Explosive solutions of elliptic equations with absorption and non-linear gradient term

MARIUS GHERGU, CONSTANTIN NICULESCU and VICENŢIU RĂDULESCU*
Department of Mathematics, University of Craiova, 1100 Craiova, Romania
*Corresponding author. E-mail: radules@ann.jussieu.fr

MS received 22 February 2002; revised 23 May 2002

Abstract

Let f be a non-decreasing C^{1}-function such that $f>0$ on $(0, \infty), f(0)=0$, $\int_{1}^{\infty} 1 / \sqrt{F(t)} \mathrm{d} t<\infty$ and $F(t) / f^{2 / a}(t) \rightarrow 0$ as $t \rightarrow \infty$, where $F(t)=\int_{0}^{t} f(s) \mathrm{d} s$ and $a \in(0,2]$. We prove the existence of positive large solutions to the equation $\Delta u+$ $q(x)|\nabla u|^{a}=p(x) f(u)$ in a smooth bounded domain $\Omega \subset \mathbf{R}^{N}$, provided that p, q are non-negative continuous functions so that any zero of p is surrounded by a surface strictly included in Ω on which p is positive. Under additional hypotheses on p we deduce the existence of solutions if Ω is unbounded.

Keywords. Explosive solution; semilinear elliptic problem; entire solution; maximum principle.

1. Introduction and the main results

The aim of this paper is to study the following semilinear elliptic problem

$$
\begin{cases}\Delta u+q(x)|\nabla u|^{a}=p(x) f(u), & \text { in } \Omega \tag{1}\\ u \geq 0, u \not \equiv 0, & \text { in } \Omega\end{cases}
$$

where $\Omega \subset \mathbf{R}^{N}(N \geq 3)$ is a smooth domain (bounded or possibly unbounded) with compact (possibly empty) boundary. We assume throughout this paper that $a \leq 2$ is a positive real number, p, q are non-negative functions such that $p \not \equiv 0, p, q \in C^{\overline{0, \alpha}}(\bar{\Omega})$ if Ω is bounded, and $p, q \in C_{\mathrm{loc}}^{0, \alpha}(\Omega)$, otherwise. The non-linearity f is assumed to fulfill

$$
\begin{equation*}
f \in C^{1}[0, \infty), f^{\prime} \geq 0, f(0)=0 \text { and } f>0 \text { on }(0, \infty) . \tag{f1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{1}^{\infty}[F(t)]^{-1 / 2} \mathrm{~d} t<\infty, \quad \text { where } \quad F(t)=\int_{0}^{t} f(s) \mathrm{d} s \tag{f2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{F(t)}{f^{2 / a}(t)} \quad \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{f3}
\end{equation*}
$$

The condition (f2) is called Keller-Osserman condition (see [5,11]). We also point out that the increasing non-linearity f is called an absorption term.

Remarks

(1) The above conditions hold provided that $f(t)=t^{k}, k>1$ and $0<a<2 k /(k+1)$ (<2), or $f(t)=\mathrm{e}^{t}-1$, or $f(t)=\mathrm{e}^{t}-t$ and $a<2$.
(2) By (f1) and (f3) it follows that $f / F^{a / 2} \geq \beta>0$ for t large enough, that is, $\left(F^{1-a / 2}\right)^{\prime} \geq$ $\beta>0$ for t large enough which yields $0<a \leq 2$.
(3) Conditions (f2) and (f3) imply $\int_{1}^{\infty} \mathrm{d} t / f^{1 / a}(t)<\infty$.

We are mainly interested in finding properties of large (explosive) solutions of (1), that is, solutions u satisfying $u(x) \rightarrow \infty$ as dist $(x, \partial \Omega) \rightarrow 0$ (if $\Omega \not \equiv \mathbf{R}^{N}$), or $u(x) \rightarrow \infty$ as $|x| \rightarrow \infty$ (if $\Omega=\mathbf{R}^{N}$). In the latter case the solution is called an entire large (explosive) solution.

Cîrstea and Rădulescu [2] proved the existence of large solutions to (1) in the case $q \equiv 0$. The aim of this paper is to study the influence of the non-linear gradient term $|\nabla u|^{a}$. It turns out that the presence of this term can have significant influence on the existence of a solution, as well as on its asymptotic behavior. Problems of this type appear in stochastic control theory and have been first studied by Lasry and Lions [8]. The corresponding parabolic equation was considered in Quittner [12]. In terms of the dynamic programming approach, an explosive solution of (1) corresponds to a value function (or Bellman function) associated to an infinite exit cost (see [8]).

Bandle and Giarrusso [1] studied the existence of a large solution of problem (1) in the case $p \equiv 1, q \equiv 1$ and Ω bounded, while Lair and Wood [7] studied the sublinear case if $p \equiv 1$. Giarrusso [4] also studied the asymptotic behavior of the explosive solution under the same assumptions as in [1].

As observed in [1], the simplest case is $a=2$, which can be reduced to a problem without gradient term. Indeed, if u is a solution of (1) for $q \equiv 1$, then the function $v=\mathrm{e}^{u}$ satisfies

$$
\begin{cases}\Delta v=p(x) v f(\ln v) & \text { in } \Omega \\ v(x) \rightarrow+\infty & \text { if } \operatorname{dist}(x, \partial \Omega) \rightarrow 0\end{cases}
$$

We shall therefore mainly consider the case where $0<a<2$.
Our first result concerns the existence of a large solution to problem (1) when Ω is bounded.

Theorem 1. Suppose Ω is bounded and p satisfies
(p1) For every $x_{0} \in \Omega$ with $p\left(x_{0}\right)=0$, there exists a domain $\Omega_{0} \ni x_{0}$ such that $\overline{\Omega_{0}} \subset \Omega$ and $p>0$ on $\partial \Omega_{0}$.
Then problem (1) has a positive large solution.
Note that, by the maximum principle, a solution of (1) provides an upper bound for any solution of

$$
\Delta u=p(x) g(u, \nabla u) \quad \text { in } \Omega,
$$

where

$$
g(u, \xi) \geq f(u)-|\xi|^{a}, \quad \forall u \in \mathbf{R}, \forall \xi \in \mathbf{R}^{N}
$$

The next purpose of the paper is to prove the existence of an entire large solution for (1). Our result in this case is

Theorem 2. Assume that $\Omega=\mathbf{R}^{N}$ and that problem (1) has at least a solution. Suppose that p satisfies the condition
(p1)' There exists a sequence of smooth bounded domains $\left(\Omega_{n}\right)_{n \geq 1}$ such that $\overline{\Omega_{n}} \subset \Omega_{n+1}$, $\mathbf{R}^{N}=\cup_{n=1}^{\infty} \Omega_{n}$, and (p 1) holds in Ω_{n}, for any $n \geq 1$.

Then there exists a classical solution U of (1) which is a maximal solution if p is positive.
If p verifies the additional condition
(p2) $\quad \int_{0}^{\infty} r \Phi(r) \mathrm{d} r<\infty$, where $\Phi(r)=\max \{p(x):|x|=r\}$,
then U is an entire large solution of (1).
An example of function p satisfying both the conditions (p 1$)^{\prime}$ and (p 2), with p vanishing in every neighborhood of infinity is given in [1].

Theorem 3. Suppose that $\Omega \neq \mathbf{R}^{N}$ is unbounded and that problem (1) has at least a solution. Assume that p satisfies condition (p 1$)^{\prime}$ in Ω. Then there exists a classical solution U of problem (1) which is maximal solution if p is positive.

If $\Omega=\mathbf{R}^{N} \backslash \overline{B(0, R)}$ and p satisfies the additional condition (p2), with $\Phi(r)=0$ for $r \in[0, R]$, then the solution U of (1) is a large solution that blows-up at infinity.

Our paper is organized as follows. In $\S 2$ we give an auxiliary result concerning problem (1) for Ω bounded. In $\S 3$ we prove Theorem 1 while in $\S 4$ we prove Theorems 2 and 3. In the last part of the paper we prove the following necessary condition for the existence of entire large solutions to eq. (1) if p satisfies (p2), and for which f is not assumed to satisfy (f2), and p is not required to be so regular as before. More precisely, we prove
Theorem 4. Assume that $p \in C\left(\mathbf{R}^{N}\right)$ is a non-negative and non-trivial function which satisfies (p2). Let f be a function satisfying assumption (f1). Then condition

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\mathrm{d} t}{f(t)}<\infty \tag{2}
\end{equation*}
$$

is necessary for the existence of entire large solutions to (1).
The above results also apply to problems on Riemannian manifolds if Δ is replaced by the Laplace-Beltrami operator

$$
\Delta_{B}=\frac{1}{\sqrt{c}} \frac{\partial}{\partial x_{i}}\left(\sqrt{c} a_{i j}(x) \frac{\partial}{\partial x_{i}}\right), \quad c:=\operatorname{det}\left(a_{i j}\right),
$$

with respect to the metric $\mathrm{d} s^{2}=c_{i j} \mathrm{~d} x_{i} \mathrm{~d} x_{j}$, where $\left(c_{i j}\right)$ is the inverse of $\left(a_{i j}\right)$. In this case our results apply to concrete problems arising in Riemannian geometry (see, e.g., Li [9] and Loewner-Nirenberg [10]). For instance, if Ω is replaced by the standard N sphere $\left(S^{N}, g_{0}\right), \Delta$ is the Laplace-Beltrami operator $\Delta_{g_{0}}$ and $f(u)=(N-2) /[4(N-$ 1)] $u^{(N+2) /(N-2)}$, we find the prescribing scalar curvature equation on S^{N}.

The proofs are essentially based on the maximum principle for non-linear elliptic equations and we also use the sub- and super-solutions method.

2. An auxiliary result

Lemma 1. Let Ω be a bounded domain. Assume that $p, q \in C^{0, \alpha}(\bar{\Omega})$ are non-negative functions, $0<a<2$ is a real number, f satisfies (f 1) and $g: \partial \Omega \rightarrow(0, \infty)$ is continuous. Then the boundary value problem

$$
\begin{cases}\Delta u+q(x)|\nabla u|^{a}=p(x) f(u) & \text { in } \Omega \tag{3}\\ u=g & \text { on } \partial \Omega \\ u \geq 0, u \not \equiv 0 & \text { in } \Omega\end{cases}
$$

has a classical solution. Furthermore, if p is positive and f is strictly increasing, then the solution is unique.

Proof. First we notice that the function $u^{+}(x)=n$ is a super-solution of problem (3), if n is large enough. In order to find a positive sub-solution, we apply Theorem 5 in [2] (see also [3]). Hence the problem

$$
\begin{cases}\Delta u=p(x) f(u) & \text { in } \Omega \\ u=g & \text { on } \partial \Omega \\ u \geq 0, u \not \equiv 0 & \text { in } \Omega\end{cases}
$$

has a unique classical solution v, which is positive. Thus $u_{-}=v$ is a positive sub-solution of problem (3). Therefore this problem has at least a positive solution u. Furthermore, taking into account the regularity of p, q and f, a standard bootstrap argument based on Schauder and Hölder regularity shows that $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$.

Let us now assume that u_{1} and u_{2} are arbitrary solutions of (3). In order to prove the uniqueness, it is enough to show that $u_{1} \geq u_{2}$ in Ω. We claim that

$$
\begin{equation*}
u_{2}(x) \leq u_{1}(x) \quad \text { for any } x \in \Omega \tag{4}
\end{equation*}
$$

Suppose the contrary. Due to the fact that (4) is obviously fulfilled on $\partial \Omega$, we deduce that

$$
\max _{x \in \bar{\Omega}}\left\{u_{2}(x)-u_{1}(x)\right\}
$$

is achieved in Ω. At that point, say x_{0}, we have $\nabla\left(u_{1}-u_{2}\right)\left(x_{0}\right)=0$ and

$$
\begin{aligned}
0 \geq & \Delta\left(u_{2}\left(x_{0}\right)-u_{1}\left(x_{0}\right)\right) \\
= & p\left(x_{0}\right)\left(f\left(u_{2}\left(x_{0}\right)\right)-f\left(u_{1}\left(x_{0}\right)\right)\right) \\
& \quad-q\left(x_{0}\right)\left(\left|\nabla u_{1}\left(x_{0}\right)\right|^{a}-\left|\nabla u_{2}\left(x_{0}\right)\right|^{a}\right) \\
= & p\left(x_{0}\right)\left(f\left(u_{2}\left(x_{0}\right)\right)-f\left(u_{1}\left(x_{0}\right)\right)\right)>0 .
\end{aligned}
$$

This contradiction concludes our proof.

3. Existence results for bounded domains

Proof of Theorem 1. By Lemma 1, the boundary value problem

$$
\begin{cases}\Delta v_{n}+q(x)\left|\nabla v_{n}\right|^{a}=\left(p(x)+\frac{1}{n}\right) f\left(v_{n}\right) & \text { in } \Omega \\ v_{n}=n & \text { on } \partial \Omega \\ v_{n} \geq 0, v_{n} \not \equiv 0 & \text { in } \Omega\end{cases}
$$

has a unique positive solution, for any $n \geq 1$.

Let us notice first that the sequence $\left(v_{n}\right)$ is non-decreasing. Indeed, by Lemma 1 , the boundary value problem

$$
\begin{cases}\Delta \zeta+q(x)|\nabla \zeta|^{a}=\left(\|p\|_{\infty}+1\right) f(\zeta) & \text { in } \Omega \\ \zeta=1 & \text { on } \partial \Omega \\ \zeta>0 & \text { in } \Omega\end{cases}
$$

has a unique solution. Using the same arguments as in the proof of Lemma 1 we deduce that

$$
\begin{equation*}
0<\zeta \leq v_{1} \leq \cdots \leq v_{n} \leq \cdots, \quad \text { in } \Omega \tag{5}
\end{equation*}
$$

We now claim that
(a) for all $x_{0} \in \Omega$ there exist an open set $\mathcal{O} \subset \subset \Omega$ which contains x_{0} and $M_{0}=M_{0}\left(x_{0}\right)>$ 0 such that $v_{n} \leq M_{0}$ in \mathcal{O} for all $n \geq 1$.
(b) $\lim _{x \rightarrow \partial \Omega} v(x)=\infty$, where $v(x)=\lim _{n \rightarrow \infty} v_{n}(x)$.

We also observe that the statement (a) shows that the sequence $\left(v_{n}\right)$ is uniformly bounded on every compact subset of Ω. Standard elliptic regularity arguments show that v is a solution of problem (1). Then, by virtue of (5) and the statement (b), it follows that v is a large solution of problem (1).

To prove (a) we distinguish two cases:
Case $p\left(x_{0}\right)>0$. By the continuity of p, there exists a ball $B=B\left(x_{0}, r\right) \subset \subset \Omega$ such that

$$
m_{0}:=\min \{p(x) ; x \in \bar{B}\}>0 .
$$

Let w be a positive solution of the problem

$$
\begin{cases}\Delta w+q(x)|\nabla w|^{a}=m_{0} f(w) & \text { in } B \\ w(x) \rightarrow \infty & \text { as } x \rightarrow \partial B\end{cases}
$$

The existence of w follows by considering the problem

$$
\begin{cases}\Delta w_{n}+q(x)\left|\nabla w_{n}\right|^{a}=m_{0} f\left(w_{n}\right) & \text { in } B \\ w_{n}=n & \text { on } \partial B\end{cases}
$$

The maximum principle implies $w_{n} \leq w_{n+1} \leq \theta$, where

$$
\begin{cases}\Delta \theta+\|q\|_{L^{\infty}}|\nabla \theta|^{a}=m_{0} f(\theta) & \text { in } B \\ \theta(x) \rightarrow \infty & \text { as } x \rightarrow \partial B .\end{cases}
$$

We point out that the existence of θ follows as in [1] with the changing of variable $\theta(x)=$ $u(\xi x)$, where $\xi=\|q\|_{L^{\infty}}^{1 /(2-a)}$.

Using the same arguments as in the proof of Lemma 1 , it follows that $v_{n} \leq w$ in B. Furthermore, w is bounded in $\overline{B\left(x_{0}, r / 2\right)}$. Setting $M_{0}=\sup _{\mathcal{O}} w$, where $\mathcal{O}=B\left(x_{0}, r / 2\right)$, we obtain (a).

Case $p\left(x_{0}\right)=0$. Our hypothesis (p 1) and the boundedness of Ω imply the existence of a domain $\mathcal{O} \subset \subset \Omega$ which contains x_{0} such that $p>0$ on $\partial \mathcal{O}$. The above case shows that for any $x \in \partial \mathcal{O}$ there exist a ball $B\left(x, r_{x}\right)$ strictly contained in Ω and a constant $M_{x}>0$ such that $v_{n} \leq M_{x}$ on $B\left(x, r_{x} / 2\right)$, for any $n \geq 1$. Since $\partial \mathcal{O}$ is compact, it follows that it may be covered by a finite number of such balls, say $B\left(x_{i}, r_{x_{i}} / 2\right), i=1, \ldots, k_{0}$. Setting $M_{0}=\max \left\{M_{x_{1}}, \ldots, M_{x_{k_{0}}}\right\}$, we have $v_{n} \leq M_{0}$ on $\partial \mathcal{O}$, for any $n \geq 1$. Applying the maximum principle (as in the proof of the uniqueness in Lemma 1) we obtain $v_{n} \leq M_{0}$ in \mathcal{O} and (a) follows.

Let z be the unique solution of the linear problem

$$
\begin{cases}-\Delta z=p(x) & \text { in } \Omega \tag{6}\\ z=0 & \text { on } \partial \Omega \\ z \geq 0, z \not \equiv 0 & \text { in } \Omega .\end{cases}
$$

Moreover, by the maximum principle, $z>0$ in Ω.
We first observe that for proving (b) it is sufficient to show that

$$
\begin{equation*}
\int_{v(x)}^{\infty} \frac{\mathrm{d} t}{f(t)} \leq z(x) \quad \text { for any } x \in \Omega \tag{7}
\end{equation*}
$$

By ([2], Lemma 1), the left-hand side of (7) is well-defined in Ω. We choose $R>0$ so that $\bar{\Omega} \subset B(0, R)$ and fix $\varepsilon>0$. Since $v_{n}=n$ on $\partial \Omega$, let $n_{1}=n_{1}(\varepsilon)$ be such that

$$
\begin{equation*}
n_{1}>\frac{1}{\varepsilon(N-3)\left(1+R^{2}\right)^{-3 / 2}+3 \varepsilon\left(1+R^{2}\right)^{-5 / 2}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{v_{n}(x)}^{\infty} \frac{\mathrm{d} t}{f(t)} \leq z(x)+\varepsilon\left(1+|x|^{2}\right)^{-1 / 2} \quad \forall x \in \partial \Omega, \forall n \geq n_{1} . \tag{9}
\end{equation*}
$$

In order to prove (7), it is enough to show that

$$
\begin{equation*}
\int_{v_{n}(x)}^{\infty} \frac{\mathrm{d} t}{f(t)} \leq z(x)+\varepsilon\left(1+|x|^{2}\right)^{-1 / 2} \quad \forall x \in \Omega, \forall n \geq n_{1} \tag{10}
\end{equation*}
$$

Indeed, taking $n \rightarrow \infty$ in (10) we deduce (7), since $\varepsilon>0$ is arbitrarily chosen. Assume now, by contradiction, that (10) fails. Then

$$
\max _{x \in \bar{\Omega}}\left\{\int_{v_{n}(x)}^{\infty} \frac{\mathrm{d} t}{f(t)}-z(x)-\varepsilon\left(1+|x|^{2}\right)^{-1 / 2}\right\}>0
$$

Using (9) we see that the point where the maximum is achieved must lie in Ω. At this point, say x_{0}, for all $n \geq n_{1}$ we have

$$
\begin{aligned}
0 \geq & \Delta\left(\int_{v_{n}(x)}^{\infty} \frac{\mathrm{d} t}{f(t)}-z(x)-\varepsilon\left(1+|x|^{2}\right)^{-1 / 2}\right)_{\mid x=x_{0}} \\
= & \left(-\frac{1}{f\left(v_{n}\right)} \Delta v_{n}-\left(\frac{1}{f}\right)^{\prime}\left(v_{n}\right) \cdot\left|\nabla v_{n}\right|^{2}-\Delta z(x)\right)_{\mid x=x_{0}} \\
& -\varepsilon\left(\Delta\left(1+|x|^{2}\right)^{-1 / 2}\right)_{\mid x=x_{0}} \\
= & \left(-p(x)-\frac{1}{n}+q(x) \frac{\left|\nabla v_{n}\right|^{a}}{f\left(v_{n}\right)}-\left(\frac{1}{f}\right)^{\prime}\left(v_{n}\right) \cdot\left|\nabla v_{n}\right|^{2}+p(x)\right) \\
& -\varepsilon\left(\Delta\left(1+|x|^{2}\right)^{-1 / 2}\right) \mid x=x_{0} \\
= & \left(q(x) \frac{\left|\nabla v_{n}\right|^{a}}{f\left(v_{n}\right)}-\left(\frac{1}{f}\right)^{\prime}\left(v_{n}\right) \cdot\left|\nabla v_{n}\right|^{2}\right)_{\mid x=x_{0}} \\
& +\varepsilon(N-3)\left(1+\left|x_{0}\right|^{2}\right)^{-3 / 2}+3 \varepsilon\left(1+\left|x_{0}\right|^{2}\right)^{-5 / 2}-\frac{1}{n} \\
\geq & \left(q(x) \frac{\left|\nabla v_{n}\right|^{a}}{f\left(v_{n}\right)}-\left(\frac{1}{f}\right)^{\prime}\left(v_{n}\right) \cdot\left|\nabla v_{n}\right|^{2}\right)_{\mid x=x_{0}} \\
& +\varepsilon(N-3)\left(1+R^{2}\right)^{-3 / 2}+3 \varepsilon\left(1+R^{2}\right)^{-5 / 2}-\frac{1}{n}>0
\end{aligned}
$$

(for the last inequality from above we have used (8)). This contradiction shows that inequality (9) holds and the proof of Theorem 1 is complete.

4. Existence results for unbounded domains

Proof of Theorem 2. By Theorem 1, the boundary value problem

$$
\begin{cases}\Delta u_{n}+q(x)\left|\nabla u_{n}\right|^{a}=p(x) f\left(u_{n}\right) & \text { in } \Omega_{n} \tag{11}\\ u_{n}(x) \rightarrow \infty & \text { as } x \rightarrow \partial \Omega_{n} \\ u_{n}>0 & \text { in } \Omega_{n}\end{cases}
$$

has solution. Since $\overline{\Omega_{n}} \subset \Omega_{n+1}$, for each $n \geq 1$, in the same manner as in the uniqueness proof of Lemma 1 we find that $u_{n} \geq u_{n+1}$ in Ω_{n}. Since $\mathbf{R}^{N}=\cup_{n=1}^{\infty} \Omega_{n}$ and $\overline{\Omega_{n}} \subset \Omega_{n+1}$ it follows that for every $x_{0} \in \mathbf{R}^{N}$ there exists $n_{0}=n_{0}\left(x_{0}\right)$ such that $x_{0} \in \Omega_{n}$ for all $n \geq n_{0}$. In view of the monotonicity of the sequence $\left(u_{n}\left(x_{0}\right)\right)_{n \geq n_{0}}$ we can define $U\left(x_{0}\right)=$ $\lim _{n \rightarrow \infty} u_{n}\left(x_{0}\right)$. Applying a standard bootstrap argument (see ([6], Theorem 1)) we find that $U \in C_{\text {loc }}^{2, \alpha}\left(\mathbf{R}^{N}\right)$ and $\Delta U+q(x)|\nabla U|^{a}=p(x) f(U)$ in \mathbf{R}^{N}.

We now prove that U is the maximal solution of problem (1) under the assumption that p is positive. Indeed, let v be an arbitrary solution of (1). By the maximum principle, we find that $u_{n} \geq v$ in Ω_{n} for all $n \geq 1$. Thus the definition of U implies that $U \geq v$ in \mathbf{R}^{N}.

We suppose, in addition, that p satisfies (p 2) and we shall prove that U blows-up at infinity. From [2], the problem

$$
\begin{cases}\Delta u=p(x) f(u) & \text { in } \Omega \\ u \geq 0, u \not \equiv 0 & \text { in } \Omega\end{cases}
$$

admits a classical maximal solution V which, under the above assumption blows-up at infinity. It is sufficient now to show that

$$
\begin{equation*}
V(x) \leq u_{n}(x)+\varepsilon\left(1+|x|^{2}\right)^{-1 / 2} \quad \text { for any } x \in \Omega_{n} \tag{12}
\end{equation*}
$$

where ε is fixed. Suppose it is contrary. Then

$$
\max _{x \in \bar{\Omega}_{n}}\left(V(x)-u_{n}(x)-\varepsilon\left(1+|x|^{2}\right)^{-1 / 2}\right)>0 .
$$

Since $u_{n}(x) \rightarrow \infty$ as $x \rightarrow \partial \Omega_{n}$, we find that the point where the maximum is achieved must lie in Ω_{n}. At that point, say x_{0}, we have

$$
\begin{aligned}
0 \geq & \Delta\left(V(x)-u_{n}(x)-\varepsilon\left(1+|x|^{2}\right)^{-1 / 2}\right) \mid x=x_{0} \\
= & p\left(x_{0}\right)\left(f\left(V\left(x_{0}\right)\right)-f\left(u_{n}\left(x_{0}\right)\right)\right)+q(x)\left|\nabla u_{n}\right|^{a}\left(x_{0}\right) \\
& +\varepsilon(N-3)\left(1+|x|^{2}\right)^{-3 / 2}+3 \varepsilon\left(1+|x|^{2}\right)^{-5 / 2}>0 .
\end{aligned}
$$

This contradiction shows that the inequality (12) holds. Hence $V \leq u_{n}$ in Ω_{n}. By definition of U it follows that $V \leq U$ in \mathbf{R}^{N} and so $U(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. This completes the proof.
Proof of Theorem 3. Let $\left(\Omega_{n}\right)_{n \geq 1}$ be the sequence of bounded smooth domains given by condition (p 1$)^{\prime}$. For $n \geq 1$ fixed, let u_{n} be a positive solution of problem (11) and recall that $u_{n} \geq u_{n+1}$ in Ω_{n}. Set $U(x)=\lim _{n \rightarrow \infty} u_{n}(x)$, for every $x \in \Omega$. With the same arguments as in the proof of Theorem 2 we find that U is a classical solution to (1) and that U is the maximal solution provided that p is positive.

For the second part, in which $\Omega=\mathbf{R}^{N} \backslash \overline{B(0, R)}$, we suppose that (p 2) is fulfilled, with $\Phi(r)=0$ for $r \in[0, R]$.

By ([2], Theorem 3), the problem

$$
\begin{cases}\Delta v=p(x) f(v) & \text { in } \Omega \\ v \geq 0, v \not \equiv 0 & \text { in } \Omega\end{cases}
$$

admits a maximal solution V which, under the same assumptions as in Theorem 3, blowsup at infinity. In the same manner as in the proof of Theorem 2 we show that $V \leq U$, hence U blows up at infinity.

5. Proof of Theorem 4

Let u be an entire large solution of problem (1). Define

$$
\bar{u}(r)=\frac{1}{\omega_{N} r^{N-1}} \int_{|x|=r}\left(\int_{a_{0}}^{u(x)} \frac{\mathrm{d} t}{f(t)}\right) \mathrm{d} S=\frac{1}{\omega_{N}} \int_{|\xi|=1}\left(\int_{a_{0}}^{u(r \xi)} \frac{\mathrm{d} t}{f(t)}\right) \mathrm{d} S,
$$

where ω_{N} denotes the surface area of the unit sphere in \mathbf{R}^{N} and a_{0} is chosen such that $a_{0} \in\left(0, u_{0}\right)$, where $u_{0}=\inf _{\mathbf{R}^{N}} u>0$. By the divergence theorem, we have

$$
\begin{aligned}
\bar{u}^{\prime}(r) & =\frac{1}{\omega_{N}} \int_{|\xi|=1} \frac{1}{f(u(r \xi))} \nabla u(r \xi) \cdot \xi \mathrm{d} S \\
& =\frac{1}{\omega_{N} r^{N}} \int_{|y|=r} \frac{1}{f(u(y))} \nabla u(y) \cdot y \mathrm{~d} S \\
& =\frac{1}{\omega_{N} r^{N}} \int_{|y|=r} \nabla\left(\int_{a_{0}}^{u(y)} \frac{\mathrm{d} t}{f(t)}\right) \cdot y \mathrm{~d} S \\
& =\frac{1}{\omega_{N} r^{N-1}} \int_{|y|=r} \frac{\partial}{\partial v}\left(\int_{a_{0}}^{u(y)} \frac{\mathrm{d} t}{f(t)}\right) \mathrm{d} S \\
& =\frac{1}{\omega_{N} r^{N-1}} \int_{B(0, r)} \Delta\left(\int_{a_{0}}^{u(x)} \frac{\mathrm{d} t}{f(t)}\right) \mathrm{d} x
\end{aligned}
$$

Since u is a positive classical solution it follows that

$$
\left|\bar{u}^{\prime}(r)\right| \leq C r \rightarrow 0, \quad \text { as } r \rightarrow 0
$$

On the other hand

$$
\begin{aligned}
\omega_{N}\left(R^{N-1} \bar{u}^{\prime}(R)-r^{N-1} \bar{u}^{\prime}(r)\right) & =\int_{D} \Delta\left(\int_{a_{0}}^{u(x)} \frac{1}{f(t)} \mathrm{d} t\right) \mathrm{d} x \\
& =\int_{r}^{R}\left(\int_{|x|=z} \Delta\left(\int_{a_{0}}^{u(x)} \frac{\mathrm{d} t}{f(t)}\right) \mathrm{d} S\right) \mathrm{d} z
\end{aligned}
$$

where $D=\left\{x \in \mathbf{R}^{N}: r<|x|<R\right\}$. Dividing by $R-r$ and taking $R \rightarrow r$ we find

$$
\begin{aligned}
\omega_{N}\left(r^{N-1} \bar{u}^{\prime}(r)\right)^{\prime} & =\int_{|x|=r} \Delta\left(\int_{a_{0}}^{u(x)} \frac{\mathrm{d} t}{f(t)}\right) \mathrm{d} S \\
& =\int_{|x|=r} \operatorname{div}\left(\frac{1}{f(u(x))} \nabla u(x)\right) \mathrm{d} S \\
& =\int_{|x|=r}\left[\left(\frac{1}{f}\right)^{\prime}(u(x)) \cdot|\nabla u(x)|^{2}+\frac{1}{f(u(x))} \Delta u(x)\right] \mathrm{d} S \\
& \leq \int_{|x|=r} \frac{p(x) f(u(x))}{f(u(x))} \mathrm{d} S \leq \omega_{N} r^{N-1} \Phi(r)
\end{aligned}
$$

The above inequality yields by integration

$$
\begin{equation*}
\bar{u}(r) \leq \bar{u}(0)+\int_{0}^{r} \sigma^{1-N}\left(\int_{0}^{\sigma} \tau^{N-1} \Phi(\tau) \mathrm{d} \tau\right) \mathrm{d} \sigma \quad \forall r \geq 0 \tag{13}
\end{equation*}
$$

On the other hand, according to (p2), for all $r>0$ we have

$$
\begin{aligned}
& \int_{0}^{r} \sigma^{1-N}\left(\int_{0}^{\sigma} \tau^{N-1} \Phi(\tau) \mathrm{d} \tau\right) \mathrm{d} \sigma \\
& \quad=\frac{1}{2-N} \int_{0}^{r} \frac{\mathrm{~d}}{\mathrm{~d} \sigma}\left(\sigma^{2-N}\right)\left(\int_{0}^{\sigma} \tau^{N-1} \Phi(\tau) \mathrm{d} \tau\right) \mathrm{d} \sigma \\
& \quad=\frac{1}{2-N} r^{2-N} \int_{0}^{r} \tau^{N-1} \Phi(\tau) \mathrm{d} \tau-\frac{1}{2-N} \int_{0}^{r} \sigma \Phi(\sigma) \mathrm{d} \sigma \\
& \quad \leq \frac{1}{N-2} \int_{0}^{\infty} r \Phi(r) \mathrm{d} r<\infty
\end{aligned}
$$

So, by (13),

$$
\bar{u}(r) \leq \bar{u}(0)+K \quad \forall r \geq 0
$$

The last inequality implies that \bar{u} is bounded and assuming that (2) is not fulfilled it follows that u cannot be a large solution.

We point out that the hypothesis (p 2) on p is essential in the statement of Theorem 4. Indeed, let us consider $f(t)=t, p \equiv 1, \alpha \in(0,1), q(x)=2^{\alpha-2} \cdot|x|^{\alpha}, a=2-\alpha \in(1,2)$. The corresponding problem is

$$
\begin{cases}\Delta u+2^{\alpha-2}|x|^{\alpha}|\nabla u|^{a}=u & \text { in } \mathbf{R}^{N} \\ u \geq 0, u \not \equiv 0 & \text { in } \mathbf{R}^{N}\end{cases}
$$

which has the entire large solution $u(x)=|x|^{2}+2 N$. It is clear that (2) is not fulfilled.

Acknowledgements

The authors C Niculescu and V Rădulescu are partially supported by Grant M.E.C. D26044 with the World Bank.

References

[1] Bandle C and Giarrusso E, Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms, Adv. Diff. Eq. 1 (1996) 133-150
[2] Cîrstea F and Rădulescu V, Blow-up boundary solutions of semilinear elliptic problems, Nonlinear Anal. T.M.A. 48 (2002) 521-534
[3] Cîrstea F and Rădulescu V, Existence and uniqueness of blow-up solutions for a class of logistic equations, Commun. Contemp. Math. (in press)
[4] Giarrusso E, On blow up solutions of a quasilinear elliptic equation, Math. Nachr. 213 (2000) 89-104
[5] Keller J B, On solution of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10 (1957) 503-510
[6] Lair A V and Shaker A W, Entire solution of a singular semilinear elliptic problem, J. Math. Anal. Appl. 200 (1996) 498-505
[7] Lair A V and Wood A W, Large solutions of semilinear elliptic equations with nonlinear gradient terms, Int. J. Math. Sci. 22 (1999) 869-883
[8] Lasry J M and Lions P L, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints; the model problem, Math. Ann. 283 (1989) 583-630
[9] Li Y Y, Prescribing scalar curvature on S^{N} and related problems, Comm. Pure Appl. Math. 49 (1996) 541-597
[10] Loewner C and Nirenberg L, Partial differential equations invariant under conformal or projective transformations, in: Contributions to Analysis (eds) L V Ahlfors et al. (New York: Academic Press) (1974) pp. 245-272
[11] Osserman R, On the inequality $\Delta u \geq f(u)$, Pacific J. Math. 7 (1957) 1641-1647
[12] Quittner P, Blow-up for semilinear parabolic equations with a gradient term, Math. Meth. Appl. Sci. 14 (1991) 413-417

