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Abstract

In this paper we prove a perturbation result for a new type of eigenvalue problem
introduced by D. Motreanu and P.D. Panagiotopoulos in [9]. The perturbation is made
in the nonsmooth and nonconvex term of a double eigenvalue problem on a spherlike type
manifold considered in [1]. For our aim we use some techniques related to the Lusternik-
Schnirelman theory (including Krasnoselski’s genus) and results proved in [4], [5] and [24].
We apply these results in the study of some problems arising in Nonsmooth Mechanics.

1 Introduction

The mathematical theory of hemivariational inequalities and their applications in Mechan-
ics, Engineering or Economics, were introduced and developed by P.D. Panagiotopoulos
(see [17-23]). This theory may be considered as an extension of the theory of variational
inequalities studied by G. Fichera (see [6]), J.L. Lions and G. Stampacchia (see [8]). How-
ever, Hemivariational Inequalities are much more general, in the sense that they are not
equivalent to minimum problems, but give rise to substationarity problems.
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In this paper we deal with a new type of eigenvalue problem for hemivariational in-
equalities, called ”double eigenvalue problems” which were introduced by D. Motreanu and
P.D. Panagiotopoulos (see [9]). In [1] it is proved a multiplicity result concerning the so-
lutions belonging to a spherelike type manifold. Our aim is to study the effect induced by
an arbitrary perturbation made in the nonsmooth and nonconvex term of the symmetric
hemivariational inequality considered in [1].

2 The abstract framework

Let V be a real Hilbert space, with the scalar product and the associated norm denoted by
(-,-)v and || ||y, respectively. We shall suppose that V is densely and compactly embedded
in LP(Q; RY) for some p > 2, where N > 1 and Q C R™,m > 1, is a smooth, bounded
domain. Throughout in this paper, we shall denote by (-,-)y and (-,-) the duality products
on V and RY| respectively. Let us denote by C,(f2) the constant of the (continuous, in
particular) embedding V C LP(£2; R") which means that

[vllr < Cp(2) - lv]|v, for allv e V.

Let a1,a2 : V X V — R be two continuous symmetric bilinear forms on V and let By, By :
V — V be two bounded self-adjoint linear operators which are coercive in the sense that

(Biv,v)y > b~ ||v||}, forallv €V, i =1,2,

for some constants b1, b > 0. For fixed positive numbers a, b, 7 we consider the submanifold
S@b of V x V described as follows

8§40 = {(v1,v2) € V x V : a(Bv1,v1)y + b(Byva, v2)y = r2}.
We need to consider the tangent space associated to the manifold defined above, which is
Tlur us)Sap = {(v1,v2) €V XV 1 a(Byui,v1)v + b(Baug,v2)y = 0}.
Let j : Q x RY — R satisfy the following assumptions
(i) 7(-,y) is measurable in Q for each y € R" and j(-,0) is essentially bounded in €;
(i) j(=,-) is locally Lipschitz in R for a.e. z € Q.

Throughout this paper we shall use the notation jg for Clarke’s generalized directional
derivative (see [3]) of j with respect to the second variable y, i.e.,

. ) —
jg(/)(37ay;z) :limsup](‘r’w+ z) -](xaw),
bV A

with z € Q, y,2z € RY and A € R. Accordingly, Clarke’s generalized gradient 9,j(z,y) of
the locally Lipschitz map j(z,-) is defined by

Oyi(z,y) ={€ € RN : (&,2) < j)(w,y;2), V2 e RV}

As Radulescu and Panagiotopoulos observed in [24], we may request that j satisfies a slight
more general growth condition than the classical one (see the hypothesis (H;) in [13])
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(H1) There exist 6 € L&D (©) and p € R such that
|2 < 0(=) + plylP~,

for a.e. (z,y) € @ x RN and each z € 9,j(z,y).

(1)

Let us consider a real function C : S%* x V x V' — R to which we impose no continuity
assumption. We are now prepared to consider the following double eigenvalue problem :

Find U1, U € V and )\1, A2 € R such that

a1(u1,v1) + ag(ug, v2) + C((u1, u2),v1,v2)+
+s£j2($’ (u1 — u2)(z); (v1 — v2)(z))dz >

1
(Prap) \ > A (Brug, o)y + Ao(Baug, va)y, V v1,v5 €V,

a(Blul, ’u,1)V + b(BQ’u,Q, ’U,Q)V =72,

We impose the following hypothesis

(Hs) There exist two locally Lipschitz maps f; : V — R, bounded on ;(S%%), (i = 1,2)

respectively, and such that the following inequality holds

C((u1,un),v1,v9) > fP(ur;01) + f3 (u;v2),
V (u1,up) € S¥° and V (v1,v) € T(ul,w)Sf’b,

In addition we suppose that the sets
{z € V* : z€0fi(u),u; €m(S*°)}
are relatively compact in V*, for ¢ = 1, 2.
Define the map (A1, A2) : V x V — V* x V* by the relation
((A1, A2)(u1,u2), (v1,v2))vxv = a1(u1,v1) + az(uz,v2)
and the duality map A : V x V — V* x V* given by
(A(u1,u2), (v1,v2))vxv = a(Bru1,v1)y + b(Baug, ve)y.

We also assume

(2)

(4)

(H3) For every sequence {(u},u2)} C S with u?, — u; weakly in V, for any 2% € 9f;(ut,),

with
ai(ul,ub) 4+ (2 ul )y — a; € R,
1 =1,2, and for all w € LI%(Q; RY) which satisfies the relation
w(z) € 0yj(z, (u1 —uz)(x)) for ae. z € €,

such that
[(Al, AQ) — /\0 . A] (Ul ’U,2)

ny 'n
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converges in V* x V*, where
b

o =r~%(or +an+ / (w(z), (u1 —us)(z)) da), (7)

there exists a convergent subsequence of (u),u2) in V x V (thus, in S3?).

n?n

(Hy4) j is even with respect to the second variable, i.e.,
j(z,—y) = j(z,y), for a.e. z € Q, and any y € RY,
and f; is even on m;(S%) i.e.,
fi(—=us) = fi(u;), for all (ug,ug) € 84 i=1,2.

By assuming the hypotheses (Hy), (Hs), (Hs) and (Hy), it is proved in [1] that the double
eigenvalue problem (Prly o) @dmits infinitely many pairs of solutions {£(uk,u2), (AL, \2)} C

5%t x R2. Moreover, it is found the expression of the eigenvalues A} and A\2. The aim of
this paper is to answer a natural question: what happens if we perturb (P1 ) in a suitable
manner? For proving our main result we need some notions of Algebraic Topology which
may be found in [26]. We recall now only some basic definitions.

Let X be a metric space and A C X. We said that a map r : X — A is a retraction
if it is continuous, surjective and fulfills 4 = Id. A retraction r is called to be a strong
deformation retraction if there exists a homotopy F : X x [0,1] — X of i o7 and Idx
such that F(z,t) = F(z,0), for each (z,t) € A x [0, 1]. Here 7 stands for the inclusion map
of A in X. We call X to be weakly locally contractible, if every point has a contractible
neighbourhood in X. Let £ : X — R be a locally Lipschitz functional. Set, for every a € R

[€ < a] = {ue X;¢{(u) <a}.

Let us fix a,b € R with a < b. The pair ([ < b],[¢ < a]) is called trivial if, for every
neighbourhoods [a', "] of a and [b',b"] of b, there exist some closed sets A and B such that
[E<d]CAC[¢<d], E<b]CBC[¢<b']and such that A is a strong deformation
retract of B.

The next notion is essentialy due to M. Degiovanni and S. Lancelotti (see [5]).

A real number c is said to be an essential value of £ if, for every e > 0, there exist
a,b € (c — €,c+ ¢€), with a < b and such that the pair ([{ < b],[¢ < a]) is not trivial.

Let us consider an arbitrary element ¢ in V* and g : Q x RY — R a Caratheodory
function which is locally Lipschitz with respect to the second variable and such that g(-,0) €
L'(£2). Let us consider the following non-symmetric perturbed double eigenvalue problem:
find (u1,u2) € V x V and (A1, A\2) € R? such that

(a1 (u1,v1) + as(ug,v2) + C((u1, u2),v1,v2)+
+f{.7y (w1 — u2)(z); (v1 — v2)(2))+

) gy( (U1 = ug)(2); (v1 — v2) (@) pda+

(Brap) § + < ¢,01 >y + < 09 >p>

> Ai(Biug,v1)y + Aa(Baug,v2)v, Y vi,v2 €V,

a(Biu1,u1)v + b(Baug, us)y = 2.

Fix § > 0. We impose to g the growth condition
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(Hs) There exists 61 € L(/+1)(Q) such that
|2 < 61 (x) + dlylP~, (8)
for a.e. (z,y) € 2 x RY and each z € d,9(z,y).

Let us denote by J and G the (locally Lipschitz, by hypotheses (H1) and (H3) ) functionals
from LP(;RY) into R, defined by

J(u) = /j(a:,u(w))d:v and G(u) = /g(w,u(a:))dx.
Q Q

We associate to the problems (Prl’a,b) and (P2, ,) the energy functions I1, I : V x V — R,

r,a,b
defined by
1
Iy (w1, u2) = 3 [a1(u1,u1) + az(u2, u2)] + 9)
+f1(u1) + fa(u2) + J(u1 — ug),
and

I(u1,u2) = I (u1,u2) + G(ur —u2) + (p,u1)y + (p,u2)v, (10)

for all uy,us € V.

We denote by T the family of closed and symmetric with respect to the origin Oy xv,
subsets of S3. Let us denote, as usually, by v(S) the Krasnoselski’s genus of the set
S € 7T, that is, the smallest integer k& € NU{+o00} for which there exists an odd continuous
mapping from S into R¥\{0}. For every n > 1, set

T,={ScC8% : 8cT,~(S)>n}
Recall that the corresponding minimax values of I; over I',

Bn = Sinf sup {Ii(u1,u2)},

CTn (u1 ,uz)GS

are critical values of I; on S%° (see [1, Theorem 1]).

3 Preliminary Results

The first result of this section concerns the functional I.

LEMMA 1. Let s := sup  {I1(u1,u2)}. Then the supremum is not achieved and
(ul,uz)es,‘f’b

li_)m Bn = 8. Moreover, there exists a sequence (by) of essential values of the restriction of
n—,oo

I at 8%, strictly increasing to s.

Proof. This result is essentially proved in [24] (see Lemma 1) by using the ideas of M.
Degiovanni and S. Lancelotti (see [5], Theorem 2.12). The only difference is that now, we
work not on a sphere but on the Riemannian manifold S&°. Tt is sufficient to point out that
this is a weakly locally contractible space as the usual sphere in V is, and the fact that I
satisfies the Palais-Smale condition on S’ as was proved in [1]. With these remarks, the
proof of the Lemma 1 follows the same steps with the one in [24].

For continuing, we need two aditional assumptions
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(Hg) The following inequalities hold

10111 ;2 <0, llg(0)llzr < 6 and [|¢][y- < 0. (11)

The second assumption is actually a variant of the compactness hypothesis (Hj)

(H7) For every sequence {(u},u2)} C S%° with u!, — u; weakly in V, for any 2% € 9f;(ut,),
with

ai(up, ul) + (7,1 )+ < $up >v— i €R, (12)
1=1,2 and for all w,z € LT (2; RY) which satisfies the relations

w(z) € Oyj(z, (ur — ug)(x)), (13)
z(z) € Oyg(z, (U1 — u2)(x)), for a.e. z € €,

such that
[(A1, Ag) — Ao+ A] (up,u)

n)'n

converges in V* x V* where
b b

Yo =1+ s + [ (w(e) + 2(z), (1 — ) (@) d), (149)
Q

there exists a convergent subsequence of (u),u2) in V x V.

The next result proves that if § > 0 is sufficiently small in the hypotheses (H5) and
(Hg), then I is a small perturbation of I; on S%°.

LEMMA 2. For every € > 0, there exists o > 0 such that, for all § < §y we have

sup | [1(u1,uz) — Io(u, ug)| < e
(u1,u2)653’b

Proof. By using mainly the Lebourg’s mean value theorem for locally Lipschitz functionals

(see [3]) and the hypothesis (Hs) we find
G)] < llg(>0)llzr + 116l s2r - llullze + 6z
Taking into account the hypothesis (Hg) and the fact that (u1,us) € S we derive that

|11 (ug, ug) — In(ug, ug)| = |G(ur — u2)+ < d,u1 >y + < d,ug >y | <

1 1
SHg(aO)HLl'i_HelHLpP%ICP(Q)T(\/CE-'_ bb2)+
13- CRQ) T+ =) 487 (o= + =) < €

P ab1 bbg ab1 bb2 ’

for § > 0 small enough.
LEMMA 3. The functional Iy satisfies the Palais-Smale condition on S&°.
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Proof. For the beginning it is important to remark that the expression of the general-
ized gradient O(7, | gab) at the point (ug,us) € S%b is given by the formula

O go) (ur,uz) = {€ - rm 2, (ug, ua))vxy - Alug,up) = & € OI(up,ug)},

where A : V XV — V* x V* is the appropriate duality map given in (4). Here, the duality
(-,)vxv is taken for the norm

ur, u2) vy = \/a(Brur, ur)y + b(Bauz, u2)v, ¥ ur,uz € V.
Let us consider a sequence (u},u2) C S such that

sup [(Zy 4y ) (1t )| < +o0

T

and such that there exists some sequence J, C V* x V* fulfilling the conditions
q g

Jp € 0L (ul,u2), n>1

n

and
o =17 (Jus (afun)) - Al ul) =0, (15)

strongly in V* x V*. For concluding it suffices to prove that {(u.,u2)} contains a conver-

gent subsequence in V' x V. Under hypothesis (H;) the functionals J and G are Lipschitz
continuous on bounded sets in LP(€2; RY) and their generalized gradients satisfy (cf. Clarke
[3], Theorem 2.7.5)

0J(v) C /Byj(x,'u(x))dm
Q

and
0G(v) C /%g(x,v(m))dac, Vv e LP(Q;RYN).
Q

The density of V into LP(Q; RY) allows us to apply Theorem 2.2 of Chang [2]. Thus, we
obtain
(Jv)(v) C J(v),

and
0(Gy)(v) CIG(v), Vv eV.

From J,, € 81, (u,,,u}) we derive that there exists 2, € 9fi(uf,)(i = 1,2), wp € 8(Jjy)(u,, —
u2) and z, € 8(G‘V)(u}L — u2) such that

Jn = (a1(up,*) + 2 + ¢, a0(ul, ) + 22 + ¢) + K*(wn) + K*(zn),
where K : V x V — V is the map given by

K(’Ul,’l)g) = V1 — V2.
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By the above considerations we have that

wn(z) € Oy (x, (up, — up)(z))

and

2
)

zn(z) € Oyg(z, (ul, — u?)(x)), for a.e. z € Q.

By the relation (15) we get
(ar(uh,-) + 28 + b, a2(u2, ) + 22 + 8) + K" (wp) + K* (20) —

—r*([(a1(un, ) + 2n + @y az(up, ) + 2z + 6) + K" (wn) + K* ()],
(ul, u2))y <y - Aut,u) — 0, strongly in V* x V*.
Since the sequence (u),u2) is contained in S** and by the coercivity property of By and
By it follows that each sequence (ul) and (u2) is bounded in V. So, up to a subsequence,

n
we may conclude that

ul, — u;, weakly in V, for some u; € V, (i = 1,2).

The compactness assumptions in the hypothesis (Hs) implies that, again up to a subse-
quence, _
z), — z;, strongly in V*  for some z; € V* (i = 1,2).

Also we have

wn € O(Jjv) (un — up) C 8T (up, — up), (16)
Zn € 8(G|V)(u}L —u2) C 0G (u) —u?).

The compactness of the embedding V' C LP(Q; R") provides the convergences
ul, = ui, strongly in LP(Q; RY), (i =1,2). (17)

Since J and G are locally Lipschitz on LP(€2; RY), the above property ensures that (w,) and
(zn) are bounded in Lv1 (;RY). By the reflexivity of LT (;RY) and the compactness
of the embedding L#(Q;RN) C V*, there exist w,z € L#(Q;RN) such that, up to a
subsequence,

w, — w strongly in V* and weakly in LT (Q;RM)

and
2, — z strongly in V* and weakly in L#(Q; RY).

Proposition 2.1.5 in Clarke [3] and the relations (16) and (17) yield

w € 8J(U1 — UQ), (18)
z € 0G(u1 — ug).

With the above remarks we may suppose that

a;(u;,,uy) convergesin R, i =1,2,
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and
([Ght+ &2+ ) + K (wa) + K )]s (uieid))

possesses a convergent subsequence in R . From (15) and taking into account the conver-
gences stated above we derive that

(arup, ), a2(u?, ) = 2o - Alug, u2),

converges strongly in V* x V*, where )\ is the one required in (H7). So, hypothesis (H7)
allows us to conclude that (u),u?) has a convergent subsequence in V x V, so in §%°. Thus
the Palais-Smale condition for the functional I on S&° is satisfied and the proof is now

complete.
LEMMA 4. If u = (ui,u2) is a critical point of IQ|s“"’
(A1, A2) C R? such that ((u1,us), (A1, A2)) is a solution of the Tproblem (Pf’u,b).

then there exists a pair

Proof. Since u is a critical point for Igl it follows that

a,b?
r

0V><V S (8125(1,,,) (ul,uQ) (19)

r

Taking into account the expression of the generalized gradient of the restriction of I» at
S,‘}’b, we may conclude the existence of an element ¢ € 0I(u1,u2) such that

6_7"72 <§7 (ulau2))VxV'A(u1’u2) =0 (20)

By the Clarke’s calculus and the inclusions stated in the proof of Lemma 3 we derive

0l (u1,u2)(vi,v2) C a1 (u1,v1) + ag(ugz, v2)+

+0f1(u1)vy + 0fa(uz)ve + /ayj(xa (u1 — u2)(z))(v1 — ve)(z)dz+
Q

+/8yg(x, (u1 — uo)(z))(v1 — vo)(x)dz+ < p,v1 >v + < d,v2 >v,
Q

for all v1,v9 € V. So, there exists some z; € df;(u;) (i =1,2) and w, z € L%(Q;RN) with
w(z) € Oyj(z, (u1 —u2)(z)) for ae. z €1,

and
z(x) € Oyg(z, (u1 —ug)(x)) for a.e. z € 0,

such that

(&, (Ul,'l)g))VXV = a1 (u1,v1) + ag(ug, v2)+ < 21,v1 >v + < 29,02 >y +
+/ < w(x), (v1 — v)(z) > da +/ < 2(z), (1 — v2)(z) > da+
Q Q
+ < 1 >y + < P,v9 >y .
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From (20) it follows that

al(ul,vl) + a2(’u,2,1)2)+ < 21,01 >y + < 29,02 >y

+/ < w(z), (v — v2)(z) > d:z+/ < (@), (1 — v2)(z) > dat
Q Q
+ < p,v1 >y + < P, v9 >y —

_T72[a’1(u17u1) + ag(ug, u2)+ < z1,u1 >v + < 29,up >y +
+/ < w(x), (ur — us)(z) > do +/ < 2(z), (w1 — us)(z) > da+
Q Q
+ < ¢, ur >v + < d,ue >v| - (a(Brug,v1)y + b(Baug,v2)y) =0,
for all v1,ve € V. Set

A= r_Z[al(ul,m) + GQ(UQ,UQ)—F < z1,u1 >v + < z9,us >y +

+/ < (w4 2)(@), (w1 —us)(z) > dat < d,u1 >v + < b, uz >v].
Q

Let us now observe that we have

/((w +2)(2), (01 — v2)(2))dz <

Q
< [ ma{ o, (01— 02) (@))s 1 € By, (w1 — w2) ()} +
Q

+ [ max{(a, (01— 02) (@) 52 € Dyg(, (w1 — uz) (@)} =
Q
= [ 356z, (w1 = uz) (@); (01 — ) (@)} +
Q
/93(30, (u1 — ug)(z); (v1 — v2)(x))dz.
Q

In the above relation, the last equality holds because of Proposition 2.1.2 in [3]. Taking
into account the choice of z;(i = 1,2),z and w, it is easily to observe that if we denote
A1 = Aa and A2 = Ab, our hypothesis (H3) and some simple calculation lead us to the
desired conclusion claimed in the formulation of Lemma, 4.

4 The main result

With the preliminary results stated in Section 3 we are now prepared to prove our pertur-
bation result.

THEOREM 1. Assume that the hypotheses (H1) — (H7) are fulfilled. Then, for every
n > 1, there exists d, > 0 such that, for each § < 0, the problem (P,?,a,b) admits at least n
distinct solutions.
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Proof. Fix n > 1. By Lemma 4 it suffices to prove the existence of a §, > 0 such
that, for every § < d,, the functional I2 sob has at least n distinct critical values. We

may use now the conclusion of Lemma 1 and this implies that it is possible to consider

a sequence (bn) of essential values of Il|s“"” strictly increasing to s. Choose an arbitrary

€ < min (b,-+1 —b;). We now apply Theorem 2.6 from [5] to the functionals I; _, and

2 1<i<n |59
I2|s“’ Thus, for every 1 <1i¢ < n — 1, there exists 7; > 0 such that the relation

T

sup  |I1(u1,u2) — To(u1,uz)| <
(ul,uz)GS;l’b

implies the existence of an essential value ¢; of I in (b; — €p,b; + €g). By taking € =

Isg?
min{€ep, N1, -, Mp—1} in Lemma 2, we derive the existence of a d, > 0 such that

sup | Iy (ug,ug) — Ip(ug, ug)| < e,
(u1,u)eS®

provided ¢ < §,, in (Hs) and (Hg). So, the functional IQ‘ . has at least n distinct essential

values c¢1,co, ++,¢, in (—00,b, + €). For concluding our proof it suffices to show that

c1 -+ ,Cpy are critical values of IQ‘Sa’b. The first step is to prove that there exists € > 0 such

that IQ|5“”’ has no critical value in (¢; — €, ¢; + €). Indeed, if this is not the case, there exists

a sequer;ce (dy) of critical values of Io with d,, = ¢; as n — oo. The fact that d,, are

ab
ISy”

critical values for the restriction of I at S’ implies that for every n > 1, there exists
(ul,u2) € S such that

Ir(u),u?) = d, and X*(u),u2) =0,
where A\* is the lower semicontinuous functional defined by
A" (u1, ug) = min{]|(£1, £2)]
1

Thus, passing eventually to a subsequence, (u),u2) — (u1,us) € S»°, strongly in V x V.
The continuity of I and the lower semicontinuity of A* implies that

vexves (€1,62) € Ola(u1,u2)}.

I(u1,u2) = ¢; and X*(ug,ug) =0,

which contradicts the initial conditions on ¢;. Let us fix ¢; — € < a < b < ¢; + €. By Lemma,
3, I, satisfies the Palais-Smale condition on S&°. So, for every point e € [a, b], (PS), holds.
We have fulfilled the set of conditions which allow us to apply the ”Noncritical Interval
Theorem” due to J.- N. Corvellec, M. Degiovanni and M. Marzocchi (see Theorem 2.15
in [4]), on the complete metric space (Sﬁ’b,d(-, )) , where by d(-,-) we have denoted the

geodesic distance on S3°, that is, for every points z,y € S*°, d(z,y) is equal to the infimum
of the lengths of all paths on S2? joining z and y. We obtain that there exists a continuous
map 7 : S¥° x [0,1] — S such that, for each (u = (u1,uz),t) € S¥° x [0,1], are satisfied
the conditions

(@) n(u,0) = u,
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(0) Lx(n(u,t)) < Iz(u),
(0 L(u) <b= I(n(u,1)) <a,
(d) L) < a = n(ut) = u.
By the above conditions, it follows that the map

(I

|S

ap SO umn(u,1) € [12|s“"’ < b

r r

is a retraction. Let us define the map ¥ : [IQ|S < b x[0,1] — [Igls < b] by the relation

a,b a,b
r r

U(u,t) = n(u,t).

Since for every u € [I2 _, < b], we have

Pt
\Ij(ua 0) = U, \P(ua 1) = n(ua 1)7

and for each (u,t) € [I2|s“"’ < b] x [0, 1], the equality ¥(u,t) = ¥(u,0) holds, it follows that
Visl ,, <bl- homotopic to the identity of iy

retraction which implies that the pair

< b]. Thus, ¥ is a strong deformation

a,b
r

(100 < U 1E ., < a))

is trivial. With this argument, we get that c¢; is not an essential value of the restriction of
I, at S»°. This is the contradiction which concludes our proof.

5 Applications

In many problems arising in Mechanics and Engineering the cost or the weight of the
structure may be expressed as a linear function of the norm of the unknown function. Thus
the constraint that we have imposed ||ully = r( or, equivalently, allu1||? + b|lug|? = r?)
means that we have a system with prescribed cost or weight, or in some cases energy
consumption. The stability analysis of such a system involving nonconvex nonsmooth
potential functions (called also nonconvex superpotential) leads to the treatment of a double
eigenvalue problem for hemivariational inequalities on a spherelike manifold. We begin with
two mathematical examples and then we shall give some applications from Mechanics.

5.1 Perturbations of a coupled semilinear Poisson equation
First, we consider the case of the problem (Prl,a,b) in which C =0, By = By = idy, a =
b = 1. Moreover a1, a9 are coercive, in the sense that

ai(v,0) > @||o¥, Yo € Vyi=1,2,

277



for some constants @;,a2 > 0 and j : R — R is the primitive

i) = [ elr)dr, teR,
0

with ¢ : R — R even, locally bounded, measurable and satisfying the subcritical growth
condition : for some 1 < p < %, ifm>3(1<p<+oo,if m=1,2), we have

lo(t)| < e1 +cot|P!, V€ R.

It is known that
9j(t) C [p(t),@(t)], Vt € R,

where

©(t) = lim essinf {¢p(s) ; |t —s| < 4}
0—0

and
©(t) = lim esssup {p(s) ; |t — 8| < 0}
6—0

(see [2]). Suppose further the sign condition of Chang [2]
p(t)>0ift <0and p(t) <0if ¢t > 0.

Let us consider that the superpotential j gives rise to a very irregular graph [£, 07(&)] (i.e.
the graph of 3j has many zig - zag etc.). Then we consider the eigenvalue problem (PZ ab)s
where gg is appropriately chosen in order to “smoother a little bit” the graph [£, 97(§)], i-e.
the graph [, 07(€) + 0g(€)] has a smaller number of irregularities than the graph [£, 07 (£)].
In the present case we may consider that

85 (t) + 0g(t) C [p(t) + ¢ (1), 9(t) + ()], Vt € R

In fact, we consider
t
o) = [¢'(r)dr, teR,
0

where ¢! : R — R is locally bounded, measurable and satisfies the subcritical growth
condition
lo'(t)] < cs+ et VEER

Note that we do not need to impose to ¢! that it is even, as we have assumed on ¢.
Obviously, Theorem 1 applies on every sphere ||v1||? + |[v2|? = 72 of V x V, with a
sufficiently small > 0. More precisely, for every n > 1, there exists §, > 0 such that if c3
and c4 are chosen smaller than §,, then the perturbed problem (P,?, a,b) admits at least n
distinct solutions.

As a specific example of application of Theorem 1, we consider the coupled semilinear
Poisson equations on a bounded domain © in RY with a smooth boundary 09 in the
double eigenvalue problem

Auy + Mg € [p(ur(z) — uz(x)), @(ur(z) — uz(x))] for ae. z € O
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Aug + Aug € [—@(ui(x) — ua(x)), —p(ui(z) — uz(x))] for a.e. z € Q

u1 = ug = 0 on Of).

Here A1, A2 € R are the eigenvalues, u1,us are the corresponding eigenfunctions and ¢,
are determined above for the function ¢ : R — R. We choose V = H{(9),

a1 (u,v) = ag(u,v) = /Vu - Vudz, Yu,v € H}(Q),
Q

(Blu,v)Hé = (Bgu,'u)Hé = /u-vd:c, Yu,v € Hy(Q),
Q
j : R — R being equal to the primitive of ¢ as we considered above and, for simplicity,
C = 0. Notice that each eigensolution of the hemivariational inequality appearing in the
problem (Prl, a,p) TePresents a weak solution of the Dirichlet system above. Under the growth

condition for ¢ as above and the assumptions from the section 2 on j, Theorem 1 in

[1] implies the existence of infinitely many double eigenfunctions (ul,u2) € S%°, with

n? -'n T
ub,u2 € HE(Q) N H?(Q) for the foregoing Dirichlet problem.
Further, we consider the perturbed eigenvalue problem

Auy + Mug € [p(ur(x) —ua(z)) + 9’;1(“1(33) — ug(z)),

B(uy (z) — ug(z)) + ol (u1(z) — ug(z))] for a.e. z € Q
Ay + Aoy € [—p(ur(z) — uz(@)) + @' (u1 (z) — us(z)),
—p(ui(zr) — uz(z)) + @1 (u (x) — up(x))] for ae. z € Q

u1 = ug = 0 on 99,

where ¢! is chosen as in the previous example and satisfies the conditions therein. Then,
our Theorem 1 applies and we obtain that the perturbed Dirichlet problem considered
above admits infinitely many distinct solutions. Notice that c3 and ¢4 must be sufficiently
small, in the same sense as in the first case considered in this section.

5.2 Adhesively connected von Karman plates. Buckling for
given cost or weight.

In the framework of the theory of elastic von Karméan plates, i.e. of plates having large
deflections, we consider two or more such plates connected with an adhesive material. The
behaviour of the adhesive material may be described by a relation of the form

—f € 0j(u1 — ua), (21)

(cf. [22], p. 109).The graph of {f,u; — us} may be a zig-zag graph with complete vertical
branches in the most general case. Concerning the derivation and study of the correspond-
ing hemivariational inequalities we refer to [16], [22]. We assume that we have two plates
Q1 and Q9,9; C R?,i = 1,2, which are adhesively connected on Q c Qi =1,2. The
plates have the boundaries 'y and 'y respectively and QNT; = 0,5 = 1,2. The boundaries
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are assumed to be Lipschitzian and are not subjected to any loading on €4 and €4 vertical
to the middle plate plane or parallel to it. We assume that Q; = ) as subsets of R? and
we denote both ; and Q, by Q. The plates are only subjected along their boundaries I'y
and I's to continuously distributed compressive forces, i.e.

Oapila; = )\’LgaZ aaﬁ = 1a27 1= 1a27

where 0 = {043} denotes the stress tensor for the in-plane action of the plate, n = {nq}
is the outher unit normal vector to I'; or to I'g, ¢; = {g1,, 92, } is a given force distribution,
which is self equilibrated, i.e. for each plate

/gaids =0, /(~T192¢ —g1,72)ds =0, i=1,2.
I'; T

1 1

Here A;,7 = 1,2, is a real number which measures the magnitude of the compressive forces
having the direction g;,% = 1,2, along the boundaries of the plates. These compressive
forces may cause buckling of the composite plate with partial debonding of the adhesive
material. As in [15], p. 455 and in [21] p. 234, where the analogous buckling problem
for variational inequalities is formulated, the notion of “reduced variational solution” is
introduced and we obtain the following eigenvalue problem: Find u1,us € V and A1, A2 € R
such that
a1 (u1,v1) + az(ug,v2) + (C1(u1),v1)y + (Ca(uz),v2)y +

/jg(m, (ur —ug)(x); (vi — v2)(z))dz > A1 (Biuy,v1)y + A2 (Baua, v2)y,
Q

for all v, v9 € V. Here V is the real Sobolev space H?(2) with inner product (-, )y, , a;(us, v;)
is the bending energy of the plate %, (C;(u;),v;) , with C;(+) a nonlinear compact operator, is
the bending energy of the plate i due to the stretching of the same plate, j°(z, u; —ug; v1 —v3)
denotes the directional derivative in the sense of Clarke at the state (u1 — u2)(z) and in
the direction (v1 — v2)(x) at z, and (Bj;u;, v;) is given by the relation (7.2.13) of [21], i.e.

(Bz-uz-,'ui) = — hiagﬁiui,aviﬁdm v Ui, Vi € V,
Q;

for ¢+ = 1,2. Here h; denotes the thickness of the plate 7 and aﬂ? the stress field in the
plane of the plate i caused by the forces go,(a, 8 = 1,2, i = 1,2). Moreover we note that
on I';, concerning the plate bending, boundary conditions which guarantee the coerciv-
ity of the bilinear forms a;(-,-),7 = 1,2, are assumed to hold. For instance the built-in
boundary conditions u; = %—Tjj = 0,7 = 1,2, or the simple support boundary conditions
u; = 0, M;(u;) = 0,7 = 1,2, where M; denotes the bending element of the i—th plate. Fur-
ther we shall not need for the operators B; the property that (B;u;,v;) > 0V u; € V,u; # 0,
as it is the case in the corresponding theory ( see [15] ) of eigenvalue problems for varia-
tional inequalities but the stronger property of coercivity (this property is a consequence of
the assumption that the stress vector on the boundary of each subdomain €, of Q2,7 = 1,2,
is directed outside of Q,, i.e. that each subdomain of the plate is subjected to compressive
forces, (cf. [15] p. 457)). Further we express the total cost or weight of the structure by

280



2
the form Y a; (Bju;,v;) = 2, where a; are given positive constants. We get that for the
i=1

arising double eigenvalue problem for hemivariational inequalities (P!, ,) the hypotheses

r,a,b
are satisfied and the multiplicity result of Theorem 1 in [1] holds.

5.2.1 Perturbations of the buckling problem of a sandwich beam of pre-
scribed weight.

Let us now consider the perturbed hemivariational inequality : Find u1,u2 € V and A1, Ao €
R such that

ai(u1,v1) + az(ug,v2) + (Cr(u1),v1)y + (Co(uz),v2)y +

[ 38, (a1 = 1) @)s (01 = v2)(@))do > Ay (Brus, 1)y + do (Baria, )y
Q

for all v1,v2 € V. One can assume that the graph [, 95(€) + 0g(€)] is much more regular
than the graph [£,05(¢)]. Further one can assume that the graph [£,07(€) + 9g(€)] is
monotone, a fact which in the framework of a numerical calculation is beneficial. Moreover,
in the monotone case one can consider the corresponding variational inequality - eigenvalue
problem and get some useful comparison results (especially in the case of simple eigenvalue
problems for which there exist certain results for variational inequalities (see [7]).

5.2.2 Fuzzy effects superimposed on an adhesive contact law.

Let us put ourselves in the framework of the previous example of adhesively connected
plates and let us consider the following interface law (see Panagiotopoulos [22], p. 77)

—f(z) € 9j([ul(z)) + dg(u(x)), (22)

where 0g describes the fuzzy effects. We recall that g results in the following manner (see
25))

Let [ be an open subset of the real line R and let M be a measurable subset of [ such
that for every open and nonempty subset I of [, mes(I N (I — M)) is > 0. Let

| 46 if u(z) € M
r(u(zr)) = { —bi if u(z)¢ M

u
and g(u) = [ r(u*)du*. Then g is Lipschitzian and
0

{‘)g(u) = [—bg,bl], Vu(x) el

Thus dg(u(-)) has an infinite number of jumps in [ where each jump is identified with the
interval [—bg, b1]. In the composite law (22), the zero of this interval lies on the graph of
[€,7(€)] and the zone [—bs, b;] around this graph describes the fuzzy nature of the adhesive
contact law. Note that existence results related to fuzzy effects have been studied by
Naniewicz and Panagiotopoulos in [14] p. 132. Here we can apply our results to the
perturbed problem (P2, ,), i.e. to the system related to the interface law (22). Our Lemma
2 shows that if the fuzz,y7eﬁ’ect tends to disappear then the energy of the perturbed problem
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tends to the energy of the initial nonfuzzy problem. On the other hand, by Theorem 1, the
number of solutions of the perturbed problem tends to infinity if the perturbation given
by the fuzzy effect tends to zero. We also remark that our results hold if the fuzzy effect
is linked to a subcritical growth, but is arbitrary, in the sense that it has no symmetry.
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