
Forum Math. 2024; aop

Research Article

Thin Van Nguyen and Vicențiu D. Rădulescu*

Multiple normalized solutions for fractional
elliptic problems
https://doi.org/10.1515/forum-2023-0366
Received October 17, 2023

Abstract: In this article, we are first concerned with the existence of multiple normalized solutions to the fol-
lowing fractional p-Laplace problem:

{{{
{{{
{

(−Δ)spv + V(ξx)|v|p−2v = λ|v|p−2v + f(v) in ℝN ,

∫
ℝN

|v|p dx = ap ,

where a, ξ > 0, p ≥ 2, λ ∈ ℝ is an unknown parameter that appears as a Lagrange multiplier, V : ℝN → [0,∞)
is a continuous function, and f is a continuous function with Lp-subcritical growth. We prove that there exists
the multiplicity of solutions by using the Lusternik–Schnirelmann category. Next, we show that the number of
normalized solutions is at least the number of global minimum points of V, as ξ is small enough via Ekeland’s
variational principle.
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1 Introduction

This paper will give some results on the existence of multiple normalized solutions to fractional p-Laplace
problems as follows:

{{{
{{{
{

(−Δ)spv + V(ξx)|v|p−2v = λ|v|p−2v + f(v) in ℝN ,

∫
ℝN

|v|p dx = ap , (1.1)

where a, ξ > 0, p ≥ 2 and λ ∈ ℝ is an unknown parameter that comes from a Lagrangemultiplier. The fractional
p-Laplace operator (−Δ)sp is defined along a smooth function (up to a normalizing constant) v : ℝN → ℝ by

(−Δ)spv(x) = 2 limε→0 ∫
ℝN\Bε(x)

|v(x) − v(y)|p−2(v(x) − v(y))
|x − y|N+ps

dy, x ∈ ℝN ,
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where Bε(x) is the ball with center x and radius ε. If V(x) ≡ 0 and p = 2, then problem (1.1) becomes

{{{
{{{
{

(−Δ)sv = λv + f(v) in ℝN ,

∫
ℝN

|v|2 dx = a2 , (1.2)

which has been intensively considered until now. Namely Luo and Zhang [24] studied problem (1.2) with

f(v) = μ|v|q−2v + |v|p−2v, where N ≥ 2, μ ∈ ℝ, 2 < q < p < 2∗s .

Under different assumptions on q < p, a > 0 and μ ∈ ℝ, they showed the existence of normalized solutions to
problem (1.2). In the L2-subcritical case, they used the monotonicity of the least energy to get the ground state
solution for μ > 0. For the L2-critical or L2-supercritical case, they used some certain decomposition on Nehari
manifolds of problem (1.2) and some homotopy-stable family with extended boundary of a closed set. After that,
Zhen and Zhang [38] extended the results of Luo and Zhang [24] for the critical case

f(v) = μ|v|q−2v + |v|2∗s −2v, where 2 < q < s∗s =
2N

N − 2s .

We also refer to Zhang and Han [36], who studied problem (1.2) when

f(v) = |v|p−2v + |v|2∗s −2v, where 2 < p < 2∗s .

We set
S(a) = {v ∈ Hs(ℝN) : ∫

ℝN

|v|2 dx = a2}

and
V(a) = {v ∈ Hs(ℝN) : P(v) = 0},

where
P(v) := |(−Δ)s/2v|22 − γp,s|v|

p
p − |v|

2∗s
2∗s , γp,s =

N(p − 2)
2ps .

To study their problem, they used the decomposition of the corresponding Pohozaevmanifold into three disjoint
submanifolds together with the control of the seminorm of vξ = φ(x)Uξ(x), where

Uξ(x) =
ξ N−2s

2

(ξ2 + |x|2) N−2s2

and φ ∈ C∞0 (B2(0)) is a radial cutoff function such that φ(x) ∈ [0, 1] and φ ≡ 1 on B1(0).
Li and Zou [23] studied problem (1.2) when

f(v) = μ|v|p−2u + |v|2∗s −2v, μ > 0, 2 < p < 2∗s .

In the L2-subcritical case, they obtained multiple normalized solutions for equation (1.2) by using trunca-
tion techniques, the concentration-compactness principle and genus theory. In the L2-supercritical case, they
obtained normalized solutions by using a fiber map and the concentration-compactness principle. Yu, Tang and
Zhang [35] found the solutions of the following fractional Schrödinger equation:

{{{{{{
{{{{{{
{

(−Δ)sv = λv + |v|p−2v in Ω,
v = 0 on ∂Ω,

∫
Ω

|v|2 dx = a2 ,

where s ∈ (0, 1) and Ω ⊂ ℝN , N ≥ 3, is an exterior domain with smooth boundary ∂Ω ̸= 0 such that ℝN \ Ω
is bounded. Using the minimax method, barycentric functions and Brouwer degree theory, they showed that
there exists a positive normalized solution for any a > 0 when 2 < p < 2 + 4s

N andℝN \ Ω is contained in a small
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ball. If Ω is the complement of the unit ball in ℝN , using genus theory, they gave the existence of many radial
normalized solutions for any a > 0.

When p = 2 and ξ = 1, problem (1.1) becomes

{{{
{{{
{

(−Δ)sv + V(x)v = λv + f(v) in ℝN ,

∫
ℝN

|v|2 dx = a2 , (1.3)

Peng and Xia [27] studied problem (1.3) when

f(v) = |v|p−2v, p ∈ (2 + 4sN , 2∗s ).

The potential functionV is positive and vanishing at infinity with possible singularities. They showed that there
exists a normalized solution of (1.3) by using a newmin-max argument and the splitting lemma for the nonlocal
case. Alves and Ji [4] considered the existence of solution for (1.1) for

f(v) = |v|q−2v, q ∈ (2, 2 + 4N ), N ≥ 2.

They supposed that the potential V verifies one of the following conditions:
(v1) V : ℝN → [0, +∞) is a bounded continuous function and it is 1-periodic with the variables x1 , . . . , xN .
(v2) V is asymptotically periodic. That means that there exists a 1-periodic function VP : ℝN → ℝ with vari-

ables x1 , . . . , xN such that V(x) ≤ VP(x) for all x ∈ ℝN and |V(x) − VP(x)| → 0 as |x| → ∞.
(v3) V ∈ L∞(ℝN) and

V∞ = lim inf
|x|→+∞

V(x) > V0 = inf
x∈ℝN

V(x) > 0.

(v4) V(x) = μW(x), where μ > 0 andW is a nonnegative continuous function satisfying the condition as fol-
lows: There exists M0 > 0 such that

meas(x ∈ ℝN : W(x) > M0) < +∞

and the set Ω = int(W−1(0)) is not an empty set.
They studied the existence of solution to problem (1.1) as ξ = 1 or ξ > 0 is small enough. To obtain the results,
they proved a compactness result forminimizing sequences {vn} restricted on S(a). Zuo, Liu and Vetro [39] have
studied the existence of normalized solution of the following fractional Schrödinger equation:

(−Δ)sv + μv + λV(x)v − |v|p−2v = 0 in ℝN , (1.4)

where
2s < N < 4s, p ∈ (2, min{ N

N − 2s , 2 +
4s
N })

and the potential V ∈ L∞(ℝN) satisfies the condition that there exists a positive constant D0 > 0 such that the
measure of the set Ω = {x ∈ ℝN : V(x) < D0} is finite. Using the compactness result for minimizing sequences,
they showed that the existence of normalized solution to (1.4) when λ is large enough. Note that, when
p = 2, s → 1−, our problem (1.2) reduces to

{{{
{{{
{

− Δv + V(ξx)v = λv + f(v) in ℝN ,

∫
ℝN

|v|2 dx = a2 , (1.5)

where a, ξ > 0 and λ ∈ ℝ is an unknown parameter that comes from a Lagrange multiplier. Many authors stud-
ied problem (1.5) and got many nice results. Using genus theory and deformation arguments, the existence of
infinitely many normalized solutions has been studied bymany authors such as Alves, Chao andMiyagaki [5, 6],
Bartsch and Soave [9], Ikoma and Tanaka [17], Cingolani and Jeanjean [11], Jeanjean and Lu [20, 21], Jeanjean
and Le [18, 19], and Soave [28, 29]. In 2022, Alves [3] studied the existence of multiple normalized solutions for
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problem (1.5), whereV : ℝN → [0, +∞) is a continuous function verifying condition (V ) and the nonlinear reac-
tion has L2-subcritical growth. Alves proved that the number of normalized solutions is bounded from below
by the number of global minimum points of V for small enough ξ. Alves and Thin [7] studied the existence and
concentration of normalized solutions to equation (1.5). They first used the Lusternik–Schnirelmann category
to get multiple normalized solutions to that problem. Wang, Zeng and Zhou [32] studied the properties of least
energy solutions to fractional Laplacian eigenvalue problems on ℝN as follows:

{{{
{{{
{

(−Δ)sv + V(x)v = μv + am(x)|v|
4s
N v,

∫
ℝN

|v|2 dx = 1, v ∈ Hs(ℝN), (1.6)

where N ≥ 2, s ∈ (0, 1), μ ∈ ℝ, a > 0, and V, m are in L∞(ℝN). They showed that there exists b∗s > 0 such that
problem (1.6) has a least energy solution ua(x) for each a ∈ (0, b∗s ) and ua blows up, as a is increasing to b∗s , at
some points x0 ∈ ℝN where V attains the minimum and m achieves the maximum. When s → 1−, our problem
(1.1) becomes the following p-Laplacian problem:

{{{
{{{
{

− Δpv + V(ξx)|v|p−2v = λ|v|p−2v + f(v) in ℝN ,

∫
ℝN

|v|p dx = ap , (1.7)

where −Δpv = div(|∇v|p−2∇v) is the p-Laplace operator. Recently, there was no work on the non-autonomous
problem (1.7). If ξ = 1 in problem (1.7), Wang and Sun [30] have studied the existence of the normalized solution
to the following problem:

{{{
{{{
{

− Δpv + V(x)|v|p−2v = λ|v|r−2v + |v|q−2v in ℝN ,

∫
ℝN

|v|r dx = c, (1.8)

where r = p or r = 2, 1 < p < N , p < q < p∗ = pN
N−p , and V ∈ C(ℝN) satisfies

inf
x∈ℝN

V(x) = 0 and lim
|x|→∞

V(x) = +∞.

When r = p and c is small enough, they showed that there exists a ground state solution with positive energy.
For p = 2, they proved that problem (1.8) has at least two solutionswith positive energy, one of which is a ground
state and the other one is a high-energy solution. Up to now, there are a few works on normalized solutions of
the p-Laplace equation. Wang, Li, Zhou and Li [31] first studied the existence of the L2-norm constraint:

−Δpv + |v|p−2v = μv + |v|s−2v in ℝN ,

where 1 < p < N , μ ∈ ℝ and s ∈ (N+2N p, p∗). Using the constrained variational methods, they showed that the
above problem has a normalized solution. Zhang and Zhang [37] studied the existence of normalized solutions
to p-Laplacian equations with the form

{{{
{{{
{

− Δpv = λ|v|p−2v + μ|v|q−2v + g(v) in ℝN ,

∫
ℝN

|v|p dx = ap ,

where N ≥ 2, a > 0, 1 < p < q ≤ p := p + p2
N , and g ∈ C(ℝ,ℝ) is old and L

p-supercritical. When q < p and μ > 0,
they got a positive radial ground state solution for suitable μ by using the Schwarz rearrangement and Ekeland
variational principle. Applying the fountain theorem, they obtained infinitely many radial solutions for any
N ≥ 2 and obtained the existence of infinitely many non-radial sign-changing solutions for N = 4 or N ≥ 6. In
those cases, μ belongs to a suitable range and depends on a. We also refer to [10, 15, 22, 34] for the qualitative
analysis of normalized solutions in different local or nonlocal settings.
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So far, there is no result for the existence of multiple normalized solutions to Schrödinger equations involv-
ing the fractional p-Laplace, especially to the nonautonomous problem (1.1). Motivated by this fact, the main
goal of the present paper is to give the first normalized result for Schrödinger equations involving the fractional
p-Laplace.

In the following, we give some assumptions on the nonlinear function f :
(f1) f is a continuous and odd function, and there are q ∈ (p, p + p2s

N ) and α ∈ (0, +∞) such that

lim
t→0

|f(t)|
|t|q−1
= α.

(f2) There exist constants c1 , c2 > 0 and p ∈ (p, p + p2s
N ) such that

|f(t)| ≤ c1 + c2|t|p−1 for all t ∈ ℝ.

(f3) There is q1 ∈ (p, p + p2s
N ) so that f(t)/t

q1−1 is an increasing function of t on (0, +∞).
From conditions (f1) and (f3), we have F(t) ≥ 0 for all t ∈ ℝ.

The function
f(t) = |t|q−2t + |t|r−2t ln(1 + |t|) for all t ∈ ℝ,

for some r, q ∈ (p, p + 4
N ) and r > q, satisfies the above conditions. Here, (f2) and (f3) hold with p ∈ (r, p + p2s

N )
and q1 = q.

For the potential function V, we suppose that one of the following conditions holds:
(V) We have V ∈ C(ℝN ,ℝ) ∩ L∞(ℝN), V(0) = 0 and

0 = inf
x∈ℝN

V(x) < lim inf
|x|→+∞

V(x) = V∞ .

(V ) The function V belongs to C(ℝN ,ℝ+) ∩ L∞(ℝN), and

V∞ = lim inf
|x|→∞

V(x) > 0.

Furthermore, V−1(0) = {b1 , . . . , bl}, b1 = 0 and bi ̸= bj for all i ̸= j.
A solution v to problem (1.1) with ∫ℝN |v|

p dx = ap is a critical point of the energy function

Jξ(v) =
1
p(∬
ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V(ξx)|v|p dx) − ∫
ℝN

F(v) dx, v ∈ W s,p(ℝN),

restricted to the sphere
S(a) = {v ∈ W s,p(ℝN) : |v|p = a},

where F(t) = ∫t0 f(τ) dτ and | ⋅ |p is the norm in Lp(ℝN) for p ∈ [2, +∞]. Here the fractional Sobolev space
W s,p(ℝN) is defined for any p > 1 and s ∈ (0, 1) by

W s,p(ℝN) = {v ∈ Lp(ℝN) : [v]s,p := (∬
ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
dx dy)

1
p
< +∞},

which is a Banach space with norm

‖v‖ = (|v|pp + [v]
p
s,p)

1
p .

It is well known that Jξ ∈ C1(W s,p(ℝN),ℝ) and

⟨J󸀠ξ(v), u⟩ = ∬
ℝN

|v(x) − v(y)|p−2(v(x) − v(y))(u(x) − u(y))
|x − y|N+ps

dx dy + ∫
ℝN

V(ξx)|v|p−2vu dx − ∫
ℝN

f(v)u dx

for all u ∈ W s,p(ℝN). We refer to the monograph [25] for the theory of fractional Sobolev spaces and related
applications.
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In the first result, we establish the existence of multiple normalized solutions for (1.1) via the Lusternik–
Schnirelmann category. We denote the setsM andMδ as follows:

M = {x ∈ ℝN : V(x) = 0}

and
Mδ = {x ∈ ℝN : dist(x,M) ≤ δ}.

Let Y be a closed subset of a topological space X. Then the Lusternik–Schnirelmann category catX(Y) is the least
number of closed and contractible sets in X which cover Y . If X = Y , we denote catX(X) by cat(X). Our first main
result is stated as follows.

Theorem 1.1. Suppose that f satisfies conditions (f1)–(f3) and that V verifies condition (V). Then, for each δ > 0,
there exist ξ0 > 0 and V∗ > 0 such that (1.1) has at least catMδ (M) couples

(vj , λj) ∈ W s,p(ℝN) × ℝ

of weak solutions for 0 < ξ < ξ0 and |V|∞ < V∗ with

∫
ℝN

|vj|p dx = ap , λj < 0, Jξ(vj) < 0.

Moreover, if vξ denotes one of those solutions and ζξ is the global maximum of |vξ |, then

lim
ξ→0

V(ξζξ) = 0.

Theorem 1.2. Assume that f verifies conditions (f1)–(f3) and V satisfies condition (V ). Then there exists ξ0 > 0
such that (1.1) admits l couples (vj , λj) ∈ W s,p(ℝN) × ℝ of weak solutions for 0 < ξ < ξ0 with ∫ℝN |vj|

p dx = ap ,
λj < 0 and Jξ(vj) < 0, j = 1, . . . , l.

When s → 1− in Theorems 1.1 and 1.2, we get automatically results for the p-Laplace problem (1.7); we leave
this for the reader. Theorems 1.1 and 1.2 extend the results in [3, 7] to the nonlocal case. Here, our solution space
W s,p(ℝN) is a non-Hilbert space, and thus we need to develop some new steps in the proofs.

The content of the paper is written as follows. In Section 2, we study the autonomous problem. In Section 3,
we study the non-autonomous case. There, we study the Palais–Smale condition on the sphere S(a) for the
energy functional. In Sections 4 and 5, we show that there exists the multiplicity of solutions for problem (1.1).

2 The autonomous case

In this section, we study the existence of solution to the following problem:

{{{
{{{
{

(−Δ)spv + μ|v|p−2v = λ|v|p−2v + f(v) in ℝN ,

∫
ℝN

|v|p dx = ap , (2.1)

where N ≥ 1, a > 0, μ ≥ 0, λ ∈ ℝ is a Lagrange multiplier, and f is a continuous function verifying conditions
(f1)–(f3).

A solution v to problem (2.1) is a critical point of the C1-energy functional

Iμ(v) =
1
p(∬
ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
dx dy + μ ∫

ℝN

|v|p dx) − ∫
ℝN

F(v) dx, v ∈ W s,p(ℝN),

constrained to the sphere S(a) given by

S(a) = {v ∈ W s,p(ℝN) : |v|p = a}.

Our main result in this section is the following theorem.
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Theorem 2.1. Suppose that f satisfies conditions (f1)–(f3). Then there exists V∗ > 0 so that problem (2.1) has
a solution (v, λ) as 0 ≤ μ < V∗, where v is nonnegative and λ < 0.

To prove the above result, we need the following lemmas.

Lemma 2.2. The functional Iμ is coercive and bounded from below in S(a).

Proof. By conditions (f1) and (f2), there is C1 , C2 > 0 such that

|F(t)| ≤ C1|t|q + C2|t|p for all t ∈ ℝ.

Since C∞0 (ℝN) is dense inW s,p(ℝN), for any v ∈ W s,p(ℝN), we get the fractional Gagliardo–Nirenberg inequality
[26, Lemma 2.1] as follows:

|v|ττ ≤ Cs,N,τ[v]τas,p|v|
τ(1−a)
p

for some positive constant Cs,N,τ ≥ 1, where τ > 0, 0 ≤ a ≤ 1 and

1
τ
= a(

1
p
−
s
N )
+
1 − a
p

.

Then
τ = pN

N − aps ∈ [p, p
∗
s ] or a =

N
s (

1
p −

1
τ ).

When τa= p, then a= pτ andwe get τ = p +
p2s
N , which is called Lp-critical exponent for the fractional Gagliardo–

Nirenberg inequality. Hence,

Iμ(v) ≥
1
p ∬
ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
dx dy − C1 ∫

ℝN

|v|q dx − C2 ∫
ℝN

|v|p dx

≥
1
p ∬
ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
dx dy − Cs,N,qC1aq(1−a)(∬

ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
)

qa
p

− Cs,N,pC2ap(1−a)(∬
ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
)

pa
p
.

(2.2)

As q, p ∈ (p, p + p2s
N ), we have 0 <

ta
p < 1 for t ∈ {p, q}, which implies the coercivity and bounded from below

of Iμ on S(a).

From Lemma 2.2, there exists the real number Iμ,a = infv∈S(a) Iμ(v). Next, we show that Jμ,a < 0 is negative for
a suitable range of μ.

Lemma 2.3. There exists V∗ > 0 such that Iμ,a < 0 for 0 ≤ μ < V∗.

Proof. From condition (f1), we have
lim
t→0

qF(t)
tq = α > 0.

Then there exists κ > 0 so that
qF(t)
tq ≥

α
2 for all t ∈ [0, κ]. (2.3)

Choose a nonnegative function v0 ∈ S(a) ∩ L∞(ℝN) and set

ℍ(v0 , t)(x) = e
Nt
p v0(etx) for all x ∈ ℝN and all t ∈ ℝ.

It is easy to get
∫
ℝN

|ℍ(v0 , t)(x)|p dx = ap

and
∫
ℝN

F(ℍ(v0 , t)(x)) dx = e−Nt ∫
ℝN

F(e
Nt
p v0(x)) dx.
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Moreover, for t < 0 and |t| large enough, we also have

0 ≤ e
Nt
p v0(x) ≤ κ for all x ∈ ℝN ,

which, combined with (2.3), yields

∫
ℝN

F(ℍ(v0 , t)(x)) dx ≥
α
2q e

(q−p)Nt
p ∫
ℝN

|v0(x)|q dx.

Note that
∬
ℝ2N

|ℍ(v0 , t)(x) − ℍ(v0 , t)(y)|p

|x − y|N+ps
dx dy = eNt∬

R2N

|v0(etx) − v0(ety)|p

|x − y|N+ps
dx dy

= epts∬
ℝ2N

|v0(x) − v0(y)|p

|x − y|N+ps
dx dy,

and so

Iμ(ℍ(v0 , s)) ≤
epts

p ∬
ℝ2N

|v0(x) − v0(y)|p

|x − y|N+ps
dx dy + μa

p

p
−
αe

(q−p)Nt
p

2q ∫
ℝN

|v0(x)|q dx.

Since q ∈ (p, p + p2s
N ), increasing |t| if necessary, we derive that

epts

p [v0]
p
s,p −

αe
(q−p)Nt

p

2q ∫
ℝN

|v0(x)|q dx = At < 0.

Then
Iμ(ℍ(v0 , t)) ≤ At +

μap

p .

Now, we fix V∗ > 0 such that
At +

V∗ap

p < 0.

From that inequality, if μ < V∗, then

Iμ(ℍ(v0 , t)) < 0 for all μ ∈ [0, V∗),

and we have Iμ,a < 0. Thus Lemma 2.3 is proved.

Lemma 2.4. We fix μ ∈ [0,V∗) and let 0 < a1 < a2. Then we have

ap1
ap2

Iμ,a2 < Iμ,a1 < 0.

Proof. First, we see that

||v(x)| − |v(y)|| ≤ |v(x) − v(y)| for all x, y ∈ ℝN and v ∈ W s,p(ℝN).

Hence we get

∬
ℝ2N

||v(x)| − |v(y)||p

|x − y|N+ps
dx dy ≤ ∬

ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
dx dy

for all v ∈ W s,p(ℝN). Let ε > 1 be such that a2 = εa1, and let (vn) ⊂ S(a1) be a nonnegativeminimizing sequence
with respect to the Iμ,a1 , which exists due to Iμ(v) ≥ Iμ(|v|) for all v ∈ W s,p(ℝN). Namely

Iμ(vn) → Iμ,a1 as n → +∞.

We set un = εvn . Then un ∈ S(a2). From condition (f3), the function F(t)/tq1 is increasing on t ∈ (0, +∞). Then
we get

F(tl) ≥ tq1F(l) for all t, l > 0 and t ≥ 1.

Thus, we deduce

Iμ,a2 ≤ Iμ(un) = εpIμ(vn) + εp ∫
ℝN

F(vn) dx − ∫
ℝN

F(εvn) dx ≤ εpIμ(vn) + (εp − εq1 ) ∫
ℝN

F(vn) dx.
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Claim 1. We show that there exist a positive constant C > 0 and n0 ∈ ℕ such that ∫ℝN F(vn) dx ≥ C for all n ≥ n0.

Assume that, by contradiction, there exists a subsequence of (vn), still denoted by (vn), such that

∫
ℝN

F(vn) dx → 0 as n → +∞.

From the inequality
0 > Iμ,a1 + on(1) = Iμ(vn) ≥ − ∫

ℝN

F(vn) dx, n ∈ ℕ,

we get Iμ,a1 = 0. This is a contradiction with Lemma 2.3, and Claim 1 is proved. By Claim 1 and ξp − ξq1 < 0, for
n large enough, we deduce

Iμ,a2 ≤ ξpIμ(vn) + (εp − εq1 )C.

Taking n → +∞, it follows that
Iμ,a2 ≤ εpIμ,a1 + (εp − εq1 )C < εpIμ,a1 ,

that is,
ap1
ap2

Iμ,a2 < Iμ,a1 .

We finish the proof of Lemma 2.4.

Our following result is a compactness theorem on S(a) for minimizing sequences.

Theorem 2.5. Let μ ∈ [0,V∗) and let (vn) ⊂ S(a) be a minimizing sequence for Iμ . Then, up to a subsequence, one
of the following assertions holds:
(i) (vn) is strongly convergent in W s,p(ℝN).
(ii) There exists (yn) ⊂ ℝN with |yn| → +∞ such that the sequence un(x) = vn(x + yn) is strongly convergent to

a function ṽ ∈ S(a) with Iμ(ṽ) = Iμ,a .

Proof. Since Iμ is coercive on S(a), the sequence (vn) is bounded, and so vn ⇀ v in W s,p(ℝN) for some subse-
quence. If v ̸= 0 and |v|p = b ̸= a, we must have b ∈ (0, a). By the Brézis–Lieb lemma (see [33]),

|vn|
p
p = |vn − v|

p
p + |v|

p
p + on(1).

By [8, Lemma 2.5], we have
[vn]

p
s,p = [vn − v]

p
s,p + [v]

p
s,p + on(1).

Since F is a differentiable function with subcritical growth, we get

∫
ℝN

F(vn) dx = ∫
ℝN

F(vn − v) dx + ∫
ℝN

F(v) dx + on(1).

Setting un = vn − v, dn = |un|p and supposing that |un|p → d, we get ap = bp + dp and dn ∈ (0, a) for n large
enough. Hence,

Iμ,a + on(1) = Iμ(vn) = Iμ(un) + Iμ(v) + on(1) ≥ Iμ,dn + Iμ,b + on(1),

and Lemma 2.4 gives that

Iμ,a + on(1) ≥
dpn
ap Iμ,a + Iμ,b + on(1).

Taking n → +∞, we obtain

Iμ,a ≥
dp

ap Iμ,a + Iμ,b . (2.4)

Since b ∈ (0, a), using Lemma 2.4 and (2.4), we have

Iμ,a >
dp

ap Iμ,a +
bp

ap Iμ,a = (
dp

ap +
bp

ap )Iμ,a = Iμ,a ,
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which is a contradiction. Then |v|p = a, and we have u ∈ S(a). Because |vn|p = |v|p = a, vn ⇀ v in Lp(ℝN) and
Lp(ℝN) is reflexive, we deduce

vn → v in Lp(ℝN). (2.5)

By conditions (f1), (f2) and by using the dominated convergence theorem, we get

∫
ℝN

F(vn) dx → ∫
ℝN

F(v) dx. (2.6)

These limits together with Iμ,a = limn→+∞ Iμ(vn) provide

Iμ,a ≥ Iμ(v).

Since v ∈ S(a), we can see that Iμ(v) = Iμ,a . Then

lim
n→+∞

Iμ(vn) = Iμ(v) = Iμ,a .

This, combined with (2.5) and (2.6), gives
‖vn‖p → ‖v‖p

inW s,p(ℝN). It implies that vn → v inW s,p(ℝN).
Now, let us assume that v = 0, that is, vn ⇀ 0 in W s,p(ℝN). By arguments as in Claim 1, there exists C > 0

such that
∫
ℝN

F(vn) dx ≥ C for n ∈ ℕ large. (2.7)

We claim that there are R, β > 0 and yn ∈ ℝN such that

∫
BR(yn)

|vn|p dx ≥ β for all n ∈ ℝN . (2.8)

Otherwise, by [8, Lemma 2.1], we must have vn → 0 in Lt(ℝN) for all t ∈ (p, p∗s ). This implies F(vn) → 0 in
L1(ℝN), which is a contradiction with (2.7). Since v = 0, inequality (2.8) together with the fractional Sobolev
embedding implies that (yn) is unbounded. We set ṽn(x) = vn(x + yn). Clearly, (ṽn) ⊂ S(a) and it is also a mini-
mizing sequence for Iμ,a . Moreover, there exists ṽ ∈ W s,p(ℝN) \ {0} such that

ṽn ⇀ ṽ inW s,p(ℝN), and ṽn(x) → ṽ(x) a.e. in ℝN .

By arguments as in the above proofs, we get that ṽn → ṽ inW s,p(ℝN).

2.1 Proof of Theorem 2.1

Using Lemma 2.3, we can get a bounded minimizing sequence (vn) ⊂ S(a) such that Iμ(vn) → Iμ,a . From Theo-
rem 2.5, there is v ∈ S(a) with Iμ(v) = Iμ,a . Therefore, there exists λa ∈ ℝ via by the Lagrange multiplier such
that

I󸀠μ(v) = λaΨ󸀠(v) in (W s,p(ℝN))󸀠 , (2.9)

where Ψ : W s,p(ℝN) → ℝ is given by

Ψ(v) = 1p ∫
ℝN

|v|p dx, v ∈ W s,p(ℝN).

From (2.9), we deduce
(−Δ)spv + μ|v|p−2v = λa|v|p−2v + f(v) in ℝN .

We have Iμ(v) = Iμ,a < 0, and thus λa < 0.
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We can assume that v is a nonnegative function. Indeed, it comes from the inequality Iμ(|v|) ≤ Iμ(v). More-
over, from v ∈ S(a), we also have that |v| ∈ S(a), and we deduce

Iμ,a = Iμ(v) ≥ Iμ(|v|) ≥ Iμ,a .

Thus, Iμ(|v|) = Iμ,a , and so we can replace v by |v|. Moreover, denoting by v∗ the Schwarz symmetrization of v
(see [1, Section 9.2] for the first inequality), we know that

∬
ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
dx dy ≥ ∬

ℝ2N

|v∗(x) − v∗(y)|
|x − y|N+ps

dx dy,

∫
ℝN

|v|p dx = ∫
ℝN

|v∗|p dx,

∫
ℝN

F(v) dx = ∫
ℝN

F(v∗) dx.

Then v∗ ∈ S(a) and Iμ(v∗) = Iμ,a . Hence, we can replace v by v∗. Note that v ∈ Cα(ℝN) for some α ∈ (0, 1) by
[16, Corollary 5.5]. The proof of Theorem 2.1 is now finished.

From Theorem 2.1, we get the following corollary.

Corollary 2.6. Fix a > 0 and let 0 ≤ μ1 < μ2 ≤ V∗. Then we have Iμ1 ,a < Iμ2 ,a < 0.

Proof. Let uμ2 ,a ∈ S(a) satisfy Iμ2 (uμ2 ,a) = Iμ2 ,a . Then

Iμ1 ,a ≤ Iμ1 (uμ2 ,a) < Iμ2 (uμ2 ,a) = Iμ2 ,a .

3 The non-autonomous problem

In this section, we will consider the energy function Jξ : W s,p(ℝN) → ℝ given by

Jξ(v) =
1
p(∬
ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V(ξx)|v|p dx) − ∫
ℝN

F(v) dx,

restricted to the sphere S(a). We suppose that |V|∞ < V∗, where V∗ was given in Section 2.
We also define J0 , J∞ : W s,p(ℝN) → ℝ by

J0(v) =
1
p ∬
ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
dx dy − ∫

ℝN

F(v) dx

and
J∞(v) =

1
p(∬
ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
dx dy + V∞ ∫

ℝN

|u|p dx) − ∫
ℝN

F(v) dx,

respectively. Finally, we define

JV(y)(v) =
1
p(∬
ℝ2N

|v(x) − v(y)|p

|x − y|N+ps
dx dy + V(y) ∫

ℝN

|v|p dx) − ∫
ℝN

F(v) dx

for some y ∈ ℝN . We define Γξ,a , Γ0,a and Γ∞,a by

Γξ,a = inf
v∈S(a)

Jξ(v), Γ0,a = inf
v∈S(a)

J0(u), Γ∞,a = inf
v∈S(a)

J∞(v),

respectively, and set
ΓV(y),a = inf

v∈S(a)
JV(y)(v).
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Since 0 < V∞ < +∞, Corollary 2.6 gives that

Γ0,a < Γ∞,a < 0. (3.1)

With that property, we can fix
0 < ρ1 =

1
2 (Γ∞,a − Γ0,a).

Our first lemma in this section establishes some relationship between Γξ,a , Γ∞,a and Γ0,a .

Lemma 3.1. We have
lim sup
ξ→0+ Γξ,a ≤ Γ0,a

and there is ξ0 > 0 such that Γξ,a < Γ∞,a for all ξ ∈ (0, ξ0).

Proof. Let v0 ∈ S(a) with J0(v0) = Γ0,a . Then

Γξ,a ≤ Jξ(v0) =
1
p(∬
ℝ2N

|v0(x) − v0(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V(ξx)|v0|p dx) − ∫
ℝN

F(v0) dx.

Taking ξ → 0+, we obtain
lim sup
ξ→0+ Γξ,a ≤ lim

ξ→0+ Jξ(v0) = J0(v0) = Γa,0 . (3.2)

Combining (3.1) and (3.2), we have Γξ,a < Γ∞,a for ξ small enough.

In the following two results, we suppose that ξ ∈ (0, ξ0), where ξ0 is given in Lemma 3.1.

Lemma 3.2. Fix ξ ∈ (0, ξ0) and let (vn) ⊂ S(a) be such that Jξ(vn) → c with c < Γ0,a + ρ1 < 0. If vn ⇀ v in
W s,p(ℝN), then v ̸≡ 0.

Proof. Suppose that v = 0. Then

Γ0,a + ρ1 + on(1) > Jξ(vn) = J∞(vn) +
1
p ∫
ℝN

(V(ξx) − V∞)|vn|p dx.

By condition (V), for any given ζ > 0, there exists R > 0 such that

V(x) ≥ V∞ − ζ for all |x| ≥ R.

Hence,
Γ0,a + ρ1 + on(1) > Jξ(vn) ≥ J∞(vn) +

1
p ∫
BR/ξ (0)(V(ξx) − V∞)|vn|

p dx − ζp ∫
BcR/ξ (0)
|vn|p dx.

Note that (vn) is bounded inW s,p(ℝN), and vn → 0 in Ll(BR/ξ(0)) for all l ∈ [1, p∗s ). This implies

Γ0,a + ρ1 + on(1) ≥ J∞(vn) − ζD ≥ Γ∞,a − ζD

for a suitable constant D > 0. Since ζ > 0 is arbitrary, we get

Γ0,a + ρ1 ≥ Γ∞,a ,

which is a contradiction with the definition of ρ1. Hence, v ̸≡ 0.

Lemma 3.3. Assume that (vn) ⊂ S(a) is a (PS)c sequence for Jξ constrained to S(a) with c < Γ0,a + ρ1 < 0 and
vn ⇀ vξ in W s,p(ℝN), namely

Jξ(vn) → c as n → +∞, and ‖Jξ |󸀠S(a)(vn)‖ → 0 as n → +∞.

Assume that un = vn − vξ ↛ 0 in W s,p(ℝN). Then there is β∗ > 0, independent of ξ ∈ (0, ξ0), such that

lim inf
n→+∞
|vn − vξ |

p
p ≥ β∗ ,

where ξ0 is given in Lemma 3.1.
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Proof. We denote Ψ : W s,p(ℝN) → ℝ by
Ψ(v) = 1

p ∫
ℝN

|v|p dx,

and see that S(a) = Ψ−1({ap/p}). Then, from [33, Proposition 5.12], we can get a sequence (λn) ⊂ ℝ such that

‖J󸀠ξ(vn) − λnΨ
󸀠(vn)‖(W s,p(ℝN ))󸀠 → 0 as n → +∞. (3.3)

Since (vn) is a bounded sequence in W s,p(ℝN), we have that the same holds also for (λn) and, up to a subse-
quence, we can suppose that λn → λξ as n → +∞. Hence,

J󸀠ξ(vξ) − λξΨ
󸀠(vξ) = 0 in (W s,p(ℝN))󸀠 . (3.4)

To prove (3.4), we need show that

∫
ℝ2N

|vn(x) − vn(y)|p−2(vn(x) − vn(y))(φ(x) − φ(y))
|x − y|N+ps

dx dy

→ ∫
ℝ2N

|vξ(x) − vξ(y)|p−2(vξ(x) − vξ(y))(φ(x) − φ(y))
|x − y|N+ps

dx dy
(3.5)

for all φ ∈ W s,p(ℝN). Using Hölder’s inequality, we see

∫
ℝ2N

󵄨󵄨󵄨󵄨󵄨󵄨
|vn(x) − vn(y)|p−2(vn(x) − vn(y))(φ(x) − φ(y))

|x − y|N+ps
󵄨󵄨󵄨󵄨󵄨󵄨 dx dy

≤ ( ∫
ℝ2N

|vn(x) − vn(y)|p

|x − y|N+ps
dx dy)

p−1
p
( ∫
ℝ2N

|φ(x) − φ(y)|p

|x − y|N+ps
dx dy)

1
p

≤ ‖vn‖p−1‖φ‖ < +∞.

(3.6)

Hence,
|vn(x) − vn(y)|p−2(vn(x) − vn(y))(φ(x) − φ(y))

|x − y|N+ps
∈ L1(ℝ2N) for all n,

and there exists a constant K∗ > 0 satisfying

󵄨󵄨󵄨󵄨󵄨󵄨
|vn(x) − vn(y)|p−2(vn(x) − vn(y))(φ(x) − φ(y))

|x − y|N+ps
󵄨󵄨󵄨󵄨󵄨󵄨 ≤ K∗

for all (x, y) ∈ ℝ2N outside a set with measure zero. For any ζ > 0, there exists δ = ζ
K∗ such that, for all measur-

able sets E ⊂ ℝ2N such that |E| < δ, we have

∫
E

󵄨󵄨󵄨󵄨󵄨󵄨
|vn(x) − vn(y)|p−2(vn(x) − vn(y))(φ(x) − φ(y))

|x − y|N+ps
󵄨󵄨󵄨󵄨󵄨󵄨 dx dy ≤ K∗|E| < ζ.

Hence,

{
|vn(x) − vn(y)|p−2(vn(x) − vn(y))(φ(x) − φ(y))

|x − y|N+ps
}

is equi-integrable on ℝ2N . Clearly,

|vn(x) − vn(y)|p−2(vn(x) − vn(y))(φ(x) − φ(y))
|x − y|N+ps

→
|vξ(x) − vξ(y)|p−2(vξ(x) − vξ(y))(φ(x) − φ(y))

|x − y|N+ps

almost everywhere on ℝ2N . Since φ ∈ W s,p(ℝN), there exists R > 0 such that

∫
ℝ2N\BR(0)

|φ(x) − φ(y)|p

|x − y|N+ps
dx dy < ζ p ,
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whereBR(0) is a ball inℝ2N with center 0 and radius R. By arguments as in (3.6), since we only take the integral
onℝ2N \BR(0) and since {un} is a bounded sequence inW s,p(ℝN), there exists a suitable constantK∗ > 0 such
that

∫
ℝ2N\BR(0)

|vn(x) − vn(y)|p−2(vn(x) − vn(y))(φ(x) − φ(y))
|x − y|N+ps

dx dy

≤ ( ∫
ℝ2N\BR(0)

|vn(x) − vn(y)|p

|x − y|N+ps
dx dy)

p−1
p
× ( ∫
ℝ2N\BR(0)

|φ(x) − φ(y)|p

|x − y|N+ps
dx dy)

1
p
< K∗ζ.

Therefore, all conditions of Vitali’s theorem are satisfied and we get (3.5). Similarly, we also have

lim
n→∞
∫
ℝN

f(vn)φ dx = ∫
ℝN

f(vξ)φ dx (3.7)

for all φ ∈ W s,p(ℝN). Combining (3.3), (3.5) and (3.7), we get (3.4). By arguments as in [2, Lemma 2.8 iv], we have

J󸀠ξ(vn) = J
󸀠
ξ(vξ) + J

󸀠
ξ(un) + on(1)

and
Ψ󸀠ξ(vn) = Ψ

󸀠
ξ(vξ) + Ψ

󸀠
ξ(un) + on(1).

From those equations and (3.4), we obtain

J󸀠ξ(vn) − λξΨ
󸀠(vn) = J󸀠ξ(vξ) − λξΨ

󸀠(vξ) + J󸀠ξ(un) − λξΨ
󸀠(un) + on(1) = J󸀠ξ(un) − λξΨ

󸀠(un) + on(1).

We get
‖J󸀠ξ(un) − λξΨ

󸀠(un)‖(W s,p(ℝN ))󸀠 → 0 as n → +∞. (3.8)

From condition (f3), we have q1F(t) ≤ f(t)t for all t ≥ 0. Then we get

0 > ρ1 + Γ0,a ≥ lim inf
n→+∞

Jξ(vn) = lim inf
n→+∞
(Jξ(vn) −

1
p J
󸀠
ξ(vn)vn +

λn
p ap) ≥

λξ
p ap ,

implying that
lim sup
ξ→0

λξ ≤
p(ρ1 + Γ0,a)

ap < 0.

This implies that there exists λ∗ < 0, independent of ξ, so that

λξ ≤ λ∗ < 0 for all ξ ∈ (0, ξ0). (3.9)

From (3.8), we obtain

∬
ℝ2N

|un(x) − un(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V(ξx)|un|p dx − λξ ∫
ℝN

|un|p dx = ∫
ℝN

f(un)undx + on(1). (3.10)

Combining (3.9) and (3.10), we get

∬
ℝ2N

|un(x) − un(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V(ξx)|un|p dx − λ∗ ∫
ℝN

|un|p dx ≤ ∫
ℝN

f(un)undx + on(1). (3.11)

By conditions (f1) and (f2), for some τ > 0, there exists D(τ) > 0 so that

|f(t)| ≤ τ|t|p−1 + D(τ)|t|p−1 for all t ∈ ℝ. (3.12)

From (3.11) and (3.12), we conclude

∬
ℝ2N

|un(x) − un(y)|p

|x − y|N+ps
dx dy + C0 ∫

ℝN

|un|p dx ≤ C2|un|
p
p + on(1),
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where C0 is a constant not depending on ξ ∈ (0, ξ0). By the Sobolev embedding

W s,p(ℝN) 󳨅→ Lp(ℝN),

we obtain
‖un‖

p
W s,p(ℝN ) ≤ D3|un|

p
p + on(1) ≤ D4‖un‖

p
W s,p(ℝN ) + on(1), (3.13)

where D3 and D4 > 0 are suitable constants independent of ξ. Because un ↛ 0 inW s,p(ℝN), up to a subsequence
of (un) still denoted by itself, we can suppose that

lim inf
n→+∞
‖un‖W s,p(ℝN ) > 0.

This yields

lim inf
n→+∞
‖un‖W s,p(ℝN ) ≥ (

1
D4
)

1
p−p . (3.14)

From (3.13) and (3.14), we have
lim inf
n→+∞
|un|

p
p ≥ D5 , (3.15)

where D5 > 0 is a suitable constant not depending on ξ. Using the fractional Gagliardo–Nirenberg inequality,
we obtain

|un|
p
p ≤ Cs,N,p[un]

pa
s,p|un|

p(1−a)
p .

Then we deduce that
lim inf
n→+∞
|un|

p
p ≤ Cs,N,p(lim inf

n→+∞
|un|p)p(1−a)Kpa , (3.16)

where K > 0 is a constant which is independent on ξ ∈ (0, ξ0) and satisfies ‖un‖ ≤ K for all n ∈ ℕ. By combining
(3.15) and (3.16), there exists a constant β∗ > 0, independent on ξ ∈ (0, ξ0), such that

lim inf
n→+∞
|vn − vξ |

p
p ≥ β∗ .

This concludes the proof.

From here onwards, we will fix the number ρ satisfying

0 < ρ < min{12 ,
β∗
ap }(Γ∞,a − Γ0,a) ≤ ρ1 .

Lemma 3.4. For each ξ ∈ (0, ξ0), the functional Jξ satisfies the (PS)c condition constrained on S(a) for c < Γ0,a + ρ.

Proof. Let (vn) be a (PS)c sequence for Jξ restricted to S(a) with vn ⇀ vξ in W s,p(ℝN) and c < Γ0,a + ρ. Let
Ψ : W s,p(ℝN) → ℝ be defined by

Ψ(v) = 1
p ∫
ℝN

|v|p dx.

Then S(a) = Ψ−1({ap/p}). Then, by [33, Proposition 5.12], there exists (λn) ⊂ ℝ such that

‖J󸀠ξ(vn) − λnΨ
󸀠(vn)‖(W s,p(ℝN ))󸀠 → 0 as n → +∞.

From Lemma 3.3, if un = vn − uξ ↛ 0 inW s,p(ℝN), then there exists β∗ > 0 independent on ξ so that

lim inf
n→+∞
|un|

p
p ≥ β∗ .

Set dn = |un|p and assume that |un|p → d > 0 and |vξ |p = b.We get ap = bp + dp . FromLemma 3.2, we have b > 0
and Jξ(un) ≥ Γ∞,dn + on(1). We get dn ∈ (0, a) for n large enough. Hence, we deduce

c + on(1) = Jξ(vn) = Jξ(un) + Jξ(vξ) + on(1) ≥ Γ∞,dn + Γ0,b + on(1).

By arguments as in Lemma 2.4, we have

ρ + Γ0,a ≥
dpn
ap Γ∞,a +

bp

ap Γ0,a .
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Letting n → +∞, we get

ρ ≥ d
p

ap (Γ∞,a − Γ0,a) ≥
β∗
ap (Γ∞,a − Γ0,a),

which is a contradiction since
ρ < β∗ap (Γ∞,a − Γ0,a).

From un → 0 inW s,p(ℝN), that is, vn → vξ inW s,p(ℝN), which implies that |vξ |p = a and

(−Δ)spvξ + V(ξx)|vξ |p−2vξ = λξ |vξ |p−2vξ + f(vξ) in ℝN ,

where λξ is the limit of some subsequence of (λn).

4 Multiplicity result of (1.1)

Fix δ > 0 and let w be a nonnegative solution of the problem

{{{
{{{
{

(−Δ)spv = λ|v|p−2v + f(v) in ℝN ,

∫
ℝN

|v|p dx = ap , (P0)

with J0(w) = Γ0,a . We denote by η : [0,∞) → [0,∞) a smooth nonincreasing cut-off function which is defined
as follows:

η(t) =
{{
{{
{

1 if 0 ≤ t ≤ δ2 ,

0 if t ≥ δ.

For any y ∈M, define

Ψξ,y(x) = η(|ξx − y|)w(
ξx − y
ξ )

,

Ψ̃ξ,y(x) = a
Ψξ,y(x)
|Ψξ,y|p

,

and define Φξ : M→ S(a) by Φξ(y) = Ψ̃ξ,y . We see that Φξ(y) has compact support for any y ∈M.

Lemma 4.1. We have
lim
ξ→0

Jξ(Φξ(y)) = Γ0,a uniformly in y ∈M.

Proof. Conversely, we assume that there exist ξ0 > 0, (yn) ⊂M and ξn → 0 such that

|Jξn (Φξn (yn)) − Γ0,a| ≥ ξ0 for all n ∈ ℕ.

By the dominated convergence theorem, we get (see [8, Lemmas 2.2 and 2.5])

lim
n→+∞
∫
ℝN

|Ψξn ,yn |
p dx = lim

n→+∞
∫
ℝN

|η(ξnz)w(z)|p dx = ∫
ℝN

|w|p dx = ap ,

lim
n→+∞
∫
ℝN

F(Φξn (yn)) dx = lim
n→+∞
∫
ℝN

F(a η(ξnz)w(z)
|Ψξn ,yn |p

) dx = ∫
ℝN

F(w) dx,

lim
n→+∞
∫
ℝ2N

|Φξn (yn)(x) − Φξn (yn)(y)|p

|x − y|N+ps
dx dy

= lim
n→+∞
∫
ℝ2N

ap

|Ψξn ,yn |
p
p

|η(ξnz)w(z) − η(ξnz󸀠)w(z󸀠)|p

|z − z󸀠|N+ps
dz dz󸀠 = [w]ps,p ,

lim
n→+∞
∫
ℝN

V(ξnx)|Φξn (yn)|p dx = lim
n→+∞
∫
ℝN

ap

|Ψξn ,y|
p
p
V(ξnz + yn)|η(ξnz)w(z)|p dz = 0.
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Consequently,
lim

n→+∞
Jξn (Φξn (yn)) = J0,a(w) = Γ0,a ,

which is a contradiction.

For any δ > 0, we choose r = r(δ) > 0 satisfyingMδ ⊂ Br(0). We also define χ : ℝN → ℝN by

χ(x) =
{{
{{
{

x if |x| ≤ r,
rx
|x|

if |x| ≥ r.

Next, we define βξ : S(a) → ℝN by

βξ(v) =
∫ℝN χ(ξx)|v|

p dx
ap , v ∈ S(a).

By arguments as in [7, Lemma 4.2], we have the following result.

Lemma 4.2. We have
lim
ξ→0

βξ(Φξ(y)) = y uniformly in y ∈M.

Proposition 4.3. Assume that ξn → 0 and (vn) ⊂ S(a) with Jξn (vn) → Γ0,a . Then there is (ỹn) ⊂ ℝN such that
un(x) = vn(x + ỹn) has a convergent subsequence in W s,p(ℝN). Furthermore, up to a subsequence, we have
yn = ξn ỹn → y for some y ∈M,

Proof. We show that there are r0 , τ > 0 and ỹn ∈ ℝN such that

∫
Br0 (ỹn)

|vn|p dx ≥ τ (4.1)

for all n large enough. Conversely, we get vn → 0 in Lt(ℝN) for all t ∈ (p, p∗s ) via [8, Lemma 2.1]. Then

∫
ℝN

F(vn) dx → 0.

Thus, we deduce
lim

n→+∞
Jξn (vn) ≥ 0,

which is a contradiction to the fact that

lim
n→+∞

Jξn (vn) = Γ0,a < 0.

Thus, if we set un(x) = vn(x + ỹn), then there exists u ∈ W s,p(ℝN) \ {0} such that, up to a subsequence, un ⇀ u
inW s,p(ℝN). Since

(un) ⊂ S(a) and Jξn (vn) ≥ J0(vn) = J0(un) ≥ Γ0,a ,

we have that J0(un) → Γ0,a . From Theorem 2.5, we have un → u inW s,p(ℝN), and u ∈ S(a).

Claim 2. (yn) is bounded.

Indeed, if there exists a subsequence of {yn}, still denoted by {yn}, such that |yn| → +∞, then we have

Γ0,a = lim
n→+∞

Jξn (un) = lim inf
n→+∞
(
1
p [∬
ℝ2N

|un(x) − un(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V(ξnx + yn)|un|p dx] − ∫
ℝN

F(un) dx),

that is,

Γ0,a ≥
1
p [∬
ℝ2N

|u(x) − u(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V∞|u|p dx] − ∫
ℝN

F(u) dx ≥ Γ∞,a ,
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which contradicts (3.1). From Claim 2, we can assume that yn → y in ℝN . By arguments as above, we get

Γ0,a ≥
1
p [∬
ℝ2N

|u(x) − u(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V(y)|u|p dx] − ∫
ℝN

F(u) dx ≥ ΓV(y),a .

By Corollary 2.6, if y ̸∈M, then ΓV(y),a > Γ0,a since V(y) > 0. This is a contradiction. Therefore, V(y) = 0, that is,
y ∈M.

We consider a positive function h : [0, +∞) → [0, +∞) satisfying h(ξ) → 0 as ξ → 0, and let

S̃(a) = {v ∈ S(a) : Jξ(v) ≤ Γ0,a + h(ξ)}. (4.2)

By Lemma 4.1, the function
h(ξ) = sup

y∈M
|Jξ(Φξ(y)) − Γ0,a|

satisfies h(ξ) → 0 as ξ → 0. Therefore, Φξ(y) ∈ S̃(a) for all y ∈M. By arguments as in [7, Lemma 4.5], we have
the following result.

Lemma 4.4. Let δ > 0 and
Mδ = {x ∈ ℝN : dist(x,M) ≤ δ}.

Then
lim
ξ→0

sup
v∈S̃(a)

inf
z∈Mδ
|βξ(v) − z| = 0.

4.1 Proof of Theorem 1.1

We first show the existence of multiple normalized solutions to (1.1). Fix ξ ∈ (0, ξ0). Then, by Lemmas 4.1, 4.2
and 4.4, and arguments as in [12], we see that βξ ∘ Φξ is homotopic to the inclusion map id : M→Mδ , and so

cat(S̃(a)) ≥ catMδ (M).

By arguments as in Lemma 2.3, we also have that Jξ is bounded from below on S(a). From Lemma 3.4, the func-
tional Jξ verifies the (PS)c condition for c ∈ (Γ0,a , Γ0,a + h(ξ)). Then we can apply the Lusternik–Schnirelmann
category theorem for critical points (see [14, 33]) to get that Jξ has at last catMδ (M) critical points on S(a).

Let vξ be a solution of (1.1) with
Jξ(vξ) ≤ Γ0,a + h(ξ),

where h is defined in (4.2). By arguments as in Proposition 4.3, for each ξn → 0, there exists a sequence ỹn ∈ ℝN
such that yn = ξn ỹn → y with y ∈M, and un(x) = vξn (x + ỹn) converges strongly to u ∈ W s,p(ℝN) with u ̸≡ 0.
We know that un is a solution of

(−Δ)spun + V(ξnx + yn)|un|p−2un = λξn |un|p−2un + f(un) in ℝN ,

with
lim sup
n→∞

λξn ≤
p(ρ1 + Γ0,a)

ap < 0.

Because un → u inW s,p(ℝN), we have

lim
|x|→+∞

un(x) = 0 uniformly inℕ.

Thus, given τ > 0, there areR1 > 0 and n0 ∈ ℕ such that

|un(x)| ≤
1
2(

τ
2|BR1 (0)|

)
1
p for |x| ≥ R1 and n ≥ n0 .
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In the following, we prove that there exists δ > 0 such that |un|∞ ≥ δ for all n large enough. Indeed,
from (4.1), we can chooseR1 > r0 such that

0 < τ2 ≤ ∫
BR1 (0)

|un|p dx ≤ |BR1 (0)|.|un|
p
∞ (4.3)

for all n large enough. Here, we choose

δ = ( τ
2|BR1 (0)|

)
1
p .

We denote by zn the global maximum of un . Then |zn| ≤ R1 for all n ∈ ℕ large enough. Now, let us consider
ζn ∈ ℝN such that |vn(ζn)| = |vn|∞ for all n ∈ ℕ. Then ζn = zn + ỹn and

lim
n→+∞

V(ξnζn) = lim
n→+∞

V(ξnzn + ξn ỹn) = V(y) = 0.

5 Proof of Theorem 1.2

We fix ρ0 > 0 and r0 > 0 such that the following assertions hold:
(i) It holds

Bρ0 (bi) ∩ Bρ0 (bj) = 0 for i ̸= j and i, j ∈ {1, 2, . . . , l}.

(ii) It holds
l
⋃
i=1

Bρ0 (bi) ⊂ Br0 (0).

(iii) It holds

K ρ0
2
=

l
⋃
i=1

B ρ0
2
(bi).

We define the function
Qε : W s,p(ℝN) \ {0} → ℝN

by

Qε(v) =
∫ℝN Θ(εx)|v|

p dx
ap ,

where Θ : ℝN → ℝN is defined by

Θ(x) =
{{
{{
{

x if |x| ≤ r0 ,

r0
x
|x| if |x| > r0 .

With the above notations, we have the following result.

Lemma 5.1. Suppose that f satisfies conditions (f1)–(f3) and that (V ) holds. Then there exists ρ2 ∈ (0, ρ) such
that, if v ∈ S(a) and Jξ(v) ≤ Γ0,a + ρ2, then Qε(v) ∈ Kρ0/2 for all ξ ∈ (0, ξ0), where ξ0 is given in Lemma 3.1 and ρ
is defined in Lemma 3.4.

Proof. Assume that there exist ρn → 0, ξn → 0 and {vn} ⊂ S(a) such that

Jξ(un) ≤ Γ0,a + ρn and Qξn (vn) ̸∈ K ρ0
2
. (5.1)

Then we get
Γ0,a ≤ J0(vn) ≤ Jξn (vn) ≤ Γ0,a + ρn ,

which implies that J0(vn) → Γ0,a as n →∞. By Theorem 2.5, up to a subsequence, still denoted by itself, one of
the following assertions holds:
(i) (vn) is strongly convergent inW s,p(ℝN).
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(ii) There exists (yn) ⊂ ℝN with |yn| → +∞ such that the sequence un(x) = vn(x + yn) converges strongly to
a function u ∈ S(a) with J0(u) = Γ0,a .
When case (i) occurs, using Lebesgue’s dominated convergence theorem, we get

Qξn (vn) =
∫ℝN Θ(ξnx)|vn|

p dx
∫ℝN |vn|

p dx
→ 0 ∈ K ρ0

2
as n →∞,

which is a contradiction.
If case (ii) occurs, then, up to a subsequence still denoted by {ξnyn}, we assume that ξnyn → y ∈ ℝN or

|ξnyn| → ∞ as n →∞. If ξnyn → y ∈ ℝN , then, by Lebesgue’s dominated convergence theorem, we have

Jξn (vn) =
1
p(∬
ℝN

|vn(x) − vn(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V(ξx)|vn|p dx) − ∫
ℝN

F(vn) dx

=
1
p(∬
ℝN

|un(x) − un(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V(ξnx + ξnyn)|un|p dx) − ∫
ℝN

F(un) dx

→ JV(y)(u)

(5.2)

as n →∞. Combining (5.1) and (5.2), we deduce that

Γ0,a ≥ JV(y)(v) ≥ ΓV(y),a . (5.3)

We will show that V(y) = 0, which means that y0 = bi for some i ∈ {1, . . . , l}. We assume that V(y) > 0. Then
Γ0,a < ΓV(y),a , which contradicts with (5.3). Hence, we arrive that

Qξn (un) =
∫ℝN Θ(ξnx)|vn|

p dx
∫ℝN |vn|

p dx

=
∫ℝN Θ(ξnx + ξnyn)|vn|

p dx
∫ℝN |vn|

p dx

→
∫ℝN Θ(y)|u|

p dx
∫ℝN |u|

p dx

= Θ(y)
= bi ∈ K ρ0

2

as n →∞, for some i ∈ {1, . . . , l}, which is a contradiction.
If |ξnyn| → ∞, then, by arguments as above, we get Γ0,a ≥ Γ∞,a , which is impossible due to (3.1). Thus, we

conclude the proof of Lemma 5.1.

Next, we define some useful sets as follows:

γiξ = {v ∈ S(a) : |Qξ(v) − bi| ≤ ρ0},

∂γiε = {v ∈ S(a) : |Qξ(u) − bi| = ρ0},
ζ iξ = infv∈γiξ

Jξ(v),

̂ζ iξ = inf
v∈∂γiξ

Jξ(v).

Lemma 5.2. Assume that f satisfies conditions (f1)–(f3) and that (V ) holds. Then

ζ iξ < Γ0,a + ρ2 and ζ iξ < ̂ζ
i
ξ for all ξ ∈ (0, ξ0).

Proof. Assume v ∈ W s,p(ℝN) such that J0(v) = Γ0,a . For each i ∈ {1, . . . , l}, we define the function v̂iξ : ℝ
N → ℝ

by
v̂iξ := v(x −

bi
ξ ).
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Then we see that v̂iξ ∈ S(a) for all ξ > 0 and 1 ≤ i ≤ l. By a simple calculation, we obtain

Jξ(v̂iξ) =
1
p(∬
ℝN

|v̂iξ(x) − v̂
i
ξ(y)|

p

|x − y|N+ps
dx dy + ∫

ℝN

V(ξx)|v̂iξ |
p dx) − ∫

ℝN

F(v̂iξ) dx

=
1
p(∬
ℝN

|v(x) − v(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V(ξx + bi)|v|p dx) − ∫
ℝN

F(v) dx.

Taking ξ → 0+ in the previous equation, we get

lim
ξ→0+ Jξ(v̂iξ) = JV(bi)(v) = J0(v) = Γ0,a . (5.4)

By the definition of Qξ , we have

Qξ(v̂iξ) =
∫ℝN Θ(εx)|v̂

i
ξ |
p dx

∫ℝN |v̂
i
ξ |p dx

=
∫ℝN Θ(ξx + bi)|v|

p dx
∫ℝN |v|

p dx
→ Θ(bi) = bi

as ξ → 0+, since bi ∈ Br0 (0) for all i = 1, . . . , l. It follows that v̂iε ∈ γiξ for ξ small enough. From (5.4), we deduce
that

Γ0,a + ρ2 > Jξ(v̂iξ) for all ξ ∈ (0, ξ0).

Here we can decrease ξ0 if necessary. Then, by the definition of γiξ , we arrive at

Υ0,a + ρ2 > ζ iξ (5.5)

for all i ∈ {1, . . . , l}.
Next, we prove the second statement. If v ∈ ∂γiξ , then

v ∈ S(a), |Qξ(v) − bi| = ρ0 >
ρ0
2 , Qξ(v) ̸∈ K ρ0

2
.

From Lemma 5.1, we have Jξ(v) > Γ0,a + ρ2 for all v ∈ ∂γiξ and ξ ∈ (0, ξ0). Using (5.5), we obtain that

̂ζ iξ = inf
v∈∂γiξ

Jξ(v) ≥ Γ0,a + ρ2 > ζ iξ .

This concludes the proof.

Proof of Theorem 1.2. For each i ∈ {1, . . . , l}, by Ekeland’s variational principle [13], there exists a sequence
{vin} ⊂ S(a) satisfying Jξ(vin) → ζ iξ and

Jξ(v) − Jξ(vin) ≥ −
1
n ‖v − v

i
n‖ for all v ∈ γiε , v ̸= vin .

By Lemma 5.2, we have ζ iξ < ̂ζ
i
ξ . Thus,

vin ∈ γiξ \ ∂γ
i
ξ

for all n large enough. For δ > 0 small enough, we consider the map α : (−δ, δ) → S(a) given by

α(t) = a vin + tv
|vin + tv|p

,

belonging to C1((−δ, δ), S(a)) and satisfying

α(t) ∈ γiξ \ ∂γ
i
ξ for all t ∈ (−δ, δ), α(0) = vin , α󸀠(0) = v,

where
v ∈ Tvin S(a) = {w ∈ W

s,p(ℝN) : ∫
ℝN

|vin|p−2vinw dx = 0}.
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We have
Jξ(α(t)) − Jξ(vin) ≥ −

1
n
‖α(t) − vin‖ for all t ∈ (−δ, δ),

which implies that

Jξ(α(t)) − Jξ(α(0))
t

=
Jξ(α(t)) − Jξ(vin)

t
≥ −

1
n
󵄩󵄩󵄩󵄩󵄩󵄩
α(t) − vin

t
󵄩󵄩󵄩󵄩󵄩󵄩 = −

1
n
󵄩󵄩󵄩󵄩󵄩󵄩
α(t) − α(0)

t
󵄩󵄩󵄩󵄩󵄩󵄩. (5.6)

Since Jξ ∈ C1(W s,p(ℝN),ℝ), taking t → 0+ in (5.6), we get

⟨J󸀠ξ(v
i
n), v⟩ ≥ −

1
n
‖v‖.

Replacing v by −v, we deduce
sup
‖v‖≤1
{󵄨󵄨󵄨󵄨⟨J
󸀠
ξ(v

i
n), v⟩
󵄨󵄨󵄨󵄨} ≤

1
n
,

which leads to
Jξ(vin) → ζ iξ and J󸀠ξ |S(a)(v

i
n) → 0 as n →∞.

Therefore, vin is a (PS)ζ iξ of Jξ . By Lemma 5.2, we have

ζ iξ < Γ0,a + ρ2 < Γ0,a + ρ < 0.

Then we can apply Lemma 3.4 to show that there exists vi ∈ W s,p(ℝN) ∩ S(a) satisfying

vi ∈ γiξ , Jξ(v
i) = ζ iξ and Jξ |󸀠S(a)(v

i) = 0.

Furthermore,

Qξ(vi) ∈ Bρ0 (bi), Qε(vj) ∈ Bρ0 (bj), Bρ0 (bi) ∩ Bρ0 (bj) = 0 for all i ̸= j ∈ {1, . . . , l}.

Then Jξ has at least l nontrivial critical points on S(a) for all ξ ∈ (0, ξ0). Because Jξ(vi) = ζ iξ < 0, and using
condition (f3), we get

λiap = 1
p(∬
ℝN

|vi(x) − vi(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V(ξx)|vi|p dx) − ∫
ℝN

f(vi)vi dx

=
1
p(∬
ℝN

|vi(x) − vi(y)|p

|x − y|N+ps
dx dy + ∫

ℝN

V(ξx)|vi|p dx) − ∫
ℝN

F(vi) dx + ∫
ℝN

F(vi) dx − ∫
ℝN

f(vi)vi dx

= Jξ(vi) + ∫
ℝN

F(vi) dx − ∫
ℝN

f(vi)vi dx

< 0.

Then λi < 0 for all i = 1, . . . , l. We conclude the proof of Theorem 1.2.
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