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Abstract

We study the following class of pseudo-relativistic Hartree equations

√
−ε2� + m2u + V (x)u = εμ−N

(|x|−μ ∗ F(u)
)
f (u) in RN,

where the nonlinearity satisfies general hypotheses of Berestycki-Lions type. By using the method of pe-
nalization arguments, we prove the existence of a family of localized positive solutions that concentrate at 
the local minimum points of the indefinite potential V (x), as ε → 0.
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1. Introduction and main results

In this paper, we are concerned with the qualitative and asymptotic analysis of solutions for 
the following pseudo-relativistic Hartree equation with general nonlinearity

√
−ε2� + m2 u + V (x)u = εμ−N

(|x|−μ ∗ F(u)
)
f (u) in RN, (1.1)

where N ≥ 3, μ ∈ (0, 2), m > 0 is a physical constant, ε is the semiclassical parameter 0 < ε ≤ 1, 
a dimensionless scaled Planck constant (all other physical constants are rescaled to be 1), V is 
a bounded external potential, and F(u) = ∫ u

0 f (τ)dτ ∈ C1(R, R). Here, the pseudo-differential 

operator 
√−ε2� + m2 is simply defined in Fourier variables by the symbol 

√
ε2|ξ |2 + m2, see 

Lieb and Loss [30]. To the best of our knowledge, the study of pseudo-relativistic Hartree prob-
lems was initiated by Coti Zelati and Nolasco [14,15].

Replacing u(x) by u(εx), we observe that equation (1.1) is equivalent to the following prob-
lem

√
−� + m2 u + Vε(x)u = (|x|−μ ∗ F(u))f (u), in RN, (1.2)

where Vε(x) = V (εx).
We refer to Lieb and Yau [32] who studied problem (1.2) in the autonomous case V (x) =

1 − m if N = 3, ε = μ = 1, and f (u) = u. In this case, they proved the existence of solutions 
provided that M < Mc, where Mc is the Chandrasekhar limit mass, which is a prediction on the 
maximum mass of a white dwarf star. A white dwarf star is the final stage in the evolution of 
a star whose mass is not too high, see Chandrasekhar [10]. More precisely, Lieb and Yau [32]
proved the existence in H 1/2(R3) of a radial, real-valued nonnegative minimizer (ground state) 
of the associated energy with given fixed “mass-charge” M = ∫R3 u2dx < Mc .

We observe that problem (1.2) is driven by the fractional Laplace operator, which is inten-
sively studied in relationship with the infinitesimal generators of Lévy stable diffusion processes. 
We also point out that the exponent 1/2 of this nonlocal operator in problem (1.2) corresponds 
to the pseudo-relativistic Hartree equation.

To describe the boson stars in mean-field theory [21,28], a reasonable model is to study the 
nonlinear mean-field equation called the pseudo-relativistic Hartree equation defined by
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i∂tψ = (
√

−� + m2 − m)ψ + W(x)ψ − (|x|−1 ∗ |ψ |2)ψ in R3, (1.3)

where ψ(t, x) : R × R3 → C is a complex-valued wave field, m > 0 is a physical constant and 
W is a bounded external potential in R3. The study of solitary wave type solutions ψ(t, x) =
eitλu(x) (where λ > 0) for equation (1.3) leads to investigating the pseudo-relativistic Hartree 
equation with Coulomb kernel

√
−� + m2 u + V (x)u = (|x|−1 ∗ |u|2)u in R3. (1.4)

Problem (1.4) can be interpreted as a system of N spinless, identical bosons with two-body inter-
actions governed by the Coulomb potential. These bosons are also subject to a time-independent 
external potential V (x), see Fröhlich and Lenzmann [22] for more details. In the particular case 
V (x) = −m, problem (1.4) was studied by Elgart and Schlein [20] as an effective dynamical de-
scription for an N -body quantum system of relativistic bosons with a two-body interaction given 
by Newtonian gravity. This leads to a Chandrasekhar type theory of boson stars.

Equation (1.4) has attracted a great deal of attention in theoretical and numerical astrophysics 
over the past years. If V (x) is a constant potential, Lenzmann [27] proved the uniqueness of 
ground states for pseudo-relativistic Hartree equations (1.4) and he also obtained local and global 
well-posedness for semi-relativistic Hartree equations of critical type in [26]. In a recent paper, 
Du and Yang [19] considered the critical Hartree equation and they classified the solutions of the 
problem.

By using variational methods and some new variational identities involving the half Laplacian, 
Mugnai [36] proved several existence and non existence results of solitary waves for a class of 
nonlinear pseudo-relativistic Hartree equations with general nonlinearities. Coti Zelati and No-
lasco [15] obtained the existence of ground states for nonlinear pseudo-relativistic Schrödinger 
equations. The authors [41] investigated the existence and asymptotic behavior of the solutions 
for the critical pseudo-relativistic Hartree equation. For recent progress in this field, we may refer 
to [11,14,22–25] and the references therein.

For the study of semi-classical analysis of the Hartree equations we would like to mention the 
papers [1,2,9,12,13,34,37,40]. In [13], Cingolani and Tanaka studied the existence and multiplic-
ity of semi-classical states for the nonlinear Choquard equation with the general Berestycki-Lions 
type assumptions. They developed a new variational approach and showed the existence of a 
family of solutions concentrating, as ε → 0, to a local minima of potential function. In [18] the 
authors studied the existence of semiclassical solutions for the critical Choquard equations with 
critical frequency. In particular, Cingolani and Secchi [12] studied the semi-classical limit for the 
pseudo-relativistic Hartree equation

√
−ε2� + m2 u + V (x)u = (Iα ∗ |u|p)|u|p−2u in RN.

Under some proper conditions on m, p and V , they proved the existence of semi-classical 
solutions that concentrate at the minimum points of the potential V by means of a varia-
tional approach introduced in [5]. The operator 

√−ε2� + m2 is a nonlocal operator in RN

that can be realized through a local problem in RN × (0, ∞). We describe this construction 
in what follows. For any function u ∈ H

1
2 (RN), there is a unique function v ∈ H 1(RN+1+ ) (here, 

RN+1+ = {(x, y) ∈ RN ×R : y > 0}) such that
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F. Gao, V.D. Rădulescu, M. Yang et al. Journal of Differential Equations 295 (2021) 70–112
{ −ε2�v + m2v = 0 in RN+1+ ,

v(x,0) = u(x) on RN = ∂RN+1+ .
(1.5)

Setting

Tεu(x) = −ε
∂v

∂y
(x,0),

we obtain the equation {−ε2�w + m2w = 0 in RN+1+ ,

w(x,0) = Tεu(x) on RN

with the solution w(x, y) = −ε ∂v
∂y

(x, y). From (1.5) we have that

Tε(Tεu)(x) = −ε
∂w

∂y
(x,0) = ε2 ∂2v

∂y2 (x,0) = (−ε2�xv + m2v)(x,0)

and hence T 2
ε = (−ε2�x + m2). Thus, the operator Tε that maps the Dirichlet-type data u to 

the Neumann-type data −ε ∂v
∂y

(x, 0) is actually 
√−ε2� + m2. In this way, for equation (1.1), we 

will study the following mixed value boundary problem:⎧⎨⎩−ε2�v + m2v = 0 in RN+1+ ,

−ε
∂v

∂y
= εμ−N(|x|−μ ∗ F(v(x,0)))f (v(x,0)) − V (x)v(x,0) on RN.

(1.6)

We may refer the readers to [8,12,15] for more details about the fractional operator.
To treat the convolution part, we need to recall the Hardy-Littlewood-Sobolev inequality.

Proposition 1.1. (Hardy-Littlewood-Sobolev inequality, [30]). Let t, r > 1 and 0 < μ < N with 
1
t

+ μ
N

+ 1
r

= 2, f ∈ Lt(RN) and h ∈ Lr(RN). There exists a sharp constant C(t, N, μ, r), 
independent of f, h, such that∫

RN

∫
RN

f (x)h(y)

|x − y|μ dxdy ≤ C(t,N,μ, r)|f |t |h|r . (1.7)

If t = r = 2N/(2N − μ), then

C(t,N,μ, r) = C(N,μ) = π
μ
2
�(N

2 − μ
2 )

�(N − μ
2 )

{
�(N

2 )

�(N)

}−1+ μ
N

.

From the Hardy-Littlewood-Sobolev inequality, for any u ∈ H
1
2 (RN), the integral∫

N

∫
N

|u(x)|q |u(z)|q
|x − z|μ dxdz
R R
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is well defined if

2N − μ

N
≤ q ≤ 2N − μ

N − 1
.

That is why the exponent 2N−μ
N

will be called the lower critical exponent and the exponent 
2∗
μ = 2N−μ

N−1 will be called the upper critical exponent.

In the sequel, we will assume that the potential function V (x) satisfies the following condition:

(V ) V ∈ C(RN, R) is a bounded function such that Vmin = infRN V > −m and there exists a 
bounded open set O ∈RN with the property that

V0 = inf
O

V < min
∂O

V .

Set M = {x ∈ O : V (x) = V0}.
We assume that the nonlinearity f ∈ C1(R, R) satisfies the general Berestycki-Lions type 

assumptions [3]:

(f1) There exists C > 0 such that for every t ∈R,

|tf (t)| ≤ C(|t |2 + |t | 2N−μ
N−1 );

(f2) Let F : t ∈R 	→
t∫

0

f (τ)dτ and suppose that

lim
t→0

F(t)

|t |2 = 0 and lim
t→∞

F(t)

|t | 2N−μ
N−1

= 0;

(f3) There exists t0 ∈R such that F(t0) 
= 0.

The first main result of this paper establishes the following qualitative and asymptotic prop-
erties.

Theorem 1.2. Suppose that N ≥ 3 and 0 < μ < 2. If V (x) satisfies assumption (V ) and f ∈
C1(R, R) satisfies (f1) − (f3) and f (t) = 0 for t ≤ 0, then, for sufficiently small ε > 0, problem 
(1.1) admits a positive solution uε ∈ H

1
2 (RN), which satisfies

(i) there exists a local maximum points xε of uε such that

lim
ε→0

dist (xε,M) = 0,

and wε(x) ≡ uε(εx + xε) converges (up to a subsequence) uniformly to a least energy solu-
tion of √

−� + m2 u + V0u = (|x|−μ ∗ F(u))f (u), u ∈ H
1
2 (RN);
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(ii) uε(x) ≤ C exp(− c
ε
|x − xε|) for some c, C > 0.

In order to study multi-peak solutions for the pseudo-relativistic Hartree equation, we assume 
that the potential function V satisfies the following hypothesis:

(V ′) V ∈ C(RN, R) is a bounded function such that Vmin = infRN V > −m and there exist 
bounded disjoint open sets Oi, i = 1, 2, · · · , k, such that for any i ∈ {1, 2, · · · , k},

mi ≡ inf
x∈Oi

V (x) < min
x∈∂Oi

V (x).

Let M′ = ∪k
i=1Mi and O ′ = ∪k

i=1O
i .

The main result in this case is the following.

Theorem 1.3. Suppose that μ ∈ (0, 2), N ≥ 3, (V ′), f (t) = 0 for t ≤ 0 and (f1) −(f3). Then, for 
sufficiently small ε > 0, problem (1.1) admits a positive solution uε , which satisfies the following 
properties:

(i) there exist k local maximum points xi
ε ∈ Oi of uε such that

lim
ε→0

max
1≤i≤k

dist (xi
ε,Mi ) = 0,

and wε(x) ≡ uε(εx + xi
ε) converges (up to a subsequence) uniformly to a least energy solu-

tion of

√
−� + m2 u + miu = (|x|−μ ∗ F(u))f (u), u ∈ H

1
2 (RN);

(ii) uε(x) ≤ C exp(− c
ε

min
1≤i≤k

|x − xi
ε|) for some c, C > 0.

To prove the main results, we need to study the following the semi-relativistic Hartree equation 
with constant potential, which plays the role of limit problem for equation (1.2), that is,

{√
−� + m2 u + au = (|x|−μ ∗ F(u)

)
f (u) in RN,

u ∈ H
1
2 (RN),

(1.8)

where a > −m. Equation (1.8) appears in the study of models of stellar collapse, such as neutron 
stars. The typical neutron kinetic energy is high, so it must be treated relativistically, see Lieb 
[29], Lieb and Thirring [31], and Lieb and Yau [32].

We can reformulate the nonlocal problem (1.8) as the following local Neumann problem

⎧⎨⎩−�v + m2v = 0 in RN+1+ ,

−∂v = (|x|−μ ∗ F(v(x,0)))f (v(x,0)) − av(x,0) on RN.
(1.9)
∂y
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The natural working space for problem (1.9) is the Sobolev space

H 1(RN+1+ ) :=
{
v ∈ L2(RN+1+ ) :

∫
RN+1+

|∇v|2dxdy < ∞
}
,

equipped with norm

‖v‖2 =
∫

RN+1+

(|∇v|2 + v2)dxdy.

For all q ∈ [1, ∞], we denote by | · |q the norm in the space Lq(RN) and by ‖ · ‖q the norm 
in the space Lq(RN+1+ ). We denote positive constants by C, C1, C2, C3, . . ..

By [38], we know that traces of functions H 1(RN+1+ ) are in H
1
2 (RN) and that every function 

in H
1
2 (RN) is the trace of some function in H 1(RN+1+ ). Let γ : H 1(RN+1+ ) → H

1
2 (RN) be 

the linear operator that associates the trace γ (v) ∈ H
1
2 (RN) of the function v ∈ H 1(RN+1+ ). 

Moreover, we know from [14] that for any v ∈ H 1(RN+1+ ),

|γ (v)|s ≤ cs‖v‖, (1.10)

where 2 ≤ s ≤ 2∗ := 2N
N−1 .

We will look for solutions to equation (1.9) as critical points of the Euler functional Ja :
H 1(RN+1+ ) → R defined by

Ja(v) = 1

2

∫
RN+1+

(|∇v|2 + m2v2)dxdy + a

2

∫
RN

γ (v)2dx

− 1

2

∫
RN

∫
RN

F (γ (v)(x))F (γ (v)(z))

|x − z|μ dxdz.

Clearly, Ja is well defined on H 1(RN+1+ ) and belongs to C1. A function v0 is called a ground 
state of problem (1.9) if

Ja(v0) = Ea := inf
{
Ja(v) : v ∈ H 1(RN+1+ )\{0} is a critical point of (1.9)

}
.

Theorem 1.4. Assume that a > −m, N ≥ 3 and μ ∈ (0, 2). If f ∈ C1(R, R) satisfies (f1), (f2)

and (f3), then equation (1.9) has at least one ground state solution v and v ∈ C1,α(RN ×
[0, +∞)) ∩ C2(RN+1+ ) is a classical solution.

The paper is organized as follows. In Section 2, we study the nonlocal problem (1.9) and 
prove the existence, regularity and exponential decay of ground states for the nonlocal problem. 
In Section 3, we prove Theorem 1.2 by means of a variational approach introduced in [5]. In 
Section 4, by using the method of penalization argument, we construct a positive solution having 
multiple concentration regions which concentrate at the minimum points of the potential V .
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2. An autonomous problem

In this Section, we prove the existence, regularity and exponential decay of ground states for 
the nonlocal problem

⎧⎨⎩−�v + m2v = 0 in RN+1+ ,

−∂v

∂y
= (|x|−μ ∗ F(v(x,0)))f (v(x,0)) − av(x,0) on RN.

2.1. Regularity of solutions and Pohožaev identity

In this subsection we are going to show that the solutions for equation (1.9) possess some 
regularity properties, which will be used to prove a Pohožaev identity for the pseudo-relativistic 
Hartree equation. We adapt the method of Brezis and Kato [4] and obtain the regularity of the 
weak solutions by using the Morse iteration method. Similar to the arguments developed in [35,
41] for the nonlocal linear equations dominated by the Laplacian, we have the following estimate 
lemma for fractional equations with convolution parts.

Lemma 2.1. Let N ≥ 3, μ ∈ (0, N) and θ ∈ (0, N). If H, K ∈ L
2N

N−μ (RN) + L
2N

N+1−μ (RN), (1 −
μ
N

) < θ < (1 + μ
N

), then for any ε > 0, there exists Cε,θ ∈R such that for every v ∈ H 1(RN+1+ ),

∫
RN

(|x|−μ ∗ (H |γ (v)|θ ))K|γ (v)|2−θ dx ≤ ε2
∫

RN+1+

|∇v(x, y)|2dx + Cε,θ

∫
RN

|γ (v)|2dx.

The regularity property can be stated as follows.

Proposition 2.2. Let v be a critical point for the functional Ja on H 1(RN+1+ ), then γ (v) ∈
Lq(RN) for all q ∈ [2, +∞] and v ∈ L∞(RN+1+ ).

Proof. Let us define the truncation vτ : RN+1+ → R, for τ > 0 large,

vτ (x, y) =
⎧⎨⎩

−τ if v ≤ −τ,

v(x, y) if − τ < v < τ,

τ if v ≥ τ.

(2.1)

Since |vτ |s−2vτ ∈ H 1(RN+1+ ) for s ≥ 2 and v is a critical point for the functional Ja , taking 
|vτ |s−2vτ as a test function, we obtain
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4(s − 1)

s2

∫
RN+1+

(|∇(vτ (x, y))
s
2 |2 + m2||vτ (x, y)| s

2 |2)dxdy

≤
∫

RN+1+

(∇(vτ (x, y))∇(|vτ (x, y)|s−2vτ (x, y)) + m2|vτ (x, y)|s−2vτ (x, y)v(x, y))dxdy

=
∫
RN

(|x|−μ ∗ F(γ (v)))f (γ (v))|γ (vτ )|s−2γ (vτ )dx − a

∫
RN

|γ (vτ )|s−2γ (vτ )γ (v)dx.

If 2 ≤ s < 2N
N−μ

, using Lemma 2.1 with θ = 2
s
, there exists C > 0 such that∫

RN

(|x|−μ ∗ F(γ (vτ )))f (γ (vτ ))|γ (vτ )|s−2γ (vτ )dx

≤ 2(s − 1)

s2

∫
RN+1+

(|∇(vτ (x, y))
s
2 |2 + m2||vτ (x, y)| s

2 |2)dxdy + C

∫
RN

||γ (vτ )| s
2 |2dx.

Since |vτ | ≤ |v|, we have

2(s − 1)

s2

∫
RN+1+

(|∇(vτ (x, y))
s
2 |2 + m2||vτ (x, y)| s

2 |2)dxdy

≤ C

∫
RN

|γ (v)|sdx +
∫
Aτ

(|x|−μ ∗ |f (γ (v))|γ (v)|s−1|)|F(γ (v))|dx,

where Aτ = {x ∈ RN : |v| > τ }. Since 2 ≤ s < 2N
N−μ

, applying the Hardy-Littlewood-Sobolev 
inequality again, we obtain∫

Aτ

(|x|−μ ∗ |f (γ (v))|γ (v)|s−1|)|F(γ (v))|dx

≤ C
( ∫
RN

|f (γ (v))|γ (v)|s−1|rdx
) 1

r
(∫
Aτ

|F(γ (v))|ldx
) 1

l
,

with 1
r

= 1 + N−μ
2N

− 1
s

and 1
l

= N−μ
2N

+ 1
s
. By Hölder’s inequality, if γ (v) ∈ Ls(RN), then 

f (γ (vτ ))|γ (vτ )|s−1 ∈ Lr(RN) and F(γ (v)) ∈ Ll(RN), hence by Lebesgue’s dominated con-
vergence theorem,

lim
τ→∞

∫
Aτ

(|x|−μ ∗ |f (γ (v))|γ (v)|s−1|)|F(γ (v))|dx = 0.

On the other hand, by (1.10), we know that there exists a constant C such that
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( ∫
RN

|γ (vτ )| sN
N−1 dx

)N−1
N ≤ C

∫
RN

|γ (v)|sdx.

Letting τ → ∞ we conclude that γ (v) ∈ L
sN

N−1 (RN). By iterating over s a finite number of times 

we cover the range s ∈
[
2, 2N

N−μ

)
. So we can get γ (v) ∈ Ls(RN) for every s ∈

[
2, 2N2

(N−μ)(N−1)

)
. 

Using (f1), we know F(γ (v)) ∈ Lq(RN) for every q ∈
[

2N
2N−μ

, 2N2

(N−μ)(2N−μ)

)
. Since 2N

2N−μ
<

N
N−μ

< 2N2

(N−μ)(2N−μ)
, we have

U(x) := |x|−μ ∗ F(γ (v)) ∈ L∞(RN). (2.2)

We claim that γ (v) ∈ Lp(RN) for any p ∈ [2, +∞]. In fact, since v ∈ H 1(RN+1+ ) is a critical 
point such that

∫
RN+1+

(∇v∇ϕ + m2vϕ)dxdy + a

∫
RN

γ (v)γ (ϕ)dx =
∫
RN

U(x)f (γ (v))γ (ϕ)dx, (2.3)

for every ϕ ∈ H 1(RN+1+ ), where U(x) is defined in (2.2). For T > 0, we denote

vT = min{v+, T },

where v+ = max{0, v}. Since for β > 0, |vT |2βv ∈ H 1(RN+1+ ), take it as a test function in (2.3), 
we deduce that∫

RN+1+

(∇v∇(|vT |2βv) + m2|vT |2βv2)dxdy

=
∫

RN+1+

|vT |2β |∇v|2dxdy + 2β

∫
{v≤T }

v
2β
T |∇v|2dxdy +

∫
RN+1+

m2v2|vT |2βdxdy

=
∫
RN

U(x)f (γ (v))|γ (vT )|2βγ (v)dx − a

∫
RN

|γ (vT )|2βγ (v)2dx.

Noticing that

∫
RN+1+

|∇(|vT |βv)|2dxdy =
∫

RN+1+

|vT |2β |∇v|2dxdy + (2β + β2) ∫
{v≤T }

v
2β
T |∇v|2dxdy,

we obtain
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∫
RN+1+

(|∇(|vT |βv)|2 + ||vT |βv|2)dxdy

=
∫

RN+1+

|vT |2β |∇v|2dxdy + (2β + β2) ∫
{v≤T }

v
2β
T |∇v|2dxdy +

∫
RN+1+

||vT |βv|2dxdy

≤Cβ

∫
RN

U(x)f (γ (v))|γ (vT )|2βγ (v)dx − aCβ

∫
RN

|γ (vT )|2βγ (v)2dx,

where Cβ = max{ 1
m2 , 1 + β

2 }. By assumption (f1), we have

f (γ (v))γ (v) ≤ (C + |γ (v)| 2−μ
N−1 )γ (v)2.

Since U(x) ∈ L∞(RN) and γ (v) ∈ Lp(RN) for every p ∈ [2, 2N2

(N−μ)(N−1)
), we know that, for 

some constant C1 and function g ∈ LN(RN), g ≥ 0 and independent of T and p,

U(x)f (γ (v))|γ (vT )|2βγ (v) ≤ (C1 + g)|γ (vT )|2βγ (v)2.

So we have that∫
RN+1+

(|∇(|vT |βv)|2 + ||vT |βv|2)dxdy ≤ C2Cβ

∫
RN

|γ (vT )|2βγ (v)2dx

+ Cβ

∫
RN

g|γ (vT )|2βγ (v)2dx, (2.4)

and, using Fatou’s lemma and the monotone convergence theorem, we can pass to the limit as 
T → ∞ and get∫
RN+1+

(|∇(v
1+β
+ )|2 + |v1+β

+ |2)dxdy ≤ C2Cβ

∫
RN

|γ (v+)|2(β+1)dx + Cβ

∫
RN

g|γ (v+)|2(β+1)dx.

For any M > 0, let A1 = {g ≤ M}, A2 = {g > M}. Since∫
RN

g|γ (v+)|2(β+1)dx =
∫
A1

g|γ (v+)|2(β+1)dx +
∫
A2

g|γ (v+)|2(β+1)dx

≤ M

∫
A1

|γ (v+)|2(β+1)dx + (∫
A2

gNdx
) 1

N
(∫
A2

|γ (v+)|(β+1) 2N
N−1 dx

)N−1
N

≤ M|γ (v+)(β+1)|22 + ε(M)|γ (v+)(β+1)|22∗ ,

we deduce that
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‖v(β+1)
+ ‖2 ≤ Cβ(C2 + M)|γ (v+)(β+1)|22 + Cβε(M)|γ (v+)(β+1)|22∗ .

Using (1.10) and taking M large enough such that Cβc2
2∗ε(M) ≤ 1

2 , we obtain

|γ (v+)(β+1)|22∗ ≤ 2Cβc2
2∗(C2 + M)|γ (v+)(β+1)|22.

Now a bootstrap argument starting with β + 1 = N
N−1 shows that γ (v+) ∈ Lp(RN) for any 

p ∈ [2, +∞). Similarly, we can obtain γ (v−) ∈ Lp(RN) for any p ∈ [2, +∞) and hence the 
same property holds for γ (v).

Since γ (v+) ∈ Lp(RN) for any p ∈ [2, +∞), repeating the arguments in (2.4), we obtain that 
there exist some constant C1 and a function g ∈ L2N(RN), g ≥ 0 and independent of T and β
such that ∫

RN+1+

(|∇(|vT |βv)|2 + ||vT |βv|2)dxdy ≤ C1Cβ

∫
RN

|γ (vT )|2βγ (v)2dx

+ Cβ

∫
RN

g|γ (vT )|2βγ (v)2dx.

Using Fatou’s lemma and the monotone convergence theorem, we can pass to the limit as T → ∞
to get∫
RN+1+

(|∇(v
1+β
+ )|2 + |v1+β

+ |2)dxdy ≤ C1Cβ

∫
RN

|γ (v+)|2(β+1)dx + Cβ

∫
RN

g|γ (v+)|2(β+1)dx.

Using Young’s inequality, we see∫
RN

g|γ (v+)|2(β+1)dx ≤ |g|2N |(γ (v+))β+1|2|γ (v+)β+1|2∗

≤ |g|2N(λ|γ (v+)β+1|22 + 1

λ
|γ (v+)β+1|22∗).

Therefore,∫
RN+1+

(|∇(v
1+β
+ )|2 + |v1+β

+ |2)dxdy ≤ Cβ(C1 + |g|2Nλ)|γ (v+)β+1|22 + Cβ |g|2N

λ
|γ (v+)β+1|22∗ .

(2.5)
Using (1.10) and taking λ large enough such that Cβ |g|2N

λ
c2

2∗ = 1
2 , we obtain

|γ (v+)β+1|22∗ ≤ 2c2
2∗Cβ(C1 + |g|2Nλ)|γ (v+)β+1|22 = C2Cβ |γ (v+)β+1|22.

Since C2Cβ ≤ C2(m
−2 + 1 + β)2 ≤ M2e2

√
1+β for a positive constant M0, we know that
0
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|γ (v+)|2∗(β+1) ≤ M
1

β+1
0 e

1√
1+β |γ (v+)|2(β+1).

Start with β0 = 0, 2(βn+1 + 1) = 2∗(βn + 1), an iteration shows

|γ (v+)|2∗(βn+1) ≤ M

∑n
i=0

1
βi+1

0 e

∑n
i=0

1√
βi+1 |γ (v+)|2(β0+1).

Since βn + 1 = ( 2∗
2 )n = ( N

N−1 )n, we can get that

∞∑
i=0

1

βi + 1
< ∞ and

∞∑
i=0

1√
βi + 1

< ∞

and from this we deduce that

|γ (v+)|∞ = lim
n→∞|γ (v+)|2∗(βn+1) < ∞.

Thus, γ (v+) ∈ L∞(RN). Clearly, the same is true for γ (v−) and hence for γ (v). We can use the 
fact that |γ (v+)|p ≤ C3 < +∞ for all p in (2.5) (with λ = 1) to deduce that, for all β > 0,

‖vβ+1
+ ‖2 ≤ Cβ(C1 + |g|2N)C

2(β+1)
3 + Cβ |g|2NC

2(β+1)
3 .

Since by Sobolev’s embedding we have

‖v+‖2(β+1)

2�(β+1) = ‖vβ+1
+ ‖2� ≤ c2�‖vβ+1

+ ‖,

where 2� := 2(N+1)
N−1 , we deduce from the above inequality that

‖v+‖β+1
2�(β+1)

= ‖vβ+1
+ ‖2� ≤ C̃CβC

2(β+1)
3

for a positive constant C̃. Since the right-hand side of the last inequality is uniformly bounded 
for all β > 0, we can get that v+ ∈ L∞(RN+1+ ) as before. Similarly, we can see v− ∈ L∞(RN+1+ )

and hence the same property holds for v. �
The following property is established in [15, Proposition 2.9].

Lemma 2.3. Suppose that v ∈ H 1(RN+1+ ) ∩ L∞(RN+1+ ) is a weak solution of⎧⎨⎩−�v + m2v = 0 in RN+1+ ,

−∂v

∂y
= g(x) on RN,

(2.6)

where g ∈ Lp(RN) for all p ∈ [2, +∞].
Then v ∈ C0,α(RN × [0, +∞)) ∩ W 1,q (RN × (0, R)) for any q ∈ [2, +∞) and R > 0. If, in 

addition, g ∈ Cα(RN) then v ∈ C1,α(RN ×[0, +∞)) ∩C2(RN+1+ ) is a classical solution of (2.6).
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Proposition 2.4. Assume that f ∈ C1(R, R), then the weak solution v ∈ C1,α(RN × [0, +∞)) ∩
C2(RN+1+ ) is a classical solution and satisfies

N − 1

2

∫
RN+1+

|∇v(x, y)|2dxdy + (N + 1)m2

2

∫
RN+1+

|v(x, y)|2dxdy + Na

2

∫
RN

|γ (v)|2dx

= 2N − μ

2

∫
RN

(|x|−μ ∗ F(γ (v)))F (γ (v))dx.

Proof. We know from Proposition 2.2 that γ (v) ∈ Lp(RN) for any p ∈ [2, +∞], consequently

h := −γ (v) + (|x|−μ ∗ F(γ (v)))f (γ (v)) ∈ Lp(RN)

for any p ∈ [2, +∞]. From Lemma 2.3 we then deduce that γ (v) ∈ C0,α(RN) and then that 
h ∈ C0,α(RN). Again Lemma 2.3 tells us that v ∈ C1,α(RN ×[0, +∞)) ∩C2(RN+1+ ) is a classical 
solution.

We denote D = {z = (x, y) ∈ RN+1+ : |z| ≤ 1}. Fix ϕ ∈ C1
0(RN+1+ ) such that ϕ = 1 on D and 

ϕλ := ϕ(λx, λy). Then, for λ ∈ (0, ∞) and z ∈ RN+1+ , the function wλ defined by

wλ(x, y) = ϕλ(x, y) · ∇v(x, y)

can be used as a test function. It follows that∫
RN+1+

∇v(x, y)∇wλ(x, y)dxdy + m2
∫

RN+1+

v(x, y)wλ(x, y)dxdy + a

∫
RN

γ (v)γ (wλ)dx

=
∫
RN

(|x|−μ ∗ F(γ (v))
)
f (γ (v))γ (wλ)dx.

As in [17, Theorem 6.1], we know that

lim
λ→0

∫
RN+1+

∇v(x, y)∇wλ(x, y)dxdy = −N − 1

2

∫
RN+1+

|∇v(x, y)|2dxdy,

lim
λ→0

∫
RN+1+

v(x, y)wλ(x, y)dxdy = −N + 1

2

∫
RN+1+

|v(x, y)|2dxdy,

lim
λ→0

∫
RN

γ (v)γ (wλ)dx = −N

2

∫
RN

|γ (v)|2dx

and

lim
λ→0

∫
N

(|x|−μ ∗ F(γ (v))
)
f (γ (v))γ (wλ)dx = −2N − μ

2

∫
N

(|x|−μ ∗ F(γ (v)))F (γ (v))dx.
R R
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The conclusion follows by combining the above equalities. �
2.2. Existence of ground states

It is convenient to show that the functional Ja satisfies the mountain-pass geometry.

Lemma 2.5. Assume that f ∈ C1(R, R) satisfies (f1), (f2) and (f3), then

(i). There exist ρ > 0 and β > 0 such that Ja|B ≥ β for all v ∈ B = {v ∈ H 1(RN+1+ ) : ‖v‖ = ρ}.
(ii). There exists v ∈ H 1(RN+1+ ) such that ‖v‖ > ρ and Ja(v) < 0, where ρ is given in (i).

Proof. (i) By the growth assumption (f1), Proposition 1.1 and (1.10), for every v ∈ H 1(RN+1+ ), 
there holds

∫
RN

(|x|−μ ∗ F(γ (v))
)
F(γ (v))dx ≤ C1

( ∫
RN

|F(γ (v))| 2N
2N−μ dx

) 2N−μ
N

≤ C2

( ∫
RN

(|γ (v)| 4N
2N−μ + |γ (v)| 2N

N−1 )dx
) 2N−μ

N

≤ C3

(
‖v‖4 + ‖v‖ 2(2N−μ)

N−1

)
,

and so

Ja(u) ≥ 1

2

∫
RN+1+

(
|∇v(x, y)|2 + m2v(x, y)2

)
dxdy + a

2

∫
RN

γ (v)2dx − C3

2

(
‖v‖4 + ‖v‖ 2(2N−μ)

N−1

)
.

Note that 2(2N−μ)
N−1 > 4 > 2, hence we can choose ρ sufficiently small and β > 0, such that 

Ja|B ≥ β for all u ∈ B = {u ∈ H 1(RN+1+ ) : ‖u‖ = ρ}.
(ii) From assumption (f3), we can choose t0 ∈ R such that F(t0) 
= 0. Let w = t0χB1 , we get

∫
RN

(|x|−μ ∗ F(γ (w))
)
F(γ (w))dx = F(t0)

2
∫
B1

∫
B1

|x − z|−μdxdz > 0,

where B1 is the open ball centered at the origin with radius 1 in RN . Since H
1
2 (RN) is dense 

in L2(RN) ∩ L
2N

N−1 (RN) and 
∫
RN

(|x|−μ ∗ F(γ (v))
)
F(γ (v))dx is continuous in L2(RN) ∩

L
2N

N−1 (RN), we know there exists v ∈ H 1(RN+1+ ) such that

∫
RN

(|x|−μ ∗ F(γ (v))
)
F(γ (v))dx > 0.
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For τ > 0, x ∈ RN and y ∈R+, let vτ (x, y) = v(x
τ
, y

τ
), we find that, for τ > 0,

Ja(vτ ) = τN−1

2

∫
RN+1+

|∇v(x, y)|2dxdy + m2τN+1

2

∫
RN+1+

|v(x, y)|2dxdy

+ τN

2

∫
RN

γ (v)2dx − τ 2N−μ

2

∫
RN

(|x|−μ ∗ F(γ (v))
)
F(γ (v))dx.

(2.7)

Since 0 < μ < 2, we can obtain, for τ > 0 large enough, Ja(vτ ) < 0. By the proof of (i), we also 
know ‖vτ‖ > ρ. So, the assertion follows by taking v = vτ , with τ sufficiently large. �

In order to prove the existence of weak solutions, we will apply the mountain pass theorem 
[39]. Define the mountain pass level

E�
a := inf

ι∈�
sup

t∈[0,1]
Ja(ι(t)), (2.8)

with the set of admissible paths defined by

� =
{
ι ∈ C([0,1];H 1(RN+1+ )) : ι(0) = 0, Ja(ι(1)) < 0

}
.

It is convenient to define Pohožaev functional P : H 1(RN+1+ ) → R for v ∈ H 1(RN+1+ ) by

P(v) = N − 1

2

∫
RN+1+

|∇v(x, y)|2dxdy + m2(N + 1)

2

∫
RN+1+

|v(x, y)|2dxdy

+ aN

2

∫
RN

γ (v)2dx − 2N − μ

2

∫
RN

(|x|−μ ∗ F(γ (v))
)
F(γ (v))dx.

In order to construct a Pohožaev-Palais-Smale sequence, for σ ∈R, v ∈ H 1(RN+1+ ), x ∈ RN and 
y ∈R+, we define the map � :R × H 1(RN+1+ ) → H 1(RN+1+ ) by

�(σ,v)(x, y) = v(e−σ x, e−σ y).

Then the functional Ja ◦ � is computed as

Ja(�(σ, v)) = e(N−1)σ

2

∫
RN+1+

|∇v(x, y)|2dxdy + m2e(N+1)σ

2

∫
RN+1+

|v(x, y)|2dxdy

+ aeNσ

2

∫
RN

γ (v)2dx − e(2N−μ)σ

2

∫
RN

(|x|−μ ∗ F(γ (v))
)
F(γ (v))dx.
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Define the family of paths

�̃ = {ι ∈ C([0,1];R× H 1(RN+1+ )) : ι(0) = (0,0) and Ja ◦ �(ι(1)) < 0}

and notice that � = {� ◦ ι : ι ∈ �̃}. It follows that the mountain pass levels of Ja and Ja ◦ �

coincide, that is,

E�
a = inf

ι∈�̃

sup
t∈[0,1]

(Ja ◦ �)(ι(t)).

From Lemma 2.5 and the min-max characterization of the value E�
a , we obtain 0 < E�

a < ∞. 
Using condition (f1), we know that Ja ◦ � is continuous and Fréchet-differentiable on R ×
H 1(RN+1+ ).

Applying [39, Theorem 2.9] and Lemma 2.5, there exists a sequence {(σn, wn)} in R ×
H 1(RN+1+ ) such that as n → ∞

(Ja ◦ �)(σn,wn) → E�
a and (Ja ◦ �)′(σn,wn) → 0 in (R× H 1(RN+1+ ))∗.

Since for every (h, w) ∈R × H 1(RN+1+ ),

(Ja ◦ �)′(σn,wn)[h,w] = J ′
a(�(σn,wn))[�(σn,w)] + P(�(σn,wn))h.

We take vn = �(σn, wn), then as n → ∞,

Ja(vn) → E�
a > 0, J ′

a(vn) → 0, P (vn) → 0. (2.9)

Now we are ready to obtain a nontrivial solution from this special sequence by applying a 
version of Lions’ concentration-compactness principle for the fractional Laplacian, see [17].

Lemma 2.6. Let {un} be a bounded sequence in H
1
2 (RN). Assuming that for some σ > 0 and 

2 ≤ q < 2∗ we have

sup
x∈RN

∫
Bσ (x)

|un|qdx → 0, as n → ∞,

then un → 0 in Ls(RN) for 2 < s < 2∗.

Lemma 2.7. Suppose that (f1) − (f3), then equation (1.9) has at least one nontrivial solution.

Proof. By direct computation, we obtain, for any n ∈N ,

Ja(vn) − 1

2N − μ
P(vn) = N − μ + 1

2(2N − μ)

∫
RN+1+

(|∇vn(x, y)|2 + m2|vn(x, y)|2)dxdy

+ a(N − μ)

2(2N − μ)

∫
N

γ (vn)
2dx.
R
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By (2.9), it is easy to see that the sequence {vn} is bounded in H 1(RN+1+ ). Moreover, we claim 
that there exist σ, δ > 0 and a sequence {xn} ⊂ RN such that

lim inf
n→∞

∫
Bσ (xn)

γ (vn)
2dx ≥ δ.

If the above claim does not hold for {vn}, by Lemma 2.6, we must have that

γ (vn) → 0 in Lr(RN) for 2 < r < 2∗. (2.10)

Fix 2 < q < 2∗, from assumption (f2), for any ξ > 0 there is Cξ > 0 such that

|F(s)| 2N
2N−μ ≤ ξ(|s| 4N

2N−μ + |s| 2N
N−1 ) + Cξ |s|q ∀s ≥ 0.

Since {vn} is bounded in H 1(RN+1+ ) and hence, by the Sobolev embedding, in L
2N

N−1 (RN), we 
have ∫

RN

|F(γ (vn))|
2N

2N−μ dx ≤ C1ξ + C2

∫
RN

|γ (vn)|qdx.

Since ξ > 0 is arbitrary and (2.10), we have

∫
RN

|F(γ (vn))|
2N

2N−μ dx → 0,

as n → ∞. It follows from the Hardy-Littlewood-Sobolev inequality that

∫
RN

(|x|−μ ∗ F(γ (vn))
)
f (γ (vn))γ (vn)dx

≤ C1

( ∫
RN

|F(γ (vn))|
2N

2N−μ dx
) 2N−μ

2N
( ∫
RN

|f (γ (vn))γ (vn)|
2N

2N−μ dx
) 2N−μ

2N → 0,

which leads to ‖vn‖ → 0. This contradicts with (2.9) and so the claim is proved. And so, up to 
translation, we may assume that

lim inf
n→∞

∫
Bσ (0)

γ (vn)
2dx ≥ δ.
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Since {vn} is bounded in H 1(RN+1+ ), there exists v0 ∈ H 1(RN+1+ ), v0 
= 0, such that, up to a 
subsequence, vn converges to v0 weakly in H 1(RN+1+ ) and vn converges to v0 a.e. in RN+1+ . 

From (f1), we know the sequence {F(γ (vn))} is bounded in L
2N

2N−μ (RN). Since F is continuous, 
we have F(γ (vn)) converges to F(γ (v0)) a.e. in RN . So,

F(γ (vn)) ⇀ F(γ (v0)) in L
2N

2N−μ (RN).

By the Hardy-Littlewood-Sobolev inequality, |x|−μ defines a linear continuous map from 

L
2N

2N−μ (RN) to L
2N
μ (RN). Thus we know that

|x|−μ ∗ (F (γ (vn)) ⇀ |x|−μ ∗ (F (γ (v0))) in L
2N
μ (RN).

On the other hand, applying condition (f1), we can get, for every p ∈ [1, 2N
N+1−μ

),

f (γ (vn)) → f (γ (v0)) in L
p
loc(R

N).

We conclude that, for every p ∈ [1, 2N
N+1 )

(|x|−μ ∗ F(γ (vn)))f (γ (vn)) ⇀ (|x|−μ ∗ F(γ (v0)))f (γ (v0)) in Lp(RN).

In particular, for every ϕ ∈ H 1(RN+1+ ),

0 = lim
n→∞〈J ′

a(vn),ϕ〉

= lim
n→∞

( ∫
RN+1+

(∇vn∇ϕ + m2vnϕ)dxdy + a

∫
RN

γ (vn)γ (ϕ)dx

−
∫
RN

(|x|−μ ∗ F(γ (vn)))f (γ (vn))γ (ϕ)dx
)

=
∫

RN+1+

(∇v0∇ϕ + m2v0ϕ)dxdy + a

∫
RN

γ (v0)γ (ϕ)dx

−
∫
RN

(|x|−μ ∗ F(γ (v0)))f (γ (v0))γ (ϕ)dx

= 〈J ′
a(v0), ϕ〉 .

We conclude that v0 is a weak solution of equation (1.9). �
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Proof of Theorem 1.4. The weak lower-semicontinuity of the norm and the Pohožaev identity 
in Proposition 2.4 imply that

Ja(v0) = Ja(v0) − P(v0)

2N − μ

= N − μ + 1

2(2N − μ)

∫
RN+1+

(|∇v0(x, y)|2 + m2|v0(x, y)|2)dxdy + a(N − μ)

2(2N − μ)

∫
RN

γ (v0)
2dx

≤ lim inf
n→∞

(N − μ + 1

2(2N − μ)

∫
RN+1+

|∇vn(x, y)|2 + m2|vn(x, y)|2dxdy

+ a(N − μ)

2(2N − μ)

∫
RN

γ (vn)
2dx

)

= lim inf
n→∞

[
Ja(vn) − P(vn)

2N − μ

]
= lim inf

n→∞ Ja(vn) = E�
a.

(2.11)

Since v0 is a critical point for functional Ja and by the definition of the ground state energy level 
Ea , we have Ja(v0) ≥ Ea . So, we can get Ea ≤ E�

a .
We define the path ι : [0, ∞) → H 1(RN+1+ ) by

ι(τ )(x, y) =
{

v0(
x

τ
,
y

τ
) if τ > 0,

0 if τ = 0.

Since the function ι is continuous on (0, ∞), we have, for every τ > 0,

∫
RN+1+

|∇ι(τ )(x, y)|2dxdy + m2
∫

RN+1+

|ι(τ )(x, y)|2dxdy + a

∫
RN

|γ (ι(τ ))|2dx

= τN−1
∫

RN+1+

|∇v0(x, y)|2dxdy + m2τN+1
∫

RN+1+

|v0(x, y)|2dxdy + aτN

∫
RN

|γ (v0)|2dx,

which implies that ι is continuous at 0.
89
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By the Pohožaev identity in Proposition 2.4, we have

Ja(ι(τ )) = τN−1

2

∫
RN+1+

|∇v0(x, y)|2dxdy + m2τN+1

2

∫
RN+1+

|v0(x, y)|2dxdy

+ aτN

2

∫
RN

|γ (v0)|2dx − τ 2N−μ

2

∫
RN

(|x|−μ ∗ F(γ (v0)))F (γ (v0))dxdy

=
(τN−1

2
− (N − 1)τ 2N−μ

2(2N − μ)

) ∫
RN+1+

|∇v0(x, y)|2dxdy + m2
(τN+1

2
− (N + 1)τ 2N−μ

2(2N − μ)

)

×
∫

RN+1+

|v0(x, y)|2dxdy + a
(τN

2
− Nτ 2N−μ

2(2N − μ)

) ∫
RN

|γ (v0)|2dx.

It is easy to see that Ja(ι(τ )) achieves the strict global maximum at 1, that is, for every τ ∈
[0, 1) ∪ (1, ∞), Ja(ι(τ )) < Ja(v0). Then after a suitable change of variable, for every t0 ∈ (0, 1), 
there exists a path ι ∈ C([0, 1]; H 1(RN+1+ )) such that ι ∈ �, ι(t0) = v0 and

Ja(ι(t)) < Ja(v0), ∀t ∈ [0, t0) ∪ (t0,1].

Let w0 ∈ H 1(RN+1+ )\{0} be another solution of (1.9) such that Ja(w0) ≤ Ja(v0). If we lift w0
to a path and recall the definition of E�

a , we conclude that Ja(v0) ≤ E�
a ≤ Ja(w0). Thus, we have 

proved that Ja(v0) = Ja(w0) = Ea = E�
a , and this concludes the proof of Theorem 1.4. �

Remark 2.8. Denote by

Sa = {v ∈ H 1(RN+1+ ) : Ja(v) = Ea and v is a ground state of (1.9)}

the set of groundstates of (1.9). Then Sa is compact in H 1(RN+1+ ).
In fact, for every v ∈ Sa , we have

Ja(v) = N − μ + 1

2(2N − μ)

∫
RN+1+

(|∇v(x, y)|2 + m2|v(x, y)|2)dxdy + N − μ

2(2N − μ)

∫
RN

γ (v)2dx.

Thus, for every {vn} ⊂ Sa , up to a subsequence and translations, we can assume that vn ⇀ v. 
Since equality holds in (2.11),

Ja(v) = N − μ + 1

2(2N − μ)

∫
RN+1+

(|∇v(x, y)|2 + m2|v(x, y)|2)dxdy + N − μ

2(2N − μ)

∫
RN

γ (v)2dx

= lim
n→∞ inf

(N − μ + 1

2(2N − μ)

∫
RN+1

(|∇vn(x, y)|2 + m2|vn(x, y)|2)dxdy
+
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+ N − μ

2(2N − μ)

∫
RN

γ (vn)
2dx

)
,

and hence {vn} converges strongly to v in H 1(RN+1+ ).

2.3. Exponential decay of the ground states

Now, we took some ideas from [15] to prove the decay of the ground state solutions to (1.9).

Lemma 2.9. Let v ∈ Sa be the ground state solution obtained in Theorem 1.4. If f ∈ C1(R, R)

satisfies (f1) and f (t) = 0 for t ≤ 0, then for any σ ∈ (−a, m) ∩ [0, +∞), there exists C > 0
such that

0 < v(x, y) ≤ Ce−(m−σ)
√|x|2+y2

e−σy

for any (x, y) ∈RN × [0, +∞).

Proof. Since f (t) = 0 for t ≤ 0, we see that v ≥ 0. By Proposition 2.4, we know v ∈ C1,α(RN ×
[0, +∞)) ∩ C2(RN+1+ ). The strict positivity of v follows immediately from the maximum princi-
ple: since v ≥ 0, if v(x, y) = 0, then y = 0. From the equation we deduce that ∂v

∂ν
(x, 0) = 0 and 

we reach a contradiction applying the Hopf lemma.
Following [15], for any R > 0 we denote

B+
R = {(x, y) ∈ RN+1+ :

√
|x|2 + y2 < R},

�+
R = {(x, y) ∈ RN+1+ :

√
|x|2 + y2 > R},

�R = {(x,0) ∈ ∂RN+1+ : |x| ≥ R}

and define

fR(x, y) = CRe−σye−(m−σ)
√|x|2+y2

for (x, y) ∈ �
+
R,

where the positive constants CR and σ ∈ (−a, m) ∩ [0, +∞) will be chosen later on. A simple 
computation shows that

�fR =
(
σ 2 + (m − σ)2 + 2σ(m − σ)y√|x|2 + y2

− N(m − σ)√|x|2 + y2

)
fR.

Thus, for R large enough, we have⎧⎨⎩−�fR + m2fR ≥ 0 in �+
R,

−∂fR = ∂fR = σfR on �+
R.
∂y ∂η
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We now define

w(x,y) = fR(x, y) − v(x, y)

for any (x, y) ∈ �
+
R . We clearly have −�w + m2w ≥ 0 in �+

R . Choosing

CR = emR max
∂B+

R

v,

we also have w(x, y) ≥ 0 on ∂B+
R and w(x, y) → 0 when |x| + y → ∞.

We claim that w(x, y) ≥ 0 in �
+
R . Supposing the contrary, let us assume that inf

�
+
R

w(x, y) <

0. By the strong maximum principle, there exist (x0, 0) ∈ �+
R such that w(x0, 0) = inf

�
+
R

w(x, y)

< w(x, y) for all (x, y) ∈ �+
R . Defining

ρ(x, y) = w(x,y)eλy

for some λ ∈ (−a, m) ∩ [0, +∞), a straightforward calculation shows that

−�w + m2w = e−λy(�ρ + 2λ∂yρ + (m2 − λ2)ρ).

Since −�w + m2w ≥ 0, we conclude that �ρ + 2λ∂yρ + (m2 − λ2)ρ ≥ 0. Another application 
of the strong maximum principle yields

ρ(x0,0) = inf
�+

R

ρ = inf
�+

R

w = w(x0,0) < 0.

By Hopf’s lemma we have ∂ρ
∂η

(x0, 0) < 0, hence

−∂ρ

∂y
(x0,0) < 0. (2.12)

Since ∂ρ
∂y

= ∂w
∂y

eλy + λweλy , we conclude that

∂ρ

∂y
(x0,0) = ∂w

∂y
(x0,0) + λw(x0,0)

and so

−∂ρ

∂y
(x0,0) = −∂fR

∂y
(x0,0) + ∂v

∂y
(x0,0) − λfR(x0,0) + λv(x0,0)

= (σ − λ)fR(x0,0) + (a + λ)v(x0,0) − (|x|−μ ∗ F(v(x0,0))
)
f (v(x0,0)).

By Proposition 2.2, we know that |x|−μ ∗ F(v(x, 0)) ∈ L∞(RN). Combining this with hy-
pothesis (f1), we have (|x|−μ ∗ F(v(x0,0))

)
f (v(x0,0)) → 0 (2.13)
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F. Gao, V.D. Rădulescu, M. Yang et al. Journal of Differential Equations 295 (2021) 70–112
as |x0| → ∞.
Now, choosing σ = λ, since λ ∈ (−a, m) ∩ [0, +∞) (so that, the last term in the above in-

equality is non-negative), the positiveness of (a + λ)v(x0, 0) and (2.13) guarantee that

−∂ρ

∂y
(x0,0) ≥ 0,

thus reaching a contradiction with (2.12). It follows that

0 < v(x, y) ≤ fR(x, y) = CRe−σye−(m−σ)
√|x|2+y2

for (x, y) ∈ �
+
R.

The proof is now complete. �
3. Penalization arguments: single peak solutions

To study problem (1.1), it suffices to investigate equation (1.2).
For any set B ⊂ RN and ε > 0, we define Bε ≡ {x ∈ RN : εx ∈ B} and Bδ ≡ {x ∈ RN :

dist (x, B) ≤ δ}.
For v ∈ H 1(RN+1+ ), let

Pε(v) = 1

2

∫
RN+1+

(|∇v|2 + m2v2)dxdy + 1

2

∫
RN

Vεγ (v)2dx

− 1

2

∫
RN

(|x|−μ ∗ F(γ (v))
)
F(γ (v))dx.

Fixing an arbitrary α > 0 and v ∈ H 1(RN+1+ ), we define

χε(x) =
{

0, if x ∈ Oε,

ε−α, if x ∈ RN \ Oε,

and

Qε(v) =
⎛⎜⎝ ∫
RN

χεγ (v)2dx − 1

⎞⎟⎠
2

+

.

Let �ε : H 1(RN+1+ ) → R be given by

�ε(v) = Pε(v) + Qε(v).

It is standard to check that �ε ∈ C1(H 1(RN+1+ )). To look for solutions of problem (1.2) that 
concentrate in O as ε → 0, we shall search for critical points of �ε such that Qε is zero. The 
functional Qε was firstly introduced in [7] and it will play the role of a penalization to force the 
concentration phenomena to occur inside O .
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Now, we will construct a set of approximate solutions of (1.2). Let

δ = 1

10
dist (M,RN\O).

We fix β ∈ (0, δ) and a cut-off ϕ ∈ C∞
0 (RN+1+ ) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for |x| + y ≤ β

and ϕ(x) = 0 for |x| +y ≥ 2β . Let ϕε(x, y) = ϕ(εx, εy), x ∈ RN, y ∈ R+ and for some x0 ∈Mβ

and U ∈ SV0 , we define

Ux0
ε (x, y) = ϕε

(
x − x0

ε
, y
)

U
(
x − x0

ε
, y
)

,

where SV0 is the set of least energy solutions of (1.9) with a = V0. As in [5], we will find a 
solution near the set

Xε = {Ux0
ε | x0 ∈Mβ,U ∈ SV0}

for sufficiently small ε > 0. Choosing some fixed U ∈ SV0 and x0 ∈M, we define

Wε,t (x, y) ≡ (ϕεUt )(x − x0

ε
, y), where Ut(x, y) = U(

x

t
, y).

Lemma 3.1. There exist T > 0, such that for ε > 0 small enough, �ε(Wε,T ) < −2.

Proof. By a direct calculation, we get �ε(Wε,t ) = Pε(Wε,t ) for any t > 0,

JV0(Ut ) = tN−2

2

∫
RN+1+

|∇U |2dxdy + m2tN

2

∫
RN+1+

|U |2dxdy + tN

2
V0

∫
RN

|γ (U)|2dx

− t2N−μ

2

∫
RN

(|x|−μ ∗ F(γ (U)))F (γ (U))dx.

Then there exists T > 1 such that JV0(UT ) < −2 for t > T . Noticing that

Pε(Wε,t ) = JV0(Wε,t ) + 1

2

∫
RN

(Vε(x) − V0)γ (Wε,t )
2dx,

we have

Pε(Wε,t ) = JV0(Ut ) + O(ε),

by the decay property of U in Lemma 2.9. We conclude that �ε(Wε,T ) < −2 for ε > 0 small. �
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Let ιε(t)(x, y) = Wε,t (x, y) for t > 0. Due to lim
t→0

Wε,t = 0, let ιε(0) = 0. We define a min-

max value Cε by

Cε = inf
ι∈�ε

max
s∈[0,T ]�ε(ι(s)),

where �ε = {ι ∈ C([0, T ], H 1(RN+1+ )) : ι(0) = 0, ι(T ) = ιε(T )}. Similarly to Propositions 2 and 
3 in [5], we have the following property.

Proposition 3.2. We have

lim
ε→0

Cε = EV0,

where EV0 is the least energy of (1.9) with a = V0.

Now define

�α
ε := {v ∈ H 1(RN+1+ ) : �ε(v) ≤ α}

and for a set A ⊂ H 1(RN+1+ ) and α > 0, let

Aα := {v ∈ H 1(RN+1+ ) : inf
w∈A

‖v − w‖ ≤ α}.

In the following, we will construct a special PS-sequence of �ε, which is localized in some 
neighborhood Xd

ε of Xε .

Proposition 3.3. Let {εj } with lim
j→∞ εj = 0, {vεj

} ⊂ Xd
εj

be such that

lim
j→∞�εj

(vεj
) ≤ EV0 and lim

j→∞�′
εj

(vεj
) = 0. (3.1)

Then for sufficiently small d > 0, there exist, up to a subsequence, {xj } ⊂ RN , x0 ∈ M, and 
U ∈ SV0 such that

lim
j→∞

∣∣εj xj − x0
∣∣= 0,

and

lim
j→∞

∥∥vεj
− ϕεj

(· − xj , ·)U(· − xj , ·)
∥∥= 0.

Proof. Without confusion, we write ε for εj . Since SV0 is compact, then there exist Z ∈ SV0 , xε ∈
(M)β , x0 ∈ (M)β , lim

ε→0
xε = x0, such that up to a subsequence, denoted still by {vε} satisfying 

that for sufficiently small ε > 0,∥∥∥vε − ϕε

(
· − xε

, ·
)

Z
(
· − xε

, ·
)∥∥∥≤ 2d. (3.2)
ε ε
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Set v1,ε(x, y) = ϕε

(
x − xε

ε
, y
)
vε , v2,ε(x, y) = vε(x, y) − v1,ε(x, y).

Step 1. We claim that

�ε(vε) ≥ �ε(v1,ε) + �ε(v2,ε) + O(ε). (3.3)

Suppose that there exist xε ∈ B
(

xε

ε
,

2β
ε

)
\ B

(
xε

ε
,

β
ε

)
and R > 0, such that

lim
ε→0

∫
B(xε,R)

γ (vε)
2dx > 0. (3.4)

Let Wε(x, y) = vε(x + xε, y), then we get

lim
ε→0

∫
B(0,R)

γ (Wε)
2dx > 0. (3.5)

Since εxε ∈ B (xε,2β) \ B (xε,β), by taking a subsequence, we can assume εxε → x0 ∈
B (x0,2β) \ B (x0, β). From (3.2), one has {Wε} is bounded in H 1(RN+1+ ). Without loss of 
generality, we assume that Wε ⇀ W weakly in H 1(RN+1+ ) and γ (Wε) → γ (W) strongly in 
L

q
loc(R

N) for q ∈ [2, 2∗). Clearly, (3.5) implies that W 
= 0 and from (3.1) we get that W is a 
nontrivial solution of⎧⎨⎩

−�W + m2W = 0 in RN+1+ ,

−∂W

∂y
= (|x|−μ ∗ F(γ (W)))f (γ (W)) − V (x0)γ (W) on RN.

(3.6)

Once choosing R large enough, we deduce by the weak convergence that

lim
ε→0

( ∫
B(xε,R)×(0,+∞)

(|∇vε|2 + m2|vε|2)dxdy +
∫

B(xε,R)

Vε(x)γ (vε)
2dx

)

= lim
ε→0

( ∫
B(0,R)×(0,+∞)

(|∇Wε|2 + m2|Wε|2)dxdy +
∫

B(0,R)

Vε(x + xε)γ (Wε)
2dx

)

≥
∫

B(0,R)×(0,+∞)

(|∇W |2 + m2|W |2)dxdy +
∫

B(0,R)

V (x0)γ (W)2dx

≥1

2

∫
RN+1+

(|∇W |2 + m2|W |2)dxdy + 1

2

∫
RN

V (x0)γ (W)2dx.

(3.7)

By Theorem 1.4, Ea is a mountain pass value. One can get Ea as being strictly increasing for 
a > 0. Then

JV (x0)(W) ≥ EV (x0) ≥ EV , since V (x0) ≥ V0.
0
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Thus by (3.7) and the Pohozǎev identity, we get

lim
ε→0

( ∫
B(xε,R)×(0,+∞)

(|∇vε|2 + m2|vε|2)dxdy +
∫

B(xε,R)

Vε(x)γ (vε)
2dx

)

≥1

2

∫
RN+1+

(|∇W |2 + m2|W |2)dxdy + 1

2

∫
RN

V (x0)γ (W)2dx

≥ 2N − μ

N − μ + 2
JV (x0)(W) ≥ 2N − μ

N − μ + 2
EV0 .

Combining this with the exponential decay at infinity of Z and the fact that x0 
= x0, we get a 
contradiction with (3.2) by taking d > 0 sufficiently small. Then, it follows from [33, Lemma 
I.1] that, up to a subsequence,

lim
ε→0

∫
B
(

xε
ε

,
2β
ε

)
\B
(

xε
ε

,
β
ε

) |γ (vε)|qdx = 0, for any 2 < q < 2∗. (3.8)

Then, by (22) in [40], we know that

∫
RN

(Iα ∗ F(γ (vε)))F (γ (vε))dx =
∫
RN

(|x|−μ ∗ F(γ (v1,ε)))F (γ (v1,ε))dx

+
∫
RN

(|x|−μ ∗ F(γ (v2,ε)))F (γ (v2,ε))dx + oε(1).

(3.9)

Thus, it is easy to see

�ε(vε) = �ε(v1,ε) + �ε(v2,ε)

+
∫

B
(

xε
ε

,
2β
ε

)
\B
(

xε
ε

,
β
ε

)
×(0,+∞)

ϕε

(
x − xε

ε
, y
)(

1 − ϕε

(
x − xε

ε
, y
))

|∇vε|2dxdy

+
∫

B
(

xε
ε

,
2β
ε

)
\B
(

xε
ε

,
β
ε

) Vε(x)γ
(
ϕε

(
x − xε

ε
, y
))(

1 − γ
(
ϕε

(
x − xε

ε
, y
)))

γ (vε)
2dx

−
∫
RN

(
(|x|−μ ∗ F(γ (vε)))F (γ (vε)) − (|x|−μ ∗ F(γ (v1,ε)))F (γ (v1,ε))

− (|x|−μ ∗ F(γ (v2,ε)))F (γ (v2,ε))
)
dx + oε(1)

as ε → 0. Therefore, we deduce that (3.3) holds true.
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Step 2. We claim that for d, ε > 0 small enough,

�ε(v2,ε) ≥ c0‖v2,ε‖2 (3.10)

for some c0 > 0.

By (f2), for any ρ > 0 there exists b > 0 (depending on ρ) such that |F(t)| ≤ ρt2 + b|t | 2N−μ
N−1

for t ∈R. Then by the Hardy-Littlewood-Sobolev inequality and Sobolev’s inequality,∣∣∣∣∣∣∣
∫
RN

(|x|−μ ∗ F(γ (v2,ε)))F (γ (v2,ε))dx

∣∣∣∣∣∣∣
≤ C(N,μ)

⎛⎜⎝ ∫
RN

|F(γ (v2,ε))|
2N

2N−μ dx

⎞⎟⎠
2N−μ

N

≤ C1

⎡⎢⎣ ∫
RN

(ρ
2N

2N−μ |γ (v2,ε)|
4N

2N−μ + b
2N

2N−μ |γ (v2,ε)| 2N
N−1 )dx

⎤⎥⎦
2N−μ

N

≤ C2

(
ρ2‖v2,ε‖4 + b2‖v2,ε‖

2(2N−μ)
N−1

)
.

It follows that

�ε(v2,ε) ≥ Pε(v2,ε) ≥ 1

2

∫
RN+1+

(|∇v2,ε|2 + m2v2
2,ε)dxdy + 1

2

∫
RN

Vεγ (v2,ε)
2dx

− 1

2

∫
RN

(|x|−μ ∗ F(γ (v2,ε))
)
F(γ (v2,ε))dx (3.11)

≥ C3‖v2,ε‖2 − 1

2
C2

(
ρ2‖v2,ε‖4 + b2‖v2,ε‖

2(2N−μ)
N−1

)
+ oε(1).

Since 2 < 4 < 2(2N−μ)
N−1 , taking d, ε > 0 small enough, we can deduce from (3.2) and (3.11) that 

�ε(v2,ε) ≥ c0‖v2,ε‖2 for some c0 > 0.

Step 3. We define

v1
1,ε(x, y) =

{
v1,ε(x, y), x ∈ Oε,

0, x /∈ Oε,
(3.12)

and set Wε(x, y) = v1
1,ε

(
x + xε

ε
, y
)
. We can proceed as before and conclude that, up to a subse-

quence, we have as ε → 0,

Wε ⇀ W weakly in H 1(RN+1+ ),

and W is a solution of
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⎧⎨⎩−�W + m2W = 0 in RN+1+ ,

−∂W

∂y
= (|x|−μ ∗ F(γ (W)))f (γ (W)) − V (x)γ (W) on RN.

(3.13)

In the following, we prove that Wε → W strongly in H 1(RN+1+ ). As before, assume the exis-

tence of a radius R > 0 and of a sequence x′
ε ∈ RN such that x′

ε ∈ B
(

xε

ε
,

2β
ε

)
,

lim
ε→0

|x′
ε − xε

ε
| = 0

and

lim
ε→0

∫
B(x′

ε,R)

|γ (v1
1,ε)|2dx > 0. (3.14)

Without loss of generality, we can assume that εx′
ε → x′ ∈ O as ε → 0. Define W̃ε(x, y) =

Wε(x + x′
ε, y), then up to a subsequence, as ε → 0,

W̃ε ⇀ W̃ 
≡ 0 weakly in H 1(RN+1+ )

and W̃ satisfies⎧⎨⎩−�W̃ + m2W̃ = 0 in RN+1+ ,

−∂W̃

∂y
= (|x|−μ ∗ F(γ (W̃ )))f (γ (W̃ )) − V (x′)γ (W̃ ) on RN.

(3.15)

With the same arguments as in the proof of Step 1, we can get a contradiction. So, γ (Wε) →
γ (W) strongly in Lp(RN) for any p ∈ (2, 2∗), which implies

lim
ε→0

∫
RN

(|x|−μ ∗ F(γ (Wε)))F (γ (Wε))dx =
∫
RN

(|x|−μ ∗ F(γ (W)))F (γ (W))dx. (3.16)

Then we deduce that

lim
ε→0

�ε(v
1
1,ε) ≥ lim

ε→0
Pε(v

1
1,ε)

= lim
ε→0

(1

2

∫
RN+1+

(|∇Wε|2 + m2|Wε|2)dxdy + 1

2

∫
RN

Vε(εx + xε)|γ (Wε)|2dx

− 1

2

∫
RN

(|x|−μ ∗ F(γ (Wε)))F (γ (Wε))dx
)

(3.17)

≥ 1

2

∫
RN+1

(|∇W |2 + m2|W |2)dxdy + 1

2

∫
RN

V (x0)|γ (W)|2dx
+
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− 1

2

∫
RN

(|x|−μ ∗ F(γ (W)))F (γ (W))dx

= JV (x0)(W) ≥ EV0 .

Now, by the estimate (3.3), we get

lim
ε→0

(
�ε(v2,ε) + �ε(v

1
1,ε)
)

= lim
ε→0

(
�ε(v2,ε) + �ε(v1,ε)

)≤ lim
ε→0

�ε(vε) ≤ EV0 . (3.18)

Therefore, by (3.10) and (3.17), by choosing d > 0 small enough,

lim
ε→0

�ε(v1,ε) = lim
ε→0

�ε(v
1
1,ε) = EV0 . (3.19)

By (3.10), ‖v2,ε‖ → 0 as ε → 0. Recalling that Ea is strictly increasing for a > 0, we obtain 
x0 ∈ M and W(x, y) = U(x − x′, y) for some U ∈ SV0 and x′ ∈ RN . Moreover, by (3.16), 
(3.17) and (3.19), we have

lim
ε→0

( ∫
RN+1+

(|∇Wε|2 + m2|Wε|2)dxdy +
∫
RN

Vε(εx + xε)|γ (Wε)|2dx
)

→
∫

RN+1+

(|∇W |2 + m2|W |2)dxdy +
∫
RN

V (x0)|γ (W)|2dx.

Then Wε → W strongly in H 1(RN+1+ ). Let x′
ε = x′ + xε/ε, then εx′

ε → x0 ∈ M and 
v1,ε(x, y) → ϕε(x − x′

ε, y)U(x − x′
ε, y) in H 1(RN+1+ ) as ε → 0, which implies that

v1,ε = ϕε(x − x′
ε, y)U(x − x′

ε, y) + oε(1) in H 1(RN+1+ ).

The proof is now complete. �
Let

Dε = max
s∈[0,T ]�ε(ιε(s)).

Then, we can see easily that the following properties hold.

Proposition 3.4.
(i) We have lim

ε→0
Cε = lim

ε→0
Dε = EV0 .

(ii) For any d > 0, there exists α0 > 0 such that for ε > 0 small,

�ε(ιε(s)) ≥ Dε − α0 implies that ιε(s) ∈ Xd/2
ε .

As a consequence of Proposition 3.3, we have
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Proposition 3.5. For sufficiently small d > 0, there exist constants � > 0 and ε0 > 0, such that 

|�′
ε(v)| ≥ � for v ∈ �

Dε
ε ∩ (Xd

ε \ X
d
2
ε ) and ε ∈ (0, ε0).

Proof. By contradiction, we can assume that there exist {εj } with lim
j→∞ εj = 0 and {vεj

} with 

vεj
∈ Xd

εj
\ X

d
2
εj

, such that

lim
j→∞�εj

(vεj
) ≤ EV0 and lim

j→∞�′
εj

(vεj
) = 0.

Thus, by Proposition 3.3, there exist {xεj
} ⊂ RN , x0 ∈ M and U ∈ SV0 such that lim

εj→0
|εj xεj

−
x0| = 0 and

lim
εj →0

∥∥vεj
− ϕεj

(· − xεj
, ·)U(· − xεj

, ·)∥∥= 0.

By the definition of Xεj
, we see that lim

εj→0
dist (vεj

, Xεj
) = 0. This contradicts vεj

/∈ X
d
2
εj

. Thus, 

we complete the proof. �
Now, we fix d > 0 such that Proposition 3.5 holds. Choose R0 > 0 large enough such that 

O ⊂ (RN × {0}) ∩ B(0, R0) and ιε(s) ∈ H 1
0 (B(0, R

ε
)) for any s ∈ [0, T ], R > R0, ε > 0 small 

enough.

Proposition 3.6. Given ε > 0 sufficiently small, then there exists a sequence {vR
n } ⊂ X

d
2
ε ∩�

Dε
ε ∩

H 1
0 (B(0, R

ε
)), such that lim

n→∞‖�′
ε(v

R
n )‖ = 0 in H 1

0 (B(0, R
ε
)).

Proof. The proof uses some ideas found in [5]. To the contrary, for ε > 0 small enough, 
there exists aR(ε) > 0 such that ‖�′

ε(v)‖ ≥ aR(ε) for any v ∈ Xd
ε ∩ �

Dε
ε ∩ H 1

0 (B(0, R
ε
)). By 

Proposition 3.4, we know that there exists α0 ∈ (0, EV0) such that if ε > 0 small enough and 

�ε(ιε(s)) ≥ Dε − α0, then ιε(s) ∈ X
d
2
ε ∩ H 1

0 (B(0, R
ε
)). Thus, by a deformation argument in 

H 1
0

(
B(0, R

ε
)
)
, there exist a κ0 ∈ (0, α0) and a path ι ∈ C

(
[0, T ],H 1(RN+1+ )

)
such that

ι(s)

{
= ιε(s) if ιε(s) ∈ �

Dε−α0
ε

∈ Xd
ε if ιε(s) /∈ �

Dε−α0
ε ,

and

�ε(ι(s)) < Dε − κ0, s ∈ [0, T ]. (3.20)

Let ψ ∈ C∞
0 (RN+1+ ) be such that ψ(x, y) = 1 for x ∈ Oδ and 0 < y < δ, ψ(x, y) = 0 for 

x /∈ O2δ and y ≥ 2δ, ψ(x, y) ∈ [0, 1] and |∇ψ | ≤ 2
δ
. For ι(s) ∈ Xd

ε , we define ι1(s) = ψει(s), 
ι2(s) = (1 − ψε)ι(s), where ψε = ψ(εx, εy). Then
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Qε(ι(s)) =
⎛⎜⎝ ∫
RN

χε|ι1(s)|2 +
∫
RN

χε|ι2(s)|2 − 1

⎞⎟⎠
2

+

≥
⎛⎜⎝ ∫
RN

χε|ι1(s)|2 − 1

⎞⎟⎠
2

+

+
⎛⎜⎝ ∫
RN

χε|ι2(s)|2 − 1

⎞⎟⎠
2

+
= Qε (ι1(s)) + Qε(ι2(s)) .

Thus, we have

�ε (ι(s)) = �ε (ι1(s)) + �ε (ι2(s)) + Qε(ι(s)) − Qε(ι1(s)) − Qε(ι2(s))

+
∫

RN+1+

(
ψε(1 − ψε)|∇ι(s)|2 + m2ψε(1 − ψε)|ι(s)|2

)
dxdy

+
∫
RN

Vεψε(1 − ψε)|γ (ι(s))|2dx − 1

2

∫
RN

(|x|−μ ∗ F(γ (ι(s))))F (γ (ι(s)))dx

+ 1

2

∫
RN

(|x|−μ ∗ F(γ (ι1(s))))F (γ (ι1(s)))dx (3.21)

+ 1

2

∫
RN

(|x|−μ ∗ F(γ (ι2(s))))F (γ (ι2(s)))dx + oε(1)

≥ �ε (ι1(s)) + �ε (ι2(s)) + 1

2

∫
RN

(|x|−μ ∗ F(γ (ι2(s))))F (γ (ι2(s)))dx

− 1

2

∫
RN

(|x|−μ ∗ F(γ (ι(s))))F (γ (ι(s)))dx

+ 1

2

∫
RN

(|x|−μ ∗ F(γ (ι1(s))))F (γ (ι1(s)))dx + oε(1).

By [40, Proposition 7], we know

lim
ε→0

∫
RN

(|x|−μ ∗ F(γ (ι2(s))))F (γ (ι2(s)))dx = 0

and∫
N

[|x|−μ ∗ F(γ (ι(s)))]F(γ (ι(s)))dx =
∫
N

[|x|−μ ∗ F(γ (ι1(s)))]F(γ (ι1(s)))dx + oε(1).
R R
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Then, by (3.21), we can obtain

�ε(ι(s)) ≥ �ε(ι1(s)) + oε(1). (3.22)

Let

ι11(s)(x) =
{

ι1(s)(x), for x ∈ O2δ
ε ,

0, for x /∈ O2δ
ε ,

then

�ε(ι1(s)) ≥ �ε(ι
1
1(s)). (3.23)

Since 0 < α0 < EV0 , we immediately see that ι11(s) ∈ �ε . Thus, thanks to [16, Proposition 3.4]
and (3.23), we deduce that

max
s∈T

�ε(ι(s)) ≥ EV0 + oε(1).

Combining with (3.20), we get EV0 ≤ Dε − κ0, which is a contradiction. �
Proposition 3.7. Given ε, d > 0 sufficiently small, �ε has a nontrivial critical point v ∈ Xd

ε ∩
�

Dε
ε .

Proof. Let 
{
vR
n

}
be a Palais-Smale sequence of �ε obtained above, then due to vR

n ∈ Xd
ε ∩ �

Dε
ε , {

vR
n

}
is uniformly bounded in H 1

0

(
B(0, R

ε
)
)

for n. Up to a subsequence, as n → ∞, vR
n → vR

ε

strongly in H 1
0

(
B(0, R

ε
)
)

and vR
ε is a critical point of �ε on H 1

0

(
B(0, R

ε
)
)

and satisfies

⎧⎪⎨⎪⎩
−�vR

ε + m2vR
ε = 0 in B(0,

R

ε
),

−∂vR
ε

∂y
(x,0) = (|x|−μ ∗ F(vR

ε (x,0)))f ((vR
ε (x,0)) − Ṽεv

R
ε (x,0) x ∈RN with |x| = R

ε
,

(3.24)
where

Ṽ R
ε = Vε + 4

⎛⎜⎝ ∫
RN

χε|γ (vR
ε )|2dx − 1

⎞⎟⎠
+

χε.

Since vR
ε ∈ Xd

ε ∩ �
Dε
ε ∩ H 1

0

(
B(0, R

ε
)
)
, we deduce that both {‖vR

ε ‖}R and {�ε(v
R
ε )}R are 

uniformly bounded for ε > 0 sufficiently small. Hence also {Qε(v
R
ε )}R is uniformly bounded 

for ε > 0 sufficiently small. Now a Moser iteration scheme like Proposition 2.2 yields that 
{vR

ε }R is bounded in L∞(RN+1+ ) uniformly for ε > 0 sufficiently small. Taking into account 
that {Qε(v

R
ε )}R is uniformly bounded in L∞(RN+1+ ). Similar as in Lemma 2.9, we know

|vR
ε (x, y)| ≤ Ce−m(

√|x|2+y2−2R0), x ∈ RN,y ∈ R+.
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We assume, without loss of generality, that {vR
ε }R weakly converges to some vε in H 1(RN+1+ ) as 

R → +∞ and vε ∈ Xd
ε ∩ �

Dε
ε is a nontrivial critical point of �ε, that is,⎧⎨⎩−�vε + m2vε = 0 in RN+1+ ,

−∂vε

∂y
(x,0) = (|x|−μ ∗ F(vε(x,0)))f (vε(x,0)) − Ṽεvε(x,0) on RN,

(3.25)

where

Ṽε = Vε + 4

⎛⎜⎝ ∫
RN

χε|γ (vε)|2dx − 1

⎞⎟⎠
+

χε.

Obviously, 0 /∈ Xd
ε if d > 0 small enough. So vε 
≡ 0 if d > 0 small. �

Proof of Theorem 1.2. By Proposition 3.7, there exist d > 0 and ε0 > 0, such that �ε has a 
nontrivial critical point vε ∈ Xd

ε ∩�
Dε
ε for ε ∈ (0, ε0). As in the proof of Proposition 2.2, we have 

γ (vε) ∈ Lq(RN) for all q ∈ [2, +∞] and {vε} is bounded in L∞(RN+1+ ). By Proposition 3.3, we 
have

lim
ε→0

∫
RN+1+ \((M2β)ε×[0,+∞))

(|∇vε|2 + |vε|2)dxdy = 0.

It follows that

lim
ε→0

sup
(x,y)∈RN+1+ \((M2β)ε×[0,+∞))

|vε(x, y)| = 0

and as in Proposition 3.7 we deduce an exponential decay of the trace γ (vε) away from 
RN\(M2β)ε :

0 < γ (vε)(x, y) ≤ C1e
−C2dist (x,(M2β )ε),

which yields that Qε(vε) = 0 for small ε > 0. Therefore, vε is a critical point of Pε . This com-
pletes the proof. �
4. Multi-peak solution case

In this section, by using the method of penalization argument [6], we construct a positive 
solution having multiple concentration regions that concentrate at the minimum points of the 
potential V , as ε → 0.

Fixing an arbitrary α > 0 and v ∈ H 1(RN+1+ ), we define

χε(x) =
{

0, if x ∈ Oε,

ε−α, if x ∈ RN \ Oε,
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F. Gao, V.D. Rădulescu, M. Yang et al. Journal of Differential Equations 295 (2021) 70–112
χi
ε(x) =

{
0, if x ∈ Oi

ε,

ε−α, if x ∈RN \ Oi
ε,

and

Qε(v) =
⎛⎜⎝ ∫
RN

χεγ (v)2dx − 1

⎞⎟⎠
2

+

, Qi
ε(v) =

⎛⎜⎝ ∫
RN

χi
εγ (v)2dx − 1

⎞⎟⎠
2

+

.

Let �ε, �i
ε(i = 1, 2, · · ·, k) : H 1(RN+1+ ) → R be given by

�ε(v) = Pε(v) + Qε(v), �i
ε(v) = Pε(v) + Qi

ε(v),

where Pε is given in Section 3. It is standard to check that �ε, �i
ε ∈ C1(H 1(RN+1+ )).

Now, we construct a set of approximate solutions of (1.2). Let

δ = 1

10
min

{
dist (M′,RN\O ′),min

i 
=j
dist (Oi,Oj )

}
.

For some xi ∈ (Mi )β , 1 ≤ i ≤ k, and Ui ∈ Smi
, we define

Ux1,x2,···,xk
ε (x, y) =

k∑
i=1

ϕε

(
x − xi

ε
, y
)

Ui

(
x − xi

ε
, y
)

,

where Smi
is the set of least energy solutions of (1.9) with a = mi and ϕ is given in Section 3. 

As in [40], we will find a solution near the set

Xε = {Ux1,x2,···,xk
ε | xi ∈ (Mi )β,Ui ∈ Smi

, i = 1,2, · · ·, k}

for sufficiently small ε > 0.
For each 1 ≤ i ≤ k, choosing some Ui ∈ Smi

and xi ∈Mi but fixed, define

Wi
ε,t (x, y) ≡ (ϕεUi,t )(x − xi

ε
, y), where Ui,t (x, y) = Ui(

x

t
, y).

Then, as in Lemma 3.1, we have the following property.

Lemma 4.1. There exist Ti > 0, i = 1, 2, · · ·, k, such that for ε > 0 small enough, �ε(W
i
ε,Ti

) <
−2, i = 1, 2, · · ·, k.

For any 1 ≤ i ≤ k, let ιiε(t)(x, y) = Wi
ε,t (x, y) for t > 0. Due to lim

t→0
Wi

ε,t = 0, let ιiε(0) = 0. 

Next, we define the min-max value Ci
ε:

Ci
ε = inf

i
max

s ∈[0,T ]�
i
ε(ι(si)),
ι∈�ε i i
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where �i
ε = {ι ∈ C([0, Ti], H 1(RN+1+ )) : ι(0) = 0, ι(Ti) = ιiε(Ti)}. Similar to Propositions 2 and 

3 in [5], we have for any 1 ≤ i ≤ k,

lim
ε→0

Ci
ε = Emi

.

Let

ι′ε(s) =
k∑

i=1

ιiε(si), s = (s1, s2, · · ·, sk)

and

D′
ε = max

s∈T
�ε(ι

′
ε(s)),

where T ≡ [0, T1] × · × [0, Tk]. Since supp(γε(s)) ⊂ (M′)βε for each s ∈ T , it follows that

�ε(ι
′
ε(s)) = Pε(ι

′
ε(s)) =

k∑
i=1

Pε(ι
i
ε(s)).

By the Pohozǎev identity, for any 1 ≤ i ≤ k, we have

Jmi
(Ui,t ) =

(
tN−2

2
− N − 1

2N − μ

t2N−μ

2

) ∫
RN+1+

|∇Ui |2dxdy

+ m2
(

tN

2
− N + 1

2N − μ

t2N−μ

2

) ∫
RN+1+

|Ui |2dxdy

+
(

tN

2
− N

2N − μ

t2N−μ

2

)
mi

∫
RN

|γ (Ui)|2dx.

Let

g1(t) = tN−2

2
− N − 1

2N − μ

t2N−μ

2
, g2(t) = tN

2
− N + 1

2N − μ

t2N−μ

2
, g3(t) = tN

2
− N

2N − μ

t2N−μ

2
.

By straightforward computation we deduce that g′
j (t) > 0 for t ∈ (0, 1) and g′

j (t) < 0 for t > 1, 
j = 1, 2, 3. Thus, for any 1 ≤ i ≤ k, the function Jmi

(Ui,t ) achieves a unique maximum point at 
t = 1 for t > 0, that is,

max
t>0

Jmi
(Ui,t ) = Jmi

(Ui) = Emi
,

which leads to the following conclusion.
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Proposition 4.2.
(i) limε→0 D′

ε =∑k
i=1 Emi

:= E;
(ii) lim supε→0 maxs∈T �ε(ι

′
ε(s)) ≤ Ẽ, where Ẽ = max1≤j≤k(

∑
i 
=j Emi

);
(iii) for any d > 0, there exists α0 > 0 such that for ε > 0 small,

�ε(ι
′
ε(s)) ≥ D′

ε − α0 implies that ι′ε(s) ∈ X
d/2
ε .

Proposition 4.3. Let {εj } with lim
j→∞ εj = 0, {vεj

} ⊂ X
d

εj
be such that

lim
j→∞�εj

(vεj
) ≤ E and lim

j→∞�′
εj

(vεj
) = 0.

Then for sufficiently small d > 0, there exist, up to a subsequence, {xi
j } ⊂ RN , i = 1, 2, · · ·, k, 

points xi ∈Mi , Ui ∈ Smi
such that

lim
j→∞

∣∣∣εj x
i
j − xi

∣∣∣= 0,

and

lim
j→∞

∥∥∥∥∥vεj
−

k∑
i=1

ϕεj
(· − xi

j , ·)Ui(· − xi
j , ·)

∥∥∥∥∥= 0.

Proof. Without confusion, we write ε for εj . Since Smi
is compact, there exist Zi ∈ Smi

, xi
ε ∈

(Mi )β , xi ∈ (Mi )β , i = 1, 2, · · ·, k, lim
ε→0

xi
ε = xi , such that up to a subsequence, denoted still by 

{vε}, we have for small ε > 0,∥∥∥∥∥vε −
k∑

i=1

ϕε

(
· − xi

ε

ε
, ·
)

Zi

(
· − xi

ε

ε
, ·
)∥∥∥∥∥≤ 2d. (4.1)

Set v1,ε(x, y) =
k∑

i=1
ϕε

(
x − xi

ε

ε
, y
)

vε , v2,ε(x, y) = vε(x, y) − v1,ε(x, y).

Similar to (3.8), we can get

lim
ε→0

∫
k⋃

i=1
B

(
xi
ε
ε

,
2β
ε

)
\B
(

xi
ε
ε

,
β
ε

) |γ (vε)|qdx = 0, for any 2 < q < 2∗.

Then, by the proof of Step 1 and Step 2 in Proposition 3.3, we deduce that

�ε(vε) ≥ �ε(v1,ε) + �ε(v2,ε) + O(ε) (4.2)

and for d, ε > 0 small enough,
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�ε(v2,ε) ≥ c0‖v2,ε‖2 (4.3)

for some c0 > 0.
For each i = 1, 2, · · ·, k, we define

vi
1,ε(x, y) =

{
v1,ε(x, y), x ∈ Oi

ε,

0, x /∈ Oi
ε,

and set Wi
ε(x, y) = vi

1,ε

(
x + xi

ε

ε
, y
)

. Then for fixed i ∈ {1, 2, · · ·, k}, we can assume, up to a 
subsequence that as ε → 0,

Wi
ε ⇀ Wi weakly in H 1(RN+1+ ),

and Wi is a solution of⎧⎨⎩−�Wi + m2Wi = 0 in RN+1+ ,

−∂Wi

∂y
= (|x|−μ ∗ F(γ (Wi)))f (γ (Wi)) − V (xi)γ (Wi) on RN.

Similar to (3.17), for any i = 1, 2, · · ·, k, we deduce that

lim
ε→0

�ε(v
i
1,ε) ≥ lim

ε→0
Pε(v

i
1,ε)

= lim
ε→0

(1

2

∫
RN+1+

|∇Wi
ε |2 + m2|Wi

ε |2dxdy + 1

2

∫
RN

Vε(x + xi
ε/ε)|γ (Wi

ε)|2dx

− 1

2

∫
RN

(|x|−μ ∗ F(γ (Wi
ε)))F (γ (Wi

ε))dx
)

≥1

2

∫
RN+1+

|∇Wi |2 + m2|Wi |2dxdy + 1

2

∫
RN

V (xi)|γ (Wi)|2dx

− 1

2

∫
RN

(|x|−μ ∗ F(γ (Wi)))F (γ (Wi))dx

=JV (xi )(W
i) ≥ Emi

.

(4.4)

Now, by the estimate (4.2), we get

lim
ε→0

(
�ε(v2,ε) +

k∑
i=1

�ε(v
i
1,ε)

)
≤ lim

ε→0
�ε(vε) ≤ E =

k∑
i=1

Emi
. (4.5)

On the other hand, by (4.3) and (4.4), by choosing d > 0 small enough,
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lim
ε→0

(
�ε(v2,ε) +

k∑
i=1

�ε(v
i
1,ε)

)
≥

k∑
i=1

Emi
. (4.6)

Therefore, (4.5) and (4.6) imply that by choosing d > 0 small enough, for any i = 1, 2, · · ·, k

lim
ε→0

�ε(v2,ε) → 0 and lim
ε→0

�ε(v
i
1,ε) = Emi

. (4.7)

By (4.3), ‖v2,ε‖ → 0 as ε → 0. By (4.4), we have JV (xi )(W
i) = Emi

. Recalling that Ea is 
strictly increasing for a > 0, we obtain xi ∈ Mi and Wi(·, y) = Ui(· − xi, y) for some Ui ∈ Smi

and xi ∈ RN . Moreover, by (4.4) and (4.7), we have

lim
ε→0

1

2

∫
RN+1+

|∇Wi
ε |2 + m2|Wi

ε |2dxdy + 1

2

∫
RN

Vε(x + xi
ε/ε)|γ (Wi

ε)|2dx

→ 1

2

∫
RN+1+

|∇Wi |2 + m2|Wi |2dxdy + 1

2

∫
RN

V (xi)|γ (Wi
ε)|2dx.

It follows that Wi
ε → Wi strongly in H 1(RN+1+ ). Letting xi

ε = xi + xi
ε/ε, then εxi

ε → xi ∈ Mi

and vi
1,ε → ϕε(· − xi

ε, y)Ui(· − xi
ε, y) in H 1(RN+1+ ) as ε → 0, which implies that

v1,ε =
k∑

i=1

vi
1,ε =

k∑
i=1

ϕε(x − xi
ε, y)Ui(x − xi

ε, y) + oε(1) in H 1(RN+1+ ).

This completes the proof. �
Immediately, as a consequence of Proposition 4.3, we have the following property.

Proposition 4.4. For sufficiently small d > 0, there exist constants � > 0 and ε0 > 0, such that 

|�′
ε(v)| ≥ � for v ∈ �

D′
ε

ε ∩ (X
d

ε \ X
d
2
ε ) and ε ∈ (0, ε0).

We fix d > 0 such that Proposition 4.4 holds. Choose R0 > 0 large enough such that O ′ ⊂
(RN × {0}) ∩ B(0, R0) and ι′ε(s) ∈ H 1

0 (B(0, R
ε
)) for any s ∈T , R > R0.

Proposition 4.5. Given ε > 0 sufficiently small, then there exists a sequence {vR
n } ⊂ X

d
2
ε ∩�

D′
ε

ε ∩
H 1

0 (B(0, R
ε
)), such that lim

n→∞‖�′
ε(u

R
n )‖ = 0 in H 1

0 (B(0, R
ε
)).

Proof. Arguing by contradiction, for ε > 0 small enough, there exists aR(ε) > 0 such that 

‖�′
ε(v)‖ ≥ aR(ε) for any v ∈ X

d

ε ∩ �
D′

ε
ε ∩ H 1

0 (B(0, R
ε
)). By Proposition 4.2, we know that 

there exists α0 ∈ (0, E − Ẽ) such that if ε > 0 small enough and �ε(ι
′
ε(s)) ≥ D′

ε − α0, then 

ι′ε(s) ∈ X
d
2
ε ∩ H 1

0 (B(0, R
ε
)). Thus, by a deformation argument in H 1

0

(
B(0, R

ε
)
)
, there exist a 

κ0 ∈ (0, α0) and a path ι ∈ C
(
T ,H 1(RN+1+ )

)
such that
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ι(s)

{
= ι′ε(s) if ι′ε(s) ∈ �

D′
ε−α0

ε

∈ X
d

ε if ι′ε(s) /∈ �
D′

ε−α0
ε ,

and

�ε(ι(s)) < D′
ε − κ0, s ∈ T . (4.8)

Let ψ ∈ C∞
0 (RN+1+ ) be such that ψ(x, y) = 1 for x ∈ (O ′)δ and 0 < y < δ, ψ(x, y) = 0 for 

x /∈ (O ′)2δ and y ≥ 2δ, ψ(x, y) ∈ [0, 1] and |∇ψ | ≤ 2
δ
. For ι(s) ∈ X

d

ε , we define ι1(s) = ψει(s), 
ι2(s) = (1 − ψε)ι(s), where ψε = ψ(εx, εy). Then, by (3.22), we can obtain

�ε(ι(s)) ≥ �ε(ι1(s)) + oε(1). (4.9)

For i = 1, 2, · · ·, k, let

ιi1(s)(x) =
{

ι1(s)(x), for x ∈ (Oi)2δ
ε ,

0, for x /∈ (Oi)2δ
ε ,

then

�ε(ι1(s)) ≥
k∑

i=1

�ε(ι
i
1(s)) =

k∑
i=1

�i
ε(ι

i
1(s)). (4.10)

Since 0 < α0 < E − Ẽ, by Proposition 4.2, for all i ∈ {1, 2, · · ·, k}, ιi1(s) ∈ �i
ε . Thus, thanks to 

[16, Proposition 3.4] and (4.10), we deduce that

max
s∈T

�ε(ι(s)) ≥ E + oε(1).

Combining with (4.8), we get E ≤ D′
ε − κ0, which is a contradiction. �

Proof of Theorem 1.3. Similar to Proposition 3.7, we have that there exist d > 0 and ε0 > 0, 

such that �ε has a nontrivial critical point vε ∈ X
d

ε ∩ �
D′

ε
ε for ε ∈ (0, ε0). By the proof of Theo-

rem 1.2, vε is a critical point of Pε and

0 < γ (vε)(x, y) ≤ C1e
−C2dist (x,(M′)2β

ε ).

This completes the proof. �
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