# LINEAR ELLIPTIC SYSTEMS INVOLVING FINITE RADON MEASURES 

Vicenţiu Rădulescu
Department of Mathematics, University of Craiova, RO-1100 Craiova, Romania
Michel Willem
Mathématique Institut de Université Catholique de Louvain
Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium
(Submitted by: Viorel Barbu)

## 1. Statement of the main result

The study of elliptic boundary value problems with $L^{1}$ or Radon measure data has been initiated in the last few decades by the pioneering works of Stampacchia [12], Brezis-Strauss [7], Brezis [5], [6].

Let $\Omega$ be a smooth bounded domain in $\mathbf{R}^{N}$. Consider the problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a_{i}(x) \nabla u_{i}\right)+\sum_{j=1}^{d} b_{i j}(x) u_{j}=f_{i}, \quad \text { in } \Omega, \text { for } i=1, \cdots, d  \tag{1.1}\\
u_{i}=0, \quad \text { on } \Gamma_{\mathcal{D}}, \text { for } i=1, \cdots, d \\
\frac{\partial u_{i}}{\partial \nu}=g_{i}, \quad \text { on } \Gamma_{\mathcal{N}}, \quad \text { for } i=1, \cdots, d
\end{array}\right.
$$

Here, $\nu$ denotes the unit normal outward vector, $d \geq 1$ is an integer, and $a_{i}, b_{i j} \in L^{\infty}(\Omega)$, for $1 \leq i, j \leq d$. We point out that we make no symmetry assumption on the coefficients $b_{i j}$. We assume that $\left\{\Gamma_{\mathcal{D}}, \Gamma_{\mathcal{N}}\right\}$ realize an open partition of the boundary $\partial \Omega$, i.e., $\Gamma_{\mathcal{D}} \cap \Gamma_{\mathcal{N}}=\emptyset$ and $\overline{\Gamma_{\mathcal{D}}} \cup \overline{\Gamma_{\mathcal{N}}}=$ $\partial \Omega$. Moreover, we suppose that $\Gamma_{\mathcal{D}}$ has nonzero $(N-1)$-Lebesgue measure, namely, meas ${ }_{N-1}\left(\Gamma_{\mathcal{D}}\right)>0$. We also assume that the elliptic operator is not degenerate, i.e., there exists $\alpha>0$ such that

$$
\begin{equation*}
a_{i}(x) \geq \alpha \quad \text { for a.e. } x \in \Omega \text { and any } i=1, \cdots, d \tag{1.2}
\end{equation*}
$$

Set $E^{1, p}(\Omega):=\left\{u \in W^{1, p}(\Omega) ; u=0\right.$ on $\left.\Gamma_{\mathcal{D}}\right\}$ and $E:=\bigcap_{1 \leq p<\frac{N}{N-1}}\left(E^{1, p}(\Omega)\right)^{d}$. We denote throughout by $\|\cdot\|_{p}$ (resp. $\|\cdot\|_{p, d}$ ) the norm in the space $L^{p}(\Omega)$

[^0](resp. $\left.\left(L^{p}(\Omega)\right)^{d}\right)$. We also denote by $|\cdot|_{p}$ (resp. $|\cdot|_{p, d}$ ) the norm in the space $E^{1, p}(\Omega)\left(\right.$ resp. $\left.\left(E^{1, p}(\Omega)\right)^{d}\right)$.

We suppose that the associated bilinear form is coercive, namely there exists $\beta>0$ such that, for every $u=\left(u_{1}, \cdots, u_{d}\right) \in\left(E^{1,2}(\Omega)\right)^{d}$,

$$
\begin{equation*}
\int_{\Omega}\left(\sum_{i=1}^{d} a_{i}\left|\nabla u_{i}\right|^{2}+\sum_{i, j} b_{i j} u_{i} u_{j}\right) d x \geq \beta|u|_{2, d}^{2} \tag{1.3}
\end{equation*}
$$

We assume that $f_{i}$ and $g_{i}$ are bounded measures (finite Radon measures) on $\Omega$, respectively $\Gamma_{\mathcal{N}}$, that is, $f_{i} \in \mathcal{M}(\Omega)$ and $g_{i} \in \mathcal{M}\left(\Gamma_{\mathcal{N}}\right)$, for any $i=$ $1, \cdots, d,$.

If $\Gamma_{\mathcal{N}}=\emptyset$ and $f \in(\mathcal{M}(\Omega))^{d}$ Stampacchia introduced in [12] a duality method combined with a $C^{0, \alpha}$-regularity argument. The purpose of this paper is to study the general elliptic system (1.1) which involves mixed boundary conditions. As in Stampacchia's framework, our arguments are restricted to a linear setting. The proof relies on the crucial observation (see Lemma 1) that $L^{1}$ boundedness implies the boundedness in the space $E$. As we shall observe in Lemma 1, this becomes true because the $L^{p^{*}}$-boundedness implies $E^{1, p_{-}}$-boundedness, for any $p<\frac{N}{N-1}$.

Definition 1. A function $u=\left(u_{1}, \cdots, u_{d}\right) \in E$ is said to be a solution of the problem (1.1) provided that

$$
\int_{\Omega} a_{i} \nabla u_{i} \cdot \nabla \varphi+\int_{\Omega}\left(\sum_{j=1}^{d} b_{i j} u_{j}\right) \varphi=\int_{\Omega} f_{i} \varphi+\int_{\Gamma_{\mathcal{N}}} a_{i} g_{i} \varphi,
$$

for any $i=1, \cdots, d$ and for every $\varphi \in C^{1}(\bar{\Omega})$ with $\varphi=0$ on $\Gamma_{\mathcal{D}}$.
Theorem 1. Assume that hypotheses (1.2) and (1.3) are fulfilled. Then, for any bounded measures $f \in(\mathcal{M}(\Omega))^{d}$ and $g \in\left(\mathcal{M}\left(\Gamma_{\mathcal{N}}\right)\right)^{d}$ the problem (1.1) has at least one solution.

We point out that the celebrated non-uniqueness example constructed in Serrin [11] shows that Problem (1) may have several solutions (see also Prignet [10], p. 329).

## 2. Proof of Theorem 1

Let $f^{n}=\left(f_{i}^{n}\right)_{1 \leq i \leq d} \in\left(L^{2}(\Omega)\right)^{d}$ and $g^{n}=\left(g_{i}^{n}\right)_{1 \leq i \leq d} \in\left(L^{2}\left(\Gamma_{\mathcal{N}}\right)\right)^{d}$ be such that

$$
\begin{equation*}
f^{n} \rightharpoonup f \quad \text { weakly in the sense of measures in }(\mathcal{M}(\Omega))^{d} \tag{2.1}
\end{equation*}
$$

$$
\begin{gather*}
g^{n} \rightharpoonup g \quad \text { weakly in the sense of measures in }\left(\mathcal{M}\left(\Gamma_{\mathcal{N}}\right)\right)^{d}  \tag{2.2}\\
\left\|f^{n}\right\|_{1, d} \leq\|f\|_{(\mathcal{M}(\Omega))^{d}}  \tag{2.3}\\
\left\|g^{n}\right\|_{1, d} \leq\|g\|_{\left(\mathcal{M}\left(\Gamma_{\mathcal{N}}\right)\right)^{d}}
\end{gather*}
$$

Consider the problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a_{i} \nabla u_{i}^{n}\right)+\sum_{j=1}^{d} b_{i j} u_{j}^{n}=f_{i}^{n}, \quad \text { in } \Omega, \text { for } i=1, \cdots, d  \tag{2.5}\\
u_{i}^{n}=0, \quad \text { on } \Gamma_{\mathcal{D}}, \text { for } i=1, \cdots, d \\
\frac{\partial u_{i}^{n}}{\partial \nu}=g_{i}^{n}, \quad \text { on } \Gamma_{\mathcal{N}}, \quad \text { for } i=1, \cdots, d
\end{array}\right.
$$

Using the coercivity condition (1.3) and applying the Lax-Milgram Lemma we find that problem (2.5) has a unique solution $u^{n} \in\left(E^{1,2}(\Omega)\right)^{d}$.
Proposition 1. The sequence $\left(u^{n}\right)_{n}$ is bounded in $\left(L^{1}(\Omega)\right)^{d}$.
Proof of Proposition 1. We argue by contradiction and assume that $\left\|u^{n}\right\|_{1, d} \rightarrow \infty$. Set $v_{i}^{n}=\frac{u_{i}^{n}}{\left\|u^{n}\right\|_{1, d}}$, for every $1 \leq i \leq d$ and $n \geq 1$. We observe that $v^{n} \in\left(E^{1,2}(\Omega)\right)^{d},\left\|v^{n}\right\|_{1, d}=1$ and

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a_{i} \nabla v_{i}^{n}\right)+\sum_{j=1}^{d} b_{i j} v_{j}^{n}=\frac{f_{i}^{n}}{\left\|u^{n}\right\|_{1, d}}, \quad \text { in } \Omega, \text { for } i=1, \cdots, d  \tag{2.6}\\
v_{i}^{n}=0, \quad \text { on } \Gamma_{\mathcal{D}}, \text { for } i=1, \cdots, d \\
\frac{\partial v_{i}^{n}}{\partial \nu}=\frac{g_{i}^{n}}{\left\|u^{n}\right\|_{1, d}}, \quad \text { on } \Gamma_{\mathcal{N}}, \quad \text { for } i=1, \cdots, d
\end{array}\right.
$$

Lemma 1. The sequence $\left(v^{n}\right)$ is bounded in the space $E$.
Proof of Lemma 1. Taking into account (2.3), (2.4) and the assumption $\left\|u^{n}\right\|_{1, d} \rightarrow \infty$ we obtain that the $L^{2}$-sequences $r_{i}^{n}=\frac{f_{i}^{n}}{\left\|u^{n}\right\|_{1, d}}$ and $s_{i}^{n}=\frac{g_{i}^{n}}{\left\|u^{n}\right\|_{1, d}}$ converge to 0 in $L^{1}(\Omega)$, respectively in $L^{1}\left(\Gamma_{\mathcal{N}}\right)$. Set

$$
M=\max _{i, j}\left\{\left\|a_{i}\right\|_{L^{\infty}(\Omega)},\left\|b_{i j}\right\|_{L^{\infty}(\Omega)}\right\}
$$

Fix $p>1$ such that $p<\frac{N}{N-1}$. Set

$$
w_{i}^{n}=\left[\left(1+\left|v_{i}^{n}\right|\right)^{(N p-N-p) /(N-p)}-1\right] \operatorname{sgn} v_{i}^{n}
$$

By Proposition IX. 5 in [4] it follows that $w_{i}^{n} \in H_{0}^{1}(\Omega)$. Multiplying by $w_{i}^{n}$ in (2.6) and integrating by parts we find

$$
-\int_{\Gamma_{\mathcal{N}}} a_{i} s_{i}^{n} w_{i}^{n}-\frac{N-(N-1) p}{N-p} \int_{\Omega} a_{i}\left(1+\left|v_{i}^{n}\right|\right)^{-N(2-p) /(N-p)}\left|\nabla v_{i}^{n}\right|^{2}
$$

$$
+\int_{\Omega} \sum_{j=1}^{d} b_{i j} v_{j}^{n} w_{i}^{n}=\int_{\Omega} r_{i}^{n} w_{i}^{n} .
$$

Thus, by (1.2) and the fact that $\left|w_{i}^{n}\right| \leq 1$ we deduce that

$$
\begin{align*}
& \alpha \frac{N-(N-1) p}{N-p} \int_{\Omega}\left(1+\left|v_{i}^{n}\right|\right)^{-N(2-p) /(N-p)}\left|\nabla v_{i}^{n}\right|^{2}  \tag{2.7}\\
& \leq M\left\|s_{i}^{n}\right\|_{L^{1}\left(\Gamma_{\mathcal{N}}\right)}+\left\|r_{i}^{n}\right\|_{1}+M\left\|v^{n}\right\|_{1, d} .
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\int_{\Omega} \frac{\left|\nabla v_{i}^{n}\right|^{2}}{\left(1+\left|v_{i}^{n}\right|\right)^{N(2-p) /(N-p)}} \leq C_{1} \tag{2.8}
\end{equation*}
$$

On the other hand, by Sobolev inclusions and Hölder's inequality,

$$
\begin{align*}
& \|\left. v_{i}^{n}\right|_{p^{*}} ^{p} \leq C \int_{\Omega}\left|\nabla v_{i}^{n}\right|^{p}  \tag{2.9}\\
& \leq C\left(\int_{\Omega} \frac{\left|\nabla v_{i}^{n}\right|^{2}}{\left(1+\left|v_{i}^{n}\right|\right)^{N(2-p) /(N-p)}}\right)^{p / 2}\left(\int_{\Omega}\left(1+\left|v_{i}^{n}\right|\right)^{\frac{N p}{N-p}}\right)^{(2-p) / 2},
\end{align*}
$$

where $C$ depends only on $p$. Relations (2.8) and (2.9) yield

$$
\begin{equation*}
\left\|v_{i}^{n}\right\|_{p^{*}} \leq C\left\|\nabla v_{i}^{n}\right\|_{p} \leq C_{2}\left\|1+\left|v_{i}^{n}\right|\right\|_{p^{*}}^{\frac{N(2-p)}{2(N-p)}} \leq C_{3}\left(1+\left\|v_{i}^{n}\right\|_{p^{*}}^{\frac{N(2-p)}{2(N-p)}}\right) . \tag{2.10}
\end{equation*}
$$

We distinguish two different situations:
Case 1: $N \geq 3$. This implies $1>\frac{N(2-p)}{2(N-p)}$. Hence, by (2.10), the sequence $\left(v^{n}\right)$ is bounded in $\left(L^{p^{*}}(\Omega)\right)^{d}$, so in $\left(L^{p}(\Omega)\right)^{d}$. Returning now to (2.10) we have

$$
\int_{\Omega}\left|\nabla v_{i}^{n}\right|^{p} \leq C
$$

which shows that $\left(v^{n}\right)$ is bounded in $\left(E^{1, p}(\Omega)\right)^{d}$, for any $p<\frac{N}{N-1}$.
Case 2: $N=2$. This implies $1=\frac{N(2-p)}{2(N-p)}$, so the above argument does not work. However, it is possible to repeat it, but for a modified sequence $v^{n}$. Indeed, we observe that if the constant $C_{3}$ appearing in (2.10) is less than 1 , then the boundedness of $\left(v^{n}\right)$ in $\left(E^{1, p}(\Omega)\right)^{d}$ follows with the same argument. But $C_{3}$ depends only on $C_{1}$, so on the value of

$$
M\left\|s_{i}^{n}\right\|_{L^{1}\left(\Gamma_{\mathcal{N}}\right)}+\left\|r_{i}^{n}\right\|_{1}+M\left\|v^{n}\right\|_{1, d} .
$$

But $\left(r_{i}^{n}\right)$ and $\left(s_{i}^{n}\right)$ converge to 0 in $L^{1}(\Omega)$, respectively in $L^{1}\left(\Gamma_{\mathcal{N}}\right)$. Thus, in order to get $C_{3}<1$, it is sufficient to define $v_{i}^{n}$ by $v_{i}^{n}=\varepsilon \frac{u_{i}^{n}}{\left\|u_{i}^{n}\right\|_{1, d}}$, for $\varepsilon>0$
small enough. This choice is possible due to the linearity of the system (2.5).

The key fact in the proof of the above result is the boundedness of $\left(v^{n}\right)$ in $\left(L^{1}(\Omega)\right)^{d}$ combined with the linearity of the problem (2.6).
Proof of Proposition 1 continued (case $N \leq 3$ ). Let $V^{n}=\left(V_{1}^{n}, \cdots, V_{d}^{n}\right)$ $\in\left(E^{1,2}(\Omega)\right)^{d}$ be the unique solution of the coercive problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a_{i} \nabla V_{i}^{n}\right)+\sum_{j=1}^{d} b_{i j} v_{j}^{n}=0, \quad \text { in } \Omega, \text { for } i=1, \cdots, d  \tag{2.11}\\
V_{i}^{n}=0, \quad \text { on } \Gamma_{\mathcal{D}}, \text { for } i=1, \cdots, d \\
\frac{\partial V_{i}^{n}}{\partial \nu}=0, \quad \text { on } \Gamma_{\mathcal{N}}, \quad \text { for } i=1, \cdots, d
\end{array}\right.
$$

It follows by Lemma 1 that the sequence $\left(v^{n}\right)_{n}$ is bounded in $\left(L^{p^{*}}(\Omega)\right)^{d}$, for any $p<\frac{N}{N-1}$. Our hypothesis $N \leq 3$ implies $p^{*} \geq 2$, provided that $\frac{2 N}{N+2} \leq p<\frac{N}{N-1}$. Hence, the sequence $\left(v^{n}\right)_{n}$ is bounded in $\left(L^{2}(\Omega)\right)^{d}$. After multiplication in (2.11) by $V_{i}^{n}$ and integration we find

$$
\begin{equation*}
\int_{\Omega}\left|\nabla V_{i}^{n}\right|^{2} \leq \alpha^{-1} \sum_{j=1}^{d} \int_{\Omega}\left|b_{i j} v_{j}^{n} V_{i}^{n}\right| \leq \alpha^{-1} M \sum_{j=1}^{d}\left\|v_{j}^{n}\right\|_{2} \cdot\left\|V_{i}^{n}\right\|_{2} \leq C\left|V^{n}\right|_{2, d} \tag{2.12}
\end{equation*}
$$

It follows that $\left(V^{n}\right)_{n}$ is bounded in $\left(E^{1,2}(\Omega)\right)^{d}$. On the other hand, by (2.6) and (2.11),

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a_{i} \nabla\left(v_{i}^{n}-V_{i}^{n}\right)\right)=\frac{f_{i}^{n}}{\left\|u^{n}\right\|_{1, d}}, \quad \text { in } \Omega, \text { for } i=1, \cdots, d  \tag{2.13}\\
v_{i}^{n}-V_{i}^{n}=0, \quad \text { on } \Gamma_{\mathcal{D}}, \text { for } i=1, \cdots, d \\
\frac{\partial\left(v_{i}^{n}-V_{i}^{n}\right)}{\partial \nu}=\frac{g_{i}^{n}}{\left\|u^{n}\right\|_{1, d}}, \quad \text { on } \Gamma_{\mathcal{N}}, \quad \text { for } i=1, \cdots, d
\end{array}\right.
$$

Observing that the sequence $\left(v_{n}-V_{n}\right)_{n}$ is bounded in $\left(L^{1}(\Omega)\right)^{d}$ and arguing as in the proof of Lemma 1, we deduce that $\left(v_{n}-V_{n}\right)_{n}$ is bounded in $\left(E^{1, p}(\Omega)\right)^{d}$, for any $p<\frac{N}{N-1}$. So, up to a subsequence, we can assume that

$$
\begin{equation*}
v^{n}-V^{n} \rightharpoonup 0 \quad \text { weakly in }\left(E^{1, p}(\Omega)\right)^{d}, \forall p<\frac{N}{N-1} . \tag{2.14}
\end{equation*}
$$

But, by Lemma 1 and passing again at a subsequence,

$$
\begin{equation*}
v^{n} \rightharpoonup v \quad \text { weakly in }\left(E^{1, p}(\Omega)\right)^{d}, \forall p<\frac{N}{N-1} \tag{2.15}
\end{equation*}
$$

Hence, by (2.14) and (2.15),

$$
\begin{equation*}
V^{n} \rightharpoonup v \quad \text { weakly in }\left(E^{1, p}(\Omega)\right)^{d}, \forall p<\frac{N}{N-1} . \tag{2.16}
\end{equation*}
$$

But $\left(V^{n}\right)_{n}$ is bounded in $\left(E^{1,2}(\Omega)\right)^{d}$, so $v \in\left(E^{1,2}(\Omega)\right)^{d}$. Taking into account (2.11) we obtain that the same convergence holds in $\left(E^{1,2}(\Omega)\right)^{d}$ and $v \in$ $\left(E^{1,2}(\Omega)\right)^{d}$. By (2.15) and (2.16) we deduce that we can pass at the limit in (2.11) and we find

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a_{i} \nabla v_{i}\right)+\sum_{j=1}^{d} b_{i j} v_{j}=0, \quad \text { in } \Omega, \text { for } i=1, \cdots, d  \tag{2.17}\\
v_{i}=0, \quad \text { on } \Gamma_{\mathcal{D}}, \text { for } i=1, \cdots, d \\
\frac{\partial v_{i}}{\partial \nu}=0, \quad \text { on } \Gamma_{\mathcal{N}}, \quad \text { for } i=1, \cdots, d
\end{array}\right.
$$

By the uniqueness of the solution in $\left(E^{1,2}(\Omega)\right)^{d}$ we conclude that $v=0$. Consequently, $\left(v^{n}\right)$ converges weakly to 0 in $E$ which implies, by Rellich's theorem that we can assume $v_{n} \rightarrow 0$ strongly in $\left(L^{1}(\Omega)\right)^{d}$ which contradicts $\left\|v^{n}\right\|_{1, d}=1$.
Proof of Theorem 1 continued. We are now in position to conclude the proof of Theorem 1 in the case $N \leq 3$. This time we argue as in the proof of Lemma 1 but with $u^{n}$ instead of $v^{n}$. Indeed, since $\left(u^{n}\right) \subset\left(E^{1,2}(\Omega)\right)^{d}$ is bounded in $\left(L^{1}(\Omega)\right)^{d}$ we may repeat the same arguments as in the proof of Lemma 1 to show that $\left(u^{n}\right)$ is bounded in $E$. In particular, this implies that, passing eventually at a subsequence, there exists $u \in E$ such that

$$
u^{n} \rightharpoonup u \quad \text { weakly in }\left(E^{1, p}(\Omega)\right)^{d}, \forall p<\frac{N}{N-1} .
$$

Hence, $u$ is solution to the problem (1.1).
In the case $N \geq 4$ we shall employ several times the above arguments. For this aim we define the sequence $V_{(k)}^{n}$ by $V_{(1)}^{n}=V^{n}$ and, for any $k \geq 2$, let $V_{(k)}^{n}=\left(V_{1, k}^{n}, \cdots, V_{d, k}^{n}\right) \in\left(E^{1,2}(\Omega)\right)^{d}$ be the unique solution of the problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a_{i} \nabla V_{i, k}^{n}\right)+\sum_{j=1}^{d} b_{i j} V_{i, k-1}^{n}=0, \quad \text { in } \Omega, \text { for } i=1, \cdots, d  \tag{2.18}\\
V_{i, k}^{n}=0, \quad \text { on } \Gamma_{\mathcal{D}}, \text { for } i=1, \cdots, d \\
\frac{\partial V_{i, k}^{n}}{\partial \nu}=0, \quad \text { on } \Gamma_{\mathcal{N}}, \quad \text { for } i=1, \cdots, d
\end{array}\right.
$$

Fix $1 \leq p<\frac{N}{N-1}$.

Lemma 2. The sequence $\left(V_{(1)}^{n}\right)_{n}$ is bounded in $\left(E^{1, N p /(N-p)}(\Omega)\right)^{d}$.
Proof of Lemma 2. We repeat the argument applied in the proof of Lemma 1, but for $V_{(1)}^{n}$ instead of $v^{n}$. We already know that $\left(v^{n}\right)$ is bounded in $\left(L^{p}(\Omega)\right)^{d}$. Multiplying in (2.11) by

$$
w_{i}^{n}=\left[\left(1+\left|V_{i}^{n}\right|\right)^{(p-1) N /(N-2 p)}-1\right] \operatorname{sgn} V_{i}^{n} \in H_{0}^{1}(\Omega)
$$

we find

$$
\begin{aligned}
& \frac{(p-1) N}{N-2 p} \alpha \int_{\Omega} \frac{\left|\nabla V_{i}^{n}\right|^{2}}{\left(1+\left|V_{i}^{n}\right|\right)^{\frac{2 N-p(N+2)}{N-2 p}}} \\
& \leq \frac{(p-1) N}{N-2 p} \int_{\Omega} a_{i} \frac{\left|\nabla V_{i}^{n}\right|^{2}}{\left(1+\left|V_{i}^{n}\right|\right)^{\frac{2 N-p(N+2)}{N-2 p}}}=-\int_{\Omega}\left(\sum_{j=1}^{d} b_{i j} v_{j}^{n}\right) w_{i}^{n} \\
& \leq M\left\|v^{n}\right\|_{1, d}+M \|\left. v^{n}\right|_{p, d}\left(\int_{\Omega}\left(1+\left|V_{i}^{n}\right|\right)^{\frac{(p-1) N}{N-2 p} \cdot \frac{p}{p-1}}\right)^{\frac{p-1}{p}} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\int_{\Omega} \frac{\left|\nabla V_{i}^{n}\right|^{2}}{\left(1+\left|V_{i}^{n}\right|\right)^{\frac{2 N-p(N+2)}{N-2 p}}} \leq C_{1}+C_{2}\left(\int_{\Omega}\left(1+\left|V_{i}^{n}\right|\right)^{\frac{N p}{N-2 p}}\right)^{\frac{p-1}{p}} \tag{2.19}
\end{equation*}
$$

We observe that the hypothesis $N \geq 4$ implies $p<\frac{N}{N-1} \leq \frac{2 N}{N+2}$, so $\frac{2(N-p)}{N p}>$ 1. Therefore, by Sobolev inclusions and Hölder's inequality, we obtain

$$
\begin{equation*}
\int_{\Omega}\left|\nabla V_{i}^{n}\right|^{\frac{N_{p}}{N-p}} \leq\left(\int_{\Omega} \frac{\left|\nabla V_{i}^{n}\right|^{2}}{\left(1+\left|V_{i}^{n}\right|\right)^{\frac{2 N-p(N+2)}{N-2 p}}}\right)^{\frac{N_{p}}{2(N-p)}}\left(\int_{\Omega}\left(1+\left|V_{i}^{n}\right|\right)^{\frac{N p}{N-2 p}}\right)^{\frac{2 N-p(N+2)}{2(N-p)}} . \tag{2.20}
\end{equation*}
$$

By (2.19) and (2.20) we find

$$
\begin{align*}
& \left(\int_{\Omega}\left|\nabla V_{i}^{n}\right|^{\frac{N p}{N-p}}\right)^{\frac{N-p}{N p}}  \tag{2.21}\\
& \leq\left[C_{1}+C_{2}\left(\int_{\Omega}\left(1+\left|V_{i}^{n}\right|\right)^{\frac{N p}{N-2 p}}\right)^{\frac{p-1}{p}}\right]^{1 / 2}\left(\int_{\Omega}\left(1+\left|V_{i}^{n}\right|\right)^{\frac{N p}{N-2 p}}\right)^{\frac{2 N-p(N+2)}{2 N p}} \\
& \leq C_{3}\left(\int_{\Omega}\left(1+\left|V_{i}^{n}\right|\right)^{\frac{N p}{N-2 p}}\right)^{\frac{2 N-p(N+2)}{2 N p}}+C_{4}\left(\int_{\Omega}\left(1+\left|V_{i}^{n}\right|\right)^{\frac{N p}{N-2 p}}\right)^{\frac{N-2 p}{2 N p}} .
\end{align*}
$$

Our choice $p<\frac{N}{N-1}<\frac{N}{2}$ implies $\frac{N p}{N-p}<N$. Therefore, by Sobolev inclusions, the space $E^{1, N p /(N-p)}(\Omega)$ is continuously embedded in $L^{N p /(N-2 p)}(\Omega)$,
namely

$$
\begin{equation*}
\left.\left(\int_{\Omega}\left|V_{i}^{n}\right|^{\frac{N p}{N-2 p}}\right)^{\frac{N-2 p}{N p}} \leq C\left(\int_{\Omega}\left|\nabla V_{i}^{n}\right|\right)^{\frac{N p}{N-p}}\right)^{\frac{N-p}{N p}} . \tag{2.22}
\end{equation*}
$$

Thus, by (2.21) and (2.22), we deduce that

$$
\begin{aligned}
& \left(\int_{\Omega}\left|V_{i}^{n}\right|^{\frac{N p}{N-2 p}}\right)^{\frac{N-2 p}{N p}} \leq C\left(\int_{\Omega}\left|\nabla V_{i}^{n}\right|^{\frac{N p}{N-p}}\right)^{\frac{N-p}{N p}} \\
& \leq C_{5}\left(\int_{\Omega}\left(1+\left|V_{i}^{n}\right|\right)^{\frac{N p}{N-2 p}}\right)^{\frac{2 N-p(N+2)}{2 N p}}+C_{6}\left(\int_{\Omega}\left(1+\left|V_{i}^{n}\right|\right)^{\frac{N p}{N-2 p}}\right)^{\frac{N-2 p}{2 N p}} \\
& \leq C_{7}+C_{8}| | V_{i}^{n} \left\lvert\, \frac{\frac{2 N-p(N+2)}{2(N)}}{\frac{N p}{N-2 p}}+C_{9}\left\|V_{i}^{n}\right\|_{\frac{N p}{N-2 p}}^{1 / 2}\right.
\end{aligned}
$$

Observing that $\frac{2 N-p(N+2)}{2(N-2 p)}<1$, the above relations yield

$$
\begin{equation*}
\left\|V_{i}^{n}\right\|_{\frac{N p}{N-2 p}} \leq C\left\|\nabla V_{i}^{n}\right\|_{\frac{N p}{N-p}} \leq C_{10}+C_{11}\left\|V_{i}^{n}\right\|_{\frac{N p}{N-2 p}}^{1 / 2} . \tag{2.23}
\end{equation*}
$$

This implies that $\left(V_{i}^{n}\right)$ is bounded in $L^{N p /(N-2 p)}(\Omega)$. Then, again by (2.23), the sequence $\left(\nabla V_{i}^{n}\right)$ is bounded in $L^{N p /(N-p)}(\Omega)$ which implies the boundedness of $\left(V_{i}^{n}\right)$ in $E^{1, N p /(N-p)}(\Omega)$.
Proof of Theorem 1 concluded. It follows by Lemma 2 that the sequence $\left(V_{(1)}^{n}\right)$ is bounded in $\left(L^{N p /(N-2 p)}(\Omega)\right)^{d}$. If $\frac{N p}{N-2 p} \geq 2$, then we get the boundedness of $\left(V_{(1)}^{n}\right)$ in $\left(L^{2}(\Omega)\right)^{d}$ and the proof is concluded with exactly the same arguments as in the case $N \leq 3$, but for $v^{n}$ replaced by $V_{(1)}^{n}$. The condition $\frac{N p}{N-2 p} \geq 2$ holds true if $p \geq \frac{2 N}{N+4}$. Taking into account the restriction $p<\frac{N}{N-1}$ we find either $N=4$ or $N=5$. If not, we will repeat the arguments done in the proof of Lemma 2. It is sufficient to point out that the proof of Lemma 2 is based on the observation that $\left(V_{(1)}^{n}\right)$ is bounded in $\left(E^{1, p^{*}}(\Omega)\right)^{d}$, provided that $\left(v^{n}\right)$ is bounded in $\left(L^{p}(\Omega)\right)^{d}$. Now, with the same arguments, one can show that the boundedness of $\left(V_{(1)}^{n}\right)$ in $\left(L^{N p /(N-p)}(\Omega)\right)^{d}$ implies the boundedness of $\left(V_{(2)}^{n}\right)$ in $\left(E^{1, N p /(N-2 p)}(\Omega)\right)^{d}$, since $\frac{N p}{N-2 p}$ is the Sobolev conjugated exponent of $\frac{N p}{N-p}$. This holds true provided that $\frac{N p}{N-3 p} \geq 2$ and $p<\frac{N}{N-1}$, namely for $N=6$ or $N=7$. For greater values of $N$ the proof relies on the same principles.

We remark that the solution obtained by approximation in the above proof is unique. Indeed, let $f^{n, 1}, f^{n, 2} \in\left(L^{2}(\Omega)\right)^{d}$ and $g^{n, 1}, g^{n, 2} \in\left(L^{2}\left(\Gamma_{\mathcal{N}}\right)\right)^{d}$ be such that conditions (2.1)-(2.4) are fulfilled. Denote by $u^{n, 1}$, respectively
$u^{n, 2}$ the corresponding (unique) solutions in $\left(E^{1,2}(\Omega)\right)^{d}$ of the problem (2.5). Since the sequence $\left(u^{n, 1}-u^{n, 2}\right)$ is bounded in $\left(L^{1}(\Omega)\right)^{d}$, it follows with the same arguments as in the above proof that

$$
u^{n, 1}-u^{n, 2} \rightharpoonup 0 \quad \text { weakly in }\left(E^{1, p}(\Omega)\right)^{d}, \forall p<\frac{N}{N-1}
$$

which implies the uniqueness of the solution obtained by approximation.

## References

[1] Ph. Bénilan and H. Brezis, Some variational problems of the Thomas-Fermi type, in "Variational Inequalities," (Cottle, Gianessi, J.-L. Lions Editors), Willey, 1980, 53-73.
[2] L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169.
[3] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations, 17 (1992), 641-655.
[4] H. Brezis, "Analyse Fonctionnelle: Théorie et Applications," Masson, Paris, 1983.
[5] H. Brezis, Nonlinear elliptic equations involving measures, in "Contributions to nonlinear partial differential equations," (Madrid, 1981) (Bardos, Damlamian, Diaz, Hernandez Editors), 82-89, Research Notes in Mathematics, 89, Pitman, Boston, 1983.
[6] H. Brezis, Problèmes elliptiques et paraboliques non linéaires avec données mesures, Séminaire Goulaouic-Meyer-Schwartz 1981-1982, Ecole Polytechnique.
[7] H. Brezis and W. Strauss, Semilinear elliptic equations in $L^{1}$, J. Math. Soc. Japan, 25 (1973), 565-590.
[8] E. Lieb and B. Simon, The Thomas-Fermi theory of atoms, molecules and solids, Advances in Mathematics, 23 (1977), 22-116.
[9] L. Orsina, Solvability of linear and semilinear eigenvalue problems with $L^{1}$ data, Rend. Sem. Mat. Univ. Padova, 90 (1993), 207-238.
[10] A. Prignet, Remarks on existence and uniqueness of solutions of elliptic problems with right-hans side measure, Rendiconti di Matematica, 15 (1995), 321-337.
[11] J. Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385-387.
[12] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier Grenoble, 15 (1965), 189-258.


[^0]:    Accepted for publication: April 2001.
    AMS Subject Classifications: 35D05, 35J55, 46E35, 58 J 32.

