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Abstract. We are concerned with a class of second order quasilinear elliptic
equations driven by a nonhomogeneous differential operator introduced by C.A.
Stuart [22] and whose study is motivated by models in Nonlinear Optics. We
establish sufficient conditions for the existence of at least one or two non-negative
solutions. Our analysis considers the cases when the reaction has either a sublinear
or a linear growth. In the sublinear case, we also prove a nonexistence property.
The proofs combine energy estimates and variational methods.

1 Introduction

Let � be a bounded open subset of RN . Consider the linear Dirichlet problem

(1.1)

⎧⎨
⎩

−�u + u = λu + h in �,

u = 0 on ∂�,

where h ∈ L2(�) is a given function and λ is a real parameter. Then the following
results are true:

(i) if h ≡ 0, then problem (1.1) has a positive solution (which is unique up to
a multiplicative constant) if and only if λ = 1 + λ1, where λ1 is the lowest
eigenvalue of the Laplace operator (−�) in H1

0(�);
(ii) if h � 0, then problem (1.1) has a positive solution if and only if λ < 1 + λ1.

Moreover, this solution is unique. We refer to H. Brezis [6, Chapter 9] for
more details.

These classical results have been extended recently by C. A. Stuart [22], pro-
vided that the left-hand side in problem (1.1) is replaced with the nonlinear differ-
ential operator

Su := −div
[
γ
(u2 + |∇u|2

2

)
∇u

]
+ γ

(u2 + |∇u|2
2

)
u,
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where γ : [0,∞) → R is a positive continuous function. Namely, he considered
the problem

(1.2)

⎧⎨
⎩

−div [γ( u2+|∇u|2
2 )∇u] + γ( u2+|∇u|2

2 )u = λu + h in �,

u = 0 on ∂�.

In [22], under the assumption that h ∈ L2(�), h ≥ 0, sufficient conditions such
that problem (1.2) admits two non-negative weak solutions are established.

A motivation for replacing −� by the operator S stems from C. A. Stuart and
H.-S. Zhou’s works [23, 24, 25, 26] in relationship with guided traveling waves
propagating through a self-focusing dielectric. This problem is central to the study
of transverse electric field modes (TE-modes) propagating in an axisymmetric
dielectric such as an optical fiber. The mathematical analysis of such phenomena in
a nonlinear dielectric medium is part of the study of special solutions of Maxwell’s
equations coupled with a nonlinear constitutive relation between the electric field
and the electric displacement field. The main reason in this relationship is that
a TE-mode is a solution of Maxwell’s equations in which the electric field is
an axisymmetric, monochromatic traveling wave which is everywhere transverse
to the direction of propagation. The analysis developed by C. A. Stuart and H.-
S. Zhou includes the case of guided TM-modes propagating through a self-focusing
anisotropic dielectric. These are special solutions of Maxwell’s equations with a
nonlinear constitutive relation of a type commonly used in nonlinear optics when
treating the propagation of waves in a cylindrical wave-guide.

When γ(t) ≡ 1 (ormore generallywhen γ(t) is a positive constant) the operatorS
reduces to the Laplace operator. The case where γ(t) is non constant corresponds
to a quasilinear setting.

In [22], C. A. Stuart introduced the following assumptions:

• (s1) γ is non-increasing on [0,∞) and γ(t) −→
t→∞ γ(∞) > 0.

• (s2) Setting

�(t) :=
∫ t

0
γ(s)ds,

there exists ρ > 0, such that for all (t, s) ∈ [0,∞)2,

�(t2) ≥ �(s2) + 2sγ(s2)(t − s) + ρ(t − s)2.

• (s3) Setting K(t) = �(t) − �′(t)t, we have limt→∞ K(t) < ∞.

In [22, p. 329], examples of functions γ satisfying (s1)–(s3) are given.
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Under the above assumptions the main result in [22] is concerned with the case
γ(∞) < γ(0). The existence of two non-negative weak solutions is established
for all γ(∞) + λ1γ(∞) < λ < γ(0) + λ1γ(∞), assuming that h ≥ 0 is sufficiently
small. Actually, defining

	(u) :=
∫

�
�
(u2 + |∇u|2

2

)
dx − λ

2

∫
�

u2 dx −
∫

�
hu dx,

then a first solution is obtained as a local minima of 	(u). The second solution
corresponds to a mountain pass level for 	(u). See [22, Theorem 1.1] for a precise
statement.

Remark. Setting F(z, p) = �( 1
2[z

2 + |p|2]) for z ∈ R and p ∈ RN , it is well-
known (see for example [13, Chapter 10]) that the ellipticity of (1.2) is equivalent
to the convexity of F(z, p) with respect to p for all (z, p). Also it is easily checked
that this condition corresponds to the convexity of g(t) = �(t2) on (0,∞). Now, as
shown in [22], the stronger hypothesis (s2) ensures the uniform ellipticity of (1.2).

The mathematical treatment of (1.2) is characterized by two main difficulties.
Since the function γ(t) is bounded between two positive constants, the right-hand
side of (1.2) has a, somehow, linear growth as well as the reaction term λu. It is
then expected that to prove the existence of a bounded Palais–Smale (or Cerami)
sequence at the mountain pass level for 	(u) may be challenging. This is reminis-
cent of what happens in problems of type (1.2) with a linear operator (such as the
Laplacian) on the left-hand side and a nonlinearity which is asymptotically linear
on the right-hand side. Then, one needs to understand precisely the interaction
between the nonlinearity and the spectrum of the linear operator in order to prove
the existence of a priori bounds on the Palais–Smale sequences. In this direction
we refer, for instance, to [4, 12, 15, 18]. In the present paper, this difficulty is
reinforced by the nonlinear character of the quasilinear operator and also by the
fact that its nonhomogeneous character does not permit to benefit from certain
classical techniques as, for example, the one presented in [28]. We also note that
these features of the quasilinear operator make the study of its action on weakly
convergent sequences non standard.

The aim of the present paper is twofold. First, we extend the results in [22] to
the case when the reaction has a nonlinear growth. We consider the problem

(1.3)

⎧⎨
⎩

−div [γ( u2+|∇u|2
2 )∇u] + γ( u2+|∇u|2

2 )u = f (u) + h in �

u = 0 on ∂�,

where f is a given continuous function and h ∈ L2(�) is non-negative.
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We distinguish between the cases when f has either a sublinear decay or a linear
growth at infinity. Secondly, we optimize the assumptions on the quasilinear part,
namely on the function γ : [0,∞) → R. In particular, condition (s3) will be no
longer needed and (s2) is replaced by the assumption that the function �(t2) is
strictly convex on [0,∞).

2 Main results

We first study the case where the right-hand side in problem (1.3) has a sublinear
growth (in a prescribed sense). Next, we extend the results obtained in Stuart [22],
provided that f is no longer linear, but it has a linear growth. In both settings we
establish sufficient conditions on f that guarantee the existence of non-negative
solutions for problem (1.3).

2.1 Sublinear growth case. In this case we write f (t) as f (t) = νg(t) for
some ν > 0 and assume that g : R → R is a continuous function. The following
assumptions will be used to state our results:

• (g1) g(t) = o(t) as t → +∞,
• (g2) ∃t0 ∈ [0,∞) such that G(t0) :=

∫ t0
0 g(s) ds > 0,

• (g3) ∃C > 0,∀t ∈ R, |g(t)| ≤ C|t|.
Note that since we are only interested in non-negative solutions we can assume,

without lack of generality, that g(t) = 0 for all t ∈ (−∞, 0].

Example 2.1. The following functions satisfy hypotheses (g1)–(g3):
(i) g(t) = sin(at) for a ∈ R \ {0};
(ii) g(t) = |t|α/(1 + |t|β) for 1 ≤ α < β + 1;
(iii) g(t) = min{|t|α, |t|β} for 0 < α < 1 < β;
(iv) g(t) = log(1 + |t|);
(v) g(t) = exp{(log(1 + |t|))α} − 1 for α ∈ (0, 1);
(vi) g(t) = exp{log(1 + |t|)/ log log(2 + |t|)} − 1.

Concerning the operator S, we assume:
• (q1) The function γ : [0,∞) → R is continuous and there exist some

constants 0 < γmin ≤ γmax such that ∀t ∈ [0,∞), γmin ≤ γ(t) ≤ γmax.

• (q2) The function t �→ �(t2) is convex on [0,∞).

Theorem 2.2. Assume that the conditions (g1) and (q1) − (q2) are fulfilled

and that h ∈ L2(�), h ≥ 0. We have the following properties for problem (1.3),
where f (s) = νg(s):

(i) Let h � 0. Then problem (1.3) admits a non-negative nontrivial solution all
ν > 0.
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(ii) Let h ≡ 0, then we have:

(a) If we assume (g1) − (g2), there exists a ν1 > 0 such that problem (1.3)
admits a non-negative nontrivial solution if ν > ν1.

(b) If we assume (g1) − (g3), there exists a ν0 > 0 such that problem (1.3)
does not have any non trivial solution if 0 < ν < ν0.

In particular, Theorem 2.2 asserts that if h ≡ 0 and if the nonlinear term g in the
right-hand side of problem (1.3) has a sublinear decay at +∞ and at most a linear
growth near the origin, then the parameter ν > 0 must be large enough in order to
guarantee the existence of solutions. This corresponds to high perturbations of the
reaction.

Returning to the semilinear case, which corresponds to γ(0) = γ(∞), Theorem
2.2 asserts that, provided that g satisfies assumptions (g1)−(g3), then the following
Dirichlet problem ⎧⎨

⎩
−�u + u = νg(u) in �

u = 0 on ∂�

does not have nontrivial solutions for ν > 0 small enough, but admits non-negative
solutions for ν sufficiently large. For example, Theorem2.2 shows that the problem

⎧⎨
⎩

−�u + u = ν log(1 + |u|) in �

u = 0 on ∂�

has only the trivial solution if ν > 0 is small enough and that nontrivial solutions do
exist as soon as ν > 0 is sufficiently large. By contrast, if h � 0 (and h ∈ L2(�)),
then the nonlinear problem

(2.1)

⎧⎨
⎩

−�u + u = ν log(1 + |u|) + h in �

u = 0 on ∂�

has a non-negative solution for all ν > 0.

2.2 Linear growth case. Here we extend the main results obtained in
C.A. Stuart [22], which are concernedwith the linear case f (u)=λu in problem(1.3).

Concerning the operator S we need, with respect to the sublinear growth case,
to strengthen our assumptions (q1) and (q2) by requiring the following conditions:

• (q3) The function γ : [0,∞) → R is continuous and there exist some
constants 0 < γmin ≤ γmax such that ∀t ∈ [0,∞), γmin ≤ γ(t) ≤ γmax. In
addition, there exists γ(∞) > 0 such that γ(s) −→

s→∞ γ(∞).

• (q4) The function t �→ �(t2) is strictly convex on [0,∞).
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Remark 2.3. The condition (q4) is rather standard in the literature dealing
with related quasilinear problems [8, 10, 17]. Note that it is equivalent to requiring
that the function t �→ tγ( t2

2 ) is strictly increasing on [0,∞).

We consider a large class of nonlinearities with linear growth and satisfying
natural hypotheses, in strong relationship with the first eigenvalue λ1 of the Laplace
operator (−�) in H1

0(�). Depending on the results sought we shall ask that the
continuous function f : [0,∞) → R satisfies some of the following conditions:

• (f1) lim supt→0
f (t)
t < γ(0) + γmin λ1,

• (f2) lim supt→+∞
f (t)
tp = 0, for some p ∈ (1, 2∗ − 1),

• (f3) lim inft→+∞ f (t)
t > γ(∞)(1 + λ1),

• (f4) lim supt→+∞
f (t)
t < +∞.

Theorem 2.4. Assume that the conditions (q3) hold and let h ∈ L2(�), h ≥ 0.

Then the following properties hold.

(i) If (f1), (f2) and (q2) hold, then for ||h||2 sufficiently small, problem (1.3) ad-
mits at least one non-negative solution. In addition, this solution is nontrivial

if h �≡ 0.
(ii) If (f1), (f3), (f4) and (q4) hold, then for ||h||2 sufficiently small, problem

(1.3) admits at least two nontrivial non-negative solutions if h �≡ 0 and at
least a nontrivial non-negative solution if h ≡ 0.

Clearly, the main challenge is to establishTheorem2.4 (ii), namely the existence
of two non-negative solutions. As in [22], a first solution will correspond to a local
minima of an associated functional and the second one will lie at its mountain pass
level. It is well known that a mountain pass geometry implies the existence of a
Palais–Smale sequence (un)n∈N at the mountain pass level. To obtain a critical point
it then suffices to show that this Palais–Smale sequence is, up to a subsequence,
converging. In that direction a first difficulty is to show that (un)n∈N is bounded.
To derive the existence of this bounded Palais–Smale sequence, the paper [22]
relies on a previous work of the author [21], which can be seen as an alternative
version of some results in [11]. It relies on the so-called notion of localizing the
Palais–Smale sequence.

In order to overcome this difficulty, we follow in the present work a different
strategy. On the one hand, we introduce a different choice of the functional in order
to ensure, from the beginning, that a non-negative critical point will be obtained.
On the other hand, we make use of the approach developed in [14] to obtain a
bounded Palais–Smale sequence. With respect to [22] this approach permits to
work with (q3) instead of (s1) and without having to require (s3).
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Having obtained a bounded Palais-Smale sequence of the mountain pass level
it remains to prove its convergence, up to a subsequence. It is on that point that
requiring (s2) instead of (q4) proved to be necessary in the approach developed in
[22]. Here, combining recent developments [10, 8] as well as classical results due
to Brezis and Lieb [7], we manage to show that only hypothesis (q4) is needed.

This being said, we acknowledge that our proofs strongly rely, at several key
points, on elements first established in [22].

Lastly, we point out that our assumption (g3), which implies that the func-
tion γ(t) lies between two positive constants, forbids to consider certain classes
of operators, such as the p-Laplacian or more generally -Laplacian operators as
defined in [10], see also [17]. However, to the best of our knowledge, our problem
does not fall into a well-defined category. In particular, the fact that the term u2

is present inside the function γ(t) seems to be new, apart from [21] obviously, and
likely some elements developed in this paper will prove useful to consider versions
of problem (1.3) set on the whole space RN .

Further comments about main hypotheses. A basic example of poten-
tials that fulfill all hypotheses (q1)–(q4) in the statement of Theorems 2.2 and 2.4
is given by

�(t) = At + B[(1 + t)p/2 − 1],

where A, B are positive numbers and 1 < p < 2. In this case, the energy functional
associated to problem (1.3) is a double-phase variational integral, according to the
terminology of P. Marcellini and G. Mingione. This corresponds to quantities of
the type

(2.2)
∫

�
(|∇u|p + a(x)|∇u|2)dx (1 < p < 2)

in the expression of the energy defined by (3.2), where a(x) is a non-negative poten-
tial. Functionals of this type have been studied for the first time by P. Marcellini [19,
20], in relationship with patterns arising in nonlinear elasticity; see J. Ball [1, 2].
More precisely, Marcellini studied variational integrals of the type

∫
� f (x,∇u)dx,

where f = f (x, ξ) is a function with unbalanced growth satisfying

c1 |ξ|p ≤ |f (x, ξ)| ≤ c2 (1 + |ξ|2) for all (x, u) ∈ � × RN,

for some positive constants c1 and c2. The study of non-autonomous functionals
characterized by the fact that the energy density changes its ellipticity and growth
properties according to the point has been continued in a series of remarkable
papers by G. Mingione et al. [5, 3, 9]. These contributions are in relationship
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with the papers of V. Zhikov [29, 30], which describe the behavior of phenomena
arising in nonlinear elasticity. In fact, Zhikov intended to provide models for
strongly anisotropic materials in the context of homogenization and Lavrentiev-
type phenomena. In particular, he initiated the qualitative analysis of the energy
functional defined in (2.2), where the modulating coefficient a(x) dictates the
geometry of the composite made of two differential materials, with hardening
exponents p and 2, respectively.

Notation. For N ≥ 1, 1 ≤ p < ∞, Lp(�) is the usual Lebesgue space with
norm ||u||pp :=

∫
� |u|p dx. The Sobolev space H1

0(�) is endowed with its equivalent
norm ||u||2 =

∫
� |∇u|2 dx. We denote by ′ →′, respectively by ′ ⇀′, the strong

convergence, respectively the weak convergence in corresponding space. Finally,
for a function u ∈ H1

0(�), we recall that u+ = max{u, 0} and u− = −min{u, 0}.

3 Preliminaries

We recall that u0 ∈ H1
0 (�) is a weak solution to problem (1.3) if

∫
�

γ
(u2

0 + |∇u0|2
2

)
(u0v + ∇u0.∇v) dx =

∫
�

f (u0)v dx +
∫

�
hv dx ∀v ∈ H1

0(�).

Thereafter, we shall often consider the following auxiliary problem:

(3.1)

⎧⎨
⎩

−div [γ( u2+|∇u|2
2 )∇u] + γ( u2+|∇u|2

2 )u = f (u+) + h in �,

u = 0 on ∂�.

Lemma 3.1. Assume that γ ≥ γ0 > 0 on [0,∞) and h ≥ 0. Then any solution
u ∈ H1

0(�) to problem (3.1) is non-negative. In particular, u ∈ H1
0(�) is a solution

to problem (1.3).

Proof. Let u ∈ H1
0(�) be a solution to problem (3.1). Multiplying (3.1) by u−

and integrating we obtain

∫
�

γ
(u2 + |∇u|2

2

)
(uu− + ∇u∇u−) dx =

∫
�

f (u+)u− dx +
∫

�
hu− dx.

Therefore, using that
∫
� hu− dx ≥ 0 (since h ≥ 0) and

∫
� f (u+)u− dx = 0, we obtain

that

−
∫

�
γ
(u2 + |∇u|2

2

)
(|u−|2 + |∇u−|2) dx ≥ 0.

It follows that u− = 0, hence u ≥ 0 is a solution to problem (1.3). �
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Associated to (3.1) we introduce the functional

(3.2) E(u) :=
∫

�
�
(u2 + |∇u|2

2

)
dx −

∫
�

F(u+) dx −
∫

�
hu dx u ∈ H1

0(�)

where F(t) :=
∫ t
0 f (s) ds. For later use we also introduce, for v ∈ H1

0(�),

(v) :=
∫

�
�
(v2 + |∇v|2

2

)
dx.

Lemma 3.2. Assume that f : [0,∞) → R is continuous and satisfies (f2).
Then the following properties hold,

(i) Assume that γ ∈ L∞(�). Then E ∈ C1(H1
0(�)) with

(3.3) E′(u)v =
∫

�
γ
(u2 + |∇u|2

2

)
(uv +∇u∇v) dx−

∫
�

f (u+)v dx−
∫

�
hv dx.

(ii) Moreover, if (q2) is satisfied, then E is weakly sequentially lower semicontin-
uous.

Proof. For Part (i) it suffices to use [27, C.1 Theorem]. Here we only need to
use the fact that γ is bounded from above.

For Part (ii) we follow closely [22, Proposition 3.1]. Let wn ⇀ w weakly
in H1

0(�). Because of the compactness of the Sobolev embeddings of H1
0(�)

into Lq(�) for any q ∈ [2, 2∗) it is enough to prove that

(w) ≤ lim inf
n→∞ (wn).

For u ∈ H1
0(�) and v ∈ H1

0(�), let y = (u,∇u) and z = (v,∇v) so that

y · z = uv + ∇u · ∇v.

Setting g(s) := �(s2) and using (q2) we have

(3.4)

(u) − (v ) =
∫

�
g
( |y|√

2

)
− g

( |z|√
2

)
dx ≥

∫
�

g′
( |z|√

2

)( |y| − |z|√
2

)
dx

=
∫

�
γ
( |z|2

2

)√
2|z|

( |y| − |z|√
2

)
dx

=
∫

�
γ
( |z|2

2

)
|z|(|y| − |z|) dx.

Also, from Part (i),

(3.5)
′(v)(u − v) =

∫
�

γ
( |z|2

2

)
(v (u − v) + ∇v · ∇(u − v)) dx

=
∫

�
γ
( |z|2

2

)
z · (y − z) dx.
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From (3.4) and (3.5), we see that, for all u ∈ H1
0(�) and v ∈ H1

0(�),

(3.6) (u)−(v)−′(v)(u− v) ≥
∫

�
γ
( |z|2

2

)
(|z|(|y|− |z|)− z · (y− z)) dx ≥ 0.

Choosing u = wn and v = w in (3.6), this yields

(w) ≤ (wn) − ′(w)(wn − w)

where ′(w)(wn − w) → 0 since ′(w) is in the dual of H1
0(�) and wn ⇀ w

weakly in H1
0(�). �

To prove the convergence of some Palais–Smale sequences we shall make use
of the following three technical results. The first one is a particular case of [16,
Lemma 6] that we recall here for completeness.

Proposition 3.3. LetX be a finite-dimensional realHilbert spacewith norm |·|
and scalar product 〈·, ·〉. Let β : X → X be a continuous function which is strictly

monotone, that is,

(3.7) 〈β(ξ) − β(ξ̄), ξ − ξ̄〉 > 0, for every ξ, ξ̄ ∈ X with ξ �= ξ̄.

Let (ξn)n∈N ⊂ X and ξ ∈ X be such that

lim
n→∞〈β(ξn) − β(ξ), ξn − ξ〉 = 0.

Then (ξn)n∈N converges to ξ in X.

Our next result is a version of already existing related properties; see in partic-
ular [10, Proposition 2.5]. We thank the authors of [10] who pointed out to us such
results.

Lemma 3.4. Assume that (q3) − (q4) hold. The assumptions of Proposition

3.3 are satisfied with the choice X = RN+1 equipped with the standard euclidian

scalar product 〈·, ·〉 and β : RN+1 → RN+1 given by

β(ξ) = γ
( |ξ|2

2

)
ξ.

Proof. Let us split the proof into two parts. In the first part we consider
ξ, ξ̄ ∈ RN+1 satisfying |ξ| = |ξ̄|. We have that

〈
γ
( |ξ|2

2

)
ξ − γ

( |ξ̄|2
2

)
ξ̄, ξ − ξ̄

〉
= γ

( |ξ|2
2

)
|ξ − ξ̄|2,
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and thus if ξ �= ξ̄ this quantity is strictly positive. Next, we assume that |ξ| �= |ξ̄|.
By the Cauchy-Schwartz inequality we get

〈
γ
( |ξ|2

2

)
ξ − γ

( |ξ̄|2
2

)
ξ̄, ξ − ξ̄

〉
≥ γ

( |ξ|2
2

)
|ξ|(|ξ| − |ξ̄|) + γ

( |ξ̄|2
2

)
|ξ̄|(|ξ̄| − |ξ|)

= γ
( |ξ|2

2

)
|ξ| − γ

( |ξ̄|2
2

)
|ξ̄|(|ξ| − |ξ̄|).

Recalling that the function s → γ( s2

2 )s is strictly increasing (see Remark 2.3) the
conclusion follows. �

Lemma 3.5. Assume that (g3) − (g4) hold. If (un)n∈N ⊂ H1
0(�) is such that

′(un)(un − u) → 0, then ∇un(x) → ∇u(x) a.e. in �.

Proof. Since un ⇀ u weakly in H1
0(�), we also have that ′(u)(un − u) → 0

and thus

(3.8) [′(un) − ′(u)](un − u) → 0.

Introducing, for each fixed x ∈ �, the notation,

yn(x) = (un(x),∇un(x)) ∈ RN+1 and yn(x) = (u(x),∇u(x)) ∈ RN+1,

we see from (3.3), taking (3.8) into account, that

[′(un) − ′(u)](un − u) =
∫

�

〈
γ
( |yn|2

2

)
yn − γ

( |y|2
2

)
y, yn − y

〉
dx → 0.

Here 〈·, ·〉 is the standard euclidian scalar product on RN+1. It follows that

〈
γ
( |yn|2

2

)
yn − γ

( |y|2
2

)
y, yn − y

〉
→ 0 in L1(�)

and thus that
〈
γ
( |yn|2

2

)
yn − γ

( |y|2
2

)
y, yn − y

〉
→ 0 a.e. x ∈ �.

At this point, in view of Proposition 3.3 and Lemma 3.4, we deduce that

yn(x) → y(x) in RN+1

for almost every x ∈ �. In particular ∇un(x) → ∇u(x), a.e. in �. �
Finally, in order to prove Theorem 2.4, we shall also need the following result

which says that for a wide class of functionals, having a mountain pass geometry,
almost every functional in this class has a bounded Palais–Smale sequence at the
mountain pass level. This is [14, Theorem 1.1].
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Theorem 3.6. Let X be a Banach space equipped with the norm ‖.‖ and let

J ⊂ R+ be an interval. We consider a family (Iμ)μ∈J of C1-functionals on X of the
form

Iμ(u) = A(u) − μB(u) ∀μ ∈ J,

where B(u) ≥ 0,∀u ∈ X and such that either A(u) → +∞ or B(u) → +∞ as
||u|| → ∞.

We assume there are two points (v1, v2) in X such that, setting

� = {σ ∈ C([0, 1],X)/σ(0) = v1, σ(1) = v2},
we have, for all μ ∈ J

cμ := inf
σ∈�

max
t∈[0,1]

Iμ(σ(t)) > max{Iμ(v1), Iμ(v2)}.

Then, for almost every μ ∈ J, there is a sequence (vn)n∈N ⊂ X such that
(i) (vn)n∈N is bounded;

(ii) Iμ(vn) −→
n→∞ cμ;

(iii) I ′
μ(vn) −→

n→∞ 0 in the dual X−1 of X.

4 Sublinear growth case

In this section we are concerned with the proof of Theorem 2.2.

Lemma 4.1. Assume that (g1) and (q1) hold. Then the functional E is coer-

cive.

Proof. Assumption (g1) implies that

G(t) = o(t2) as t → ±∞.

Thus, for ν > 0 fixed, there exists A > 0 such that for all t ∈ R

νG(t) ≤ γmin

2
t2 + A.

Since �(t) ≥ γmint, we have for all u ∈ H1
0(�)

E(u) ≥ γmin

2

∫
�
(u2 + |∇u|2)dx − γmin

2

∫
�

u2dx − A |�|

=
γmin

2
‖u‖2 − A |�|,

hence E is coercive and bounded from below. �
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We now can prove the first part of the theorem.

Proof of Theorem 2.2(i). According to Lemmas 3.2 and 4.1, the func-
tional E admits a global minimum u ∈ H1

0(�), which is thus a solution to (3.1).
It corresponds, as shown in Lemma 3.1, to a non-negative solution of (1.3). In
addition, u is nontrivial since h �≡ 0. �

From now on, we consider the specific case h ≡ 0.

Lemma 4.2. If h ≡ 0, there exists ν1 > 0 such that for all ν > ν1,

inf
u∈H1

0 (�)
E(u) < 0.

Proof. This result follows by using our hypothesis (g2). We arbitrarily
fix a compact set K ⊂ �. By Tietze’s extension theorem, there exists a map
w ∈ H1

0(�) ∩ C(�) such that w ≡ t0 in K and |w| ≤ t0 in �. Therefore
∫

�
G(w) dx = G(t0)|K| +

∫
�\K

G(w) dx ≥ G(t0)|K| − max
s∈[0,t0]

|G(s)| |�\K|.

This highlights that if |K| approaches |�| (hence, if |�\K| is small) then
∫

�
G(w) dx > 0.

On the other hand, we have by (q1) that �(t) ≤ γmaxt for all t ≥ 0. It follows that
for all ν sufficiently large we have

E(w) ≤ γmax

2

∫
�
(w2 + |∇w|2) dx − ν

∫
�

G(w) dx < 0

and the lemma is proved. �

Lemma 4.3. Assuming (g3), problem (1.3) does not have a nontrivial solution
for ν > 0 small.

Proof. Let ν > 0 be such that the problem (1.3) admits a nontrivial solution
u ∈ H1

0 (�). Using u as a test function we get that

∫
�

γ
(u2 + |∇u|2

2

)
(u2 + |∇u|2) dx =

∣∣∣∣ν
∫

�
g(u)u dx

∣∣∣∣ ≤ ν

∫
�
|g(u)||u| dx.

So, according to the assumption (g3), we obtain, for some constant C > 0,

∫
�

γ

(
u2 + |∇u|2

2

)
(u2 + |∇u|2) dx ≤ νC‖u‖2

2.
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Recalling that γ ≥ γmin > 0 we then get

γmin‖u‖2
2 ≤

∫
�

γ
(u2 + |∇u|2

2

)
(u2 + |∇u|2) dx.

By these two last inequalities, we deduce that there exists ν0 > 0 such that for all
0 < ν < ν0, problem (1.3) does not admit any nontrivial solution. �

Proof of Theorem 2.2(ii). From Lemma 4.2 we deduce that the global
minimum obtained as a consequence of Lemmas 3.2 and 4.1 is nontrivial if ν > 0
is sufficiently large and this proves Part (a). Now Part (b) follows directly from
Lemma 4.3. �

5 Linear growth case

In this section we deal with the proof of Theorem 2.4, which corresponds to a
linear growth of the nonlinearity in problem (1.3). Roughly speaking, assuming
that ||h||2 is sufficiently small, we shall prove that the functional E(u) possesses a
mountain pass geometry. A first solution, nontrivial if h �≡ 0, is then obtained as
a local minima. Finding a second solution, corresponding to the mountain pass
level, is more involved because of the lack of a priori bounds on the Palais–Smale
sequences. At this step we shall make use of the strategy developed by the first
author in [14], which relies on Theorem 3.6.

5.1 Existence of a local minima for E(u).

Lemma5.1. Assume that (f1)−(f2) and (q2)−(q3) hold. If ||h||2 is sufficiently
small, then there exist r > 0 and α > 0 such that for all u ∈ H1

0(�) with ‖u‖ = r,

E(u) ≥ α.

Proof. We write

(5.1) �
(1
2
(u2 + |∇u|2)

)
=
∫ 1

2 u2+ 1
2 |∇u|2

0
γ(s) ds =

∫ 1
2 u2

0
γ(s) ds+

∫ 1
2 u2+ 1

2 |∇u|2

1
2 u2

γ(s) ds.

Using (q3) we get

(5.2)
∫ 1

2 u2+ 1
2 |∇u|2

1
2 u2

γ(s) ds ≥ 1
2
γmin|∇u|2.

Let h(s) = γ(0) − γ(s). By the continuity of γ at 0 it follows that

H(s)
s

→ 0 as s → 0 where H(s) =
∫ s

0
h(t)dt.
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We can write

(5.3)
∫ 1

2 u2

0
γ(s) ds =

1
2
γ(0)u2 −

∫ 1
2 u2

0
h(s) ds =

1
2
γ(0)u2 − H

(u2

2

)
.

Now, defining G ∈ C([0,∞)) by G(0) = 0 and G(s) = 2
s H( s

2 ) if s > 0, we have that
H( u2

2 ) = G(u2) u2

2 and we deduce, using (5.1)–(5.3), that

(5.4) E(u) ≥
∫

�

(γ(0)u2 + γmin|∇u|2
2

− G(u2)u2

2

)
dx −

∫
�

F(u+) dx −
∫

�
hu dx.

In view of (f1)–(f2) there exist δ > 0 and C(δ) > 0 such that, for all t ∈ [0,∞),

(5.5) F(u+) ≤
(γ(0) + (γmin − δ)λ1

2

)
u2

+ + C(δ)up+1
+ .

It follows from (5.4)-(5.5) that there exist δ > 0 and C(δ) > 0 such that

E(u) ≥
∫

�

γ(0)u2 + (γmin − δ)|∇u|2
2

dx

+
δ

2

∫
�

|∇u|2dx − γ(0) + (γmin − δ)λ1

2

∫
�

u2
+ dx

− 1
2

∫
�

G(u2)u2dx − C(δ)
∫

�
up+1

+ dx −
∫

�
hu dx

≥ δ

2

∫
�

|∇u|2 dx − 1
2

∫
�

G(u2)u2 dx − C(δ)
∫

�
up+1

+ dx −
∫

�
hu dx.

We claim, arguing as in [22], that the term
∫
� G(u2)u2dx is negligible with

respect to
∫
� |∇u|2dx, provided that u ∈ H1

0(�) is such that ‖u‖ = r > 0 is small
enough. Indeed, we first notice that, fixing an arbitrary q ∈ (1, 2∗

2 ),

(5.6)
0 ≤

∫
�

G(u2)u2 dx ≤
(∫

�
G(u2)q

′
dx

) 1
q′ (∫

�
u2q dx

) 1
q

≤ C
(∫

�
G(u2)q

′
dx

) 1
q′
||u||2

where 1/q+1/q′ = 1 and for some constant C > 0. Now since G is a non-negative
bounded function on [0,∞), the map u �→ G(u2)q

′
is continuous from L2 (�) into

L1 (�). Since G(0) = 0 the claim follows from (5.6).
At this point, taking ||u|| small enough and since p > 1 we obtain that

E(u) ≥ δ

4

∫
�

|∇u|2 dx −
∫

�
hu dx ≥ δ

4

∫
�

|∇u|2 dx − ||h||2||u||2.

Finally, taking ||h||2 small enough the lemma follows. �
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Lemma 5.2. Assume that (f1)–(f2) and (q2)–(q3) hold and that ||h||2 is as in

Lemma 5.1. Then problem (1.3) admits a solution which is a local minimizer of E.
In addition, this solution is nontrivial if h �≡ 0.

Proof. We set
m := inf

u∈B(0,r)
E(u)

where r > 0 is given in Lemma 5.1. Now if (vn)n∈N ⊂ B(0, r) is a minimizing
sequence it is obviously bounded and we can assume that vn ⇀ v in H1

0(�). By
Lemma 3.2(ii) we deduce that E(v ) = m. The fact that v is a critical point of E(u)
follows since m ≤ E(0) = 0 < α. Clearly, v is nontrivial if h �≡ 0. �

5.2 A mountain pass geometry. Combined with Lemma 5.1, the next
lemma shows that the functional E has a mountain pass geometry around the origin
if ||h||2 is sufficiently small.

Lemma5.3. Assume that (f2)–(f3) holds and let ϕ1 > 0 be the first eigenfunc-
tion of the Laplace operator in H1

0(�). Then E(tϕ1) < 0 for all t ∈ R sufficiently

large.

Proof. We have, for any t > 0,

E(tϕ1) =
∫

�
�
( t2

2
(ϕ2

1 + |∇ϕ1|2)
)

dx −
∫

�
F(tϕ1) dx − t

∫
�

hϕ1 dx.

Observe that, since ϕ1 > 0, we get for any x ∈ �,

lim
t→∞

�( t2

2 (ϕ1(x)2 + |∇ϕ1(x)|2))
t2

=
γ(∞)

2
[ϕ1(x)

2 + |∇ϕ1(x)|2].
Also, since γ is bounded, we have for all x ∈ � and for some constant C > 0,

lim
t→∞

�( t2

2 (ϕ1(x)2 + |∇ϕ1(x)|2))
t2

≤ C[ϕ1(x)
2 + |∇ϕ1(x)|2].

Thus, by the Lebesgue dominated convergence theorem, we deduce that

(5.7)
lim
t→∞

1
t2

∫
�
�
( t2

2
(ϕ1(x)

2+|∇ϕ1(x)|2)
)

dx=
1
2

∫
�

γ(∞)[ϕ1(x)
2 + |∇ϕ1(x)|2] dx

=
1
2
γ(∞)(1 + λ1)

∫
�

ϕ1(x)
2 dx.

Next, by (f3), there are δ > 0 and C > 0 such that for all t > 0,

F(t) ≥ γ(∞)(1 + λ1 + δ)
2

t2 − C.
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It follows that

(5.8) lim sup
t→∞

1
t2

∫
�

F(tϕ1(x))dx ≥ γ(∞)(1 + λ1 + δ)
2

∫
�

ϕ1(x)
2dx.

From (5.7) and (5.8) we deduce that

lim sup
t→∞

E(tϕ1)
t2

≤ −δγ(∞)
2

∫
�

ϕ1(x)
2dx

proving the lemma. �

5.3 Existence of a suitable Palais–Smale sequence and proof of
Theorem 2.4. In view of Lemmas 5.1 and 5.3, the functional E has a mountain
pass geometry. The rest of the paper will be devoted to finding a critical point at the
mountain pass level and this will end the proof of Theorem 2.4. Actually we shall
exhibit a particular Palais–Smale sequence, at this level, for which it is possible
to show its convergence (thus to a critical point). With this aim the strategy, first
presented in [14], and which consists in embedding the problem into a family of
problems, will be put to work.

We set the continuous functions f1 : [0,∞) → R and f2 : [0,∞) → R such
that, for all t ∈ [0,∞),

f1(t) = max(f (t), 0) and f2(t) = f1(t) − f (t).

By definition f1(t) ≥ 0 for all t ∈ [0,∞). Also since (f3) implies that f (t) ≥ 0
for t ∈ [0,∞) sufficiently large, we see that f2(t) = 0 for t large and thus there
exists a K < ∞ such that, for all t ∈ [0,∞),

(5.9) F1(t) :=
∫ t

0
f1(s) ds ≥ 0 and F2(t) :=

∫ t

0
f2(s) ds ≥ −K.

Obviously we have∫
�

F(u+) dx =
∫

�
F1(u+) dx −

∫
�

F2(u+) dx.

Let J := (1−α, 1+α) for some α > 0 small. We define the family of C1-functionals
(Eμ)μ∈J on H1

0(�) by

Eμ(u) =
∫

�
�
(u2 + |∇u|2

2

)
dx − μ

∫
�

F1(u+) dx +
∫

�
F2(u+) dx −

∫
�

hu dx.

Setting A and B such that

∀u ∈ H1
0(�), A(u) =

∫
�

�
(u2 + |∇u|2

2

)
dx +

∫
�

F2(u+) dx −
∫

�
hu dx

and

B(u) =
∫

�
F1(u+) dx,
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we see that the family of C1-functionals (Eμ)μ∈J can be written as

∀u ∈ H1
0(�), Eμ(u) = A(u) − μB(u).

Let us show that this family satisfies the assumptions of Theorem 3.6. First we see
from (5.9) that B(u) ≥ 0, for all u ∈ H1

0(�). Now, using (q3) and again (5.9), it
follows that, for all u ∈ H1

0(�),

A(u) ≥ γ(∞)
2

‖u‖2 − ‖h‖2‖u‖2 + K

and thus it holds that A(u) → +∞ as ||u|| → ∞.

Finally, inspecting the proofs of Lemmas 5.1 and 5.3,we see that the conclusions
of these results still hold if we replace E by Eμ with μ ∈ J = (1 − α, 1 + α) for
a sufficiently small α > 0. Thus our family (Eμ)μ∈J satisfies the assumptions of
Theorem 3.6 and we deduce the existence of an increasing sequence (μn)n∈N such
that μn → 1 and Eμn has a bounded Palais–Smale sequence at the mountain pass
level cμn , for any n ∈ N.

The following lemma will be crucial to establish the convergenceof the bounded
Palais–Smale sequences for Eμ with μ ∈ J.

Lemma 5.4. Assume that (q3)–(q4) hold. Let (un)n∈N ⊂ H1
0(�), satisfying

un ⇀ u in H1
0(�) and ∇un → ∇u a.e. on �, be such that

(5.10) lim sup
n→∞

(un) ≤ (u).

Then, up to a subsequence, un → u strongly in H1
0(�).

Proof. We make use of classical results from [7]. Adopting the notations
introduced there, we write fn = f + gn with

fn =
(u2

n + |∇un|2
2

) 1
2

and f =
(u2 + |∇u|2

2

) 1
2
.

Note that, passing if necessary to a subsequence still denoted (un)n∈N, we have
gn → 0 a.e. Now setting j(s) := �(s2) we know, from (q3), that the function j is
continuous, convex on R with j(0) = 0. In view of [7, Example (b)], where we take
k = 2, we can apply [7, Theorem 2] to deduce that

∫
�

j(f + gn) − j(gn) − j(f ) dx → 0,

namely that
(un) − (un − u) − (u) → 0.
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Now, in view of (5.10), we deduce that

(5.11) (un − u) → 0.

At this point, recalling that �(0) = 0 and �′(s) = γ(s) ≥ γmin > 0 and thus that
�(s) ≥ γmins, we deduce from (5.11) that un → u in H1

0(�). �

Lemma5.5. Assume that (f1)–(f2) and (q3)–(q4) are fulfilled. Every bounded
Palais–Smale sequence for Eμ with μ ∈ J admits a convergent subsequence.

Proof. Let (un)n∈N ⊂ H1
0(�) be a bounded Palais–Smale sequence for Eμ. We

can assume without restriction that un → u weakly in H1
0(�) and un → u in Lq(�),

for any q ∈ [2, 2∗[. Using that E′
μ(un)(u − un) → 0 it readily follows using the

strong convergence properties that ′(un)(u−un) → 0 from which we deduce, see
Lemma 3.5, that

(5.12) ∇un(x) → ∇u(x), a.e. in �.

Also, from (3.6), where we have set u = u and v = un, we know that

(5.13) (u) − (un) − ′(un)(u − un) ≥ 0.

This implies that

(5.14) lim sup
n→∞

(un) ≤ (u).

At this point, in viewof (5.12) and (5.14), the conclusion follows fromLemma5.4.�
In view of Lemma 5.5 we deduce the existence of a sequence

(μn, un)n∈N ⊂ J × H1
0(�)

such that:
• μn −→

n→∞ 1 and (μn)n∈N is increasing.

• un ≥ 0, Eμn(un) = cμn and E′
μn

(un) = 0 in the dual H−1
0 (�).

Proposition 5.6. The sequence (un)n∈N is bounded.

Proof. Using un as a test function, we get that

E′
μn

(un)un =
∫

�
γ
(u2

n + |∇un|2
2

)
(u2

n + |∇un|2) dx − μn

∫
�

f1((un)+)un dx

+
∫

�
f2((un)+)un dx −

∫
�

hun dx = 0.
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Thus, using (q3),

(5.15) γ(∞)
∫

�
|∇un|2 dx ≤ μn

∫
�

f1((un)+)un dx −
∫

�
f2((un)+)un dx +

∫
�

hun dx.

Observe that if we know that (un)n∈N is bounded in L2(�), (5.15) in combination
with the linear growth of f imply that (un)n∈N is bounded in H1

0(�), too. Let us
thus prove that (un)n∈N is bounded in L2(�). Arguing by contradiction, we assume
that ‖un‖2 → ∞. Set vn = un/‖un‖2, hence ‖vn‖2 = 1. Let us show that (vn)n∈N is
bounded in H1

0(�). Dividing E′
μn

(un)un = 0 by ||un||22 we get
∫

�
γ
(u2

n + |∇un|2
2

)
(v 2

n + |∇vn|2) dx = μn

∫
�

f1((un)+)
un

||un||22
dx

−
∫

�
f2((un)+)

un

||un||22
dx −

∫
�

h
un

||un||22
dx.

But, by (f4), ‖μnf1((un)+)− f2((un)+)‖2 ≤ C(1+‖un‖2) and thus the right-hand side
is bounded. Since γ(s) ≥ γ(∞) > 0 for any s ∈ [0,∞) we deduce that (vn)n∈N is
bounded in H1

0(�). So, up to a subsequence,

vn ⇀ v ≥ 0 in H1
0(�) and vn → v ≥ 0 in L2(�).

By (f3), there exists A > γ(∞)(1 + λ1) and B > 0 such that

f (t) ≥ At − B for all t ∈ [0,∞).

Assuming that n ∈ N is large enough we can assume, modifying A if necessary,
that

(5.16) μnf1(t) − f2(t) ≥ At − B for all t ∈ [0,∞).

Now, from the fact that E′
μn

(un)
φ1

||un||2 = 0, we get, using (5.16),

(5.17)

∫
�

γ
(u2

n + |∇un|2
2

)(
∇vn · ∇ϕ1 + vnϕ1

)
dx

≥ A
∫

�
vnϕ1dx − B

‖un‖2

∫
�

ϕ1 dx − 1
‖un‖2

∫
�

hϕ1 dx.

Using Proposition 6.1, which will be proved in the Appendix, the left-hand side of
(5.17) tends to

γ(∞)
∫

�
(vϕ1 + ∇v · ∇ϕ1) dx = γ(∞)(1 + λ1)

∫
�

vϕ1 dx.

Thus, as n → ∞, we get from (5.17)

γ(∞)(1 + λ1)
∫

�
vϕ1 dx ≥ A

∫
�

vϕ1 dx,

which contradict the assumption A > γ(∞)(1 + λ1) since v ≥ 0 and v �≡ 0. �
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Proposition 5.7. The sequence (un)n∈N is a (bounded)Palais–Smale sequence

for E(u).

Proof. Since the map μ �→ cμ is continuous from the left (see [14, Lemma
2.3] for the proof) we get

• E(un) = Eμn(un) + (μn − 1)B(un) −→
n→∞ ( lim

n→∞cμn = c),

• E′(un) = E′
μn

(un) + (μn − 1)B′(un) −→
n→∞ 0 in the dual H−1

0 (�).

Namely, (un)n∈N is a (bounded) Palais–Smale sequence for E at the mountain pass
level c. �

At this point we can present the

Proof of Theorem 2.4. Part (i) is a direct consequence of Lemma 5.2. To
prove Part (ii) it suffices to observe that by Lemma 5.6 the bounded Palais–Smale
sequence (un)n∈N converges strongly. �

6 Appendix

Proposition 6.1. In the setting of Lemma 5.6, we have, ∀w ∈ H1
0 (�) ,

(6.1)
∫

�
γ

(
u2

n + |∇un|2
2

)
(vnw +∇vn ·∇w) dx −→

n→∞ γ(∞)
∫

�
(vw +∇v ·∇w) dx.

Proof. We follow closely the proof of [22, Lemma 7.2]. Setting tn = 1
||un||2 and

using the weak convergence of vn ⇀ v in H1
0(�), we see that (6.1) is equivalent to

∫
�

(
γ
(v 2

n + |∇vn|2
2t2n

)
γ(∞)

)
(vnw + ∇vn · ∇w) dx −→

n→∞ 0.

Let zn = (vn,∇vn) and y = (w,∇w). Then, zn, y ∈ L2(�)N+1 and, since (vn)n∈N is
bounded in H1

0(�), there exists a constant Z > 0 such that
∫
� |zn|2dx ≤ Z for all

n ∈ N.

Also, setting Am
n = {x ∈ �/|zn|2 ≤ 1

m} and Bm
n = �\Am

n for (m, n) ∈ N2, we
have
∫

�

(
γ
(v 2

n + |∇vn|2
2t2n

)
− γ(∞)

)
(vnw + ∇vn∇w) dx

=
∫

�

(
γ
( |zn|2

2t2n

)
− γ(∞)

)
〈zn, y〉 dx

=
(∫

Am
n

+
∫

Bm
n

)[(
γ
( |zn|2

2t2n

)
− γ(∞)

)
〈zn, y〉 dx

]
.
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For all (m, n) ∈ N2, since γ(s) is bounded by (q3) there exists C > 0 such that

∫
Am

n

∣∣∣γ( |zn|2
2t2n

)
− γ(∞)

∣∣∣|zn||y| dx ≤ C√
m

∫
Am

n

|y| dx ≤
(
C

√ |�|
m

)(∫
Am

n

|y| 2 dx
) 1

2

.

Also, for every m ∈ N, there exists Sm > 0 such that |γ(s) − γ(∞)| < 1
m for all

s ≥ Sm. Since tn → 0, there exists N(m) > 0 such that t2n ≤ 1
2mSm

for all n ≥ N(m).
Hence |γ( 1

2t2n
|zn|2) − γ(∞)| < 1

m n ≥ N(m) on Bm
n and so

∫
Bm

n

∣∣∣γ( |zn|2
2t2n

)
− γ(∞)

∣∣∣|zn||y| dx ≤ 1
m

(∫
�

|zn|2dx
) 1

2
(∫

�
|y|2dx

) 1
2

≤
√

Z
m

(∫
�

|y|2dx
) 1

2

.

Thus, it follows that, ∀m ∈ N, ∀n ∈ N, n ≥ N(m),

∫
�

∣∣∣γ( |zn|2
2t2n

)
− γ(∞)

∣∣∣|zn||y| dx ≤
(
C

√ |�|
m

+

√
Z

m

)(∫
�

|y|2dx
) 1

2

,

from which we deduce that
∫

�

∣∣∣γ( |zn|2
2t2n

)
− γ(∞)

∣∣∣|zn||y| dx −→
n→∞ 0,

ending the proof. �
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16 ROUTE DE GRAY
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