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Abstract. We study the bifurcation problem
—div (a(x)|Dul’"’Du) 4+ h(z)u"~" = f(\, z,u) in QCcRY,
a(z)|Dul’ > Du - n + b(x)u”"" = g(x, u) on T,
u>0, u#0 in Q,

where 2 is an unbounded domain with smooth non-compact boundary I', n denotes the unit outward normal vector on I’
and A > 0, 0 are real parameters. We assume that max {p,2} < r < p* = pN/(N — p), 1 < p < N, the functions a, b and
h are positive while f, g are subcritical non-linearities. We show that there exist an open interval I and A* > 0 such that
the problem has no solution if § € I and XA € (0, \*). Furthermore, there exist an open interval J C I and A¢ > 0 such
that, for any 6 € J, the above problem has at least a solution if A > Ao, but it has no solution provided that A € (0, Ao).
2000 Mathematics Subject Classification: 35J60, 35P30, 58E05, 58G28.

1 Introduction

Among the great range of processes modelled by nonlinear equations, those leading to bifurcation
problems are of particular difficulty and importance. More precisely, many models from chemical
engineering, mathematical biology, mechanics and engineering may be written in the form

ug = F(\,u, Du, D*u,--)  in Qx (0,7), (1)

where u = u(z,t) is the state of the system under consideration. For instance, if we try to describe
the behaviour of a bacteria culture, then the state variable u might be the number of mass of the
bacteria. In many concrete situations problems like (1) represent a complicated system of equations
involving partial differential equations and other operations, like boundary or initial conditions. Each
mathematical model contains (implicitly or explicitly) parameters corresponding to the real world
situation being described. For example, the outcome of a bacteria growing experiment will depend on
the size of the experimental apparatus, the temperature, the composition of the ambient atmosphere,
and other parameters. In such a way, a surprising variety of the problems in applied mathematics which
exhibit multiple steady state solutions, even systems with infinitely many degrees of freedom, can be
reduced to the form

ug = F(A1, Agy -+« s Mg,y Du, D%, -+ +) in Q x (0,7)
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which involves a large number k of parameters. However, even for the biologists, it would be difficult
to figure out how F should depend on all these quantities. In this case, in order to develop a consistent
mathematical theory, one tries to fix as many as possible parameters and perhaps to vary one of them
so as to see the effect of this. Many times several parameters in a model can be lumped into a single
one by standard scaling procedures, such that Reynold’s number, Lyapunov-Schmidt reduction, etc.
Thus we obtain the evolution problem (1) which depends on a single parameter. The simplest solutions
(1) can have are equilibrium solutions. These are time-independent solutions of (1), i.e., the states
which satisfy F(\,u, Du, D?u,--+) = 0. Similar problems arise for the case of several state variables.
We refer, e.g., to the steady state Brusselator model (see Brown-Davidson [4]) which was developed to
describe morphogenesis and pattern formation in chemical reactions. We assume in this paper that F
involves the quasilinear differential operator

Ayu = div (|DuP~?Du), 1<p<oo.

We are concerned in this paper with the study of the following double bifurcation quasilinear problem

—div (a(z)|DuP2Du) + h(z)u" ' = f(\, z,u) in Q CRY,
(Pr0) § a(z)|DulP~2Du - n + b(z)uP~! = Og(z,u) on I',
u>0, u#0 in Q,

where (2 is an unbounded domain with non-compact, smooth boundary I'; A > 0,  are real parameters
and throughout max {p,2} <r < pN/(N —p), 1 <p < N.

The study of non-trivial solutions in the above problem is motivated by the following example.
Suppose an inviscid fluid flows irrotationally along a flat-bottomed canal. The flow can be modelled
by an equation of the form F(A,u, Du) = 0, where F(A,0,0) = 0. One possible motion is a uniform
stream (corresponding to the trivial solution u = 0), but it is of course the non-trivial solutions which
are of physical interest.

Problems of this type arise in the study of physical phenomena related to equilibrium of anisotropic
continuous media which possible are somewhere “perfect” insulators, cf. Dautray-Lions [7]. For in-
stance, if 7 denotes the shear stress and Dyu is the velocity gradient then these quantities obey a
relation of the form 7(z) = a(z)Dpu(z), where Dyu = |Du[P~2Du. The case p = 2 (respectively p < 2,
p > 2) corresponds to a Newtonian (respectively pseudoplastic, dilatant) fluid. The resulting equations
of motion then involve the quasilinear operator div (aDpu). We refer in this sense to Aronsson-Janfalk
[2] for the mathematical treatment of the Hele-Shaw flow of “power-law fluids”. The concept of Hele-
Shaw flow refers to the flow between two closely-spaced parallel plates, close in the sense that the
gap between the plates is small compared to the dimension of the plates. Quasilinear problems with
a variable coefficient also appear in the mathematical model of the torsional creep (elastic for p = 2,
plastic as p — oo, see Bhattacharya-DiBenedetto-Manfredi [3] and Kawohl [14]). This study is based
on the observation that a prismatic material rod subject to a torsional moment, at sufficiently high
temperature and for an extended period of time, exhibits a permanent deformation, called creep. The
corresponding equations are derived under the assumptions that the components of strain and stress
are linked by a power law referred to as the creep-law see Kachanov [12, Chapters IV, VIII], Kachanov
[13], and Findley-Lai-Onaran [11]). We also refer to the study of flow through porous media (p = 3/2,
see Showalter-Walkington [19]) or glacial sliding (p € (1,4/3], see Pélissier-Reynaud [15]). We mention
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the recent papers Cirstea-Motreanu-Radulescu [5], Drabek-Huang [9] and Driabek-Simader [10] for the
mathematical treatment of bifurcation problems for several classes of quasilinear elliptic equations on
unbounded domains and with respect to anisotropic spaces.

The purpose of this paper is to study a quasilinear eigenvalue problem with non-linear boundary
condition in an unbounded domain Q C RY and we generalize in a larger framework some results from
Cirstea-Radulescu [6]. It is known that for unbounded domains, neither the embedding WP (Q) —
L9(9), nor the trace WP (2) — L™(T) are compact. So, it is natural to look for more general function
spaces, for instance weighted Sobolev spaces, where compact embeddings can be obtained for suitable
weight functions. However, due to the non-linear boundary condition it is not only necessary to have
compact embeddings of weighted Sobolev spaces but to use also compactness of the trace operator.

Pfliiger [17] studied the trace operators WP (Q; vy, v1) — L*(T; w) in weighted Sobolev spaces for
sufficiently regular unbounded domains Q C RY with non-compact boundary. He established certain
conditions on the weight functions vy, v1, w which ensures the compactness of this operator.

For a positive measurable function w; defined in a domain Q C RY, let L9(Q; w) be the space of
all measurable functions u such that

1/q
lullg,0w = (/ [u(z)|Twy (x) d:v)
Q

is finite. If ' is a submanifold in R, we denote by L™(I'; wy) the space of all measurable functions
u such that |||/, rw, is finite. The weighted Sobolev space W1P(Q; vy, v;) is defined as the set of
all functions u € LP(€; vg) such that all the derivatives ug, (1 < i < N) belong to LP(€; v1). The
corresponding norm is given by

I

1/p
P ( / lu(z) Poo () dz + / |\ Du(z)Pos (2) da:) .
Q Q

Denote by A, the Muckenhoupt class which is the set of all positive measurable functions v in RY
satisfying
1/p (p—-1)/p

ﬁa/”dw /,U—l/(p—l)dx <C ifl<p<oo

1
@Zvdngessgggu(x) ifp=1,

for all cubes @ in R, For example, the function v(z) = (1+ |z|)? belongs to A, if 8 € (—~N,N(p—1))
(see Torchinski [20]).

We always assume that the continuous weight functions vg, v1, wo, w1, wo belong to A,. Further-
more, the unbounded domain © C R”Y and the weight functions are chosen such that we can apply
[17, Theorem 2] and [17, Corollary 6] to guarantee that the trace W1P(€; vg,v1) — LP(T; wg) is con-

tinuous and the embedding WP (Q; vy, v1) < L4(Q; wy) for some p < g <

WP(Q; vy, v1) — L™(T; wy) for some p < m < p %—:117 are compact .

jg_p, respectively the trace
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Remark 1 To give an example of the domain Q@ C RN and of the weight functions vy, vi, wo, w1 and
wy that satisfy the above assumptions, consider Q as an infinite cylinder w x R where w C RVN~1 is
smooth, bounded and

1
vo(z) = Ar vi(z) =1, wo(x) = (1+]z))?°, wi(z) = (1+|z))*, wa(z) = (1+|z])*2, =€ RN.
To obtain continuity of the trace operator W1P(S2; vy, v1) — LP(T'; wg) and compactness of the embed-
ding WP (Q; vg,v1) — LI(Q; wy) respectively of the trace operator WP (Q; vg,v1) — L™(T'; wa) we
have to choose

N-p N-p

—N<agpy<l—-p, —-N<ai<gq

—N and —N<ay<m

- N+1.

Denote by C°(f2) the space of C§° (R )-functions restricted to Q2. We define the weighted Sobolev space
E as the completion of C5°(€2) in the norm ||-||z where we shall use the abbreviation |||z = ||*||1,p,2,v0,01 -

Remark 2 The definition of E and the choice of our weight functions ensure the continuity of the
trace E — LP(T'; wo) and the compactness of the embedding E — LI(Q; wy) respectively of the trace
operator E — L™(T'; we).

2 Main results

Suppose throughout this paper that the following hypotheses are fulfilled
(Hy) vy € CY(R") and there exists a constant 0 < o < N such that

|z] - [Do(z)| < o vo(x) Vo € Q;

(H2) a is a positive measurable function, locally bounded in © and there exist positive constants
ag, a1 such that
ao(|z[Pvo(z) + vi(2)) < alz) < arvi(z) ae. z € Q;

(Hz) b is a positive continuous function on R" and there exist positive constants by and b; such
that
bolz|vo(z) < b(z) < bywo(z) a.e. z€T.

Let f(A,z,s) : (0,00) x2xR — R be non-decreasing in A, measurable in z, derivable in s satisfying

(Hy) f(,-,00=0, f(Az,8)+f(Az,—s)>0 VYA>0, ae.z€Q, VseR;

(Hs) |fs(\,z,5)| < Ap(z)|s|772  for some r > g > max {p,2}, VA >0, a.e. z € , Vs € R, where
( is a non-negative, measurable function such that

0<o(z) <crwi(z) ae z€;

A
(Hg) !1_1)1(1) % =1 uniformly in z and in \;

Hy) [f(,z,8) — fF(A2,m,8)| < |A1 — Ao|ww(2)[s]97L, VA1, A2 >0, ae. z € Q, Vs € R, where 9
is a non-negative, measurable function such that

0<9(z) <Crwi(r) ae z€.
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Assume g : I' x R — R is a Carathéodory function that satisfies the conditions

(Hs) g¢(-,0) =0, g(z,s)+g(z,—s)>0ae eI, VseR;

(Ho) |g(z,s)| < go(z) +g1(z)|s|™"!, forsomep<m<p %:]11, a.e. ¢ € ), Vs € R, where go, g1
are non-negative, measurable functions such that

0 < go(x),g1(z) < Cywa(z) ae. xz€l, goe L™mI(T; wé/(lfm)).

The following integrability condition of the ratio w]/h? is inspired by assumption (1.4) in Alama-
Tarantello [1].

(H10) h:Q — R is a positive and continuous function satisfying

r\ 1/(r—q)
wi
/ (ﬁ) dzr < oo.
Q

Remark 3 If0 < a <a € L®(Q) and b € C(RY) is a positive function such that

C1

- < €2
(a1 =

S T

for some constants 0 < c; < co

then hypotheses (Hy)-(Hs) are fulfilled if we take weight functions as in Remark 1 with ag =1 — p.

Consider the Banach space X = E N L"(Q; h) endowed with the norm

p/r
lull’ = llullE + (/l'M(I)ITh(m) dx) :
Q

Obviously, the following embeddings
X45E and X5 L"(2; h) are continuous. (2)

The energy functional corresponding to (P g) is given by ®,4: X — R,
1 1 1
By (u) = — /a(x)|Du|” dz + = /b(x)|u|” dT + - /h(x)|u|’" dz — /F(/\,a:,u) dz — Q/G(:L‘,u) dr,
p p T
Q r Q Q r

where F' and G denote the primitive functions of f and g with respect to the last variable, i.e.
u u

F(\ z,u) = [ f(\z,s)ds, G(z,u) = [ g(z,s)ds. Solutions to problem (P ) will be found as non-
0 0

negative and non-trivial critical points of @) g. Therefore, a function v € X is a solution of the problem
(Py,p) provided that u > 0, u # 0 in © and for any v € X,

/a(x)|Du|p*2Du-D'u d$+/b($)|u|p72uv dI‘+/h(:v)|u|r72uvda:—9/g(m,u)'u dl’ = /f()\,x,u)’u dz.
Q r Q r Q

Set
Ng:={ueX: /g(x,u)udI‘ < 0}, Pyg:={ueX: /g(m,u)udf‘ > 0}
r r
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0, = sup 4”“”%; 0* := inf ||u||p
T wen, [ g(z u)udl’ T ueP, fg(a; uw)udl’
r
where || - || is defined on E as follows
1/p
lully = ( [a@ipup ds + [ b df) . )
Q r

We introduce the convention that if Ny = () then 6, = —oco and 6* = 400, provided Py = . Define

Ng = {uEX:/G(z,u)dI‘<0}, Pq = {ueX:/G(x,u)dP>0}

PP U/ S S | —
T ueNg P [ Gz, u)dT ) uePprGxu) dar -
T
If Ng = 0 (resp., Pg = ) then we set § = —oco (resp., 67 = +00).

Our main results are the following

Theorem 1 Suppose 0, < 6 < 0*. Then there exists \* > 0 such that problem (P g) has no solution,
provided that 0 < A < \*.

In order to state the next result, define § = max {6,,60_} if g(z,-) is odd and @ = 0 elsewhere. Let
6 = min {6*,07} and observe that § <0 < 6. Set J = (6, 0) and assume that J # (.

Theorem 2 Suppose 0 € J. Then there exists Ag > 0 such that the following hold:
(i) Problem (P g) admits a solution, for any X > Ay,
(i) Problem (Pyg) does not have any solution, provided that 0 < X < Xg.

3 Auxiliary results
We first prove that the energy functional @, 4 is well defined on X.

Lemma 1 There exist positive constants Cy and Cy such that for every u € E

/\umo dz < 01/|Du|%1( )dx—|—02/|n |[ulPvo(z) dT .

Proof. Using the divergence theorem we obtain, for any u € C§°(12),

/:v  D(|uPvo(x)) dz — /(n - &) [ulPvo(z) dT — N/ lu[Pvo (z) da.
Q

Q r

This implies

N/|uv’v0(a:) dz < /|n-x||u\pv0(x) dF+/\u|p|x\|Dv0(a:)|da:+p/|:1:Hu|p_1|Du|vo(x) dr.  (4)
Q T Q Q
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Using Holder’s and Young’s inequality, we get the estimate

(p=1)/p 1/p
p [ lallul " |Dufuo(s) do < p ( [ 1uPro@) dx) ( [ 1Duplafuo(z) dx) <
Q Q Q (5)
e(p—1) / lulPvo (z) d + €17 / | Dul?|z|Pvo dz
Q Q
where € > 0 is an arbitrary real number. From (4), (5) and (Hy) it follows that
(N—e(p—1)—0) / lu[Pvo (z) da < &P / | DulP|z|Poo (z) dz + / I - | [ulPvo () dT.
Q Q r
Using (Hz2) and choosing € small enough we find
/ lulPvo(z) dz < Cy / \DulPvi () dz + Co / in - zjufPro(z) dT,  Vu € C°(Q).
Q Q r
The conclusion of our lemma follows now by standard density arguments. O

Lemma 2 The quantity || - ||p defined by (3) represents an equivalent norm on E.

Proof. The inequality ||ul/%; < c||u||? follows directly from Lemma 1 by using the left hand side inequal-
ities which appear in hypotheses (Hz2) and (Hg).

By Remark 2 we know that the trace E — LP(I'; wy) is continuous. Therefore, we have that there
exists C > 0 such that

/|u|pw0(w) dr < Cllul’, VucE. (6)
T

Using the inequalities remained in (H2), (H3) and by (6) it follows that

Jull} < ax [ 1DuPo1(@)d + by [ JuPwo(a) dr < ¢ ulfy.
Q r

Hence the desired equivalence is proved. O

For A > 0 fixed, let f) be the function defined by

iz, s) = f(\z,8) Vre VseR.

u
Set F(z,u) = [ fa(z,s)ds. Denote by Ny,, Ng,, Ny, Ng the corresponding Nemytskii operators.
0

Lemma 3 The operators

Ny, LUQ; wy) — L9/@=D(Q; wl/ 79y, Np, : LI(9Q; wy) — L'(Q)
N, : I™(T; wy) — L™ D@ wl/ ™) N« LT wy) — LY(T)

are bounded and continuous.
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Proof. From hypothesis (Hs) we deduce that

@) € 2p@llt < Ol () ez e VueR
5 (7)
q(qA— 1)(p(ac)|u|q < %/\|u|qw1(w) ae.z € YueR,

|F)\($’u)| <

where C; denotes c;/(q — 1).
For u € LI(; wy) we get (setting ¢' = ¢/(¢ — 1))

/leA |q d:L‘ < Cf/\ /|u|qw1 )

Therefore, Ny, is bounded. Similarly, the boundedness of N, follows from the estimate

/|NF/\(U)|d:(; < %A/Wm(x) dx
Q Q

Let m' =m/(m — 1) and u € L™(T'; ws). Then, by (Hy)

r r

I
gm'~1 (o +cr / lu|™ws () df) ,
T

which shows that N, is bounded. In a similar way, by (Hg) and Hélder’s inequality we obtain

1
[INatwldr < [ goluldr + — [ giful™dr <
T T T

1/m’
(/gg”wé/(lm) dF) . </|u|mw2(x) dI‘) %/|u|mw2
r

r

and the boundedness of N¢g follows.
From the usual properties of Nemytskii operators we deduce the continuity of Ny, Np,, Ny and
Ng¢ (see Vainberg [21]). O

In view of Lemmas 2 and 3, ®, ¢ is well defined on X.
Lemma 4 The functional ®) g is Fréchet-differentiable on X.

Proof. We use the notation

1 1
1) =l Jw) = fulfan Kolw) = [ Gu)dr, Ke(w= [ F(eu)ds
r Q
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Then the Géateaux derivative of @, 4 is given by

! /! / !

(@) 0(u),v) = (I (w),v) + (J (u),0) = (Kp, (u),v) = 0(Kg(u),0),

(I (u),v :/a )| DulP~2 D - Dvd:v+/b )|ulP~2uw dT,

Q
(7 (w),v) :/h(x)|u|’"—2uvdx, (K}, (u) /fA (@, u)vde, (Ka(u), ):/g(x,u)vdf.
Q

r

We need only to show the continuity of q)')\,e and the assertion is proved.

Clearly, I : E — E' and J : L'(Q; h) — (L"(Q; b))’ are continuous. By using (2) we see
immediately that I' : X — X’ and J : X — X' are continuous.

The operator K’G is a composition of operators

X & B Ly LD wy) 2% L/ m=D(D; )/ Ty B B ¥

where (k(u),v) = [uvdl'. Obviously, k is a linear operator. By Holder’s inequality and Remark 2,
r

1/m’ 1/m
/|uv|dr < </|u|mlw;/(1—m) dF) . (/ |v]|™ws dP) < C||u||m/(m 1)Ll (- m||vlle

T r T

which shows that & is continuous. As a composition of continuous operators, K'G is continuous, too.
Moreover, it is compact since the trace operator -y is compact. In a similar way we obtain that K}*& is
continuous such that the Fréchet-differentiability of ®) g follows. O

4 Proof of Theorem 1

Assume 6, < 6 < 6* and let A > 0 be chosen such that problem (P, y) possesses at least a solution. We
claim that there exists A* > 0 such that A > X\*. Suppose that v is a solution of problem (Pjg). Then,
using (7) we find

ulf? —O/g(w,u)udr+/h(a:)|u|’"da: _ /f()\,x,u)ud:v < )\C’f/\u|qw1(w) dz. (8)
T Q Q Q

Now, the Young inequality implies the following estimate

~ 9 1/(r—q)
/\Cf/|U|q’w1(.’E) da::/kif;:]l h/muft dz < TGyl /( ) dx+g/h|u|"dm.
Q Q Q Q

This inequality combined with (8) gives

—q, ~ r\ 1/(r—a) -
Julf —0 [ g wpuar < 2@yt o [()T T do+ L [ de <
T

T
1/(r—q) 9)
) dx .

w]
r h4

/
"~ 9./ \\yr/(r—a)
(Cyay/ra Q/ (
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On the hand, 6 < 6* implies the existence of a constant C; € (0,1) such that

[l

0<(1-C)0"<(1-C1)7—F—v—
ffg(x,u)udI‘

for all u € P,

which yields
lul? — 9/g(x,u)udI‘ > Cillulf  forallu € P,
r

On the other hand, 6, < @ shows that there exists Cy € (0, 1) such that

lul? — 9/g($,u)udf > Cyllulp for all u € .
T

From (10) and (11) we conclude that

lul? — H/g(x,u)udf > Collulll  forallu e X
r
where Cy = min {C1, Ca}.
The continuity of the embedding E < L9(f2; w;) implies the existence of C' > 0 such that
6||u||f;”9,w1 <l forallu € E.

By (8) and (12) we have

p/q
C,C ( / |9 () da:) < Collull? < AC; / |t () da,
Q Q

which implies
(Ucoéf_l)\_l)q/(q_p) §/|u|qw1(af;) dz.
Q
This combined with (13) yields
CoC(CCoCy ' A 1yP/a=P) < Coul}.

Using (14) together with (9) and (12) we obtain

w1
T ha

I e r\ 1/(r—0)
CoC(CCC Ayl la) < T2 4Gy nyr/=a) / ( ) dz.
Q

We see that our claim follows if we take

N 1/(r—q)
* _ v wy
X = C (/(hq) dz
Q

) (q—p)/q:| (T—q)/(’l"—p)

) —(g—p)(r—q)/q(r—p)

where C* denotes (:71 [006 (T’"Tq
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Corollary 1 Suppose 0, < § < 0* and X > 0 such that (Pyg) has a solution u. Then

1/(r—a)
Collully + dz < —(C’ A/ = q)/ (w1> di
Q

ha

and
ully > KA~(@P),

where K > 0 is a constant independent of u.

Proof. The first part of the assertion follows by (9) and (12). The second one is implied by (14) which
shows that the constant K can be chosen, for example as c p(qu)(Coéffl)l/ (a-p), a

5 Properties of &)y

Proceeding in the same manner as we did for proving (12) we can show that if we take 6_ < 0 < 67
then there exists ¢ > 0 such that

1
Il — H/G(:c,u) dr > cllull?  for all u € X. (15)
T

We shall employ in what follows the following elementary inequality
w/(v—p)
slult — tlu|” < Cpuus (t> Vu € R, Vs,t € (0,00), VO < pu < v. (16)

Lemma 5 Suppose 0_ < 0 < 0% and X\ > 0 is arbitrary. Then the functional ®y g is coercive.
Proof. From (7) we have that there exists C' > 0 such that
F(\ z,u) < CA|u|fw (z) a.e. ¢ € Q, Yu € R. (17)

By virtue of (16) and (H19) we obtain

q/(r—q) 1/(r—q)
/(CAwl\uw _ —W) dz < C,«q/)\wl (AZ”) dz = Cyp N/ /( ) dz < C'.
Q

Q

Using (15), (17) and the above estimate we find
L o 1 r
Brol) = ulf - O/G(:I:,u) dr — /F()\,:z:,u) do + - /h|u| dz >
r

Q Q
h 1 1
cllulf — / (C)\|u|qw1 _ gw) do+ o /h|u|’" do > el + o /h|u|’" dz — "
Q Q Q

and the coercivity of ®, 4 follows. O
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Lemma 6 Suppose 0_ < 0 < 0%, X\ > 0 is arbitrary and {u,} is a sequence in X such that ® g(uy) is
bounded. Then there exists a subsequence of {uy}, denoted again by {u,}, such that

Up = ug i X, Uy = ug a.e. inQ and Py g(ug) < linrgngA,g(un).
Proof. In view of Lemma 5, the boundedness of @ g(uy,) shows that {u,} must be bounded in X. Using
(2) and Remark 2 we may assume (up to a subsequence) that
Up = ug in X,  up — up in LY(Q; wy) and  u, — up a.e. in .

Set
1
E(z,u) = F(\, z,u) — ;h|u|T and &(z,u) = Ey(z,u).

By hypothesis (Hs) and (16) we obtain
(a-2)/(r—
fule,u) = fulhz,w) — (r— Dhla[? < Acgwiul?™? — (r — D[~ < Chus (T)
It follows that

Q/(E(ac,un) — Z(z,up)) dz = Q/ (/01 /OS Eulz,up + t(un — up)) dtds) (tn — up)? dz <

w20

!
| e Un
Q

— ug)? dz.

This inequality will be used to get the estimate for ® g(ug) — @ 9(un):

@5.0(u0) — Prg(un) =
(uolly = ually) +6 [ (G(a,1n) ~ Gl o)) AT + [ (2, un) ~ E(w,00)) do <
T

(r=2)/(r—q)

wy

2
m(“n — up)” dz.
Q

RVWi= K=

(uolly = unll) +6 [ (G(aytn) — Gl ) T + "
r
The compactness of the trace operator E — L™(T'; we) and the continuity of the Nemytskii operator
Ng : L™(T; wy) — LY(T') imply that Ng(us) — Ng(ug) in L(T) ie. [|Ng(un) — Ng(ug)|dl — 0 as
r
n — 0o. It follows that

lim F/ Gz, un) dT = / G, ug) dT. (18)

n— 00
r
By Holder’s inequality we find

(4-2)/q
(r—2)/(r—a) 7\ 1/(r—q)
w w
| Syt — ) do < (/ (7) dw) | (/ [un = wowi (z) dx)
@ Q

Q

2/q

Since u, — up in LI(Q; wy) we obtain
. wY*?)/(T*q) )
Q

The lower semicontinuity of || - ||, with respect to the weak topology, (18) and (19) finish the proof. O
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Lemma 7 Suppose 0, < 6 < 0* and X\, \, Ao > 0 such that problem (P, g) has a solution u, for each
n. Then {u,} converges weakly (up to a subsequence) in X to some ug which is a non-negative critical
point of @y, 9.

Proof. By Corollary 1, {uy} is bounded in X. Therefore, in view of Remark 2, Lemma 2 and (2), we
may assume (passing eventually to subsequences) that

0 0
Un — ug in X, up — g in L7 (4 h), tp — ug in B, up — ug in LP(T; b), 2 — 220 in LP(Q; a) (20)
Up — ug in LY(Q; wy), up — uwg in L™(T; we), up — ug a.e. in Q, wu, - ug a.e. in'.  (21)

We now observe that the embedding E — Li .(Q) is compact for all p < s < p*. This and (20) imply

loc
up — up in L (), Vp<s<ph (22)
Since uy, is a non-negative critical point of @y, ¢ for each n, we derive by (21) that vy > 0 in 2 and for
any v € X we have
/a|Dun|p_2Dun-DU dm+/b|un|p_2unv dF—I—/ h|tn | 2 upv de = /f()\n,x,un)v da:—l—@/g(m,un)v dr.
Q T Q Q r

By (20) we find that {|u,|"~%uy,} is bounded in L'/"=1(Q; k), while by (21) we have that |u,|"~%u, —
lug|"~2ug a.e. in 0. Combining these facts we get
[tn|" "2t — Juo|""2ug in L/ (Q; h). (23)
For v € L'(9 h) fixed, set l,(u) = [huvdz, for all w € L7/1D(Q; h). Tt is easy to verify that
Q

l, € (L7/=1)(Q; h))'. This together with (23) implies

lim /h|un|r_2unv dx = /h|u0\7_2uov dz, Vv e X. (24)
n—oQ
Q Q
Similarly
lim [ bluy|P2upv dl = /b\u0|p_2uov dr, Yo e X. (25)
n—oo
r r

Taking into account (21) and Lemma 3 we infer that
Ny, (un) = Ny, (ug) in L9/ D (05 wi/" ) and Ny(un) — Ny(ug) in L™ ™D (D; wy/ ™). (26)

By Holder’s inequality and (Hyz) we derive the estimates
/|(f()\n,$,un) - f()\Oa‘fEa’u'O))m dz <
Q
10 G200 = £ oz, )l dz + [ 170, ,10) = £(h0,2,u0))o] de <
Q Q
CrlAn = ol [ lunlt= lolwr dz + [ 1(N7,, (ua) = Ny, (w0) 0] do <
Q Q
O hn = Nolltn 2t ol g2+ 1Ny, (tm) = Ny W0l 0t 0l 0

EAbd]
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and
[ (@ 100) = 9(2,100))0 4T < [Ny () = Nyfo)l, 1) gt/ [l

Then, in virtue of (26) we find

n—oo

lim /f(/\n,a:,un)vda::/f()\o,a:,uo)vdw, Yo € X.
Q

lim [ g(z,u,)vdl = /g(w,uo)'u dr, Vv € X.

n—00
r

We now claim that Du, — Dug a.e. in §2. Set

1

>zt

It is clear that there exists Ry > 0 such that Qp # 0 for all R > Rj. Since Qg C Qg CC  for all
Ry < R < R’ and Ugr>R,Qr = 2 we need only to show

Qr = {z € R : |z| < R and dist (z, RV \ Q) >

Du, — Dug a.e. in Qg for any R > Ry.
For this purpose we use the following inequalities (see Diaz [8, Lemma 4.10]) that hold for any &,¢ € RY
€ —CIP < CEPT2 — KPP0 ~C),  forp>2; (28)
€~ ¢IP < CEP~2e — [CP20E - Ol +[¢h* P, for1<p<2. (29)

Therefore, it is sufficient to prove that

(|Dun\p_2Dun — |Du0|p_2Du0) - (Dup — Dug) — 0 a.e. in Qp for any R > Ry. (30)
For a fixed R > Ry, choose ¥ € CP(RY) with0 <9 <1inRM, 9 =1o0n Qr and 9 =0 on R \ Qup.
Then by (20) and (21) we have that Yu, — dup in E which yields

/a|Du0|p_2Du0 - D(Yup — Jug) dz + /b19|u0|p_2u0(un —ug)dl = 0. (31)
Q

By Hoélder’s inequality and (22) we find

(p—1)/p 1/p
|/ — ug)|Dug|P~2Dug - DY dz| < C4 / a|Dug|? dz / |up, — uglP dz — 0.
upp ¢ upp ¥
Using this fact in (31) we obtain
/a19|Du0|p72Du0 - D(up — ug) dz + /bﬂ|u0|p72u0(un —up)dl’ — 0. (32)

Q

On the other hand, since (@;n’a(un),ﬂ(un —ug)) = 0 we have

/m‘}|Dun|p_2Dun - D(up — ug) dz + / b19|un|p_2un(un —ug)dl' + / a(u, — u0)|Dun\p_2Dun -Dddx =
Q r Q
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/h19|un|r n(uo — up dw—i—/f Ans Ty Uy )9 (U —uo)dzz:—I—O/g(x,un)ﬂ(un —ug)dl.

By Hblder s inequality, (20) and (22) we derive

(r=1)/p 1/p
|/ — ug)|Duy [P 2Du,, - DY dz| < Oy / a|Duy, |P dz / |un, — uo|P dz -0
upp ¢ upp 9
and
(r=1)/r 1/r
/h19|un|’" 20 (g — up) dz| < Oy / hluy|" dz / |up, — ug|" dz — 0.
upp ¢ upp ¢

By (7), (21), (26) and Holder’s inequality we see that

|/f(/\na-7f'aun)"9(un - UO) d$| < C~1f SliIl) An / |un|q_1|un - UO‘wl dr <
n_

Cf SUP An ||un||q,n wl““ﬂ - u0||q,Q,w1 =0

and
R R N A [ A
T

It follows that

{O\

ad| Dy [P"2Duy, - D(uy, — ug) dz + /bﬁ|un|p_2un(un —up) dl’ = 0. (33)
r

Since

< /m‘}(|Dun|p72Dun — |Du0|p72Du0) - (Duy, — Dug) dz <
Q
/ (| Dun|P~? Dun, — | Dug|P"2 Dug) - (Dup — Dug) dz + / B9 ([t [P~ — [110 [P~ 21u0) (ty — o) T
Q

we deduce by (32) and (33) that

lim [ a(|Dun|P ?Duy — |DugP"2Dug) - (Duyn, — Dug) dz = 0.

n—o0
Qr

Hence (30) holds. Therefore, the claim that Du, — Dug a.e. in  is proved. This combined with the
fact that {|Duy|P~ 2‘9—“ﬂ=} is bounded in L?/®=1(Q; a) implies

_ ou Buo _
Duy P72 — |Dyg[P 2= in LP/®"D(Q; a).
DualP 252 Duol? 2320 i 12/0 (9 0
It follows that
nlggo a|Duy,|P"2Du,, - Dv dz = /a|Du0|p_2Du0 - Dv dx, Yv e X. (34)
Q Q
By (24), (25), (27) and (34) we conclude that ug is a critical point of @y, g. O
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6 Proof of Theorem 2

Let @ € J and A > 0 be arbitrary. From Lemma 5 we see that m) g := in)f( ®) g(u) is real. Let {un}
ue

be a sequence such that lim,_,o @5 ¢(un) = my 9. According to Lemma 6, we can assume (up to a

subsequence) that
up = ug in X and @) g(ug) < linrggf@)\,g(un) = m)g-

This shows that in}f{ ®) ¢(u) is attained in ug. From (H4) and (Hg) we deduce that G(z, |uo|) > G(x,uo)
ue

a.e. z €' and F(A, z,|ug|) > F(X z,up) a.e. z € Q. It follows that @) g(Jug|) < ®xg(ug). Therefore,
we may assume that ug > 0 on €. To ensure that ug Z 0 we shall prove that m,) g is negative provided

that A > X for some A > 0.
By hypothesis (Hg) we deduce that there exists § > 0 independent of z and A such that

A
F(\ z,u(z)) > 2—q|u(m)|qw1(x) a.e. £ € Q, Yu € X with sup |u(z)| < 4.
€N

Set ¢ > 0 with the property that

V={ue X\ {0} sup Ju(z)] < Cllullg0um} # 0
x
and denote 7 = (g)q. Define

~ 2 2 2
X i= inf {22 Jluf? —qﬁ/G(J;,u) dr + —q/hw dz: ue Zz),
np n 2 nr o

where
Z={u€eX: sup |u(z)| <4, /|u|qw1(z) dx =n}.
z€eN
Q
. . . 771/‘1
It is easy to verify that Z # (). Indeed, if y € Y then u = vl Yy € Z.
y q,Q,'Ull

We now claim that A > 0. For this aim, we consider the constrained minimization problem

M= inf {JJul’: ue E,/\u|qw1(x) dz = n}.
Q

Since the embedding F — L7(Q; wy) is continuous, it follows that M > 0. Thus

ul? > M for all u € X with /\u|qw1(m) dx = 1.
Q

By applying the Holder inequality we find

: Wi wpy o= N )
/\u| wlda::/hq/rh |u|?dz < /(E) dz . /h\u| dx .
Q Q Q Q
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By virtue of (15) and (36) we have

2 2 2 2 2
Dl — —qG/G(:c,u) dar + 24 /h|u|’" de > efulfp + 2 /h|uvdx >
np n 2 nr o n nr o

5 5 r\1/(r—q) —(r—q)/q
oM+ gyl / (ﬂ) dx
n nr J hi

for all u € X with [ |u|%w; dz = 7. It follows that
Q

, ) e\ 0/
5> 2 opr 4 24 -0/ (/ (ﬂ) dx)
7 r h4

Q

and our clair~n follows.
Let A > A. Then there exists a function u; € Z such that
2

2 2
A > —q||U1||€ - —q9/G(:v,u1) dr + =1 /h|u1|r dz.
np n 2 nr S

This inequality and (35) imply

1 1
Dy g(ur) = 5||u1||§ —H/G(:C,ul)dI‘+ ;/h|u1|’" da:—/F(/\,:C,ul(:C))dx <
r Q Q

1 1 A
—||u1||§;—H/G(x,ul)dr+—/h|u1|"dx— —/|u1\qw1 dz < 0.
P rd 2qQ

I

Consequently, 12;.“( ®) g(u) < 0. Thus, the problem (Pjg) has a solution if § € J and A > .
u

Set
Ao = inf {A > 0: (P ) admits a solution}.

By Theorem 1, we see that A\g > A* > 0.

We now show that for each A > Ag problem (P, y) admits a solution. Indeed, for every A > Xq there
exists p € (Ao, A) such that problem (P, ) has a solution u, which is a subsolution of problem (P)g).
We consider the variational problem

inf {®) g(u) : v € X and u > u,}.

By Lemmas 5 and 6 this problem admits a solution @. This minimizer @ is a solution of problem (Pj g).
It remains to show that problem (P)\O,g) has also a solution. Let A, — Ag and A, > Ao for each n.
Problem (P, g) has a solution u, for each n. Then, in virtue of Lemma 7, we may assume (up to
a subsequence) that u, — wy in X, u, — ug in LYQ; wy), up — wup in L™(T'; we), where ug is a
non-negative critical point of @y, 9. To conclude that uy is a solution of problem (P, ) it remains only
to prove that ug # 0. Since u, and ug are critical points of (®,, ¢) and (®),,4), respectively, we have

/ / /

(I' (un), un — uo) — (I (o), un — u) + (J (wn), tn — uo) — (J (u0),un — uo) = Jin + Jon,
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where

Jl,n = /(f(An,iL',’U/n) - f()\(),iL‘,’U,O))(Un - ’U,()) d.’E,

Q
Ton =9 [ (9(a,10) ~ g, u0)) (un — o) T
r
It is easy to see that
0 < (I (un), un — ug) — (I (uo), un — ug) < Jin + Jon (37)

Using (7) we get the estimate

|J1n] < é’f ()\n / |t |9 [ty — wo|wy () dz 4 Ao / o] T Y uy — uo|wy () dw)
Q Q
and it follows from the Holder inequality that

x —1 -1
il < O (sg;; T e Aonuong,n,wl> 1~ 0l = 0. (38)
n_

By (26) and Hoélder’s inequality we find
ol < 101Ny 1) ~ Nyl 1 s 1 = il = 0. (39)
Relations (37), (38) and (39) yield
(I (), tn, — o) — (I (ug), up — ug) — 0 as n — oo.

We show that ||u, — uollpy = 0 as n — co. We distinguish two cases which may occur

CASE 1: p > 2. Using (28) we obtain

!

lun — u0||€ <C ((I’(un),un —up) — (I (uwp),un — uo)) -0 asn— oo.

which shows that [|uy||p — ||uollp as n — oco.

CASE 2: 1 < p < 2. We observe that it is enough to show that
lun, = woll§ < O ({I' (un), un = o) = (I'(u0), un = uo)) (Ilunlly ¥ + lluolly 7). (40)
In order to prove (40) we recall the following result: for all s > 0 there is a constant Cs > 0 such that
(z+y)’ <Cs(z®+y°) for any z,y € (0, 00). (41)
Then we obtain

2/p
|tn — ugllz = (/ a(z)|Duy, — DuglP dz + /b(w)|un — ugl? dI‘) <
Q r

2/p 2/p
Cp (/a(x)m“” — Duo|” dx) + (/ b(z)|un — uo|? dI‘)
T

Q

(42)
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Using (29), (41) and the Holder inequality we find

/a(:c)|Dun — Duy|P dz = /a(x)(|Dun — Dug)?)P? dz <
Q Q
2
l / (a(|Dun|P~2Duy, — | DuoP~2Dug) - (Dur, — Duo))p/ (a(|Dun| + | Dug|)P) > P2 dg <
Q

(2-p)/2

p/2
o / a(|Dtn|P~2Duy, — |DugP~2Dug) - (Dur, — Dug) dm) ( / a(|Dun| + | Dug|)? dz <

Q Q

p/2 (2-p)/2
o /a(|Dun|p_2Dun — |Dug|P~2Dug) (Duy, — Dug) dw) /(a|Dun|p + a|Duyg|P) dw) <

Q Q
p/2
3 / a(z)(|Dun P~ Duy — |Dug|P~Dug) - (Dun — Dug)dz | (Junl? + [luol?)® P72 <
Q
p/2
es | [ a(@)(1DunP2 D = Dol D) - (Dt = Du)da | (a7 + ua[7772)
Q

Using the last inequality and (41) we have the estimate

2/p
(/ a(z)|Duy — Dug|P dﬂﬁ) <6 ((I’ (tn), i, — ) = (I (ug), up — Uo)) (lunlly ™ + lluolly P)- (43)
)

In a similar way we can obtain the estimate

2/p
(/wm%—wwﬁ) < e ({1 (un), tn = u0) = (I’ (u0), un = o)) (lunlly ™ + [luolly ) (44)

r
It is now easy to observe that inequalities (42), (43) and (44) imply the estimate (40).

In both cases, by Corollary 1, ug # 0. This concludes our proof. O
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