(u)
)
g(u), in RN,

u ∈W1,p(RN)∩W1,q (RN),u > 0, in RN,

where 1 < p < q <N , 0 <μ <N , ε is a small positive parameter and V is the absorption potential. Com-
bining variational and topological arguments from Nehari manifold analysis and Ljusternik-Schnirelmann 
category theory, we prove the existence of positive ground state solutions that concentrate around global 
minimum points of the potential V . In the second part of this paper, we establish the relationship between 
the number of positive solutions and the topology of the set where V attains its global minimum. The 
main results included in this paper complement several recent contributions to the study of concentration 
phenomena.
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1. Introduction and main results

In this paper we will consider the following singularly perturbed double phase problem with 
nonlocal Choquard reaction{

−εp�pu− εq�qu+ V (x)(|u|p−2u+ |u|q−2u)= εμ−N
(

1
|x|μ ∗G(u)

)
g(u), in RN,

u ∈W 1,p(RN)∩W 1,q(RN),u > 0, in RN,
(1.1)

where 1 < p < q < N , 0 < μ < N , �ru = div(|∇u|r−2∇u), with r ∈ {p, q}, is the r-Laplace 
operator, ε is small positive parameter, ∗ represents the convolution between two functions, V is 
absorption potential and the nonlinear function G is the primitive function of g.

The present paper is inspired by recent fundamental progress in the mathematical analysis of 
many nonlinear patterns with unbalanced growth and nonlocal reaction. The main purpose of 
this paper is to investigate the multiplicity and concentration phenomenon of positive solutions 
for problem (1.1). And the main novelty of the paper is the combination of both, a double phase 
operator and a nonlocal Choquard reaction term which we describe below. To the best of our 
knowledge, this is the first paper dealing with the combination of both notions.

Since the contents of the paper are closely concerned with unbalanced double phase problems 
and nonlocal Choquard problems, we briefly introduce in what follows the related background 
and applications and recall some pioneering contributions in these fields. For the study of the 
problems with unbalanced growth, as we know the first work is due to Ball [10] who was in-
terested in models arising in nonlinear elasticity and their qualitative properties (cavitations, 
discontinuous equilibrium solutions, etc.). Here we point out that the source term of problem 
(1.1) is driven by a differential operator with unbalanced growth due to the presence of the 
(p, q)-Laplace operator. This type of problem comes from a general reaction-diffusion system:

ut = div[A(u)∇u] + c(x,u) and A(u)= |∇u|p−2 + |∇u|q−2,

where the function u is a state variable and describes density or concentration of multi-
component substances, div[A(u)∇u] corresponds to the diffusion with a diffusion coefficient 
A(u) and c(x, u) is the reaction and relates to source and loss processes.

More precisely, problem (1.1) combines two interesting phenomena. The first one is the fact 
that the operator involved in (1.1) is the so-called double phase operator whose behavior switches 
between two different elliptic situations, which generates an interesting double phase associated 
energy. Originally, Zhikov [44] was the first who studied the double phase functionals in order to 
describe models of strongly anisotropic materials. Moreover, the double phase problems are also 
motivated by numerous models arising in mathematical physics. For example, we can refer to the 
Born-Infeld equation [14] that appears in electromagnetism, electrostatics and electrodynamics 
as a model based on a modification of Maxwell’s Lagrangian density:

−div

( ∇u
2 1/2

)
= h(u) in �.
(1 − 2|∇u| )
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Indeed, using the Taylor formula, we have

(1 − x)−1/2 = 1 + x

2
+ 3

2 · 22 x
2 + 5!!

3! · 23 x
3 + · · · + (2n− 3)!!

(n− 1)!2n−1 x
n−1 + · · · for |x|< 1.

Taking x = 2|∇u|2 and adopting the first order approximation, we can obtain the double phase 
problem with p = 2 and q = 4. Especially, the n-th order approximation problem is driven by 
the multi-phase differential operator

−�u−�4u− 3

2
�6u− · · · − (2n− 3)!!

(n− 1)! �2nu.

We also refer to the following fourth-order relativistic operator

u �→ div

( |∇u|2
(1 − |∇u|4)3/4 ∇u

)
,

which describes large classes of phenomena arising in relativistic quantum mechanics. Again, by 
Taylor’s formula, we have

x2(1 − x4)−3/4 = x2 + 3x6

4
+ 21x10

32
+ · · · .

This implies that the fourth-order relativistic operator can be approximated by the following 
autonomous double phase operator

u �→�4u+ 3

4
�8u.

For more details in the physical backgrounds and other applications, we refer the readers to see 
Bahrouni-Rădulescu-Repovš [9] (for phenomena associated with transonic flows) and to Benci-
D’Avenia-Fortunato-Pisani [13] (for models arising in quantum physics).

The second interesting phenomena in our work is the appearance of a Choquard reaction term 
on the right-hand side which generates the nonlocal characteristic. This type of nonlocal problem 
arises in many interesting physical situations in quantum theory and plays an important role in 
describing the finite-range many-body interactions. For instance, the nonlocal Choquard problem 
was first introduced in the pioneering work of Pekar [32] to reveal the quantum physics of a 
polaron at rest. As pointed out by Lieb [20], Choquard used this model to describe an electron 
trapped in its own hole and to study steady states of the one component plasma approximation in 
the Hartree-Fock theory. We also refer to a survey [25] for more physical interpretations.

It is well known that, as ε→ 0 in (1.1), the existence and asymptotic behavior of the solutions 
of the singularly perturbed problem (1.1) is known as the semi-classical problem. It is used to 
describe the transition between of quantum mechanics and classical mechanics, and gives rise to 
significant physical insights. In this framework, the semi-classical states have very rich dynamic 
behaviors such as concentration, convergence and decay etc. In order to better understand the 
dynamic behaviors of semi-classical states, we observe that if the function v is a solution of (1.1)
for x0 ∈ RN , then the new function u = v(x0 + εx) satisfies
58
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−�pu−�qu+ V (x0 + εx)(|u|p−2u+ |u|q−2u)=
(

1

|x|μ ∗G(u)
)
g(u), in RN.

This suggests some convergence, as ε→ 0, of the family of solutions to a solution u0 of the limit 
problem

−�pu−�qu+ V (x0)(|u|p−2u+ |u|q−2u)=
(

1

|x|μ ∗G(u)
)
g(u), in RN.

It is expected that, in the semiclassical limit ε→ 0, the dynamic behaviors should be governed by 
the potential V . In particular, there should be a correspondence between semi-classical solutions 
of the equation and critical points of the potential.

On the other hand, this paper is also motivated by recent works related to the semi-classical 
limit of nonlocal Choquard equation

−ε2�u+ V (x)u= (K(x) ∗ |u|p)|u|p−2u, in RN, (1.2)

where V is a potential and K is a response function which possesses information on the mutual 
interaction between the bosons. Particularly, if p= q = 2, problem (1.1) comes back to problem 
(1.2) with Coulomb kernel. In recent years, there have been some works concerning with the 
study of the semi-classical analysis of problem (1.2) under various assumptions on the potential. 
See for example [2,26,35,37,39–41] and the references therein. Among them, the authors are 
mainly interested in the problem how the property of the potential influence the existence, mul-
tiplicity and concentration of semi-classical solutions. To be more precise, when K(x) = |x|−1

and p = 2, using the Lyapunov-Schmidt reduction method, Wei-Winter [35] constructed fami-
lies of solutions concentrating to the nondegenerate critical points of potential V . Moroz and Van 
Schaftingen [26] used variational methods and developed a novel nonlocal penalization technique 
to study the localized concentration phenomena: the solutions concentrating around local minima 
of potential V . Alves-Gao-Squassina-Yang [2] studied the existence and concentration behavior 
of solutions for the critical problem with both linear and nonlinear potentials. A similar result for 
the critical growth case also can be found in [40]. Yang-Ding [37] established the existence and 
multiplicity of semi-classical states for Choquard type equations with critical frequency.

When p = q �= 2, (1.1) boils down to the following quasi-linear Choquard equation involving 
p-Laplacian operator{

−εp�pu+ V (x)|u|p−2u= εμ−N
(

1
|x|μ ∗G(u)

)
g(u), in RN,

u ∈W 1,p(RN),u > 0, in RN.
(1.3)

Concerning the investigation of semi-classical limit of problem (1.3), we would like to men-
tion the recent papers by Alves-Yang [4–6]. More specifically, using mountain pass argument 
combined with the Ljusternik-Schnirelmann category theory, they proved the existence and mul-
tiplicity of positive solutions which concentrate at global minimum points of V under the global 
condition on V (see [5]). Subsequently, under the local condition on V , they used the penalization 
method developed by [16] to obtain a family of semiclassical states concentrating around local 
minimum points of V [6]. In [4], they considered the problem with competing potentials and 
characterized a new concentration behavior: the semi-classical solutions concentrating around 
global minimum points of linear potential and global maximum points of nonlinear potential.
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We point out that the double phase problem with local nonlinear reaction has been consid-
ered recently by several authors. Some interesting and meaningful results were established by 
using various topological and variational arguments. We refer the readers to [11,17,27–30] for 
the existence and multiplicity results, [3,7,8,38,42,43] for related concentration and multiplicity 
properties of semi-classical states, and [18] for some regularity and decay results, and so on. We 
also mention the recent paper by Mingione-Rădulescu [24] in which a comprehensive overview 
of the recent developments concerning elliptic variational problems with nonstandard growth 
conditions and related to different kinds of nonuniformly elliptic operators.

To the best of our knowledge, there are no results concerning with the semi-classical analysis 
for the nonlocal double phase problem driven by a differential operator with unbalanced growth 
and a nonlocal Choquard reaction up until now. More precisely, motivated by this fact and the 
above mentioned works, in the present paper we are interested in the qualitative and asymptotic 
analysis of semi-classical solutions to problem (1.1) and we are mainly concerned with existence 
and multiplicity properties of solutions, as well as with concentration phenomenon as ε → 0. 
The features of the present paper are the following:

(1) the problem contains the combined effects of a double phase operator with unbalanced 
growth and of a Choquard reaction with nonlocal property;

(2) the concentration phenomenon creates a bridge between the global maximum point of the 
solution versus the global minimum of the absorption potential;

(3) since the lack of compactness caused by the unboundedness of domain, the Palais-Smale 
sequences do not have the compactness property;

(4) the proofs combine refined analysis techniques, including variational and topological tools.
Before stating our main result, we need introduce the assumptions on the potential V and the 

nonlinearity g. We first assume that the potential V satisfies the following condition introduced 
by Rabinowitz [31]:

(V ) V ∈ C(RN, R) and satisfies

0< inf
x∈RN

V (x)= V0 <V∞ = lim inf|x|→∞ V (x) <∞.

Meanwhile, we assume that the nonlinearity g satisfies the following conditions:

(g1) g ∈ C1(R, R) and g(s) = 0 for all s < 0;
(g2) g(s) = o(|s|p−1) as s→ 0;
(g3) there exist c0 > 0 and τ ∈ ( (2N−μ)q

2N , (N−μ)q
N−q ) such that

|g(s)| ≤ c0(1 + |s|τ−1) for all s ∈R;

(g4) there exists θ > q such that

0< θG(s)= θ
s∫
g(t)dt ≤ 2g(s)s for all s > 0;
0
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(g5) there exists κ ∈ [ θ2 , (N−μ)q
N−q + θ

2 − q) such that

g′(s)s2 − (q + κ − θ

2
− 1)g(s)s > 0 for all s > 0.

The first result is the existence of positive ground state solution, we have the following theo-
rem.

Theorem 1.1. Let 0 < μ < p and assume that conditions (V ) and (g1)-(g5) are satisfied, then 
there exists ε0 > 0 such that for any ε ∈ (0, ε0), problem (1.1) has at least a positive ground state 
solution.

Let us point out that the existence of semi-classical solutions is actually related to the existence 
of minimum point of the potential V . As a consequence, it seems rather natural to ask whether 
it is possible to relate the multiplicity of solutions for (1.1) to the set of minimum points of V . 
To answer this question, the other purpose of the present paper is to study the multiplicity result 
depended on the topology of the set where potential V attains its global minimum.

In order to give the precise statement of multiplicity result, we need introduce some definitions 
and notations. We first recall the definition of Ljusternik-Schnirelmann category. If Y is a given 
closed subset of a topological space X, the Ljusternik-Schnirelmann category catX(Y ) is the least 
number of closed and contractible sets in X which cover Y . Let us define the sets

� := {x ∈ RN : V (x)= V0} and�δ = {x ∈ RN : dist(x,�)≤ δ} for δ > 0.

Without loss of generality, below we may assume 0 ∈� throughout the paper. On the multiplicity 
and concentration behavior of positive solutions we have the following theorem.

Theorem 1.2. Let 0 < μ < p and assume that conditions (V ) and (g1)-(g5) are satisfied. Then 
for any δ > 0 there is εδ > 0 such that, for any ε ∈ (0, εδ), problem (1.1) has at least cat�δ (�)
positive solutions. Furthermore, if uε denotes one of these solutions and xε ∈ RN is its global 
maximum, then

lim
ε→0

V (xε)= V0.

Let us now outline the strategies and methods to prove Theorem 1.1 and Theorem 1.2. Our 
arguments are based on topological and variational approaches and refined analysis techniques 
in order to complete the proofs of main results. More precisely, in order to find the existence 
result of positive ground state solutions, we intend to make use of the Neahri manifold method to 
deal with our problem. Besides, to prove the multiplicity result of positive solutions, we take ad-
vantage of the Ljusternik-Schnirelmann category theory and the techniques due to Benci-Cerami 
[12] based on precise comparisons between the category of some sublevel sets of the energy 
functional and the category of the set �. However, there exists a common difficulty that we need 
to overcome, that is the lack of compactness. Therefore, we have to verify that the energy func-
tional possesses certain compactness condition at some minimax level. This goal will be achieved 
by doing a finer analysis and using the energy comparison method to establish some comparison 
relationships of the ground state energy value between the original problem and certain auxiliary 
problems.
61
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On the other hand, the combined effects of the double phase operator with unbalanced growth 
and of the Choquard reaction with nonlocal nature also bring some difficulties to our analysis, it 
is difficult to prove the L∞-estimate of solutions. Since the double phase operator we handled 
is a general class of quasilinear operator, some standard Moser iteration procedures do not work 
well, and then we adopt an appropriate De Giorgi iteration argument and some refined analysis 
techniques to show the L∞-estimate and decay property of solutions. Moreover, we can see that 
these properties we obtained are contributed to determine the concentration location of solutions.

The structure of this paper is the following. In Section 2, we introduce the variational setting 
of problem (1.1) and present some preliminary results. In Section 3, we deal with the autonomous 
problem associated to problem (1.1). In Section 4, we analyze carefully the Palais-Smale com-
pactness condition and prove the existence of positive ground state solution. In Section 5, we 
are devoted to the multiplicity and concentration of solutions and we complete the proofs of 
Theorem 1.1 and Theorem 1.2.

2. Preliminary results

In this paper, for convenience we will use the following notations.
• | · |s denotes the usual norm of the space Ls(RN), 1 ≤ s ≤ ∞;
• c, C, ci , Ci denote some different positive constants;
• u+ and u− denotes the positive and negative parts of function u, respectively, i.e.,

u+ = max{u,0} and u− = min{u,0};

• r∗ = Nr
N−r denotes the embedding critical exponent of the Sobolev space W 1,r(RN).

In what follows, we introduce some relevant results about the Sobolev spaces. For p ∈ (1, ∞)
and N > p, we define D1,p(RN) as the closure of C∞

0 (R
N) with respect to

|∇u|pp =
∫
RN

|∇u|pdx.

Let W 1,p(RN) be the usual Sobolev space endowed with the standard norm

‖u‖p =
∫
RN

(|∇u|p + |u|p)dx.

We give the following embedding property for the spaces D1,p(RN) and W 1,p(RN).

Lemma 2.1. Let N > p, then there exists a constant S∗ > 0 such that, for any u ∈D1,p(RN),

|u|pp∗ ≤ S−1∗ |∇u|pp.

Furthermore, W 1,p(RN) is embedded continuously into Ls(RN) for any s ∈ [p, p∗] and com-
pactly into Lsloc(R

N) for any s ∈ [1, p∗).

We also have the following Lions concentration compactness lemma due to [21].
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Lemma 2.2. Let N > p and r ∈ [p, p∗). If {un} is a bounded sequence in W 1,p(RN) and if

lim
n→∞ sup

y∈RN

∫
BR(y)

|un|rdx = 0,

where R > 0, then un → 0 in Ls(RN) for all s ∈ (p, p∗).

Observe that, making the change of variable x �→ εx, then problem (1.1) is equivalent to the 
following problem

{
−�pu−�qu+ V (εx)(|u|p−2u+ |u|q−2u)=

(
1

|x|μ ∗G(u)
)
g(u), in RN,

u ∈W 1,p(RN)∩W 1,q(RN),u > 0, in RN.
(2.1)

Evidently, if u is a solution of problem (2.1), then v(x) := u(x/ε) is a solution of problem (1.1). 
Thus, to study the original problem (1.1), we just need to study the equivalent problem (2.1).

For any fixed ε > 0, we define the working space

Eε =

⎧⎪⎨⎪⎩u ∈W 1,p(RN)∩W 1,q (RN) :
∫
RN

V (εx)(|u|p + |u|q)dx <∞

⎫⎪⎬⎪⎭
endowed with the norm

‖u‖ε = ‖u‖Vε,p + ‖u‖Vε,q ,

where

‖u‖sVε,s =
∫
RN

(|∇u|s + V (εx)|u|s)dx for all s > 1.

From condition (V ), we can see that ‖ ·‖ε and the norm of W 1,p(RN) ∩W 1,q(RN) are equivalent. 
So, Eε =E :=W 1,p(RN) ∩W 1,q(RN).

Moreover, according to Alves and Figueiredo [3], we have the following embedding property.

Lemma 2.3. Eε embeds continuously into Ls(RN) for s ∈ [p, q∗] and compactly into Lsloc(R
N)

for s ∈ [1, q∗). Furthermore, there exist positive constant πs such that

πs |u|s ≤ ‖u‖ε, for all s ∈ [p,q∗]. (2.2)

Since we are going to deal with the nonlocal type problem (2.1), we would like to recall the 
classical Hardy-Littlewood-Sobolev inequality (see [22]) which will be frequently used through-
out this paper.
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Lemma 2.4. (Hardy-Littlewood-Sobolev inequality [22]) Let 1 < r, s < +∞ and 0 < μ < N
such that 1

r
+ 1
s

+ μ
N

= 2. If φ ∈ Lr(RN) and ψ ∈ Ls(RN), then there exists a sharp constant 
C(N, μ, r, s) > 0, independent of φ and ψ , such that∫

RN

∫
RN

φ(x)ψ(y)

|x − y|μ dxdy ≤ C(N,μ, r, s)|φ|r |ψ |s .

We note that if G(u) = |u|τ for some τ > 0, then Lemma 2.4 shows that the integral∫
RN

∫
RN

G(u(y))G(u(x))

|x − y|μ dydx

is well defined if G(u) ∈ Ls(RN) for s > 1 with 2
s

+ μ
N

= 2. Since we will work with u ∈E, in 
order to make the integral be well defined, we have to require that sτ ∈ [p, q∗] by Lemma 2.3. 
Then we can see that τ satisfies the following inequality

(2N −μ)p
2N

≤ τ ≤ (2N −μ)q∗

2N
. (2.3)

Here the exponent (2N−μ)p
2N is called the lower critical exponent and (2N−μ)q∗

2N is called the upper 
critical exponent for the double phase problem with nonlocal Choquard reaction.

Generally speaking, if the nonlinearity g satisfies the growth condition of (2.3), we can estab-
lish the existence of nontrivial solutions by using variational methods. However, in the present 
paper, since we not only study the existence of ground state solution, but also intent to investi-
gate some properties of solutions such as positivity, regularity and concentration, we assume a 
stronger condition for the growth exponent, see conditions (g2) and (g3).

From conditions (g2) and (g3) we can deduce that for any ε > 0, there exists Cε > 0 such that

|g(s)| ≤ ε|s|p−1 +Cε|s|τ−1 and |G(s)| ≤ ε|s|p +Cε|s|τ for any s ∈ R. (2.4)

Moreover, from condition (g5), we have

σ := q + κ − θ

2
∈ [q, (N −μ)q

N − q ), (2.5)

and the following monotonicity conclusions

s �→ g(s)

sσ−1 ,
G(s)

sσ
are strictly increasing on (0,+∞). (2.6)

Evidently, condition (g5) implies that the first conclusion holds. Next we show that the second 
conclusion holds. Observe that(

G(s)

sσ

)′
= g(s)sσ − σsσ−1G(s)

s2σ = g(s)s − σG(s)
sσ+1 .

Setting f (s) = g(s)s − σG(s), it follows that
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f (0)= 0 and f ′(s)= g′(s)s + g(s)− σg(s).

We infer from (g5) that f ′(s) > 0 for all s > 0. So, f (s) is increasing and f (s) > 0 for all s > 0. 
Consequently, we know that the second conclusion holds. Meanwhile, from (2.6) we also have

s �→ g(s)

s
q
2 −1
,
G(s)

s
q
2

are strictly increasing on (0,+∞). (2.7)

We define the energy functional associated with problem (2.1)

Iε(u)= 1

p
|∇u|pp+ 1

q
|∇u|qq+

∫
RN

V (εx)

[
1

p
|u|p + 1

q
|u|q

]
dx− 1

2

∫
RN

∫
RN

G(u(y))G(u(x))

|x − y|μ dydx.

Using Lemma 2.3, Lemma 2.4 and some standard arguments, we can easily check that Iε is well 
defined on Eε and belongs to C2 with its derivative given by

〈I ′
ε(u), v〉 =

∫
RN

[
|∇u|p−2∇u · ∇v+ |∇u|q−2∇u · ∇v

]
dx

+
∫
RN

V (εx)
[
|u|p−2u+ |u|q−2u

]
vdx −

∫
RN

∫
RN

G(u(y))g(u(x))v(x)

|x − y|μ dydx.

Hence, it is obvious that the solutions of problem (2.1) correspond to critical points of Iε .
To obtain the positive ground state solutions of problem (2.1), we need to define the Nehari 

manifold and ground state energy related to Iε

Nε := {u ∈Eε \ {0} : 〈I ′
ε(u), u〉 = 0} and cε := inf

Nε

Iε .

Obviously, Nε contains all nontrivial critical points of Iε , and if cε is achieved by some uε ∈ Nε , 
then uε is called a ground state solution of problem (2.1).

Next we check some properties for Nehari manifold Nε , which will be used frequently in the 
sequel of the paper.

Lemma 2.5. Assume that (V ) and (g1)-(g5) hold, there exists α0 > 0, independent of ε, such 
that ‖u‖ε ≥ α0 for all u ∈ Nε .

Proof. For any u ∈ Nε , from Lemma 2.1, Lemma 2.4, (2.2) and (2.4) we conclude that

‖u‖pVε,p + ‖u‖qVε,q =
∫
RN

∫
RN

G(u(y))g(u(x))u(x)

|x − y|μ dydx.

≤ c1

(
ε|u|p2Np

2N−μ
+Cε|u|τ2Nτ

2N−μ

)2

≤ c2

(
ε‖u‖2p

ε +Cε‖u‖p+τ
ε +Cε‖u‖2τ

ε

)
.
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If ‖u‖ε ≥ 1, the conclusion is obvious. If ‖u‖ε < 1, then ‖u‖qVε,p ≤ ‖u‖pVε,p < 1 since 1 <p < q . 
According to the inequality: as + bs ≥ cs(a + b)s for any a, b ≥ 0 and s > 1, we have

c2

(
ε‖u‖2p

ε +Cε‖u‖p+τ
ε +Cε‖u‖2τ

ε

)
≥ ‖u‖pVε,p + ‖u‖qVε,q ≥ ‖u‖qVε,p + ‖u‖qVε,q ≥ c3‖u‖qε .

So, from the above facts, we can see that there exists α0 > 0 such that ‖u‖ε ≥ α0. This completes 
the proof. �

We set

Îε(u)=
∫
RN

[|∇u|p + V (εx)|u|p + |∇u|q + V (εx)|u|q]dx

−
∫
RN

∫
RN

G(u(y))g(u(x))u(x)

|x − y|μ dydx,

then we have 〈Îε(u), u〉 < 0, this shows that Nε is a smooth complete manifold of codimension 
1 in the space Eε . Furthermore, there exists a constant α > 0 such that

〈Îε(u), u〉 ≤ −α for all u ∈ Nε. (2.8)

Indeed, according to (g4) and (g5) we can deduce that

〈Îε(u), u〉

=p
∫
RN

|∇u|p + V (εx)|u|pdx + q
∫
RN

|∇u|q + V (εx)|u|qdx

−
∫
RN

∫
RN

g(u(y))u(y)g(u(x))u(x)+G(u(y))g′(u(x))u2(x)+G(u(y))g(u(x))u(x)
|x − y|μ dydx

=(p− q)
∫
RN

|∇u|p + V (εx)|u|pdx + q
∫
RN

∫
RN

G(u(y))g(u(x))u(x)

|x − y|μ dydx

−
∫
RN

∫
RN

g(u(y))u(y)g(u(x))u(x)+G(u(y))g′(u(x))u2(x)+G(u(y))g(u(x))u(x)
|x − y|μ dydx

≤(p− q)
∫
RN

|∇u|p + V (εx)|u|pdx

+
∫
RN

∫
RN

G(u(y))
[
(q − 1 − θ

2 )g(u(x))u(x)− g′(u(x))u2(x)
]

|x − y|μ dydx

≤(p− q)
∫
N

|∇u|p + V (εx)|u|pdx − κ
∫
N

∫
N

G(u(y))g(u(x))u(x)

|x − y|μ dydx.
R R R
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If there exists {un} ⊂ Nε such that 〈Îε(un), un〉 → 0, then we have∫
RN

|∇un|p + V (εx)|un|pdx +
∫
RN

∫
RN

G(un(y))g(un(x))un(x)

|x − y|μ dydx→ 0.

So we can get un → 0 in Eε , this contradicts with the fact that ‖u‖ ≥ α0 for all u ∈ Nε .
The following result shows that the energy functional Iε satisfies the geometric structure of 

the mountain pass theorem.

Lemma 2.6. (mountain pass geometry) Assume that (V ) and (g1)-(g5) hold, then

(i) there exist σ0, � > 0 such that Iε(u) ≥ σ0 with ‖u‖ε = �;
(ii) there exist u0 ∈Eε and R > 0 with ‖u0‖ε > R such that Iε(u0) < 0.

Proof. (i) Let u ∈Eε , we first take � ∈ (0, 1) with ‖u‖ε = �, then we have ‖u‖qVε,p ≤ ‖u‖pVε,p <
1. Therefore, using Lemma 2.1, Lemma 2.4, (2.2) and (2.4) we obtain

Iε(u)= 1

p
‖u‖pVε,p + 1

q
‖u‖qVε,q − 1

2

∫
RN

∫
RN

G(u(y))G(u(x))

|x − y|μ dydx

≥ 1

p
‖u‖qVε,p + 1

q
‖u‖qVε,q − c4

(
ε‖u‖2p

ε + εCε‖u‖p+τ
ε +Cε‖u‖2τ

ε

)
≥ c5

q

(‖u‖Vε,p + ‖u‖Vε,q
)q − c4

(
ε‖u‖2p

ε + εCε‖u‖p+τ
ε +Cε‖u‖2τ

ε

)
= c5

q
‖u‖qε − c4

(
ε‖u‖2p

ε + εCε‖u‖p+τ
ε +Cε‖u‖2τ

ε

)
.

Since q < 2τ , then there exists σ0 > 0 such that Iε(u) ≥ σ0 > 0 when ‖u‖ε = �.
(ii) We fix u0 ∈Eε\{0} with u0 > 0, and we set

h(t)= 1

2

∫
RN

∫
RN

G(
tu0(y)
‖u0‖ε )G(

tu0(x)‖u0‖ε )
|x − y|μ dydx for t > 0.

We can infer from (g4) that

h′(t)=
∫
RN

∫
RN

G(
tu0(x)‖u0‖ε )g(

tu0(y)
‖u0‖ε )

u0(x)‖u0‖ε
|x − y|μ dydx

≥ θ
2t

∫
RN

∫
RN

G(
tu0(y)
‖u0‖ε )G(

tu0(x)‖u0‖ε )
|x − y|μ dydx

=θ
t
h(t).

(2.9)

Integrating (2.9) on [1, s‖u0‖ε] with s‖u0‖ε > 1, we have
67
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h(s‖u0‖ε)≥ h(1)(s‖u0‖ε)θ ,

that is

1

2

∫
RN

∫
RN

G(su0(y))G(su0(x))

|x − y|μ dydx ≥ 1

2

∫
RN

∫
RN

G(
u0(y)
‖u0‖ε )G(

u0(x)‖u0‖ε )
|x − y|μ dydx(s‖u0‖ε)θ .

Therefore, from the above facts we have

Iε(su0)= s
p

p
‖u0‖pVε,p + sq

q
‖u0‖qVε,q − 1

2

∫
RN

∫
RN

G(su0(y))G(su0(x))

|x − y|μ dydx

≤c6(s
p + sq)− c7s

θ

for s > 1
‖u0‖ε . Taking e = su0 with s sufficiently large, we can see that the conclusion (ii) holds 

since θ > q . �
According to Lemma 2.6, we can use a version of mountain pass theorem without the Palais-

Smale condition [36] to deduce the existence of a Palais-Smale sequence {un} at level c̃ε , namely

Iε(un)→ c̃ε and I ′
ε(un)→ 0,

where c̃ε is the mountain pass level of Iε defined as

c̃ε = inf
�∈� max

t∈[0,1]Iε(�(t)),

and

�= {� ∈ C([0,1],Eε) : �(0)= 0,Iε(�(1)) < 0}.

Lemma 2.7. Let u ∈Eε\{0}, then there exists a unique tu > 0 such that tuu ∈ Nε . Moreover, tuu
is the unique global maximum of Iε on R+u. In particular, if u ∈ Nε , then

Iε(u)= max
t≥0

Iε(tu)≥ Iε(tu) for all t ≥ 0.

Proof. Let u ∈ Eε\{0}, we define the function f (t) = Iε(tu) for t > 0. From Lemma 2.6, we 
can know that f (0) = 0, f (t) > 0 for t sufficiently small and f (t) < 0 for t sufficiently large. 
Therefore, there is t = tu such that maxt>0 f (t) is achieved at tu, so f ′(tu) = 0 and tuu ∈ Nε .

Next, we claim that tu is the unique critical point of f . Assume by contradiction that there 
exist t1 and t2 with 0 < t1 < t2 such that t1u, t2u ∈ Nε , then it follows that

t
p−q
1 ‖u‖pVε,p + ‖u‖qVε,q =

∫
N

∫
N

G(t1u(y))g(t1u(x))u(x)

t
q−1
1 |x − y|μ

dydx
R R
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and

t
p−q
2 ‖u‖pVε,p + ‖u‖qVε,q =

∫
RN

∫
RN

G(t2u(y))g(t2u(x))u(x)

t
q−1
2 |x − y|μ

dydx.

Subtracting term by term in the above equalities, we get

(t
p−q
1 − tp−q

2 )‖u‖pVε,p =
∫
RN

∫
RN

[
G(t1u(y))g(t1u(x))u(x)

t
q−1
1 |x − y|μ

− G(t2u(y))g(t2u(x))u(x)

t
q−1
2 |x − y|μ

]
dydx.

Using (g1) and (2.7) and recalling that p < q , we can deduce that

0<(tp−q
1 − tp−q

2 )‖u‖pVε,p

=
∫
RN

∫
RN

|u(y)| q2 |u(x)| q2
|x − y|μ

[
G(t1u(y))g(t1u(x))

|t1u(y)| q2 |t1u(x)| q2 −1
− G(t2u(y))g(t2u(x))

|t2u(y)| q2 |t2u(x)| q2 −1

]
dydx < 0,

which implies a contradiction. The proof is completed. �
Applying Lemma 2.6 and Lemma 2.7, we can see that the ground state energy cε has a mini-

max characterization given by

cε = c̃ε = inf
u∈Eε\{0} max

t≥0
Iε(tu). (2.10)

The proof can be found in [36], here we omit the details.

Lemma 2.8. Let {un} be a Palais-Smale sequence at level c > 0 for Iε , then {un} is bounded in 
Eε and ‖u−

n ‖ε = o(1).

Proof. Let {un} be a Palais-Smale sequence at level c > 0 for Iε , we conclude from (g4) that

c+ 1 + ‖un‖ε ≥Iε(un)− 1

θ
〈I ′
ε(un), un〉

=
[

1

p
− 1

θ

]
‖un‖pVε,p +

[
1

q
− 1

θ

]
‖un‖qVε,q

+
∫
RN

∫
RN

G(un(y))

|x − y|μ
[

1

θ
g(un(x))un(x)− 1

2
G(un(x))

]
dydx

≥
[

1

p
− 1

θ

]
‖un‖pVε,p +

[
1

q
− 1

θ

]
‖un‖qVε,q

≥
[

1 − 1
]
(‖un‖pVε,p + ‖un‖qVε,q).
q θ
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We use a contradiction argument to prove this conclusion, and we assume that ‖un‖ε → ∞. In 
what follows we divide into three cases to finish the proof of the lemma.

Case 1. ‖un‖Vε,p → ∞ and ‖un‖Vε,q → ∞. Since p < q , we can see that ‖un‖qVε,q ≥
‖un‖pVε,q > 1 for n sufficiently large. Therefore, from the above facts we infer that

c+ 1 + ‖un‖ε ≥
[

1

q
− 1

θ

]
(‖un‖pVε,p + ‖un‖qVε,q)

≥
[

1

q
− 1

θ

]
(‖un‖pVε,p + ‖un‖pVε,q)

≥c8(‖un‖Vε,p + ‖un‖Vε,q)p = c8‖un‖pε .

Evidently, this is impossible, a contradiction.
Case 2. ‖un‖Vε,p → ∞ and ‖un‖Vε,q is bounded. According to the following fact

c+ 1 + ‖un‖Vε,p + ‖un‖Vε,q ≥
[

1

q
− 1

θ

]
‖un‖pVε,p,

we have

c9

‖un‖pVε,p
+ ‖un‖Vε,p

‖un‖pVε,p
≥ 1

q
− 1

θ
.

Letting n → ∞, we can see that 0 ≥ 1
q

− 1
θ
> 0, which shows a contradiction.

Case 3. ‖un‖Vε,p is bounded and ‖un‖Vε,q → ∞. We can proceed similarly as in the Case 2.
From the boundedness of {un} we have 〈I ′

ε(un), u
−
n 〉 = o(1). Employing (g1) and the follow-

ing inequality

|a − b|s−2(a − b)(a− − b−)≥ |a− − b−|s for all s > 1, (2.11)

we get

‖u−
n ‖pVε,p + ‖u−

n ‖qVε,q ≤
∫
RN

|∇un|p−2∇un∇u−
n dx +

∫
RN

V (εx)|un|p−2unu
−
n dx

+
∫
RN

|∇un|q−2∇un∇u−
n dx +

∫
RN

V (εx)|un|q−2unu
−
n dx

=
∫
RN

∫
RN

G(un(y))g(un(x))u
−
n (x)

|x − y|μ dydx = o(1),

which implies that ‖u−
n ‖ε → 0 in Eε . Consequently, we may assume that un ≥ 0 for any n ∈ N . 

The proof is now complete. �
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3. The autonomous problem

For our scope, we shall also investigate the limit problem associated with problem (2.1). To 
this end, we first discuss in this section the existence of the positive ground state solutions of the 
autonomous problem.

Let m > 0, we consider the following autonomous problem{
−�pu−�qu+m(|u|p−2u+ |u|q−2u)=

(
1

|x|μ ∗G(u)
)
g(u), in RN,

u ∈W 1,p(RN)∩W 1,q (RN),u > 0, in RN,
(3.1)

and define the space

Em =

⎧⎪⎨⎪⎩u ∈W 1,p(RN)∩W 1,q (RN) :
∫
RN

m(|u|p + |u|q)dx <∞

⎫⎪⎬⎪⎭
with the norm ‖u‖m = ‖u‖m,p + ‖u‖m,q , where

‖u‖sm,s =
∫
RN

(|∇u|s +m|u|s)dx for all s > 1.

The corresponding energy functional of problem (3.1) is defined by

Jm(u)= 1

p
‖u‖pm,p + 1

q
‖u‖qm,q − 1

2

∫
RN

∫
RN

G(u(y))G(u(x))

|x − y|μ dydx.

According to the discussion in Section 2, we can easily see that Jm ∈ C2(Em, R) and

〈J ′
m(u), v〉 =

∫
RN

|∇u|p−2∇u · ∇vdx +
∫
RN

|∇u|q−2∇u · ∇vdx

+
∫
RN

m[|u|p−2u+ |u|q−2u]vdx −
∫
RN

∫
RN

G(u(y))g(u(x))v(x)

|x − y|μ dydx

for any u, v ∈Em. Accordingly, we use Nm and cm to denote the corresponding Nehari manifold 
and ground state energy of Jm

Nm := {u ∈Em \ {0} : 〈J ′
m(u),u〉 = 0} and cm = inf

Nm

Jm.

Moreover, analogous to arguments used in Section 2, we can see that Jm, Nm and cm have 
some properties similar to those of Iε , Nε and cε . By using the mountain pass theorem without 
the Palais-Smale condition [36], there exists a Palais-Smale sequence {un} ⊂Em such that

J ′
m(un)→ 0 and Jm(un)→ cm, (3.2)
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where

cm = inf
u∈Em\{0} max

t≥0
Jm(tu)= inf

u∈Nm

Jm(u).

We now state the main result for the autonomous problem (3.1).

Lemma 3.1. Let 0 <μ < p and assume that conditions (g1)-(g5) hold. Then problem (3.1) has 
at least one positive ground state solution v such that Jm(v) = cm > 0.

Proof. Let {un} be a Palais-Smale sequence at level cm > 0 for Jm, Lemma 2.8 shows that {un}
is bounded in Em. We claim that

lim
n→∞

sup
y∈RN

∫
BR(y)

|un|qdx > 0.

If the above claim does not hold, by Lemma 2.2 we have un → 0 in Ls(RN) for any s ∈ (q, q∗). 
So, using the Hardy-Littlewood-Sobolev inequality and (2.4) we obtain∫

RN

∫
RN

G(un(y))g(un(x))un(x)

|x − y|μ dydx→ 0.

Consequently, we can infer that

o(1)= 〈J ′
m(un),un〉 = ‖un‖pm,p + ‖un‖qm,q −

∫
RN

∫
RN

G(un(y))g(un(x))un(x)

|x − y|μ dydx

= ‖un‖pm,p + ‖un‖qm,q + o(1),
which implies that ‖un‖m → 0. This contradicts with the conclusion of Lemma 2.5.

Therefore, there exist R, δ > 0 and {kn} ⊂ ZN such that∫
BR(kn)

|un|qdx ≥ δ.

Setting vn(x) = un(x + kn), we have ∫
BR(0)

|vn|qdx ≥ δ. (3.3)

Since Jm and J ′
m are both invariants by translation, it follows that

Jm(vn)→ cm and J ′
m(vn)→ 0. (3.4)

After passing to a subsequence, we assume that vn ⇀ v in Em, vn → v in Lsloc(R
N) for s ∈

(p, q∗), and vn(x) → v(x) a.e. in RN . Moreover, from (3.4) we deduce that v �= 0.
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Next we show that v is a critical point of Jm. To do this, after passing to a subsequence, we 
need to prove ∇vn(x) → ∇v(x) a.e. on RN .

Indeed, let us fix ψ ∈ C∞
0 (R

N) such that

0 ≤ψ(x)≤ 1,∀x ∈RN,ψ(x)= 1,∀x ∈ B1(0) and ψ(x)= 0,∀x ∈ Bc2(0),

and define the function ψR(x) = ψ(x/R) for each R > 0 and x ∈ RN . Moreover, for simplicity 
we set

An =
∫
RN

〈|∇vn|p−2∇vn − |∇v|p−2∇v,∇vn − ∇v〉ψRdx

+
∫
RN

〈|∇vn|q−2∇vn − |∇v|q−2∇v,∇vn − ∇v〉ψRdx

+
∫
RN

m
[
(|vn|p−2vn − |v|p−2v)+ (|vn|q−2vn − |v|q−2v)

]
(vn − v)ψRdx.

Computing directly, we have

An = 〈J ′
m(vn), vnψR〉 − 〈J ′

m(vn), vψR〉 −
∫
RN

m[|v|p−2v + |v|q−2v](vn − v)ψRdx

−
∫
RN

[
|∇vn|p−2∇vn + |∇vn|q−2∇vn

]
∇ψR(vn − v)dx

−
∫
RN

[
|∇v|p−2∇v+ |∇v|q−2∇v

]
(∇vn − ∇v)ψRdx

+
∫
RN

∫
RN

[
G(vn(y))g(vn(x))vn(x)ψR(x)

|x − y|μ − G(vn(y))g(vn(x))v(x)ψR(x)

|x − y|μ
]

dydx

From Lemma 2.3 and the weak convergence vn ⇀ v in Em, we can infer that∫
RN

m[|v|p−2v+ |v|q−2v](vn − v)ψRdx = o(1),

∫
RN

[
|∇vn|p−2∇vn + |∇vn|q−2∇vn

]
∇ψR(vn − v)dx = o(1),

∫
RN

[
|∇v|p−2∇v+ |∇v|q−2∇v

]
(∇vn − ∇v)ψRdx = o(1).

(3.5)

On the other hand, using Lemma 2.3 and Lemma 2.4, we can easily prove that
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∫
RN

∫
RN

[
G(vn(y))g(vn(x))vn(x)ψR(x)

|x − y|μ − G(vn(y))g(vn(x))v(x)ψR(x)

|x − y|μ
]

dydx = o(1). (3.6)

Combining (3.5) and (3.6) and the facts that 〈J ′
m(vn), vnψR〉 = 〈J ′

m(vn), vψR〉 = o(1), we de-
duce that An = o(1). Moreover, applying the following inequality

〈|ξ |s−2ξ − |η|s−2η, ξ − η〉 ≥
{
c|ξ − η|s , if s ≥ 2,
c(|ξ | + |η|)s−2|ξ − η|2, if 1< s < 2,

∀ξ, η ∈RN (3.7)

we conclude for some subsequence of {vn} that ∇vn(x) → ∇v(x) a.e. x ∈ BR(0). Since R > 0
is arbitrary, we derive that for some subsequence,

∇vn(x)→ ∇v(x) a.e. x ∈RN.

This limit allows us to conclude that J ′
m(v) = 0. Consequently, we have v ∈ Nm and Jm(v) ≥

cm. On the other hand, using Fatou’s lemma and (g4), we conclude that

cm = lim
n→∞

[
Jm(vn)− 1

θ
〈J ′
m(vn), vn〉

]
= lim
n→∞

[(
1

p
− 1

θ

)
‖vn‖pm,p +

(
1

q
− 1

θ

)
‖vn‖qm,q

+
∫
RN

∫
RN

G(vn(y))

|x − y|μ
(

1

θ
g(vn(x))vn(x)− 1

2
G(vn(x))

)
dydx

]

≥
(

1

p
− 1

θ

)
‖v‖pm,p +

(
1

q
− 1

θ

)
‖v‖qm,q

+
∫
RN

∫
RN

G(v(y))

|x − y|μ
(

1

θ
g(v(x))v(x)− 1

2
G(v(x))

)
dydx

=Jm(v)− 1

θ
〈J ′
m(v), v〉 = Jm(v).

Therefore, Jm(v) = cm and v is a ground state solution of problem (3.1).
Moreover, choosing v− as test function in problem (3.1), and applying (g1) and (2.11) we 

infer that

‖v−‖pm,p + ‖v−‖qm,q ≤
∫
RN

|∇v|p−2∇v∇v−dx +m
∫
RN

|v|p−2vv−dx

+
∫
RN

|∇v|q−2∇v∇v−dx +m
∫
RN

|v|q−2vv−dx

=
∫
N

∫
N

G(v(y))g(v(x))v−(x)
|x − y|μ dydx = 0.
R R
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Evidently, this shows that v− = 0, then v ≥ 0 in RN .
Now we claim that v ∈ L∞(RN) ∩C1,ν

loc (R
N) for some ν ∈ (0, 1). Indeed, setting

K(x)=
∫
RN

G(v(y))

|x − y|μ dy,

we first show that there exists C > 0 such that

|K(x)| ≤ C for all x ∈RN. (3.8)

We deduce from Lemma 2.3 and (2.4) that

|K(x)| =

∣∣∣∣∣∣∣
∫
RN

G(v(y))

|x − y|μ dy

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
∫

|x−y|≤1

G(v(y))

|x − y|μ dy

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫

|x−y|≥1

G(v(y))

|x − y|μ dy

∣∣∣∣∣∣∣
≤C1

∫
|x−y|≤1

|vn|p + |vn|τ
|x − y|μ dy +C1

∫
|x−y|≥1

(|vn|p + |vn|τ )dy

≤C1

∫
|x−y|≤1

|vn|p + |vn|τ
|x − y|μ dy +C2.

(3.9)

Choosing t ∈ ( N
N−μ, 

N
N−p ) such that N − tμ

t−1 > 0, and using Hölder inequality we have

∫
|x−y|≤1

|vn|p
|x − y|μ dy ≤

⎡⎢⎣ ∫
|x−y|≤1

|vn|tpdy

⎤⎥⎦
1
t
⎡⎢⎣ ∫
|x−y|≤1

|x − y|− tμ
t−1 dy

⎤⎥⎦
t−1
t

≤C3

⎡⎢⎣ ∫
|r|≤1

|r|N−1− tμ
t−1 dr

⎤⎥⎦
t−1
t

≤ C4.

(3.10)

Similarly, since τ ∈ ( (2N−μ)q
2N , (N−μ)q

N−q ), taking s ∈ ( N
N−μ, 

Nq
(N−q)τ ) such that N − sμ

s−1 > 0, we 
get

∫
|x−y|≤1

|vn|τ
|x − y|μ dy ≤

⎡⎢⎣ ∫
|x−y|≤1

|vn|sτdy

⎤⎥⎦
1
s
⎡⎢⎣ ∫
|x−y|≤1

|x − y|− sμ
s−1 dy

⎤⎥⎦
s−1
s

≤C5

⎡⎢⎣ ∫
|r|N−1− sμ

s−1 dr

⎤⎥⎦
s−1
s

≤ C6.

(3.11)
|r|≤1
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Obviously, from (3.9), (3.10) and (3.11) we can see that (3.8) holds.
According to the above arguments, we know that v is a solution of problem

−�pv−�qv+m(|v|p−2v+ |v|q−2v)=K(x)g(v) in RN,

with K ∈ L∞(RN). Applying the regularity conclusions in [18], we have v ∈ L∞(RN) ∩
C

1,ν
loc (R

N) for some ν ∈ (0, 1). Finally, using the Harnack’s inequality in [34], we conclude that 
v > 0 in RN . �

Next we establish a comparison relation for the ground state energy under different parame-
ters.

Lemma 3.2. If 0 <m1 <m2, then we have cm1 < cm2 .

Proof. Let u ∈ Nm2 with Jm2(u) = cm2 , then, Lemma 2.7 shows that

cm2 = Jm2(u)= max
t≥0

Jm2(tu).

By Lemma 2.7 again, there exist t0 > 0 such that u0 = t0u ∈ Nm1 satisfying

Jm1(u0)= max
t≥0

Jm1(tu0).

According to the above facts we deduce that

cm2 = Jm2(u)≥ Jm2(u0)

= Jm1(u0)+ (m2 −m1)

[
1

p
|u0|pp + 1

q
|u0|qq

]
+
∫
RN

∫
RN

G(u0(y))G(u0(x))

|x − y|μ dydx

≥ cm1 + (m2 −m1)

[
1

p
|u0|pp + 1

q
|u0|qq

]
+
∫
RN

∫
RN

G(u0(y))G(u0(x))

|x − y|μ dydx.

Evidently, we have cm2 > cm1 . The proof is now completed. �
4. Existence of positive ground state solutions

In this section, we are going to prove the existence of positive ground state solutions to 
problem (1.1). We begin by analyzing the Palais-Smale compactness condition which play a 
fundamental role in our analysis.

For simplicity, we use the following symbols

�(u)=
∫
RN

∫
RN

G(u(y))G(u(y))

|x − y|μ dydx and 〈�′(u), v〉 =
∫
RN

∫
RN

G(u(y))g(u(x))v(x)

|x − y|μ dydx.

We have a variant of the Brezis–Lieb lemma for the nonlocal term.
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Lemma 4.1. Let {un} be a sequence such that un ⇀ u in Eε , and set vn = un − u. Then the 
following conclusions hold:

�(vn)= �(un)− �(u)+ o(1),
〈�′(vn),ψ〉 = 〈�′(un),ψ〉 − 〈�′(u),ψ〉 + o(1) uniformly in ψ ∈Eε.

Proof. We only prove the first conclusion because the second one can be obtained using similar 
arguments. We first claim that

G(un)−G(vn)−G(u)→ 0 in L
2N

2N−μ (RN). (4.1)

Using the mean value theorem, Young’s inequality and (2.4), we can see that for any ε > 0 there 
exists Cε > 0 such that

|G(un)−G(vn)|
2N

2N−μ ≤
∣∣∣∣∣∣

1∫
0

g(un − tu)udt

∣∣∣∣∣∣
2N

2N−μ

≤c10

[
|u|(|un| + |u|)p−1 + |u|(|un| + |u|)τ−1

] 2N
2N−μ

≤εc11

[
|un|

2Np
2N−μ + |un|

2Nτ
2N−μ

]
+ c12Cε

[
|u| 2Np

2N−μ + |u| 2Nτ
2N−μ

]
.

This, together with the following estimate

|G(u)| 2N
2N−μ ≤ c13

[
|u| 2Np

2N−μ + |u| 2Nτ
2N−μ

]
implies that

|G(un)−G(vn)−G(u)|
2N

2N−μ

≤εc11

[
|un|

2Np
2N−μ + |un|

2Nτ
2N−μ

]
+ (c2Cε + c13)

[
|u| 2Np

2N−μ + |u| 2Nτ
2N−μ

]
≤εc11

[
|un|

2Np
2N−μ + |un|

2Nτ
2N−μ − |u| 2Np

2N−μ − |u| 2Nτ
2N−μ

]
+ c14

[
|u| 2Np

2N−μ + |u| 2Nτ
2N−μ

]
.

Let

Gε,n = max

{
|G(un)−G(vn)−G(u)|

2N
2N−μ

− εc11

[
|un|

2Np
2N−μ + |un|

2Nτ
2N−μ − |u| 2Np

2N−μ − |u| 2Nτ
2N−μ

]
,0

}
and we note that Gε,n → 0 a.e. in RN as n → ∞, and
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0 ≤ Gε,n ≤ c14

[
|u| 2Np

2N−μ + |u| 2Nτ
2N−μ

]
∈ L1(RN).

According to the definition of Gε,n, we immediately obtain

|G(un)−G(vn)−G(u)|
2N

2N−μ ≤ Gε,n + εc11

[
|un|

2Np
2N−μ + |un|

2Nτ
2N−μ

]
,

which together with the boundedness of {un}, yields that

lim sup
n→∞

∫
RN

|G(un)−G(vn)−G(u)|
2N

2N−μ dx ≤ c15ε.

Evidently, this shows that (4.1) holds since the arbitrariness of ε.
By a direct computation, we obtain

�(un)− �(vn)− �(u)=
∫
RN

∫
RN

G(un)G(un)−G(vn)G(vn)−G(u)G(u)
|x − y|μ dydx

=
∫
RN

∫
RN

G(un) [G(un)−G(vn)−G(u)]
|x − y|μ dydx

+
∫
RN

∫
RN

G(vn) [G(un)−G(vn)−G(u)]
|x − y|μ dydx

+
∫
RN

∫
RN

G(u) [G(un)−G(vn)−G(u)]
|x − y|μ dydx

+2
∫
RN

∫
RN

G(u)G(vn)

|x − y|μ dydx

=�1 +�2 +�3 +�4.

We deduce from the boundedness of {un} and Lemma 2.3 that∫
RN

|G(un)|
2N

2N−μ dy ≤ C and
∫
RN

|G(vn)|
2N

2N−μ dy ≤ C.

So, according to Lemma 2.4 we have

|�1| ≤
⎡⎢⎣∫
RN

|G(un)|
2N

2N−μ dy

⎤⎥⎦
2N−μ

2N
⎡⎢⎣∫
RN

|G(un)−G(vn)−G(u)|
2N

2N−μ dx

⎤⎥⎦
2N−μ

2N

→ 0.

Similarly, we also show that �2 → 0 and �3 → 0. On the other hand, we observe that
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G(vn)⇀ 0 in L
2N

2N−μ (RN) and
∫
RN

G(u)

|x − y|μ dy ∈ L 2N
μ (RN).

Consequently, it is easy to see that �4 → 0, and we complete the proof of the first conclusion. �
Following from [23, Theorem 3.3], we can obtain the following technical result without proof.

Lemma 4.2. Let ϕn : RN → Rm, m ≥ 1, with ϕn ∈ Ls(RN) × · · · × Ls(RN) (s > 1), ϕn → 0
a.e. in Rm and A(y) = |y|s−2y, y ∈ Rm. Then, if |ϕn|s ≤ c for all n ∈N , there holds∫

RN

|A(ϕn + u)−A(ϕn)−A(u)| s
s−1 dx = o(1)

for each u ∈Ls(RN) × · · · ×Ls(RN).

Employing Lemma 4.1 and Lemma 4.2 and using some standard arguments, we can show the 
following result holds.

Lemma 4.3. Let {un} be a sequence such that un ⇀ u in Eε , and set vn = un− u. Then we have

Iε(vn)= Iε(un)− Iε(u)+ o(1),
〈I ′
ε(vn),ψ〉 = 〈I ′

ε(un),ψ〉 − 〈I ′
ε(u),ψ〉 + o(1)

uniformly in ψ ∈Eε .

Proof. According to the Brezis–Lieb lemma and Lemma 4.1, it is easy to see that the first con-
clusion holds. Next we prove that the second conclusion holds. Indeed, for s ∈ {p, q}, Lemma 4.2
implies that ∫

RN

|A(vn)−A(un)+A(u)| s
s−1 dx = o(1). (4.2)

Moreover, following the proof of Theorem 3.3 in [23], we obtain∫
RN

V (εx)||vn|s−2vn − |un|s−2un + |u|s−2u| s
s−1 dx = o(1). (4.3)

Taking advantage of the Hölder inequality, for any ψ ∈Eε with ‖ψ‖ε ≤ 1, we infer that

|〈J ′
ε (vn)−J ′

ε (un)+J ′
ε (u),ψ〉|

≤
⎡⎢⎣∫

N

|A(vn)−A(un)+A(u)|
p
p−1 dx

⎤⎥⎦
p−1
p
⎡⎢⎣∫

N

|∇ψ |pdx

⎤⎥⎦
1
p

R R
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+
⎡⎢⎣∫
RN

|A(vn)−A(un)+A(u)|
q
q−1 dx

⎤⎥⎦
q−1
q
⎡⎢⎣∫
RN

|∇ψ |qdx

⎤⎥⎦
1
q

+
⎡⎢⎣∫
RN

V (εx)||vn|p−2vn − |un|p−2un + |u|p−2u| p
p−1 dx

⎤⎥⎦
p−1
p
⎡⎢⎣∫
RN

V (εx)|ψ |pdx

⎤⎥⎦
1
p

+
⎡⎢⎣∫
RN

V (εx)||vn|q−2vn − |un|q−2un + |u|q−2u| q
q−1 dx

⎤⎥⎦
q−1
q
⎡⎢⎣∫
RN

V (εx)|ψ |qdx

⎤⎥⎦
1
q

+ 〈�′(vn)− �′(un)+ �′(u),ψ〉.

Evidently, Lemma 4.1, (4.2) and (4.3) show the second conclusion holds. The proof is com-
pleted. �

To study the compactness issue, we need to consider the limit problem of (2.1){
−�pu−�qu+ V∞(|u|p−2u+ |u|q−2u)=

(
1

|x|μ ∗G(u)
)
g(u), in RN,

u ∈W 1,p(RN)∩W 1,q(RN),u > 0, in RN.
(4.4)

Also we use JV∞ , NV∞ and cV∞ to denote the energy functional, Nehari manifold and ground 
state energy of problem (4.4), respectively.

Lemma 4.4. Let {un} be a Palais-Smale sequence at level c > 0 for Iε with un ⇀ u in Eε . Then 
we have either un → u in Eε along a subsequence, or c− Iε(u) ≥ cV∞ .

Proof. We set vn = un − u and assume that vn� 0 in Eε . From Lemma 2.7, we see that there 
is a unique {tn} ⊂ (0, ∞) such that {tnvn} ⊂ NV∞ . We will divide our proof into three steps.

Step 1. The sequence {tn} satisfies

lim sup
n→∞

tn ≤ 1.

Indeed, arguing by contradiction we assume that there exist ν > 0 and a subsequence of {tn}, still 
denoted by itself, such that

tn ≥ 1 + ν for all n ∈ N.

From Lemma 4.3 we know that 〈I ′
ε(vn), vn〉 = o(1), and combining {tnvn} ⊂ NV∞ we deduce 

that

|∇vn|pp + |∇vn|qq +
∫
N

V (εx)(|vn|p + |vn|q)dx −
∫
N

∫
N

G(vn)g(vn)vn

|x − y|μ dydx = o(1)

R R R
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and

t
p−q
n |∇vn|pp + |∇vn|qq + V∞

∫
RN

(t
p−q
n |vn|p + |vn|q)dx −

∫
RN

∫
RN

G(tnvn)g(tnvn)vn

t
q−1
n |x − y|μ

dydx = 0.

Consequently, we immediately obtain from the above formulas

∫
RN

∫
RN

[
G(tnvn)g(tnvn)vn

t
q−1
n |x − y|μ

− G(vn)g(vn)vn

|x − y|μ
]

dydx

=(tp−q
n − 1)|∇vn|pp +

∫
RN

[
t
p−q
n V∞ − V (εx)

]
|vn|pdx

+
∫
RN

[V∞ − V (εx)] |vn|qdx + o(1).

(4.5)

From condition (V ), we know that for any ε > 0, there exists R =R(ε) > 0 such that

V (εx)≥ V∞ − ε > V∞/tq−pn − ε for any |x| ≥R. (4.6)

Since vn ⇀ 0 in Eε , Lemma 2.3 yields that vn → 0 in Lsloc(R
N) for s ∈ [1, q∗). By (4.5) and 

(4.6) we obtain

∫
RN

∫
RN

[
G(tnvn)g(tnvn)vn

t
q−1
n |x − y|μ

− G(vn)g(vn)vn

|x − y|μ
]

dydx

≤
∫
RN

[
(t
p−q
n V∞ − V (εx))|vn|p + (V∞ − V (εx))|vn|q

]
dx + o(1)

≤ ε
∫

|x|≥R
(|vn|p + |vn|q)dx + 2Vmax

∫
|x|≤R

(|vn|p + |vn|q)dx + o(1)

= c16ε+ o(1).

(4.7)

Since vn� 0 in Eε and I ′
ε(vn) → 0, we can show there exist R̄, δ > 0 and yn ∈RN such that

∫
BR̄(yn)

|vn|qdx ≥ δ. (4.8)

Otherwise, Lemma 2.2 implies that vn → 0 in Ls(RN) for s ∈ (q, q∗). Since 〈I ′
ε(vn), vn〉 = o(1), 

then, using Lemma 2.4 and (2.4) we get
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o(1)= 〈I ′
ε(vn), vn〉

= ‖vn‖pVε,p + ‖vn‖qVε,q −
∫
RN

∫
RN

G(vn)g(vn)vn

|x − y|μ dydx

≥ ‖vn‖pVε,p + ‖vn‖qVε,q − c17

[
ε|vn|p2Np

2N−μ
+Cε|vn|τ2Nτ

2N−μ

]2

.

Obviously, this which implies that vn → 0 in Eε . So, (4.8) holds.
Setting ṽn = vn(x + yn), we assume that, after passing to a subsequence, ṽn ⇀ ṽ in Eε and 

ṽn(x) → ṽ(x) a.e. in RN . Thus, ∫
BR̄(0)

|ṽn|qdx ≥ δ,

showing that ṽ �= 0. Moreover, using the fact that vn ≥ 0 for all n ∈ N , we have that ṽ(x) ≥ 0
a.e. in RN . Hence, there exists a subset � ⊂RN with positive measure such that ṽ(x) > 0 for all 
x ∈�. Consequently, it follows from (2.7) and (4.7) that

0<
∫
�

∫
�

|vn(y)| q2 |vn(x)| q2
|x − y|μ

[
G((1 + ν)vn(y))g((1 + ν)vn(x))
|(1 + ν)vn(y)| q2 |(1 + ν)vn(x)| q2 −1

− G(vn(y))g(vn(x))

|vn(y)| q2 |vn(x)| q2 −1

]
dydx

=
∫
�

∫
�

[
G((1 + ν)vn(y))g((1 + ν)vn(x))vn(x)

(1 + ν)q |x − y|μ − G(vn(y))g(vn(x))vn(x)

|x − y|μ
]

dydx

≤ c16ε+ o(1).
Letting n → ∞ in the last inequality and employing Fatou’s lemma, we have

0<
∫
�

∫
�

[
G((1 + ν)ṽ)g((1 + ν)ṽ)ṽ

(1 + ν)q |x − y|μ − G(ṽ)g(ṽ)ṽ

|x − y|μ
]

dydx ≤ c16ε,

which is a contradiction, since the arbitrariness of ε.
According to Step 1, we conclude that

lim sup
n→∞

tn = 1 or lim sup
n→∞

tn = t0 < 1.

Next we study each one of these possibilities.

Step 2. The sequence {tn} satisfies

lim sup
n→∞

tn = 1.

For this case, there exists a subsequence, such that tn → 1. Using JV∞(tnvn) ≥ cV∞ and 
Lemma 4.3 we have
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c− Iε(u)+ o(1)= Iε(vn)= Iε(vn)−JV∞(tnvn)+JV∞(tnvn)

≥ Iε(vn)−JV∞(tnvn)+ cV∞ .
(4.9)

Observe that,

Iε(vn)−JV∞(tnvn)

= (1 − tpn )
p

∫
RN

|∇vn|pdx + 1

p

∫
RN

[
V (εx)− tpn V∞

] |vn|pdx

+ (1 − tqn )
q

∫
RN

|∇vn|qdx + 1

q

∫
RN

[
V (εx)− tqn V∞

] |vn|qdx

+
∫
RN

∫
RN

[
G(tnvn)G(tnvn)

|x − y|μ − G(vn)G(vn)

|x − y|μ
]

dydx.

(4.10)

It follows from (4.6) that

V (εx)− tpn V∞ = [V (εx)− V∞] + (1 − tpn )V∞ ≥ −ε+ (1 − tpn )V∞ for any |x| ≥R,

then by vn → 0 in Lploc(R
N) and tn → 1 we obtain∫

RN

[
V (εx)− tpn V∞

] |vn|pdx

=
∫

|x|≤R

[
V (εx)− tpn V∞

] |vn|pdx +
∫

|x|≥R

[
V (εx)− tpn V∞

] |vn|pdx

≥ (V0 − tpn V∞)
∫

|x|≤R
|vn|pdx − ε

∫
|x|≥R

|vn|pdx + V∞(1 − tpn )
∫

|x|≥R
|vn|pdx

≥ o(1)− c18ε.

(4.11)

Similarly, we obtain ∫
RN

[
V (εx)− tqn V∞

] |vn|qdx ≥ o(1)− c19ε. (4.12)

Using the mean value theorem and tn → 1 we can prove∫
RN

∫
RN

[
G(tnvn)G(tnvn)

|x − y|μ − G(vn)G(vn)

|x − y|μ
]

dydx = o(1). (4.13)

Therefore, from (4.9), (4.10) (4.11), (4.12) and (4.13), we conclude that
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c− Iε(u)≥ o(1)− c20ε+ cV∞,

and taking the limit as ε→ 0 we get

c− Iε(u)≥ cV∞ .

Step 3. The sequence {tn} satisfies

lim sup
n→∞

tn = t0 < 1.

We assume that there exists a subsequence, still denoted by {tn}, such that tn → t0 < 1. First, 
according to (g5) we can easily check that

G(s) and h(s)= 1

q
g(s)s − 1

2
G(s) are increasing in (0,+∞). (4.14)

Moreover, according to the above arguments, we can get∫
RN

[V∞ − V (εx)]|vn|pdx = o(1). (4.15)

Since 〈I ′
ε(vn), vn〉 = o(1), then we have

c− Iε(u)+ o(1)= Iε(vn)− 1

q
〈I ′
ε(vn), vn〉

=
(

1

p
− 1

q

)
‖vn‖pVε,p +

∫
RN

∫
RN

G(vn)

|x − y|μ
[

1

q
g(vn)vn − 1

2
G(vn)

]
dydx.

(4.16)

Using tnvn ∈ NV∞ , (4.14), (4.15) and (4.16) we deduce that

cV∞ ≤JV∞(tnvn)

=JV∞(tnvn)−
1

q
〈J ′
V∞(tnvn), tnvn〉

=
(

1

p
− 1

q

)
‖tnvn‖pV∞,p +

∫
RN

∫
RN

G(tnvn)

|x − y|μ
[

1

q
g(tnvn)tnvn − 1

2
G(tnvn)

]
dydx

≤
(

1

p
− 1

q

)
‖vn‖pV∞,p +

∫
RN

∫
RN

G(vn)

|x − y|μ
[

1

q
g(vn)vn − 1

2
G(vn)

]
dydx

=
(

1

p
− 1

q

)
‖vn‖pVε,p +

(
1

p
− 1

q

) ∫
N

[V∞ − V (εx)]|vn|pdx
R
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+
∫
RN

∫
RN

G(vn)

|x − y|μ
[

1

q
g(vn)vn − 1

2
G(vn)

]
dydx

=Iε(vn)− 1

q
〈I ′
ε(vn), vn〉 + o(1)

=c− Iε(u)+ o(1).

Taking the limit as n → ∞, we get

c− Iε(u)≥ cV∞ .

We finish the proof of the lemma. �
Combining Lemma 4.3 and Lemma 4.4, we have the following compactness result.

Lemma 4.5. Let {un} be a bounded Palais-Smale sequence at level c < cV∞ for Iε . Then {un}
has a convergent subsequence in Eε .

Proof. Let {un} be a bounded Palais-Smale sequence, up to a subsequence, we may assume that 
un ⇀ u in Eε , un → u in Lsloc for s ∈ [1, q∗) and un(x) → u(x) a.e. in RN . From the proof of 
Lemma 3.1, we can see that I ′

ε(u) = 0. Therefore, we deduce from (g4) that

Iε(u)=Iε(u)− 1

θ
〈I ′
ε(u), u〉

=
[

1

p
− 1

θ

]
‖u‖pVε,p +

[
1

q
− 1

θ

]
‖u‖qVε,q

+
∫
RN

∫
RN

G(u)

|x − y|μ
[

1

θ
g(u)u− 1

2
G(u)

]
dydx ≥ 0,

(4.17)

which implies that c− Iε(u) ≤ c < cV∞ . Finally, from Lemma 4.4 we can conclude that un → u

in Eε . This completes the proof. �
Employing Lemma 4.5 we can prove Iε satisfies the Palais-Smale condition on Nε .

Lemma 4.6. Let {un} be any Palais-Smale sequence restricted in Nε and assume that c < cV∞ . 
Then {un} has a convergent subsequence Eε .

Proof. Let {un} ⊂ Nε be any Palais-Smale sequence for Iε on Nε at level c, namely

Iε(un)→ c and I ′
ε |Nε

(un)→ 0.

Then, there exists λn ∈ R such that

I ′
ε(un)= λnÎ ′

ε(un)+ o(1).
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W. Zhang, J. Zhang and V.D. Rădulescu Journal of Differential Equations 347 (2023) 56–103
From (2.8), we know that 〈Îε(un), un〉 ≤ −α. Then, we can deduce that λn → 0. Consequently, 
{un} is indeed a Palais-Smale sequence of Iε . Since c < cV∞ , from Lemma 4.5, it is easy to see 
that the conclusion holds. This ends the proof. �

Consider the following problem{
−�pu−�qu+ V0(|u|p−2u+ |u|q−2u)=

(
1

|x|μ ∗G(u)
)
g(u), in RN,

u ∈W 1,p(RN)∩W 1,q(RN),u > 0, in RN,
(4.18)

where V0 is given in (V ). In view of Lemma 3.1, we know that problem (4.18) possesses a 
positive ground state solution u0 satisfying

JV0(u0)= cV0 = inf
NV0

JV0 .

Next we give the comparison relationship of the ground state energy level between problem 
(2.1) and problem (4.18), which is very important in our arguments.

Lemma 4.7. lim sup
ε→0

cε ≤ cV0 .

Proof. Let u be a positive ground state solution of problem (4.18). From Lemma 2.7 we see that

cV0 = JV0(u)= max
t≥0

JV0(tu). (4.19)

By Lemma 2.7 again, there exists tε > 0 such that tεu ∈ Nε , and

cε ≤ Iε(tεu)= max
t≥0

Iε(tu). (4.20)

It is clear to see that {tε} is bounded. Therefore, after passing to a subsequence, we assume that 
tε → t0. Observe that

Iε(tεu)= JV0(tεu)+
t
p
ε

p

∫
RN

[V (εx)− V0]|u|pdx + t
q
ε

q

∫
RN

[V (εx)− V0]|u|qdx. (4.21)

According to the boundedness of tε and the fact V (εx) → V0 in a bounded domain, we have

t
p
ε

p

∫
RN

[V (εx)− V0]|u|pdx = oε(1) and
t
q
ε

q

∫
RN

[V (εx)− V0]|u|qdx = oε(1). (4.22)

From (4.21) and (4.22) we infer that

Iε(tεu)= JV0(t0u)+ oε(1).

Combining (4.19) and (4.20), as ε→ 0, we obtain
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cε ≤ Iε(tεu)→ JV0(t0u)≤ max
t≥0

JV0(tu)= JV0(u)= cV0 .

Consequently, we have

lim sup
ε→0

cε ≤ cV0 .

The proof is now complete. �
Next, we prove the existence result of positive ground state solutions of problem (2.1).

Theorem 4.1. Assume that (V ) and (g1)-(g5) are satisfied. Then, there exists ε0 > 0 such that 
problem (2.1) has a positive ground state solution uε for all ε < ε0.

Proof. According to Lemma 2.6, we see that Iε satisfies the mountain pass geometry, then there 
exists a Palais-Smale sequence {un} at level cε , namely

Iε(un)→ cε and I ′
ε(un)→ 0.

Lemma 2.8 shows that {un} is bounded. Then, up to a subsequence, we assume that un ⇀ uε in 
Eε . Moreover, from the proof of Lemma 3.1, we can see that I ′

ε(uε) = 0. By (V ) and Lemma 3.2, 
we get cV0 < cV∞ . Moreover, according to Lemma 4.7 we can deduce that there exists ε0 > 0 such 
that cε ≤ cV0 < cV∞ for ε < ε0. Therefore, Lemma 4.5 shows that Iε satisfies the Palais-Smale 
condition for ε < ε0. Applying the Fatou’s lemma we can see that uε is a ground state solution 
of problem (2.1). Finally, the positivity of ground state solution follows with same arguments as 
in the proof of Lemma 3.1, we omit the details here. We complete the proof of the theorem. �
5. Multiplicity and concentration

In this section we are going to investigate the multiplicity and concentration phenomenon of 
positive ground state solutions.

Let u be a positive ground state solution of problem (4.18) and ζ be a smooth nonincreasing 
cut-off function in [0, +∞) such that ζ(s) = 1 if 0 ≤ s ≤ 1

2 and ζ(s) = 0 if s ≥ 1. For any z ∈�, 
we define the function

�ε,z(x)= ζ(|εx − z|)u(εx − z
ε

).

It follows from Lemma 2.7 that there exists tε > 0 such that

max
t≥0

Iε(t�ε,z)= Iε(tε�ε,z).

So, we define �ε :� → Nε by �ε(z) = tε�ε,z. According to the construction of �ε,z, we can 
see that �ε(z) has compact support for any z ∈�. The following lemma describes an important 
relationship between �ε and the set �.
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Lemma 5.1. We have the limit

lim
ε→0

Iε(�ε(z))= cV0 uniformly in z ∈�.

Proof. We argue by contradiction. Assume that there exist ε0 > 0, {zn} ⊂� and εn → 0 such 
that

|Iεn(�εn(z))− cV0 | ≥ ε0. (5.1)

Observe that, using the Lebesgue’s dominated convergence theorem, we can easily check that

|∇�εn,zn |pp +
∫
RN

V (εnx)|�εn,zn |pdx→ |∇u|pp +
∫
RN

V0|u|pdx, (5.2)

|∇�εn,zn |qq +
∫
RN

V (εnx)|�εn,zn |qdx→ |∇u|qq +
∫
RN

V0|u|qdx, (5.3)

and ∫
RN

∫
RN

G(�εn,zn)G(�εn,zn)

|x − y|μ dydx→
∫
RN

∫
RN

G(u)G(u)

|x − y|μ dydx. (5.4)

Since 〈I ′
εn
(tεn�εn,yn), tεn�εn,yn〉 = 0 and making the change of variable

ŷ = εny − zn
εn

and x̂ = εnx − zn
εn

,

we have

tpεn |∇�εn,zn |pp + tqεn |∇�εn,zn |qq +
∫
RN

V (εnx)(|tεn�εn,zn |p + |tεn�εn,zn |q)dx

=
∫
RN

∫
RN

G(tεn�εn,zn(y))g(tεn�εn,zn(x))tεn�εn,zn(x)

|x − y|μ dydx

=
∫
RN

∫
RN

G(tεnζ(|εnŷ|)u(ŷ))g(tεnζ(|εnx̂|)u(̂x))tεnζ(|εnx̂|)u(̂x)
|̂x − ŷ|μ dŷdx̂.

(5.5)

We show that tεn → 1. We first need to prove that {tεn} is bounded. Indeed, we assume by 
contradiction that tεn → ∞. Using (5.5) and (2.7) we have
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tp−q
εn

|∇�εn,zn |pp + |∇�εn,zn |qq +
∫
RN

V (εnx)(t
p−q
εn

|�εn,zn |p + |�εn,zn |q)dx

=
∫
RN

∫
RN

G(tεnζ(|εnŷ|)u(ŷ))g(tεnζ(|εnx̂|)u(̂x))tεnζ(|εnx̂|)u(̂x)
|̂x − ŷ|μ dŷdx̂

=
∫

B
ε
−1
n
(0)

∫
B
ε
−1
n
(0)

G(tεnζ(|εnŷ|)u(ŷ))g(tεnζ(|εnx̂|)u(̂x))ζ(|εnx̂|)u(̂x)
t
q−1
εn |̂x − ŷ|μ

dŷdx̂

≥ G(tεnu(̂x0))

(tεnu(̂x0))
q
2

g(tεnu(̂x0))

(tεnu(̂x0))
q
2 −1

∫
B2−1 (0)

∫
B2−1 (0)

u(ŷ)
q
2 u(̂x)

q
2 dŷdx̂,

(5.6)

where u(̂x0) = min{u(̂x) : |̂x| ≤ 1
2 } > 0 (we recall that u ∈C(RN) by Lemma 3.1). Since p < q , 

then from (g4) and (5.6), we can deduce that ‖�εn,zn‖qVε,q → ∞. Evidently, this contradicts 
relation (5.3). Hence, {tεn} is bounded. Up to a subsequence, we may assume that tεn → t0 ≥ 0. 
If t0 = 0, by (g2), (5.3) and (5.5) we can derive that ‖�εn,zn‖pVε,p → 0, this contradicts relation 
(5.2). So, we conclude that t0 > 0.

We claim that t0 = 1. Letting n → ∞ in (5.5), we obtain

t
p−q
0 |∇u|pp + |∇u|qq + V0

∫
RN

(t
p−q
0 |u|p + |u|q)dx =

∫
RN

∫
RN

G(t0u)g(t0u)t0u

t
q
0 |x − y|μ dydx. (5.7)

Since u is a positive ground state solution of problem (4.18), we have

|∇u|pp + |∇u|qq + V0

∫
RN

(|u|p + |u|q)dx =
∫
RN

∫
RN

G(u)g(u)u

|x − y|μ dydx. (5.8)

From (5.7) and (5.8) we have

(t
p−q
0 − 1)‖u‖pV0,p

=
∫
RN

∫
RN

[
G(t0u)g(t0u)t0u

t
q
0 |x − y|μ − G(u)g(u)u

|x − y|μ
]

dydx.

Evidently, by (2.7) we get t0 = 1. Therefore, we infer from (5.2), (5.3) and (5.4) that

Iεn(�εn(zn))=
t
p
εn

p
|∇�εn,zn |pp + t

q
εn

q
|∇�εn,zn |qq

+
∫
RN

V (εnx)

[
t
p
εn

p
|�εn,zn |p + t

q
εn

q
|�εn,zn |q

]
dx

−
∫
N

∫
N

G(tεn�εn,zn)G(tεn�εn,zn)

|x − y|μ dydx
R R
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→ 1

p
‖u‖pV0,p

+ 1

q
‖u‖qV0,q

−
∫
RN

∫
RN

G(u)G(u)

|x − y|μ dydx

=JV0(u)= cV0 .

According to (5.1) we can see that this is impossible. Thus, we finish the proof of the lemma. �
Next we are in the position to introduce the barycenter map. For any δ > 0, let ρ = ρ(δ) > 0

be such that �δ ⊂ Bρ(0). We define η : RN →RN as follows

η(x)= x for |x| ≤ ρ and η(x)= ρx

|x| for |x| ≥ ρ.

The barycenter map βε : Nε → RN is defined by

βε(u)=
∫
RN η(εx)(|u|p + |u|q)dx∫

RN (|u|p + |u|q)dx .

Combining the above definitions, we can prove the following result.

Lemma 5.2. We have the limit

lim
ε→0

βε(�ε(z))= z uniformly in z ∈�.

Proof. Arguing by contradiction, we assume that there exist σ0 > 0, {zn} ⊂� and εn → 0 such 
that

|βεn(�εn(zn))− zn| ≥ σ0 > 0. (5.9)

According to the definitions of �εn and βεn , and making the change of variable y = (εnx−zn)/εn
we immediately obtain

βεn(�εn(zn))= zn +
∫
RN [η(εny + zn)− zn](|ζ(|εny|)u(y)|p + |ζ(|εny|)u(y)|q)dy∫

RN (|ζ(|εny|)u(y)|p + |ζ(|εny|)u(y)|q)dy .

Since {zn} ⊂� ⊂ Bρ(0), employing the Lebesgue dominating convergence theorem, we can get

|βεn(�εn(zn))− zn| → 0,

which contradicts relation (5.9). �
Now, we prove the following useful compactness result.

Lemma 5.3. Let εn → 0 and {un} ⊂ Nεn be a sequence satisfying Iεn(un) → cV0 . Then there 
exists {z̃n} ⊂ RN such that vn = un(x + z̃n) has a convergent subsequence. Moreover, up to a 
subsequence, zn → z ∈�, where zn = εnz̃n.
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Proof. Since {un} ⊂ Nεn and Iεn(un) → cV0 , then, a standard argument shows that {un} is 
bounded. We claim that there are R0, δ > 0 and z̃n ∈ RN such that

lim inf
n→∞

∫
BR0 (z̃n)

|un|qdx ≥ δ. (5.10)

Otherwise, Lemma 2.2 implies that un → 0 in Ls(RN) for s ∈ (q, q∗). According to (2.4) and 
Lemma 2.4, we can easily prove that un → 0 in Eε , this is impossible because Iεn(un) → cV0 >

0. Consequently, (5.10) holds.
Let us define vn(x) = un(x+ z̃n). Passing to a subsequence, we may assume that vn ⇀ v �= 0. 

By virtue of Lemma 2.7, there exists tn > 0 such that ṽn = tnvn ∈ NV0 . Then we have

cV0 ≤ JV0(ṽn)= JV0(tnun)≤ Iεn(tnun)≤ Iεn(un)→ cV0,

which shows JV0(ṽn) → cV0 . Therefore, {ṽn} ⊂ NV0 is a minimizing sequence, and using the 
Ekeland’s variational principle, we may also assume it is a bounded Palais-Smale sequence at cV0

for JV0 . Thus, after passing to subsequence, we have ṽn ⇀ ṽ with ṽ �= 0. Moreover, J ′
V0
(ṽ) = 0. 

According to Lemma 4.3 we obtain

JV0(ṽn − ṽ)→ cV0 −JV0(ṽ) and J ′
V0
(ṽn − ṽ)→ 0.

Using (g4) and employing Fatou’s lemma, we obtain

cV0 = lim
n→∞

[
JV0(ṽn)−

1

θ
〈J ′
V0
(ṽn), ṽn〉

]
= lim
n→∞

[(
1

p
− 1

θ

)
‖ṽn‖pV0,p

+
(

1

q
− 1

θ

)
‖ṽn‖qV0,q

+
∫
RN

∫
RN

G(ṽn)

|x − y|μ
[

1

θ
g(ṽn)ṽn − 1

2
G(ṽn)

]
dydx

]

≥
(

1

p
− 1

θ

)
‖ṽ‖pV0,p

+
(

1

q
− 1

θ

)
‖ṽ‖qV0,q

+
∫
RN

∫
RN

G(ṽ)

|x − y|μ
[

1

θ
g(ṽ)ṽ − 1

2
G(ṽ)

]
dydx

=JV0(ṽ)−
1

θ
〈J ′
V0
(ṽ), ṽ〉

=JV0(ṽ)≥ cV0 .

Consequently, it follows that

JV0(ṽn − ṽ)→ 0 and J ′
V0
(ṽn − ṽ)→ 0. (5.11)

Moreover, using again (g4) and (5.11) we have
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o(1)=JV0(ṽn − ṽ)− 1

θ
〈J ′
V0
(ṽn − ṽ), ṽn − ṽ〉

=
(

1

p
− 1

θ

)
‖ṽn − ṽ‖pV0,p

+
(

1

q
− 1

θ

)
‖ṽn − ṽ‖qV0,q

+
∫
RN

∫
RN

G(ṽn − ṽ)
|x − y|μ

[
1

θ
g(ṽn − ṽ)(ṽn − ṽ)− 1

2
G(ṽn − ṽ)

]
dydx

≥
(

1

p
− 1

θ

)
‖ṽn − ṽ‖pV0,p

+
(

1

q
− 1

θ

)
‖ṽn − ṽ‖qV0,q

,

which implies that ṽn → ṽ in EV0 . Since {tn} is bounded, we can assume that tn → t0 > 0, and 
so, vn → v in EV0 .

Next, we verify that {zn} = {εnz̃n} has a subsequence satisfying zn → z ∈�. We first claim 
that {zn} is bounded. Indeed, suppose by contradiction that {zn} is not bounded. Then, up to a 
subsequence, we assume |zn| → ∞. From ṽn → ṽ in EV0 and V0 <V∞, we can conclude that

cV0 = 1

p
‖ṽ‖pV0,p

+ 1

q
‖ṽ‖qV0,q

−
∫
RN

∫
RN

G(ṽ)G(ṽ)

|x − y|μ dydx

<
1

p
‖ṽ‖pV∞,p + 1

q
‖ṽ‖qV∞,q −

∫
RN

∫
RN

G(ṽ)G(ṽ)

|x − y|μ dydx

≤ lim inf
n→∞

[
1

p

∫
RN

|∇ṽn|pdx + 1

q

∫
RN

|∇ṽn|qdx

+
∫
RN

V (εnx + zn)
[

1

p
|ṽn|p + 1

q
|ṽn|q

]
dx −

∫
RN

∫
RN

G(ṽn)G(ṽn)

|x − y|μ dydx

]

≤ lim inf
n→∞

[
1

p

∫
RN

|∇tnun|pdx + 1

q

∫
RN

|∇tnun|qdx

+
∫
RN

V (εnx)

[
1

p
|tnun|p + 1

q
|tnun|q

]
dx −

∫
RN

∫
RN

G(tnun)G(tnun)

|x − y|μ dydx

]
= lim inf
n→∞ Iεn(tnun)

≤ lim inf
n→∞ Iεn(un)

=cV0,

which is a contradiction. Thus, {zn} is bounded and, passing to a subsequence, we may assume 
that zn → z. If z /∈�, then V0 < V (z), and according to the above steps we get a contradiction. 
Consequently, we conclude that z ∈�. �

Let ϑ : R+ →R+ be a positive function given by

ϑ(ε)= max |Iε(�ε(z))− cV |.

z∈� 0

92
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It follows from Lemma 5.1 that ϑ(ε) → 0 as ε→ 0. We introduce a subset ˜Nε of Nε , and set

˜Nε := {u ∈ Nε : Iε(u)≤ cV0 + ϑ(ε)}.

Since �ε(z) ∈ ˜Nε for all z ∈�, then we can deduce that ˜Nε �= ∅. Moreover, we have the fol-
lowing result.

Lemma 5.4. For any δ > 0, then the following limit holds

lim
ε→0

sup
u∈ ˜Nε

inf
z∈�δ

|βε(u)− z| = 0.

Proof. Let εn → 0 as n → ∞. For each n ∈N , there exists {un} ⊂ ˜Nεn , such that

inf
z∈�δ

|βεn(un)− z| = sup
u∈ ˜Nεn

inf
z∈�δ

|βεn(u)− z| + o(1).

Hence, it is sufficient to prove that there exists {zn} ⊂�δ such that

lim
n→∞|βεn(un)− zn| = 0.

In fact, since {un} ⊂ ˜Nεn , then we have

cV0 ≤ cεn ≤ Iεn(un)≤ cV0 + ϑ(εn),
which implies that

Iεn(un)→ cV0 and {un} ⊂ Nεn .

According to Lemma 5.3, there exists {z̃n} ⊂ RN such that vn(x) = un(x + z̃n) has a convergent 
subsequence. Moreover, up to a subsequence, zn = εnz̃n → z ∈�, and we can conclude that

βεn(un)=
∫
RN η(εnx)(|un|p + |un|q)dx∫

RN (|un|p + |un|q)dx

=
∫
RN η(εny + zn)(|un(y + z̃n)|p + |un(y + z̃n)|q)dy∫

RN (|un(y + z̃n)|p + |un(y + z̃n)|q)dy

=zn +
∫
RN [η(εny + zn)− zn](|vn(y)|p + |vn(y)|q)dy∫

RN (|vn(y)|p + |vn(y)|q)dy
→z ∈�.

Therefore, there exists {zn} ⊂�δ such that

lim
n→∞|βεn(un)− zn| = 0.

The proof is now complete. �
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To investigate the concentration phenomenon of solutions, next we will apply an appropriate 
De Giorgi iteration argument and some refined analysis techniques to show the L∞-estimate and 
decay property of solutions, which plays a fundamental role in the study of the behavior of the 
maximum points of solutions.

Lemma 5.5. Let vn be a solution of the following problem{
−�pvn −�qvn + Vn(x)(|vn|p−2vn + |vn|q−2vn)=

(
1

|x|μ ∗G(vn)
)
g(vn), in RN,

vn ∈W 1,p(RN)∩W 1,q (RN), vn > 0, in RN,

where Vn(x) = V (εnx + εnz̃n). If vn → v in Eε for some v �= 0. Then we have vn ∈ L∞(RN)
and there exists C > 0 such that |vn|∞ ≤ C for all n ∈N . Moreover,

lim|x|→∞vn(x)= 0 uniformly in n ∈N.

Proof. Let {vn} be a sequence of positive solutions, and vn → v in Eε . Define

Kn(x)=
∫
RN

G(vn(y))

|x − y|μ dy.

According to the boundedness of {vn} and following the proof of (3.8), we have

|Kn(x)| ≤ C for some C > 0 and any n ∈N. (5.12)

We adapt some ideas from [1,19] to prove the conclusion of the lemma. Let x0 ∈RN , R0 > 1
and 0 < t < s < 1, and let smooth function ψ ∈ C∞

0 (R
N) satisfying

0 ≤ψ(x)≤ 1, suppψ ⊂ Bs(x0),ψ(x)= 1,∀x ∈ Bt(x0) and |∇ψ | ≤ 2

s − t .

For l ≥ 1 and ρ > 0, we set  n,l,ρ = {x ∈ Bρ(x0) : vn(x) > l} and

Jn =
∫

 n,l,s

(|∇vn|p + |∇vn|q)ψqdx.

We observe that for any ϕ ∈Eε the following relation holds∫
RN

|∇vn|p−2∇vn · ∇ϕdx +
∫
RN

|∇vn|q−2∇vn · ∇ϕdx

+
∫
RN

Vn(x)(v
p−1
n + vq−1

n )ϕdx =
∫
RN

Kn(x)g(vn)ϕdx.

Using ϕn =ψq(vn − l)+ as test function, we have
94
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q

∫
 n,l,s

ψq−1(vn − l)+|∇vn|p−2∇vn · ∇ψdx +
∫

 n,l,s

ψq |∇vn|pdx

+q
∫

 n,l,s

ψq−1(vn − l)+|∇vn|q−2∇vn · ∇ψdx +
∫

 n,l,s

ψq |∇vn|qdx

+
∫

 n,l,s

Vn(x)(v
p−1
n + vq−1

n )ψq(vn − l)+dx =
∫

 n,l,s

Kn(x)g(vn)ψ
q(vn − l)+dx,

which, together with (V ), yields that

Jn ≤C6

∫
 n,l,s

ψq−1(vn − l)+|∇ψ |(|∇vn|p−1 + |∇vn|q−1)dx

−
∫

 n,l,s

V0ψ
q−1(vn − l)+(vp−1

n + vq−1
n )dx +

∫
 n,l,s

Kn(x)g(vn)ψ
q(vn − l)+dx.

Moreover, by (2.4) and (5.12), we can deduce that

Jn ≤ C7

⎡⎢⎣ ∫
 n,l,s

ψq−1(vn − l)+|∇ψ |(|∇vn|p−1 + |∇vn|q−1)dx +
∫

 n,l,s

v
q∗−1
n ψq(vn − l)+dx

⎤⎥⎦ .
Since 0 < s − t < 1, using Young inequality and Hölder inequality, we can check that

∫
 n,l,s

v
q∗−1
n ψq(vn − l)+dx ≤

∫
 n,l,s

(|vn − l| + l)q∗−1ψq(vn − l)+dx

≤ C8

⎡⎢⎣ ∫
 n,l,s

|vn − l|q∗
dx + lq∗−1

∫
 n,l,s

|vn − l|dx
⎤⎥⎦

≤ C8

⎡⎢⎢⎣ ∫
 n,l,s

∣∣∣∣vn − l
s − t

∣∣∣∣q∗

dx + lq∗

⎡⎢⎣ ∫
 n,l,s

∣∣∣∣vn − l
s − t

∣∣∣∣q∗

dx

⎤⎥⎦
1
q∗

| n,l,s |
q∗−1
q∗

⎤⎥⎥⎦

≤ C9

⎡⎢⎣ ∫
 n,l,s

∣∣∣∣vn − l
s − t

∣∣∣∣q∗

dx + lq∗ | n,l,s |
⎤⎥⎦ .

Using the properties of Young functions and following the proof of Theorem 3.1 in [33], for 
some ε1 ∈ (0, 1) we can get
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∫
 n,l,s

(|∇vn|p−1 + |∇vn|q−1)ψq−1|∇ψ |(vn − l)+dx

≤ ε1

∫
 n,l,s

(|∇vn|p + |∇vn|q)ψqdx +Cε1

⎡⎢⎣ ∫
 n,l,s

∣∣∣∣vn − l
s − t

∣∣∣∣q∗

dx + | n,l,s |
⎤⎥⎦ .

Consequently, combining the above facts we obtain

Jn ≤ C10

⎡⎢⎣ ∫
 n,l,s

∣∣∣∣vn − l
s − t

∣∣∣∣q∗

dx + (lq∗ + 1)| n,l,s |
⎤⎥⎦ .

Exploiting the definition of ψ , we conclude that

∫
 n,l,t

|∇vn|qdx ≤ C10

⎡⎢⎣ ∫
 n,l,s

∣∣∣∣vn − l
s − t

∣∣∣∣q∗

dx + (lq∗ + 1)| n,l,s |
⎤⎥⎦ , (5.13)

where C10 does not depend on l and l ≥ l0 ≥ 1 for some constant l0.
We fix R1 ∈ (0, 1) and define

σj = R1

2

(
1 + 1

2j

)
, σ̄j = 1

2
(σj + σj+1), lj = l0

2

(
1 − 1

2j+1

)

and

Jj,n =
∫

 n,lj ,σj

(vn − lj )q
∗

+ dx and ξj = ξ
(

2j+1

R1

(
|x − x0| − R1

2

))
,

where ξ ∈ C1(R) satisfies

0 ≤ ξ ≤ 1, ξ(s)= 1 for s ≤ 1

2
, ξ(s)= 0 for s ≥ 3

4
and |ξ ′| ≤ c0.

Evidently, we know that

σj → R1

2
(decreasing), lj → l0

2
(increasing) and σj+1 < σ̄j < σj < 1.

Since ξj = 1 in Bσ (x0) and ξj = 0 outside Bσ̄ (x0), using Lemma 2.1 we have

j+1 j
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Jj+1,n =
∫

 n,lj+1,σj+1

(vn − lj+1)
q∗
+ dx ≤

∫
BR1(x0)

[
(vn − lj+1)+ξj

]q∗
dx

≤ C11

⎡⎢⎣ ∫
BR1(x0)

|∇ [(vn − lj+1)+ξj
] |qdx

⎤⎥⎦
q∗
q

≤ C12

⎡⎢⎣ ∫
 n,lj+1,σ̄j

|∇vn|qdx + 2jp
∫

 n,lj+1,σ̄j

(vn − lj+1)
q
+dx

⎤⎥⎦
q∗
q

.

(5.14)

From (5.13) we can see that

∫
 n,lj+1,σ̄j

|∇vn|qdx ≤ C13

⎡⎢⎣ ∫
 n,lj+1,σj

∣∣∣∣vn − lj+1

σj − σ̄j
∣∣∣∣q∗

dx + (lq∗
j+1 + 1)| n,lj+1,σj |

⎤⎥⎦

≤ C14

⎡⎢⎣2jq
∗

∫
 n,lj+1,σj

(vn − lj+1)
q∗
+ dx + (lq∗

j+1 + 1)| n,lj+1,σj |
⎤⎥⎦ .

(5.15)

Using Hölder inequality and Young’s inequality, we have

∫
 n,lj+1,σ̄j

(vn − lj+1)
q
+dx ≤

⎡⎢⎣ ∫
 n,lj+1,σ̄j

(vn − lj+1)
q∗
+ dx

⎤⎥⎦
q

q∗

| n,lj+1,σ̄j |
q∗−q
q∗

≤ C15

⎡⎢⎣ ∫
 n,lj+1,σ̄j

(vn − lj+1)
q∗
+ dx + | n,lj+1,σ̄j |

⎤⎥⎦ .
(5.16)

From (5.14), (5.15) and (5.16) we can deduce that

J

q

q∗
j+1,n ≤ C16

⎡⎢⎣(2jq∗ + 2jp)
∫

 n,lj+1,σj

(vn − lj+1)
q∗
+ dx + (lq∗

j+1 + 1 + 2jq)| n,lj+1,σj |
⎤⎥⎦

≤ C17

⎡⎢⎣(2jq∗ + 2jp)
∫

 n,l ,σ

(vn − lj+1)
q∗
+ dx + 2jq | n,lj+1,σj |

⎤⎥⎦ .
(5.17)
j+1 j
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We note that

Jj,n ≥
∫

 n,lj+1,σj

(vn − lj )q
∗

+ dx ≥ (lj+1 − lj )q∗ | n,lj+1,σj |,

which implies that

| n,lj+1,σj | ≤
(

1

lj+1 − lj
)q∗

Jj,n =
(

2j+3

l0

)q∗

Jj,n. (5.18)

Combining (5.17) and (5.18), we immediately obtain

J

q

q∗
j+1,n ≤ C18

[
(2jq

∗ + 2jp)Jj,n + 2j (q
∗+q)Jj,n

]
≤ C192j (q

∗+q)Jj,n.

Therefore, we have the following iteration formula

Jj+1,n ≤ C20B
jJ

1+β
j,n ,

where C20 depends on N, q, R1, l0, B = 2(q
∗+q)q/q∗

> 1 and β = q∗/q − 1.
Since vn → v in Eε , we get

lim sup
l0→∞

[
lim sup
n→∞

J0,n

]
= lim sup

l0→∞

⎡⎢⎣lim sup
n→∞

∫
 n,l0,σ0

(vn − l0

4
)
q∗
+ dx

⎤⎥⎦= 0.

So, there exists N0 and L0 > 0 such that

J0,n ≤ C− 1
β B

− 1
β2 for n≥N0 and l0 ≥ L0.

Exploiting [19, Lemma 4.7], we see that

lim
j→∞Jj,n = 0 for n≥N0.

On the other hand,

lim
j→∞Jj,n = lim

j→∞

∫
 n,lj ,σj

(vn − lj )q
∗

+ dx =
∫

 
n,
l0
2 ,
R1
2

(vn − l0

2
)
q∗
+ dx.

Then, we obtain ∫
 
n,
l0 ,
R1

(vn − l0

2
)
q∗
+ dx = 0 for all n≥N0,
2 2
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and consequently,

vn(x)≤ l0

2
for a.e. x ∈ BR1

2
(x0) and for all n≥N0.

From the arbitrariness of x0 ∈ RN , we can see that

vn(x)≤ l0

2
for a.e. x ∈RN and for all n≥N0,

that is,

|vn|∞ ≤ l0

2
for all n≥N0.

Setting C = max{ l02 , |v1|∞, . . . , |vN0−1|∞}, we have |vn|∞ ≤ C for all n ∈ N . Moreover, using 
the regularity conclusion found in [18] (see Theorem 1 and Theorem 2), we can see that vn ∈
C

1,ν
loc (R

N) for some ν ∈ (0, 1).
Finally, we prove that vn(x) → 0 as |x| → ∞ uniformly in n ∈N . In fact, following the above 

arguments, for each ε > 0, we have that

lim sup
|x0|→∞

[
lim sup
n→∞

J0,n

]
= lim sup

|x0|→∞

⎡⎢⎣lim sup
n→∞

∫
 n,l0,σ0

(vn − ε

4
)
q∗
+ dx

⎤⎥⎦= 0.

Thereby, employing [19, Lemma 4.7], there exist R∗ > 0 and N0 ∈N such that

lim
j→∞Jj,n = 0 if |x0|>R∗ and n≥N0,

this shows that

vn(x)≤ ε

4
for x ∈ BR1

2
(x0) and |x0|>R∗, n≥N0.

Now, increasing R∗ if necessary, it follows that

vn(x)≤ ε

4
for |x0|>R∗ and for all n ∈ N.

According to the arbitrariness of ε, we can see that

lim|x|→∞vn(x)= 0 uniformly in n ∈N,

finishing the proof of the lemma. �
Lemma 5.6. There exists ν0 > 0 such that |vn|∞ ≥ ν0 for all n ∈N .
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Proof. Arguing as in the proof of (5.10) we can show that∫
BR(0)

|vn(x)|qdx ≥ δ > 0

for some δ > 0, R > 0 and n ≥N0. Assume by contradiction that |vn|∞ → 0 as n → +∞, then

0< δ ≤
∫

BR(0)

|vn(x)|qdx ≤ |BR(0)||vn(x)|q∞ → 0 as n→ ∞,

which implies a contradiction. This completes the proof. �
Finally, we are in a position to complete the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Existence: From Theorem 4.1, we can see that there exists ε0 > 0 such 
that problem (2.1) has a positive ground state solution uε for all ε < ε0. Evidently, ̂uε(x) = uε( xε )
is a positive ground state solution of problem (1.1).

Proof of Theorem 1.2. Multiplicity: For any δ > 0, combining Lemma 5.1 and Lemma 5.4, we 
can see that there exists εδ > 0 such that the diagram

�
�ε−→ ˜Nε

βε−→�δ (5.19)

is well defined for any ε ∈ (0, εδ). By Lemma 5.2, there exists a function γ (ε, z) with |γ (ε, z)| <
δ
2 uniformly in z ∈ � for all ε ∈ (0, εδ), such that βε(�ε(z)) = z + γ (ε, z) for all z ∈ �. We 
define the function H(t, z) = z + (1 − t)γ (ε, z). Then, H : [0, 1] × � → �δ is continuous, 
H(0, z) = βε(�ε(z)) and H(1, z) = z for all z ∈�. Moreover, from (5.19), we know that βε ◦�ε
is homotopic to the inclusion mapping id : � → �δ . Applying the argument of [12] and the 
conclusion of [15, Lemma 2.2] we can obtain

cat ˜Nε
( ˜Nε)≥ cat�δ (�).

On the other hand, let us choose a function π(ε) > 0 such that π(ε) → 0 as ε→ 0 and such that 
cV0 + π(ε) is not a critical level for Iε . Together with Lemma 4.6, we see that Iε satisfies the 
Palais-Smale condition at level c ∈ (cV0, cV0 +π(ε)) on Nε . Consequently, using the Ljusternik-
Schnirelmann category theory of critical points (see [15, Theorem 2.1]), we can conclude that Iε
has at least cat�δ (�) critical points in Nε . So, Iε has at least cat�δ (�) critical points in Eε .

Concentration: Let εn → 0 and un = uεn be a solution of problem{
−�pun −�qun + Vn(x)(|un|p−2un + |un|q−2un)=

(
1

|x|μ ∗G(un)
)
g(un), in RN,

un ∈W 1,p(RN)∩W 1,q(RN),un > 0, in RN,

with Vn(x) = V (εnx), then by Lemma 5.3, we can see that there is a sequence {z̃n} ⊂ RN such 
that
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vn(x)= un(x + z̃n)→ v in E and εnz̃n → z ∈�.

If pn is a global maximum point of vn(x), then, by Lemma 5.6 we know that there exists R > 0
such that pn ∈ BR(0). Therefore, zn = pn + z̃n is a global maximum point of un(x). We deduce 
from the boundedness of {pn} and the continuity of V that

lim
n→∞ εnzn = z ∈� and lim

n→∞V (εnzn)= V0.

From the proof Theorem 1.1, we find that if uε(x) is a positive solution of problem (2.1), then 
ûε(x) = uε( xε ) is a positive solution of problem (1.1). Obviously, the maximum points xε and 
zε of ̂uε and uε , respectively, satisfy xε = εzε . Consequently, according to the above conclusion, 
we have

lim
ε→0

V (xε)= V0.

We finish the proof of Theorem 1.2. �
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[38] Y. Zhang, X. Tang, V.D. Rădulescu, Concentration of solutions for fractional double-phase problems: critical and 
supercritical cases, J. Differ. Equ. 302 (2021) 139–184.

[39] W. Zhang, S. Yuan, L. Wen, Existence and concentration of ground-states for fractional Choquard equation with 
indefinite potential, Adv. Nonlinear Anal. 11 (2022) 1552–1578.

[40] H. Zhang, F. Zhang, Multiplicity and concentration of solutions for Choquard equations with critical growth, J. 
Math. Anal. Appl. 481 (2020) 123457.

[41] J. Zhang, W. Zhang, Semiclassical states for coupled nonlinear Schrödinger system with competing potentials, J. 
Geom. Anal. 32 (2022) 114.

[42] W. Zhang, J. Zhang, Multiplicity and concentration of positive solutions for fractional unbalanced double phase 
problems, J. Geom. Anal. 32 (2022) 235.
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