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APPROXIMATION OF THE LEADING SINGULAR
COEFFICIENT OF AN ELLIPTIC FOURTH-ORDER EQUATION
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Communicated by Giovanni Molica Bisci

Abstract. The solution of the biharmonic equation with an homogeneous

boundary conditions is decomposed into a regular part and a singular one.
The later is written as a coefficient multiplied by the first singular function

associated to the bilaplacian operator. In this paper, we consider the dual sin-

gular method for finding the value of the leading singular coefficient, and we
use the mortar domain decomposition technique with the spectral discretiza-

tion for its approximation. The numerical analysis leads to optimal error

estimates. We present some numerical results which are in perfect coherence
with the analysis developed in this paper.

1. Introduction

In a polygonal domain and when the data are smooth, the solution of an elliptic
differential equation is irregular. For a homogeneous problem of the bilaplacian op-
erator, we define some singular functions contingent to the geometry of the domain.
The solution is the sum of two components: a regular part and singular functions
([16, 18, 19, 20]). The later are multiplied by appropriate coefficients called singular
coefficients. To approximate the leading singularity coefficients two algorithms are
deployed. We first refer to the Strang and Fix algorithm [21], permitting to add
the leading singularity function to the discrete space [15]. Secondly, the singular
dual method algorithm [5, 4]. In physics and particularly in solid mechanics (crack
propagation), the leading singularity coefficient is very significant. The calculation
of this coefficient was obtained by use of finite elements (Amara and Moussaoui
[5, 6]). In this paper, we propose to use the mortar spectral element method com-
bined with the method based on the singular dual function. We decompose the
domain in an union of finite number of disjoint rectangles. On each rectangle, the
discrete functions are polynomials of high degree. We enforce the discrete solution
to satisfy a matching condition on the interfaces. Due to the non continuity of
the discrete functions, mortar spectral element technique is nonconforming. For
more details on the mortar spectral element method, we relate to Bernardi et al
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[10, 11, 13, 14]. In this work, we prove that the order of the error estimation be-
tween the continuous leading singularity coefficient end the discrete one is optimal.
This order is better than that obtained by the Strang and Fix algorithm.

The paper is outlined as follows. In the section 2, we present the geometry of
the domain, the continuous problem and the dual singular method which allows us
to calculate the leading coefficient of the singularity. This later depends only on
the solution. The approximation of the leading singularity coefficient by the mortar
element spectral method and the optimality estimation of the error is described in
Section 3. Finally, the results of a numerical test are given in Section 4.

2. Geometry of the domain and the continuous problem

We denote by Ω a polygonal domain in R2 such that there exists a finite number
of open rectangles Ωi, 1 ≤ i ≤ I, satisfying

Ω̄ = ∪Ii=1Ω̄i, Ωi ∩ Ωl = ∅ for i 6= l. (2.1)

and such that the intersection of each Ω̄i, 1 ≤ i ≤ K, with the boundary ∂Ω is either
empty or a corner or one or several entire edges of sub-domain Ωi. We choose the
coordinate axes parallel to the edge of the Ωi. We denote by Γi,j , 1 ≤ j ≤ 4 the
edges of Ωi and by γi,l, 1 ≤ i 6= l ≤ I, the open segment such that

γ̄i,l = ∂Ωi ∩ ∂Ωl.

The set V will be the set of all vertices of the Ωi, 1 ≤ i ≤ I and S = ∪Ii=1 ∪4
j=1 Γ̄i,j

the skeleton of the decomposition. We choose finite set of disjoint open segments
γk, where k belongs to a finite set K such that S = ∪k∈K γ̄k, each γk, k ∈ K is
called mortar and its being a edge Γi(k),j(k).

We are interested to non-convex domains, we assume that there exists an angle
equal either to 3π

2 or to 2π (case of the crack). Handling the singular function is
local process, so that there is no restriction to suppose that the non-convex corner
is unique.

2.1. Notation. Let ω be the value of the non-convex angle equal either to 3π
2 or to

2π, a be the corresponding corner of Ω and ∆ be the open domain in Ω such that ∆̄
is the union of the Ω̄i which contain a. We choose the origin of the coordinate axes
at the point a. We introduce a system of polar coordinates (r, θ) where r stands
for the distance from a and θ is such that the line θ = 0 contains an edge of ∂Ω.
For reasons which will appear later, we are lead to make the following conformity
assumption: We suppose that the decomposition of the domain ∆ is conforming
(see figure 1). If a is a vertex of the mortar Γi(k),j(k) which coincides with Γl a side
of a sub-domain Ωl, l 6= i(k) then Ni(k) ≤ Nl, such that the restriction of a function
to ∆ is in H2(∆).

a

∆ ∆

a

Figure 1. Domain Ω
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The following biharmonic problem with homogenous boundary conditions is the
model under consideration,

∆2u = f in Ω
u = 0 on ∂Ω
∂u

∂n
= 0 on ∂Ω.

(2.2)

This problem admits the following variational formulation: Find u ∈ H2
0 (Ω) such

that

∀v ∈ H2
0 (Ω)

∫
Ω

∆u.∆v dx dy =
∫

Ω

f v dx dy (2.3)

where f is in L2(Ω).
Formulation (2.3) can be written in the equivalent form: Find u ∈ H2

0 (Ω) such
that

∀v ∈ H2
0 (Ω)

I∑
i=1

∫
Ωi

(∆u|Ωi
) (∆v|Ωi

) dx dy =
I∑
i=1

∫
Ωi

f |Ωi
v|Ωi

dx dy. (2.4)

The function v is in H2
0 (Ω) if and only if v|Ωi

∈ H2(Ωi), 1 ≤ i ≤ I, v and ∂nv
vanishes on ∂Ω, v|Ωi = v|Ωl

and ∂nv|Ωi = ∂nv|Ωl
on γi,l, 1 ≤ i 6= l ≤ I.

Using Lax-Milgram theorem we show that the problem is well posed. However,
in a polygonal domain the global regularity of the solution depends on the angle
ω. For a non negative real s, if f in Hs−2(Ω) then the solution u of problem (2.2)
belongs to Hs+2(Ω) and there exists a positive constant C such that

‖u‖Hs+2(Ω) ≤ C‖f‖Hs−2(Ω).

If ω = 3π
2 , s ≤ 0.544844, and if ω = 2π, s ≤ 0.5.

To enhance the regularity we decompose the solution as follows:

u = uR + µ τ1 such that uR ∈ Hs+2(Ω) (2.5)

where µ is the leading singular coefficient, τ1 is the first singular function and there
exists a positive constant C such that

‖uR‖Hs+2(Ω) + |µ| ≤ C‖f‖Hs−2(Ω).

• When ω = 3π
2 : s < 1.544 and τ1(r, θ) = χ(r, θ)r1.544ψ(θ),

ψ(θ) =4.302
(

cos(0.092θ)− cos(1.908θ)
)

− 1.1815
(
10.869 sin(0.092θ)− 0.524 sin(1.908θ)

)
.

(2.6)

• In the case where ω = 2π: s < 1.5 and τ1(r, θ) = χ(r, θ)r1.5ψ(θ),

ψ(θ) =
(

sin(1.5θ)− 3 sin(0.5θ) + cos(1.5θ)− cos(0.5θ)
)
. (2.7)

where χ is the C∞ cut off function with support in ∆ which is equal to 1 in the
neighborhood of a.

To compute the leading singularity coefficient µ, we use the dual singularity
functions [5, 17]. We consider the characteristic equation of the bilaplacian

F (z, ω) = sin2(ωz)− z2 sin(ω2) = 0. (2.8)

The function F is even with respect to z, then if z0 = ξ+ iη is the solution of (2.8)
then it is the same for −z0 = −ξ − iη.
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The singular functions depend on the positive parameter ξ = Re(z) where z is
solution of the equation (2.8). These singular functions are solutions of the following
homogeneous problem:

∆2τξ = 0 in Ω
τξ = 0 on Γ
∂τξ
∂n

= 0 on Γ.

(2.9)

To each τξ corresponds a function τ−ξ solution of problem (2.9).

Remark 2.1. We remark that the function τξ is at least in H2(Ω) while τ−ξ is
in L2(Ω) in the neighborhood of a. Let τ∗1 (r, θ) = χ(r, θ)τ−ξ be the dual singular
function and τ∗1 (r, θ) = r1−ξψ(θ) in the neighborhood of a, where ψ is defined in
(2.6) and (2.7).

Since ∆2(τ∗1 ) ∈ H−2(Ω), let ϕ∗ the solution of the variational problem: find
ϕ∗ ∈ H2

0 (Ω) such that∫
Ω

∆ϕ∗∆v dx = 〈∆2(τ∗1 ), v〉, ∀v ∈ H2
0 (Ω). (2.10)

Then the singularity coefficient is

µ = c

∫
Ω

f(τ∗1 − ϕ∗)dx dy. (2.11)

where c is given by [16, 17]

c = 8ξ(ω)(ξ(ω) + 1)
∫ ω

0

exp(−(z + i)θ)ψ(θ) dθ (2.12)

where ξ(ω) = sup
{

Re(z) : z solution of (2.8), z 6= ±1
}

, ψ is defined in (2.6) and
(2.7).

3. Discrete problem

The discretization is based on the Galerkin method. The goal is to construct the
discrete space which is not included in the continuous one because the method is
not conform. Since our problem is of order 4, we have to deal with two boundary
conditions. Then we need two mortar functions; one for the trace and the other
for the normal derivative. Let δ = (Ni)1≤i≤I the discretization parameter where
Ni are the degrees of the approximation polynomials in each sub-domain Ωi, 1 ≤
i ≤ I (PN (Ω) is the space of polynomial functions of degree less or equal to N).
We introduce the space Mδ called the space of mortar functions made of couples
(ϕ0, ϕ1) such that their restriction to each Γi(k),j(k) is a polynomial of degree less
than Ni(k) and such that the following properties hold: at each vertex e of a sub-
domain, each couple (ϕ0, ϕ1) defines a unique value ϕe, a unique derivative ϕex with
respect to x, a unique derivative ϕey with respect to y and a unique mixed ϕexy with
respect to x and y.

We define the discrete space Xδ as the space of functions vδ such that:

(i) for each i, 1 ≤ i ≤ I, the restriction of vδ to Ωi belongs to PNi
(Ωi);

(ii) vδ and its normal derivative vanish on ∂Ω;
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(iii) there exists a mortar couple (ϕ0, ϕ1) in Mδ such that for 1 ≤ i ≤ I,

∀e ∈ V, vδ|Ωi
(e) = ϕe,

∂

∂x
(vδ|Ωi

)(e) = ϕex,

∂

∂y
(vδ|Ωi)(e) = ϕey,

∂2

∂x∂y
(vδ|Ωi)(e) = ϕexy,

∀ψ ∈ PNi−4(Γij),
∫

Γij

(vδ|Ωi
− ϕ0)(η)ψ(η) dη = 0, (3.1)∫

Γij

(
∂vδ
∂n
|Ωi
− ϕ1)(η)ψ(η) dη = 0, 1 ≤ j ≤ 4. (3.2)

The choice of PNi−4(Γij) is justified by the fact that four conditions are enforced
on the vertices of Γij , one on the function and one on its normal derivative at each
vertex.

In the case of the problem of order four and to take into account the boundary
conditions, it is more appropriate to use a quadrature formula which uses the func-
tion values on the extremities as well as the values of its normal derivative. The
following lemma defines this quadrature formula (see [12, 22] for the proof)

Lemma 3.1. Let N ≥ 2 an integer, there exists a unique set of points ξj, 1 ≤ j ≤
N − 1, a unique set of positif reals ρj, 1 ≤ j ≤ N − 1, ρ+, ρ− such that for all
polynomials ϕ in P2N−1(]− 1, 1[)∫ 1

−1

ϕ(x) dx =
N−1∑
j=1

ϕ(ξj)ρj + ϕ(−1)ρ− + ϕ(1)ρ+ (3.3)

Remark 3.2. The nodes ξj ; 1 ≤ j ≤ N − 1, are the zeros of the derivative
of the Legendre polynomial LN . We refer to [12] for the calculus of ξj and ρj ,
1 ≤ j ≤ N − 1.

Given two functions u, v continuous on Ω = [−1, 1]× [−1, 1] and vanishes on its
boundary, we define the following discrete scalar product

(u, v)N =
N−1∑
j=1

N−1∑
l=1

u(ξj , ξl)v(ξj , ξl)ρjρl.

If T i is the bijection from ]− 1, 1[2 in Ωi, we define

(u, v)Ni
=
|Ωi|
4

Ni−1∑
j=1

Ni−1∑
l=1

(u ◦ T i)(ξj , ξl)(v ◦ T i)(ξj , ξl)ρjρl.

Hence, for each value of δ, the discrete problem is written: Find uδ in Xδ such that
for all vδ ∈ Xδ,

I∑
i=1

(∆uδ|Ωi ,∆vδ|Ωi)Ni =
I∑
i=1

(f, vδ|Ωi)Ni . (3.4)

See [8] for the numerical analysis and the implementation of problem (3.4) using
the mortar spectral element method.

We present in this work a method based on dual singular function which will allow
us to approximate the leading singularity coefficient of the bilaplacian operator.
This method has high precision compared to the Strang and Fix algorithm [21].



6 M. ABDELWAHED, N. CHORFI, V. D. RĂDULESCU EJDE-2017/305

Let X∗δ = Xδ + Rτ1 be the augmented discrete space, which is a Banach space
by the following discrete norm, for all u∗δ = uδ + µτ1 ∈ X∗δ ,

‖u∗δ‖1∗ =
I∑
i=1

(
‖uδ/Ωi

‖2H2(Ωi)
+ |µ|2‖τ1/Ωi

‖2H2(Ωi)

)1/2

.

We ask the following two discrete problems:
(1) find the function u∗δ = uδ + µτ1 ∈ X∗δ such that for all v∗δ = vδ + ξτ1 ∈ X∗δ

we have

a∗δ(u
∗
δ , v
∗
δ ) =

I∑
i=1

∫
Ωi

f |Ωi
v∗δ |Ωi

dx dy; (3.5)

(2) find ϕ∗δ in X∗δ such that for all ψ∗δ ∈ X∗δ ,

a∗δ(ϕ
∗
δ , ψ
∗
δ ) =

I∑
i=1

∫
Ωi

∆2τ∗1 |Ωi
ψ∗δ |Ωi

dx dy. (3.6)

The bilinear form a∗δ is defined by

a∗δ(u
∗
δ , v
∗
δ ) =

I∑
i=1

(
(∆uδ|Ωi ,∆vδ|Ωi)Ni + µ

∫
Ωi

∆τ1|Ωi∆vδ|Ωi dx dy

+ ξ

∫
Ωi

∆τ1|Ωi
∆uδ|Ωi

dx dy + µξ

∫
Ωi

(∆τ1|Ωi
)2 dx dy

)
.

(3.7)

We refer to [1] for the numerical analysis of this problem and to [3] for its imple-
mentation. The following proposition gives us the expression of the discrete leading
singularity coefficient.

Proposition 3.3. Let u, ϕ∗, u∗δ and ϕ∗δ be respectively the solutions of (2.2),
(2.10), (3.5) and (3.6), we have (i)

(
1
c

)µδ =
∫

Ω

fτ∗1 dx dy +
∫

Ω

u∗δ∆
2τ∗1 dx dy =

∫
Ω

f(τ∗1 − ϕ∗δ) dx dy (3.8)

(ii)

(
1
c

)(µ− µδ)

=
I∑
i=1

∫
Ωi

∆(u− u∗δ)|Ωi∆(ϕ∗ − ϕ∗δ)|Ωi dx dy

+
∑

1≤i 6=l≤I

∫
Γil

[∂(∆u)
∂ni

(ϕ∗δ |Ωi
− ϕ∗δ |Ωl

)− ∂(∆ϕ∗)
∂ni

(u∗δ |Ωi
− u∗δ |Ωl

)
] (3.9)

where c is defined in (2.12)

Proof. We consider D the intersection of the domain Ω and the ball of center a and
radius R. We consider that the cut-off function χ is equal 1 in D then we choose
R such that ∆2τ1 = ∆2τ∗1 = 0 then from (2.2) and (2.5) we have∫

Ω

fτ∗1 dx dy =
∫
D

−∆2uδτ
∗
1 dx dy +

∫
Ω\D
−∆2u∗δτ

∗
1 dx dy.
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By double integration by parts we conclude∫
Ω

fτ∗1 dx dy +
∫
D

u∗δ∆
2τ∗1 dx dy

=
∫ ω

0

(
∂r(∆(u∗δ − uδ))τ∗1 − (u∗δ − uδ)∂r(∆τ∗1 )

)
(R, θ)r dθ

Since u∗δ − uδ = µδτ1, we have

c
(∫

Ω

fτ∗1 dx dy +
∫

Ω

u∗δ∆
2τ∗1 dx dy

)
= µδ.

To obtain the second equality we replace v by u in problem (2.10).
To show (3.9) we use (2.11) and (3.6). We obtain

(
1
c

)(µ− µδ) =
∫

Ω

f(ϕ∗δ − ϕ∗) dx dy =
I∑
i=1

∫
Ωi

∆2u|Ωi
(ϕ∗ − ϕ∗δ)|Ωi

dx dy. (3.10)

By double integration by parts we have

(
1
c

)(µ− µδ)

=
I∑
i=1

∫
Ωi

∆u∆(ϕ∗ − ϕ∗δ) dx dy +
∑

1≤i<l≤I

∫
Γil

∂(∆u)
∂ni

(ϕ∗ − ϕ∗δ) dτ

−
∑

1≤i<l≤I

∫
Γil

(∆u)
∂

∂ni
(ϕ∗ − ϕ∗δ) dτ.

(3.11)

Let ϕ∗δ = ϕδ + ξτ1 and u∗δ = uδ + µτ1 in X∗δ . Since

a∗δ(ϕ
∗
δ , u
∗
δ) =

I∑
i=1

(∆ϕδ|Ωi
,∆uδ|Ωi

)Ni
+ µ

∫
Ωi

∆τ1∆uδ dx dy

+ ξ

∫
Ωi

∆ϕδ∆τ1 dx dy + µξ

∫
Ωi

∆τ2
1 dx dy,

and if uδ ∈ X−δ = {vδ ∈ Xδ : vδ/Ωi
∈ PNi−1(Ωi), 1 ≤ i ≤ I}, we obtain

I∑
i=1

(∆ϕδ|Ωi
,∆uδ|Ωi)Ni

=
I∑
i=1

∫
Ωi

∆ϕδ|Ωi
∆uδ|Ωi

dx dy.

Then using (2.10) we have

a∗δ(ϕ
∗
δ , u
∗
δ) =

I∑
i=1

∫
Ωi

∆ϕ∗δ∆u
∗
δ dx dy =

I∑
i=1

∫
Ωi

∆2τ∗1 u
∗
δ dx dy. (3.12)

Following (3.12) we deduce that ∆2ϕ∗ = ∆2τ∗1 in the sense of distribution and that
ϕ∗ = ∂ϕ∗

∂n = 0 on ∂Ω then

a∗δ(ϕ
∗
δ , u
∗
δ) =

I∑
i=1

∫
Ωi

∆2ϕ∗|Ωi
u∗δ |Ωi

dx dy.
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Then by double integration by parts,
a∗δ(ϕ

∗
δ , u
∗
δ)

=
I∑
i=1

∫
Ωi

∆ϕ∗|Ωi
∆u∗δ |Ωi

dx dy +
∑

1≤i<l≤I

∫
Γil

∂(∆ϕ∗)
∂ni

(u∗δ |Ωi
− u∗δ |Ωl

) dτ

−
∑

1≤i<l≤I

∫
Γil

∂(∆u∗δ)
∂ni

(ϕ∗|Ωi
− ϕ∗|Ωl

) dτ.

(3.13)

Following (3.12) and (3.13) we conclude that
I∑
i=1

∫
Ωi

∆(ϕ∗ − ϕ∗δ)|Ωi∆u
∗
δ |Ωi dx

=
∑

1≤i<l≤I

∫
Γil

∂∆ϕ∗

∂ni
(u∗δ |Ωi − u∗δ |Ωl

) dτ

−
∑

1≤i<l≤I

∫
Γil

∂∆u∗δ
∂ni

(ϕ∗δ |Ωi − ϕ∗δ |Ωl
) dτ

By adding this equality with (3.12), we obtain the desired result. �

We interested in the following the error estimate between µ and µδ.

Theorem 3.4. Assume that f belongs to Hs−2(Ω) with s > 0. The error between
µ and µδ satisfies the following estimate, for ε > 0,

|µ− µδ| ≤ CN−2
( ∑

1≤i≤I

N−σi
i

)
‖f‖Hs−2(Ω),

N = inf1≤i≤I Ni and

σi =


s− 2 if Ωi does not contain any vertices of Ω,
inf(s− 2, 2η1(π2 )− ε) if Ωi contains one vertex of Ω other than a,
inf(s− 2, 2η1(ω)− ε) if Ωi contains a,

where η1(ω) is the second real solution of equation (2.8) in the band 0 < Re(z) < s.

Proof. Following (3.9) we have

µ− µδ = c

∫
Ω

f(ϕ∗δ − ϕ∗) dx dy = c

∫
Ω

∆2u(ϕ∗δ − ϕ∗)dx dy.

By double integration by parts we obtain

µ− µδ = c
( I∑
i=1

∫
Ω

∆u|Ωi
∆(ϕ− µ∗ϕ) dx dy +

∑
1≤i6=l≤I

∫
Γil

∂∆u
∂ni

(ϕ∗δ |Ωi
− ϕ∗|Ωi

) dτ

−
∑

1≤i6=l≤I

∫
Γil

(∆u)
∂(ϕ∗δ − ϕ∗)

∂ni
dτ
)
.

Otherwise taking v∗δ ∈ X∗δ such that vδ ∈ X−δ we obtain

a∗δ(ϕ
∗
δ , v
∗
δ ) = 〈∆2ϕ∗, v∗δ 〉

=
I∑
i=1

∫
Ωi

∆ϕ∆v∗δ dx dy +
∑

1≤i6=l≤I

∫
Γil

∂∆ϕ∗

∂n
(vδ|Ωi

− vδ|Ωl
) dτ
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−
∑

1≤i 6=l≤I

∫
Γil

(∆ϕ∗)
∂

∂ni
(v∗δ |Ωi

− v∗δ |Ωl
) dτ.

Then by adding and subtracting the same quantity, we write

µ− µδ = c
( I∑
i=1

∫
Ωi

(∆u|Ωi
−∆v∗δ |Ωi

)∆(ϕ∗δ |Ωi
− ϕ∗|Ωi

) dx dy

+
∑

1≤i6=l≤I

∫
Γil

∂∆u
∂ni

(ϕ∗δ |Ωi
− ϕ∗|Ωi

) dτ

−
∑

1≤i6=l≤I

∫
Γil

(∆u)
∂

∂ni
(ϕ∗δ |Ωi − ϕ∗|Ωi) dτ

+
∑

1≤i6=l≤I

∫
Γil

∂∆ϕ∗

∂ni
(v∗δ |Ωi

− v∗|Ωl
) dτ

−
∑

1≤i6=l≤I

∫
Γil

(∆ϕ∗)
∂

∂ni
(v∗δ |Ωi − v∗|Ωl

) dτ
)
.

Proceeding as in [7, Chapter 4.2] we obtain∑
1≤i 6=l≤I

∫
Γil

∂∆u
∂ni

(ϕ∗δ |Ωi − ϕ∗|Ωi) dτ −
∑

1≤i6=l≤I

∫
Γil

(∆u)
∂

∂ni
(ϕ∗δ |Ωi − ϕ∗|Ωi) dτ

≤ C
( I∑
i=1

4∑
j=1

inf
ψij∈PNi−4(Γij)

|∂∆uR
∂n

− ψij‖[H3/2(Γij)]′

+ inf
ψij∈PNi−4(Γij)

|∆uR − ψij‖[H1/2(Γij)]′

)
‖ϕ∗ − ϕ∗δ‖H2(Ω).

On the other hand, by construction, ∆2τ∗1 is in L2(Ω), therefore ϕ∗ is the sum of
τ1 and a function ϕ̃ in H4(Ω) ∩H2

0 (Ω) see [1]∑
1≤i6=l≤I

∫
Γil

∂∆ϕ∗

∂ni
(ϕ∗δ |Ωi − ϕ∗δ |Ωl

) dτ −
∑

1≤i 6=l≤I

∫
Γil

(∆ϕ∗)
∂

∂ni
(v∗δ |Ωi − v∗δ |Ωl

) dτ

≤ C
( I∑
i=1

4∑
j=1

(
inf

ψij∈PNi−4(Γij)
‖∂∆ϕ̃
∂n
− ψij‖[H3/2(Γij)]′

+ inf
ψij∈PNi−4(Γij)

‖∆ϕ̃− ψij‖[H1/2(Γij)]′

))
‖uR − v∗δ‖1∗.

Having ϕ∗, respectively ϕ∗δ the solution of the continuous, respectively discrete,
problem with second member in L2(Ω), then we conclude from [1, Theorem 5.7]. �

Remark 3.5. We notice that the convergence order is N ε−4 and N ε− 14
3 in the case

of the crack and in the case of ω = 3π
2 respectively. This proves the high accuracy

of the method.

4. Implementation and numerical results

To write the matrix system associated to the discrete problem (3.5) we have to
choose a basis for the space X∗δ . Let hi be the Hermite interpolating polynomials
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on the interval [−1, 1] defined by

hj(ξl) = δjl 0 ≤ j ≤ N,
hj(−1) = hj(1) = 0 2 ≤ l ≤ N − 2,

h′j(−1) = h′j(1) = 0.

It follows that any polynomial vδ of Xδ is written as

vδ(x, y)|Ωi
=

N∑
j=0

N∑
l=0

vjlNi
hNi
j (x)hNi

l (y),

where vjlNi
= vδ(ξNi

j , ξNi

l ), ξNi
j and h

Nj

j are deduced respectively form ξj and hj by
translation and dilation. Therefore for v∗δ in X∗δ there exists vδ ∈ Xδ and µ ∈ R
such that v∗δ = vδ + µτ1 then

v∗δ (x, y)|Ωi =
Ni∑
j=0

Ni∑
l=0

vjlNi
hNi
j (x)hNi

l (y) + µτ1|Ωi .

The two integral matching conditions (3.1) and (3.2) can be written in the matrix
form 

vijl|Ωi

vjl|edges

(∂v
i

∂n )jl|edges

µδ

 = Q


vijl|Ωi

ϕi0|edges

ϕi1|edges

µδ


where

Q =


I 0 0 0
0 Q0 0 0
0 0 Q1 0
0 0 0 1

 .
The couple [Q0, Q1] is called “rectangular transformation matrix”. This matrix
ensures the descendance of the mortar to the elements. While its transpose QT

purges the unknown vectors from the false degree of freedom. It is clear that
we evaluate vδ/Ωi

without explicitly forming the global matrix projection. The
calculation of this matrix is local for each edge-mortar. We observe that the discrete
problem (3.5) is written equivalently in the form

AU∗δ = F (4.1)

where A takes the form

(∆(hjhl); ∆(hphq))N1 0 . . 0
R
Ω1

∆τ1∆(hphq)

0 .
. .
.

R
ΩN∆

∆τ1∆(hphq)

. 0

. .

. .

.
0 . . 0 (∆(hihj); ∆(hphq))Nk

0R
Ω1

∆τ1∆(hjhl) .
R
ΩN∆

∆τ1∆(hjhl) 0 .
R
Ω(∆τ1)2


The i-th block (∆(hjhl); ∆(hphq))Ni

for 1 ≤ j, l ≤ Ni − 1 and 1 ≤ p, q ≤ Ni − 1,
represents the Bilaplacian operator on the sub-domain Ωi, and F is the second
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member given by

F =


(hphq, f)N1

. . .
(hphq, f)Ni∫
Ω
fτ1 dx dy

 .
The vector U∗δ is constituted by the values of the solution both at the interior nodes
of each sub-domains and on the boundary interfaces.

Note that we do not solve the system (4.1) because it has false degrees of freedom.
However, the global system that we solve is the following

QTAQŨ = QTF (4.2)

where Ũ is the vector composed from the unknown on the internal nodes and the
value of the mortar functions (ϕ0, ϕ1) on the skeleton S. The matrix Ã = QTAQ is
symmetric and positive defined. Then, we will use the gradient conjugate method
for solving the problem (4.2).

For this, let U0 be arbitrary, R0 = QTF − ÃU0, T0 = R0 and

αn =
(Rn, Rn)
(Tn, ATn)

, Un+1 = Un + αnTn, Rn+1 = Rn − αnATn,

βn =
(Rn+1, Rn+1)

(Rn, Rn)
, Tn+1 = Rn+1 + βnTn .

The calculation is processed locally, Even though the resolution by the gradient
algorithm is processed globally. We notice that the product matrix-vector is the
most expensive. The local matrices (∆(hjhl); ∆(hphq))Ni are full, consequently,
the calculation cost is high. It is as O(N4) operations and O(N4) memory space.
This cost of operations is reduced to O(N3) and the memory space to O(N2) by
sub-domain by the tensorisation.

Below, we present some numerical results to approximate the solution of problem
4.2 and the singularity coefficient by applying the dual method. In the following,
we vary the parameter of discretization N and the data function of the biharminic
problem.

The test cases are implemented in a neighborhood of the singular corner a, i.e.
four sub-domains in the case of the crack and three sub-domains in the case of
ω = 3π/2 (see figure 2).

Figure 2. Spectral mesh of domain when ω = 2π and ω = 3π
2 .
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Below some numerical results are presented related to the calculation of the
discrete solution of the problem 3.5 and the leading singularity coefficient by the
dual method. In the following examples, µδ denotes the discrete leading singularity
coefficient.

Example 4.1. u(x, y) = sin2 πx2 sin2 πy2 and ω = 3π
2 .

N 7 15 22 30 37
µδ 4.0 10−2 2.463 10−6 −0.951 10−12 −3.041 10−14 1.382 10−14

Example 4.2. u(r, θ) = r1.5(sin(1.5θ) − 3 sin(0.5θ) + cos(1.5θ) − cos(0.5θ)), and
ω = 2π.

N 5 15 20 30 40
µδ 0.8995. 0.9599. 0.9993 0.9999 1.

Example 4.3. u(r, θ) = r1.544
(
4.302(cos(0.092θ)−cos(1.908θ))−1.1815(10.869 sin(0.092θ)−

0.524 sin(1.908))
)
, and ω = 3π

2 .

N 5 10 15 20 35
µδ 0.9017. 0.9896. 0.9991. 0.9998 1.

Figure 3. Error on the solution and the leading singularity coefficient.

Figure 3 shows the error curves on the solution of problem 4.2 (curves in blue)
and the curves of error on the leading singularity coefficient (curves in red) in both
ω = 2π and ω = 3π

2 . The continuous solutions are equal to the first singular func-
tion which corresponds to a singularity coefficient equal to 1 (Examples 4.2 and
4.3). Error curves are calculated in logarithmic scale permitting the computing of
the convergence order corresponding to the slope of the curve. We notice that the
convergence order on the leading singularity coefficient is better than the conver-
gence order of the solution. It is equal to 3.9986 for the crack and to 4.6519 for the
L-domain. However in the case of the solution, this order is equal to 1.9997 for the
crack and to 2.4131 for the L-domain.

Let Γ0 = {(r, θ) such that θ = 0 and θ = ω}. Figure 4 shows the iso-values of
the discrete solution in the case of ω = 3π

2 for the below biharmonic problem

−∆2u = 0 in Ω

u = xy on ∂Ω/Γ̄0
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Figure 4. Discrete solution ω = 2π and ω = 3π
2 .

∂u

∂n
= 0 on ∂Ω/Γ̄0

u = 0 on Γ0

∂u

∂n
= 0 on Γ0

and in the case when ω = 2π the discrete solution corresponding to the problem:

−∆2u = 1 in Ω
u = 0 on ∂Ω

∂u

∂n
= 0 on ∂Ω .

The next example is related to the calculation of the leading singularity coeffi-
cient in the case of the crack for the biharmonic problem

−∆2u = f in Ω

u = 0 on ∂Ω/Γ̄0

∂u

∂n
= g on ∂Ω/Γ̄0

u = 0 on Γ0

∂u

∂n
= 0 on Γ0.

Example 4.4. f = 0, g = x and ω = 2π.
N 10 15 20 30 40
µδ 0.1580. 0.1559. 0.1561. 0.1562. 0.1562.

4.1. Conclusion. In this paper, we studied the approximation of the leading sin-
gularity coefficient by mortar spectral element method. This coefficient has a great
importance in the solid mechanics domain. It informs on the crack propagation.
The dual method permitted to improve the results. Indeed, the obtained results are
better than those obtained by Strang and Fix algorithm (see [1]). Our conclusion
is twofold: first, the theory is confirmed since the dual method gives us an optimal
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error estimate. Second, using the spectral discretization for such type of problem
is more efficient.
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