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Abstract. Letf be a non-decreasingC1-function such thatf > 0 on(0, ∞),f (0) = 0,∫∞
1 1/

√
F(t)dt < ∞ andF(t)/f 2/a(t) → 0 ast → ∞, whereF(t) = ∫ t

0 f (s) ds
anda ∈ (0, 2]. We prove the existence of positive large solutions to the equation1u +
q(x)|∇u|a = p(x)f (u) in a smooth bounded domain� ⊂ RN , provided thatp, q are
non-negative continuous functions so that any zero ofp is surrounded by a surface strictly
included in� on whichp is positive. Under additional hypotheses onp we deduce the
existence of solutions if� is unbounded.

Keywords. Explosive solution; semilinear elliptic problem; entire solution; maximum
principle.

1. Introduction and the main results

The aim of this paper is to study the following semilinear elliptic problem


1u + q(x)|∇u|a = p(x)f (u), in �

u ≥ 0, u 6≡ 0, in �
(1)

where� ⊂ RN (N ≥ 3) is a smooth domain (bounded or possibly unbounded) with
compact (possibly empty) boundary. We assume throughout this paper thata ≤ 2 is a
positive real number,p, q are non-negative functions such thatp 6≡ 0, p, q ∈ C0,α(�) if
� is bounded, andp, q ∈ C

0,α
loc (�), otherwise. The non-linearityf is assumed to fulfill

(f1) f ∈ C1[0, ∞), f ′ ≥ 0, f (0) = 0 andf > 0 on(0, ∞).

(f2)
∫∞

1 [F(t)]−1/2 dt < ∞ , where F(t) = ∫ t

0 f (s) ds.

(f3)
F(t)

f 2/a(t)
→ 0 as t → ∞.

The condition (f2) is called Keller–Osserman condition (see [5,11]). We also point out
that the increasing non-linearityf is called an absorption term.

Remarks

(1) The above conditions hold provided thatf (t) = tk, k > 1 and 0< a < 2k/(k + 1)

(< 2), or f (t) = et − 1, orf (t) = et − t anda < 2.
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(2) By (f1) and (f3) it follows thatf/Fa/2 ≥ β > 0 for t large enough, that is,(F 1−a/2)′ ≥
β > 0 for t large enough which yields 0< a ≤ 2.

(3) Conditions (f2) and (f3) imply
∫∞

1 dt/f 1/a(t) < ∞ .

We are mainly interested in finding properties oflarge (explosive) solutionsof (1), that
is, solutionsu satisfyingu(x) → ∞ as dist(x, ∂�) → 0 (if � 6≡ RN ), or u(x) → ∞ as
|x| → ∞ (if � = RN ). In the latter case the solution is called anentire large(explosive)
solution.

Cı̂rstea and R̆adulescu [2] proved the existence of large solutions to (1) in the caseq ≡ 0.
The aim of this paper is to study the influence of the non-linear gradient term|∇u|a . It
turns out that the presence of this term can have significant influence on the existence of a
solution, as well as on its asymptotic behavior. Problems of this type appear in stochastic
control theory and have been first studied by Lasry and Lions [8]. The corresponding
parabolic equation was considered in Quittner [12]. In terms of the dynamic programming
approach, an explosive solution of (1) corresponds to a value function (or Bellman function)
associated to an infinite exit cost (see [8]).

Bandle and Giarrusso [1] studied the existence of a large solution of problem (1) in the
casep ≡ 1, q ≡ 1 and� bounded, while Lair and Wood [7] studied the sublinear case if
p ≡ 1. Giarrusso [4] also studied the asymptotic behavior of the explosive solution under
the same assumptions as in [1].

As observed in [1], the simplest case isa = 2, which can be reduced to a problem without
gradient term. Indeed, ifu is a solution of (1) forq ≡ 1, then the functionv = eu satisfies{

1v = p(x)vf (ln v) in � ,

v(x) → +∞ if dist (x, ∂�) → 0.

We shall therefore mainly consider the case where 0< a < 2.
Our first result concerns the existence of a large solution to problem (1) when� is

bounded.

Theorem 1. Suppose� is bounded andp satisfies
(p1) For everyx0 ∈ � with p(x0) = 0, there exists a domain�0 3 x0 such that�0 ⊂ �

andp > 0 on ∂�0.
Then problem(1) has a positive large solution.

Note that, by the maximum principle, a solution of (1) provides an upper bound for any
solution of

1u = p(x)g(u, ∇u) in �,

where

g(u, ξ) ≥ f (u) − |ξ |a, ∀u ∈ R, ∀ξ ∈ RN.

The next purpose of the paper is to prove the existence of an entire large solution for
(1). Our result in this case is

Theorem 2. Assume that� = RN and that problem(1) has at least a solution. Suppose
thatp satisfies the condition
(p1)′ There exists a sequence of smooth bounded domains(�n)n≥1 such that�n ⊂ �n+1,
RN = ∪∞

n=1�n, and(p1) holds in�n, for anyn ≥ 1.
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Then there exists a classical solutionU of (1) which is a maximal solution ifp is positive.
If p verifies the additional condition

(p2)
∫ ∞

0
r8(r) dr < ∞ , where8(r) = max{p(x) : |x| = r},

thenU is an entire large solution of(1).

An example of functionp satisfying both the conditions(p1)′ and(p2), withp vanishing
in every neighborhood of infinity is given in [1].

Theorem 3. Suppose that� 6= RN is unbounded and that problem(1) has at least a
solution. Assume thatp satisfies condition(p1)′ in �. Then there exists a classical solution
U of problem(1) which is maximal solution ifp is positive.

If � = RN \ B(0, R) andp satisfies the additional condition(p2), with 8(r) = 0 for
r ∈ [0, R], then the solutionU of (1) is a large solution that blows-up at infinity.

Our paper is organized as follows. In §2 we give an auxiliary result concerning problem
(1) for � bounded. In §3 we prove Theorem 1 while in §4 we prove Theorems 2 and 3.
In the last part of the paper we prove the following necessary condition for the existence
of entire large solutions to eq. (1) ifp satisfies(p2), and for whichf is not assumed to
satisfy(f2), andp is not required to be so regular as before. More precisely, we prove

Theorem 4. Assume thatp ∈ C(RN) is a non-negative and non-trivial function which
satisfies(p2). Letf be a function satisfying assumption(f1). Then condition∫ ∞

1

dt

f (t)
< ∞ (2)

is necessary for the existence of entire large solutions to(1) .

The above results also apply to problems on Riemannian manifolds if1 is replaced by
the Laplace–Beltrami operator

1B = 1√
c

∂

∂xi

(√
c aij (x)

∂

∂xi

)
, c := det(aij ) ,

with respect to the metric ds2 = cij dxidxj , where(cij ) is the inverse of(aij ). In this
case our results apply to concrete problems arising in Riemannian geometry (see, e.g.,
Li [9] and Loewner–Nirenberg [10]). For instance, if� is replaced by the standardN -
sphere(SN, g0), 1 is the Laplace–Beltrami operator1g0 andf (u) = (N − 2)/[4(N −
1)] u(N+2)/(N−2), we find the prescribing scalar curvature equation onSN .

The proofs are essentially based on the maximum principle for non-linear elliptic equa-
tions and we also use the sub- and super-solutions method.

2. An auxiliary result

Lemma1. Let � be a bounded domain. Assume thatp, q ∈ C0,α(�) are non-negative
functions, 0 < a < 2 is a real number,f satisfies(f1) andg : ∂� → (0, ∞) is continuous.
Then the boundary value problem


1u + q(x)|∇u|a = p(x)f (u) in �

u = g on ∂�

u ≥ 0, u 6≡ 0 in �

(3)



444 Marius Ghergu, Constantin Niculescu and Vicent¸iu Rǎdulescu

has a classical solution. Furthermore, if p is positive andf is strictly increasing, then the
solution is unique.

Proof. First we notice that the functionu+(x) = n is a super-solution of problem (3), if
n is large enough. In order to find a positive sub-solution, we apply Theorem 5 in [2] (see
also [3]). Hence the problem




1u = p(x)f (u) in �

u = g on ∂�

u ≥ 0, u 6≡ 0 in �

has a unique classical solutionv, which is positive. Thusu− = v is a positive sub-solution
of problem (3). Therefore this problem has at least a positive solutionu. Furthermore,
taking into account the regularity ofp, q andf , a standard bootstrap argument based on
Schauder and Ḧolder regularity shows thatu ∈ C2(�) ∩ C(�).

Let us now assume thatu1 andu2 are arbitrary solutions of (3). In order to prove the
uniqueness, it is enough to show thatu1 ≥ u2 in �. We claim that

u2(x) ≤ u1(x) for anyx ∈ �. (4)

Suppose the contrary. Due to the fact that (4) is obviously fulfilled on∂�, we deduce that

max
x∈�

{u2(x) − u1(x)}

is achieved in�. At that point, sayx0, we have∇(u1 − u2)(x0) = 0 and

0 ≥ 1 (u2(x0) − u1(x0))

= p(x0) (f (u2(x0)) − f (u1(x0)))

−q(x0)(|∇u1(x0)|a − |∇u2(x0)|a)
= p(x0) (f (u2(x0)) − f (u1(x0))) > 0 .

This contradiction concludes our proof.

3. Existence results for bounded domains

Proof of Theorem1. By Lemma 1, the boundary value problem




1vn + q(x)|∇vn|a =
(

p(x) + 1

n

)
f (vn) in �

vn = n on ∂�

vn ≥ 0, vn 6≡ 0 in �

has a unique positive solution, for anyn ≥ 1.
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Let us notice first that the sequence(vn) is non-decreasing. Indeed, by Lemma 1, the
boundary value problem


1ζ + q(x)|∇ζ |a = (‖p‖∞ + 1)f (ζ ) in �

ζ = 1 on∂�

ζ > 0 in �

has a unique solution. Using the same arguments as in the proof of Lemma 1 we deduce that

0 < ζ ≤ v1 ≤ · · · ≤ vn ≤ · · · , in � . (5)

We now claim that

(a) for allx0 ∈ � there exist an open setO ⊂⊂ � which containsx0 andM0 = M0(x0) >

0 such thatvn ≤ M0 in O for all n ≥ 1 .
(b) limx→∂� v(x) = ∞, wherev(x) = limn→∞ vn(x).

We also observe that the statement (a) shows that the sequence(vn) is uniformly bounded
on every compact subset of�. Standard elliptic regularity arguments show thatv is a
solution of problem (1). Then, by virtue of (5) and the statement (b), it follows thatv is a
large solution of problem (1).

To prove (a) we distinguish two cases:

Casep(x0) > 0. By the continuity ofp, there exists a ballB = B(x0, r) ⊂⊂ � such that

m0 := min {p(x); x ∈ B} > 0.

Let w be a positive solution of the problem

{
1w + q(x)|∇w|a = m0f (w) in B

w(x) → ∞ asx → ∂B.

The existence ofw follows by considering the problem

{
1wn + q(x)|∇wn|a = m0f (wn) in B

wn = n on ∂B.

The maximum principle implieswn ≤ wn+1 ≤ θ , where

{
1θ + ‖q‖L∞|∇θ |a = m0f (θ) in B

θ(x) → ∞ asx → ∂B.

We point out that the existence ofθ follows as in [1] with the changing of variableθ(x) =
u(ξx), whereξ = ‖q‖1/(2−a)

L∞ .
Using the same arguments as in the proof of Lemma 1, it follows thatvn ≤ w in B.

Furthermore,w is bounded inB(x0, r/2). SettingM0 = supO w, whereO = B(x0, r/2),
we obtain (a).
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Casep(x0) = 0. Our hypothesis (p1) and the boundedness of� imply the existence of a
domainO ⊂⊂ � which containsx0 such thatp > 0 on∂O . The above case shows that
for anyx ∈ ∂O there exist a ballB(x, rx) strictly contained in� and a constantMx > 0
such thatvn ≤ Mx on B(x, rx/2), for anyn ≥ 1. Since∂O is compact, it follows that it
may be covered by a finite number of such balls, sayB(xi, rxi

/2), i = 1, . . . , k0. Setting
M0 = max{Mx1, . . . , Mxk0

}, we havevn ≤ M0 on ∂O, for anyn ≥ 1. Applying the
maximum principle (as in the proof of the uniqueness in Lemma 1) we obtainvn ≤ M0 in
O and (a) follows.

Let z be the unique solution of the linear problem




−1z = p(x) in �

z = 0 on∂�

z ≥ 0, z 6≡ 0 in �.

(6)

Moreover, by the maximum principle,z > 0 in �.
We first observe that for proving (b) it is sufficient to show that

∫ ∞

v(x)

dt

f (t)
≤ z(x) for anyx ∈ �. (7)

By ([2], Lemma 1), the left-hand side of (7) is well-defined in�. We chooseR > 0 so
that� ⊂ B(0, R) and fixε > 0. Sincevn = n on ∂�, let n1 = n1(ε) be such that

n1 >
1

ε(N − 3)(1 + R2)−3/2 + 3ε(1 + R2)−5/2
, (8)

and

∫ ∞

vn(x)

dt

f (t)
≤ z(x) + ε(1 + |x|2)−1/2 ∀ x ∈ ∂� , ∀ n ≥ n1 . (9)

In order to prove (7), it is enough to show that

∫ ∞

vn(x)

dt

f (t)
≤ z(x) + ε(1 + |x|2)−1/2 ∀ x ∈ � , ∀n ≥ n1. (10)

Indeed, takingn → ∞ in (10) we deduce (7), sinceε > 0 is arbitrarily chosen. Assume
now, by contradiction, that (10) fails. Then

max
x∈�

{∫ ∞

vn(x)

dt

f (t)
− z(x) − ε(1 + |x|2)−1/2

}
> 0.

Using (9) we see that the point where the maximum is achieved must lie in�. At this
point, sayx0, for all n ≥ n1 we have
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0 ≥ 1

(∫ ∞

vn(x)

dt

f (t)
− z(x) − ε(1 + |x|2)−1/2

)
|x=x0

=
(

− 1

f (vn)
1vn −

(
1

f

)′
(vn) · |∇vn|2 − 1z(x)

)
|x=x0

− ε(1(1 + |x|2)−1/2) |x=x0

=
(

−p(x) − 1

n
+ q(x)

|∇vn|a
f (vn)

−
(

1

f

)′
(vn) · |∇vn|2 + p(x)

)

− ε(1(1 + |x|2)−1/2) |x=x0

=
(

q(x)
|∇vn|a
f (vn)

−
(

1

f

)′
(vn) · |∇vn|2

)
|x=x0

+ ε(N − 3)(1 + |x0|2)−3/2 + 3ε(1 + |x0|2)−5/2 − 1

n

≥
(

q(x)
|∇vn|a
f (vn)

−
(

1

f

)′
(vn) · |∇vn|2

)
|x=x0

+ ε(N − 3)(1 + R2)−3/2 + 3ε(1 + R2)−5/2 − 1

n
> 0

(for the last inequality from above we have used (8)). This contradiction shows that inequal-
ity (9) holds and the proof of Theorem 1 is complete.

4. Existence results for unbounded domains

Proof of Theorem2. By Theorem 1, the boundary value problem


1un + q(x)|∇un|a = p(x)f (un) in �n

un(x) → ∞ asx → ∂�n

un > 0 in �n

(11)

has solution. Since�n ⊂ �n+1, for eachn ≥ 1, in the same manner as in the uniqueness
proof of Lemma 1 we find thatun ≥ un+1 in �n. SinceRN = ∪∞

n=1�n and�n ⊂ �n+1

it follows that for everyx0 ∈ RN there existsn0 = n0(x0) such thatx0 ∈ �n for all
n ≥ n0. In view of the monotonicity of the sequence(un(x0))n≥n0 we can defineU(x0) =
limn→∞ un(x0). Applying a standard bootstrap argument (see ([6], Theorem 1)) we find
thatU ∈ C

2,α
loc (RN) and1U + q(x)|∇U |a = p(x)f (U) in RN .

We now prove thatU is the maximal solution of problem (1) under the assumption that
p is positive. Indeed, letv be an arbitrary solution of (1). By the maximum principle, we
find thatun ≥ v in �n for all n ≥ 1. Thus the definition ofU implies thatU ≥ v in RN .
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We suppose, in addition, thatp satisfies (p2) and we shall prove thatU blows-up at
infinity. From [2], the problem{

1u = p(x)f (u) in �

u ≥ 0, u 6≡ 0 in � ,

admits a classical maximal solutionV which, under the above assumption blows-up at
infinity. It is sufficient now to show that

V (x) ≤ un(x) + ε(1 + |x|2)−1/2 for anyx ∈ �n (12)

whereε is fixed. Suppose it is contrary. Then

max
x∈�n

( V (x) − un(x) − ε(1 + |x|2)−1/2) > 0 .

Sinceun(x) → ∞ as x → ∂�n, we find that the point where the maximum is achieved
must lie in�n. At that point, sayx0, we have

0 ≥ 1(V (x) − un(x) − ε(1 + |x|2)−1/2)|x=x0

= p(x0) (f (V (x0)) − f (un(x0))) + q(x) |∇un|a(x0)

+ ε(N − 3)(1 + |x|2)−3/2 + 3ε(1 + |x|2)−5/2 > 0.

This contradiction shows that the inequality (12) holds. HenceV ≤ un in �n. By definition
of U it follows thatV ≤ U in RN and soU(x) → ∞ as |x| → ∞. This completes the
proof.

Proof of Theorem3. Let (�n)n≥1 be the sequence of bounded smooth domains given by
condition(p1)′. Forn ≥ 1 fixed, letun be a positive solution of problem (11) and recall that
un ≥ un+1 in �n. SetU(x) = limn→∞ un(x), for everyx ∈ �. With the same arguments
as in the proof of Theorem 2 we find thatU is a classical solution to (1) and thatU is the
maximal solution provided thatp is positive.

For the second part, in which� = RN \ B(0, R), we suppose that (p2) is fulfilled, with
8(r) = 0 for r ∈ [0, R].

By ([2], Theorem 3), the problem{
1v = p(x)f (v) in �

v ≥ 0, v 6≡ 0 in � ,

admits a maximal solutionV which, under the same assumptions as in Theorem 3, blows-
up at infinity. In the same manner as in the proof of Theorem 2 we show thatV ≤ U ,
henceU blows up at infinity.

5. Proof of Theorem 4

Let u be an entire large solution of problem (1). Define

ū(r) = 1

ωNrN−1

∫
|x|=r

(∫ u(x)

a0

dt

f (t)

)
dS = 1

ωN

∫
|ξ |=1

(∫ u(rξ)

a0

dt

f (t)

)
dS,
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whereωN denotes the surface area of the unit sphere inRN anda0 is chosen such that
a0 ∈ (0, u0), whereu0 = inf RN u > 0. By the divergence theorem, we have

ū′(r) = 1

ωN

∫
|ξ |=1

1

f (u(rξ))
∇u(rξ) · ξ dS

= 1

ωNrN

∫
|y|=r

1

f (u(y))
∇u(y) · y dS

= 1

ωNrN

∫
|y|=r

∇
(∫ u(y)

a0

dt

f (t)

)
· y dS

= 1

ωNrN−1

∫
|y|=r

∂

∂ν

(∫ u(y)

a0

dt

f (t)

)
dS

= 1

ωNrN−1

∫
B(0,r)

1

(∫ u(x)

a0

dt

f (t)

)
dx.

Sinceu is a positive classical solution it follows that

|ū′(r)| ≤ Cr → 0, asr → 0 .

On the other hand

ωN(RN−1ū′(R) − rN−1ū′(r)) =
∫

D

1

(∫ u(x)

a0

1

f (t)
dt

)
dx

=
∫ R

r

( ∫
|x|=z

1

(∫ u(x)

a0

dt

f (t)

)
dS

)
dz,

whereD = {x ∈ RN : r < |x| < R}. Dividing by R − r and takingR → r we find

ωN(rN−1ū′(r))′ =
∫

|x|=r

1

(∫ u(x)

a0

dt

f (t)

)
dS

=
∫

|x|=r

div

(
1

f (u(x))
∇u(x)

)
dS

=
∫

|x|=r

[(
1

f

)′
(u(x)) · |∇u(x)|2 + 1

f (u(x))
1u(x)

]
dS

≤
∫

|x|=r

p(x)f (u(x))

f (u(x))
dS ≤ ωNrN−18(r).

The above inequality yields by integration

ū(r) ≤ ū(0) +
∫ r

0
σ 1−N

(∫ σ

0
τN−18(τ) dτ

)
dσ ∀r ≥ 0. (13)
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On the other hand, according to(p2), for all r > 0 we have∫ r

0
σ 1−N

(∫ σ

0
τN−18(τ) dτ

)
dσ

= 1

2 − N

∫ r

0

d

dσ
(σ 2−N)

(∫ σ

0
τN−18(τ) dτ

)
dσ

= 1

2 − N
r2−N

∫ r

0
τN−18(τ) dτ − 1

2 − N

∫ r

0
σ8(σ) dσ

≤ 1

N − 2

∫ ∞

0
r8(r) dr < ∞.

So, by (13),

ū(r) ≤ ū(0) + K ∀r ≥ 0.

The last inequality implies that̄u is bounded and assuming that (2) is not fulfilled it follows
thatu cannot be a large solution.

We point out that the hypothesis (p2) onp is essential in the statement of Theorem 4.
Indeed, let us considerf (t) = t ,p ≡ 1,α ∈ (0, 1),q(x) = 2α−2·|x|α,a = 2−α ∈ (1, 2).
The corresponding problem is{

1u + 2α−2|x|α|∇u|a = u in RN

u ≥ 0, u 6≡ 0 in RN

which has the entire large solutionu(x) = |x|2 + 2N . It is clear that (2) is not fulfilled.
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