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ABSTRACT. We prove an alternative for a nonlinear eigenvalue problem involving the p-Laplacian
and study a subcritical boundary value problem for the same operator. The theoretical approach is
the Mountain Pass Lemma and one of its variants (due to the first author), which is very useful in the
study of eigenvalue problems.
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For any fixed real number p € (1,+400) the p-Laplacian is defined by
Ayu = div (| Vu [P~ Vu).

This operator appears in a variety of physical fields. For example, applications of A, have been
seen in Fluid Dynamics. The equation governing the motion of a fluid involves the p-Laplacian.
More exactly the shear stress 7 and the velocity gradient Vu of the fluid are related in the

manner that
T(z) =r(z) | Vu |p’2 Vu,

where p = 2 (resp., p < 2 or p > 2) if the fluid is Newtonian (resp., pseudoplastic or dilatant).
Other applications of the p-Laplacian also appear in the study of flow through porous media
(p = 2), Nonlinear Elasticity (p > 2), or Glaciology (1 < p < %).

Throughout this paper, 2 stands for a bounded domain in R”". In the first section we are
concerned with the following nonlinear eigenvalue problem with Dirichlet boundary condition
and constraints on eigenvalues:

—Ayu = Af(z,u), inQ,
(1) v =0, onod,
0< A <a,

where a > 0 is a given constant. The function f is supposed to satisfy
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(Hy) f is a Carathéodory function, i.e., measurable in z € 2 and continuous in u € R, with
f(z,0) # 0 on a subset of 2 of positive measure;

(Hy) | f(z,u) |[<CL+Cy |u|i™!, for a.e. z € Q and all u € R, with constants C; > 0, Cy > 0
and 1 < p < ¢ < p*, where

Np
, ifp <N,
P = N—p p
400, ifp>N;
(Hs)  there are constants b; > 0,6, > 0,1 < v < p < v such that, for a.e. x € Q and every
u € R,

f(x,u)u—y/ouf(s,T)dT >—by—by|ul”.

By the Sobolev embedding Theorem, there exists a constant C' > 0 such that, for every
Lp
u € WO (Q)v

2 lulle < Clullyy

For a later use we denote
(3) a; =cp | \(q’l)/q and ay =Clc; | Q |(q’1)/q +eq t).

Our approach relies on the following version of the celebrated Mountain Pass Theorem of
Ambrosetti-Rabinowitz (see [1], [6]):

Lemma 1.([5]) Let X be a Banach space and let F : X xR — R be a C' functional verifying
the hypotheses
(a) there exist constants p > 0 and « > 0 provided F(v, p) > «, for every v € X;
(b) there is some r > p with F(0,0) = F(0,7) = 0.
Then the number
¢ := inf max F(g(7)),

gel 0<7<1

where

I'={g €C(0,1],X x R);¢(0) = (0,0),9(1) = (0,7)},
is a critical value of F'.

Let us now state our main result concerning the eigenvalue problem (1). We shall keep the
notations given in (2), (3) and, for simplicity, we use in the sequel || - || in place of || - ||W01,p.

Theorem 1. Assume that the function f : Q x R — R satisfies conditions (H;)-(Hs). Let
B € C'(R,R) be a function such that, for some constants 0 < p < r, o > 0, the following
properties hold:

(1) B(0) =p(r) =0;

(B2) p°*' > qag and OTHﬁ(P) = ay;

(Bs) ‘t1|i_rgo B(t) = +oo;

(Bs) B'(t) <0 ifand only ift <Qorp<t<r.
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Then, for each a > 0, the following alternative holds:
either

(i) a > 0 is an eigenvalue in problem (1) with a corresponding eigenfunction u € W, (Q)
located by

a< — // :vtdtdx+—||u||p<a1+a

or
(ii) one can find a positive number s with

(4) p<s<r,

which determines an eigensolution (u, \) € Wy(Q) x (0, a] of the problem (1) by the relations

(5) lull = s7/9(=B'(s)) "4,

(6) Al=atl4 5(4+0P)/<1(_ﬁ'(5))(q7p)/q :
g+1 1

(7) o S S— ||U,||q o+ / / LE ¢ dtd$+ o ||u||10 < a; + .
q

In the second section of this paper we consider another problem related to the p-Laplacian
operator:

Ay =M uPPut [u|T?u, inQ,
(8) v =0, onod,
U %0, in .

Our result on this problem is
Theorem 2. If A < \(=4,) := inf{/ | Vu P;u e WeP(Q),u # 0, ||lul| = 1} and
Q
1 < p < q < p*, then the problem (8) has a weak solution.
The key argument in the proof is the Mountain-Pass Theorem in the following variant:

Ambrosetti-Rabinowitz Theorem. Let X be a real Banach space and F' : X — R be a
C'-functional. Suppose that F satisfies the Palais-Smale condition and the following geometric
assumptions:

() there exist positive constants R and cy such that
F(u) > ¢y, for allu € X with ||ul]| = R

F(0) < ¢y and there exists

(10) v € X such that ||v|| > R and F(v) < ¢g.

Then the functional F' possesses at least a critical point.
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1 Proof of Theorem 1

In order to set problem (1) in terms of Lemma 1 we introduce the functional F € C*(W,”(Q)xR)
by

| |0’+1

(11) F(v,t) =

ol + - / (z t)dtdz + — ||v||p

From () and (11) we derive that condition (b) of Lemma 1 is valid.
From (H,), (2) and (3) we see that, for every v € Wy?(9),

v(x)
/ / f(z,t)dtdz
QJo 1 q
< cilvllzr + eaq " [|v]|Za
e | Q@D o]l e + c2q 7 0]l
e | Q@D (e | Q@D tepg) o]l
| @ [00/8 +0(cy | 009 3™ o]
ai + as ||U||q

(12)

I IAIAIA

Relations (11), (12) and (52) yield

o+l o+1
—ag) ||v||” +

F(v,p) > (©

ﬁ(p)_al ZCE,

for every v € WyP(£2). This shows that the requirement (a) of Lemma 1 is fulfilled.
We check now that F' verifies the Palais-Smale condition. To this end, let (v,,t,) be a
sequence in W, ?(€Q) x R such that F(v,,t,) is bounded and

F'(0n, t) = (Fy(vns t0), Fy(vp, 1)) = 0, in W™ (Q) x R,

where p' = Ll Therefore

(13) | F(n, t,) |< M
(14) —Fy(vnt) =| ta |7 [Jall97 Apv + f(-vn) + 0 Apvy, = 0 in W HP(Q)
(15) Fy(vn, ty) =| tn |7 (sgntn) ||lval|? + B'(t) = 0, inR.

From (11), (12) and (13) we infer that

o+1

M > (g7 [t |7 —ag) [ua]| + B(tn) — ax.
But, by condition (f3), this shows that (¢,) is bounded in R.
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Without loss of generality we may assume that (v,) is bounded away from 0. We treat
separately two cases.
Firstly, assume that along a subsequence one has ¢, — 0. Then, by (8;), it follows that

B'(t,) — £'(0) = 0. So, by (15),
(16) | tn |7 |[on||]? = 0, asn— oco.

From (11), (13) and (16) we see that
v () 1
(17) / / f(z,7)drdx — — ||v,||" is bounded in R.
o Jo ap

Since t,, — 0 and (v,,) is bounded away from zero it is clear from (16) that

[ tn |7 [Junl| 272 |
=|tn || ta |7 loall7 Jon|P~"
=ty || tn |7 |Vall? [|n]| ™t = 0, asn — co.

Thus, (14) implies

(18) fCvn) +a P Ay, =0, asn— oo,

From (17) and (18) we find that, for some constant M > 0 and with v > 2 in (H3),
M+ v v,

1 vn ()
> —oall = [ [ f(@,)drda
ap aJo

([ @ vnonds + ™t [ (Ayun)vnda)
Q 0
1,1 1 1 n(z)
===l + 5 [ (Feoen—v [ f(@,)dr)de,
a'p v v o 0
if n is sufficiently large. Then hypothesis (H3) and inequality (2) ensure us that some new
constants d; > 0 and dy > 0 exist such that

M + v |v,|]
(I i}
> = (== =) llvall” = = (b1 | Q| +ba2|lvnll]~)
T Y
> S (= Y lonllP = dy — dy [[val” -
> a(p u)”U"“ 1 — dy ||vn |

Recalling that 1 < v < p < v, the last estimate shows that (v,) is bounded in W,”(Q). On the
other hand, the growth condition in (Hj) ensures that the restriction of Nemytskii’s operator to
W,y (), namely,

v e Wy () ¥ f(-,0()) € W (),

is a compact mapping, in the sense that it maps any bounded set onto a relatively compact one
(see, for details, de Figueiredo [3] or Rabinowitz [6]). Thus, passing eventually to a subsequence,

(19) F(,va(-))  converges in W, 7 (Q).
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By (18) and (19) we conclude that (v,) possesses a convergent subsequence in Wy (€2).
Assume now that (t,) is bounded away from 0. Then, by (15), we see that (v,) is bounded
in W, (). Hence (19) holds. From (14) it follows that

(T+a|t, "™ |Joall""P) Apv, is convergent in W1 (9),

which shows that (A,v,) converges in W=7 (2). Finally, we obtain that, up to a subsequence,
(vn) converges in Wy (Q). This concludes the verification of the Palais-Smale condition for the
functional F.

The hypotheses of Lemma 1 are now verified. Thus, there exists a point (u, s) € Wy ?(Q) xR
satisfying

1

2 A u= s ) -
( 0) Pu CL_1+ | g ‘U-I—l ”u”q,p f( au)a
(21) [ 517 (sgns) [lull+ 5'(s) = 0
o+1 1
(22) Le 177 ‘ lell?+ 7= 8(s) - [ / £ (@, t)dtdz + — ||u||p > a.

From (21) we observe that
(23) sB'(s) <0.

There are two cases:
Case 1: s = 0. Then the assertion (i) in the alternative of Theorem 1 is deduced from (20) and
(22). The last inequality of (i) is obtained from the definition of ¢ and I' in Lemma 1, making
use of the path g € T given by ¢(¢) = (0,tr), for 0 < ¢ < 1.

Case 2: s # 0. We argue by contradiction. If s < 0 then, by (54), it follows that g'(s) < 0,
which contradicts (23). So, the only possibility is s > 0. Using (/4) again it turns out

(24) p<t<r.

If t = port =r, relation (21) and assumption (3;) imply v = 0. This leads to a contradiction
between (20) and our hypothesis (H;). We proved that (24) reduces to (4). Since s > 0, (21)
gives rise to (5). From (20) it is clear that (u, \) € WyP(Q) x R is an eigensolution of (1), where

1

25 A= .
% o

Substituting ||u|| as determined by (5) in (25) we arrive at (6). The first inequality of (7) is just
(22). The second inequality of (7) follows from Lemma 1, by choosing the path g(¢) = (0,tr),
0<t< 1. [
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Corollary 1. Assume that the function f : Q x R — R satisfies hypotheses (H;)-(Hj)
and let a > 0 be a number which is not an eigenvalue of the problem (1). Then there exists a
sequence (un, \,) € Wy P(Q) x (0,a) of eigensolutions of (1) with the properties

U, — 0 in WyP(Q), Ay =0 and A, '|u,|P =0, asn — oco.

Proof. For every € > 0 one can find 8, € C'(R, R) satisfying (5;)-(84) with p = p. <7 =,
which depends on ¢, and ¢ > 0, @ > 0 independent of ¢ such that

(26) | BLt) [< %", for every ¢ > (gag)"/"V.

Applying Theorem 1, one obtains the number s = s, € (p.,7.) that describes an eigensolution
(ue, Ae) of (1) by equalities (5) and (6) with v = u. and A = A.. Clearly, we can assume

(27) Se =+ 400, ase—0.
Hence, by (5), (26) and (27), we infer that
(28) | = 27/ (=f'(s:)) /4 <es V50, ase —0.

We know that the following equality holds

1

3 Apu, = f(z,u.).

Letting ¢ — 0 we notice that, in view of (H;) and u, — 0 in W,?(Q), it follows that A, — 0 as
e — 0. In addition, we get from (6) that
(29) (At —a )T = sITP(—B(s,))T P < gl P glotlp,
By (28) and (29) we observe that
luell” (A" —a™) <&,
which implies, taking into account (28), that
A |uelP =0, ase—0.

This completes our proof. [ ]

Corollary 2. Under the hypotheses of Corollary 1, for every function 3 € C*'(R,R) sat-
isfying conditions (31)-(84) with fixed constants p,r, o, «, there is a one-to-one mapping from
[1,+00) into the set of eigensolutions (u, A) of the problem (1). In particular, there exist un-
countable many solutions (u, \) of (1).

Proof. Notice that if 3 € C'(R,R) satisfies the requirements (3;)-(34) for given numbers
p,1,0,a, then this is true for each function 63, with an arbitrary number 6 > 1. We may
suppose that there is some a > 0 which is not an eigenvalue of (1). Applying Theorem 1 with
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64, for § > 1, in place of 4, one finds an eigensolution (us, A\s) € Wy*(€) x (0, @) and a number
ss € (p,r) such that

(30) ugll = 57" (=8 (s5)) /7 61

and, by (25),

(31) MNt=a s us||7".

Let 61,02 > 1 with §; # d2. Then (31) shows that s5;, = s5,. Thus (30) yields 6; = ;. This
contradiction completes the proof. [ ]

In some situations the qualitative informations provided by Theorem 1 and Corollaries 1 and
2 can be improved by direct methods in studying the eigenvalue problem (1).

Example 1. Assume that the Carathéodory function f : Q2 x R — R satisfies (H;) and the
growth condition

t
(32) \/f(x,ﬂdﬂﬁ Ci+Cy |t|P,, forae ze€QandallteR,
0

with constants C; > 0 and Cy > 0. Using the constant C' > 0 entering in (2), with ¢ = p, we
check that every number A > 0 which satisfies

(33) A< A =

pCCy
is an eigenvalue of the boundary value problem

—Ayu = Af(z,u), in
U =0, on 0.

In order to justify this, corresponding to each A in (33) we introduce the functional I, :

Wy?(2) — R by
/ / f(z,t)dtdx + — ||v||p
The assumption (32) allows us to write

(34) L(v) > 5ol =Ci[ Q] =Callvliz

> (55 —CC) ollP = C1 | 2],
for every v € Wy *(Q). From (33) and (34) it follows that the functional I is bounded from below,
coercive and (sequentially) weakly lower semicontinuous on Wy (€2). Therefore the infimum of I,
is achieved at some u € W, (€2) which solves the above boundary value problem corresponding
to any A in (33).

Remark 1. The problem treated in Example 1 covers the assymptotically linear case dis-
cussed by Brezis&Nirenberg [2] and Mironescu&Radulescu [4]. In these references sharp in-
formation is given concerning the solvability (unsolvability) of the cases outside (33). In the
situation where (33) holds with p replaced by o < p, the considered eigenvalue problem admits
every positive number A as an eigenvalue.
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2 Proof of Theorem 2

Our hypothesis

/ | Vu [P dz
A<A(=Ay) = inf o
Wa P (@)\ (0} / | |P dz
Q

implies the existence of some Cy > 0 such that, for every v € Wy (Q),
(35) /(|vv P —)\|v|”)da:200/ | Vo P da.
Q Q

Set

wi—l, ifu>0,
g(u) ={ -

0, ifu<O

and G(u) = /u g(t)dt. Denote

o

Flu) = ;—)/Q(\ Vu P A ulP)dz — [ Glu)ds.

Observe that
|G(u) [<C |ul

and, by our hypothesis 1 < p < ¢ < p*, Wy*(Q) C LI(Q), which implies that F is well defined
on Wy ().
A straightforward computation shows that F is a C" function and, for every v € W,? (Q),

F'(u)(v) = /Q(| Vu P ?2Vu-Vo— X\ |ulP?uv)dz — /Qg(u)vd:v.

We prove in what follows that F' satisfied the hypotheses of the Mountain-Pass Theorem.
Verification of (9): We may write, for every u € R,

[g(u) [<[w ™.

Thus, for every u € R,

1 q
(36) |G(U)\S5|U| :
Now, by (36) and the Sobolev embedding Theorem,

p 1 q
(37) F(u) > Gy [lullP - p [ull,

for every u € W, 7(Q).
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For ¢ > 0 and R > 0 small enough, we deduce by (36) that, for every u € W, (Q) with
[ull = R,
F(u) > ¢y >0.

Verification of (10): Choose ug € Wy™P(£), ug > 0 in . Then, by 1 < p < ¢ < p*, it follows
that if ¢ > 0 is large enough,

tp
ﬂw@:—/ﬂWdehmMM—ﬂ/%m<o
p Ja Q

Verification of the Palais-Smale condition: Let (u,) be a sequence in W,”(Q) such that

(38) sup | F'(un) |< 400,

(39) ||Fl(un)||w—1,p' — 0, asn — 0.

We prove firstly that (u,) is bounded in W,?(Q). Remark that (39) implies that, for every
v e Wy”(Q),

(40) /Q(‘ Vi, P2V, - Vo — X | uy, P2 uw)de
40
= [ glun)vdz +o()llel] asn - oo.
Q

Choosing v = u,, in (40) we find

(41) L9 7 =X )z = [ glun)unda + o(1) [l

Remark that (38) means that there exists M > 0 such that, for any n > 1,
1

42 = [V =2 7Yz = [ Glun)ds < M.

(42) 5 [T =X P = [ Glun)is |

But a simple computation yields

13 [ 9myundz =g [ Glun)da.

(43) | 9(un)updz = q | G(un)dz

Combining (41), (42) and (43) we find

(44) o | Glun)dz = O(1) +o(1) [lual,

where o = ¢ — p > 0. Thus, by (41) and (44),

[unl[” < O(1) + o(1) [Juall,

which means that ||u,|| is bounded.
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It remains to prove that (u,,) is relatively compact. We consider the case p < N. First of all
we remark that (40) may be written

4 p-2 - =
(45) /Q | Vuy, P2 Vuy, - Vodz /Q h(ug)vdz + o(1) |[v]],

for every v € WyP(Q), where
h(u) = gu) + A |u P72 u.

Obviously, h is continuous and there exists C' > 0 such that

(46) | h(u) |[< C (14 | u |[NP-N+)/N=-p)y
Moreover
(47) hw) = of| u N?/P) | as 4| o0,

Observing that (—A,)™" : W1 (Q) — W, *(Q) is a continuous operator, it follows by (45) that
it suffices to show that h(uy,) is relatively compact in W~ (). By Sobolev’s Theorem, this
will be achieved by proving that a subsequence of h(u,) is convergent in (LNP/(N=P)(Q))* =

L(Np)/(prNw)(Q)'
Since (u,) is bounded in Wy (Q) ¢ LWP/(V=P)(Q) we can suppose that, up to a subsequence,
U, = u € LNP/WN-P(Q)  ae in Q.

Moreover, by Egorov’s Theorem, for each § > 0, there exists a subset A of 2 with | A |< ¢ and
such that
unp — u, uniformlyin Q\ A.

So, it is sufficient to show that
/A | h(uy) — h(w) ‘(N:D)/(NP*N+P) de <,
for any fixed n > 0. But, by (46),
/A | h(w) |NP/Ne=N+D) g < 0 /A (14 | u [VP/(N=P)y gy

which can be made arbitrarily small if we choose a sufficiently small § > 0.
We have, by (47),

[ hun) = ) [$PION0) 4y < e [y PP gy 40, | A
A

which can be also made arbitrarily small, by Sobolev’s Theorem and by the boundedness of (u,)

in Wy* ().
Hence, F satisfies Palais-Smale Condition and, by Ambrosetti-Rabinowitz Theorem, the
problem (8) has a weak solution. u
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Remark 2. We are not able to decide at this stage what happens if A > A;(—A,). The
main difficulty consists in the impossibility of defining in a suitable manner the orthogonal of a
set, so to split the Banach space WO1 P(Q), p # 2, as a direct sum of its first eigenspace and the
corresponding orthogonal. A more general version of Theorem 2 can be obtained by replacing
the term | u [972 » in (8) by a function f(x,u) whose behaviour at v = 0 and for | u |— +oo0 is
similar to the one of | u |972 u. The final part of the proof of Theorem 2, that is, the deduction
of the relative compactness of u, from its boundedness, can also be derived using the continuity
of Nemytskii’s operator u — h(u) on L¥" ().
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