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Abstract: In this article, we are first concerned with the existence of multiple normalized solutions to the fol-
lowing fractional p-Laplace problem:

(=8)5v + VEOVPy = AvlP~?v + flv)  inRY,

j [v|P dx = a?,

RN
where a, £ > 0, p > 2, A € R is an unknown parameter that appears as a Lagrange multiplier, V : RY — [0, 00)
is a continuous function, and f is a continuous function with LP-subcritical growth. We prove that there exists
the multiplicity of solutions by using the Lusternik—-Schnirelmann category. Next, we show that the number of
normalized solutions is at least the number of global minimum points of V, as ¢ is small enough via Ekeland’s
variational principle.

Keywords: Lusternik—Schnirelmann category, normalized solutions, fractional p-Laplace, nonlinear
Schrodinger equation, variational methods

MSC 2020: 35A15, 35]10, 35B09, 35B33

Communicated by: Christopher D. Sogge

1 Introduction

This paper will give some results on the existence of multiple normalized solutions to fractional p-Laplace
problems as follows:
(=8)5v + VEQVP2 = AP~ 2y + flv)  inRY,

I [vIP dx = a?, (1.1

]RN
where a, ¢ > 0,p > 2and A € Ris an unknown parameter that comes from a Lagrange multiplier. The fractional
p-Laplace operator (-A)y, is defined along a smooth function (up to a normalizing constant) v : RY — Rby

v(x) - v)IPw(x) - v))

|x _y|N+ps

(-2),v(x) = 21im J dy, xeRV,
e—0

RN\B,(x)
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where B (x) is the ball with center x and radius ¢. If V(x) = 0 and p = 2, then problem (1.1) becomes
(-A)v =2v +f(v) InRY,
J Iv|* dx = %, .2)
]RN

which has been intensively considered until now. Namely Luo and Zhang [24] studied problem (1.2) with
fv) = uv|T% + [vP~2v, whereN>2, ueR,2<q<p<2.

Under different assumptions on q < p, a > 0 and u € R, they showed the existence of normalized solutions to
problem (1.2). In the L2-subcritical case, they used the monotonicity of the least energy to get the ground state
solution for u > 0. For the L?-critical or L2-supercritical case, they used some certain decomposition on Nehari
manifolds of problem (1.2) and some homotopy-stable family with extended boundary of a closed set. After that,
Zhen and Zhang [38] extended the results of Luo and Zhang [24] for the critical case

. 2N
_ q-2 2:-2 . _
fv) = pv|T*v + |v|*~*v, where2 < q < s No2s
We also refer to Zhang and Han [36], who studied problem (1.2) when
fv) = P2y + [v[% %y, where2 < p < 2.
We set
S(a) = {v e HS(RY) : I [v|? dx = az}
]RN
and
V(a) = {v e HS(RY) : P(v) = 0},
where N -2)
PV) = (=8 = ypslvlh — VI3, Vps = %

To study their problem, they used the decomposition of the corresponding Pohozaev manifold into three disjoint
submanifolds together with the control of the seminorm of v = ¢(x)Us(x), where

&
@+
and ¢ € C;°(B2(0)) is a radial cutoff function such that ¢(x) € [0,1] and ¢ = 1 on B(0).
Li and Zou [23] studied problem (1.2) when

Ue(x)

) = plvlP2u+ v 2v, u>0,2<p<2;.

In the L?-subcritical case, they obtained multiple normalized solutions for equation (1.2) by using trunca-
tion techniques, the concentration-compactness principle and genus theory. In the L2-supercritical case, they
obtained normalized solutions by using a fiber map and the concentration-compactness principle. Yu, Tang and
Zhang [35] found the solutions of the following fractional Schrédinger equation:

(-A)v=2Av+|vP%v inQ,
v=_0 on o0Q,

J|v|Z dx = a?,
2

where s € (0,1) and @ c RY, N > 3, is an exterior domain with smooth boundary aQ # ¢ such that RV \
is bounded. Using the minimax method, barycentric functions and Brouwer degree theory, they showed that
there exists a positive normalized solution for any a > Owhen2 < p < 2 + 4NS and R \ Qs contained in a small
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ball. If Q is the complement of the unit ball in RY, using genus theory, they gave the existence of many radial
normalized solutions for any a > 0.
When p = 2 and ¢ = 1, problem (1.1) becomes

(-A)V+V(X)v = Av + f(v) inRY,
J|v|2 dx = a, 1.3

RN

Peng and Xia [27] studied problem (1.3) when

] i .
f) = WP, pe(2+3,28).

The potential function V is positive and vanishing at infinity with possible singularities. They showed that there
exists a normalized solution of (1.3) by using a new min-max argument and the splitting lemma for the nonlocal
case. Alves and Ji [4] considered the existence of solution for (1.1) for

4
— q-2 =
fo) =", qe(z2+5) N>2.

They supposed that the potential V verifies one of the following conditions:

(v) V:RY = [0, +00) is a bounded continuous function and it is 1-periodic with the variables x1, ..., xy.
(v2) 'V is asymptotically periodic. That means that there exists a 1-periodic function Vp : R¥ — R with vari-
ables X1, . .., xy such that V(x) < Vp(x) for all x € RN and |V(x) — Vp(x)| — 0 as |x] — co.

(W3) Ve L®(RY)and
Voo = IMinf V(x) > Vo = inf V(x) > 0.
X€ERN

|X|]—+00

(v4) V(x) = uW(x), where u > 0 and W is a nonnegative continuous function satisfying the condition as fol-
lows: There exists My > 0 such that

meas(x € RV : W(x) > M) < +0c0

and the set Q = int(W~1(0)) is not an empty set.
They studied the existence of solution to problem (1.1) as £ = 1 or ¢ > 0 is small enough. To obtain the results,
they proved a compactness result for minimizing sequences {v,} restricted on S(a). Zuo, Liu and Vetro [39] have
studied the existence of normalized solution of the following fractional Schrdédinger equation:

(=A)V + pv + AV(x)v - [vP2v =0 inR", (1.4)

where

2s<N<ds, pe (2’ min{%,z * %S})

and the potential V € L (RY) satisfies the condition that there exists a positive constant Dy > 0 such that the
measure of the set Q = {x € RV : V(x) < Dy} is finite. Using the compactness result for minimizing sequences,
they showed that the existence of normalized solution to (1.4) when A is large enough. Note that, when
p =2,5 — 17, our problem (1.2) reduces to

— AV +V(EX)V = Av +f(v) inRY,
J’ W[ dx = a2, (1.5)

RN

where a, ¢ > 0and A € R is an unknown parameter that comes from a Lagrange multiplier. Many authors stud-
ied problem (1.5) and got many nice results. Using genus theory and deformation arguments, the existence of
infinitely many normalized solutions has been studied by many authors such as Alves, Chao and Miyagaki [5, 6],
Bartsch and Soave [9], Ikoma and Tanaka [17], Cingolani and Jeanjean [11], Jeanjean and Lu [20, 21], Jeanjean
and Le [18, 19], and Soave [28, 29]. In 2022, Alves [3] studied the existence of multiple normalized solutions for
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problem (1.5), where V : RN — [0, +co) is a continuous function verifying condition (¥) and the nonlinear reac-
tion has L?-subcritical growth. Alves proved that the number of normalized solutions is bounded from below
by the number of global minimum points of V for small enough ¢. Alves and Thin [7] studied the existence and
concentration of normalized solutions to equation (1.5). They first used the Lusternik—-Schnirelmann category
to get multiple normalized solutions to that problem. Wang, Zeng and Zhou [32] studied the properties of least
energy solutions to fractional Laplacian eigenvalue problems on RY as follows:

(=8)°V + VOOV = v + am(x) | Fv,

J v?dx=1, veHRY), (1.6)

]RN
where N >2,s € (0,1), u € R, a > 0, and V, m are in L°(RY). They showed that there exists b} > 0 such that
problem (1.6) has a least energy solution u,(x) for each a € (0, b;) and u, blows up, as a is increasing to b}, at

some points xo € RY where V attains the minimum and m achieves the maximum. When s — 1~, our problem
(1.1) becomes the following p-Laplacian problem:

— Apv + V(EX)VP2 = AvP %y + flv) inRY,
J [v|P dx = a?, a7

RN

where -Apv = div(|Vv[P~2Vv) is the p-Laplace operator. Recently, there was no work on the non-autonomous
problem (1.7). If ¢ = 1 in problem (1.7), Wang and Sun [30] have studied the existence of the normalized solution
to the following problem:

— Apv + VX)IVIP 2 = A2y + v[T%  inRY,
J lv]"dx = c, (1.8)

RN

wherer=porr=2,1<p<N,p<q<p* =A’,’—fvp,andVGC(IRN)satisﬁes

inf V(x)=0 and lim V(x) = +co.

XeRN [x]—c0
When r = p and c is small enough, they showed that there exists a ground state solution with positive energy.
For p = 2, they proved that problem (1.8) has at least two solutions with positive energy, one of which is a ground
state and the other one is a high-energy solution. Up to now, there are a few works on normalized solutions of
the p-Laplace equation. Wang, Li, Zhou and Li [31] first studied the existence of the L?-norm constraint:

~Apv + VP2V = v + V2V inRY,

wherel<p<N,ueRands e (% p,p"). Using the constrained variational methods, they showed that the

above problem has a normalized solution. Zhang and Zhang [37] studied the existence of normalized solutions
to p-Laplacian equations with the form

= 0pv = AP2v + uv|T? + g(v) inRY,

J [vIP dx = a?,

RN

whereN>2,a>0,1<p<q<p:=p+ ’]’V—Z, and g € C(R, R) is old and LP-supercritical. When q < p and ¢ > 0,
they got a positive radial ground state solution for suitable u by using the Schwarz rearrangement and Ekeland
variational principle. Applying the fountain theorem, they obtained infinitely many radial solutions for any
N > 2 and obtained the existence of infinitely many non-radial sign-changing solutions for N =4 or N > 6. In
those cases, u belongs to a suitable range and depends on a. We also refer to [10, 15, 22, 34] for the qualitative
analysis of normalized solutions in different local or nonlocal settings.
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So far, there is no result for the existence of multiple normalized solutions to Schrédinger equations involv-
ing the fractional p-Laplace, especially to the nonautonomous problem (1.1). Motivated by this fact, the main
goal of the present paper is to give the first normalized result for Schrédinger equations involving the fractional
p-Laplace.

In the following, we give some assumptions on the nonlinear function f:

(f1)  fis a continuous and odd function, and there are q € (p,p + %) and a € (0, +o0) such that

1 VO _

t—0 |t|q_1

(f2)  There exist constants c¢1,c; > 0andp € (p,p + pTZs) such that
If()] < ¢y +colt|P™! forallt e R.

(f3) Thereisq; € (p,p + pTzs) so that f(t)/ t1isan increasing function of ¢ on (0, +00).
From conditions (f1) and (f3), we have F(t) > 0 forall t € R.
The function

ft) = 1t]9 2t + |t|"2tIn(1 + |t]) forallt e R,

for somer,q € (p,p + %) and r > g, satisfies the above conditions. Here, (f2) and (f3) hold with p € (r,p + pTZS)
and q1 = q.

For the potential function V, we suppose that one of the following conditions holds:
(V) WehaveV € C(RY, R) n L (RN), V(0) = 0 and

0= inf V(x) <liminf V(x) = V.

XeRN |X]—+00

(¥) The function V belongs to C(RY, R*) n L=(RY), and

Voo = lllrln inf V(x) > 0.

X|—00

Furthermore, V-1(0) = {b1, ..., b;}, by = 0and b; # b for all i # j.

A solution v to problem (1.1) with j]RN [v|P dx = aP is a critical point of the energy function

=yl

Je(v) = ;—)( ” Vo) -vO)IP dx dy + I V(EX)|V|P dx) - I F(wv)dx, ve WSP(RY),
RV

RY RY

restricted to the sphere
S(a) = {ve WS (RY) : |v|, = a},

where F(t) = jot flr)dr and |-|, is the norm in LP(RY) for p € [2, +co]. Here the fractional Sobolev space
WSP(RY) is defined for any p > 1 and s € (0, 1) by

WSP(RN) = {v e LP(RY) : [vlgp = ( ” %—l‘;(fp)slp dxdy)é < +oo},

which is a Banach space with norm
vl = (vl + V127
It is well known that J; € C'(WSP(RV), R) and
' [ V) = v 1P (x) - v() (u(x) - u(y)) p-2 ~
UE(V)’ uy = ” = y[vps dxdy + J V(EX)|vIP~*vu dx Jf(v)u dx

RN RY RN

for all u e WSP(RY). We refer to the monograph [25] for the theory of fractional Sobolev spaces and related
applications.
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In the first result, we establish the existence of multiple normalized solutions for (1.1) via the Lusternik—
Schnirelmann category. We denote the sets M and Ms as follows:
M={xeRY:V(x) =0}
and
Ms = {x e RV : dist(x, M) < 6}.

Let Y be a closed subset of a topological space X. Then the Lusternik—Schnirelmann category catx(Y) is the least
number of closed and contractible sets in X which cover Y.If X = Y, we denote caty(X) by cat(X). Our first main
result is stated as follows.

Theorem 1.1. Suppose that f satisfies conditions (f1)-(f3) and that 'V verifies condition (V). Then, for each § > 0,
there exist & > 0 and V.. > 0 such that (1.1) has at least caty, (M) couples
(v}, 4j) € WSP(RV) x R

of weak solutions for 0 < & < &y and V] < V. with

J [vjlPdx = aP, A;<0, Je(vj)<O.
]RN

Moreover, if ve denotes one of those solutions and (¢ is the global maximum of |v¢|, then
lim v =0.
i (&Ce)

Theorem 1.2. Assume that f verifies conditions (f1)—(f3) and 'V satisfies condition (¥'). Then there exists & > 0
such that (1.1) admits [ couples (vj, A;) € WSP(RY) x R of weak solutions for 0 < & < & with IIRNI\/]-W dx = ab,
Aj<O0andje(vj) <0,j=1,...,1L

When s — 17 in Theorems 1.1 and 1.2, we get automatically results for the p-Laplace problem (1.7); we leave
this for the reader. Theorems 1.1 and 1.2 extend the results in [3, 7] to the nonlocal case. Here, our solution space
WSP(RY) is a non-Hilbert space, and thus we need to develop some new steps in the proofs.

The content of the paper is written as follows. In Section 2, we study the autonomous problem. In Section 3,
we study the non-autonomous case. There, we study the Palais—Smale condition on the sphere S(a) for the
energy functional. In Sections 4 and 5, we show that there exists the multiplicity of solutions for problem (1.1).

2 The autonomous case

In this section, we study the existence of solution to the following problem:
(-D)5v + uvlP~2v = AP 2v + flv) inRY,
J [v|P dx = a?, (2.1)
RN

where N >1,a>0, u >0, A € Ris a Lagrange multiplier, and f is a continuous function verifying conditions
(fD-(£3).
A solution v to problem (2.1) is a critical point of the C!-energy functional

Ju(v) = %(nﬂ; ng(xi;—f;?’p)slp dxdy + u lelp dx) - I F(v)dx, ve WSP[RY),

RY RY
constrained to the sphere S(a) given by

S(a) = {ve W RY) : |v|, = a}.

Our main result in this section is the following theorem.
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Theorem 2.1. Suppose that f satisfies conditions (f1)—(f3). Then there exists V. > 0 so that problem (2.1) has
a solution (v,A) as 0 < u < V., where v is nonnegative and A < 0.

To prove the above result, we need the following lemmas.
Lemma 2.2. The functional ], is coercive and bounded from below in S(a).

Proof. By conditions (f1) and (f2), there is C1, C2 > 0 such that
[F()] < C1|t]T + C|t|P forallt e RR.

Since C°(RY) is dense in WSP(RN), for any v € WP (RN), we get the fractional Gagliardo-Nirenberg inequality
[26, Lemma 2.1] as follows:

7(1-a)
Iz < Csne[VIshIvip

for some positive constant Cs yr > 1, where 7 > 0,0 <a < 1and

1 1 1-
=)

Then N N1 1
p ¥ N1l
€[p,ps] or a= S (p r)'

T =
N —aps

When ta=p,thena= § andwegett=p + ﬁ, which is called LP-critical exponent for the fractional Gagliardo-
Nirenberg inequality. Hence,

1 —vw)IP
) 2 5 ” W) = VO 5 ay ¢, J|v|q dx - Cy Jw dx

_yIN
RN =yt RV RV
1 vx) - v(y)lP (1a) V) —v)IP\ 5
8 E .” |X_))|N+P$ dxdy - CS’N:qclaq ¢ ( JJ |X_y|N+ps ) 2.2)
RN RV
pa
(1-a) v(x) - v)IP\ %
-ComsCaa ™ [| T5)
2N

Asq,pe(p,p+ pTzs)’ we have 0 < %‘ < 1for t € {p, q}, which implies the coercivity and bounded from below
of J, on S(a). O

From Lemma 2.2, there exists the real number 3, 4 = infyes(q) J4(v). Next, we show that J, o < 01s negative for
a suitable range of p.

Lemma 2.3. There exists V. > 0 such that J,, <0for0<u<WV,.

Proof. From condition (f1), we have

lim i(t) =a>0.
t—0 t4
Then there exists k > 0 so that Ft
qté ) > % forall t € [0, x]. 2.3)

Choose a nonnegative function v € S(a) N L*(RY) and set
H(vg, t)(x) = e% vo(e'x) forallx e RN andallt € R.

It is easy to get
| o, 000 dx = @2
B
and
J’ F(H(vg, t)(x)) dx = e N J F(e%vo(x)) dx.

RY RN
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Moreover, for ¢t < 0 and |¢| large enough, we also have
Nt N
0<ervy(x) <k forallx e R",

which, combined with (2.3), yields

J F(H(vo, H)(x)) dx > Zief("’?m j Vo7 dx.
RN q RN
Note that [H(vo, t)(Xx) (vo, )P [vo(e'x) (ety)|P
H(vg, t)(x) — H(vg, t Nt Vvo(e"x) — vo(e'y
” = Y[V dxdy =e ” =y [V dx dy
IRZN
[Vo(x) — vo)I?
_ ptS
=e ” —|x—y|N+PS dx dy,
and so ot
ePts rr [vo(x) — vo(y)IP pab  ae
7,(H(vo, s)) < — || B0 00 gyay + E2 4 qx.
o, ) = £ || e vy - S Rijo(xn x

Sinceq € (p,p + %), increasing |¢| if necessary, we derive that

(g-p)Nt

epts

ae
T[Vo]g,p -

j [vo(x)|?1dx = A¢ < 0.

RN

14
2q
Then

p
9, (H(vy, 1)) < A; + %.

Now, we fix V.. > 0 such that
v, aP

At+ < 0.

From that inequality, if ¢ < V., then
Ju(H(vo, 1)) <0 forallu € [0,V.,),
and we have J, ; < 0. Thus Lemma 2.3 is proved. O

Lemma 2.4. We fix u € [0,V.) andlet 0 < a1 < ay. Then we have

P
ay
_pjy,az < j‘u’al < 0.
@,

Proof. First, we see that
VO] = vl < [v(x) —=v(y)| forallx,y € RN and v € WSP(RY).

Hence we get
- p — P
” [vEOl = vl dxdy < ” [v(x) —v(y)l

= yIes oy Y

forallv e WSP(RY).Let ¢ > 1 be such that a; = ay, and let (v,;) ¢ S(ay) be a nonnegative minimizing sequence
with respect to the J,,q,, which exists due to J,(v) = J,(|v]) for all v € WSP(RN). Namely

Ju(n) = Tpa, asn — +oo.

We set u, = €v,. Then u, € S(az). From condition (£3), the function F(t)/t% is increasing on t € (0, +co). Then
we get
F(tl) > t"F(l) forallt,I>0andt > 1.

Thus, we deduce

Jpa, < Ju(un) = €23y (vn) + €° J F(vy) dx - J F(evyp) dx < ePTy(vn) + (€P — 1) I F(vy) dx.
]RN

RY RY
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Claim 1. We show that there exist a positive constant C > 0 and ny € N such that fRN F(vp)dx > Cforalln > ny.

Assume that, by contradiction, there exists a subsequence of (v,), still denoted by (v,), such that

J F(vp)dx — 0 asn — +co.

RN

From the inequality
0> 3Ty +0n(1)=Ju(vy) 2~ J F(vp)dx, neNN,
RN
we get J, q, = 0. This is a contradiction with Lemma 2.3, and Claim 1 is proved. By Claim 1 and ¢ - £ < 0, for

n large enough, we deduce
Juwa, < Epju(vn) + (P —eM)C.

Taking n — +oo0, it follows that
Jpa, < €Tpa, + (P —€D)C < 8Ty q,,
that is,
ay -
_pjﬂ:az < J‘u’al .
a,
We finish the proof of Lemma 2.4. O

Our following result is a compactness theorem on S(a) for minimizing sequences.

Theorem 2.5. Let u € [0,V.) and let (vy) ¢ S(a) be a minimizing sequence for J,. Then, up to a subsequence, one

of the following assertions holds:

() (vp)is strongly convergent in WP (RY).

(i) There exists (yn) C RY with |y,| — +oo such that the sequence uy(x) = vu(x + yp) is strongly convergent to
a function v € S(a) with 3,(V) = Jy 4.

Proof. Since J, is coercive on S(a), the sequence (v,) is bounded, and so v, — v in W5? (RN) for some subse-
quence. If v # 0 and |v|, = b # a, we must have b € (0, a). By the Brézis-Lieb lemma (see [33]),
Valh = [vn = Vb + [VI) + 0n(1).
By [8, Lemma 2.5], we have
[al5p = [Vn = VIS, + VIS, + 0n(D).

Since F is a differentiable function with subcritical growth, we get

I F(vy) dx = I F(vy - v) dx + I F(v) dx + 0n(1).
RN RN RN

Setting u, = vp — v, dn = |unlp and supposing that |un|, — d, we get a? = b? + dP and d, € (0, a) for n large
enough. Hence,
Jua +0n(1) =34 (vp) = Ju(un) + Iu(v) + 0,(1) = Tpa, + Tup + 0n(1),

and Lemma 2.4 gives that
p

Jpa +o0n(1) = %Jy,a + Ty + 0n(1).
Taking n — +00, we obtain
Jpa 2 Z—ZJM +Jup- (2.4)
Since b € (0, a), using Lemma 2.4 and (2.4), we have

a? b? ar bpp
(_

Jua > =Jpa+ — =
wa > opJuat opdua
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which is a contradiction. Then |v|, = a, and we have u € S(a). Because |vp|p = [V|p = @, v, — vin LP(RY) and
LP(RN) is reflexive, we deduce
vp — v in LP(RY). 2.5)

By conditions (f1), (f2) and by using the dominated convergence theorem, we get
j F(vyp) dx — J F(v) dx. (2.6)
RY RY

These limits together with 3, ¢ = lim,_ ;0 Ju(vy) provide
/J‘u’a 2 ju(v).
Since v € S(a), we can see that J,(v) = J,q. Then
nHIPoo Jun) =Ju(v) = Tpa.

This, combined with (2.5) and (2.6), gives
[vall? — fviP

in WSP(RM). It implies that v, — vin WSP(RM).
Now, let us assume that v = 0, that is, v, — 0 in W*P(RY). By arguments as in Claim 1, there exists C > 0
such that

J F(vp)dx = C forn € Nlarge. 2.7
IRN
We claim that there are R, 8 > 0 and y, € R" such that
J [vplP dx > B foralln e RV, (2.8)
BR()’H)

Otherwise, by [8, Lemma 2.1], we must have v, — 0 in LYRN) for all t € (p, ps)- This implies F(vp) — 0 in
LY(RN), which is a contradiction with (2.7). Since v = 0, inequality (2.8) together with the fractional Sobolev
embedding implies that (y,) is unbounded. We set V,,(x) = vy(x + yp). Clearly, (V) c S(a) and it is also a mini-
mizing sequence for J, .. Moreover, there exists v € WS? (RM) \ {0} such that

Uy — 7 in WSP(RN), and  V,(x) » P(x) ae.inRY.

By arguments as in the above proofs, we get that v, — ¥ in WSP(RN). O

2.1 Proof of Theorem 2.1

Using Lemma 2.3, we can get a bounded minimizing sequence (v,) ¢ S(a) such that J,(vy) — Jy,q. From Theo-
rem 2.5, there is v € S(a) with J,(v) = 3, 4. Therefore, there exists A, € R via by the Lagrange multiplier such
that

T, (v) = 2,%'(v) in (WSP(RY)), (2.9)

where ¥ : WSP(RV) — Ris given by
1
YW= J|v|l’ dx, ve WSP(RY).
]RN

From (2.9), we deduce
(=8)5v + ulvP~2v = A[vlP~?v + flv) inRY.

We have J,(v) = Jy,q < 0, and thus A, < 0.
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We can assume that v is a nonnegative function. Indeed, it comes from the inequality J,(|v]) < J,(v). More-
over, from v € S(a), we also have that |v| € S(a), and we deduce

Thus, J4(|v]) = Jyu,q, and so we can replace v by |v|. Moreover, denoting by v* the Schwarz symmetrization of v
(see [1, Section 9.2] for the first inequality), we know that

[v(x) -v)IP (v 00 - v )l
[l WO = VO 4y ay 2]111 WV I=V O 4 gy,

|X_y|N+ps |X_y|N+ps

J [vIP dx = j [v¥|P dx,

RN RY
]RL F(v) dx =]RL F(v*)dx.

Then v* € S(a) and J,(v*) = J,,q. Hence, we can replace v by v*. Note that v € C*(RM) for some a € (0, 1) by
[16, Corollary 5.5]. The proof of Theorem 2.1 is now finished.
From Theorem 2.1, we get the following corollary.

Corollary 2.6. Fixa >0andlet0 < py < iz < V.. Thenwe have 3y, q < Jy,.a < 0.

Proof. Let uy, q € S(a) satisfy Jy, (Uy,,a) = Jy,,a- Then

Jura < Iy (Ugy,a) < Ty, (Upya) = Ty a- O

3 The non-autonomous problem

In this section, we will consider the energy function J; : WSP(RY) — R given by

Je(v) = Il)( ” h)lixi;—l‘;l(fp)slp dx dy + J V(EX)|v|P dx) - I F(v) dx,
RV RY RY

restricted to the sphere S(a). We suppose that | V|, < V., where V, was given in Section 2.
We also define Jo, Joo : WSP(RY) — R by

_ 1o v —vy)lP B
Jo(v) = p]R[,[ Ty dx dy ﬂ{!; F(v) dx

and

Joo(V) = %(Ji %—;&)S'p dxdy + VOO]JN ul? dx) -]RL F(v) dx,

respectively. Finally, we define

Jrg)(¥) = Il—)( [ B0 axay + v [ 1P ax) - | ) ax
RV

_ y|N+ps
Ix =yl o o
for some y € RY. We define I'z 4, To q and I'ey by
I'sq = inf v), Tgq= inf u), T = inf V),
¢a veS(a)]E( ) 0,a veS(a)]O( ) 00,a veS(a)]OO( )

respectively, and set
r = inf V).
V(y),a veS(a)]V(Y)( )
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Since 0 < V, < +00, Corollary 2.6 gives that
T'oq < Too,a <0. 3.1
With that property, we can fix
0<p1= %(roo,a —To,a)-
Our first lemma in this section establishes some relationship between I'¢ 4, T'o,q and Lo .

Lemma 3.1. We have

limsupTgq < Toq
E—0*

and there is &y > 0 such that Tg g < Too q for all € € (0, ).

Proof. Letvg e S(a) with Jo(vg) = I'gq. Then

1 [vo(xX) = vo)IP pav)
Téa < Ji(vo) = ”<R” e Xy +]RjN V(ENIvol? d) ]JV F(vo) dx.

Taking ¢ — 0%, we obtain

limsup Tgq < fhfgl Je(vo) = Jo(vo) = T'q 0. (32
E—0* —0*
Combining (3.1) and (3.2), we have I'¢ 4 < I's ¢ for & small enough. O

In the following two results, we suppose that & € (0, &), where & is given in Lemma 3.1.

Lemma 3.2. Fix ¢ € (0, &) and let (vy) c S(a) be such that J¢(vp) — ¢ with ¢ <Toq+p1<0. If vy — v in
WSP(RN), thenv £ 0.

Proof. Suppose that v = 0. Then
1
Toa+ 1+ 0n(D) > Jevn) = Joolv) + | @0 - Vel ax.
]RN

By condition (V), for any given { > 0, there exists R > 0 such that
V(x) 2V — ¢ forall x| > R.

Hence,

1
Toa+ p1-+ 0n(D) > Je() = JeolWn) + j (V(fx)—voo)wnpdx—g j val? dx.
Br/e(0) By (0)

Note that (v,) is bounded in WSP(RY), and v, — 0in L’(BR/g(O)) foralll € [1, p3). This implies
Lo,a + p1+0n(1) 2 Joo(Vn) = (D 2 Too,a = (D
for a suitable constant D > 0. Since { > 0 is arbitrary, we get
Toa+p12Tooa
which is a contradiction with the definition of p;. Hence, v # 0. O

Lemma 3.3. Assume that (vy) c S(a) is a (PS). sequence for J¢ constrained to S(a) with ¢ < Tgq + p1 < 0 and
Vn — vg in WSP(RN), namely

Je(vp) = ¢ asn — +oo, and IUgl’s(a)(v,,)ll -0 asn — +oo.
Assume that uy = vy — vg # 0in WSP(RN). Then there is B. > 0, independent of & € (0, &), such that
R p
lim inf|vy - velp > B.,

where & is given in Lemma 3.1.
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Proof. We denote ¥ : WSP(RY) — R by
ww = [ e ax
p v

and see that S(a) = ¥~ ({a” /p}). Then, from [33, Proposition 5.12], we can get a sequence (A,) ¢ R such that
WeWn) = ¥ (vl wsoyyy — 0 asn — +oo. 3.3)

Since (vp) is a bounded sequence in WP (RY), we have that the same holds also for (4,) and, up to a subse-
quence, we can suppose that A, — A¢ as n — +oo. Hence,

Jpwe) = Ae¥' (ve) =0 in (WSP(RY))'. (3.4)

To prove (3.4), we need show that

J Va(X) = vaW)IP~2(Va(X) = v (@(X) — () dxdy

) b=y Vs
a S (35)
. J [ve(xX) — veW)IP~*(ve(x) — ve(y) (9 () — 9(y)) dx dy
R2N Ix _y|N+ps
for all ¢ € WSP(RN). Using Hélder’s inequality, we see
J ||vn(X) — VWP (Wa(X) = va@)(@(X) - () | dxd
Ix _y|N+ps y
]RZN
Va() = va )PP T o) - e ’ (3.6)
S( J |x — y|N+ps dxdy) ( J |x — y|N+ps dxdy)

-1
< IvalP~ ol < +oo.

Hence,
[V (X) = VaW)IP~2(Vn(X) = v M)(@(X) — (¥))

|X _y|N+ps

e LYR?¥) foralln,

and there exists a constant K, > 0 satisfying

Ilvn(X) —VaWIP2(Va(X) = vaW)(@(X) — 9(¥)) “K

|X_y|N+ps

for all (x, y) € R*N outside a set with measure zero. For any ¢ > 0, there exists § = Ki such that, for all measur-
able sets E c RN such that |E| < &, we have

“ [V (X) = va@)IP*(Vn(X) = vn()(@ () ~

|X _y|N+ps

o0)) | dxdy < K.|E| < .
E

Hence,
{ [V (X) = VaWIP~2(vr (%) = va ) (9(X) — w(y))}

|X_y|N+ps

is equi-integrable on R?". Clearly,

[V (X) = va@)IP2 (v (X) = va()(@() - (1)) _, Ive) - ve@)IPA(ve(x) — ved)(p(X) - ()

|X _y|N+ps |X_y|N+ps

almost everywhere on R?V. Since ¢ ¢ WSP(RYN), there exists R > 0 such that

90 - p)IP )
= y|Neps dxdy < (P,
REV\ B (0)
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where Bz (0) is a ball in R*M with center 0 and radius R. By arguments as in (3.6), since we only take the integral
on R?Y \ By (0) and since {u,} is a bounded sequence in WP (RN), there exists a suitable constant X, > 0 such

that
[Va(X) = V)P~ (v (X) = v (@(X) — () dxdy

Xyl
RN\ B (0)
Va0 = va@)IP o 0\ 900 I L 1\
S( J dedy) X( J. dedy) <3<*(.

R2N\ B (0) R*M\Br(0)

Therefore, all conditions of Vitali’s theorem are satisfied and we get (3.5). Similarly, we also have
lim [ fonpdr= [ fvopds 6
RY RY
forallp € WSP(RN), Combining (3.3), (3.5) and (3.7), we get (3.4). By arguments as in [2, Lemma 2.8 iv], we have
],:;(Vn) :]:r(vf) +]:z(un) +0,(1)

and
Wi(vn) = Wi(ve) + Pi(un) + 0n(1).

From those equations and (3.4), we obtain
Jen) = Ae¥' (vn) = Jp(vg) = AeW' (ve) + J(tn) = Ae¥' (un) + 0n(1) = Je(un) = A’ (tn) + 0n(1).

We get
IUé(un) - Ae¥ (up) lwsp@vyy — 0 asn — +oo. (3.8)

From condition (f3), we have g1 F(t) < f(t)t for all t > 0. Then we get

o RTI 1, An I Ag p
0>p1+Toq= lrllrill(l;lof]g(\)n) = 1r11rL1+1£10f(]g(v,,) - EJE(V”)V” + ?a ) > ?a s
implying that
hmsupAE < M < 0.
&—0 a?

This implies that there exists A, < 0, independent of &, so that

Ag <A, <0 forall ¢ e (0, &). 3.9
From (3.8), we obtain
[Un(x) = un(y)IP
” W dx dy + J V(EX)|unlP dx — A¢ J |un|? dx = I flup)undx + on(1). (3.10)
RN RN RN
Combining (3.9) and (3.10), we get
[un(x) = un(y)IP
|| e Xy | Vo ax-a. [ axs [ fuwdrro,w. G
RY RY RY

By conditions (f1) and (f2), for some 7 > 0, there exists D(7) > 0 so that
If0)] < 7|tlP~t + D(D)[t|Pt forallt € R. (3.12)

From (3.11) and (3.12), we conclude

Up(x) —u p
” %dxd)wa) I|u,,|!’ dx < Calunl’ + 0n(1),
]RN
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where Cy is a constant not depending on ¢ € (0, &). By the Sobolev embedding
WP (RY) — LP(RY),

we obtain

p
Il

eryy < Daltnly + 0n(1) < Dallunll +0n(1), (313)

Wws.p (]RN)
where D3 and D4 > 0 are suitable constants independent of ¢. Because u, + 0in W*5P (RM), up to a subsequence
of (up) still denoted by itself, we can suppose that

Lim inf||upllwse gy > 0.
n—.+oo

This yields

- 1\5%
1}113+1glof||un||ws,p(w)z(l)—4) . (3.14)

1

From (3.13) and (3.14), we have
lim influ,|} > Ds, (3.15)
n—+oo

where Ds > 0 is a suitable constant not depending on ¢. Using the fractional Gagliardo—Nirenberg inequality,

we obtain

pa (1-a)
|un|fa < Cs,N,p[un]s,pmn'; .

Then we deduce that
lim inf|uy|? < Co v (lim infuy|,) """ KPS, (3.16)
n—+oo n—+oo

where K > 0is a constant which is independent on ¢ € (0, &) and satisfies ||u|| < K for all n € IN. By combining
(3.15) and (3.16), there exists a constant . > 0, independent on ¢ € (0, &), such that

lplgllgoﬂv” - Velp 2 ..
This concludes the proof. O

From here onwards, we will fix the number p satisfying

. (1 B«
0<p< mm{z, %}(roo,a -To,a) < p1.

Lemma 3.4. Foreach¢ € (0, &), the functional J¢ satisfies the (PS). condition constrained on S(a) for ¢ < To 4 + p.

Proof. Let (vy) be a (PS). sequence for J restricted to S(a) with v, — vg in WSP(RN) and ¢ < Toq + p. Let
W WSP(RY) — R be defined by

1
Py) = — J|v|p dx.
p
IRN
Then S(a) = ¥~'({a” /p}). Then, by [33, Proposition 5.12], there exists (1,) ¢ R such that
"]é(\)n) - Aan/(Vn)"(Ws,p(]RN))l — 0 asn — +oo.
From Lemma 3.3, if up = v, — ug + 0in WSP(RY), then there exists . > 0 independent on £ so that
PR 14
lrllrill(r)loﬂuﬂp > f..

Setdy = |unlp and assume that |un|, — d > 0and |vg|, = b. We getaP = b? + dP. From Lemma 3.2, wehave b > 0
and Jg(un) = Loo,a, + 0n(1). We get dj, € (0, a) for nlarge enough. Hence, we deduce

¢+ 0n(1) = Je(vn) = Je(un) + Je(ve) + 0n(1) 2 Teo,a, + Top + 0n(1).
By arguments as in Lemma 2.4, we have

dh bP
p+Toq= EF(’O’“ + Efo,a.
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p>_rooa—ra >_* Fooa—r()a
al ( ’ ’ ) al ( ’ ’ )’

which is a contradiction since

B

p< E(Foo,a —To,q).
From u, — 0in WSP(RY), that is, v, — vg in WSP(RY), which implies that |v¢|, = a and
(~8)5ve + V(EX)VelP2ve = AglvelP?ve + flve) inRY,

where A¢ is the limit of some subsequence of (4,). O

4 Multiplicity result of (1.1)

Fix § > 0 and let w be a nonnegative solution of the problem
(=8)5v = AVP?v + flv) inRY,
IRN

with Jo(w) = I'g 4. We denote by 7 : [0, c0) — [0, co) a smooth nonincreasing cut-off function which is defined
as follows:

1 ifo<ts<

N O

n() =
0 ift>6.

For any y € M, define
wey00 = nx-yhw(272),
Wey(x)

Weylp’
and define ®¢ : M — S(a) by ®@¢(y) = P¢,,. We see that ®¢(y) has compact support for any y € M.

Ty =a

Lemma 4.1. We have
%ir%]g(cpf()’)) =Toq uniformlyiny e M.

Proof. Conversely, we assume that there exist &y > 0, (y;) ¢ M and &, — 0 such that
Ve, (Pe,Wn)) —To,al 2 & foralln e N.

By the dominated convergence theorem, we get (see [8, Lemmas 2.2 and 2.5])

tim [ 195, ax= lim [ In@aw@P? dx= [P dx=a,

n—-+0o
RY RY RV
. o nEn2)w(z)y
ngrpm J F(®g,(yn)) dx = ngqlm J F(am) dx = J F(w) dx,
RN RN RN
P -0 p
lim J [Pz, (Yn)(X) = g, Y)W dx dy
n—+00 |x — y|N+ps
R2N
. ab z)w(z) - zZNHw(z")P
_ nErPoo j . [N(¢nz) |(z)_z”)|1(\fir;73) (z) dzdz = [w]é',p,
RV |lpfn;)’n |P
aP
i Pax= i P, —
dim [ vEnieg ool de= lim | g GG @l dz <o

RN RY
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Consequently,
Jim Je, (@2, (/n)) = Jo.a(w) = Toa,

which is a contradiction. O
For any § > 0, we choose t = t(8) > 0 satisfying Ms ¢ B.(0). We also define y : RV — RY by

x if|x| <,

X) =
A= s

Ix|
Next, we define B¢ : S(a) — RY by

[ XEOIVIP dx

P , VveS@a).

Pe(v) =
By arguments as in [7, Lemma 4.2], we have the following result.
Lemma 4.2. We have
?H(l)ﬁg(q’g(y)) =y uniformlyiny e M.

Proposition 4.3. Assume that {, — 0 and (vy) c S(a) with Jg,(vy) — Toq. Then there is (yn) C RY such that
Un(x) = vp(X + Y) has a convergent subsequence in WSP(RN). Furthermore, up to a subsequence, we have

Yn = &nyn — y for somey € M,

Proof. We show that there are tp, 7 > 0 and y, € RY such that

[vplP dx > 7T 4.1)
Bey(n)

for all n large enough. Conversely, we get v, — 0in L{(R") for all t € (p, p¥) via [8, Lemma 2.1]. Then
j F(vy)dx — 0.
RY
Thus, we deduce
Jm Je, (V) 20,

which is a contradiction to the fact that
HLHPOO]E"(Vn) =Toq <0.

Thus, if we set u,(x) = vu(X + ¥n), then there exists u € WSP(RN) \ {0} such that, up to a subsequence, u, — u
in WSP(RM). Since
(up) < S(a) and  Jg, (vn) = Jo(va) = Jo(un) = Toq,

we have that Jo(up) — To,q. From Theorem 2.5, we have u, — uin WSP(RN), and u € S(a).
Claim 2. (yp) is bounded.

Indeed, if there exists a subsequence of {y,}, still denoted by {y,}, such that |y,| — +oo, then we have

. o1 un(x) - u p
o= Hm Je (un) = lﬁrillgof(;;[ ” % dxdy + J V(Enx + yn)lunl? dx] - J F(up) dx),
R2N

RN RN
that is,

1 lu(x) —u)IP
1—‘O,LI 2 1_9[ [JV W dXdy + J Voolulp dX] - J F(u) dx > Foo,a,
R

RN RN
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which contradicts (3.1). From Claim 2, we can assume that y,, — y in RY. By arguments as above, we get

Toq > 1[ ” w0 = w41 gy j V)l dx] - J F(u) dx = Ty).q.

p |x - y[N+ps
R2N RN RN

By Corollary 2.6, if y ¢ M, then I'y(y) o > T'o,q Since V(y) > 0. This is a contradiction. Therefore, V(y) = 0, that is,
yeM O

We consider a positive function § : [0, +00) — [0, +0c0) satisfying h(£) — 0as & — 0, and let

3@ ={veS@:Jev) <Toa+ b(z)}. 42)

By Lemma 4.1, the function

H(&) = sup|Je(Pe(y)) - Toal
yeM

satisfies h(&) — 0 as & — 0. Therefore, ¢ (y) € S(a) for all y € M. By arguments as in [7, Lemma 4.5], we have
the following result.

Lemma4.4. Let § > 0 and
Ms = {x e RY : dist(x, M) < 6}.

Then
lim sup inf [Bg(v) -z|=0.
zeMs

§— veS(a)

4.1 Proof of Theorem 1.1

We first show the existence of multiple normalized solutions to (1.1). Fix & € (0, &). Then, by Lemmas 4.1, 4.2
and 4.4, and arguments as in [12], we see that S - ®¢ is homotopic to the inclusion map id : M — Ms, and so

cat(S(a)) > catyg, (M).

By arguments as in Lemma 2.3, we also have that J¢ is bounded from below on S(a). From Lemma 3.4, the func-
tional J¢ verifies the (PS). condition for ¢ € (Tg,q, To,q + h(£)). Then we can apply the Lusternik—Schnirelmann
category theorem for critical points (see [14, 33]) to get that J¢ has at last caty, (M) critical points on S(a).

Let vg be a solution of (1.1) with

Je(ve) < Toa +b(8),

where b is defined in (4.2). By arguments as in Proposition 4.3, for each &, — 0, there exists a sequence y, € RV
such that y, = &9, — y with y € M, and u,(x) = vg, (X + y,) converges strongly to u € WSP(RV) with u # 0.
We know that u, is a solution of

(—A)Is;un +V(énx +)’n)|un|p_2 Un = Afn|un|p_2un +flup) In ]RN’

with

n—oo ab

<0.
Because u, — u in WSP(RY), we have

lim up(x) =0 uniformlyin IN.
|X|—+00

Thus, given 7 > 0, there are 93; > 0 and np € IN such that

T

1
14
m) for |X| 29%1 ananno.

1
lun0)] < 3
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In the following, we prove that there exists § > 0 such that |up|s, > & for all n large enough. Indeed,
from (4.1), we can choose 2R > vy such that

0<-< J [unlP dx < |Bos, (0)].]un |5 (4.3)

Box, (0)

NN

for all n large enough. Here, we choose

T 1
S§=(—-+-—)".
(ZIBml 0)l )
We denote by z, the global maximum of u,. Then |z,| < R, for all n € N large enough. Now, let us consider
{n € RN such that |v,({;)] = |vleo forall n € N. Then {, = z, + y, and

i V(Enda) = 1 Viguzn + ) = V) =0

5 Proof of Theorem 1.2

We fix pg > 0 and r¢ > 0 such that the following assertions hold:
() Itholds
Bp,(bi) N Bpy(bj) =0 fori+jandi,je{1,2,...,1}.

(i) Itholds

l
LJ Bpo (b1) € B, (0).
i=1

(iii) It holds

We define the function
Qe : WSP(RM)\ {0} -» RN

by
O(ex)|v|P dx
Qe (v) = LRN—,
abP
where © : RV — RY is defined by
X if |x] < ro,
0(x) =

X .
ro— if x| > ro.

x|

With the above notations, we have the following result.

Lemma 5.1. Suppose that f satisfies conditions (f1)-(f3) and that (¥) holds. Then there exists p, € (0, p) such
that, if v € S(a) and J¢(v) < To,q + p2, then Q¢ (v) € Ky, 2 for all & € (0, &), where & is given in Lemma 3.1 and p
is defined in Lemma 3.4.

Proof. Assume that there exist p, — 0, &, — 0 and {v,} c S(a) such that
Je(un) <Toq+pn and Qg (vp) ¢ K%o. 5.1
Then we get
Lo,a < Jo(vn) S]En(Vn) <To,a+pn,

which implies that Jo(vp) — To,q as n — oco. By Theorem 2.5, up to a subsequence, still denoted by itself, one of
the following assertions holds:
(i) (vy) is strongly convergent in WS?(RY).
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(i) There exists (y,) ¢ RN with |y,| — +oco such that the sequence u,(x) = v,(x + y,) converges strongly to
a function u € S(a) with Jo(u) = T 4.

When case (i) occurs, using Lebesgue’s dominated convergence theorem, we get

Jg ©CEnx)lvalP dx

Qg (vp) =
N BT

—>0€fKPTo asn — oo,

which is a contradiction.
If case (ii) occurs, then, up to a subsequence still denoted by {&,y,}, we assume that &y, — y € RN or
|Enyn| = coasn — oo.If &y, — y € RY, then, by Lebesgue’s dominated convergence theorem, we have

o) = 3 [[ PRS0 axay + [ vi@tap ax) - [ Fowx
RN

|x — y|N+ps
RY RY
1 Uup(x)—u p
- 1_9( ” % dx dy + J V(Enx + Euyn)lual? dx) - J Fun) dx (5.2)
RN RN RN
= Jvg) )
as n — oo. Combining (5.1) and (5.2), we deduce that
Loa 2 Jvy)(V) 2 Tvy).a- (5.3)

We will show that V(y) = 0, which means that yo = b; for some i € {1,..., [}. We assume that V(y) > 0. Then
To,a < T'v(y),q, which contradicts with (5.3). Hence, we arrive that
[ @CEnx)lvalP dx
JgrlvnlP dx
 Jw OGnX + Eayn)lval? dx
B [ IValP dx
Jgr ©O)IulP dx
=0()
=b; € K%o

Qe, (un) =

asn — oo, for some i € {1,..., I}, which is a contradiction.
If |€nyn| — oo, then, by arguments as above, we get I'g 4 > I'oo,q, Which is impossible due to (3.1). Thus, we
conclude the proof of Lemma 5.1. O

Next, we define some useful sets as follows:
v = {v € S(a) : 19¢(v) - bil < po},
Ayl = {v e S(a) : 1Q¢(u) - bl = po},
{f = inf Je(v),
vey;
= inf Je(v).
veay;
Lemma 5.2. Assume that f satisfies conditions (f1)-(f3) and that (¥') holds. Then
(;<Toa+p2 and {f< Z;’ forall € (0, &).

Proof. Assume v € WSP(RN) such that Jo(v) = [pq. Foreachi e {1,..., 1}, we define the function f;if RV S R
by
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Then we see that \72 € S(a)forall £ >0and 1 < i < I By a simple calculation, we obtain

1/ ¢f IR0 = DL)IP

Ny _ = SU1p _ 1
]g(vf) = ’ TELET dxdy + J V(Ex)|vf| dx) I F(vf) dx
RN RN RN
1 ([ PO - V)P .
_ p(lg o +]RJN V(Ex + b)V| dx) ,JN F(v) dx.

Taking ¢ — 0% in the previous equation, we get

Jim Je(99) = Jveo (V) = Jo(v) = Toa. (5.4)

By the definition of Q¢, we have

Q) = LRN@(sx_)l\?glp ax [ X + bylvlP dx
[ IPhp dx [gelvIP dx

— 0(b;) = b;

as ¢ — 0%, since b; € By, (0) foralli=1,..., L. It follows that \‘)é € yé for ¢ small enough. From (5.4), we deduce
that

Toq + p2 >]5(\72) for all ¢ € (0, &).

Here we can decrease & if necessary. Then, by the definition of yé, we arrive at
Yoo+ p2> (5.5)

forallie{1,...,1}.
Next, we prove the second statement. If v € ayé, then

2

veS@, 19:v)-bil=po> %, Qe (V) ¢ Ko .
From Lemma 5.1, we have J¢(v) > T q + p2 forallv e 6)/2 and ¢ € (0, &). Using (5.5), we obtain that

(4= inf Je(v) > Toq+p2 > (k.
veay,

This concludes the proof. O
Proof of Theorem 1.2. For each i € {1,..., 1}, by Ekeland’s variational principle [13], there exists a sequence
{vi} c S(a) satisfying J¢(vi) — (‘i and
Je(v) —]g(vé) > —%Mv - vf1|| forallv e yi,v + vﬁl.
By Lemma 5.2, we have { é < é Thus,
Vi € yp\ 9y}
for all n large enough. For § > 0 small enough, we consider the map a : (-8, §) — S(a) given by
i
a(t) = aM’

[V + tvlp
belonging to C'((-6, §), S(a)) and satisfying

a(t) € yi, \ ayic forall t € (-8, 8), a(0) = v, a'(0) = v,
where

veT, S = {w e WHP(RY) ; J P2l w dx = o}.

RN
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We have 1
Je(a(®) - Je(vi) = —lla(®) - vil forallt e (=6, 6),

which implies that

Je(a(®) ~Jg(a(0)) _ Je(a(®) - Je(Vh) - _1" a(t) - vk
t ~n t

1ya(t) - a(0)
: R |

Since Jr € CY(WSP(RN), R), taking t — 0* in (5.6), we get

w1, ) 2 = vl

Replacing v by —v, we deduce

bl

Sl

sup {|(J;(vp), W[} <

Ivi<1

which leads to
Jewy) = ¢ and  Jils@(vp) >0 asn— oo.

Therefore, vﬁ, isa (PS)Q- of J¢. By Lemma 5.2, we have
(é <Toq+p2<Toq+p<D0.
Then we can apply Lemma 3.4 to show that there exists vi ¢ WSP(RV) n S(a) satisfying
vieyhJev) = ¢t and  Jelg (v = 0.

Furthermore,

Qe(v') € Bpy(bi), Qe(V/) € Bpy(b)), Bpo(bi) NBpy(bj) =0  foralli#jefl,...

DE GRUYTER

(5.6)

IS

Then J¢ has at least [ nontrivial critical points on S(a) for all ¢ € (0, §). Because jg(vi) =( é < 0, and using

condition (f3), we get

AlaP = %( ” % dx dy + J V(EX) VP dx) - j Fvhvtdx
RV RV RV

p\ ) Ty

RN RN RN
~ TV + j Fvl) dx - j Fiyvi dx

RN RN
< 0.

Then Al < O0foralli=1,..., L We conclude the proof of Theorem 1.2.

_1( ([ M- viewr i N e N
(JJ dxdy+JV(€x)|v Ide> ]RJNF(v)dX+JF(v)dx Jf(" Wi dx

O
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