
Differential and Integral Equations Volume 16, Number 2, February 2003, Pages 221–229

LINEAR ELLIPTIC SYSTEMS INVOLVING FINITE
RADON MEASURES
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1. Statement of the main result

The study of elliptic boundary value problems with L1 or Radon measure
data has been initiated in the last few decades by the pioneering works of
Stampacchia [12], Brezis-Strauss [7], Brezis [5], [6].

Let Ω be a smooth bounded domain in RN . Consider the problem



−div (ai(x)∇ui) +
d∑

j=1

bij(x)uj = fi, in Ω, for i = 1, · · · , d

ui = 0, on ΓD, for i = 1, · · · , d
∂ui

∂ν
= gi, on ΓN , for i = 1, · · · , d .

(1.1)

Here, ν denotes the unit normal outward vector, d ≥ 1 is an integer, and
ai, bij ∈ L∞(Ω), for 1 ≤ i, j ≤ d. We point out that we make no symmetry
assumption on the coefficients bij . We assume that {ΓD, ΓN } realize an
open partition of the boundary ∂Ω, i.e., ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN =
∂Ω. Moreover, we suppose that ΓD has nonzero (N − 1)-Lebesgue measure,
namely, measN−1 (ΓD) > 0. We also assume that the elliptic operator is not
degenerate, i.e., there exists α > 0 such that

ai(x) ≥ α for a.e. x ∈ Ω and any i = 1, · · · , d. (1.2)

Set E1,p(Ω) := {u ∈ W 1,p(Ω);u = 0 on ΓD} and E :=
⋂

1≤p< N
N−1

(E1,p(Ω))d.

We denote throughout by ‖ · ‖p (resp. ‖ · ‖p,d) the norm in the space Lp(Ω)
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222 Vicenţiu Rădulescu and Michel Willem

(resp. (Lp(Ω))d). We also denote by | · |p (resp. | · |p,d) the norm in the space
E1,p(Ω) (resp. (E1,p(Ω))d).

We suppose that the associated bilinear form is coercive, namely there
exists β > 0 such that, for every u = (u1, · · · , ud) ∈ (E1,2(Ω))d,

∫

Ω

( d∑

i=1

ai|∇ui|2 +
∑

i,j

bijuiuj

)
dx ≥ β |u|22,d . (1.3)

We assume that fi and gi are bounded measures (finite Radon measures)
on Ω, respectively ΓN , that is, fi ∈ M(Ω) and gi ∈ M(ΓN ), for any i =
1, · · · , d,.

If ΓN = ∅ and f ∈ (M(Ω))d Stampacchia introduced in [12] a duality
method combined with a C0,α-regularity argument. The purpose of this
paper is to study the general elliptic system (1.1) which involves mixed
boundary conditions. As in Stampacchia’s framework, our arguments are
restricted to a linear setting. The proof relies on the crucial observation (see
Lemma 1) that L1 boundedness implies the boundedness in the space E. As
we shall observe in Lemma 1, this becomes true because the Lp∗-boundedness
implies E1,p-boundedness, for any p < N

N−1 .

Definition 1. A function u = (u1, · · · , ud) ∈ E is said to be a solution of
the problem (1.1) provided that

∫

Ω
ai∇ui · ∇ϕ +

∫

Ω

( d∑

j=1

bijuj

)
ϕ =

∫

Ω
fiϕ +

∫

ΓN
aigiϕ,

for any i = 1, · · · , d and for every ϕ ∈ C1(Ω) with ϕ = 0 on ΓD.

Theorem 1. Assume that hypotheses (1.2) and (1.3) are fulfilled. Then, for
any bounded measures f ∈ (M(Ω))d and g ∈ (M(ΓN ))d the problem (1.1)
has at least one solution.

We point out that the celebrated non-uniqueness example constructed
in Serrin [11] shows that Problem (1) may have several solutions (see also
Prignet [10], p. 329).

2. Proof of Theorem 1

Let fn = (fn
i )1≤i≤d ∈ (L2(Ω))d and gn = (gn

i )1≤i≤d ∈ (L2(ΓN ))d be such
that

fn ⇀ f weakly in the sense of measures in (M(Ω))d (2.1)
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gn ⇀ g weakly in the sense of measures in (M(ΓN ))d (2.2)
‖fn‖1,d ≤ ‖f‖(M(Ω))d (2.3)

‖gn‖1,d ≤ ‖g‖(M(ΓN ))d . (2.4)

Consider the problem



−div (ai∇un
i ) +

d∑

j=1

biju
n
j = fn

i , in Ω, for i = 1, · · · , d

un
i = 0, on ΓD, for i = 1, · · · , d

∂un
i

∂ν
= gn

i , on ΓN , for i = 1, · · · , d .

(2.5)

Using the coercivity condition (1.3) and applying the Lax-Milgram Lemma
we find that problem (2.5) has a unique solution un ∈ (E1,2(Ω))d.

Proposition 1. The sequence (un)n is bounded in (L1(Ω))d.

Proof of Proposition 1. We argue by contradiction and assume that
‖un‖1,d → ∞. Set vn

i = un
i

‖un‖1,d
, for every 1 ≤ i ≤ d and n ≥ 1. We observe

that vn ∈ (E1,2(Ω))d, ‖vn‖1,d = 1 and




−div (ai∇vn
i ) +

d∑

j=1

bijv
n
j =

fn
i

‖un‖1,d
, in Ω, for i = 1, · · · , d

vn
i = 0, on ΓD, for i = 1, · · · , d

∂vn
i

∂ν
=

gn
i

‖un‖1,d
, on ΓN , for i = 1, · · · , d .

(2.6)

Lemma 1. The sequence (vn) is bounded in the space E.

Proof of Lemma 1. Taking into account (2.3), (2.4) and the assumption
‖un‖1,d →∞ we obtain that the L2-sequences rn

i = fn
i

‖un‖1,d
and sn

i = gn
i

‖un‖1,d

converge to 0 in L1(Ω), respectively in L1(ΓN ). Set

M = max
i,j
{‖ai‖L∞(Ω), ‖bij‖L∞(Ω)}.

Fix p > 1 such that p < N
N−1 . Set

wn
i = [(1 + |vn

i |)(Np−N−p)/(N−p) − 1] sgn vn
i .

By Proposition IX.5 in [4] it follows that wn
i ∈ H1

0 (Ω). Multiplying by wn
i

in (2.6) and integrating by parts we find

−
∫

ΓN
ais

n
i wn

i −
N − (N − 1)p

N − p

∫

Ω
ai(1 + |vn

i |)−N(2−p)/(N−p) |∇vn
i |2
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+
∫

Ω

d∑

j=1

bijv
n
j wn

i =
∫

Ω
rn
i wn

i .

Thus, by (1.2) and the fact that |wn
i | ≤ 1 we deduce that

α
N − (N − 1)p

N − p

∫

Ω
(1 + |vn

i |)−N(2−p)/(N−p) |∇vn
i |2 (2.7)

≤ M ‖sn
i ‖L1(ΓN ) + ‖rn

i ‖1 + M ‖vn‖1,d .

Therefore, ∫

Ω

|∇vn
i |2

(1 + |vn
i |)N(2−p)/(N−p)

≤ C1 . (2.8)

On the other hand, by Sobolev inclusions and Hölder’s inequality,

||vn
i ||pp∗ ≤ C

∫

Ω
|∇vn

i |p (2.9)

≤ C
(∫

Ω

|∇vn
i |2

(1 + |vn
i |)N(2−p)/(N−p)

)p/2(∫

Ω
(1 + |vn

i |)
Np

N−p

)(2−p)/2
,

where C depends only on p. Relations (2.8) and (2.9) yield

||vn
i ||p∗ ≤ C ||∇vn

i ||p ≤ C2 ‖1 + |vn
i |‖

N(2−p)
2(N−p)

p∗ ≤ C3

(
1 + ||vn

i ||
N(2−p)
2(N−p)

p∗

)
. (2.10)

We distinguish two different situations:
Case 1: N ≥ 3. This implies 1 > N(2−p)

2(N−p) . Hence, by (2.10), the sequence
(vn) is bounded in (Lp∗(Ω))d, so in (Lp(Ω))d. Returning now to (2.10) we
have ∫

Ω
|∇vn

i |p ≤ C

which shows that (vn) is bounded in (E1,p(Ω))d, for any p < N
N−1 .

Case 2: N = 2. This implies 1 = N(2−p)
2(N−p) , so the above argument does not

work. However, it is possible to repeat it, but for a modified sequence vn.
Indeed, we observe that if the constant C3 appearing in (2.10) is less than 1,
then the boundedness of (vn) in (E1,p(Ω))d follows with the same argument.
But C3 depends only on C1, so on the value of

M ‖sn
i ‖L1(ΓN ) + ‖rn

i ‖1 + M ‖vn‖1,d.

But (rn
i ) and (sn

i ) converge to 0 in L1(Ω), respectively in L1(ΓN ). Thus, in
order to get C3 < 1, it is sufficient to define vn

i by vn
i = ε

un
i

||un
i ||1,d

, for ε > 0
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small enough. This choice is possible due to the linearity of the system
(2.5). ¤

The key fact in the proof of the above result is the boundedness of (vn)
in (L1(Ω))d combined with the linearity of the problem (2.6).

Proof of Proposition 1 continued (case N ≤ 3). Let V n = (V n
1 , · · · , V n

d )
∈ (E1,2(Ω))d be the unique solution of the coercive problem





−div (ai∇V n
i ) +

d∑

j=1

bijv
n
j = 0, in Ω, for i = 1, · · · , d

V n
i = 0, on ΓD, for i = 1, · · · , d

∂V n
i

∂ν
= 0, on ΓN , for i = 1, · · · , d .

(2.11)

It follows by Lemma 1 that the sequence (vn)n is bounded in (Lp∗(Ω))d,
for any p < N

N−1 . Our hypothesis N ≤ 3 implies p∗ ≥ 2, provided that
2N

N+2 ≤ p < N
N−1 . Hence, the sequence (vn)n is bounded in (L2(Ω))d. After

multiplication in (2.11) by V n
i and integration we find

∫

Ω
|∇V n

i |2 ≤ α−1
d∑

j=1

∫

Ω
|bijv

n
j V n

i | ≤ α−1M
d∑

j=1

‖vn
j ‖2 · ‖V n

i ‖2 ≤ C|V n|2,d.

(2.12)
It follows that (V n)n is bounded in (E1,2(Ω))d. On the other hand, by (2.6)
and (2.11),





−div (ai∇(vn
i − V n

i )) =
fn

i

‖un‖1,d
, in Ω, for i = 1, · · · , d

vn
i − V n

i = 0, on ΓD, for i = 1, · · · , d
∂(vn

i − V n
i )

∂ν
=

gn
i

‖un‖1,d
, on ΓN , for i = 1, · · · , d .

(2.13)

Observing that the sequence (vn−Vn)n is bounded in (L1(Ω))d and arguing as
in the proof of Lemma 1, we deduce that (vn−Vn)n is bounded in (E1,p(Ω))d,
for any p < N

N−1 . So, up to a subsequence, we can assume that

vn − V n ⇀ 0 weakly in (E1,p(Ω))d, ∀p < N
N−1 . (2.14)

But, by Lemma 1 and passing again at a subsequence,

vn ⇀ v weakly in (E1,p(Ω))d, ∀p < N
N−1 . (2.15)



226 Vicenţiu Rădulescu and Michel Willem

Hence, by (2.14) and (2.15),

V n ⇀ v weakly in (E1,p(Ω))d, ∀p < N
N−1 . (2.16)

But (V n)n is bounded in (E1,2(Ω))d, so v ∈ (E1,2(Ω))d. Taking into account
(2.11) we obtain that the same convergence holds in (E1,2(Ω))d and v ∈
(E1,2(Ω))d. By (2.15) and (2.16) we deduce that we can pass at the limit in
(2.11) and we find





−div (ai∇vi) +
d∑

j=1

bijvj = 0, in Ω, for i = 1, · · · , d

vi = 0, on ΓD, for i = 1, · · · , d
∂vi

∂ν
= 0, on ΓN , for i = 1, · · · , d .

(2.17)

By the uniqueness of the solution in (E1,2(Ω))d we conclude that v = 0.
Consequently, (vn) converges weakly to 0 in E which implies, by Rellich’s
theorem that we can assume vn → 0 strongly in (L1(Ω))d which contradicts
‖vn‖1,d = 1. ¤
Proof of Theorem 1 continued. We are now in position to conclude the
proof of Theorem 1 in the case N ≤ 3. This time we argue as in the proof
of Lemma 1 but with un instead of vn. Indeed, since (un) ⊂ (E1,2(Ω))d is
bounded in (L1(Ω))d we may repeat the same arguments as in the proof of
Lemma 1 to show that (un) is bounded in E. In particular, this implies that,
passing eventually at a subsequence, there exists u ∈ E such that

un ⇀ u weakly in (E1,p(Ω))d, ∀p < N
N−1 .

Hence, u is solution to the problem (1.1).
In the case N ≥ 4 we shall employ several times the above arguments.

For this aim we define the sequence V n
(k) by V n

(1) = V n and, for any k ≥ 2, let
V n

(k) = (V n
1,k, · · · , V n

d,k) ∈ (E1,2(Ω))d be the unique solution of the problem




−div
(
ai∇V n

i,k

)
+

d∑

j=1

bijV
n
i,k−1 = 0, in Ω, for i = 1, · · · , d

V n
i,k = 0, on ΓD, for i = 1, · · · , d

∂V n
i,k

∂ν
= 0, on ΓN , for i = 1, · · · , d .

(2.18)

Fix 1 ≤ p < N
N−1 .
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Lemma 2. The sequence (V n
(1))n is bounded in (E1,Np/(N−p)(Ω))d.

Proof of Lemma 2. We repeat the argument applied in the proof of
Lemma 1, but for V n

(1) instead of vn. We already know that (vn) is bounded
in (Lp(Ω))d. Multiplying in (2.11) by

wn
i = [(1 + |V n

i |)(p−1)N/(N−2p) − 1] sgn V n
i ∈ H1

0 (Ω)

we find

(p− 1)N
N − 2p

α

∫

Ω

|∇V n
i |2

(1 + |V n
i |)

2N−p(N+2)
N−2p

≤ (p− 1)N
N − 2p

∫

Ω
ai

|∇V n
i |2

(1 + |V n
i |)

2N−p(N+2)
N−2p

= −
∫

Ω
(

d∑

j=1

bijv
n
j )wn

i

≤ M ||vn||1,d + M ||vn||p,d

(∫

Ω
(1 + |V n

i |)
(p−1)N
N−2p

· p
p−1

) p−1
p

.

Hence,
∫

Ω

|∇V n
i |2

(1 + |V n
i |)

2N−p(N+2)
N−2p

≤ C1 + C2

(∫

Ω
(1 + |V n

i |)
Np

N−2p

) p−1
p

. (2.19)

We observe that the hypothesis N ≥ 4 implies p < N
N−1 ≤ 2N

N+2 , so 2(N−p)
Np >

1. Therefore, by Sobolev inclusions and Hölder’s inequality, we obtain
∫

Ω

|∇V n
i |

Np
N−p ≤

( ∫

Ω

|∇V n
i |2

(1 + |V n
i |)

2N−p(N+2)
N−2p

) Np
2(N−p)

(∫

Ω

(1 + |V n
i |)

Np
N−2p

) 2N−p(N+2)
2(N−p)

.

(2.20)
By (2.19) and (2.20) we find

(∫

Ω
|∇V n

i |
Np

N−p

)N−p
Np (2.21)

≤
[
C1 + C2

(∫

Ω
(1 + |V n

i |)
Np

N−2p

) p−1
p

]1/2(∫

Ω
(1 + |V n

i |)
Np

N−2p

) 2N−p(N+2)
2Np

≤ C3

(∫

Ω
(1 + |V n

i |)
Np

N−2p

) 2N−p(N+2)
2Np + C4

(∫

Ω
(1 + |V n

i |)
Np

N−2p

)N−2p
2Np

.

Our choice p < N
N−1 < N

2 implies Np
N−p < N . Therefore, by Sobolev inclu-

sions, the space E1,Np/(N−p)(Ω) is continuously embedded in LNp/(N−2p)(Ω),
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namely
(∫

Ω
|V n

i |
Np

N−2p

)N−2p
Np ≤ C

(∫

Ω
|∇V n

i |)
Np

N−p

)N−p
Np

. (2.22)

Thus, by (2.21) and (2.22), we deduce that
(∫

Ω
|V n

i |
Np

N−2p

)N−2p
Np ≤ C

( ∫

Ω
|∇V n

i |
Np

N−p

)N−p
Np

≤ C5

(∫

Ω
(1 + |V n

i |)
Np

N−2p

) 2N−p(N+2)
2Np + C6

( ∫

Ω
(1 + |V n

i |)
Np

N−2p

)N−2p
2Np

≤ C7 + C8||V n
i ||

2N−p(N+2)
2(N−2p)
Np

N−2p

+ C9 ||V n
i ||1/2

Np
N−2p

.

Observing that 2N−p(N+2)
2(N−2p) < 1, the above relations yield

||V n
i || Np

N−2p
≤ C ||∇V n

i || Np
N−p

≤ C10 + C11 ||V n
i ||1/2

Np
N−2p

. (2.23)

This implies that (V n
i ) is bounded in LNp/(N−2p)(Ω). Then, again by (2.23),

the sequence (∇V n
i ) is bounded in LNp/(N−p)(Ω) which implies the bound-

edness of (V n
i ) in E1,Np/(N−p)(Ω). ¤

Proof of Theorem 1 concluded. It follows by Lemma 2 that the sequence
(V n

(1)) is bounded in (LNp/(N−2p)(Ω))d. If Np
N−2p ≥ 2, then we get the bound-

edness of (V n
(1)) in (L2(Ω))d and the proof is concluded with exactly the same

arguments as in the case N ≤ 3, but for vn replaced by V n
(1). The condition

Np
N−2p ≥ 2 holds true if p ≥ 2N

N+4 . Taking into account the restriction p < N
N−1

we find either N = 4 or N = 5. If not, we will repeat the arguments done in
the proof of Lemma 2. It is sufficient to point out that the proof of Lemma
2 is based on the observation that (V n

(1)) is bounded in (E1,p∗(Ω))d, provided
that (vn) is bounded in (Lp(Ω))d. Now, with the same arguments, one can
show that the boundedness of (V n

(1)) in (LNp/(N−p)(Ω))d implies the bound-

edness of (V n
(2)) in (E1,Np/(N−2p)(Ω))d, since Np

N−2p is the Sobolev conjugated

exponent of Np
N−p . This holds true provided that Np

N−3p ≥ 2 and p < N
N−1 ,

namely for N = 6 or N = 7. For greater values of N the proof relies on the
same principles. ¤

We remark that the solution obtained by approximation in the above
proof is unique. Indeed, let fn,1, fn,2 ∈ (L2(Ω))d and gn,1, gn,2 ∈ (L2(ΓN ))d

be such that conditions (2.1)-(2.4) are fulfilled. Denote by un,1, respectively
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un,2 the corresponding (unique) solutions in (E1,2(Ω))d of the problem (2.5).
Since the sequence (un,1 − un,2) is bounded in (L1(Ω))d, it follows with the
same arguments as in the above proof that

un,1 − un,2 ⇀ 0 weakly in (E1,p(Ω))d, ∀p < N
N−1

which implies the uniqueness of the solution obtained by approximation.
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