MINIMIZATION PROBLEMS AND CORRESPONDING RENORMALIZED ENERGIES

Cătălin LEFTER and Vicențiu RĂDULESCU

1. Introduction and theoretical setting

Let G be a smooth bounded simply connected domain in \mathbb{R}^2 . Let $a = (a_1, ..., a_k)$ be a configuration of distinct points in G and $\overline{d} = (d_1, ..., d_k) \in \mathbb{Z}^k$. We also consider a smooth boundary data $g : \partial G \to S^1$ whose topological degree is $d = d_1 + ... + d_k$. Let also $\rho > 0$ be sufficiently small and denote

$$\Omega_{\rho} = G \setminus \bigcup_{i=1}^{k} \overline{B(a_i, \rho)} , \ \Omega = G \setminus \{a_1, ... a_k\} .$$

As in [BBH4] we consider the classes of functions

(1)
$$\mathcal{E}_{\rho,g} = \{ v \in H^1(\Omega_{\rho}; S^1); v = g \text{ on } \partial G \text{ and } \deg(v, \partial B(a_i, \rho)) = d_i, \text{ for } i = 1, ..., k \}$$

(2)
$$\mathcal{F}_{\rho} = \{ v \in H^1(\Omega_{\rho}; S^1); \deg(v, \partial G) = d \text{ and } \deg(v, \partial B(a_i, \rho)) = d_i, \text{ for } i = 1, ..., k \}$$

(3)
$$\mathcal{F}_{\rho,A} = \{ v \in \mathcal{F}_{\rho}; \ \int_{\partial G} | \frac{\partial v}{\partial \tau} |^2 \leq A \}$$

and the minimization problems

(4)
$$E_{\rho,g} = \inf_{v \in \mathcal{E}_{\rho,g}} \int_{\Omega} |\nabla v|^2$$

(5)
$$F_{\rho} = \inf_{v \in \mathcal{F}_{\rho}} \int_{\Omega} |\nabla v|^2 .$$

(6)
$$F_{\rho,A} = \inf_{v \in \mathcal{F}_{\rho,A}} \int_{\Omega} |\nabla v|^2 .$$

F. Bethuel, H. Brezis and F. Hélein proved in [BBH4] that the minimization problems (4) and (5) have unique solutions, say u_{ρ} respectively v_{ρ} . By analysing the behaviour of u_{ρ} as $\rho \to 0$ they obtained the renormalized energy $W(a, \overline{d}, g)$ by the following asymptotic expansion:

(7)
$$\frac{1}{2} \int_{\Omega_{\rho}} |\nabla u_{\rho}|^2 = \pi \left(\sum_{i=1}^k d_i^2\right) \log \frac{1}{\rho} + W(a, \overline{d}, g) + O(\rho) , \quad \text{as } \rho \to 0.$$

We shall omit \overline{d} in $W(a, \overline{d}, g)$ when k = d and each d_j equals 1.

By considering the behavior of v_{ρ} as $\rho \to 0$ we obtain in the first part of this paper a notion of renormalized energy $\widetilde{W}(a, \overline{d})$ when only singularities and degrees are prescribed. This will appear in a similar asymptotic expansion:

(8)
$$\frac{1}{2} \int_{\Omega_{\rho}} |\nabla v_{\rho}|^2 = \pi \left(\sum_{i=1}^k d_i^2\right) \log \frac{1}{\rho} + \widetilde{W}(a, \overline{d}) + O(\rho) , \quad \text{as } \rho \to 0$$

The connection between the two energies is given by

(9)
$$\widetilde{W}(a,\overline{d}) = \inf_{\substack{g:\partial G \to S^1 \\ \deg(g,\partial G) = d}} W(a,\overline{d},g).$$

Moreover the infimum in (9) is atteint. We give thereafter an explicit formula for $\widetilde{W}(a, \overline{d})$.

We recall that in [BBH4] the study of the minimization problems (4) and (5) is related to the unique solutions Φ_{ρ} respectively $\hat{\Phi}_{\rho}$ of the following linear problems:

(10)
$$\begin{cases} \Delta \Phi_{\rho} = 0 \quad \text{in } \Omega_{\rho} \\ \Phi_{\rho} = C_{i} = \text{Const.} \quad \text{on each } \partial \omega_{i} \text{ with } \omega_{i} = B(a_{i}, \rho) \\ \int_{\partial \omega_{i}} \frac{\partial \Phi_{\rho}}{\partial \nu} = 2\pi d_{i} \quad i = 1, \dots k \\ \frac{\partial \Phi_{\rho}}{\partial \nu} = g \wedge g_{\tau} \quad \text{on } \partial G \\ \int_{\partial G} \Phi_{\rho} = 0 \end{cases}$$

and

(11)
$$\begin{cases} \Delta \hat{\Phi}_{\rho} = 0 \quad \text{in } \Omega \\ \hat{\Phi}_{\rho} = C_{i} = \text{Const.} \quad \text{on } \partial \omega_{i} \ i = 1, ..., k \\ \hat{\Phi}_{\rho} = 0 \quad \text{on } \partial G \\ \int_{\partial \omega_{i}} \frac{\partial \hat{\Phi}_{\rho}}{\partial \nu} = 2\pi d_{i} \quad i = 1, ..., k . \end{cases}$$

We also recall that Φ_{ρ} converges uniformly as $\rho \to 0$ to Φ_0 , which is the unique solution of

(12)
$$\begin{cases} \Delta \Phi_0 = 2\pi \sum_{j=1}^k d_j \delta_{a_j} & \text{in } G \\ \frac{\partial \Phi_0}{\partial \nu} = g \wedge g_\tau & \text{on } \partial G \\ \int_{\partial G} \Phi_0 = 0 . \end{cases}$$

The explicit formula for $W(a, \overline{d}, g)$ found in [BBH4] is

(13)
$$W(a, \overline{d}, g) = -\pi \sum_{i \neq j} d_i d_j \log |a_i - a_j| + \frac{1}{2} \int_{\partial G} \Phi_0(g \wedge g_\tau) - \pi \sum_{i=1}^k d_i R_0(a_i) ,$$

where

$$R_0(x) = \Phi_0(x) - \sum_{j=1}^k d_j \log |x - a_j| .$$

The expression we obtain for $\widetilde{W}(a, \overline{d})$ is lied to $\hat{\Phi}_0$, which is the local uniform limit of $\hat{\Phi}_{\rho}$ as $\rho \to 0$ and is the unique solution of the problem

(14)
$$\begin{cases} \Delta \hat{\Phi}_0 = 2\pi \sum_{j=1}^k d_j \delta_{a_j} & \text{in } G\\ \hat{\Phi}_0 = 0 & \text{on } \partial G \end{cases}.$$

In the second part of this section, considering the minimization problem (6) we find a variant of the formula (8), but for \widetilde{W} replaced by \widetilde{W}_A , which is a corresponding notion of renormalized energy that satisfies

$$\widetilde{W}_A(a, \overline{d}) = \inf\{W(a, \overline{d}, g); \ \deg\left(g; \partial G\right) = d \ \text{ and } \ \int_{\partial G} |\frac{\partial g}{\partial \tau}|^2 \le A\}$$

In Section 3 we calculate explicitly W and \widetilde{W} in a particular case and deduce auxiliary results.

In the last section we minimize the Ginzburg-Landau energy

$$E_{\varepsilon}(u) = \frac{1}{2} \int_{G} |\nabla u|^{2} + \frac{1}{4\varepsilon^{2}} \int_{G} (1 - |u|^{2})^{2}$$

in the class

$$\mathcal{H}_{d,A} = \{ u \in H^1(G; \mathbf{R}^2); \mid u \mid = 1 \text{ on } \partial G, \deg(u, \partial G) = d \text{ and } \int_{\partial G} \mid \frac{\partial u}{\partial \tau} \mid^2 \leq A \}.$$

We prove that $\mathcal{H}_{d,A}$ is non-empty if A is big enough and the infimum of E_{ε} is atteint. If u_{ε} is a minimizer, we prove the convergence as $\varepsilon \to 0$ of u_{ε} to u_{\star} , which is a canonical harmonic map with values in S^1 and d singularities, say a_1, \dots, a_d . Moreover, the configuration $a = (a_1, \dots, a_d)$ minimizes the renormalized energy \widetilde{W}_A .

We recall here (see [BBH4]) that v is a canonical harmonic map with values in S^1 and boundary data g if it is harmonic and satisfies

$$\begin{cases} v \wedge \frac{\partial v}{\partial x_1} = -\frac{\partial \Phi_0}{\partial x_2} & \text{in } \Omega \\ v \wedge \frac{\partial v}{\partial x_2} = \frac{\partial \Phi_0}{\partial x_1} & \text{in } \Omega \end{cases},$$

or, equivalently,

$$\frac{\partial}{\partial x_1} \left(v \wedge \frac{\partial v}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(v \wedge \frac{\partial v}{\partial x_2} \right) = 0 \quad \text{in } \mathcal{D}'(G) .$$

If v is canonical and has singularities $a_1, \dots, a_k \in G$ with topological degrees d_1, \dots, d_k then v has the form

$$v(z) = \left(\frac{z-a_1}{|z-a_1|}\right)^{d_1} \cdots \left(\frac{z-a_k}{|z-a_k|}\right)^{d_k} e^{i\varphi(z)} ,$$

where φ is a smooth harmonic function in G.

2. The renormalized energy for prescribed singularities and degrees We know from Chapter I in [BBH4] that

(15)
$$\begin{cases} v_{\rho} \wedge \frac{\partial v_{\rho}}{\partial x_{1}} = -\frac{\partial \hat{\Phi}_{\rho}}{\partial x_{2}} & \text{in } \Omega_{\rho} \\ v_{\rho} \wedge \frac{\partial v_{\rho}}{\partial x_{2}} = \frac{\partial \hat{\Phi}_{\rho}}{\partial x_{1}} & \text{in } \Omega_{\rho} \end{cases}$$

 So

(16)
$$|\nabla v_{\rho}| = |\nabla \hat{\Phi}_{\rho}| \quad \text{in } \Omega_{\rho} .$$

Lemma 1. $\hat{\Phi}_{\rho}$ converges to $\hat{\Phi}_0$ in $L^{\infty}(\Omega_{\rho})$ as $\rho \to 0$. More precisely, there exists C > 0 such that

(17)
$$\|\hat{\Phi}_{\rho} - \hat{\Phi}_{0}\|_{L^{\infty}(\Omega_{\rho})} \le C\rho.$$

Lemma 2. Let v be a solution of

(18)
$$\begin{cases} \Delta v = 0 \quad \text{in } \Omega_{\rho} \\ v = 0 \quad \text{on } \partial G \\ \int_{\partial \omega_j} \frac{\partial v}{\partial \nu} = 0 \quad \text{for each } j \ . \end{cases}$$

Then

$$\sup_{\Omega_{\rho}} v - \inf_{\Omega_{\rho}} v \le \sum_{j=1}^{k} (\sup_{\omega_{j}} v - \inf_{\omega_{j}} v) .$$

Proof of Lemma 2. We shall adapt the proof of Lemma I.3 in [BBH4]. Let

$$\alpha_j = \inf_{\partial \omega_j} v$$
, $\beta_j = \sup_{\partial \omega_j} v$ and $I_j = [\alpha_j, \beta_j]$.

We shall prove for the instant that

(19)
$$\bigcup_{j=1}^{k} I_j \text{ is connected }.$$

Suppose, by contradiction, it is not true. Then, there exist $t_0 \in \mathbf{R}$, $\delta > 0$ and $1 \le i \le k$ such that

$$\beta_j \le t_0 - \delta \quad \text{if } 1 \le j \le i$$

$$\alpha_j \ge t_0 + \delta \quad \text{if } i + 1 \le j \le k.$$

We may suppose, without loss of generality that $t_0 \neq 0$, say $t_0 > 0$. We may also suppose that $t_0 - \delta \geq 0$. Choose $\theta \in C^{\infty}(\mathbf{R}, [0, 1])$ such that

$$\theta(t) = \begin{cases} 0 & \text{if } t \le t_0 - \delta \\ 1 & \text{if } t \ge t_0 + \delta \end{cases}.$$

We multiply $\Delta v = 0$ with $\theta(v)$ and then integrate on Ω_{ρ} . Observing that $\theta(v) = 0$ on ∂G we deduce

$$0 = \int_{\Omega_{\rho}} \theta'(v) \mid \nabla v \mid^{2} - \int_{\partial G} \frac{\partial v}{\partial \nu} \theta(v) + \sum_{j=1}^{k} \int_{\partial \omega_{j}} \frac{\partial v}{\partial \nu} \theta(v) = \int_{\Omega_{\rho}} \theta'(v) \mid \nabla v \mid^{2}$$

So $\nabla v = 0$ on $B = \{x \in \Omega_{\rho}; t_0 - \delta < v(x) < t_0 + \delta\}$ which is a contradiction. We distinguish two cases:

 $Case \ 1. \quad \inf_{\Omega_{\rho}} v < 0 \ \text{and} \quad \sup_{\Omega_{\rho}} v > 0.$

In this case, from the connectedness of $\bigcup_{j=1}^{n} I_j$, v = 0 on ∂G and the maximum principle, our conclusion follows obviously.

Case 2. $\inf_{\Omega_{\rho}} v = 0 \text{ or } \sup_{\Omega_{\rho}} v = 0.$

We shall treat only the first case. Suppose $v \neq 0$ on Ω_{ρ} (otherwise the conclusion is obvious). By the Hopf maximum principle, $\frac{\partial v}{\partial \nu} < 0$ on ∂G , which contradicts $\int_{\partial G} \frac{\partial v}{\partial \nu} = 0$.

Proof of Lemma 1. We apply Lemma 2 to the function $v = \hat{\Phi}_{\rho} - \hat{\Phi}_{0}$. Since $\hat{\Phi}_{\rho} = \text{Const.}$ on each $\partial B(a_{j}, \rho)$, it follows that

$$\sup_{\Omega_{\rho}} \left(\hat{\Phi}_{\rho} - \hat{\Phi}_{0} \right) - \inf_{\Omega_{\rho}} \left(\hat{\Phi}_{\rho} - \hat{\Phi}_{0} \right) \le \sum_{j=1}^{k} \left(\sup_{\partial B(a_{j},\rho)} \hat{\Phi}_{0} - \inf_{\partial B(a_{j},\rho)} \hat{\Phi}_{0} \right) \le C\rho$$

Using now the fact that $\hat{\Phi}_{\rho} - \hat{\Phi}_0 = 0$ on ∂G we obtain

(20)
$$\|\hat{\Phi}_{\rho} - \hat{\Phi}_0\|_{L^{\infty}(\Omega_{\rho})} \le C\rho .$$

Remark. By Lemma 1 and standard elliptic estimates it follows that $\hat{\Phi}_{\rho}$ converges in $C_{\text{loc}}^k(\Omega \cup \partial G)$ as $\rho \to 0$, for each $k \ge 0$.

Theorem 1. As $\rho \to 0$ then (up to a subsequence) v_{ρ} converges in $C^k_{\text{loc}}(\Omega \cup \partial G)$ to v_0 , which is a canonical harmonic map.

Moreover, the limits of two such sequences differ by a multiplicative constant of modulus 1.

Proof. We may write, locally on $\Omega_{\rho} \cup \partial G$, $v_{\rho} = e^{i\varphi_{\rho}}$ with $0 \leq \varphi_{\rho} \leq 2\pi$. Thus, by (15),

(21)
$$\begin{cases} \frac{\partial \varphi_{\rho}}{\partial x_{1}} = -\frac{\partial \hat{\Phi}_{\rho}}{\partial x_{2}} & \text{in } \Omega_{\rho} \\ \frac{\partial \varphi_{\rho}}{\partial x_{2}} = \frac{\partial \hat{\Phi}_{\rho}}{\partial x_{1}} & \text{in } \Omega_{\rho} . \end{cases}$$

Hence, up to a subsequence, φ_{ρ} converges in $C^k_{\text{loc}}(\Omega \cup \partial G)$. This means that v_{ρ} converges (up to a subsequence) in $C^k_{\text{loc}}(\Omega \cup \partial G)$ to some v_0 . Denote by $g_{\rho} = v_{\rho|\partial G}$. It is clear that g_{ρ} converges to some g_0 and v_0 satisfies

(22)
$$\begin{cases} v_0 \wedge \frac{\partial v_0}{\partial x_1} = -\frac{\partial \hat{\Phi}_0}{\partial x_2} & \text{in } \Omega \\ v_0 \wedge \frac{\partial v_0}{\partial x_2} = \frac{\partial \hat{\Phi}_0}{\partial x_1} & \text{in } \Omega \\ v_0 = g_0 & \text{on } \partial G \end{cases},$$

which means that v_0 is a canonical harmonic map.

We now consider two sequences $v_{\rho n}$ and $v_{\nu n}$ which converge to v_1 and v_2 . Locally,

$$\varphi_{\rho_n} \to \varphi_1 \qquad \text{and} \qquad \varphi_{\nu_n} \to \varphi_2 \;.$$

Thus, $\nabla \varphi_1 = \nabla \varphi_2$, so φ_1 and φ_2 differ locally by an additive constant, which means that v_1 and v_2 differ locally by a multiplicative constant of modulus 1. By the connectedness of Ω , this constant is global.

Let

$$\hat{R}_0(x) = \hat{\Phi}_0(x) - \sum_{j=1}^k d_j \log |x - a_j|$$
.

We observe that \hat{R}_0 is a smooth harmonic function in G.

Theorem 2. We have the following asymptotic estimate:

(23)
$$\frac{1}{2} \int_{\Omega_{\rho}} |\nabla v_{\rho}|^2 = \pi \left(\sum_{j=1}^k d_j^2\right) \log \frac{1}{\rho} + \widetilde{W}(a, \overline{d}) + O(\rho), \quad \text{as } \rho \to 0$$

where

(24)
$$\widetilde{W}(a,\overline{d}) = -\pi \sum_{i \neq j} d_i d_j \log |a_i - a_j| -\pi \sum_{j=1}^k d_j \hat{R}_0(a_j)$$

Proof. We follow the ideas of the proof of Theorem I.7 in [BBH4]. Since $\hat{\Phi}_{\rho}$ is harmonic in Ω_{ρ} and $\hat{\Phi}_{\rho} = 0$ on ∂G we may write

$$\frac{1}{2}\int_{\Omega_{\rho}} |\nabla v_{\rho}|^{2} = \frac{1}{2}\int_{\Omega_{\rho}} |\nabla \hat{\Phi}_{\rho}|^{2} = -\frac{1}{2}\sum_{j=1}^{k}\int_{\partial B(a_{j},\rho)} \frac{\partial \hat{\Phi}_{\rho}}{\partial \nu} \hat{\Phi}_{\rho} = -\pi \sum_{j=1}^{k} d_{j} \hat{\Phi}_{\rho} \left(\partial B(a_{j},\rho)\right).$$

By Lemma 1 and the expression of \hat{R}_0 we easily deduce (23).

Theorem 3. The following equality holds:

(25)
$$\widetilde{W}(a,\overline{d}) = \inf_{\deg (g;\partial G)=d} W(a,\overline{d},g)$$

and the infimum is atteint.

Proof. Step 1. $\widetilde{W}(a, \overline{d}) \leq \inf_{\deg(g;\partial G)=d} W(a, \overline{d}, g).$ Suppose not, then there exist $\varepsilon > 0$ and $g : \partial G \to S^1$ with $\deg(g; \partial G) = d$ such that

(26)
$$W(a, \overline{d}, g) + \varepsilon \le \widetilde{W}(a, \overline{d})$$

Thus, if u_{ρ} is a solution of (4), then

(27)
$$\frac{1}{2} \int_{\Omega_{\rho}} |\nabla u_{\rho}|^{2} = \pi \left(\sum_{j=1}^{k} d_{j}^{2}\right) \log \frac{1}{\rho} + W(a, \overline{d}, g) + O(\rho) \geq$$

$$\geq \frac{1}{2} \int_{\Omega_{\rho}} |\nabla v_{\rho}|^2 = \pi \left(\sum_{j=1}^{n} d_j^2 \right) \log \frac{1}{\rho} + \widetilde{W}(a, \overline{d}) + O(\rho) , \quad \text{as } \rho \to 0 .$$

We obtain a contradiction by (26) and (27).

Step 2. If g_{ρ} and g_0 are as in the proof of Theorem 1, then

$$\widetilde{W}(a,\overline{d}) = W(a,\overline{d},g_0)$$

For r > 0 let $u_{\rho,r}$ be a solution of the minimization problem

(28)
$$\min_{u \in \mathcal{E}_{r,g_{\rho}}} \int_{\Omega_r} |\nabla u|^2 .$$

Denote $u_{\rho,\rho} = u_{\rho}$ and $\Phi_{\rho,r}$ the solution of the associated linear problem (see (10)). Let $\Phi_{\rho,0}$ be the solution of (12) for g replaced by g_{ρ} .

We recall (see Theorem I.6 in [BBH4]) that

(29)
$$\Phi_{\rho,r} \to \Phi_{\rho,0} \quad \text{in } C^k_{\text{loc}}(\Omega \cup \partial G) \text{ as } r \to 0$$

and

(30)
$$|\frac{1}{2} \int_{\Omega_r} |\nabla u_{\rho,r}|^2 - \pi \left(\sum_{j=1}^k d_j^2\right) \log \frac{1}{\rho} - W(a, \overline{d}, g_\rho) |\leq C_{g_\rho} r,$$

where $C_g = C(g) > 0$ is a constant which depends on the boundary data g.

Our aim is to prove that $C_{g_{\rho}}$ is uniformly bounded for $\rho > 0$. Indeed, analysing the proof of Theorem I.7 in [BBH4] we observe that $C_{g_{\rho}}$ depends on $\tilde{C}_{g_{\rho}}$, which appears in

(31)
$$\|\Phi_{\rho,r} - \Phi_{\rho,0}\|_{L^{\infty}(\Omega_r)} \leq \sum_{j=1}^k \left[\sup_{\partial B(a_j,r)} \Phi_{\rho,0} - \inf_{\partial B(a_j,r)} \Phi_{\rho,0} \right] \leq \widetilde{C}_{g_{\rho}} r .$$

It is clear at this stage, by the convergence of g_{ρ} and elliptic estimates, that $\tilde{C}_{g_{\rho}}$ is uniformly bounded.

Observe now that the map $C^1(\partial G; S^1) \ni g \longmapsto W(a, \overline{d}, g)$ is continuous. We have

$$\begin{split} | W(a,\overline{d},g_0) - \widetilde{W}(a,\overline{d}) | \leq &| \frac{1}{2} \int_{\Omega_{\rho}} | \nabla v_{\rho} |^2 - \pi \left(\sum_{j=1}^k d_j^2 \right) \log \frac{1}{\rho} - \widetilde{W}(a,\overline{d}) | + \\ &+ | \frac{1}{2} \int_{\Omega_{\rho}} | \nabla v_{\rho} |^2 - \pi \left(\sum_{j=1}^k d_j^2 \right) \log \frac{1}{\rho} - W(a,\overline{d},g_{\rho}) | + | W(a,\overline{d},g_{\rho}) - W(a,\overline{d},g_0) | \leq \\ &\leq O(\rho) + C\rho + | W(a,\overline{d},g_{\rho}) - W(a,\overline{d},g_0) | \to 0 \quad \text{ as } \rho \to 0 . \end{split}$$

Thus

$$\widetilde{W}(a,\overline{d}) = W(a,\overline{d},g_0)$$
,

which concludes the proof of this step.

Theorem 4. For fixed A, if w_{ρ} is a solution of the minimization problem (6) then the following holds:

(32)
$$\frac{1}{2} \int_{\Omega_{\rho}} |\nabla w_{\rho}|^{2} = \pi \left(\sum_{j=1}^{k} d_{j}^{2}\right) \log \frac{1}{\rho} + \widetilde{W}_{A}(a, \overline{d}) + o(1) , \quad \text{as } \rho \to 0 ,$$

where

(33)
$$\widetilde{W}_A(a,\overline{d}) = \inf\{W(a,\overline{d},g); \deg(g;\partial G) = d \text{ and } \int_{\partial G} |\frac{\partial g}{\partial \tau}|^2 \leq A\},$$

and the infimum is atteint.

Moreover, w_{ρ} converges in $C^{0,\alpha}(\Omega \cup \partial G)$ to the canonical harmonic map associated to g_0, a, \overline{d} .

Proof. The existence of w_{ρ} is obvious. Let $g_{\rho} = w_{\rho} \mid_{\partial G}$. It follows from Chapter I in [BBH4] that

(34)
$$\frac{1}{2} \int_{\Omega_{\rho}} |\nabla w_{\rho}|^{2} = \pi \left(\sum_{j=1}^{k} d_{j}^{2} \right) \log \frac{1}{\rho} + W(a, \overline{d}, g_{\rho}) + O_{g_{\rho}}(\rho) , \quad \text{as} \ \rho \to 0 ,$$

where $O_g(\eta)$ stands for a quantity X such that $|X| \leq C_g \eta$ and C_g depends only on g, a and \overline{d} .

By the boundedness of g_{ρ} in $H^1(\partial G)$ we may suppose that (up to a subsequence)

$$g_{\rho} \rightharpoonup g_0$$
 weakly in $H^1(\partial G)$, as $\rho \rightarrow 0$.

As in the proof of Theorem 3 (see (31)) we deduce that $C_{g_{\rho}}$ is uniformly bounded.

We now prove that the map $g \mapsto W(a, \overline{d}, g)$ is continuous in the weak topology of $H^1(\partial G)$. Taking into account the weak convergence of g_ρ to g_0 and the Sobolev embedding Theorem we obtain

$$g_{\rho} \wedge \frac{\partial g_{\rho}}{\partial \tau} \rightharpoonup g_0 \wedge \frac{\partial g_0}{\partial \tau} \quad \text{weakly in} \ L^2(\partial G), \text{ as } \rho \to 0 \ .$$

Using (12), it follows that

$$\Phi_{\rho,0} \rightharpoonup \Phi_0$$
 weakly in $H^1(G)$, as $\rho \to 0$.

So, by the Rellich Theorem,

$$\Phi_{\rho,0} \to \Phi_0$$
 strongly in $L^2(G)$, as $\rho \to 0$.

Therefore,

$$\int_{\partial G} \Phi_{\rho,0} \left(g_{\rho} \wedge \frac{\partial g_{\rho}}{\partial \tau} \right) \to \int_{\partial G} \Phi_0 \left(g_0 \wedge \frac{\partial g_0}{\partial \tau} \right) \quad \text{as } \rho \to 0 \ .$$

We also deduce, using elliptic estimates, that for each i,

$$R_{\rho,0}(a_i) \to R_0(a_i)$$
 as $\rho \to 0$.

Thus, by (13), we obtain the continuity of the map $g \mapsto W(a, \overline{d}, g)$. Hence, by (34), we easily deduce (32).

The fact that the infimum in (33) is atteint may be deduced with similar arguments as in the proof of Theorem 3.

The convergence of w_{ρ} to a canonical harmonic map follows easily from the convergence of g_{ρ} .

3. Renormalized energies in a particular case and related properties

We shall calculate in the first part of this section the expressions of $\widetilde{W}(a, \overline{d}, g)$ when G = B(0; 1) and $g(\theta) = e^{id\theta}$, for an arbitrary configuration $a = (a_1, ..., a_k)$.

Proposition 1. The expression of the renormalized energy $\widetilde{W}(a, \overline{d})$ is given by

$$\widetilde{W}(a,\overline{d}) = -\pi \sum_{i \neq j} d_i d_j \log |a_i - a_j| + \pi \sum_{i \neq j} d_i d_j \log |1 - a_i \overline{a}_j| + \pi \sum_{j=1}^{\kappa} d_j^2 \log(1 - |a_j|^2) .$$

Proof. If \hat{R}_0 is that defined in the preceding section, then

$$\begin{cases} \Delta \hat{R}_0 = 0 & \text{in } B_1 \\ \hat{R}_0(x) = -\sum_{j=1}^k d_j \log |x - a_j| & \text{if } x \in \partial B_1 \end{cases}.$$

It follows from the linearity of this problem that it is sufficient to calculate \hat{R}_0 when the configuration of points consists of one point, say a. Hence, by the Poisson formula, for each $x \in B_1$,

(35)
$$\hat{R}_0(x) = -\frac{d}{2\pi} \left(1 - |x|^2\right) \int_{\partial B_1} \frac{\log|z-a|}{|z-x|^2} dz \; .$$

We first observe that

(36)
$$\hat{R}_0(x) = 0$$
 if $a = 0$.

If $a \neq 0$ and $a^{\star} = \frac{a}{\mid a \mid^2}$, then

(37)
$$\hat{R}_0(x) = -\frac{d}{2\pi} \left(1 - |x|^2\right) \int_{\partial B_1} \frac{\log|z - a^*| + \log|a|}{|z - x|^2} dz = -d \log|x - a^*| - d \log|a|.$$

Hence, by (36) and (37)

(38)
$$\hat{R}_0(x) = \begin{cases} 0 & \text{if } a = 0 \\ -d\log|x - a^*| - d\log|a| & \text{if } a \neq 0 \end{cases}$$

In the case of a general configuration $a = (a_1, ..., a_k)$ one has

(39)
$$\hat{R}_0(x) = -\sum_{j=1}^k d_j \log |x - a_j^{\star}| - \sum_{j=1}^k d_j \log |a_j|.$$

Applying now Theorem 2 we obtain

$$\widetilde{W}(a,\overline{d}) = -\pi \sum_{i \neq j} d_i d_j \log |a_i - a_j| + \pi \sum_{i \neq j} d_i d_j \log |1 - a_i \overline{a}_j| + \pi \sum_{j=1}^k d_j^2 \log(1 - |a_j|^2) .$$

Proposition 2. The expression of $W(a, \overline{d}, g)$ in the particular case considered above is given by

(40)
$$W(a, \overline{d}, g) =$$

$$= -\pi \sum_{i \neq j} d_i d_j \, \log \mid a_i - a_j \mid -\pi \sum_{i \neq j} d_i d_j \, \log \mid 1 - a_i \overline{a}_j \mid -\pi \sum_{j=1}^k d_j^2 \, \log(1 - \mid a_j \mid^2) \; .$$

Proof. We shall use the expression (13) for the renormalized energy $W(a, \overline{d}, g)$. As above, we observe that it suffices to calculate R_0 for one point, say a.

We define on $B(0;1) \setminus \{a\}$ the function \mathcal{G} by

(41)
$$\mathcal{G}(x) = \begin{cases} \frac{d}{2\pi} \log |x - a| + \frac{d}{2\pi} \log |x - a^*| - \frac{d}{4\pi} |x|^2 + \mathcal{C} & \text{if } a \neq 0 \\ \frac{d}{2\pi} \log |x| - \frac{d}{4\pi} |x|^2 + \mathcal{C} & \text{if } a = 0 \end{cases}$$

and we choose the constant ${\mathcal C}$ such that

$$\int_{\partial B_1} \mathcal{G} = 0 \; .$$

It follows that, for every $a \in B_1$,

(42)
$$\mathcal{C} = \frac{d}{4\pi} + \frac{d}{2\pi} \log |a| \quad .$$

The function \mathcal{G} satisfies

(43)
$$\begin{cases} \Delta \mathcal{G} = d\delta_a - \frac{d}{\pi} & \text{in } B_1 \\ \frac{\partial \mathcal{G}}{\partial \nu} = 0 & \text{on } \partial B_1 \\ \int_{\partial B_1} \mathcal{G} = 0 . \end{cases}$$

It follows now from (12) that

$$\begin{cases} \Delta \left(\frac{\Phi_0}{2\pi}\right) = d\delta_a & \text{in } B_1 \\ \frac{\partial}{\partial \nu} \left(\frac{\Phi_0}{2\pi}\right) = \frac{d}{2\pi} & \text{on } \partial B_1 \\ \int_{\partial B_1} \frac{\Phi_0}{2\pi} = 0 . \end{cases}$$

Thus the function $\Psi = \frac{\Phi_0}{2\pi} - \frac{d}{4\pi} (|x|^2 - 1)$ satisfies

(44)
$$\begin{cases} \Delta \Psi = d\delta_a - \frac{d}{\pi} & \text{in } B_1 \\ \frac{\partial \Psi}{\partial \nu} = 0 & \text{on } \partial B_1 \\ \int_{\partial B_1} \Psi = 0 . \end{cases}$$

By unicity arguments, it follows from (43) and (44) that

(45)
$$\frac{\Phi_0}{2\pi} - \frac{d}{4\pi} \left(|x|^2 - 1 \right) = \frac{d}{2\pi} \log |x - a| + \frac{1}{2\pi} \log |x - a^*| - \frac{d}{4\pi} |x|^2 + \mathcal{C}.$$

Taking into account the expression of C given in (42), as well as the link between Φ_0 and R_0 we obtain (40).

Remark. It follows by Theorem 3 and Propositions 1 and 2 that

$$\sum_{i \neq j} d_i d_j \log |a_i - a_j| + \sum_{j=1}^k d_j^2 \log(1 - |a_j|^2) \le 0.$$

A very interesting problem is the study of configurations which minimize $W(a, \overline{d}, g)$ with \overline{d} and g prescribed. This relies on the behaviour of minimizers of the Ginzburg-Landau energy (see [BBH4] for further details).

Proposition 3. If k = 2 and $d_1 = d_2 = 1$, then the minimal configuration for W is unique (up to a rotation) and consists of two points which are symmetric with respect to the origin.

Proof. Let a and b be two distinct points in B_1 . Then

$$-\frac{W}{\pi} = \log(|a|^2 + |b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |a|^2|b|^2 - 2|a| \cdot |b| \cdot \cos\varphi) + \log(1 + |b|^2 - 2|a| \cdot |b|^2 - 2|a| \cdot |b|^2 + 2\log(1 + |b|^2) + \log(1 + |b|$$

$$+\log(1-|a|^2) + \log(1-|b|^2)$$
,

where φ denotes the angle between the vectors \overrightarrow{Oa} and \overrightarrow{Ob} . So, a necessary condition for the minimum of W is $\cos \varphi = -1$, that is the points a, O and b are collinear, with Obetween a and b. Hence one may suppose that the points a and b lie on the real axis and -1 < b < 0 < a < 1. Denote

$$f(a,b) = 2\log(a-b) + 2\log(1-ab) + \log(1-a^2) + \log(1-b^2) .$$

A straightforward calculation, based on the Jensen inequality and the symmetry of f, shows that $a = -b = 5^{-1/4}$.

4. The behavior of minimizers of the Ginzburg-Landau energy

We assume throughout this section that G is strictly starshaped about the origin.

In [BBH2] and [BBH4], F. Bethuel, H. Brezis and F. Hélein studied the behavior of minimizers of the Ginzburg-Landau energy E_{ε} in

$$H_{q}^{1}(G; \mathbf{R}^{2}) = \{ u \in H^{1}(G; \mathbf{R}^{2}); u = g \text{ on } \partial G \} ,$$

for some smooth fixed $g: \partial G \to S^1$, deg $(g; \partial G) = d > 0$. Our aim is to study a similar problem, that is the behavior of minimizers u_{ε} of E_{ε} in the class

(46)
$$\mathcal{H}_{d,A} = \{ u \in H^1(G; \mathbf{R}^2); | u | = 1 \text{ on } \partial G, \deg(u, \partial G) = d \text{ and } \int_{\partial G} | \frac{\partial u}{\partial \tau} |^2 \leq A \}$$

It would have seemed more naturally to minimize E_{ε} in the class

$$\mathcal{H}_d = \{ u \in H^1(G; \mathbf{R}^2); \mid u \mid = 1 \text{ on } \partial G, \ \deg(u, \partial G) = d \}$$

but, as observed by F. Bethuel, H. Brezis and F. Hélein, the infimum of E_{ε} is not atteint. To show this, they considered the particular case when $G = B_1$, d = 1 and g(x) = x. This is the reason which imposed us to take the infimum of E_{ε} on the class $\mathcal{H}_{d,A}$, that was also considered by F. Bethuel, H. Brezis and F. Hélein.

Theorem 5. For each sequence $\varepsilon_n \to 0$, there is a subsequence (also denoted by ε_n) and exactly d points a_1, \dots, a_d in G such that

$$u_{\varepsilon_n} \to u_{\star} \quad \text{in } H^1_{\text{loc}}(\overline{G} \setminus \{a_1, \cdots, a_d\}; \mathbf{R}^2) ,$$

where u_{\star} is a canonical harmonic map with values in S^1 and singularities a_1, \dots, a_d of degrees +1.

Moreover, the configuration $a = (a_1, \dots, a_d)$ is a minimum point of

$$\widetilde{W}_A(a,\overline{d}) := \min \left\{ W(a,\overline{d},g); \ \deg\left(g;\partial G\right) = d \ \text{ and } \ \int_{\partial G} \mid \frac{\partial g}{\partial \tau} \mid^2 \leq A \right\} \,.$$

Proof. Step 1. The existence of u_{ε} .

For fixed ε , let u_{ε}^{n} be a minimizing sequence for E_{ε} in $\mathcal{H}_{d,A}$. It follows that (up to a subsequence)

$$u_{\varepsilon}^n \rightharpoonup u_{\varepsilon}$$
 weakly in H^1

and, by the boundedness of $u_{\varepsilon}^n \mid_{\partial G}$ in $H^1(\partial G)$, we obtain that

$$u_{\varepsilon_n} \mid_{\partial G} \to u_{\varepsilon} \mid_{\partial G}$$
 strongly in $H^{\frac{1}{2}}(\partial G)$.

This means that, if $g_{\varepsilon} = u_{\varepsilon} \mid_{\partial G}$, then

$$\deg\left(g_{\varepsilon};\partial G\right) = d \; .$$

By the lower semi-continuity of E_{ε} , u_{ε} is a minimizer of E_{ε} . Moreover, this u_{ε} satisfies the Ginzburg-Landau energy

(47)
$$-\Delta u_{\varepsilon} = \frac{1}{\varepsilon^2} u_{\varepsilon} (1 - |u_{\varepsilon}|^2) \quad \text{in } G .$$

Step 2. A fundamental estimate.

As in the proof of Theorem III.2 in [BBH4], multiplying (47) by $x \cdot \nabla u_{\varepsilon}$ and integrating on G, we find

(48)
$$\frac{1}{2} \int_{\partial G} (x \cdot \nu) \left(\frac{\partial u_{\varepsilon}}{\partial \nu}\right)^2 + \frac{1}{2\varepsilon^2} \int_G (1 - |u_{\varepsilon}|^2)^2 =$$
$$= \frac{1}{2} \int_{\partial G} (x \cdot \nu) \left(\frac{\partial g_{\varepsilon}}{\partial \tau}\right)^2 - \int_{\partial G} (x \cdot \tau) \frac{\partial u_{\varepsilon}}{\partial \nu} \frac{\partial g_{\varepsilon}}{\partial \tau} .$$

Using now the boundedness of g_{ε} in $H^1(\partial G)$ and the fact that G is strictly starshaped we easily obtain

(49)
$$\int_{\partial G} \left| \frac{\partial u_{\varepsilon}}{\partial \nu} \right|^2 + \frac{1}{\varepsilon^2} \int_G (1 - |u_{\varepsilon}|^2)^2 \le C ,$$

where C depends only on A and d.

Step 3. A fundamental Lemma.

The following result is an adapted version of Theorem III.3 in [BBH4] which is essential towards locating the singularities at the limit.

Lemma 3. There exist positive constants λ_0 and μ_0 (which depend only on G, d and A) such that if

$$\frac{1}{\varepsilon^2} \int_{G \cap B_{2\ell}} (1 - |u_{\varepsilon}|^2)^2 \le \mu_0 ,$$

where $B_{2\ell}$ is some disk of radius 2ℓ in \mathbf{R}^2 with

$$rac{\ell}{arepsilon} \geq \lambda_0 \quad and \quad \ell \leq 1 \;,$$

then

(50)
$$| u_{\varepsilon}(x) | \geq \frac{1}{2} \quad \text{if } x \in G \cap B_{\ell} .$$

The proof of Lemma is essentially the same as of the cited theorem, after observing that

$$\|\nabla u_{\varepsilon}\|_{L^{\infty}(G)} \leq \frac{C}{\varepsilon} ,$$

where C depends only on G, d and A.

Step 4. The convergence of u_{ε} .

Using Lemma 1 and the estimate (49), we may apply the methods developed in Chapters III-V in [BBH4] to determine the "bad" disks, as well as the fact that their number is uniformly bounded. The same techniques allow us to prove the weak convergence in $H^1_{\text{loc}}(G \setminus \{a_1, \dots, a_k\}; \mathbf{R}^2)$ of a subsequence, also denoted by u_{ε_n} , to some u_{\star} .

As in [BBH4], Chapter X (see also [S]) one may prove that, for each p < 2,

$$u_{\varepsilon_n} \to u_\star \quad \text{in } W^{1,p}(G)$$

This allows us to pass at the limit in

$$\frac{\partial}{\partial x_1} \left(u_{\varepsilon_n} \wedge \frac{\partial u_{\varepsilon_n}}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(u_{\varepsilon_n} \wedge \frac{\partial u_{\varepsilon_n}}{\partial x_2} \right) = 0 \quad \text{in} \quad \mathcal{D}'(G)$$

and to deduce that u_{\star} is a canonical harmonic map.

The strong convergence of (u_{ε_n}) in $H^1_{\text{loc}}(\overline{G} \setminus \{a_1, \dots, a_k\}; \mathbf{R}^2)$ follows as in [BBH4], Theorem VI.1 with the techniques from [BBH3], Theorem 2, Step 1.

We then observe that for all j, deg $(u_*, a_j) \neq 0$. Indeed, if not, then as in Step 1 of Theorem 2 in [BBH3], the H^1 -convergence is extended up to a_j , which becomes a "removable singularity". The fact that all these degrees equal +1 and the points a_1, \dots, a_d are not on the boundary may be deduced as in Theorem VI.2 [BBH4].

The following steps are devoted to characterize the limit configuration as a minimum point of the renormalized energy \widetilde{W}_A .

Step 5. An upper bound for $E_{\varepsilon}(u_{\varepsilon})$.

For R > 0, let I(R) be the infimum of E_{ε} on $H_g^1(G)$ with $G = B(0; \frac{\varepsilon}{R})$ and $g(x) = \frac{x}{|x|}$ on ∂G . Following the ideas of the proof of Lemma VIII.1 in [BBH4] one may show that if $b = (b_j)$ is an arbitrary configuration of d distinct points in G and g is such that $\deg(g, \partial G) = d$ and $\int_{\partial G} |\frac{\partial g}{\partial \tau}|^2 \leq A$, then there exists $\eta_0 > 0$ such that, for each $\eta < \eta_0$,

(51)
$$E_{\varepsilon}(u_{\varepsilon}) \le dI\left(\frac{\varepsilon}{\eta}\right) + W(b,g) + \pi d\log\frac{1}{\eta} + O(\eta) , \text{ as } \eta \to 0$$

for $\varepsilon > 0$ small enough. Here $O(\eta)$ stands for a quantity which is bounded by C_{η} , where C is a constant depending only on g.

Step 6. A lower bound for $E_{\varepsilon_n}(u_{\varepsilon_n})$.

With the same proof as of Step 2 of Theorem 1 in [LR] one may show that if a_1, \dots, a_d are the singularities of u_{\star} and $\eta > 0$, then there is $N_0 = N_0(\eta) \in \mathbf{N}$ such that, for each $n \geq N_0$,

(52)
$$E_{\varepsilon_n}(u_{\varepsilon_n}) \ge dI\left(\frac{\varepsilon_n}{\eta(1+\eta)}\right) + \pi d\log\frac{1}{\eta} + W(a,g_0) + O(\eta) ,$$

where $O(\eta)$ is a quantity bounded by $C\eta$, where C depends only on g_0 .

Step 7. The limit configuration is a minimum point for \widetilde{W}_A .

Taking into account that (see [BBH4], Chapter III)

$$I(\varepsilon) = \pi \mid \log \varepsilon \mid +\gamma + O(\varepsilon)$$

we obtain by (51) and (52)

(53)
$$W(b,g) - \pi d \log \varepsilon_n + d\gamma + O\left(\frac{\varepsilon_n}{\eta}\right) \ge \\ \ge W(a,g_0) - \pi d \log \varepsilon_n + d\gamma + O(\eta) .$$

Adding $\pi d \log \varepsilon_n$ in (53) and passing to the limit firstly as $n \to \infty$ and then as $\eta \to 0$, we find

(54)
$$W(a,g_0) \le W(b,g) \; .$$

As b and g are arbitrary chosen it follows that $a = (a_1, \dots, a_d)$ is a global minimum point of

(55)
$$\widetilde{W}_A(b) = \min \{ W(b,g); \deg (g; \partial G) = d \text{ and } \int_{\partial G} |\frac{\partial g}{\partial \tau}|^2 \leq A \}.$$

Remark. The infimum in (55) is atteint because of the continuity of the mapping $\mathcal{H}_{d,A} \ni g \longmapsto W(b,g)$ with respect to the weak topology of $H^1(\partial G)$.

Acknowledgements. We are grateful to Prof. H. Brezis for his constant support during the preparation of this work. We also thank Th. Cazenave for useful discussions.

REFERENCES

[BBH1] F. Bethuel, H. Brezis and F. Hélein, Limite singulière pour la minimisation des fonctionnelles du type Ginzburg-Landau, C.R. Acad. Sc. Paris **314**(1992), 891-895.

[BBH2] F. Bethuel, H. Brezis and F. Hélein, Tourbillons de Ginzburg-Landau et énergie renormalisée, C.R. Acad. Sc. Paris **317**(1993), 165-171.

[BBH3] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, *Calculus of Variations and PDE*, **1**(1993), 123-148.

[BBH4] F. Bethuel, H. Brezis and F. Hélein, *Ginzburg-Landau Vortices*, Birkhäuser, 1994.

[LR] C. Lefter and V. Rădulescu, On the Ginzburg-Landau energy with weight, to appear.

[S] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, *Diff. Int. Eq.*, **7**(1994), 1613-1624.

C. Lefter: Current address: Laboratoire d'Analyse Numérique, Tour 55-65
Université Pierre et Marie Curie
4, place Jussieu
75252 Paris Cedex 05, FRANCE.
Permanent address: Department of Mathematics
University of Iaşi
6600 Iaşi, ROMANIA.
V. Rădulescu: Current address: Laboratoire d'Analyse Numérique, Tour 55-65

V. Radulescu. Current autress. "Laboratorie d'Anaryse Numerique, four 55-65 Université Pierre et Marie Curie
4, place Jussieu
75252 Paris Cedex 05, FRANCE.
Permanent address: Department of Mathematics
University of Craiova
1100 Craiova, ROMANIA.