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a Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
P.O. BOX 1-764, RO-014700 Bucharest, Romania

E-mail: marius.ghergu@imar.ro
b Department of Mathematics, University of Craiova,

RO-200585 Craiova, Romania
E-mail: vicentiu.radulescu@math.cnrs.fr

We establish some existence results for the singular elliptic equation −∆u =
g(u) + λ|∇u|a + µf(x, u) either in a smooth bounded domain Ω ⊂ RN or in
the whole space. We suppose that λ and µ are positive parameters, 0 < a ≤ 2,
f is a nondecreasing function which is sublinear with respect to the second
variable, and g ∈ C1(0,∞) is a decreasing function such that lim

s↘0
g(s) = +∞.

The analysis we develop in this paper emphasizes the central role played by
the convection term |∇u|a.
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1. Introduction

We are concerned in this paper with singular elliptic equations of the type

−∆u = g(u) + λ|∇u|a + µf(x, u), u > 0 in Ω, (1)

where Ω ⊂ RN (N ≥ 2) is either a smooth bounded domain or the whole
space, 0 < a ≤ 2 and λ, µ ≥ 0. We suppose that g ∈ C1(0,∞) is a positive
nonincreasing function such that

(g1) lim
s↘0

g(s) = +∞.

We also assume that f : Ω × [0,∞) → [0,∞) is a Hölder continuous
function such that f > 0 on Ω × (0,∞) and is sub-linear with respect to
the second variable, that is,

(f1) the mapping (0,+∞) 3 s 7−→ f(x, s)
s

is nonincreasing for all x∈ Ω;



December 14, 2006 19:39 WSPC - Proceedings Trim Size: 9in x 6in radulescu

2 MARIUS GHERGU and VICENŢIU RĂDULESCU

(f2) lim
s→∞

f(x, s)
s

= 0, uniformly for x ∈ Ω.

Problems of this type arise in the study of non-Newtonian fluids, boun-
dary layer phenomena for viscous fluids, chemical heterogeneous catalysts,
as well as in the theory of heat conduction in electrically conducting mate-
rials.

Our general setting includes some simple prototype models from
boundary-layer theory of viscous fluids (see Ref. 1). If λ = 0 and µ = 0,

problem (1) is called the Lane-Emden-Fowler equation. Problems of this
type, as well as the associated evolution equations, describe naturally cer-
tain physical phenomena. For example, super-diffusivity equations of this
type have been proposed by de Gennes2 as a model for long range Van der
Waals interactions in thin films spreading on solid surfaces. This equation
also appears in the study of cellular automata and interacting particle sys-
tems with self-organized criticality (see Ref. 3), as well as to describe the
flow over an impermeable plate (see Refs. 4, 5).

The main feature of this paper is the presence of the convection term
|∇u|a. As remarked in Refs. 6, 7, the requirement that the nonlinearity
grows at most quadratically in |∇u| is natural in order to apply the maxi-
mum principle.

In the case where λ = 0, the problem (1) subject to Dirichlet boundary
condition has a unique solution for all µ ≥ 0 (see Refs. 8, 9, 10, 11 and the
references therein).

If λ > 0, the following problem was considered in Zhang and Yu12





−∆u = u−α + λ|∇u|a + σ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(2)

where Ω is a smooth bounded domain, λ, σ ≥ 0, α > 0, and a ∈ (0, 2]. By
using the change of variable v = eλu − 1 in the case a = 2, it is proved in
Ref. 12 that problem (2) has classical solutions if λσ < λ1, where λ1 is the
first eigenvalue of −∆ in H1

0 (Ω). This will be used to deduce the existence
and nonexistence in the case 0 < a < 2.

If f(x, u) depends on u, the above change of variable does not preserve
the sublinearity condition (f1)–(f2) and the monotony of the nonlinear
term g in (1). In turn, if f(x, u) does not depend on u and a = 2, this
method successfully applies to our study and we will be able to give a
complete characterization of (1).

Due to the singular term g(u) in (1), we cannot expect to have solutions
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in C2(Ω) for (1). As it was pointed out in Ref. 12, if α > 1 then the solution
of (2) is not in C1(Ω). We are seeking in this paper classical solutions of
(1), that is, solutions u ∈ C2(Ω) ∩ C(Ω) that verify (1).

2. Singular elliptic equations in bounded domains

We present in this section some existence results for the problem




−∆u = g(u) + λ|∇u|a + µf(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(3)

Theorem 2.1. Assume that conditions (f1)–(f2), (g1) are fulfilled and
0 < a ≤ 1. Then for all λ, µ ≥ 0 the problem (3) has at least one solution.

Proof (Sketch). The proof relies on the sub and super-solution argument.
Let us first notice that, by Ref. 13, there exists v ∈ C2(Ω)∩C(Ω) a solution
of the problem





−∆v = g(v) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

(4)

Then uλµ = v is a sub-solution of (3). The main point is to find a super-
solution uλµ ∈ C2(Ω) ∩ C(Ω) of (3). This will be done separately for 0 <

a < 1 and a = 1. Since g is decreasing, we can easily obtain that uλµ ≤ uλµ

in Ω so (3) has at least one solution.

Case 0 < a < 1. Let h ∈ C2(0, η] ∩ C[0, η] be such that




h′′(t) = −g(h(t)), for all 0 < t < η,

h(0) = 0,

h > 0 in (0, η].
(5)

The existence of h follows by classical arguments of ODE. Since h is concave,
there exists h′(0+) ∈ (0, +∞]. By taking η > 0 small enough, we can assume
that h′ > 0 in (0, η], so h is increasing on [0, η]. We also have

Lemma 2.1.

(i) h ∈ C1[0, η] if and only if
∫ 1

0
g(s)ds < +∞;

(ii) If 0 < p ≤ 2, then there exist c1, c2 > 0 such that

(h′)p(t) ≤ c1g(h(t)) + c2, for all 0 < t < η. (6)
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Now, we construct a super-solution in the form uλµ = Mh(cϕ1) for
M > 1 large enough and c > 0 sufficiently small, where ϕ1 represents the
first eigenfunction of −∆ in H1

0 (Ω).

Case a = 1. This case was left as an open problem in Ref. 14. Note that the
method used in Case 0 < a < 1 applies here only for small values of λ and µ.

Let R > 0 be large enough such that Ω ⊂ BR(0), where BR(0) = {x ∈ RN ;
|x| < R}. We consider the problem





−∆u = g(u) + λ|∇u|+ µf(x, u) |x| < R,

u > 0 |x| < R,

u = 0 |x| = R.

(7)

In order to provide a super-solution for (7) let us first consider the
problem





−∆u = g(u) + λ|∇u|+ 1 |x| < R,

u > 0 |x| < R,

u = 0 |x| = R.

(8)

We need the following auxiliary result.

Lemma 2.2. Problem (8) has at least one solution.

Proof. We are looking for radially symmetric solution u of (8), that is,
u = u(r), 0 ≤ r = |x| ≤ R and





−u′′ − N − 1
r

u′(r) = g(u(r)) + λ|u′(r)|+ 1 0 ≤ r < R,

u > 0 0 ≤ r < R,

u(R) = 0.

(9)

This implies −(rN−1u′(r))′ ≥ 0 for all 0 ≤ r < R, which yields u′(r) ≤ 0
for all 0 ≤ r < R. Then (9) gives

−
(

u′′ +
N − 1

r
u′(r) + λu′(r)

)
= g(u(r)) + 1, 0 ≤ r < R.

We obtain

−(eλrrN−1u′(r))′ = eλrrN−1(g(u(r)) + 1), 0 ≤ r < R. (10)

From (10) we get

u(r)=u(0)−
∫ r

0

e−λtt−N+1

∫ t

0

eλssN−1(g(u(s)) + 1)dsdt, 0 ≤ r < R. (11)
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Let w ∈ C2(BR(0)) ∩ C(BR(0)) be the unique radial solution of the
problem





−∆w = g(w) + 1 |x| < R,

w > 0 |x| < R,

w = 0 |x| = R.

(12)

Clearly, w is a sub-solution of (8). As above we get

w(r) = w(0)−
∫ r

0

t−N+1

∫ t

0

sN−1(g(w(s)) + 1)dsdt, 0 ≤ r < R. (13)

We claim that there exists a solution v ∈ C2[0, R)∩C[0, R] of (11) such
that v > 0 in [0, R).

Let A = w(0) and define the sequence (vk)k≥1 inductively by




vk(r) = A−
∫ r

0

e−λtt−N+1

∫ t

0

eλssN−1(g(vk−1(s)) + 1)dsdt,

0 ≤ r < R, k ≥ 1,

v0 = w.

(14)

Note that vk is decreasing in [0, R) for all k ≥ 0. From (13) and (14) we
easily check that v1 ≥ v0 and by induction we deduce vk ≥ vk−1 for all
k ≥ 1. Hence

w = v0 ≤ v1 ≤ ... ≤ vk ≤ ... ≤ A in BR(0).

Thus, there exists v(r) := lim
k→∞

vk(r), for all 0 ≤ r < R and v > 0 in [0, R).

We can now pass to the limit in (14) in order to get that v is a solution of
(11). By classical regularity arguments we also obtain v ∈ C2[0, R)∩C[0, R].
This proves the claim.

We have obtained a super-solution v of (8) such that v ≥ w in BR(0).
Hence, the problem (8) has at least one solution and the proof of our Lemma
is now complete. ¤

Let u ∈ C2(Ω) ∩ C(Ω) be a solution of the problem (8). For M > 1 we
have −∆(Mu) ≥ g(Mu) + λ|∇(Mu)| + M in Ω. Since f is sublinear, we
can choose M = M(µ) > 1 such that M ≥ µf(x,M |u|∞) in BR(0). Then
uλµ := Mu is a super-solution for (1).

This finishes the proof of Theorem 2.1. ¤

In the case 1 < a ≤ 2 we prove the following result.
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Theorem 2.2. Assume µ = 1 and f , g satisfy (f1)–(f2) and (g1) res-
pectively. Then there exists λ∗ > 0 such that (1) has at least one classical
solution for 0 ≤ λ < λ∗ and no solutions exist if λ > λ∗.

Proof. For small values of λ > 0 we can construct a super-solution of (3)
in the same manner as in the proof of Theorem 2.1.

Set

A = { λ ≥ 0 : problem (1) has at least one classical solution}.
From the above arguments, A is nonempty. Let λ∗ = sup A. First we claim
that if λ ∈ A, then [0, λ) ⊆ A. For this purpose, let λ1 ∈ A and 0 ≤ λ2 < λ1.

If uλ1 is a solution of (1) with λ = λ1, then uλ1 is a super-solution for (1)
with λ = λ2 while v defined in (4) is a sub-solution. Hence, the problem
(1) with λ = λ2 has at least one classical solution. This proves the claim.
Since λ ∈ A was arbitrary chosen, we conclude that [0, λ∗) ⊂ A.

Let us prove that λ∗ < +∞. For this purpose we use the following result

Lemma 2.3. (see Ref. 15). If a > 1, then there exists a real number σ̄ > 0
such that the problem

{ −∆u ≥ |∇u|a + σ in Ω,

u = 0 on ∂Ω,
(15)

has no solutions for σ > σ̄.

Set

τ := inf
(x,s)∈Ω×(0,+∞)

(
g(s) + f(x, s)

)
.

Since lim
s↘0

g(s) = +∞ and the mapping (0, +∞) 3 s 7−→ min
x∈Ω

f(x, s) is

positive and nondecreasing, we deduce that m is positive. Let λ > 0 be
such that (3) has a solution uλ. If w = λ1/(p−1)uλ, then v verifies





−∆w ≥ |∇w|p + λ1/(a−1)τ in Ω,

w > 0 in Ω,

w = 0 on ∂Ω.

(16)

By Lemma 2.3 it follows that λ1/(a−1)τ ≤ σ̄ which gives λ ≤ (σ̄/τ)a−1.

This means that λ∗ is finite. This completes the proof. ¤

Theorems 2.1 and 2.2 show the importance of the convection term
λ|∇u|a in (3). Indeed, according to Ref. 10, Theorem 1.3, for any µ > 0,
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the boundary value problem




−∆u = u−α + λ|∇u|a + µuβ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(17)

has a unique solution, provided λ = 0 and α, β ∈ (0, 1). The above theorems
show that if λ is not necessarily 0, then the following situations may occur:
(i) problem (17) has solutions if a ∈ (0, 1] and for all λ ≥ 0; (ii) if a ∈ (1, 2)
then there exists λ∗ > 0 such that problem (17) has a solution for any
λ < λ∗ and no solution exists if λ > λ∗.

To better understand the dependence between λ and µ in (3), let us
consider the special case f ≡ 1 and let

m := lim
s→∞

g(s) ∈ (0, +∞).

In this case the result concerning (3) is the following.

Theorem 2.3. Assume that a = 2 and f ≡ 1. Then the following properties
hold:

(i) The problem (1) has a solution if and only if λ(m + µ) < λ1;

(ii) Assume µ > 0 is fixed and let λ∗ =
λ1

m + µ
. Then (1) has a unique

solution uλ for every 0 < λ < λ∗ and the sequence (uλ)0<λ<λ∗ is
increasing with respect to λ. Moreover, if lim sup

s↘0
sαg(s) < +∞, for

some α ∈ (0, 1), then the sequence of solutions (uλ)0<λ<λ∗ has the
following properties:

(ii1) uλ ∈ C1,1−α(Ω) ∩ C2(Ω);
(ii2) lim

λ↗λ∗
uλ = +∞ uniformly on compact subsets of Ω.

Remark. The assumption lim sup
s↘0

sαg(s) < +∞, for some α ∈ (0, 1), has

been used in Ref. 8, 10 and it implies the following Keller-Osserman-type
growth condition around the origin

∫ 1

0

(∫ t

0

g(s)ds

)−1/2

dt < +∞. (18)

As proved by Bénilan, Brezis and Crandall in Ref. 16, condition (18) is
equivalent to the property of compact support, that is, for any h ∈ L1(RN )
with compact support, there exists a unique u ∈ W 1,1(RN ) with compact
support such that ∆u ∈ L1(RN ) and −∆u = g(u) + h a.e. in RN .
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Proof of Theorem 2.3. With the change of variable v = eλu − 1, the
problem (1) takes the form





−∆v = Ψλµ(x, u) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

(19)

where

Ψλµ(x, s) = λ(s + 1)g
(

1
λ

ln(s + 1)
)

+ λµ(s + 1)f
(

x,
1
λ

ln(s + 1)
)

,

for all (x, s) ∈ Ω × (0,∞). The existence and nonexistence results follows
now from Ref. 14, Theorem 2.4.

In order to prove the asymptotic behavior of the solution near λ∗ we use
the following alternative which is due to Hörmander (see Ref. 17, Theorem
4.1.9).

Proposition 2.1. Let (uλ)0<λ<λ∗ be a sequence of positive super-harmonic
functions which are increasing with respect to λ. Then the following alter-
native holds:

(i) either uλ converges in L1
loc(Ω);

(ii) or uλ →∞ uniformly on compact subsets of Ω.

3. Ground state solutions for singular elliptic problems

We consider in this section the following singular problem




−∆u = p(x)(g(u) + f(u) + |∇u|a) in RN , (N ≥ 3),
u > 0 in RN ,

u(x) → 0 as |x| → ∞,

(20)

where f and g satisfy (f1)–(f2) and (g1), 0 < a < 1, and p : RN → (0,∞)
is a Hölder continuous function of exponent γ ∈ (0, 1).

We are concerned here with ground state solutions, that is, positive
solutions defined in the whole space and decaying to zero at infinity.

The case f ≡ 0 and a = 0 was considered in Lair and Shaker18. More
exactly, it was proved in Ref. 18 that a necessary condition in order to have
solution for the problem





−∆u = p(x)g(u) in RN ,

u > 0 in RN ,

u(x) → 0 as |x| → ∞,

(21)
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is ∫ ∞

1

tψ(t)dt < ∞, (22)

where ψ(r) = min
|x|=r

p(x), r ≥ 0. Note that condition (22) is also necessary

for our problem (20), since any solution of (20) is a super-solution of (21).
The sufficient condition for existence supplied in Ref. 18 is

∫ ∞

1

tφ(t)dt < ∞, (23)

where φ(r) = max
|x|=r

p(x), r ≥ 0. Hence, when p is radially symmetric, the

problem (21) has solutions if and only if
∫ ∞

1

tp(t)dt < ∞ (see Ref. 18).

Our result concerning the problem (20) is the following.

Theorem 3.1. Assume that (f1)–(f2), (g1) and (23) are fulfilled. Then
problem (20) has at least one solution.

Proof. The solution of problem (20) is obtained as a limit in C2,γ
loc (RN )

of a monotone sequence of solutions associated to (20) in smooth bounded
domains. Let Bn := {x ∈ RN ; |x| < n}. According to Theorem 2.1, for all
n ≥ 1 there exists un ∈ C2,γ(Bn) ∩ C(Bn) such that





−∆un = p(x)(g(un) + f(un) + |∇un|a) in Bn,

un > 0 in Bn,

un = 0 on ∂Bn.

(24)

We extend un by zero outside of Bn. We claim that un ≤ un+1 in
Bn. Assume by contradiction that the inequality un ≤ un+1 does not hold
throughout Bn and let

ζ(x) =
un(x)

un+1(x)
, x ∈ Bn.

Clearly ζ = 0 on ∂Bn, so that ζ achieves its maximum in a point x0 ∈ Bn.
At this point we have ∇ζ(x0) = 0 and ∆ζ(x0) ≤ 0. This yields

−div(u2
n+1∇ζ)(x0) = −

(
div(u2

n+1)∇ζ + u2
n+1∆ζ

)
(x0) ≥ 0.

A straightforward computation shows that

−div(u2
n+1∇ζ) = −un+1∆un + un∆un+1.

Hence (
− un+1∆un + un∆un+1

)
(x0) ≥ 0.
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The above relation produces
(

g(un) + f(un)
un

− g(un+1) + f(un+1)
un+1

)
(x0)+

+
( |∇un|a

un
− |∇un+1|a

un+1

)
(x0) ≥ 0.

(25)

Since t 7−→ g(t) + f(t)
t

is decreasing on (0,∞) and un(x0) > un+1(x0),

from (25) we obtain
( |∇un|a

un
− |∇un+1|a

un+1

)
(x0) > 0. (26)

On the other hand, ∇ζ(x0) = 0 implies

un+1(x0)∇un(x0) = un(x0)∇un+1(x0).

Furthermore, relation (26) leads us to ua−1
n (x0)− ua−1

n+1(x0) > 0, which is a
contradiction since 0 < a < 1. Hence un ≤ un+1 in Bn which means that

0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ . . . in RN .

The main point is to find an upper bound for the sequence (un)n≥1. To this
aim, set

Φ(r) = r1−N

∫ r

0

tN−1φ(t)dt, for all r > 0.

Using the assumption (23) and L’Hôpital’s rule, we get lim
r→∞

Φ(r) =

lim
r↘0

Φ(r) = 0 and

lim
r→∞

Φ(r) =
1

N − 2

∫ ∞

0

rφ(r)dr < ∞.

Let k > 2 be such that k1−a ≥ 2max
r≥0

Φa(r) and define

ξ(x) = k

∫ ∞

|x|
Φ(t)dt, for all x ∈ RN .

Then ξ satisfies




−∆ξ = kφ(|x|) in RN ,

ξ > 0 in RN ,

ξ(x) → 0 as |x| → ∞.
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Since the mapping [0,∞) 3 t 7−→
∫ t

0

1
g(s) + 1

ds ∈ [0,∞) is bijective, we

can implicitly define w : RN → (0,∞) by
∫ w(x)

0

1
g(t) + 1

dt = ξ(x), for all x ∈ RN .

It is easy to see that w ∈ C2(RN ) and w(x) → 0 as |x| → ∞. Furthermore,
we have





−∆w ≥ p(x)(g(w) + 1 + |∇w|a) in RN ,

w > 0 in RN ,

w(x) → 0 as |x| → ∞.

(27)

Using the assumption (f1), we can find M > 1 large enough such that
M > f(Mw) in RN . Multiplying by M in (27) we deduce that v := Mw

satisfies




−∆v ≥ p(x)(g(v) + f(v) + |∇v|a) in RN ,

v > 0 in RN ,

v(x) → 0 as |x| → ∞.

With the same proof as above we deduce that un ≤ v in Bn, for all
n ≥ 1. This implies 0 ≤ u1 ≤ · · · ≤ un ≤ v in RN . Thus, there exists
u(x) = lim

n→∞
un(x), for all x ∈ RN and un ≤ u ≤ v in RN . Since v(x) → 0

as |x| → ∞, we deduce that u(x) → 0 as |x| → ∞. A standard bootstrap
argument (see Gilbarg and Trudinger19) implies that un → u in C2,γ

loc (RN )
and that u is a solution of problem (20).

This completes the proof of Theorem 3.1. ¤
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