COMBINED EFFECTS FOR NON-AUTONOMOUS SINGULAR BIHARMONIC PROBLEMS

VICENȚIU D. RĂDULESCU a,b,c,* AND DUŠAN D. REPOVŠ a,d

a Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
b Faculty of Applied Mathematics, AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Kraków, Poland
c Institute of Mathematics “Simion Stoilow” of the Romanian Academy
P.O. Box 1-764, 014700 Bucharest, Romania
d Faculty of Education and Faculty of Mathematics and Physics
University of Ljubljana, 1000 Ljubljana, Slovenia

To Professor Patrizia Pucci, on the occasion of her 65th birthday.
Her work and friendship are a permanent source of inspiration and motivation.

Abstract. We study the existence of nontrivial weak solutions for a class of generalized \(p(x) \)-biharmonic equations with singular nonlinearity and Navier boundary condition. The proofs combine variational and topological arguments. The approach developed in this paper allows for the treatment of several classes of singular biharmonic problems with variable growth arising in applied sciences, including the capillarity equation and the mean curvature problem.

The interest in the mathematical analysis of partial differential equations driven by nonhomogeneous differential operators is motivated by their relevant applications in various disciplines. For instance, several models in the applied sciences are characterized by the fact that the associated energy density changes its ellipticity and growth properties according to the point. Such phenomena have been studied starting with the seminal works of T.C. Halsey [12] and V.V. Zhikov [33, 34], in close relationship with the qualitative mathematical analysis of strongly anisotropic...

2010 Mathematics Subject Classification. Primary: 35J93; Secondary: 35J60, 49Q05, 58E05, 58E30.

Key words and phrases. Generalized \(p(x) \)-biharmonic equation, nonhomogeneous differential operator, variable exponent, singular nonlinearity.

* Corresponding author: Vicențiu D. Rădulescu.

2057
materials in the context of the homogenization and nonlinear elasticity. In the framework of materials with non-homogeneities, the standard approach based on the classical theory of L^p and $W^{1,p}$ Lebesgue and Sobolev spaces is inadequate. We refer to electrorheological (smart) fluids or to phenomena in image processing, which should enable that the exponent p is varying; see Y. Chen, S. Levine and M. Rao [8], and M. Ruzicka [29]. For instance, we refer to the Winslow effect of some fluids (like lithium polymetachrylate) in which the viscosity in an electrical field is inversely proportional to the strength of the field. The field induces string-like formations in the fluid, which are parallel to the field. They can raise the viscosity by as much as five orders of magnitude. This corresponds to electrorheological (non-Newtonian) fluids, which are mathematically described by means of nonlinear equations with variable exponent. Such a study corresponds to the abstract setting of variable exponents Lebesgue and Sobolev spaces, $L^p(x)$ and $W^{1,p}(x)$, where p is a real-valued function.

The theory of function spaces with variable exponent has been rigorously developed in the monograph of L. Diening, P. Hästö, P. Harjulehto and M. Ruzicka [11] while the recent book by V.D. Rădulescu and D.D. Repovš [26] is devoted to the thorough variational and topological analysis of several classes of problems with one or more variable exponents; see also the survey papers of P. Harjulehto, P. Hästö, U.V. Le and M. Nuortio [13] and V.D. Rădulescu [24]. We also refer to G. Mingione et al. [4, 9, 10], M. Cencelj, V.D. Rădulescu and D.D. Repovš [6] M. Cencelj, D.D. Repovš and Ž. Virk [7], and D.D. Repovš [28] for related results. The abstract setting of $p(x)$-biharmonic problems with singular weights has been recently considered by K. Kefi and V.D. Rădulescu [14] in relationship with microelectromechanical phenomena, surface diffusion on solids, thin film theory, flow in Hele-Shaw cells and phase field models of multiphase systems. The present paper extends and complements some results contained in [14, 15] to more general operators.

The study of elliptic problems with variable exponent has recently been extended by I.H. Kim and Y.H. Kim [16] to a new class of non-homogeneous differential operators. Their contribution is a step forward in the analysis of nonlinear problems with variable exponent since it enables the understanding of problems with possible lack of uniform convexity. More precisely, in [16] they studied problems of the type

$$\begin{cases}
-\text{div} (\phi(x,|\nabla u|)\nabla u) = f(x,u) & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary. The nonlinear term $f : \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies the Carathéodory condition and the function $\phi(x,t)$ is of type $|t|^{p(x)-2}$ with $p : \Omega \to (1, \infty)$ continuous.

In the special case when $\phi(x,t) = |t|^{p(x)-2}$, the operator involved in problem (1) reduces to the $p(x)$-Laplacian, that is,

$$\Delta_{p(x)} u = \text{div} (|\nabla u|^{p(x)-2} \nabla u).$$

In many papers (see, e.g., [20, Hypothesis (A4), p. 2629]), the functional Φ induced by the principal part of problem (1) is assumed to be uniformly convex, namely, there exists $k > 0$ such that for all $x \in \Omega$ and all $\xi, \psi \in \mathbb{R}^N$,

$$\Phi \left(x, \frac{\xi + \psi}{2} \right) \leq \frac{1}{2} \Phi(x,\xi) + \frac{1}{2} \Phi(x,\psi) - k |\xi - \psi|^{p(x)}.$$

However, since the function $\Psi(x,t) = t^p$ is not uniformly convex for $t > 0$ and $1 < p < 2$, this condition is not applicable to all p-Laplacian problems. An important
feature of the abstract setting developed in [16] is that the main results are obtained without any uniform convexity assumption.

In the present paper we extend [16] to problems involving \(p(x) \)-biharmonic operators and we describe some qualitative properties in the presence of singular terms. We develop the study of biharmonic problems with Navier boundary condition for equations driven by the operator \(\Delta(|u|^{p(x)-2} u) \), where \(\phi \) is as in (1). Notice that if \(\phi(x,t) = |t|^{p(x)-2} t \), then we obtain the \(p(x) \)-biharmonic operator defined by \(\Delta^{2}_{p(x)} u = \Delta(|u|^{p(x)-2} \Delta u) \).

2. Abstract framework and preliminary results. Throughout this paper we assume that \(\Omega \subset \mathbb{R}^N \) is a bounded domain with smooth boundary.

Set
\[
C_{+}(\Omega) = \{ h \in C(\Omega), \ h(x) > 1 \ \text{for all} \ x \in \Omega \}.
\]
Assume that \(p \in C_{+}(\Omega) \) and let
\[
p^+ = \sup_{x \in \Omega} p(x) \quad \text{and} \quad p^- = \inf_{x \in \Omega} p(x).
\]

We define the Lebesgue space with variable exponent by
\[
L^{p(x)}(\Omega) = \left\{ u; \ u \text{ is measurable and } \int_{\Omega} |u(x)|^{p(x)} \ dx < \infty \right\}.
\]
This function space is a Banach space if it is endowed with the norm
\[
|u|_{p(x)} = \inf\left\{ \mu > 0; \ \int_{\Omega} \frac{|u(x)|^{p(x)}}{\mu} \ dx \leq 1 \right\}.
\]
This norm is also called the Luxemburg norm. Then \(L^{p(x)}(\Omega) \) is reflexive if and only if \(1 < p^- \leq p^+ < \infty \) and continuous functions with compact support are dense in \(L^{p(x)}(\Omega) \) if \(p^+ < \infty \).

The standard inclusion between Lebesgue spaces generalizes to the framework of spaces with variable exponent, namely if \(0 < |\Omega| < \infty \) and \(p_1, p_2 \) are variable exponents such that \(p_1 \leq p_2 \) in \(\Omega \) then there exists the continuous embedding \(L^{p_2(x)}(\Omega) \hookrightarrow L^{p_1(x)}(\Omega) \).

Let \(L^{p'}(\Omega) \) denote the conjugate space of \(L^{p(x)}(\Omega) \), where \(1/p(x) + 1/p'(x) = 1 \). Then for all \(u \in L^{p(x)}(\Omega) \) and \(v \in L^{p'(x)}(\Omega) \) the following Hölder-type inequality holds:
\[
\left| \int_{\Omega} uv \ dx \right| \leq \left(\frac{1}{p^+} + \frac{1}{p^-} \right) |u|_{p(x)} |v|_{p'(x)}.
\]

An important role in analytic arguments on Lebesgue spaces with variable exponent is played by the modular of \(L^{p(x)}(\Omega) \), which is the map \(\rho_{p(x)} : L^{p(x)}(\Omega) \rightarrow \mathbb{R} \) defined by
\[
\rho_{p(x)}(u) = \int_{\Omega} |u|^{p(x)} \ dx.
\]
If \((u_n), u \in L^{p(x)}(\Omega) \) and \(p^+ < \infty \) then the following properties hold:
\[
|u|_{p(x)} > 1 \quad \Rightarrow \quad |u|_{p(x)}^{p^+} \leq \rho_{p(x)}(u) \leq |u|_{p(x)}^{p^-} \tag{3}
\]
\[
|u|_{p(x)} < 1 \quad \Rightarrow \quad |u|_{p(x)}^{p^+} \leq \rho_{p(x)}(u) \leq |u|_{p(x)}^{p^-} \tag{4}
\]
\[
|u_n - u|_{p(x)} \rightarrow 0 \quad \Leftrightarrow \quad \rho_{p(x)}(u_n - u) \rightarrow 0. \tag{5}
\]

We define the variable exponent Sobolev space by
\[
W^{1,p(x)}(\Omega) = \{ u \in L^{p(x)}(\Omega) : |\nabla u| \in L^{p(x)}(\Omega) \}.
\]
On $W^{1,p(x)}(\Omega)$ we may consider one of the following equivalent norms
\[
\|u\|_{p(x)} = |u|_{p(x)} + |\nabla u|_{p(x)}
\]
or
\[
\|u\|_{p(x)} = \inf \left\{ \mu > 0 ; \int_\Omega \left(\frac{\nabla u(x)}{\mu} \right)^{p(x)} + \frac{|u(x)|^{p(x)}}{\mu} \, dx \leq 1 \right\}.
\]

Zhikov [34] showed that smooth functions are in general not dense in $W^{1,p(x)}(\Omega)$. This property is in relationship with the Lavrentiev phenomenon, which asserts that there exist variational problems for which the infimum over the smooth functions is strictly greater than the infimum over all functions that satisfy the same boundary conditions. We refer to [26, pp. 12-13] for more details.

Let $W^{1,p(x)}_0(\Omega)$ denote the closure of the set of compactly supported $W^{1,p(x)}$-functions with respect to the norm $\|u\|_{p(x)}$. When smooth functions are dense, we can also use the closure of $C_0^\infty(\Omega)$ in $W^{1,p(x)}(\Omega)$. Using the Poincaré inequality, the space $W^{1,p(x)}_0(\Omega)$ can be defined, in an equivalent manner, as the closure of $C_0^\infty(\Omega)$ with respect to the norm
\[
\|u\|_{p(x)} = |\nabla u|_{p(x)}.
\]
The vector space $(W^{1,p(x)}_0(\Omega), \| \cdot \|)$ is a separable and reflexive Banach space. Moreover, if $0 < |\Omega| < \infty$ and p_1, p_2 are variable exponents such that $p_1 \leq p_2$ in Ω then there exists a continuous embedding $W^{1,p(x)}_0(\Omega) \hookrightarrow W^{1,p_1(x)}_0(\Omega)$.

Set
\[
\theta_{p(x)}(u) = \int_\Omega |\nabla u(x)|^{p(x)} \, dx. \tag{6}
\]
If $(u_n), u \in W^{1,p(x)}_0(\Omega)$ then the following properties hold:
\[
\begin{align*}
\|u\| > 1 & \Rightarrow \|u\|^{p^-} \leq \theta_{p(x)}(u) \leq \|u\|^{p^+}, \tag{7} \\
\|u\| < 1 & \Rightarrow \|u\|^{p^-} \leq \theta_{p(x)}(u) \leq \|u\|^{p^+}, \tag{8} \\
\|u_n - u\| \to 0 & \Leftrightarrow \theta_{p(x)}(u_n - u) \to 0. \tag{9}
\end{align*}
\]

Set
\[
p_*(x) = \begin{cases}
\frac{Np(x)}{N - p(x)} & \text{if } p(x) < N, \\
+\infty & \text{if } p(x) \geq N.
\end{cases}
\]

We point out that if $p, q \in C_+(\bar{\Omega})$ and $q(x) < p_*(x)$ for all $x \in \bar{\Omega}$ then the embedding $W^{1,p(x)}_0(\Omega) \hookrightarrow L^{q(x)}(\Omega)$ is compact.

For any positive integer k, let
\[
W^{k,p(x)}(\Omega) = \{ u \in L^{p(x)}(\Omega) : D^\alpha u \in L^{p(x)}(\Omega), |\alpha| \leq k \},
\]
where $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_N)$ is a multi-index, $|\alpha| = \sum_i N \alpha_i$ and
\[
D^\alpha u = \frac{\partial^{|\alpha|} u}{\partial^{\alpha_1} x_1 \ldots \partial^{\alpha_N} x_N}.
\]
Then $W^{k,p(x)}(\Omega)$ is a separable and reflexive Banach space equipped with the norm
\[
\|u\|_{k,p(x)} = \sum_{|\alpha| \leq k} |D^\alpha u|_{p(x)}.
\]

The space $W^{k,p(x)}_0(\Omega)$ is the closure of $C_0^\infty(\Omega)$ in $W^{k,p(x)}(\Omega)$.
For any $u \in \mathcal{X}$ we have $\|u\| = \|u\|_{1,p(x)} + \|u\|_{2,p(x)}$, thus
$$\|u\| = |u|_{p(x)} + |\nabla u|_{p(x)} + \sum_{|\alpha|=2} |D^\alpha u|_{p(x)}.$$

A.B. Zang and Y. Fu [32] proved the equivalence of the norms and they also established that the norm $|\Delta u|_{p(x)}$ is equivalent to the norm $\|u\|$ (see [32, Theorem 4.4]). Note that $(\mathcal{X}, \|\cdot\|)$ is a separable and reflexive Banach space.

We recall that the critical Sobolev exponent is defined as follows:
$$\begin{cases} p^*(x) = \frac{Np(x)}{N - 2p(x)}, & p(x) < \frac{N}{2}, \\ p^*(x) = +\infty, & p(x) \geq \frac{N}{2}. \end{cases}$$

Assume that $q \in C^+([\Omega])$ and $q(x) < p^*(x)$ for any $x \in \Omega$. Then, by Theorem 3.2 in [3], the function space \mathcal{X} is continuously and compactly embedded in $L^{q(x)}(\Omega)$.

For a constant function p, the variable exponent Lebesgue and Sobolev spaces coincide with the standard Lebesgue and Sobolev spaces. As pointed out in [26], the function spaces with variable exponent have some striking properties, such as:

(i) If $1 < p^* \leq p < \infty$ and $p : \Omega \to [1, \infty)$ is smooth, then the formula
$$\int_{\Omega} |u(x)|^p dx = p \int_0^{\infty} t^{p-1} |\{x \in \Omega; |u(x)| > t\}| dt$$
has no variable exponent analogue.

(ii) Variable exponent Lebesgue spaces do not have the mean continuity property. More precisely, if p is continuous and nonconstant in an open ball B, then there exists a function $u \in L^{p(x)}(B)$ such that $u(x + h) \notin L^{p(x)}(B)$ for all $h \in \mathbb{R}^N$ with arbitrary small norm.

(iii) The function spaces with variable exponent are never translation invariant. The use of convolution is also limited, for instance the Young inequality
$$|f * g|_{p(x)} \leq C \|f\|_{p(x)} \|g\|_{L^1}$$
holds if and only if p is constant.

3. **Main result.** Throughout this paper we assume that $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary.

Let $p \in C_+([\Omega])$ and consider the function $\phi : \Omega \times [0, \infty) \to [0, \infty)$ satisfying the following hypotheses:

(H1) the mapping $\phi(\cdot, \xi)$ is measurable on Ω for all $\xi \geq 0$ and $\phi(x, \cdot)$ is locally absolutely continuous on $[0, \infty)$ for almost all $x \in \Omega$;

(H2) there exist $a \in L^{p'}(\Omega)$ and $b > 0$ such that
$$|\phi(x, |v|)| \leq a(x) + b|v|^{p(x) - 1}$$
for almost all $x \in \Omega$ and for all $v \in \mathbb{R}^N$;

(H3) there exists $c > 0$ such that
$$\phi(x, \xi) \geq c\xi^{p(x) - 2}, \quad \phi(x, \xi) + \xi \frac{\partial \phi}{\partial \xi}(x, \xi) \geq c\xi^{p(x) - 2}$$
for almost all $x \in \Omega$ and for all $\xi > 0$.

Next, we recall some properties of the space
$$\mathcal{X} := W^{1,p(x)}_0(\Omega) \cap W^{2,p(x)}(\Omega).$$
Theorem 3.1. Assume that hypotheses (H1)–(H3) are fulfilled and that for all $u, v \in \mathbb{R}^N$

\[
\langle \phi(x, |u|)u - \phi(x, |v|)v, u - v \rangle \geq \begin{cases}
 c(|u| + |v|)^{p(x) - 2} |u - v|^2 & \text{if } x \in \Omega_1 \text{ and } (u, v) \neq (0, 0) \\
 4^{1-r^+}c|u - v|^{p(x)} & \text{if } x \in \Omega_2,
\end{cases}
\]

where c is the positive constant from hypothesis (H3).

Let $A : W^{1,p(x)}_0(\Omega) \to \mathbb{R}$ defined by

\[
A(u) = \int_{\Omega} \int_0^{\max(v(x), 0)} s\phi(x, s)dsdx.
\]

Inequality (10) was used in [16] to show that $A' : W^{1,p(x)}_0(\Omega) \to W^{-1,p'(x)}(\Omega)$ is both a monotone operator and a mapping of type (S_+). We refer to Simon [31] for the initial version of inequality (10) in the framework of the p-Laplace operator.

We study the following singular biharmonic problem with variable growth:

\[
\begin{cases}
 \Delta(\phi(x, \Delta u)\Delta u) = |u|^{-q(x)-1}u + \lambda |u|^{r(x)-2}u, & x \in \Omega \\
 u = \Delta u = 0, & x \in \partial\Omega,
\end{cases}
\]

where q, r are continuous functions and λ is a positive parameter.

If $\phi(x, \xi) = \xi^{p(x)-2}$ then we obtain the standard $p(x)$-Laplace biharmonic operator, that is, $\Delta_{p(x)}^\phi u := \Delta(\Delta u)^{p(x)-2}\Delta u$.

Our abstract setting includes the case $\phi(x, \xi) = (1 + |\xi|^2)^{(p(x)-2)/2}$, which corresponds to the generalized biharmonic mean curvature operator

\[
\Delta \left[(1 + |\Delta u|^2)^{(p(x)-2)/2} \Delta u \right].
\]

The biharmonic capillarity equation corresponds to

\[
\phi(x, \xi) = \left(1 + \frac{\xi^{p(x)}}{1 + \xi^{2p(x)}}\right) \xi^{p(x)-2}, \quad x \in \Omega, \quad \xi > 0,
\]

hence the corresponding capillary phenomenon is described by the differential operator

\[
\Delta \left[\left(1 + \frac{|\Delta u|^{p(x)}}{1 + |\Delta u|^{2p(x)}}\right) |\Delta u|^{p(x)-2} \Delta u \right].
\]

We say that u is a solution of problem (11) if $u \in \mathcal{X} \setminus \{0\}$ with $\Delta u = 0$ on $\partial\Omega$ and

\[
\int_{\Omega} \phi(x, |\Delta u|)\Delta u\Delta vdx = \int_{\Omega} |u|^{-q(x)-1}uvdx + \lambda \int_{\Omega} |u|^{r(x)-2}uv,
\]

for all $v \in \mathcal{X}$.

Theorem 3.1. Assume that hypotheses (H1)–(H3) are fulfilled and that

\[
0 < q(x) < 1 < r(x) < p(x) < p^*(x) \quad \text{for all } x \in \Omega.
\]

Then problem (11) has a solution for all $\lambda > 0$.

An interesting consequence of theses assumptions is that ϕ satisfies a Simon-type inequality. More precisely, if we denote

\[
\Omega_1 := \{x \in \Omega : 1 < p(x) < 2\} \quad \text{and} \quad \Omega_2 := \{x \in \Omega : p(x) \geq 2\},
\]

then the following estimate holds for all $u, v \in \mathbb{R}^N$

\[
\langle \phi(x, |u|)u - \phi(x, |v|)v, u - v \rangle \geq \begin{cases}
 c(|u| + |v|)^{p(x) - 2} |u - v|^2 & \text{if } x \in \Omega_1 \text{ and } (u, v) \neq (0, 0) \\
 4^{1-r^+}c|u - v|^{p(x)} & \text{if } x \in \Omega_2,
\end{cases}
\]
In the present paper, problem (11) is studied for the subcritical case, namely under the basic hypothesis (12), which is crucial for compactness arguments. We consider that a very interesting research direction is to study the same problem in the almost critical setting, hence under the following assumption: there exists

$$r(x) < p^*(x) \text{ for all } x \in \Omega \setminus \{x_0\} \text{ and } r(x_0) = p^*(x_0).$$

(13)

Of course, this hypothesis is not possible if the functions p and r are constant. We conjecture that the result stated in Theorem 3.1 remains true under assumption (13).

4. Proof of Theorem 3.1. Fix $\lambda > 0$ and denote

$$\Phi(x,t) := \int_0^t s\phi(x,s)ds \text{ for all } x \in \Omega.$$

The energy functional associated to problem (11) is $E : \mathcal{X} \to \mathbb{R}$ defined by

$$E(u) = \int_\Omega \Phi(x,|\Delta u|)dx - \int_\Omega \frac{|u|^{1-q(x)}}{1-q(x)}dx - \lambda \int_\Omega \frac{|u|^r(x)}{r(x)}dx.$$

By hypothesis (12), we deduce that E is well-defined. On the other hand, with the same arguments as in [14, Proposition 3.3], the energy functional E is sequentially lower semicontinuous and of class C^1. Moreover, the mapping $E' : \mathcal{X} \to \mathcal{X}^*$ is a strictly monotone, bounded homeomorphism and is of type (S_+), that is, if

$$u_n \to u \text{ in } \mathcal{X} \text{ and } \limsup_{n \to \infty} E'(u_n)(u_n - u) \leq 0,$$

then $u_n \to u$ in \mathcal{X}.

We split the proof of Theorem 3.1 into several steps.

Step 1. The functional E is coercive.

Using (H3), we first deduce that for all $u \in \mathcal{X}$

$$E(u) \geq c \int_\Omega |\Delta u|^{p(x)}dx - \int_\Omega \frac{|u|^{1-q(x)}}{1-q(x)}dx - \lambda \int_\Omega \frac{|u|^r(x)}{r(x)}dx.$$

Therefore

$$E(u) \geq \frac{c}{p^+} \int_\Omega |\Delta u|^{p(x)}dx - \frac{1}{1-q^+} \int_\Omega |u|^{1-q(x)}dx - \lambda \int_\Omega \frac{|u|^r(x)}{r(x)}dx.$$

It follows that for all $u \in \mathcal{X}$ with $\|u\| > 1$ we have

$$E(u) \geq \frac{c}{p^+} \|u\|^{p^+} - \frac{1}{1-q^+} \int_\Omega |u|^{1-q(x)}dx - \lambda \int_\Omega \frac{|u|^r(x)}{r(x)}dx$$

$$\geq \frac{c}{p^+} \|u\|^{p^-} - \frac{1}{1-q^+} \min \left\{|u|^{1-q_{r(x)}}|_{r(x)}^{p(x)}, |u|^{1-q_{r(x)}}|_{r(x)}^{p(x)}\right\}$$

$$- \frac{\lambda}{r^+} \min\{\|u\|^{r}_{r(x)}, \|u\|^{r}_{1-q(x)}\}.\text{ }

Next, by hypothesis (12), it follows that there exists $c_0 > 0$ such that for all $u \in \mathcal{X}$

$$\max\{|u|^{1-q_{p(x)}}|_{p(x)}, |u|^{1-q_{r(x)}}|_{r(x)}\} \leq c_0 \|u\|.$$

We deduce that

$$E(u) \geq \frac{c}{p^+} \|u\|^{p^-} - \frac{c_0}{1-q^+} \min\{\|u\|^{1-q^+}, \|u\|^{1-q^+}\} - \frac{\lambda c_0}{r^+} \min\{\|u\|^{r^+}, \|u\|^{r^-}\}$$

$$= \frac{c}{p^+} \|u\|^{p^-} - \frac{c_0}{1-q^+} \|u\|^{1-q^+} - \frac{\lambda c_0}{r^+} \|u\|^{r^-}.$$
We conclude the proof of Step 1 by using hypothesis (12).

The next step shows that the energy \mathcal{E} does not satisfy one of the geometric hypotheses of the mountain pass theorem. More precisely, we show that there exists a “valley” for \mathcal{E} close to the origin, so not far away from the origin, as it is required by the Ambrosetti-Rabinowitz theorem.

Step 2. There exists $v \in \mathcal{X}$ such that $\mathcal{E}(tv) < 0$ for all small enough $t > 0$.

Hypothesis (H2) yields for all $u \in \mathcal{X}$

$$
\Phi(x, |\Delta u|) \leq \int_0^{|\Delta u|} \left(a(x) + b|s|^{p(x)-1} \right) ds \leq |a(x)| |\Delta u| + b \frac{|\Delta u|^{p(x)}}{p(x)}.
$$

It follows that

$$
\int_\Omega \Phi(x, |\Delta u|) \, dx \leq \int_\Omega |a(x)| |\Delta u| \, dx + b \int_\Omega \frac{|\Delta u|^{p(x)}}{p(x)} \, dx.
$$

Fix $v \in C^\infty(\Omega)$ with $\text{supp}(v) \subset \Omega$ and $0 \leq v \leq 1$. For all $t > 0$ we have

$$
\int_\Omega \Phi(x, |\Delta(tv)|) \, dx \leq 2t |a|_{p'(x)} |\Delta v|_{p(x)} + b \int_\Omega \frac{|\Delta v|^{p(x)}}{p(x)} \, dx
\leq 2t |a|_{p'(x)} |\Delta v|_{p(x)} + b \frac{t^p}{p} \int_\Omega |\Delta v|^{p(x)} \, dx
= C_1 t + C_2 t^\gamma,
$$

where

$$
C_1 = 2 |a|_{p'(x)} |\Delta v|_{p(x)} > 0 \quad \text{and} \quad C_2 = \frac{b}{p} \int_\Omega |\Delta v|^{p(x)} \, dx > 0.
$$

We conclude that

$$
\mathcal{E}(tv) \leq C_1 t + C_2 t^\gamma - C_3 t^{1-q}, \quad (14)
$$

where

$$
C_3 = \int_\Omega |v|^{1-q(x)} \, dx > 0.
$$

Since $0 < 1 - q^- < 1 < p^-$, relation (14) implies that $\mathcal{E}(tv) < 0$, provided that $t > 0$ is small enough.

Step 3. The infimum of \mathcal{E} is achieved by some $u_0 \in \mathcal{X} \setminus \{0\}$.

Let $(u_n) \subset \mathcal{X}$ be a minimizing sequence of \mathcal{E}. By Step 1, we deduce that (u_n) is a bounded sequence. So, there exists $u_0 \in \mathcal{X}$ such that, up to a subsequence,

$$
u_n \rightarrow u_0 \quad \text{in} \quad \mathcal{X},
$$

$$
u_n \rightarrow u_0 \quad \text{in} \quad L^{r(x)}(\Omega).
$$

By the weak lower semicontinuity of \mathcal{E} we conclude that

$$
m := \inf \{ \mathcal{E}(u); \ u \in \mathcal{X} \} \leq \mathcal{E}(u_0) \leq \lim \inf_{n \rightarrow \infty} \mathcal{E}(u_n) = m,
$$

hence u_0 is a global minimizer of \mathcal{E} and

$$
m = \mathcal{E}(u_0).
$$

Moreover, by Step 2, we have $m < 0$, hence $u_0 \in \mathcal{X} \setminus \{0\}$.
To complete the proof of Step 3, it remain to show that u_0 satisfies (11) in the weak sense and that $\Delta u_0 = 0$ on $\partial \Omega$. These properties will be established in the final steps of the proof.

Step 4. We have

$$
\int_{\Omega} \phi(x, |\Delta u_0|) \Delta u_0 \Delta v dx = \int_{\Omega} |u_0|^{-q(x)-1} u_0 v dx + \lambda \int_{\Omega} |u_0|^{r(x)-2} u_0 v,
$$

(15)

for all $v \in \mathcal{X}$.

Fix $v \in \mathcal{X}$ and $\varepsilon > 0$. Define $z = (u_0 + \varepsilon v)^+$. Since u_0 is a (global) minimizer of \mathcal{E}, we deduce that

$$
0 \leq \int_{\Omega} \phi(x, |\Delta u_0|) |\Delta u_0| \Delta z dx - \int_{\Omega} |u_0|^{-q(x)-1} u_0 z dx - \lambda \int_{\Omega} |u_0|^{r(x)-2} u_0 z dx
$$

$$
= \int_{[u_0 + \varepsilon v] > 0} \phi(x, |\Delta u_0|) \Delta u_0 \Delta (u_0 + \varepsilon v) dx - \int_{[u_0 + \varepsilon v] > 0} |u_0|^{-q(x)-1} u_0 (u_0 + \varepsilon v) dx
$$

$$
- \lambda \int_{[u_0 + \varepsilon v] > 0} |u_0|^{r(x)-2} u_0 (u_0 + \varepsilon v) dx
$$

$$
= \int_{\Omega} \phi(x, |\Delta u_0|) \Delta u_0 \Delta (u_0 + \varepsilon v) dx - \int_{\Omega} |u_0|^{-q(x)-1} u_0 (u_0 + \varepsilon v) dx
$$

$$
- \lambda \int_{[u_0 + \varepsilon v] > 0} |u_0|^{r(x)-2} u_0 (u_0 + \varepsilon v) dx
$$

$$
- \int_{[u_0 + \varepsilon v] \leq 0} \phi(x, |\Delta u_0|) \Delta u_0 \Delta (u_0 + \varepsilon v) dx + \int_{[u_0 + \varepsilon v] \leq 0} |u_0|^{-q(x)-1} u_0 (u_0 + \varepsilon v) dx
$$

$$
\leq \int_{\Omega} \phi(x, |\Delta u_0|) |\Delta u_0| |\Delta v| dx
$$

It follows that

$$
0 \leq \int_{\Omega} \phi(x, |\Delta u_0|) |\Delta u_0| |\Delta v| dx - \int_{\Omega} |u_0|^{1-q(x)} dx - \lambda \int_{\Omega} |u_0|^{r(x)} dx
$$

$$
+ \varepsilon \int_{\Omega} \phi(x, |\Delta u_0|) |u_0|^{1-q(x)} u_0 v dx
$$

$$
- \lambda \varepsilon \int_{\Omega} |u_0|^{r(x)-2} u_0 v dx + O(\varepsilon^2)
$$

$$
- \int_{[u_0 + \varepsilon v] \leq 0} \phi(x, |\Delta u_0|) \Delta u_0 \Delta (u_0 + \varepsilon v) dx + \int_{[u_0 + \varepsilon v] \leq 0} |u_0|^{-q(x)-1} u_0 (u_0 + \varepsilon v) dx
$$

$$
+ \lambda \int_{[u_0 + \varepsilon v] \leq 0} |u_0|^{r(x)-2} u_0 (u_0 + \varepsilon v) dx.
$$

Since u_0 is a critical point of \mathcal{E}, this relation yields

$$
0 \leq \varepsilon \left(\int_{\Omega} \phi(x, |\Delta u_0|) \Delta u_0 \Delta v dx - \int_{\Omega} |u_0|^{-q(x)-1} u_0 v dx - \lambda \int_{\Omega} |u_0|^{r(x)-2} u_0 v dx \right)
$$

$$
- \varepsilon \int_{[u_0 + \varepsilon v] \leq 0} \phi(x, |\Delta u_0|) \Delta u_0 \Delta v dx
$$

$$
eq \varepsilon \left(\int_{\Omega} \phi(x, |\Delta u_0|) \Delta u_0 \Delta v dx - \int_{\Omega} |u_0|^{-q(x)-1} u_0 v dx - \lambda \int_{\Omega} |u_0|^{r(x)-2} u_0 v dx \right)
$$

$$
+ o(\varepsilon) \quad \text{as } \varepsilon \to 0.
$$

This relation implies that

$$
\int_{\Omega} \phi(x, |\Delta u_0|) \Delta u_0 \Delta v dx - \int_{\Omega} |u_0|^{-q(x)-1} u_0 v dx - \lambda \int_{\Omega} |u_0|^{r(x)-2} u_0 v dx \geq 0.
$$

Changing v with $-v$ we deduce that

$$
\int_{\Omega} \phi(x, |\Delta u_0|) \Delta u_0 \Delta v dx - \int_{\Omega} |u_0|^{-q(x)-1} u_0 v dx - \lambda \int_{\Omega} |u_0|^{r(x)-2} u_0 v dx \leq 0.
$$
We conclude that relation (15) holds.

Step 5. We have \(\Delta u_0 = 0\) on \(\partial \Omega\).

By virtue of (15), the function \(u_0\) satisfies for all \(v \in X\)

\[
\int_{\Omega} \phi(x, |\Delta u_0|) \Delta u_0 \Delta v dx = \int_{\Omega} A(x) v dx,
\]

where

\[
A(x) := |u_0|^{-q(x)-1} u_0 + \lambda |u_0|^{r(x)-2} u_0.
\]

Let \(z \in X\) be the unique solution of the linear problem

\[
\begin{align*}
\Delta z &= A(x) \quad \text{in } \Omega \\
z &= 0 \quad \text{on } \partial \Omega.
\end{align*}
\]

Relations (16) and (17) yield that for all \(v \in X\)

\[
\int_{\Omega} \phi(x, |\Delta u_0|) \Delta u_0 \Delta v dx = \int_{\Omega} (\Delta z) v dx.
\]

By Green’s formula we deduce that for all \(v \in C^\infty_c(\Omega) \subset X\)

\[
\int_{\Omega} \phi(x, |\Delta u_0|) \Delta u_0 \Delta v dx = \int_{\Omega} z \Delta v dx.
\]

For any \(w \in C^\infty_c(\Omega)\), let \(v \in C^\infty_c(\Omega)\) be the unique solution of the problem

\[
\begin{align*}
\Delta v &= w \quad \text{in } \Omega \\
v &= 0 \quad \text{on } \partial \Omega.
\end{align*}
\]

Returning to (18), we deduce that for all \(w \in C^\infty_c(\Omega)\)

\[
\int_{\Omega} (\phi(x, |\Delta u_0|) \Delta u_0 - z) w dx = 0.
\]

Applying [5, Lemma VIII.1] we conclude that

\[
\phi(x, |\Delta u_0|) \Delta u_0 - z = 0 \quad \text{in } \Omega.
\]

But \(z = 0\) on \(\partial \Omega\). Using hypothesis (H3), relation (19) implies that \(\Delta u_0 = 0\) on \(\partial \Omega\). The proof of Theorem 3.1 is now complete.

We point out that the same arguments are no longer valid if the parameter \(\lambda\) in problem (11) is negative. In this case, the conclusion of step 2 is not true, hence it is possible that the global minimizer \(u_0\) obtained in step 3 is trivial. Thus, if \(\lambda < 0\), the reaction term \(|u_0|^{r(x)-2} u_0\) becomes a source term. We believe that if \(\lambda\) is negative, a natural assumption is to replace the nonlinearity \(|u_0|^{r(x)-2} u_0\) with a term having a different growth near the origin and at infinity.

4.1. **Epilogue.** A very interesting open problem concerns the same analysis if the left-hand side of problem (11) is replaced either by the differential operator

\[
\Delta (\phi_1(x, |\Delta u|) \Delta u) + V(x) \Delta (\phi_2(x, |\Delta u|) \Delta u)
\]

or by

\[
\Delta (\phi_1(x, |\Delta u|) \Delta u) + V(x) \Delta (\phi_2(x, |\Delta u|) \Delta u) \log(e + |x|),
\]

where \(V\) is a nonnegative potential and \(\phi_1, \phi_2\) satisfy hypotheses (H1)–(H3) corresponding to the variable exponents \(p_1(x), p_2(x)\) with \(p_1(x) \leq p_2(x)\) in \(\Omega\). Considering two different materials with power hardening exponents \(p_1(x)\) and \(p_2(x)\), respectively, the coefficient \(V(x)\) dictates the geometry of a composite of the two materials. When \(V(x) > 0\) then \(p_2(x)\)-material is present, otherwise the \(p_1(x)\)-material
is the only one making the composite. Composite materials with locally different hardening exponents $p_1(x)$ and $p_2(x)$ can be described using the energies associated to the differential operators defined in (20) and (21). Problems of this type were also motivated by applications to elasticity, homogenization, modelling of strongly anisotropic materials, Lavrentiev phenomenon, etc. In the case of constant exponents, we refer to the pioneering papers by P. Marcellini [18, 19] and G. Mingione et al. [4, 9, 10]. Double phase problems with variable growth have recently been considered by M. Cencelj, V.D. Rădulescu and D.D. Repovš [6], V.D. Rădulescu and Q. Zhang [27], and X. Shi, V.D. Rădulescu, D.D. Repovš and Q. Zhang [30].

We conclude by pointing out that the differential operator $\Delta(\phi(x, |\Delta u|)|\Delta u|)$ considered in problem (11) falls in the realm of those related to the so-called Musielak-Orlicz spaces (see J. Musielak [21] and W. Orlicz [22]), more generally, of the operators having non-standard growth conditions (which are widely considered in the calculus of variations). These function spaces are Orlicz spaces whose defining Young function exhibits an additional dependence on the x variable. Nonlinear problems in Musielak-Orlicz spaces were studied in V.D. Rădulescu and D.D. Repovš [26, Chapter 4], but only in the framework of the standard $p(x)$-Laplace operator.

Acknowledgments. This research was supported by the Slovenian Research Agency grants P1-0292, J1-8131, J1-7025, N1-0064, and N1-0083. V.D. Rădulescu acknowledges the support through a grant from the Romanian Ministry of Research and Innovation, CNCS–UEFISCDI, project number PN-III-P4-ID-PCE-2016-0130, within PNCDI III.

REFERENCES

Received July 2018; revised August 2018.

E-mail address: vicentiu.radulescu@imar.ro
E-mail address: dusan.repovs@guest.arnes.si