MINIMIZATION PROBLEMS

 AND CORRESPONDING RENORMALIZED ENERGIES
Cătălin LEFTER and Vicenţiu RĂDULESCU

1. Introduction and theoretical setting

Let G be a smooth bounded simply connected domain in \mathbf{R}^{2}. Let $a=\left(a_{1}, \ldots, a_{k}\right)$ be a configuration of distinct points in G and $\bar{d}=\left(d_{1}, \ldots, d_{k}\right) \in \mathbf{Z}^{k}$. We also consider a smooth boundary data $g: \partial G \rightarrow S^{1}$ whose topological degree is $d=d_{1}+\ldots+d_{k}$. Let also $\rho>0$ be sufficiently small and denote

$$
\Omega_{\rho}=G \backslash \bigcup_{i=1}^{k} \overline{B\left(a_{i}, \rho\right)}, \Omega=G \backslash\left\{a_{1}, \ldots a_{k}\right\}
$$

As in [BBH4] we consider the classes of functions
(1) $\mathcal{E}_{\rho, g}=\left\{v \in H^{1}\left(\Omega_{\rho} ; S^{1}\right) ; v=g\right.$ on ∂G and $\operatorname{deg}\left(v, \partial B\left(a_{i}, \rho\right)\right)=d_{i}$, for $\left.i=1, \ldots, k\right\}$

$$
\begin{gather*}
\mathcal{F}_{\rho}=\left\{v \in H^{1}\left(\Omega_{\rho} ; S^{1}\right) ; \operatorname{deg}(v, \partial G)=d \text { and } \operatorname{deg}\left(v, \partial B\left(a_{i}, \rho\right)\right)=d_{i}, \text { for } i=1, \ldots, k\right\} \tag{2}\\
\mathcal{F}_{\rho, A}=\left\{v \in \mathcal{F}_{\rho} ; \int_{\partial G}\left|\frac{\partial v}{\partial \tau}\right|^{2} \leq A\right\}
\end{gather*}
$$

and the minimization problems

$$
\begin{align*}
& E_{\rho, g}=\inf _{v \in \mathcal{E}_{\rho, g}} \int_{\Omega}|\nabla v|^{2} \tag{4}\\
& F_{\rho}=\inf _{v \in \mathcal{F}_{\rho}} \int_{\Omega}|\nabla v|^{2} .
\end{align*}
$$

$$
\begin{equation*}
F_{\rho, A}=\inf _{v \in \mathcal{F}_{\rho, A}} \int_{\Omega}|\nabla v|^{2} \tag{6}
\end{equation*}
$$

F. Bethuel, H. Brezis and F. Hélein proved in [BBH4] that the minimization problems (4) and (5) have unique solutions, say u_{ρ} respectively v_{ρ}. By analysing the behaviour of u_{ρ} as $\rho \rightarrow 0$ they obtained the renormalized energy $W(a, \bar{d}, g)$ by the following asymptotic expansion:

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega_{\rho}}\left|\nabla u_{\rho}\right|^{2}=\pi\left(\sum_{i=1}^{k} d_{i}^{2}\right) \log \frac{1}{\rho}+W(a, \bar{d}, g)+O(\rho), \quad \text { as } \rho \rightarrow 0 \tag{7}
\end{equation*}
$$

We shall omit \bar{d} in $W(a, \bar{d}, g)$ when $k=d$ and each d_{j} equals 1 .
By considering the behavior of v_{ρ} as $\rho \rightarrow 0$ we obtain in the first part of this paper a notion of renormalized energy $\widetilde{W}(a, \bar{d})$ when only singularities and degrees are prescribed. This will appear in a similar asymptotic expansion:

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega_{\rho}}\left|\nabla v_{\rho}\right|^{2}=\pi\left(\sum_{i=1}^{k} d_{i}^{2}\right) \log \frac{1}{\rho}+\widetilde{W}(a, \bar{d})+O(\rho), \quad \text { as } \rho \rightarrow 0 \tag{8}
\end{equation*}
$$

The connection between the two energies is given by

$$
\begin{equation*}
\widetilde{W}(a, \bar{d})=\inf _{\substack{g: \partial G \rightarrow S^{1} \\ \operatorname{deg}(g, \partial G)=d}} W(a, \bar{d}, g) \tag{9}
\end{equation*}
$$

Moreover the infimum in (9) is atteint. We give thereafter an explicit formula for $\widetilde{W}(a, \bar{d})$.

We recall that in [BBH4] the study of the minimization problems (4) and (5) is related to the unique solutions Φ_{ρ} respectively $\hat{\Phi}_{\rho}$ of the following linear problems:

$$
\left\{\begin{array}{l}
\Delta \Phi_{\rho}=0 \quad \text { in } \Omega_{\rho} \tag{10}\\
\Phi_{\rho}=C_{i}=\text { Const. on each } \partial \omega_{i} \text { with } \omega_{i}=B\left(a_{i}, \rho\right) \\
\int_{\partial \omega_{i}} \frac{\partial \Phi_{\rho}}{\partial \nu}=2 \pi d_{i} \quad i=1, \ldots k \\
\frac{\partial \Phi_{\rho}}{\partial \nu}=g \wedge g_{\tau} \quad \text { on } \partial G \\
\int_{\partial G} \Phi_{\rho}=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\Delta \hat{\Phi}_{\rho}=0 \quad \text { in } \Omega \tag{11}\\
\hat{\Phi}_{\rho}=C_{i}=\text { Const. on } \partial \omega_{i} i=1, \ldots, k \\
\hat{\Phi}_{\rho}=0 \text { on } \partial G \\
\int_{\partial \omega_{i}} \frac{\partial \hat{\Phi}_{\rho}}{\partial \nu}=2 \pi d_{i} \quad i=1, \ldots, k
\end{array}\right.
$$

We also recall that Φ_{ρ} converges uniformly as $\rho \rightarrow 0$ to Φ_{0}, which is the unique solution of

$$
\left\{\begin{array}{l}
\Delta \Phi_{0}=2 \pi \sum_{j=1}^{k} d_{j} \delta_{a_{j}} \quad \text { in } G \tag{12}\\
\frac{\partial \Phi_{0}}{\partial \nu}=g \wedge g_{\tau} \quad \text { on } \partial G \\
\int_{\partial G} \Phi_{0}=0 .
\end{array}\right.
$$

The explicit formula for $W(a, \bar{d}, g)$ found in $[\mathrm{BBH} 4]$ is

$$
\begin{equation*}
W(a, \bar{d}, g)=-\pi \sum_{i \neq j} d_{i} d_{j} \log \left|a_{i}-a_{j}\right|+\frac{1}{2} \int_{\partial G} \Phi_{0}\left(g \wedge g_{\tau}\right)-\pi \sum_{i=1}^{k} d_{i} R_{0}\left(a_{i}\right) \tag{13}
\end{equation*}
$$

where

$$
R_{0}(x)=\Phi_{0}(x)-\sum_{j=1}^{k} d_{j} \log \left|x-a_{j}\right| .
$$

The expression we obtain for $\widetilde{W}(a, \bar{d})$ is lied to $\hat{\Phi}_{0}$, which is the local uniform limit of $\hat{\Phi}_{\rho}$ as $\rho \rightarrow 0$ and is the unique solution of the problem

$$
\left\{\begin{array}{l}
\Delta \hat{\Phi}_{0}=2 \pi \sum_{j=1}^{k} d_{j} \delta_{a_{j}} \quad \text { in } G \tag{14}\\
\hat{\Phi}_{0}=0 \text { on } \partial G .
\end{array}\right.
$$

In the second part of this section, considering the minimization problem (6) we find a variant of the formula (8), but for \widetilde{W} replaced by \widetilde{W}_{A}, which is a corresponding notion of renormalized energy that satisfies

$$
\widetilde{W}_{A}(a, \bar{d})=\inf \left\{W(a, \bar{d}, g) ; \operatorname{deg}(g ; \partial G)=d \text { and } \int_{\partial G}\left|\frac{\partial g}{\partial \tau}\right|^{2} \leq A\right\}
$$

In Section 3 we calculate explicitly W and \widetilde{W} in a particular case and deduce auxiliary results.

In the last section we minimize the Ginzburg-Landau energy

$$
E_{\varepsilon}(u)=\frac{1}{2} \int_{G}|\nabla u|^{2}+\frac{1}{4 \varepsilon^{2}} \int_{G}\left(1-|u|^{2}\right)^{2}
$$

in the class

$$
\mathcal{H}_{d, A}=\left\{u \in H^{1}\left(G ; \mathbf{R}^{2}\right) ;|u|=1 \quad \text { on } \quad \partial G, \operatorname{deg}(u, \partial G)=d \text { and } \int_{\partial G}\left|\frac{\partial u}{\partial \tau}\right|^{2} \leq A\right\}
$$

We prove that $\mathcal{H}_{d, A}$ is non-empty if A is big enough and the infimum of E_{ε} is atteint. If u_{ε} is a minimizer, we prove the convergence as $\varepsilon \rightarrow 0$ of u_{ε} to u_{\star}, which is a canonical harmonic map with values in S^{1} and d singularities, say a_{1}, \cdots, a_{d}. Moreover, the configuration $a=\left(a_{1}, \cdots, a_{d}\right)$ minimizes the renormalized energy \widetilde{W}_{A}.

We recall here (see [BBH4]) that v is a canonical harmonic map with values in S^{1} and boundary data g if it is harmonic and satisfies

$$
\left\{\begin{array}{l}
v \wedge \frac{\partial v}{\partial x_{1}}=-\frac{\partial \Phi_{0}}{\partial x_{2}} \quad \text { in } \Omega \\
v \wedge \frac{\partial v}{\partial x_{2}}=\frac{\partial \Phi_{0}}{\partial x_{1}} \quad \text { in } \Omega
\end{array}\right.
$$

or, equivalently,

$$
\frac{\partial}{\partial x_{1}}\left(v \wedge \frac{\partial v}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(v \wedge \frac{\partial v}{\partial x_{2}}\right)=0 \quad \text { in } \quad \mathcal{D}^{\prime}(G) .
$$

If v is canonical and has singularities $a_{1}, \cdots, a_{k} \in G$ with topological degrees d_{1}, \cdots, d_{k} then v has the form

$$
v(z)=\left(\frac{z-a_{1}}{\left|z-a_{1}\right|}\right)^{d_{1}} \cdots\left(\frac{z-a_{k}}{\left|z-a_{k}\right|}\right)^{d_{k}} e^{i \varphi(z)}
$$

where φ is a smooth harmonic function in G.

2. The renormalized energy for prescribed singularities and degrees

We know from Chapter I in [BBH4] that

$$
\left\{\begin{array}{l}
v_{\rho} \wedge \frac{\partial v_{\rho}}{\partial x_{1}}=-\frac{\partial \hat{\Phi}_{\rho}}{\partial x_{2}} \quad \text { in } \Omega_{\rho} \tag{15}\\
v_{\rho} \wedge \frac{\partial v_{\rho}}{\partial x_{2}}=\frac{\partial \hat{\Phi}_{\rho}}{\partial x_{1}} \quad \text { in } \Omega_{\rho}
\end{array}\right.
$$

So

$$
\begin{equation*}
\left|\nabla v_{\rho}\right|=\left|\nabla \hat{\Phi}_{\rho}\right| \quad \text { in } \Omega_{\rho} . \tag{16}
\end{equation*}
$$

Lemma 1. $\hat{\Phi}_{\rho}$ converges to $\hat{\Phi}_{0}$ in $L^{\infty}\left(\Omega_{\rho}\right)$ as $\rho \rightarrow 0$. More precisely, there exists $C>0$ such that

$$
\begin{equation*}
\left\|\hat{\Phi}_{\rho}-\hat{\Phi}_{0}\right\|_{L^{\infty}\left(\Omega_{\rho}\right)} \leq C \rho . \tag{17}
\end{equation*}
$$

Lemma 2. Let v be a solution of

$$
\left\{\begin{array}{l}
\Delta v=0 \text { in } \Omega_{\rho} \tag{18}\\
v=0 \text { on } \partial G \\
\int_{\partial \omega_{j}} \frac{\partial v}{\partial \nu}=0 \text { for each } j
\end{array}\right.
$$

Then

$$
\sup _{\Omega_{\rho}} v-\inf _{\Omega_{\rho}} v \leq \sum_{j=1}^{k}\left(\sup _{\omega_{j}} v-\inf _{\omega_{j}} v\right) .
$$

Proof of Lemma 2. We shall adapt the proof of Lemma I. 3 in [BBH4]. Let

$$
\alpha_{j}=\inf _{\partial \omega_{j}} v, \quad \beta_{j}=\sup _{\partial \omega_{j}} v \text { and } I_{j}=\left[\alpha_{j}, \beta_{j}\right] .
$$

We shall prove for the instant that

$$
\begin{equation*}
\bigcup_{j=1}^{k} I_{j} \text { is connected } \tag{19}
\end{equation*}
$$

Suppose, by contradiction, it is not true. Then, there exist $t_{0} \in \mathbf{R}, \delta>0$ and $1 \leq i \leq$ k such that

$$
\begin{gathered}
\beta_{j} \leq t_{0}-\delta \quad \text { if } 1 \leq j \leq i \\
\alpha_{j} \geq t_{0}+\delta \quad \text { if } i+1 \leq j \leq k
\end{gathered}
$$

We may suppose, without loss of generality that $t_{0} \neq 0$, say $t_{0}>0$. We may also suppose that $t_{0}-\delta \geq 0$. Choose $\theta \in C^{\infty}(\mathbf{R},[0,1])$ such that

$$
\theta(t)= \begin{cases}0 & \text { if } t \leq t_{0}-\delta \\ 1 & \text { if } t \geq t_{0}+\delta\end{cases}
$$

We multiply $\Delta v=0$ with $\theta(v)$ and then integrate on Ω_{ρ}. Observing that $\theta(v)=0$ on ∂G we deduce

$$
0=\int_{\Omega_{\rho}} \theta^{\prime}(v)|\nabla v|^{2}-\int_{\partial G} \frac{\partial v}{\partial \nu} \theta(v)+\sum_{j=1}^{k} \int_{\partial \omega_{j}} \frac{\partial v}{\partial \nu} \theta(v)=\int_{\Omega_{\rho}} \theta^{\prime}(v)|\nabla v|^{2} .
$$

So $\nabla v=0$ on $B=\left\{x \in \Omega_{\rho} ; t_{0}-\delta<v(x)<t_{0}+\delta\right\}$ which is a contradiction.
We distinguish two cases:
Case 1. $\quad \inf _{\Omega_{\rho}} v<0$ and $\sup _{\Omega_{\rho}} v>0$.
In this case, from the connectedness of $\bigcup_{j=1}^{k} I_{j}, v=0$ on ∂G and the maximum principle, our conclusion follows obviously.

Case 2. $\quad \inf _{\Omega_{\rho}} v=0$ or $\sup _{\Omega_{\rho}} v=0$.
We shall treat only the first case. Suppose $v \neq 0$ on Ω_{ρ} (otherwise the conclusion is obvious). By the Hopf maximum principle, $\frac{\partial v}{\partial \nu}<0$ on ∂G, which contradicts $\int_{\partial G} \frac{\partial v}{\partial \nu}=0$.

Proof of Lemma 1. We apply Lemma 2 to the function $v=\hat{\Phi}_{\rho}-\hat{\Phi}_{0}$. Since $\hat{\Phi}_{\rho}=$ Const. on each $\partial B\left(a_{j}, \rho\right)$, it follows that

$$
\sup _{\Omega_{\rho}}\left(\hat{\Phi}_{\rho}-\hat{\Phi}_{0}\right)-\inf _{\Omega_{\rho}}\left(\hat{\Phi}_{\rho}-\hat{\Phi}_{0}\right) \leq \sum_{j=1}^{k}\left(\sup _{\partial B\left(a_{j}, \rho\right)} \hat{\Phi}_{0}-\inf _{\partial B\left(a_{j}, \rho\right)} \hat{\Phi}_{0}\right) \leq C \rho
$$

Using now the fact that $\hat{\Phi}_{\rho}-\hat{\Phi}_{0}=0$ on ∂G we obtain

$$
\begin{equation*}
\left\|\hat{\Phi}_{\rho}-\hat{\Phi}_{0}\right\|_{L^{\infty}\left(\Omega_{\rho}\right)} \leq C \rho \tag{20}
\end{equation*}
$$

Remark. By Lemma 1 and standard elliptic estimates it follows that $\hat{\Phi}_{\rho}$ converges in $C_{\mathrm{loc}}^{k}(\Omega \cup \partial G)$ as $\rho \rightarrow 0$, for each $k \geq 0$.

Theorem 1. As $\rho \rightarrow 0$ then (up to a subsequence) v_{ρ} converges in $C_{\mathrm{loc}}^{k}(\Omega \cup \partial G)$ to v_{0}, which is a canonical harmonic map.

Moreover, the limits of two such sequences differ by a multiplicative constant of modulus 1 .

Proof. We may write, locally on $\Omega_{\rho} \cup \partial G, v_{\rho}=e^{i \varphi_{\rho}}$ with $0 \leq \varphi_{\rho} \leq 2 \pi$. Thus, by (15),

$$
\begin{cases}\frac{\partial \varphi_{\rho}}{\partial x_{1}}=-\frac{\partial \hat{\Phi}_{\rho}}{\partial x_{2}} \quad \text { in } \Omega_{\rho} \tag{21}\\ \frac{\partial \varphi_{\rho}}{\partial x_{2}}=\frac{\partial \hat{\Phi}_{\rho}}{\partial x_{1}} \quad \text { in } \Omega_{\rho}\end{cases}
$$

Hence, up to a subsequence, φ_{ρ} converges in $C_{\text {loc }}^{k}(\Omega \cup \partial G)$. This means that v_{ρ} converges (up to a subsequence) in $C_{\mathrm{loc}}^{k}(\Omega \cup \partial G)$ to some v_{0}. Denote by $g_{\rho}=v_{\rho \mid \partial G}$. It is clear that g_{ρ} converges to some g_{0} and v_{0} satisfies

$$
\left\{\begin{array}{l}
v_{0} \wedge \frac{\partial v_{0}}{\partial x_{1}}=-\frac{\partial \hat{\Phi}_{0}}{\partial x_{2}} \quad \text { in } \Omega \tag{22}\\
v_{0} \wedge \frac{\partial v_{0}}{\partial x_{2}}=\frac{\partial \hat{\Phi}_{0}}{\partial x_{1}} \quad \text { in } \Omega \\
v_{0}=g_{0} \quad \text { on } \partial G,
\end{array}\right.
$$

which means that v_{0} is a canonical harmonic map.
We now consider two sequences $v_{\rho_{n}}$ and $v_{\nu_{n}}$ which converge to v_{1} and v_{2}. Locally,

$$
\varphi_{\rho_{n}} \rightarrow \varphi_{1} \quad \text { and } \quad \varphi_{\nu_{n}} \rightarrow \varphi_{2}
$$

Thus, $\nabla \varphi_{1}=\nabla \varphi_{2}$, so φ_{1} and φ_{2} differ locally by an additive constant, which means that v_{1} and v_{2} differ locally by a multiplicative constant of modulus 1 . By the connectedness of Ω, this constant is global.

Let

$$
\hat{R}_{0}(x)=\hat{\Phi}_{0}(x)-\sum_{j=1}^{k} d_{j} \log \left|x-a_{j}\right|
$$

We observe that \hat{R}_{0} is a smooth harmonic function in G.
Theorem 2. We have the following asymptotic estimate:

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega_{\rho}}\left|\nabla v_{\rho}\right|^{2}=\pi\left(\sum_{j=1}^{k} d_{j}^{2}\right) \log \frac{1}{\rho}+\widetilde{W}(a, \bar{d})+O(\rho), \quad \text { as } \rho \rightarrow 0 \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{W}(a, \bar{d})=-\pi \sum_{i \neq j} d_{i} d_{j} \log \left|a_{i}-a_{j}\right|-\pi \sum_{j=1}^{k} d_{j} \hat{R}_{0}\left(a_{j}\right) \tag{24}
\end{equation*}
$$

Proof. We follow the ideas of the proof of Theorem I. 7 in [BBH 4$]$.
Since $\hat{\Phi}_{\rho}$ is harmonic in Ω_{ρ} and $\hat{\Phi}_{\rho}=0$ on ∂G we may write

$$
\frac{1}{2} \int_{\Omega_{\rho}}\left|\nabla v_{\rho}\right|^{2}=\frac{1}{2} \int_{\Omega_{\rho}}\left|\nabla \hat{\Phi}_{\rho}\right|^{2}=-\frac{1}{2} \sum_{j=1}^{k} \int_{\partial B\left(a_{j}, \rho\right)} \frac{\partial \hat{\Phi}_{\rho}}{\partial \nu} \hat{\Phi}_{\rho}=-\pi \sum_{j=1}^{k} d_{j} \hat{\Phi}_{\rho}\left(\partial B\left(a_{j}, \rho\right)\right)
$$

By Lemma 1 and the expression of \hat{R}_{0} we easily deduce (23).

Theorem 3. The following equality holds:

$$
\begin{equation*}
\widetilde{W}(a, \bar{d})=\inf _{\operatorname{deg}(g ; \partial G)=d} W(a, \bar{d}, g) \tag{25}
\end{equation*}
$$

and the infimum is atteint.
Proof. Step 1. $\widetilde{W}(a, \bar{d}) \leq \inf _{\operatorname{deg}(g ; \partial G)=d} W(a, \bar{d}, g)$.
Suppose not, then there exist $\varepsilon>0$ and $g: \partial G \rightarrow S^{1}$ with $\operatorname{deg}(g ; \partial G)=d$ such that

$$
\begin{equation*}
W(a, \bar{d}, g)+\varepsilon \leq \widetilde{W}(a, \bar{d}) \tag{26}
\end{equation*}
$$

Thus, if u_{ρ} is a solution of (4), then

$$
\begin{gather*}
\frac{1}{2} \int_{\Omega_{\rho}}\left|\nabla u_{\rho}\right|^{2}=\pi\left(\sum_{j=1}^{k} d_{j}^{2}\right) \log \frac{1}{\rho}+W(a, \bar{d}, g)+O(\rho) \geq \tag{27}\\
\geq \frac{1}{2} \int_{\Omega_{\rho}}\left|\nabla v_{\rho}\right|^{2}=\pi\left(\sum_{j=1}^{k} d_{j}^{2}\right) \log \frac{1}{\rho}+\widetilde{W}(a, \bar{d})+O(\rho), \quad \text { as } \rho \rightarrow 0 .
\end{gather*}
$$

We obtain a contradiction by (26) and (27).
Step 2. If g_{ρ} and g_{0} are as in the proof of Theorem 1, then

$$
\widetilde{W}(a, \bar{d})=W\left(a, \bar{d}, g_{0}\right) .
$$

For $r>0$ let $u_{\rho, r}$ be a solution of the minimization problem

$$
\begin{equation*}
\min _{u \in \mathcal{E}_{r, g_{\rho}}} \int_{\Omega_{r}}|\nabla u|^{2} \tag{28}
\end{equation*}
$$

Denote $u_{\rho, \rho}=u_{\rho}$ and $\Phi_{\rho, r}$ the solution of the associated linear problem (see (10)). Let $\Phi_{\rho, 0}$ be the solution of (12) for g replaced by g_{ρ}.

We recall (see Theorem I. 6 in [BBH4]) that

$$
\begin{equation*}
\Phi_{\rho, r} \rightarrow \Phi_{\rho, 0} \quad \text { in } C_{\mathrm{loc}}^{k}(\Omega \cup \partial G) \text { as } r \rightarrow 0 \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left.\left|\frac{1}{2} \int_{\Omega_{r}}\right| \nabla u_{\rho, r}\right|^{2}-\pi\left(\sum_{j=1}^{k} d_{j}^{2}\right) \log \frac{1}{\rho}-W\left(a, \bar{d}, g_{\rho}\right) \right\rvert\, \leq C_{g_{\rho}} r \tag{30}
\end{equation*}
$$

where $C_{g}=C(g)>0$ is a constant which depends on the boundary data g.

Our aim is to prove that $C_{g_{\rho}}$ is uniformly bounded for $\rho>0$. Indeed, analysing the proof of Theorem I. 7 in $[\mathrm{BBH} 4]$ we observe that $C_{g_{\rho}}$ depends on $\widetilde{C}_{g_{\rho}}$, which appears in

$$
\begin{equation*}
\left\|\Phi_{\rho, r}-\Phi_{\rho, 0}\right\|_{L^{\infty}\left(\Omega_{r}\right)} \leq \sum_{j=1}^{k}\left[\sup _{\partial B\left(a_{j}, r\right)} \Phi_{\rho, 0}-\inf _{\partial B\left(a_{j}, r\right)} \Phi_{\rho, 0}\right] \leq \widetilde{C}_{g_{\rho}} r \tag{31}
\end{equation*}
$$

It is clear at this stage, by the convergence of g_{ρ} and elliptic estimates, that $\widetilde{C}_{g_{\rho}}$ is uniformly bounded.

Observe now that the map $C^{1}\left(\partial G ; S^{1}\right) \ni g \longmapsto W(a, \bar{d}, g)$ is continuous. We have

$$
\begin{gathered}
\left.\left|W\left(a, \bar{d}, g_{0}\right)-\widetilde{W}(a, \bar{d})\right| \leq\left.\left|\frac{1}{2} \int_{\Omega_{\rho}}\right| \nabla v_{\rho}\right|^{2}-\pi\left(\sum_{j=1}^{k} d_{j}^{2}\right) \log \frac{1}{\rho}-\widetilde{W}(a, \bar{d}) \right\rvert\,+ \\
+\left.\left|\frac{1}{2} \int_{\Omega_{\rho}}\right| \nabla v_{\rho}\right|^{2}-\pi\left(\sum_{j=1}^{k} d_{j}^{2}\right) \log \frac{1}{\rho}-W\left(a, \bar{d}, g_{\rho}\right)\left|+\left|W\left(a, \bar{d}, g_{\rho}\right)-W\left(a, \bar{d}, g_{0}\right)\right| \leq\right. \\
\leq O(\rho)+C \rho+\left|W\left(a, \bar{d}, g_{\rho}\right)-W\left(a, \bar{d}, g_{0}\right)\right| \rightarrow 0 \quad \text { as } \rho \rightarrow 0
\end{gathered}
$$

Thus

$$
\widetilde{W}(a, \bar{d})=W\left(a, \bar{d}, g_{0}\right)
$$

which concludes the proof of this step.
Theorem 4. For fixed A, if w_{ρ} is a solution of the minimization problem (6) then the following holds:

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega_{\rho}}\left|\nabla w_{\rho}\right|^{2}=\pi\left(\sum_{j=1}^{k} d_{j}^{2}\right) \log \frac{1}{\rho}+\widetilde{W}_{A}(a, \bar{d})+o(1), \quad \text { as } \rho \rightarrow 0 \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{W}_{A}(a, \bar{d})=\inf \left\{W(a, \bar{d}, g) ; \operatorname{deg}(g ; \partial G)=d \text { and } \int_{\partial G}\left|\frac{\partial g}{\partial \tau}\right|^{2} \leq A\right\} \tag{33}
\end{equation*}
$$

and the infimum is atteint.
Moreover, w_{ρ} converges in $C^{0, \alpha}(\Omega \cup \partial G)$ to the canonical harmonic map associated to g_{0}, a, \bar{d}.

Proof. The existence of w_{ρ} is obvious. Let $g_{\rho}=\left.w_{\rho}\right|_{\partial G}$. It follows from Chapter I in [BBH4] that

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega_{\rho}}\left|\nabla w_{\rho}\right|^{2}=\pi\left(\sum_{j=1}^{k} d_{j}^{2}\right) \log \frac{1}{\rho}+W\left(a, \bar{d}, g_{\rho}\right)+O_{g_{\rho}}(\rho), \quad \text { as } \quad \rho \rightarrow 0 \tag{34}
\end{equation*}
$$

where $O_{g}(\eta)$ stands for a quantity X such that $|X| \leq C_{g} \eta$ and C_{g} depends only on g, a and \bar{d}.

By the boundedness of g_{ρ} in $H^{1}(\partial G)$ we may suppose that (up to a subsequence)

$$
g_{\rho} \rightharpoonup g_{0} \quad \text { weakly in } H^{1}(\partial G), \text { as } \rho \rightarrow 0
$$

As in the proof of Theorem 3 (see (31)) we deduce that $C_{g_{\rho}}$ is uniformly bounded.
We now prove that the map $g \longmapsto W(a, \bar{d}, g)$ is continuous in the weak topology of $H^{1}(\partial G)$. Taking into account the weak convergence of g_{ρ} to g_{0} and the Sobolev embedding Theorem we obtain

$$
g_{\rho} \wedge \frac{\partial g_{\rho}}{\partial \tau} \rightharpoonup g_{0} \wedge \frac{\partial g_{0}}{\partial \tau} \quad \text { weakly in } L^{2}(\partial G), \quad \text { as } \quad \rho \rightarrow 0
$$

Using (12), it follows that

$$
\Phi_{\rho, 0} \rightharpoonup \Phi_{0} \quad \text { weakly in } H^{1}(G), \text { as } \rho \rightarrow 0
$$

So, by the Rellich Theorem,

$$
\Phi_{\rho, 0} \rightarrow \Phi_{0} \quad \text { strongly in } L^{2}(G), \text { as } \rho \rightarrow 0
$$

Therefore,

$$
\int_{\partial G} \Phi_{\rho, 0}\left(g_{\rho} \wedge \frac{\partial g_{\rho}}{\partial \tau}\right) \rightarrow \int_{\partial G} \Phi_{0}\left(g_{0} \wedge \frac{\partial g_{0}}{\partial \tau}\right) \quad \text { as } \rho \rightarrow 0
$$

We also deduce, using elliptic estimates, that for each i,

$$
R_{\rho, 0}\left(a_{i}\right) \rightarrow R_{0}\left(a_{i}\right) \quad \text { as } \quad \rho \rightarrow 0
$$

Thus, by (13), we obtain the continuity of the map $g \longmapsto W(a, \bar{d}, g)$. Hence, by (34), we easily deduce (32).

The fact that the infimum in (33) is atteint may be deduced with similar arguments as in the proof of Theorem 3.

The convergence of w_{ρ} to a canonical harmonic map follows easily from the convergence of g_{ρ}.

3. Renormalized energies in a particular case and related properties

We shall calculate in the first part of this section the expressions of $\widetilde{W}(a, \bar{d}, g)$ when $G=B(0 ; 1)$ and $g(\theta)=e^{i d \theta}$, for an arbitrary configuration $a=\left(a_{1}, \ldots, a_{k}\right)$.

Proposition 1. The expression of the renormalized energy $\widetilde{W}(a, \bar{d})$ is given by

$$
\widetilde{W}(a, \bar{d})=-\pi \sum_{i \neq j} d_{i} d_{j} \log \left|a_{i}-a_{j}\right|+\pi \sum_{i \neq j} d_{i} d_{j} \log \left|1-a_{i} \bar{a}_{j}\right|+\pi \sum_{j=1}^{k} d_{j}^{2} \log \left(1-\left|a_{j}\right|^{2}\right)
$$

Proof. If \hat{R}_{0} is that defined in the preceding section, then

$$
\left\{\begin{array}{l}
\Delta \hat{R}_{0}=0 \quad \text { in } B_{1} \\
\hat{R}_{0}(x)=-\sum_{j=1}^{k} d_{j} \log \left|x-a_{j}\right| \quad \text { if } x \in \partial B_{1}
\end{array}\right.
$$

It follows from the linearity of this problem that it is sufficient to calculate \hat{R}_{0} when the configuration of points consists of one point, say a. Hence, by the Poisson formula, for each $x \in B_{1}$,

$$
\begin{equation*}
\hat{R}_{0}(x)=-\frac{d}{2 \pi}\left(1-|x|^{2}\right) \int_{\partial B_{1}} \frac{\log |z-a|}{|z-x|^{2}} d z \tag{35}
\end{equation*}
$$

We first observe that

$$
\begin{equation*}
\hat{R}_{0}(x)=0 \quad \text { if } \quad a=0 \tag{36}
\end{equation*}
$$

If $a \neq 0$ and $a^{\star}=\frac{a}{|a|^{2}}$, then

$$
\begin{gather*}
\hat{R}_{0}(x)=-\frac{d}{2 \pi} \tag{37}\\
\left(1-|x|^{2}\right) \int_{\partial B_{1}} \frac{\log \left|z-a^{\star}\right|+\log |a|}{|z-x|^{2}} d z= \\
=-d \log \left|x-a^{\star}\right|-d \log |a|
\end{gather*}
$$

Hence, by (36) and (37)

$$
\hat{R}_{0}(x)=\left\{\begin{array}{l}
0 \quad \text { if } a=0 \tag{38}\\
-d \log \left|x-a^{\star}\right|-d \log |a| \quad \text { if } a \neq 0
\end{array}\right.
$$

In the case of a general configuration $a=\left(a_{1}, \ldots, a_{k}\right)$ one has

$$
\begin{equation*}
\hat{R}_{0}(x)=-\sum_{j=1}^{k} d_{j} \log \left|x-a_{j}^{\star}\right|-\sum_{j=1}^{k} d_{j} \log \left|a_{j}\right| \tag{39}
\end{equation*}
$$

Applying now Theorem 2 we obtain
$\widetilde{W}(a, \bar{d})=-\pi \sum_{i \neq j} d_{i} d_{j} \log \left|a_{i}-a_{j}\right|+\pi \sum_{i \neq j} d_{i} d_{j} \log \left|1-a_{i} \bar{a}_{j}\right|+\pi \sum_{j=1}^{k} d_{j}^{2} \log \left(1-\left|a_{j}\right|^{2}\right)$.

Proposition 2. The expression of $W(a, \bar{d}, g)$ in the particular case considered above is given by

$$
\begin{gather*}
W(a, \bar{d}, g)= \tag{40}\\
=-\pi \sum_{i \neq j} d_{i} d_{j} \log \left|a_{i}-a_{j}\right|-\pi \sum_{i \neq j} d_{i} d_{j} \log \left|1-a_{i} \bar{a}_{j}\right|-\pi \sum_{j=1}^{k} d_{j}^{2} \log \left(1-\left|a_{j}\right|^{2}\right) .
\end{gather*}
$$

Proof. We shall use the expression (13) for the renormalized energy $W(a, \bar{d}, g)$. As above, we observe that it suffices to calculate R_{0} for one point, say a.

We define on $B(0 ; 1) \backslash\{a\}$ the function \mathcal{G} by

$$
\mathcal{G}(x)=\left\{\begin{array}{l}
\frac{d}{2 \pi} \log |x-a|+\frac{d}{2 \pi} \log \left|x-a^{\star}\right|-\frac{d}{4 \pi}|x|^{2}+\mathcal{C} \quad \text { if } a \neq 0 \tag{41}\\
\frac{d}{2 \pi} \log |x|-\frac{d}{4 \pi}|x|^{2}+\mathcal{C} \quad \text { if } a=0
\end{array}\right.
$$

and we choose the constant \mathcal{C} such that

$$
\int_{\partial B_{1}} \mathcal{G}=0
$$

It follows that, for every $a \in B_{1}$,

$$
\begin{equation*}
\mathcal{C}=\frac{d}{4 \pi}+\frac{d}{2 \pi} \log |a| \tag{42}
\end{equation*}
$$

The function \mathcal{G} satisfies

$$
\left\{\begin{array}{l}
\Delta \mathcal{G}=d \delta_{a}-\frac{d}{\pi} \quad \text { in } B_{1} \tag{43}\\
\frac{\partial \mathcal{G}}{\partial \nu}=0 \quad \text { on } \partial B_{1} \\
\int_{\partial B_{1}} \mathcal{G}=0
\end{array}\right.
$$

It follows now from (12) that

$$
\left\{\begin{array}{l}
\Delta\left(\frac{\Phi_{0}}{2 \pi}\right)=d \delta_{a} \quad \text { in } B_{1} \\
\frac{\partial}{\partial \nu}\left(\frac{\Phi_{0}}{2 \pi}\right)=\frac{d}{2 \pi} \quad \text { on } \partial B_{1} \\
\int_{\partial B_{1}} \frac{\Phi_{0}}{2 \pi}=0
\end{array}\right.
$$

Thus the function $\Psi=\frac{\Phi_{0}}{2 \pi}-\frac{d}{4 \pi}\left(|x|^{2}-1\right)$ satisfies

$$
\left\{\begin{array}{l}
\Delta \Psi=d \delta_{a}-\frac{d}{\pi} \quad \text { in } B_{1} \tag{44}\\
\frac{\partial \Psi}{\partial \nu}=0 \quad \text { on } \partial B_{1} \\
\int_{\partial B_{1}} \Psi=0
\end{array}\right.
$$

By unicity arguments, it follows from (43) and (44) that

$$
\begin{equation*}
\frac{\Phi_{0}}{2 \pi}-\frac{d}{4 \pi}\left(|x|^{2}-1\right)=\frac{d}{2 \pi} \log |x-a|+\frac{1}{2 \pi} \log \left|x-a^{\star}\right|-\frac{d}{4 \pi}|x|^{2}+\mathcal{C} \tag{45}
\end{equation*}
$$

Taking into account the expression of \mathcal{C} given in (42), as well as the link between Φ_{0} and R_{0} we obtain (40).

Remark. It follows by Theorem 3 and Propositions 1 and 2 that

$$
\sum_{i \neq j} d_{i} d_{j} \log \left|a_{i}-a_{j}\right|+\sum_{j=1}^{k} d_{j}^{2} \log \left(1-\left|a_{j}\right|^{2}\right) \leq 0
$$

A very interesting problem is the study of configurations which minimize $W(a, \bar{d}, g)$ with \bar{d} and g prescribed. This relies on the behaviour of minimizers of the Ginzburg-Landau energy (see [BBH4] for further details).

Proposition 3. If $k=2$ and $d_{1}=d_{2}=1$, then the minimal configuration for W is unique (up to a rotation) and consists of two points which are symmetric with respect to the origin.

Proof. Let a and b be two distinct points in B_{1}. Then

$$
-\frac{W}{\pi}=\log \left(|a|^{2}+|b|^{2}-2|a| \cdot|b| \cdot \cos \varphi\right)+\log \left(1+|a|^{2}|b|^{2}-2|a| \cdot|b| \cdot \cos \varphi\right)+
$$

$$
+\log \left(1-|a|^{2}\right)+\log \left(1-|b|^{2}\right)
$$

where φ denotes the angle between the vectors $\overrightarrow{O a}$ and $\overrightarrow{O b}$. So, a necessary condition for the minimum of W is $\cos \varphi=-1$, that is the points a, O and b are colinear, with O between a and b. Hence one may suppose that the points a and b lie on the real axis and $-1<b<0<a<1$. Denote

$$
f(a, b)=2 \log (a-b)+2 \log (1-a b)+\log \left(1-a^{2}\right)+\log \left(1-b^{2}\right) .
$$

A straightforward calculation, based on the Jensen inequality and the symmetry of f, shows that $a=-b=5^{-1 / 4}$.

4. The behavior of minimizers of the Ginzburg-Landau energy

We assume throughout this section that G is strictly starshaped about the origin.
In [BBH2] and [BBH4], F. Bethuel, H. Brezis and F. Hélein studied the behavior of minimizers of the Ginzburg-Landau energy E_{ε} in

$$
H_{g}^{1}\left(G ; \mathbf{R}^{2}\right)=\left\{u \in H^{1}\left(G ; \mathbf{R}^{2}\right) ; u=g \text { on } \partial G\right\}
$$

for some smooth fixed $g: \partial G \rightarrow S^{1}$, $\operatorname{deg}(g ; \partial G)=d>0$. Our aim is to study a similar problem, that is the behavior of minimizers u_{ε} of E_{ε} in the class

$$
\begin{equation*}
\mathcal{H}_{d, A}=\left\{u \in H^{1}\left(G ; \mathbf{R}^{2}\right) ;|u|=1 \text { on } \partial G, \operatorname{deg}(u, \partial G)=d \text { and } \int_{\partial G}\left|\frac{\partial u}{\partial \tau}\right|^{2} \leq A\right\} \tag{46}
\end{equation*}
$$

It would have seemed more naturally to minimize E_{ε} in the class

$$
\mathcal{H}_{d}=\left\{u \in H^{1}\left(G ; \mathbf{R}^{2}\right) ;|u|=1 \text { on } \partial G, \operatorname{deg}(u, \partial G)=d\right\}
$$

but, as observed by F. Bethuel, H. Brezis and F. Hélein, the infimum of E_{ε} is not atteint. To show this, they considered the particular case when $G=B_{1}, d=1$ and $g(x)=x$. This is the reason which imposed us to take the infimum of E_{ε} on the class $\mathcal{H}_{d, A}$, that was also considered by F. Bethuel, H. Brezis and F. Hélein.

Theorem 5. For each sequence $\varepsilon_{n} \rightarrow 0$, there is a subsequence (also denoted by ε_{n}) and exactly d points a_{1}, \cdots, a_{d} in G such that

$$
u_{\varepsilon_{n}} \rightarrow u_{\star} \quad \text { in } H_{\mathrm{loc}}^{1}\left(\bar{G} \backslash\left\{a_{1}, \cdots, a_{d}\right\} ; \mathbf{R}^{2}\right),
$$

where u_{\star} is a canonical harmonic map with values in S^{1} and singularities a_{1}, \cdots, a_{d} of degrees +1 .

Moreover, the configuration $a=\left(a_{1}, \cdots, a_{d}\right)$ is a minimum point of

$$
\widetilde{W}_{A}(a, \bar{d}):=\min \left\{W(a, \bar{d}, g) ; \operatorname{deg}(g ; \partial G)=d \quad \text { and } \quad \int_{\partial G}\left|\frac{\partial g}{\partial \tau}\right|^{2} \leq A\right\} .
$$

Proof. Step 1. The existence of u_{ε}.
For fixed ε, let u_{ε}^{n} be a minimizing sequence for E_{ε} in $\mathcal{H}_{d, A}$. It follows that (up to a subsequence)

$$
u_{\varepsilon}^{n} \rightharpoonup u_{\varepsilon} \quad \text { weakly in } H^{1}
$$

and, by the boundedness of $\left.u_{\varepsilon}^{n}\right|_{\partial G}$ in $H^{1}(\partial G)$, we obtain that

$$
\left.\left.u_{\varepsilon_{n}}\right|_{\partial G} \rightarrow u_{\varepsilon}\right|_{\partial G} \quad \text { strongly in } H^{\frac{1}{2}}(\partial G) .
$$

This means that, if $g_{\varepsilon}=\left.u_{\varepsilon}\right|_{\partial G}$, then

$$
\operatorname{deg}\left(g_{\varepsilon} ; \partial G\right)=d
$$

By the lower semi-continuity of $E_{\varepsilon}, u_{\varepsilon}$ is a minimizer of E_{ε}. Moreover, this u_{ε} satisfies the Ginzburg-Landau energy

$$
\begin{equation*}
-\Delta u_{\varepsilon}=\frac{1}{\varepsilon^{2}} u_{\varepsilon}\left(1-\left|u_{\varepsilon}\right|^{2}\right) \quad \text { in } G . \tag{47}
\end{equation*}
$$

Step 2. A fundamental estimate.
As in the proof of Theorem III. 2 in [BBH4], multiplying (47) by $x \cdot \nabla u_{\varepsilon}$ and integrating on G, we find

$$
\begin{align*}
& \frac{1}{2} \int_{\partial G}(x \cdot \nu)\left(\frac{\partial u_{\varepsilon}}{\partial \nu}\right)^{2}+\frac{1}{2 \varepsilon^{2}} \int_{G}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2}= \tag{48}\\
& =\frac{1}{2} \int_{\partial G}(x \cdot \nu)\left(\frac{\partial g_{\varepsilon}}{\partial \tau}\right)^{2}-\int_{\partial G}(x \cdot \tau) \frac{\partial u_{\varepsilon}}{\partial \nu} \frac{\partial g_{\varepsilon}}{\partial \tau}
\end{align*}
$$

Using now the boundedness of g_{ε} in $H^{1}(\partial G)$ and the fact that G is strictly starshaped we easily obtain

$$
\begin{equation*}
\int_{\partial G}\left|\frac{\partial u_{\varepsilon}}{\partial \nu}\right|^{2}+\frac{1}{\varepsilon^{2}} \int_{G}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq C \tag{49}
\end{equation*}
$$

where C depends only on A and d.
Step 3. A fundamental Lemma.
The following result is an adapted version of Theorem III. 3 in [BBH4] which is essential towards locating the singularities at the limit.

Lemma 3. There exist positive constants λ_{0} and μ_{0} (which depend only on G, d and A) such that if

$$
\frac{1}{\varepsilon^{2}} \int_{G \cap B_{2 \ell}}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq \mu_{0}
$$

where $B_{2 \ell}$ is some disk of radius 2ℓ in \mathbf{R}^{2} with

$$
\frac{\ell}{\varepsilon} \geq \lambda_{0} \quad \text { and } \quad \ell \leq 1
$$

then

$$
\begin{equation*}
\left|u_{\varepsilon}(x)\right| \geq \frac{1}{2} \quad \text { if } x \in G \cap B_{\ell} \tag{50}
\end{equation*}
$$

The proof of Lemma is essentially the same as of the cited theorem, after observing that

$$
\left\|\nabla u_{\varepsilon}\right\|_{L^{\infty}(G)} \leq \frac{C}{\varepsilon}
$$

where C depends only on G, d and A.
Step 4. The convergence of u_{ε}.
Using Lemma 1 and the estimate (49), we may apply the methods developed in Chapters III-V in [BBH4] to determine the "bad" disks, as well as the fact that their number is uniformly bounded. The same techniques allow us to prove the weak convergence in $H_{\text {loc }}^{1}\left(G \backslash\left\{a_{1}, \cdots, a_{k}\right\} ; \mathbf{R}^{2}\right)$ of a subsequence, also denoted by $u_{\varepsilon_{n}}$, to some u_{\star}.

As in [BBH4], Chapter X (see also [S]) one may prove that, for each $p<2$,

$$
u_{\varepsilon_{n}} \rightarrow u_{\star} \quad \text { in } W^{1, p}(G)
$$

This allows us to pass at the limit in

$$
\frac{\partial}{\partial x_{1}}\left(u_{\varepsilon_{n}} \wedge \frac{\partial u_{\varepsilon_{n}}}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(u_{\varepsilon_{n}} \wedge \frac{\partial u_{\varepsilon_{n}}}{\partial x_{2}}\right)=0 \quad \text { in } \quad \mathcal{D}^{\prime}(G)
$$

and to deduce that u_{\star} is a canonical harmonic map.
The strong convergence of $\left(u_{\varepsilon_{n}}\right)$ in $H_{\mathrm{loc}}^{1}\left(\bar{G} \backslash\left\{a_{1}, \cdots, a_{k}\right\} ; \mathbf{R}^{2}\right)$ follows as in [BBH4], Theorem VI. 1 with the techniques from [BBH3], Theorem 2, Step 1.

We then observe that for all $j, \operatorname{deg}\left(u_{\star}, a_{j}\right) \neq 0$. Indeed, if not, then as in Step 1 of Theorem 2 in [BBH3], the H^{1}-convergence is extended up to a_{j}, which becomes a "removable singularity". The fact that all these degrees equal +1 and the points a_{1}, \cdots, a_{d} are not on the boundary may be deduced as in Theorem VI. 2 [BBH4].

The following steps are devoted to characterize the limit configuration as a minimum point of the renormalized energy \widetilde{W}_{A}.

Step 5. An upper bound for $E_{\varepsilon}\left(u_{\varepsilon}\right)$.

For $R>0$, let $I(R)$ be the infimum of E_{ε} on $H_{g}^{1}(G)$ with $G=B\left(0 ; \frac{\varepsilon}{R}\right)$ and $g(x)=\frac{x}{|x|}$ on ∂G. Following the ideas of the proof of Lemma VIII. 1 in [BBH4] one may show that if $b=\left(b_{j}\right)$ is an arbitrary configuration of d distinct points in G and g is such that $\operatorname{deg}(g, \partial G)=d$ and $\int_{\partial G}\left|\frac{\partial g}{\partial \tau}\right|^{2} \leq A$, then there exists $\eta_{0}>0$ such that, for each $\eta<\eta_{0}$,

$$
\begin{equation*}
E_{\varepsilon}\left(u_{\varepsilon}\right) \leq d I\left(\frac{\varepsilon}{\eta}\right)+W(b, g)+\pi d \log \frac{1}{\eta}+O(\eta), \quad \text { as } \eta \rightarrow 0 \tag{51}
\end{equation*}
$$

for $\varepsilon>0$ small enough. Here $O(\eta)$ stands for a quantity which is bounded by C_{η}, where C is a constant depending only on g.

Step 6. A lower bound for $E_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}\right)$.
With the same proof as of Step 2 of Theorem 1 in [LR] one may show that if a_{1}, \cdots, a_{d} are the singularities of u_{\star} and $\eta>0$, then there is $N_{0}=N_{0}(\eta) \in \mathbf{N}$ such that, for each $n \geq N_{0}$,

$$
\begin{equation*}
E_{\varepsilon_{n}}\left(u_{\varepsilon_{n}}\right) \geq d I\left(\frac{\varepsilon_{n}}{\eta(1+\eta)}\right)+\pi d \log \frac{1}{\eta}+W\left(a, g_{0}\right)+O(\eta) \tag{52}
\end{equation*}
$$

where $O(\eta)$ is a quantity bounded by $C \eta$, where C depends only on g_{0}.
Step 7. The limit configuration is a minimum point for \widetilde{W}_{A}.
Taking into account that (see [BBH4], Chapter III)

$$
I(\varepsilon)=\pi|\log \varepsilon|+\gamma+O(\varepsilon),
$$

we obtain by (51) and (52)

$$
\begin{align*}
& W(b, g)-\pi d \log \varepsilon_{n}+d \gamma+O\left(\frac{\varepsilon_{n}}{\eta}\right) \geq \tag{53}\\
& \geq W\left(a, g_{0}\right)-\pi d \log \varepsilon_{n}+d \gamma+O(\eta)
\end{align*}
$$

Adding $\pi d \log \varepsilon_{n}$ in (53) and passing to the limit firstly as $n \rightarrow \infty$ and then as $\eta \rightarrow 0$, we find

$$
\begin{equation*}
W\left(a, g_{0}\right) \leq W(b, g) \tag{54}
\end{equation*}
$$

As b and g are arbitrary chosen it follows that $a=\left(a_{1}, \cdots, a_{d}\right)$ is a global minimum point of

$$
\begin{equation*}
\widetilde{W}_{A}(b)=\min \left\{W(b, g) ; \operatorname{deg}(g ; \partial G)=d \text { and } \int_{\partial G}\left|\frac{\partial g}{\partial \tau}\right|^{2} \leq A\right\} \tag{55}
\end{equation*}
$$

Remark. The infimum in (55) is atteint because of the continuity of the mapping $\mathcal{H}_{d, A} \ni g \longmapsto W(b, g)$ with respect to the weak topology of $H^{1}(\partial G)$.

Acknowledgements. We are grateful to Prof. H. Brezis for his constant support during the preparation of this work. We also thank Th. Cazenave for useful discussions.

REFERENCES

[BBH1] F. Bethuel, H. Brezis and F. Hélein, Limite singulière pour la minimisation des fonctionnelles du type Ginzburg-Landau, C.R. Acad. Sc. Paris 314(1992), 891-895.
[BBH2] F. Bethuel, H. Brezis and F. Hélein, Tourbillons de Ginzburg-Landau et énergie renormalisée, C.R. Acad. Sc. Paris 317(1993), 165-171.
[BBH3] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of Variations and PDE, 1(1993), 123-148.
[BBH4] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, 1994.
[LR] C. Lefter and V. Rădulescu, On the Ginzburg-Landau energy with weight, to appear.
[S] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Diff. Int. Eq., 7(1994), 1613-1624.
C. Lefter: Current address: Laboratoire d'Analyse Numérique, Tour 55-65

Université Pierre et Marie Curie
4, place Jussieu
75252 Paris Cedex 05, FRANCE.
Permanent address: Department of Mathematics
University of Iaşi
6600 Iaşi, ROMANIA.
V. Rădulescu: Current address: Laboratoire d'Analyse Numérique, Tour 55-65

Université Pierre et Marie Curie
4, place Jussieu
75252 Paris Cedex 05, FRANCE.
Permanent address: Department of Mathematics
University of Craiova
1100 Craiova, ROMANIA.

