Entire solutions blowing-up at infinity for semilinear
elliptic systems

FLORICA ST. CIRSTEA AND VICENTIU D. RADULESCU*

Department of Mathematics, University of Craiova, 1100 Craiova, Romania

Abstract

We consider the system Au = p(z)g(v), Av = q(z)f(u) in RY, where f, g are positive
and non-decreasing functions on (0, 00) satisfying the Keller-Osserman condition and we
establish the existence of positive solutions that blow-up at infinity.

1 Introduction and the main results

Consider the following semilinear elliptic system

Au = p(z)g(v) in RV, W
Av = q(z)f(u) in RV,
where N > 3 and p,q € 100’3
functions. Throughout this paper we assume that f,g € CIOO’CB [0,00) (0 < 8 < 1) are positive
and non-decreasing on (0, 00).
We are concerned here with the existence of positive entire large solutions of (1), that
is positive classical solutions which satisfy u(z) — oo and v(z) — oo as |z| — oo. Set
R* = (0,00) and define

G ={(a,b) € R* xRT; (3) an entire radial solution of (1) so that (u(0),v(0)) = (a,b)}.

(RM) (0 < @ < 1) are non-negative and radially symmetric

The case of pure powers in the non-linearities was treated by Lair and Shaker in [5].
They proved that G = Rt x Rt if f(t) = ¢” and g(t) = ¢ for t > 0 with 0 < v,6 < 1.
Moreover, they established that all positive entire radial solutions of (1) are large provided
that

/Ooo tp(t) dt = oo, /Ooo tq(t) dt = oc. (2)
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If, in turn
o0 o
/ tp(t) dt < oo, / tq(t) dt < oo (3)
0 0

then all positive entire radial solutions of (1) are bounded.
Our purpose is to generalize the above results to a larger class of systems. More precisely,
we prove

Theorem 1 Assume that

lim 9(cf () =0 forallc>0. (4)

t—00 t

Then G = RT x RT. Moreover, the following hold:

i) If p and q satisfy (2), then all positive entire radial solutions of (1) are large.

it) If p and q satisfy (3), then all positive entire radial solutions of (1) are bounded. Fur-
thermore, if f,g are locally Lipschitz continuous on (0,00) and (u,v), (4,?) denote two
positive entire radial solutions of (1), then there exists a positive constant C such that for
all r € [0, 00)

max {[u(r) — a(r)], [v(r) — o(r)[} < C max {|u(0) — @(0)], |v(0) — 5(0)}.

If f and g satisfy the stronger regularity f,g € C'[0,00), then we drop the assumption
(4) and require, in turn,
(H1) £(0) =g(0) =0, liminf, o {4 =10 >0
and the Keller-Osserman condition (see [4, 10])
o dt
1 /G(?)
Observe that assumptions (H;) and (Hz) imply that f satisfies condition (Hz), too.
The significance of the growth condition (Hg) in the scalar case will be stated in the
next Section.

Set n = min {p, ¢}. If 5 is not identically zero at infinity and assumption (3) holds, then
we prove

Property 1: G # () (see Lemma 4).

(H2) < 00, where G(t) = /Otg(s) ds.

Property 2: G is bounded (see Lemma 5).
Property 3: F(G) C G (see Lemma 6), where

F(G) ={(a,b) € 9G | a > 0 and b > 0}.
For (c,d) € (Rt x RT™) \ G, define
R, 4 = sup {r > 0|there exists a radial solution of (1) in B(0, ) so that (u(0),v(0)) = (c,d)}.

Property 4: 0 < R. 4 < oo provided that v = max {p(0),¢(0)} > 0 (see Lemma, 7).

Our main result in this case is

Theorem 2 Let f,g € C'[0,00) satisfy (Hy) and (Hz). Assume (3) holds, n is not
identically zero at infinity and v > 0. Then any entire radial solution (u,v) of (1) with
(u(0),v(0)) € F(G) is large.
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2 Preliminaries

Let © C RY, N > 3 denote a smooth bounded domain or the whole space RY. Assume
p # 0 is non-negative such that p € C%*(€Q), if Q is bounded and p € Cloo’f (Q) otherwise.
Consider the problem

Au = p(z)h(u) inQ, (6)
where the non-linearity h € C'[0, c0) satisfies

(A1) h(0)=0, h’>0, h>0 on (0,0c0).

Proposition 1 Let Q = B(0,R) for some R > 0 and let p be radially symmetric in Q.
Then Eq. (6) subject to the Dirichlet boundary condition

u=c (const.) >0 on 09, (7)
has a unique non-negative solution u., which, moreover, is positive and radially symmetric.

Proof. By Proposition 2.1 in [8] (see also [1, Theorem 5]), problem (6)+(7) has a unique
non-negative solution u, which, moreover, is positive. If u. were not radially symmetric,
then a different solution could be obtained by rotating it, which would contradict the
uniqueness of the solution. [ |

By a large solution of Eq. (6) we mean a solution u > 0 in  satisfying u(z) — oo as
dist (z, 0Q) — 0 (if @ Z RY) or u(z) — oo as |z| — oo (if @ = RY). In the latter case, the
solution is called an entire large solution. We point out that, if there exists a large solution
of Eq. (6), then it is positive. Indeed, assume that u(zg) = 0 for some zy € Q. Since u is

a large solution we can find a smooth domain w CC €2 such that ¢y € w and u > 0 on Jw.
Thus, by Theorem 5 in [1], the problem

AC=p@h()  mw,
(=u on Jw,

(>0 inw

has a unique solution, which is positive. By uniqueness, ( = w in w, which is a contradiction.
This shows that any large solution of Eq. (6) cannot vanish in Q.

Cf. Keller [4] and Osserman [10], if €2 is bounded and p = 1, then Eq. (6) has a large
solution if and only if A satisfies
Ay [T here H "h(s)d

< 00, Where t:/ s)ds.

A [ i ® = [ he)

This fact leads to

Lemma 1 Eq. (6), considered in bounded domains, can have large solutions only if h
satisfies the Keller-Osserman condition (Azg).
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Proof. Suppose, a priori, that Eq. (6) has a large solution uy,. For any n > 1, consider
the problem

Au=[lploh() i,
uU=mn on 01},
u >0 in Q.

By Proposition 2.1 in [8], this problem has a unique solution, say wu,, which, moreover, is
positive in Q. By the maximum principle

0<tp<tpt1 U n, Vn>1.

Thus, for every z € (, it makes sense to define w(z) = lim, o un(z). Since (uy) is
uniformly bounded on every compact set w CC (2, standard elliptic regularity implies that
u is a large solution of the problem Au = ||p||coh(u) in Q. ]

Therefore, in the rest of this section, we consider Eq. (6) assuming always that (A;)
and (Az) hold. In this situation, by Lemma 1 in [1],

> dt
. %<OO. (8)

Typical examples of non-linearities satisfying (A1) and (Ag) are: i) h(u) = e* — 1; ii)
h(u) = wP, p > 1; iii) h(u) = u[ln(u + 1)]?, p > 2.

For the proofs of the Propositions that will be stated below, we refer the reader to [1].
Proposition 2 ([1, Theorem 1].) Let Q be a bounded domain. Assume that p satisfies

(p1) for every o € Q with p(zo) = 0, there is a domain 2y > zo such that Qy C Q and
p‘ago > 0.

Then Eq. (6) possesses a large solution.

Corollary 1 Let Q = B(0,R) for some R > 0. If p is radially symmetric in Q and
plaa > 0, then there exists a radial large solution of Eq. (6).

Proof. By Proposition 1, the large solution constructed in the same way as in the proof of
[1, Theorem 1] will be radially symmetric. [

Proposition 3 ([1, Theorem 2].) Consider Eq. (6) with Q = RN assuming that p
satisfies

(p1)!  There ezists a sequence of smooth bounded domains (Qy)n>1 such that Q, C Qpy1,
RN = U, and (p1) holds in 2, for any n > 1.

(p2) /Ooo ro(r)dr < oo, where p(r) = max {p(z): |z|=r}.

Then Eq. (6) has an entire large solution.
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Remark 1 Theorem 4 in [1] asserts that (8) is a necessary condition for the ezxistence of
entire large solutions to Eq. (6) if p satisfies (p2) and for which h is not assumed to fulfill

(Az).

Remark 2 If p is radially symmetric in RN and not identically zero at infinity, then (p;)’
is fulfilled.

Indeed, we can find an increasing sequence of positive numbers (R,,),>1 such that R,, — oo
and p > 0 on 0B(0, Ry,), for any n > 1. Therefore, (p1)’ is satisfied on Q, = B(0, Ry,).

Corollary 2 Let Q = RN. Assume that p is radially symmetric in RY, not identically
zero at infinity such that (p2) is fulfilled. Then Eq. (6) has a radial entire large solution.

Proof. By Remark 2 and Corollary 1, the entire large solution constructed as in the proof
of Theorem 2 in [1] will be radially symmetric. |

We supplied in [1] an example of function p with properties stated in Corollary 2. More
precisely,

,

p(r)y=0 for r=|z|e[n—-1/3,n+1/3], n>1;
{ p(r)>0 in Ry\ |J[n—1/3,n+1/3];

n=1
1
1
d —
\ p € C'[0,00) an Ter[zlz)i”p(r) 3

3 Auxiliary results

Lemma 2 Condition (2) holds if and only if lim, oo A(r) = lim,_,oc B(r) = 0o where

r t r t
A(r) = / tlfN/ sN1p(s) ds dt, B(r) = / tlfN/ sN1q(s) ds dt, Vr > 0.
0 0 0 0

Proof. Indeed, for any r > 0

1 r 1 (" vy 1 /
= - < *
Afr) = —— [ [ oty dt = = [0 dt] <53 | woa o
On the other hand,

[ty —— [y = [ =) o
0 pN—2 0 N—2 0

v
<
|2 —
I\
| ——
=
¥
I\
|
—~
N 3
N——
¥
N
| I
S—
[V
=1
—~~
=
&

This combined with (9) yields

ﬁ /0 ip(t)dt > A(r) > N1_2 [1— (%)N_Q] /O%tp(t) dt.

Our conclusion follows now by letting r — oc. ]
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Lemma 3 Assume that condition (3) holds. Let f and g be locally Lipschitz continuous
functions on (0,00). If (u,v) and (4,?) denote two bounded positive entire radial solutions
of (1), then there exists a positive constant C such that for all r € [0, 00)

max {[u(r) — a(r)], |v(r) = o(r)[} < C max {|u(0) —u(0)], [v(0) — v(0)[}.

Proof. We first see that radial solutions of (1) are solutions of the ordinary differential
equations system

u'(r) =p(r)g(v(r)), >0
(10)

Define K = max {|u(0) — @(0)|, |v(0) —©(0)|}. Integrating the first equation of (10), we get

W) = @) =N [TV () (glo(s) - g(o(s) .

0

Hence

) ) < K+ [ 8N [C N p(s)lg(ols) - gl dsde. ()

Since (u,v) and (@,?7) are bounded entire radial solutions of (1) we have
lg(v(r)) — g(0(r))| < mlo(r) —o(r)]  for any r € [0, 00)
| (u(r)) = f(a(r))] < mlu(r) —a(r)]  for any r € [0,00),

where m denotes a Lipschitz constant for both functions f and g. Therefore, using (11) we
find

T t
lu(r) —a(r)| < K + m/o tl_N/O sNp(s)|v(s) — B(s)| ds dt. (12)
Arguing as above, but now with the second equation of (10), we obtain
T t
lv(r) —o(r)| < K + m/o tl_N/O sN7Lq(s)|u(s) — a(s)| ds dt. (13)

Define . .
X(r) =K+ m/ tl_N/ sNp(s)|v(s) — o(s)| ds dt.
0 0

Y(r) = K +m /0 TN /0 "N -Lg(s) u(s) — i(s)| ds d.

It is clear that X and Y are non-decreasing functions with X (0) = Y (0) = K. By a simple
calculation together with (12) and (13) we obtain
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Since Y is non-decreasing, we have

X(r) < K +mY(A() < K + "5 V() /0 Cip(t) dt < K +mC,Y(r)  (15)

where Cp = (1/(N — 2)) 57 tp(t) dt. Using (15) in the second inequality of (14) we find
(rN Y (1) < mrN " g(r) (K + mCpY (r)).

Integrating twice this inequality from 0 to r, we obtain
m? T
Y(r) < K(1+mCy) + =G, / L)Y (1) dt,
- 0
where Cy = (1/(N —2)) [57 tq(t) dt. From Gronwall’s inequality, we deduce

2 r
Y(r) <K+ qu)eme fo tat) dt <K(1+ qu)emchcq

and similarly for X. The conclusion follows now from the above inequality, (12) and (13). m

4 Proof of Theorem 1

Since the radial solutions of (1) are solutions of the ordinary differential equations system
(10) it follows that the radial solutions of (1) with u(0) =a > 0, v(0) = b > 0 satisfy

u(r) =a+ /OT N /Ot sN1p(s) g(v(s)) ds dt, r > 0. (16)

v(r) = b+/or N /Otleq(s)f(u(s))ds dt, r>0. (17)

Define vo(r) = b for all r > 0. Let (ug)r>1 and (vg)g>1 be two sequences of functions given
by

r t
ug(r) =a+ / tl_N/ sN1p(s) g(vg_1(s)) ds dt, r>0.
0 0

ve(r) =b+ /OT =N /Ot sN=Lq(s) fur(s)) ds dt, r > 0.

Since v1(r) > b, we find us(r) > wui(r) for all » > 0. This implies vo(r) > vi(r) which
further produces us(r) > ug(r) for all r > 0. Proceeding at the same manner we conclude
that

ug(r) <wugei(r) and  vg(r) < wvggi(r), Vr>0and k > 1.

We now prove that the non-decreasing sequences (uy(r))x>1 and (vg(r))x>1 are bounded
from above on bounded sets. Indeed, we have

uk(r) <ugs1(r) < a+ g(vg(r))A(r), Vr >0 (18)

and
vg(r) < b+ f (ug(r)) B(r), vr > 0. (19)
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Let R > 0 be arbitrary. By (18) and (19) we find
up(R) <a+g(b+ f (uk(R)) B(R)) A(R), Vk=>1

or, equivalently,

o g+ (u(R)B(R)
l<u® ur () 4

(R), Vk>1. (20)

By the monotonicity of (ug(R))kr>1, there exists limy_,oo ug(R) := L(R). We claim that
L(R) is finite. Assume the contrary. Then, by taking k& — oo in (20) and using (4) we
obtain a contradiction. Since uy(r), vi.(r) > 0 we get that the map (0,00) 3 R — L(R) is
non-decreasing on (0, c0) and

ug(r) < uk(R) < L(R), Vr € [0,R], Vk > 1. (21)

vk(r) <b+f(L(R)) B(R),  Vrel0,R], Vk > 1. (22)

It follows that there exists limp oo L(R) = L € (0,00] and the sequences (ug(r))i>1,
(v (r))k>1 are bounded above on bounded sets. Therefore, we can define u(r) := limy_, o, ug(r)
and v(r) := limg_, o vg(r) for all 7 > 0. By standard elliptic regularity theory we obtain
that (u,v) is a positive entire solution of (1) with u(0) = a and v(0) = b.

We now assume that, in addition, condition (3) is fulfilled. According to Lemma 2 we
have that lim, ,,, A(r) = A < oo and lim, , B(r) = B < oco. Passing to the limit as
k — oo in (20) we find

a_ g(b+f(L(R))B(R)) a_, g(b+f(L(R)B)

SIm L(R) ABR<Tm*  Im *

Letting R — oo and using (4) we deduce L < co. Thus, taking into account (21) and (22),
we obtain B o
up(r) <L and wg(r) <b+ f(L)B, Vr >0, Vk > 1.

So, we have found upper bounds for (ux(r))r>1 and (vx(r))r>1 which are independent of
r. Thus, the solution (u,v) is bounded from above. This shows that any solution of (16)
and (17) will be bounded from above provided (3) holds. Thus, we can apply Lemma 3 to
achieve the second assertion of 7).

Let us now drop the condition (3) and assume that (2) is fulfilled. In this case, Lemma
2 tells us that lim, ,o A(r) = lim,_,o, B(r) = co. Let (u,v) be an entire positive radial
solution of (1). Using (16) and (17) we obtain

u(r) > a+ g(b) A(r), Vr > 0.

v(r) > b+ f(a) B(r), Vr > 0.

Taking r — oo we get that (u,v) is an entire large solution. This concludes the proof of
Theorem 1. [

We now give some examples of non-linearities f and g which satisfy the assumptions of
Theorem 1 (see [3]).
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1) Let
l m
F&)=>"at, gt) =3 bt? fort>0
j=1 k=1
with a;j, by, vj, O > 0 and f(t) = g(t) = 0 for ¢ < 0. Assume that v0 < 1, where

= max vy;, 0= max 0.
7 15;’51%’ 1<k<m F

2) Let
F)=(1+)"? and g(t) =1+ forteR

with 7, § > 0 and y0 < 1.

3) Let
7 fo<t<l,
f(t) =
i e > 1,
and
 fo<t<i,
g9(t) =

i > 1,

with y, 0 > 0, v8 < 1 and f(t) = g(t) =0 for ¢ < 0.
4) Let g(t) =t for t € R, f(t) =0 for ¢t < 0 and

f)y=t (—ln ((%) arctant))7 fort >0

where v € (0,1/2).

5 Proof of Theorem 2

Let f,g € C'[0,00) satisfy (Hy) and (Hs). Suppose that 7 is not identically zero at infinity
and (3) holds. We first give the proofs of Properties 1-4 which are the main tools used to
deduce Theorem 2.

Lemma 4 G # (.
Proof. By Corollary 2, the problem

A= (p+q)(z)(f+9)(¥) inRY,

has a positive radial entire large solution. Since 1) is radial, we have

v =90+ [N [ 4 ) + o)) dsdt, V>0
T | L (pa)s 9)(¢(s)) dsdt, Vr >0.
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We claim that (0,(0)] x (0,%(0)] € G. To prove this, fix 0 < a,b < (0) and let vo(r) = b
for all » > 0. Define the sequences (uj)r>1 and (vg)k>1 by

ug(r) =a+ /OT =N /Ot sN_lp(s)g(vk,l(s)) dsdt, Vre€|[0,00), Vk>1, (23)

ve(r) = b+ /OT =N /0?t sNq(s) f(ug(s)) dsdt, Vre[0,00), Vk>1. (24)

We first see that vy < vy which produces u; < us. Consequently, v; < ve which further
yields uo < ug. With the same arguments, we obtain that (uy) and (v) are non-decreasing
sequences. Since 9'(r) > 0 and b= vy < 9(0) < 4(r) for all > 0 we find

i) <at [0 [N p(s)gp(s)) dsdi
0 T 0 t
<(0) + /0 =N /0 N+ q)(5)(f + ) ((s)) ds dt = (r).

Thus u; < 9. It follows that

o) <ot [0V [N G) 1 (e)) d
<9+ [ 0N [[N ot )7 + ) (s) ds e =900,
Similar arguments show that
wp(r) < (r) and wg(r) < 9(r) Vre[0,00), Vk> 1.

Thus, (ux) and (vg) converge and (u,v) = limg_, o (uk, vk) is an entire radial solution of (1)
such that (u(0),v(0)) = (a,b). This completes the proof. |

An easy consequence of the above result is
Corollary 3 If (a,b) € G, then (0,a] x (0,b] C G.

Proof. Indeed, the process used before can be repeated by taking

T t
uk(r) = ao +/ tl_N/ SN_lp(s)g(vk—l(s)) ds dta Vr e [07 OO), Vk > 1,
0 0

vk (r) = bo + /OT t=N /Ot sN7q(s) f(uk(s)) dsdt, Vre [0,00), Vk>1,

where 0 < ag < a, 0 < by < b and vo(r) = by for all r > 0.
Letting (U, V') be the entire radial solution of (1) with central values (a,b) we obtain as
in Lemma, 4,
ug(r) <ugs1(r) <U(r), Vrel0,00), Vk2>1,

ve(r) <wvgpa(r) < V(r), Vre[0,00), Vk>1.

Set (u,v) = limg_,o0(ug,vg). We see that u < U, v <V on [0,00) and (u,v) is an entire
radial solution of (1) with central values (ag, by). This shows that (ag,by) € G, so that our
assertion is proved. ]
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Lemma 5 G is bounded.
Proof. Set 0 < A < min{o,1} and let 6§ = () be large enough so that
f(t) > Ag(t), Vit > 6. (25)

Since 7 is radially symmetric and not identically zero at infinity, we can assume 1 > 0 on
0B(0, R) for some R > 0. Corollary 1 ensures the existence of a positive large solution ¢
of the problem

AC = Mp(z)g (g) in B(0, R).

Arguing by contradiction, let us assume that G is not bounded. Then, there exists (a,b) € G
such that a + b > max {24,((0)}. Let (u,v) be the entire radial solution of (1) such that
(u(0),v(0)) = (a,b). Since u(z) + v(x) > a+b > 26 for all z € R, by (25), we find

flu(z)) > f (M) > Mg (M) if u(z) > v(x)

and

It follows that

Al +v) = p(x)g(v) + q(z) F(u) > n(x)(9(v) + F(w)) > Mn(z)g (“ : ) in RV,

On the other hand, ((z) — oo as |z| = R and u,v € C?(B(0, R)). Thus, by the maximum
principle, we conclude that v+ v < ¢ in B(0, R). But this is impossible since u(0) + v(0) =
a+b>((0). [ ]

Lemma 6 F(G) C G.

Proof. Let (a,b) € F(G). We claim that (a — 1/ng,b—1/ng) € G provided ng > 1 is large
enough so that min{a, b} > 1/n¢. Indeed, if this is not true, by Corollary 3

D= [a—i,oo) x [b—i,oo) C (R xR\ .
no Un

So, we can find a small ball B centered in (a,b) such that B CC D, i.e., BNG = (). But
this will contradict the choice of (a,b). Consequently, there exists (up,, vpn,) an entire radial
solution of (1) such that (un,(0),vn,(0)) = (@ — 1/ng,b — 1/ng). Thus, for any n > ng, we
can define

1 T t
unp(r) =a — - -I-/ tlfN/ sNﬁlp(s)g(vn(s)) ds dt, r >0,
0 0

vp(r) =b— % + /Or t=N /Ot sN7Lq(s) f (un(s)) ds dt, r > 0.

Using Corollary 3 once more, we conclude that (uy)n>n, and (vp)n>n, are non-decreasing
sequences. We now prove that (u,) and (v,) converge on R". To this aim, let zo € R" be

135



arbitrary. But 7 is not identically zero at infinity so that, for some Ry > 0, we have n > 0
on 0B(0, Ry) and zg € B(0, Ry).

u

Since o = liminf,_ o % >0, we find 7 € (0,1) such that

a+b 1

f(t) >7g(t), Vt> 5 e

Therefore, on the set where u, > v,, we have

Flun) > f (%) > g (un +vn> |

Similarly, on the set where u, < v,, we have

It follows that, for any z € RV,

Up, —I—’Un>

A(ug +vp) = p(x)g(vn) + q(x) f(un) > n(x)[g(vn) + f(un)] > ()9 ( 5

On the other hand, by Corollary 1, there exists a positive large solution of

AC = m(s)g (g) in B0, Ry).

The maximum principle yields w, + v, < ¢ in B(0,Rp). So, it makes sense to define
(u(zg),v(xg)) = limy—o0(un(zo),vn(xp)). Since zy is arbitrary, the functions u, v exist
on RY. Hence (u,v) is an entire radial solution of (1) with central values (a,b), i.e.,

(a,b) € G. [ ]

Lemma 7 If, in addition, v = max {p(0),q(0)} > 0, then 0 < R.4 < oo where R.q is
defined by (5).

Proof. Since v > 0 and p,q € C|0,00), there exists € > 0 such that (p + ¢)(r) > 0 for all

0 <r <e. Let 0 < R < € be arbitrary. By Corollary 1, there exists a positive radial large
solution of the problem

b = (p+9@)(f +9)W)  in BO.R)
Moreover, for any 0 <r < R,
r t
Yalr) = () + [ ¢V [0+ 9(6)( +0)(Wr(e) dsa.

It is clear that 9% (r) > 0. Thus, we find

V() = [V )(6)(f + 9)(a(s)) ds < O +9)(a(r)

0

where C > 0 is a positive constant such that [;(p + ¢)(s)ds < C.
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Since f + g satisfies (A1) and (Az2), we may then invoke Lemma 1 in [1] to conclude

/“L@o
L (f+9®)

Therefore, we get

d /°° ds B Pp(r) <C

Cdr Jypry (FH9)(s) — (F+9)@r(r) ~

Integrating from 0 to R and recalling that ¢ g(r) — oo as r / R, we obtain

for any 0 < r < R.

00 ds
/me) Gro@ =%

Letting R N\, 0 we conclude that

o0
m [ %o

ENO Jyp(0) (f +9)(s)
This implies that 1(0) — co as R \, 0. So, there exists 0 < R < € such that 0 < ¢,d <
¥ 5(0). Set

ug(r) =c+ /OT =N /Ot sNp(s)g(vk_1(s)) ds dt, Vr € [0,00), Vk > 1, (26)

_ " 1-N ¢ N—-1
vk(r)—d—i—/o ¢ /Os o(s)flup(s)) dsdt,  Vre0,00), Vk>1,  (27)

where vo(r) = d for all 7 € [0,00). As in Lemma 4, we find that (uj) resp., (vy) are
non-decreasing and

ug(r) < p(r) and v (r) < Pp(r), vr € [0,R), Vk > 1.

Thus, for any r € [0, R), there exists (u(r),v(r)) = limg— oo (ug(r), vk (r)) which is, more-
over, a radial solution of (1) in B(0, R) such that (u(0),v(0)) = (c,d). This shows that
R.q > R > 0. By the definition of R, 4 we also derive

li = li = Q. 2
T/%IR%,d u(r) =oco and T/%}%Ii,d v(r) = o0 (28)
On the other hand, since (c,d) € G, we conclude that R, 4 is finite. [

Proof of Theorem 2 completed.

Let (a,b) € F(G) be arbitrary. By Lemma 6, (a,b) € G so that we can define (U,V)
an entire radial solution of (1) with (U(0),V(0)) = (a,b). Obviously, for any n > 1,
(a+1/n,b+1/n) € (RT x RY)\ G. By Lemma 7, Ry11/np41/n (in short, R,) defined by
(5) is a positive number. Let (U,,V,,) be the radial solution of (1) in B(0, R,) with the
central values (a + 1/n,b+ 1/n). Thus,

Un(r) = a + % + /0 "N /0 Nl g(Va(s)) dsdt,  Vre[0, Ry, (29)
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1 r t
Va(r) = b+ - +/ tH"/ sNLg(s)f(Un(s))dsdt,  Vre[0,Ry). (30)
0 0
In view of (28) we have

. _ . _ S 1
Tl/l(n}%n Un(r) =00 and Tl/l(r]%n Va(r) =00, V¥n2>1
We claim that (R,)n>1 is a non-decreasing sequence. Indeed, if (uy), (vx) denote the
sequences of functions defined by (26) and (27) withc =a+1/(n+1) andd = b+1/(n+1),
then

ug(r) < ugs1(r) < Unp(r), (1) < vgs1(r) < Viu(r), Vre[0,R,), VE>1. (31)

This implies that (ug(r))k>1 and (vg(r))g>1 converge for any r € [0,R,). Moreover,
(Un+1, V1) = limg_yo0(ug, vg) is a radial solution of (1) in B(0,R,) with central val-
ues (a+1/(n+1),b+1/(n+1)). By the definition of R, 1, it follows that R, > R, for
any n > 1.

Set R := lim,, o, R, and let 0 < r < R be arbitrary. Then, there exists n; = ni(r)
such that r < R, for all n > n;. From (31) we see that U,1 < U, (resp., Vp+1 < V,) on
[0, Ry,) for all n > 1. So, there exists limy_yo0(Un(r), Va(r)) which, by (29) and (30), is a
radial solution of (1) in B(0, R) with central values (a,b). Consequently,

lim U,(r) =U(r) and Jim_ Vo(r) =V(r) for any r € [0, R). (32)

n—oo

Since U} (r) > 0, from (30) we find

Vio(r) < b+ % + f(Un(r) /0°° N /Otleq(s) ds dt.

This yields
Va(r) < C1U(r) + Cof (Un(r)) (33)
where C is an upper bound of (V(0) 4+ 1/n)/(U(0) + 1/n) and

00 t 1 00
Cy = / tlfN/ sN1lg(s)dsdt < 5 / sq(s) ds < oc.
0 0 —2Jo

Define h(t) = g(C1t+ Caf(t)) for t > 0. It is easy to check that h satisfies (A1) and (Ag).
So, by Lemma 1 in [1] we can define

> dt
F(S) = , %, fOI‘ all s > O

But U, verifies
AUn = p(x)g(Vn)

which combined with (33) implies

AU, < p(l‘)h(Un).
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A simple calculation shows that

-1 w (U,
AP(U,) =T (Un) AUy + T (Un)| VUl = o AU, + 1)
1 AGA)

h(Un)

UAASE

>

p(r)h(Un) = —p(r)
which we rewrite as

d !
(TNIJP(Un)) > —rIp(r)  forany 0 <r < Ry.

Fix 0 <7 < R. Then r < R, for all n > ny provided n; is large enough. Integrating the
above inequality over [0, 7], we get

d r

—I(U,) > —TlfN/ sN1p(s) ds.

dr 0

Integrating this new inequality over [r, R,,] we obtain
Ry t

—T'(Up(r)) > —/ tl_N/ sNlp(s) ds dt, Vn > nq,

T 0

since Uy (r) — oo as r ' Ry, implies I'(U,(r)) — 0 as r / R,,. Therefore,

Rn t
L(Un(r)) < / tlfN/ sN1p(s) ds dt, Vn > ni.
r 0

Letting n — oo and using (32) we find

T(U(r)) < / *pew /0 " sN-1p(s) ds dt,

U(r) >T7! (/TR t=N /Ot sN=1p(s)ds dt) .

Passing to the limit as 7 * R and using the fact that limg\ o I'"!(s) = oo we deduce

or, equivalently

R t
li/I%U(r) > 11}111%1“—1 (/ tl—N/ sNp(s) dsdt) = oo.
T T r 0

But (U,V) is an entire solution so that we conclude R = oo and lim,_,, U(r) = oo. Since
(3) holds and V'(r) > 0 we find

U(r) <a+g(V(r)) /Ooo t=N /t sV p(s)ds dt
1

Oo0
—— > 0.
=3/, tp(t)dt,  ¥r>0

<a+g(V(r))

We deduce lim,_,, V() = 00, otherwise we obtain that lim,_,, U(r) is finite, a contradic-
tion. Consequently, (U, V) is an entire large solution of (1). This concludes our proof. =
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