Explosive solutions of elliptic equations with absorption and non-linear gradient term

MARIUS GHERGU, CONSTANTIN NICULESCU and VICENŢIU RĂDULESCU*

Department of Mathematics, University of Craiova, 1100 Craiova, Romania *Corresponding author. E-mail: radules@ann.jussieu.fr

MS received 22 February 2002; revised 23 May 2002

Abstract. Let *f* be a non-decreasing C^1 -function such that f > 0 on $(0, \infty)$, f(0) = 0, $\int_1^{\infty} 1/\sqrt{F(t)}dt < \infty$ and $F(t)/f^{2/a}(t) \to 0$ as $t \to \infty$, where $F(t) = \int_0^t f(s) ds$ and $a \in (0, 2]$. We prove the existence of positive large solutions to the equation $\Delta u + q(x)|\nabla u|^a = p(x)f(u)$ in a smooth bounded domain $\Omega \subset \mathbb{R}^N$, provided that *p*, *q* are non-negative continuous functions so that any zero of *p* is surrounded by a surface strictly included in Ω on which *p* is positive. Under additional hypotheses on *p* we deduce the existence of solutions if Ω is unbounded.

Keywords. Explosive solution; semilinear elliptic problem; entire solution; maximum principle.

1. Introduction and the main results

The aim of this paper is to study the following semilinear elliptic problem

$$\begin{cases} \Delta u + q(x) |\nabla u|^a = p(x) f(u), & \text{in } \Omega\\ u \ge 0, \ u \ne 0, & \text{in } \Omega \end{cases}$$
(1)

where $\Omega \subset \mathbf{R}^N$ ($N \ge 3$) is a smooth domain (bounded or possibly unbounded) with compact (possibly empty) boundary. We assume throughout this paper that $a \le 2$ is a positive real number, p, q are non-negative functions such that $p \ne 0, p, q \in C^{0,\alpha}(\overline{\Omega})$ if Ω is bounded, and $p, q \in C^{0,\alpha}_{loc}(\Omega)$, otherwise. The non-linearity f is assumed to fulfill

(f1)
$$f \in C^1[0,\infty), f' \ge 0, f(0) = 0 \text{ and } f > 0 \text{ on } (0,\infty).$$

(f2) $\int_{1}^{\infty} [F(t)]^{-1/2} dt < \infty$, where $F(t) = \int_{0}^{t} f(s) ds$.

(f3)
$$\frac{F(t)}{f^{2/a}(t)} \to 0 \text{ as } t \to \infty.$$

The condition (f2) is called Keller–Osserman condition (see [5,11]). We also point out that the increasing non-linearity f is called an absorption term.

Remarks

(1) The above conditions hold provided that $f(t) = t^k$, k > 1 and 0 < a < 2k/(k+1)(< 2), or $f(t) = e^t - 1$, or $f(t) = e^t - t$ and a < 2.

- (2) By (f1) and (f3) it follows that $f/F^{a/2} \ge \beta > 0$ for t large enough, that is, $(F^{1-a/2})' \ge \beta > 0$ for t large enough which yields $0 < a \le 2$.
- (3) Conditions (f2) and (f3) imply $\int_{1}^{\infty} dt / f^{1/a}(t) < \infty$.

We are mainly interested in finding properties of *large (explosive) solutions* of (1), that is, solutions *u* satisfying $u(x) \to \infty$ as dist $(x, \partial \Omega) \to 0$ (if $\Omega \neq \mathbf{R}^N$), or $u(x) \to \infty$ as $|x| \to \infty$ (if $\Omega = \mathbf{R}^N$). In the latter case the solution is called an *entire large (explosive)* solution.

Cîrstea and Rădulescu [2] proved the existence of large solutions to (1) in the case $q \equiv 0$. The aim of this paper is to study the influence of the non-linear gradient term $|\nabla u|^a$. It turns out that the presence of this term can have significant influence on the existence of a solution, as well as on its asymptotic behavior. Problems of this type appear in stochastic control theory and have been first studied by Lasry and Lions [8]. The corresponding parabolic equation was considered in Quittner [12]. In terms of the dynamic programming approach, an explosive solution of (1) corresponds to a value function (or Bellman function) associated to an infinite exit cost (see [8]).

Bandle and Giarrusso [1] studied the existence of a large solution of problem (1) in the case $p \equiv 1$, $q \equiv 1$ and Ω bounded, while Lair and Wood [7] studied the sublinear case if $p \equiv 1$. Giarrusso [4] also studied the asymptotic behavior of the explosive solution under the same assumptions as in [1].

As observed in [1], the simplest case is a = 2, which can be reduced to a problem without gradient term. Indeed, if u is a solution of (1) for $q \equiv 1$, then the function $v = e^u$ satisfies

$$\begin{cases} \Delta v = p(x)vf(\ln v) & \text{ in } \Omega, \\ v(x) \to +\infty & \text{ if } \operatorname{dist}(x, \partial\Omega) \to 0. \end{cases}$$

We shall therefore mainly consider the case where 0 < a < 2.

Our first result concerns the existence of a large solution to problem (1) when Ω is bounded.

Theorem 1. Suppose Ω is bounded and p satisfies

(p1) For every $x_0 \in \Omega$ with $p(x_0) = 0$, there exists a domain $\Omega_0 \ni x_0$ such that $\overline{\Omega_0} \subset \Omega$ and p > 0 on $\partial \Omega_0$.

Then problem (1) has a positive large solution.

Note that, by the maximum principle, a solution of (1) provides an upper bound for any solution of

$$\Delta u = p(x)g(u, \nabla u) \quad \text{in } \Omega,$$

where

$$g(u,\xi) \ge f(u) - |\xi|^a, \quad \forall u \in \mathbf{R}, \ \forall \xi \in \mathbf{R}^N.$$

The next purpose of the paper is to prove the existence of an entire large solution for (1). Our result in this case is

Theorem 2. Assume that $\Omega = \mathbf{R}^N$ and that problem (1) has at least a solution. Suppose that *p* satisfies the condition

(p1)' There exists a sequence of smooth bounded domains $(\Omega_n)_{n\geq 1}$ such that $\overline{\Omega_n} \subset \Omega_{n+1}$, $\mathbf{R}^N = \bigcup_{n=1}^{\infty} \Omega_n$, and (p1) holds in Ω_n , for any $n \geq 1$.

442

Then there exists a classical solution U of (1) which is a maximal solution if p is positive. If p verifies the additional condition

(p2) $\int_{0}^{\infty} r\Phi(r) dr < \infty$, where $\Phi(r) = \max \{ p(x) : |x| = r \}$, then U is an entire large solution of (1).

An example of function p satisfying both the conditions (p1)' and (p2), with p vanishing in every neighborhood of infinity is given in [1].

Theorem 3. Suppose that $\Omega \neq \mathbf{R}^N$ is unbounded and that problem (1) has at least a solution. Assume that p satisfies condition (p1)' in Ω . Then there exists a classical solution U of problem (1) which is maximal solution if p is positive.

If $\Omega = \mathbf{R}^N \setminus \overline{B(0, R)}$ and p satisfies the additional condition (p2), with $\Phi(r) = 0$ for $r \in [0, R]$, then the solution U of (1) is a large solution that blows-up at infinity.

Our paper is organized as follows. In §2 we give an auxiliary result concerning problem (1) for Ω bounded. In §3 we prove Theorem 1 while in §4 we prove Theorems 2 and 3. In the last part of the paper we prove the following necessary condition for the existence of entire large solutions to eq. (1) if p satisfies (p2), and for which f is not assumed to satisfy (f2), and p is not required to be so regular as before. More precisely, we prove

Theorem 4. Assume that $p \in C(\mathbb{R}^N)$ is a non-negative and non-trivial function which satisfies (p2). Let f be a function satisfying assumption (f1). Then condition

$$\int_{1}^{\infty} \frac{\mathrm{d}t}{f(t)} < \infty \tag{2}$$

is necessary for the existence of entire large solutions to (1).

The above results also apply to problems on Riemannian manifolds if Δ is replaced by the Laplace–Beltrami operator

$$\Delta_B = \frac{1}{\sqrt{c}} \frac{\partial}{\partial x_i} \left(\sqrt{c} \, a_{ij}(x) \frac{\partial}{\partial x_i} \right), \qquad c := \det \left(a_{ij} \right),$$

with respect to the metric $ds^2 = c_{ij} dx_i dx_j$, where (c_{ij}) is the inverse of (a_{ij}) . In this case our results apply to concrete problems arising in Riemannian geometry (see, e.g., Li [9] and Loewner–Nirenberg [10]). For instance, if Ω is replaced by the standard *N*-sphere (S^N, g_0) , Δ is the Laplace–Beltrami operator Δ_{g_0} and $f(u) = (N-2)/[4(N-1)]u^{(N+2)/(N-2)}$, we find the prescribing scalar curvature equation on S^N .

The proofs are essentially based on the maximum principle for non-linear elliptic equations and we also use the sub- and super-solutions method.

2. An auxiliary result

Lemma 1. Let Ω be a bounded domain. Assume that $p, q \in C^{0,\alpha}(\overline{\Omega})$ are non-negative functions, 0 < a < 2 is a real number, f satisfies (f1) and $g : \partial \Omega \to (0, \infty)$ is continuous. Then the boundary value problem

$$\begin{cases} \Delta u + q(x) |\nabla u|^a = p(x) f(u) & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \\ u \ge 0, \ u \ne 0 & \text{in } \Omega \end{cases}$$
(3)

has a classical solution. Furthermore, if p is positive and f is strictly increasing, then the solution is unique.

Proof. First we notice that the function $u^+(x) = n$ is a super-solution of problem (3), if *n* is large enough. In order to find a positive sub-solution, we apply Theorem 5 in [2] (see also [3]). Hence the problem

$$\begin{cases} \Delta u = p(x)f(u) & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \\ u \ge 0, \ u \neq 0 & \text{in } \Omega \end{cases}$$

has a unique classical solution v, which is positive. Thus $u_{-} = v$ is a positive sub-solution of problem (3). Therefore this problem has at least a positive solution u. Furthermore, taking into account the regularity of p, q and f, a standard bootstrap argument based on Schauder and Hölder regularity shows that $u \in C^{2}(\Omega) \cap C(\overline{\Omega})$.

Let us now assume that u_1 and u_2 are arbitrary solutions of (3). In order to prove the uniqueness, it is enough to show that $u_1 \ge u_2$ in Ω . We claim that

$$u_2(x) \le u_1(x)$$
 for any $x \in \Omega$. (4)

Suppose the contrary. Due to the fact that (4) is obviously fulfilled on $\partial \Omega$, we deduce that

$$\max_{x\in\overline{\Omega}}\left\{u_2(x)-u_1(x)\right\}$$

is achieved in Ω . At that point, say x_0 , we have $\nabla(u_1 - u_2)(x_0) = 0$ and

$$0 \ge \Delta (u_2(x_0) - u_1(x_0))$$

= $p(x_0) (f(u_2(x_0)) - f(u_1(x_0)))$
 $-q(x_0) (|\nabla u_1(x_0)|^a - |\nabla u_2(x_0)|^a)$
= $p(x_0) (f(u_2(x_0)) - f(u_1(x_0))) > 0$

This contradiction concludes our proof.

3. Existence results for bounded domains

Proof of Theorem 1. By Lemma 1, the boundary value problem

$$\begin{cases} \Delta v_n + q(x) |\nabla v_n|^a = \left(p(x) + \frac{1}{n} \right) f(v_n) & \text{in } \Omega\\ v_n = n & \text{on } \partial \Omega\\ v_n > 0, \ v_n \neq 0 & \text{in } \Omega \end{cases}$$

$$v_n \geq 0, v_n \neq 0$$

has a unique positive solution, for any $n \ge 1$.

Let us notice first that the sequence (v_n) is non-decreasing. Indeed, by Lemma 1, the boundary value problem

$$\begin{cases} \Delta \zeta + q(x) |\nabla \zeta|^a = (||p||_{\infty} + 1) f(\zeta) & \text{in } \Omega \\ \zeta = 1 & \text{on } \partial \Omega \\ \zeta > 0 & \text{in } \Omega \end{cases}$$

has a unique solution. Using the same arguments as in the proof of Lemma 1 we deduce that

$$0 < \zeta \le v_1 \le \dots \le v_n \le \dots, \qquad \text{in } \Omega.$$
⁽⁵⁾

We now claim that

- (a) for all $x_0 \in \Omega$ there exist an open set $\mathcal{O} \subset \subset \Omega$ which contains x_0 and $M_0 = M_0(x_0) > 0$ such that $v_n \leq M_0$ in \mathcal{O} for all $n \geq 1$.
- (b) $\lim_{x\to\partial\Omega} v(x) = \infty$, where $v(x) = \lim_{n\to\infty} v_n(x)$.

We also observe that the statement (a) shows that the sequence (v_n) is uniformly bounded on every compact subset of Ω . Standard elliptic regularity arguments show that v is a solution of problem (1). Then, by virtue of (5) and the statement (b), it follows that v is a large solution of problem (1).

To prove (a) we distinguish two cases:

Case $p(x_0) > 0$. By the continuity of p, there exists a ball $B = B(x_0, r) \subset \Omega$ such that

$$m_0 := \min \{ p(x); x \in B \} > 0.$$

Let w be a positive solution of the problem

$$\begin{cases} \Delta w + q(x) |\nabla w|^a = m_0 f(w) & \text{ in } B\\ w(x) \to \infty & \text{ as } x \to \partial B. \end{cases}$$

The existence of w follows by considering the problem

$$\begin{cases} \Delta w_n + q(x) |\nabla w_n|^a = m_0 f(w_n) & \text{in } B\\ w_n = n & \text{on } \partial B. \end{cases}$$

The maximum principle implies $w_n \leq w_{n+1} \leq \theta$, where

$$\begin{cases} \Delta \theta + \|q\|_{L^{\infty}} |\nabla \theta|^a = m_0 f(\theta) & \text{ in } B\\ \theta(x) \to \infty & \text{ as } x \to \partial B. \end{cases}$$

We point out that the existence of θ follows as in [1] with the changing of variable $\theta(x) = u(\xi x)$, where $\xi = ||q||_{L^{\infty}}^{1/(2-a)}$.

Using the same arguments as in the proof of Lemma 1, it follows that $v_n \le w$ in *B*. Furthermore, *w* is bounded in $\overline{B(x_0, r/2)}$. Setting $M_0 = \sup_{\mathcal{O}} w$, where $\mathcal{O} = B(x_0, r/2)$, we obtain (a). *Case* $p(x_0) = 0$. Our hypothesis (p1) and the boundedness of Ω imply the existence of a domain $\mathcal{O} \subset \subset \Omega$ which contains x_0 such that p > 0 on $\partial \mathcal{O}$. The above case shows that for any $x \in \partial \mathcal{O}$ there exist a ball $B(x, r_x)$ strictly contained in Ω and a constant $M_x > 0$ such that $v_n \leq M_x$ on $B(x, r_x/2)$, for any $n \geq 1$. Since $\partial \mathcal{O}$ is compact, it follows that it may be covered by a finite number of such balls, say $B(x_i, r_{x_i}/2)$, $i = 1, \ldots, k_0$. Setting $M_0 = \max\{M_{x_1}, \ldots, M_{x_{k_0}}\}$, we have $v_n \leq M_0$ on $\partial \mathcal{O}$, for any $n \geq 1$. Applying the maximum principle (as in the proof of the uniqueness in Lemma 1) we obtain $v_n \leq M_0$ in \mathcal{O} and (a) follows.

Let z be the unique solution of the linear problem

$$\begin{cases}
-\Delta z = p(x) & \text{in } \Omega \\
z = 0 & \text{on } \partial \Omega \\
z \ge 0, \ z \neq 0 & \text{in } \Omega.
\end{cases}$$
(6)

Moreover, by the maximum principle, z > 0 in Ω .

We first observe that for proving (b) it is sufficient to show that

$$\int_{v(x)}^{\infty} \frac{\mathrm{d}t}{f(t)} \le z(x) \quad \text{for any } x \in \Omega.$$
(7)

By ([2], Lemma 1), the left-hand side of (7) is well-defined in Ω . We choose R > 0 so that $\overline{\Omega} \subset B(0, R)$ and fix $\varepsilon > 0$. Since $v_n = n$ on $\partial \Omega$, let $n_1 = n_1(\varepsilon)$ be such that

$$n_1 > \frac{1}{\varepsilon (N-3)(1+R^2)^{-3/2} + 3\varepsilon (1+R^2)^{-5/2}},$$
(8)

and

$$\int_{v_n(x)}^{\infty} \frac{\mathrm{d}t}{f(t)} \le z(x) + \varepsilon (1+|x|^2)^{-1/2} \qquad \forall x \in \partial\Omega, \forall n \ge n_1.$$
(9)

In order to prove (7), it is enough to show that

$$\int_{v_n(x)}^{\infty} \frac{\mathrm{d}t}{f(t)} \le z(x) + \varepsilon (1+|x|^2)^{-1/2} \qquad \forall x \in \Omega, \ \forall n \ge n_1.$$
(10)

Indeed, taking $n \to \infty$ in (10) we deduce (7), since $\varepsilon > 0$ is arbitrarily chosen. Assume now, by contradiction, that (10) fails. Then

$$\max_{x\in\overline{\Omega}}\left\{\int_{v_n(x)}^{\infty}\frac{\mathrm{d}t}{f(t)}-z(x)-\varepsilon(1+|x|^2)^{-1/2}\right\}>0.$$

Using (9) we see that the point where the maximum is achieved must lie in Ω . At this point, say x_0 , for all $n \ge n_1$ we have

446

$$0 \ge \Delta \left(\int_{v_n(x)}^{\infty} \frac{dt}{f(t)} - z(x) - \varepsilon (1 + |x|^2)^{-1/2} \right)_{|x=x_0}$$

$$= \left(-\frac{1}{f(v_n)} \Delta v_n - \left(\frac{1}{f}\right)' (v_n) \cdot |\nabla v_n|^2 - \Delta z(x) \right)_{|x=x_0}$$

$$- \varepsilon (\Delta (1 + |x|^2)^{-1/2})_{|x=x_0}$$

$$= \left(-p(x) - \frac{1}{n} + q(x) \frac{|\nabla v_n|^a}{f(v_n)} - \left(\frac{1}{f}\right)' (v_n) \cdot |\nabla v_n|^2 + p(x) \right)$$

$$- \varepsilon (\Delta (1 + |x|^2)^{-1/2})_{|x=x_0}$$

$$= \left(q(x) \frac{|\nabla v_n|^a}{f(v_n)} - \left(\frac{1}{f}\right)' (v_n) \cdot |\nabla v_n|^2 \right)_{|x=x_0}$$

$$+ \varepsilon (N - 3)(1 + |x_0|^2)^{-3/2} + 3\varepsilon (1 + |x_0|^2)^{-5/2} - \frac{1}{n}$$

$$\ge \left(q(x) \frac{|\nabla v_n|^a}{f(v_n)} - \left(\frac{1}{f}\right)' (v_n) \cdot |\nabla v_n|^2 \right)_{|x=x_0}$$

$$+ \varepsilon (N - 3)(1 + R^2)^{-3/2} + 3\varepsilon (1 + R^2)^{-5/2} - \frac{1}{n} > 0$$

(for the last inequality from above we have used (8)). This contradiction shows that inequality (9) holds and the proof of Theorem 1 is complete.

4. Existence results for unbounded domains

Proof of Theorem 2. By Theorem 1, the boundary value problem

$$\begin{cases} \Delta u_n + q(x) |\nabla u_n|^a = p(x) f(u_n) & \text{ in } \Omega_n \\ u_n(x) \to \infty & \text{ as } x \to \partial \Omega_n \\ u_n > 0 & \text{ in } \Omega_n \end{cases}$$
(11)

has solution. Since $\overline{\Omega_n} \subset \Omega_{n+1}$, for each $n \ge 1$, in the same manner as in the uniqueness proof of Lemma 1 we find that $u_n \ge u_{n+1}$ in Ω_n . Since $\mathbf{R}^N = \bigcup_{n=1}^{\infty} \Omega_n$ and $\overline{\Omega_n} \subset \Omega_{n+1}$ it follows that for every $x_0 \in \mathbf{R}^N$ there exists $n_0 = n_0(x_0)$ such that $x_0 \in \Omega_n$ for all $n \ge n_0$. In view of the monotonicity of the sequence $(u_n(x_0))_{n\ge n_0}$ we can define $U(x_0) =$ $\lim_{n\to\infty} u_n(x_0)$. Applying a standard bootstrap argument (see ([6], Theorem 1)) we find that $U \in C^{2,\alpha}_{loc}(\mathbf{R}^N)$ and $\Delta U + q(x)|\nabla U|^a = p(x)f(U)$ in \mathbf{R}^N .

We now prove that U is the maximal solution of problem (1) under the assumption that p is positive. Indeed, let v be an arbitrary solution of (1). By the maximum principle, we find that $u_n \ge v$ in Ω_n for all $n \ge 1$. Thus the definition of U implies that $U \ge v$ in \mathbb{R}^N .

We suppose, in addition, that p satisfies (p2) and we shall prove that U blows-up at infinity. From [2], the problem

$$\begin{cases} \Delta u = p(x)f(u) & \text{ in } \Omega\\ u \ge 0, \ u \neq 0 & \text{ in } \Omega, \end{cases}$$

admits a classical maximal solution V which, under the above assumption blows-up at infinity. It is sufficient now to show that

$$V(x) \le u_n(x) + \varepsilon (1+|x|^2)^{-1/2} \quad \text{for any } x \in \Omega_n \tag{12}$$

where ε is fixed. Suppose it is contrary. Then

$$\max_{x\in\overline{\Omega}_n}(V(x) - u_n(x) - \varepsilon(1 + |x|^2)^{-1/2}) > 0.$$

Since $u_n(x) \to \infty$ as $x \to \partial \Omega_n$, we find that the point where the maximum is achieved must lie in Ω_n . At that point, say x_0 , we have

$$0 \ge \Delta (V(x) - u_n(x) - \varepsilon (1 + |x|^2)^{-1/2})_{|x=x_0}$$

= $p(x_0) (f (V(x_0)) - f(u_n(x_0))) + q(x) |\nabla u_n|^a(x_0)$
+ $\varepsilon (N - 3)(1 + |x|^2)^{-3/2} + 3\varepsilon (1 + |x|^2)^{-5/2} > 0.$

This contradiction shows that the inequality (12) holds. Hence $V \le u_n$ in Ω_n . By definition of U it follows that $V \le U$ in \mathbb{R}^N and so $U(x) \to \infty$ as $|x| \to \infty$. This completes the proof.

Proof of Theorem 3. Let $(\Omega_n)_{n\geq 1}$ be the sequence of bounded smooth domains given by condition (p1)'. For $n \geq 1$ fixed, let u_n be a positive solution of problem (11) and recall that $u_n \geq u_{n+1}$ in Ω_n . Set $U(x) = \lim_{n\to\infty} u_n(x)$, for every $x \in \Omega$. With the same arguments as in the proof of Theorem 2 we find that U is a classical solution to (1) and that U is the maximal solution provided that p is positive.

For the second part, in which $\Omega = \mathbf{R}^N \setminus \overline{B(0, R)}$, we suppose that (p2) is fulfilled, with $\Phi(r) = 0$ for $r \in [0, R]$.

By ([2], Theorem 3), the problem

$$\begin{cases} \Delta v = p(x) f(v) & \text{in } \Omega \\ v \ge 0, \ v \neq 0 & \text{in } \Omega \,, \end{cases}$$

admits a maximal solution V which, under the same assumptions as in Theorem 3, blowsup at infinity. In the same manner as in the proof of Theorem 2 we show that $V \leq U$, hence U blows up at infinity.

5. Proof of Theorem 4

Let u be an entire large solution of problem (1). Define

$$\bar{u}(r) = \frac{1}{\omega_N r^{N-1}} \int_{|x|=r} \left(\int_{a_0}^{u(x)} \frac{dt}{f(t)} \right) dS = \frac{1}{\omega_N} \int_{|\xi|=1} \left(\int_{a_0}^{u(r\xi)} \frac{dt}{f(t)} \right) dS,$$

where ω_N denotes the surface area of the unit sphere in \mathbf{R}^N and a_0 is chosen such that $a_0 \in (0, u_0)$, where $u_0 = \inf_{\mathbf{R}^N} u > 0$. By the divergence theorem, we have

$$\bar{u}'(r) = \frac{1}{\omega_N} \int_{|\xi|=1} \frac{1}{f(u(r\xi))} \nabla u(r\xi) \cdot \xi \, \mathrm{d}S$$

$$= \frac{1}{\omega_N r^N} \int_{|y|=r} \frac{1}{f(u(y))} \nabla u(y) \cdot y \, \mathrm{d}S$$

$$= \frac{1}{\omega_N r^N} \int_{|y|=r} \nabla \left(\int_{a_0}^{u(y)} \frac{\mathrm{d}t}{f(t)} \right) \cdot y \, \mathrm{d}S$$

$$= \frac{1}{\omega_N r^{N-1}} \int_{|y|=r} \frac{\partial}{\partial \nu} \left(\int_{a_0}^{u(y)} \frac{\mathrm{d}t}{f(t)} \right) \, \mathrm{d}S$$

$$= \frac{1}{\omega_N r^{N-1}} \int_{B(0,r)} \Delta \left(\int_{a_0}^{u(x)} \frac{\mathrm{d}t}{f(t)} \right) \, \mathrm{d}S.$$

Since u is a positive classical solution it follows that

$$|\bar{u}'(r)| \le Cr \to 0, \quad \text{as } r \to 0.$$

On the other hand

$$\omega_N(R^{N-1}\bar{u}'(R) - r^{N-1}\bar{u}'(r)) = \int_D \Delta\left(\int_{a_0}^{u(x)} \frac{1}{f(t)} dt\right) dx$$
$$= \int_r^R \left(\int_{|x|=z} \Delta\left(\int_{a_0}^{u(x)} \frac{dt}{f(t)}\right) dS\right) dz,$$

where $D = \{x \in \mathbf{R}^N : r < |x| < R\}$. Dividing by R - r and taking $R \to r$ we find

$$\begin{split} \omega_N(r^{N-1}\bar{u}'(r))' &= \int_{|x|=r} \Delta\left(\int_{a_0}^{u(x)} \frac{\mathrm{d}t}{f(t)}\right) \mathrm{d}S \\ &= \int_{|x|=r} \operatorname{div}\left(\frac{1}{f(u(x))} \nabla u(x)\right) \mathrm{d}S \\ &= \int_{|x|=r} \left[\left(\frac{1}{f}\right)'(u(x)) \cdot |\nabla u(x)|^2 + \frac{1}{f(u(x))} \Delta u(x)\right] \mathrm{d}S \\ &\leq \int_{|x|=r} \frac{p(x)f(u(x))}{f(u(x))} \mathrm{d}S \leq \omega_N r^{N-1} \Phi(r). \end{split}$$

The above inequality yields by integration

$$\bar{u}(r) \le \bar{u}(0) + \int_0^r \sigma^{1-N} \left(\int_0^\sigma \tau^{N-1} \Phi(\tau) \, \mathrm{d}\tau \right) \, \mathrm{d}\sigma \qquad \forall r \ge 0.$$
(13)

On the other hand, according to (p2), for all r > 0 we have

$$\begin{split} &\int_0^r \sigma^{1-N} \left(\int_0^\sigma \tau^{N-1} \Phi(\tau) \, \mathrm{d}\tau \right) \, \mathrm{d}\sigma \\ &= \frac{1}{2-N} \int_0^r \frac{\mathrm{d}}{\mathrm{d}\sigma} (\sigma^{2-N}) \left(\int_0^\sigma \tau^{N-1} \Phi(\tau) \, \mathrm{d}\tau \right) \mathrm{d}\sigma \\ &= \frac{1}{2-N} r^{2-N} \int_0^r \tau^{N-1} \Phi(\tau) \, \mathrm{d}\tau - \frac{1}{2-N} \int_0^r \sigma \Phi(\sigma) \, \mathrm{d}\sigma \\ &\leq \frac{1}{N-2} \int_0^\infty r \Phi(r) \, \mathrm{d}r < \infty. \end{split}$$

So, by (13),

$$\bar{u}(r) \le \bar{u}(0) + K \qquad \forall r \ge 0.$$

The last inequality implies that \bar{u} is bounded and assuming that (2) is not fulfilled it follows that u cannot be a large solution.

We point out that the hypothesis (p2) on p is essential in the statement of Theorem 4. Indeed, let us consider f(t) = t, $p \equiv 1$, $\alpha \in (0, 1)$, $q(x) = 2^{\alpha-2} \cdot |x|^{\alpha}$, $a = 2 - \alpha \in (1, 2)$. The corresponding problem is

$$\begin{cases} \Delta u + 2^{\alpha - 2} |x|^{\alpha} |\nabla u|^{a} = u & \text{in } \mathbf{R}^{N} \\ u \ge 0, \ u \neq 0 & \text{in } \mathbf{R}^{N} \end{cases}$$

which has the entire large solution $u(x) = |x|^2 + 2N$. It is clear that (2) is not fulfilled.

Acknowledgements

The authors C Niculescu and V Rădulescu are partially supported by Grant M.E.C. D-26044 with the World Bank.

References

- [1] Bandle C and Giarrusso E, Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms, *Adv. Diff. Eq.* **1** (1996) 133–150
- [2] Cîrstea F and Rădulescu V, Blow-up boundary solutions of semilinear elliptic problems, *Nonlinear Anal. T.M.A.* **48** (2002) 521–534
- [3] Cîrstea F and Rădulescu V, Existence and uniqueness of blow-up solutions for a class of logistic equations, *Commun. Contemp. Math.* (in press)
- [4] Giarrusso E, On blow up solutions of a quasilinear elliptic equation, *Math. Nachr.* 213 (2000) 89–104
- [5] Keller J B, On solution of $\Delta u = f(u)$, Comm. Pure Appl. Math. 10 (1957) 503–510
- [6] Lair A V and Shaker A W, Entire solution of a singular semilinear elliptic problem, J. Math. Anal. Appl. 200 (1996) 498–505
- [7] Lair A V and Wood A W, Large solutions of semilinear elliptic equations with nonlinear gradient terms, *Int. J. Math. Sci.* 22 (1999) 869–883

- [8] Lasry J M and Lions P L, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints; the model problem, *Math. Ann.* 283 (1989) 583–630
- [9] Li Y Y, Prescribing scalar curvature on S^N and related problems, Comm. Pure Appl. Math. 49 (1996) 541–597
- [10] Loewner C and Nirenberg L, Partial differential equations invariant under conformal or projective transformations, in: Contributions to Analysis (eds) L V Ahlfors *et al.* (New York: Academic Press) (1974) pp. 245–272
- [11] Osserman R, On the inequality $\Delta u \ge f(u)$, Pacific J. Math. 7 (1957) 1641–1647
- [12] Quittner P, Blow-up for semilinear parabolic equations with a gradient term, *Math. Meth. Appl. Sci.* **14** (1991) 413–417