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1 Introduction

The theory of variational inequalities appeared in the middle 60’s in con-
nection with the notion of subdifferential in the sense of Convex analysis
(see e.g. [6,22,33] for the main aspects of this theory). All the inequality
problems treated to the beginning 80’s were related to convex energy func-
tionals and therefore strictly connected to monotonicity: for instance, only
monotone (possibly multivalued) boundary conditions and stress-strain laws
could be studied.

Nonconvex inequality problems first appeared in [35] in the setting of
Global analysis and were related to the subdifferential introduced in [17]
(see A. Marino [34] for a survey of the developments in this direction).

In the setting of Continuum mechanics, P. D. Panagiotopoulos started
the study of nonconvex and nonsmooth potentials by using Clarke’s sub-
differential for locally Lipschitz functionals. Due to the lack of convexity,
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new types of inequality problems, called hemivariational inequalities, have
been generated. Roughly speaking, mechanical problems involving non-
monotone stress-strain laws or boundary conditions derived by nonconvex
superpotentials lead to hemivariational inequalities. We refer the reader to
[41,42] for the main aspects of this theory.

Atypical feature of nonconvex problems is that, while in the convex case
the stationary variational inequalities give rise to minimisation problems for
the potential or for the energy, in the nonconvex case the problem of the
stationarity of the potential emerges and therefore it becomes reasonable to
expect results also in the line of critical point theory.

For hemivariational inequalities, several contributions have been recently
obtained by techniques of nonsmooth critical point theory (see [5, 23,25-28,
38-40,43] andreferencestherein). The associated funcfiasgipically of
theformf = fy+ f1, wherefy is the principal part satisfying some standard
coerciveness condition arfgis locally Lipschitz. In such a setting, the main
abstract tool is constituted by the nonsmooth critical point theory developed
in [12] for locally Lipschitz functionals.

The aim of our paper is to obtain existence and multiplicity results for
hemivariational inequalities associated with functionals which come from
the relaxation of, say,

f(u):/ \/1+|Du]2d:r—|—/G(:U,u)dx,
o o
ue Wy (2;RN), 2 openinR™, n > 2.

The first feature is that the function@ldoes not satisfy the Palais-Smale
condition inBV (£2; RN), the natural domain of, as it is already known in

the case of equations (see e.g. [36]). Therefore we e>y‘t43rmﬂn%1 (£2;RN)

with value +oco outside BV (£2; RY). This larger space is better behaved

for the compactness properties, but the nonsmoothness of the functional
increases. The second feature is that the assumptions we impasengiy

the second term of to be continuous onLﬁ(Q; RY), but not locally
Lipschitz. More precisely, the functiofs — G(x, s)} is supposed to be
locally Lipschitz for a.ex € (2, but the growth conditions we impose do

not ensure the corresponding property for the integraL(ﬁ(Q;RN).
Because of these facts, we will take advantage of the nonsmooth techniques
developed in [7,16,19], which have been already applied in the setting of
equations (see [8-10,15,18,20,21,23,36,37] and references therein) and
turn out to be suitable also for our setting.

In Sect. 2 we recall the main tools we will need, while in Sect.3 we
prove some general results for a class of lower semicontinuous functionals
f: LP(2;RY) — R U {+oco}. In Sect. 4 we show that the area-type
integrals fall into the class considered in Sect. 3. By the way, we also prove
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a relation between the convergence in the so-called intermediate topologies

of BV (£2; RY) and the convergence in-1 (£2; RY) (see Theorem 4.10),
which seems to be new. Finally, in sections 5 and 6 we apply the general
setting of Sect. 3 to obtain multiplicity results of Clark and Ambrosetti-
Rabinowitz type. Of course, we believe that our approach could be equally
applied to other situations with different geometries.

2 Recalls of nonsmooth analysis

Let X be a metric space endowed with the metriand letf : X — R be
a function. We denote b, (u) the open ball of centre and radius- and
we set

epi (f) = {(u,X) € X x R: f(u) <A} .

In the following, X x R will be endowed with the metric

1

d((u, ), (v, 1)) = (d(u,0)* + (A = p)?) 2
andepi ( f) with the induced metric.
Definition 2.1 For everyu € X with f(u) € R, we denote bydf| (u) the
supremum of the’s in [0, +oo[ such that there exigt > 0 and a continuous
map

H 2 (Bs (u, f(u)) Mepi (f)) x [0,6] = X
satisfying

d(/H((wnu’)vt)vw) <t, f(/H((w’M)?t)) < = Ut’

whenevefw, 1) € Bs (u, f(u)) Nepi(f)andt € [0, ].

The extended real numbgif| (u) is calledthe weak slopef f at .
The above notion has been introduced in [19], following an equivalent ap-
proach. Whery is continuous, it has been independently introduced also in
[32], while a variant has been considered in [30,31]. The version we have
recalled here is taken from [7].

Now, according to [17], we define a functi@y : epi(f) — R by
Gs(u, A) = . Of coursegy is Lipschitz continuous of constait

Proposition 2.2 For everyu € X with f(u) € R, we havef(u) =
Gs(u, f(u)) and
|G| (u, f(u))
jdf| (u) = ¢ V1= 1dGy] (u, f(u))
+00 if |dGf (u, f(u) = 1.

if |Gy (u, f(w) <1,
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Proof. See [7, Proposition 2.3]. O

The previous proposition allows us to reduce, at some extent, the study
of the general functiorf to that of the continuous functiag,.
Definition 2.1 can be simplified, whehis continuous.

Proposition 2.3 Let f : X — R be continuous. Thejaf| (u) is the supre-
mum of thes’s in [0, +oo[ such that there exist > 0 and a continuous
map

H:Bs(u) x [0,8] = X
satisfying
24)  dH@w b, w) <t FHw,t) < fw) - ot,
whenevemw € Bs (u) andt € [0, ).

Proof. See [7, Proposition 2.2]. O

We need also, in a particular case, the notion of equivariant weak slope
(see e.g. [10] for the general definition).

Definition 2.5 Let X be a normed space and: X — R an even function
with f(0) < +oo. Forevery(0, \) € epi (f) we denote bitlz,G¢| (0, A) the
supremum of the’s in [0, +oo[ such that there exigt > 0 and a continuous
map

H = (M1, H2) : (Bs (0,A) Nepi(f)) x [0,0] — epi(f)
satisfying

d(H((w, 1), 1), (w, ) <t Hallw,p)it) < p—ot,

Hi((—w, p),t) = —Hi((w, 1), 1)
wheneverfw, u) € By (0, A) Nepi (f) andt € [0, J].
Remark 2.6In Proposition 2.3, if there exigt > 0 and a continuous map
‘H satisfying
d(H(w,t),w) <ot,  f(H(w,t)) < f(w)—ot,

instead of (2.4), we can deduce th@t| (u) > o/ 0.
A similar remark applies to Definition 2.5.

By means of the weak slope, we can now introduce the two main notions of
critical point theory.
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Definition 2.7 We say that. € X isa (lower) critical poinof f,if f(u) € R
and|df| (u) = 0. We say that € R is a (lower) critical valueof f, if there
exists a (lower) critical point. € X of f with f(u) = c.

Definition 2.8 Letc € R. Asequencéu;) in X is said to bea Palais-Smale
sequence at level ((P.S).—sequencefor short) for f, if f(u,) — ¢ and
(df| (un) = 0.

We say thayf satisfieghe Palais-Smale condition at leve{(PS)., for
short), if every(PS).—sequencduy) for f admits a convergent subse-
quence(up, ) in X.

The main feature of the weak slope is that it allows to prove natural exten-
sions of the classical critical point theory for general continuous functions
defined on complete metric spaces. Moreover, one can try to reduce the study
of a lower semicontinuous functiofto that of the continuous functiagy.
Actually, Proposition 2.2 suggests to exploit the bijective correspondence
between the set whergis finite and the graph of. This approach can be
successful, if we can ensure that the remaining panpof/) does not carry
much information. The next notion turns out to be useful for this purpose.

Definition 2.9 Letc € R. We say thaf satisfies conditiorfepi)., if there
existss > 0 such that

inf {|dG¢| (u, A) © f(u) <A, [A—c| <e} >0.
The next two results may help in dealing with conditiepi)..

Proposition 2.10 Let(u, ) € epi (f). Assume thatthere exigto, 4, > 0
and a continuous map

H:{w e Bs(u): flw) < A+6} x[0,0] = X
satisfying
d(H(w,t),w) < ot, f(H(w,t)) < max{f(w)—ot,\ —¢}

whenevew € Bs (u), f(w) < A+ § andt € [0, 0].
Then we have

g

If moreoverX is a normed spacef is even,u = 0 and H(—w,t) =
—H(w,t), then we have

|dG| (u, A) =

g

|dz, G| (0, ) =
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Proof. Let§’ €]0, §] be such that’ + o6’ < e and let
K (By (u,A) Nepi(f)) x 0,87 — epi(f)

be defined byC((w, 1), t) = (H(w,t), n — ot). If (w, p) € By (u, \) N
epi (f) andt € [0, 0’|, we have

A—e<A—¢ -0 <p—ot, flw)—ot < pu—ot,
hence
f(H(w,t)) < max{f(w) —ot,\—c} < pu—ot.

Thereforek actually takes its values ipi (f). Furthermore, it is

d(lc((wwu)at)?(’wau)) <V +o%t,

Gr(K((w, p),t)) = p— ot =Gs(w,p) — ot .

Taking into account Proposition 2.3 and Remark 2.6, the first assertion fol-
lows.

In the symmetric caseC automatically satisfies the further condition
required in Definition 2.5. O

Corollary 2.11 Let(u, \) € epi (f) with f(u) < X. Assume that for every
0 > 0 there exist > 0 and a continuous map

H:{weBs(u): flw) < A+6} x[0,0] > X
satisfying

d(H(w,t),w) < ot, fH(w, ) < fw) +¢(f(u) — f(w) + o)

whenevew € Bs (u), f(w) < A+ d andt € [0, 0].
Then we havedGy| (u, A) = 1. If moreoverX is a normed spacef, is
evenu = 0 andH(—w,t) = —H(w, t), then we havédz,G¢| (0, \) = 1.

Proof. Lete > 0 with A — 2e > f(u), let0 < p < A — f(u) — 2e and letd
andH be as in the hypothesis. By reducifigve may also assume that
§<1, (A —2¢e|+|f(u)+o]) <e.

Now considerw € Bs (u) with f(w) < A+ ¢ andt € [0,4]. If f(w) <

A — 2¢, we have
fw) +t(f(u) = fw) +0) = (1 =) f(w) +¢(f(u) + o) <
(L—=t)(A—=2e) +t(f(u) + o) <

<
SA=2e+ A= 2|+t f(u) +0o] <A —¢,
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while, if f(w) > A — 2¢, we have

f(w) +t(f(u) = fw) + o) < fw) = (A= f(u) — 2 — o)t.

In any case it follows
fH(w, 1)) < max{f(w) — (A= f(u) —2c = o)t, A\ =€} .

From Proposition 2.10 we get

A= flu)— 2 — o
’dgf’(u7)‘) 2 \/Q2+()\_f(u) —QE—Q)z

and the first assertion follows by the arbitrarinesg.of
The same proof works also in the symmetric casél

Now we recall two critical point theorems we will apply later. The first
one is an adaptation of a result of D. C. Clark (see [13] and [44, Theorem
9.1]) to our setting.

Theorem 2.12 Let X be a Banach space anfd: X — RU{+o0} an even
lower semicontinuous function. Assume that

(a) fis bounded from below;
(b) foreveryc < f(0), the functionf satisfieg PS). and (epi).;
(c) there exisk > 1 and an odd continuous mafp: S*~! — X such that

sup{f(zl)(:z:)) t T € Sk_l} < f(0),

whereS*~! denotes the unit sphere R,

Then f admits at leastt pairs (uy, —u1), ... , (ug, —ug) Of critical
points withf (u;) < f(0).
Proof. See [20, Theorem 2.5]. O

The next result is an adaptation of the classical Theorem of Ambrosetti-
Rabinowitz [1,44,48].

Theorem 2.13 Let X be a Banach space arft: X — RU{+oo} aneven
lower semicontinuous function. Assume that there exists a strictly increas-
ing sequencéV},) of finite-dimensional subspacesXfwith the following
properties:

(a) there exist a closed subspaZeof X, o > 0 anda > f(0) such that
X=Vy® Zand

VueZ: |lull =0 = f(u) > a;
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(b) there exists a sequen¢®y,) in ] o, +oo| such that
Vu e Vit |lu|| > Ry = f(u) < f(0);

(c) foreveryc > «, the functionf satisfies PS). and (epi).;
(d) we havedz, G| (0, ) # 0 wheneven > a.

Then there exists a sequeneeg,) of critical points of f with f(uy) —
+o00.

Proof. Because of assumptida), the functionG; satisfies P.S). for any
¢ > «a. Then the assertion follows from [36, Theorem (2.7)]3

Now assume thak is a normed space ov® andf : X — R a
function.

Definition 2.14 For everyu € X with f(u) € R, v € X ande > 0,
let f2 (u;v) be the infimum of’s in R such that there exist > 0 and a
continuous map

Vi (Bs (u, f(u)) Nepi(f)) x]0,0] = Be (v)
satisfying
flz+tV((zp),1) < p+rt
whenevelz, 1) € Bs (u, f(u)) Nepi(f) andt €]0, d]. Then let

[ (u;v) = Sup [ (usv) .

Let us recall that the functiofi® (u; -) is convex, lower semicontinuous and
positively homogeneous of degréésee [7, Corollary 4.6]).

Definition 2.15 For everyu € X with f(u) € R, we set
Of(u) ={u* € X*: (u",v) < f°(u;v) YveX}.

Itturns outthaf° (u; v) is greater than or equal to the generalized directional
derivative in the sense of Rockafellar (see [14,47]). Consequénfly)
contains the subdifferential gfatw in the sense of Clarke. These modified
notions off° (u; v) andd f (u) have been introduced in [7,18], because they
are better related with the notion of weak slope and hence more suitable for
critical point theory, as the next result shows.

Theorem 2.16 If u € X and f(u) € R, the following facts hold:

(a) |df| (u) < +oo <= Of(u) #0;
> m

(b) ldf| (u) < 400 = |df| (u) = min {[Ju*]| : v € Of (u)}.
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Proof. See [7, Theorem 4.13]. O

However, if f : X — R is locally Lipschitz, these notions agree with
those of Clarke (see [7, Corollary 4.10]). Thus, in such a cA%éy; ) is
also Lipschitz continuous and we have that

(2.17) Vu,v € X : f° (u;v) = limsup [z +tw) — f(2)
Z—rU, W—v t
t—07

)

(2.18) {(u,v) — f°(u;v)} is upper semicontinuous ok x X .

3 The general framework

Letn > 1, N > 1, {2 be an open subset ®" and1 < p < oo. In the
following, we will denote by - ||, the usual norm irL? (1 < g < oo). We
now define the functional setting we are interested in.

Let& : LP(2; RY) — R U {+oc} be a functional such that:
(&1) € is convex, lower semicontinuous afd: D (£), where
D(E) ={ue LP(2RN): E(u) < +oo} ;
(&) there exists) € C.(RY) with 0 < ¢ < 1 and¥(0) = 1 such that

(£2.1)  YueD(E),YoeD(E)NL®(2RN), Ve>0:

o 0G| =e0

(&2.2) VueD(E): lim & (19 (%) u) =E&(u).

h—o0
Moreover, letG : 2 x RY — R be a function such that

(G1) G(-,s)is measurable for everyc RY;
(G2) for everyt > 0 there existsy; € L*(£2) such that

|G (z,51) — G(x, 52)] < ay()]s1 — s2

for a.e.x € 2 and everys;, s, € RN with |sj| <t; fora.ex e (2
we set

G°(z,8;8) =~°(s;8) , 0sG(z, s) = 0v(s),
wherey(s) = G(z, s);
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(G3) there existyy € L'(£2) andby € R such that
G(z,s) > —ap(z) — bo|s|P fora.e.x € 2 and everys € RV ;
(G4) there existi; € L'(£2) andb; € R such that

G°(z,s;—5) < ai(z) + by|sP fora.e.x € 2 and everys € RV .

Because of&;) and(G3), we can define a lower semicontinuous functional
f:LP(2;RN) — R U {+o0} by

f(u) =E(u) + /QG(x,u(x))dx.

Remark 3.1According to(&;), the functionak is lower semicontinuous.
Condition (&) ensures thaf is continuous at least on some particular
restrictions.

Remark 3.2If {s — G(x,s)} is of classC"! for a.ex € (2, the estimates in
(G2) and in(G4) are respectively equivalent to

|s| <t = |DsG(x,s)| < au(z),

D;G(x,s)-s> —ai(x) —by|s|P.
Because ofGy), for a.e.x € 2 and anyt > 0 ands € RY with |s| < ¢

we have

(3.3) Vs e RN @ |G°(z, 5;8)] < ag(w)]3];

(3.4) Vs* € 05G(z,5) : |87 < ay(x).

In the following, we set), (s) = ¥(s/h), whered is a function as if&z),
and we fix)M/ > 0 such that) = 0 outsideB,,(0). Therefore

(3.5) Vs e RV @ |s| > hM = 9,(s) = 0.

Our first result concerns the connection between the notions of gen-
eralized directional derivative and subdifferential in the functional space
LP(£2;RY) and the more concrete setting of hemivariational inequalities,
which also involves the notion of generalized directional derivative, but in
RM.



Multiple solutions of hemivariational inequalities with area-type term 365

If u,v € LP(2; RY), we can defing/, G°(z, u; v) dz if we agree, as
in [46], that

/ G°(z,u;v)dr = 400 whenever
Q

/ [G°(z,u;v)] T do = / [G°(x,u;v)]” dx = +00.
2 0
With this convention{v — [, G°(x,u;v) dz } is a convex functional from
LP(2;RY) into R.

Theorem 3.6 Letu € D (f). Then the following facts hold:

(a) foreveryv € D (€)there exists asequenge,) inD (E)NL>(2; RY)
satisfying[G°(z, u; vy, — u)]* € LY(2), ||vp, — v||, — 0and&(vy) —
E(v);

(b) foreveryv € D (&) we have

B.7)  fouzv—u) <E( / G°(xz,u;v — u) dx
(c) if Of (u) # 0, we haveG°(z,u; —u) € L*(£2) and
(3.8) 5(1})—5(u)+/QG(x,u;v—u)da:Z/Qu (v —u)dr

for everyu* € df(u) andv € D (&) (the dual space of”(2; RY) is
identified withZ?' (£2; R") in the usual way);
(d) if N = 1, we havelG®(z,u;v — u)]T € LY(R2) for everyv € L>®
(2;RN).
Proof. (a) Letus setG(v) = [, G/x,v)dz. Givene > 0, by (€;.2) we have
|9p(v)v —vllp, <e and\s(ﬁh( Jv) — E(v)| < e for h large enough. Then,
by (&2.1) we get| 9y, (u) I, (v)v—||, < eand|E(Ig(u)dp(v)v)—E(v)| < €
for k large enough. Of cours®, (u )9y, (v)v € L>=(£2; RN) and by (3.3) we
have

G (x,u; Vg (uw)Ip(v)v — u) < Vp(u)Ip (v)G°(z, u;v — u) +
+(1 = k()9 (0))G° (2, u; —u) <
< (h+ k)Maga(x) + [G° (@, u; —u)] T

From (G4) we infer that{G° (z, u; —u)]t € L'(£2) and assertiofia) fol-
lows.

(b) Without loss of generality, we may assume tf@t(z, u;v — u)|*t €
L(£2). Suppose first that € D (£) N L*°(2; RY) and takes > 0.
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We claim that for every € LP(£2;RY), t €]0,1/2] andh > 1 with
hM > ||v||0, We have

G(z,z +t(Oh(2)v — 2)) — G(z, 2)

t
(3.9) < 2(||v]loo anas + a1 + b1(|2| + [v])P) .

<

In fact, for a.e.x € (2, by Lebourg’s Theorem (see e.g. [14]) there exist
t €]0,t[ andu* € 9;G(x, z + t(I(2)v — z)) such that

Gz, z + t(Op(z)v — 2)) — G(x, 2) _
t
=u" - (Up(z)v—2) =
1

= 7= [ v —u" - (2 4+ EOn(2)v — 2))] -

By (3.4) and (3.5), it easily follows that

Yp(2)u* v

On the other hand, fror(74) we deduce that for a.e. € (2

w2 +t1(19_hiz)v —2)) > — L -Gz, 2z + t(Ip(2)v — 2);

- 1t
—(z+t(WOn(z)v—2)) > 1 E(al +bi|z + t(In(2)v — 2)|P)

> —2(aq + by(|2] + [v])P) .

Then (3.9) easily follows.
For a.ex € {2 we have

G°(x,u; 9p(u)v — u) < Ip(w)G°(z,u;v —u) +
+(1 = 9p(u)G° (2, u; —u) <
< [G°(@,usv — )]+ (G (2, us —u)] *

Furthermore, for a.e: € 2 and everys € R”, (G3) impliesG°(z, s; ) to
be Lipschitz continuous, so in particular

li}l;n G°(z,u; Up(u)v —u) = G°(x,u; v — u) a.e.inf2.
Then, given

)\>/ G°(z,u;v — u)de,
9]
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by Fatou’s Lemma there exists> 1 such that

(3.10)

Vh>h: / G°(z,u;Vp(u)v —u)de <A and ||9y(u)v —v|, <e.
0

By the lower semicontinuity of, there exists) €]0,1/2] such that
for everyz € Bs(u) itis G(z) > G(u) — 5. Then for every(z,n) €
Bs (u, f(u)) Nepi(f) it follows

1 - 1
E() Sp—0(:) S p+5 =9 < flu) +5 - Glu) +5 < E@) +1
Let nowos > 0. By assumptiong&; ) and(&,.1) there exist: > h and
0 < ¢ such that
[V]loo < hM,

E(z) > E(u)—o, EWn(2)v) < E(v)+o, [[(In(z)v—2)—(v—u)ll, <e,

foranyz € B (u) with £(2) < E(u) + 1

Taking into account (2.17), (3.9) and (3.10), we deduce by Fatou’s
Lemma that, possibly reducing for anyt €]0, ¢] and for anyz € B (u)
we have

/ Gla, 2+ tln(2)v = 2)) = Glx,2) ,
o t

Now letV : (Bs (u, f(u)) Nepi(f)) x]0,d] — B (v — u) be defined
setting
V((Zvu)’ t) = 19/1(2)1) -z
SinceV is evidently continuous and
fz+tV((z, 1), 1) = f(z +t(Un(z)v — 2)) <
E(z) +t(EWn(2)v) — £(2)) +
+g(2+ t(Un(2)v — 2)) <
E(z) + (E(w) —E(u) +20)t +G(2) + A\t =
= f(z)+ (E(w) = E(u) + A+ 20)t,

we have

fo(wsv—u) <EW) —E(u) + X+ 20.

By the arbitrariness of > 0 and\ > / G°(x,u;v — u) dz, it follows

foluyo —u) < E(v /Gomuv ) dx
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Passingto the limitas— 01, we get (3.7) whem € D (£)NL>=(2; RYN).
Let us now treat the general case. If we sgt= 3,(v)v, we have
v, € L(02; RN). Arguing as before, it is easy to see that

G°(z,ujvp, —u) < [G°(z,u;v — )™ + [G°(z, u; —u)] T,
so that
limsup/ G°(z,u;vp —u)dx < / G°(z,u;v —u)dx .
h 10 Q
On the other hand, by the previous step it holds
folusop —u) < E(vp) — /G (z,u;vp, —u)dx.

Passing to the lower limit a8 — oo and taking into account the lower
semicontinuity off°(u, -) and(&,.2), we get (3.7).

(c) We already know thaliG° (x, u; —u)]™ € L'($2). If we choosev = 0
in (3.7), we obtain

[P (u; —u) < £(0) /Goxu—u
Sincedf(u) # 0, itis f°(u; —u) > —oo, hence

/ [G°(x,u; —u)]” dz < +00.
2

Finally, if u* € 0f(u) we have by definition that

fo(u;v—u)Z/u*-(v—u)dx

2

and (3.8) follows from (3.7).
(d) From (3.3) it readily follows tha&G°(x, u;v — u) is summable where
lu(z)| < ||v]|so- On the other hand, whete(z)| > ||v|« we have

G°(z,u;v —u) = (1 - %) G°(z,u; —u)

and the assertion follows frofiG4). O

Since f is only lower semicontinuous, we are interested in the verifi-
cation of the conditioriepi).. For this purpose, we consider an assumption
(G%) on G stronger thariGs).

Theorem 3.11 Assume that
(G%) there existz € L'(§2) andb € R such that

|G(z,8)| <a(z)+b|s|P  fora.e.x € 2andeverys € RV.
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Then for every(u, \) € epi(f) with A > f(u) itis |dGs| (u,\) =
1. Moreover, if€ and G(z,-) are even, for evenA > f(0) we have
|dz,G71(0,A) = 1.
Proof. Let o > 0. Since
V7 €10,1]: G°(x,u;tu — u)=(1 — 7)G°(z, u; —u) <[G°(z,u; —u)]| T,
by (&2.2) and(G4) there exists: > 1 such that

[p(wu —ulp, <o,  EWR(wu) <E(u)+eo,

VYh>h: / G°(z,u; O (u)Vg(u)u —u)dx < o.
9]

Setv = ¥4 (u)u.
By (&;.1) there exist, > h andé €]0, 1] such that

[Un(2)v = 2llp <o,  EWn(2)v) <E(u)+ 0,
whenevet|z — ul[, < dand€(z) < A +1—G(u) + o.
By decreasing, from (G%), (3.9) and (2.17) we deduce that

/ G(z,z + t(Ip(2)v — 2)) — G(z, 2)

9() — G(w)| < o. :

dr < o

whenevel|z — ul|, < d and0 < t < 6.
Define a continuous map

H:{z€Bsu): f(z) <A+6} x[0,0] = X

by H(z,t) = z+t(Iy(2)v — 2). Itis readily seen thatH (z,t) — z||, < ot.
If z € Bs (u), f(2) < A+ dand0 <t < J, we have

E(2)=f(2)=G(z) <A+-G(u)+ o< A+1-G(u) +o,
hence, taking into account the convexity&f

E(z +t(0n(2)v = 2)) < E(2) + UEWn(2)v) — E(2))
< E(2) +t(E(u) — E(2) + 0) -

Moreover, we also have
G(z+t(In(2)v — 2)) < G(2) +to < G(2) +t(G(u) — G(2) + 20) .
Therefore
[+ t0n(z)v = 2)) < f(2) + t(f(u) = f(2) + 30)

and the first assertion follows by Corollary 2.11.
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Now assume thaf andG(z, -) are even and that = 0. Then, in the
previous argument, we have= 0, so thatH(—=z,t) = —H(z,t) and the
second assertion also follows.O

Now we want to provide a criterion which helps in the verification of the
Palais-Smale condition. For this purpose, we consider further assumptions
oné&, which ensure a suitable coerciveness, and a new conddipnon G,
stronger thaigiG4 ), which is a kind of one-sided subcritical growth condition.

Theorem 3.12 Letc € R. Assume that

(&3) for every(u;) bounded inLP(£2; RY) with (€ (uy)) bounded, there
exists a subsequen¢ey,, ) and a functionu € LP(£2; RV) such that

lim up, () = u(x) fora.e.x € (2;
k—o0

(&4) if (up) is a sequence inP(2; RV) weakly convergent ta € D (&)
and &(uy) converges t& (u), then(uy) converges ta: strongly in
LP(2;RN);

(G")) for everye > 0 there existsi. € L'(£2) such that

G°(x,s;—5) < ae(x) +¢ls|P fora.e.z € 2 and everys € RV .

Then any(PS).-sequencéuy ) for f bounded inL?(£2; RY) admits a
subsequence strongly convergentit(2; RV).

Proof. From (G'3) we deduce thatG(uy,)) is bounded from below. Taking
into account &), it follows that(€(uy,)) is bounded. By Es) there exists a
subsequence, still denoted by;, ), converging weakly inL?(£2; R™) and
a.e.tosome € D (&).

Givene > 0, by (£2.2) and(G4) we may findk, > 1 such that

EWk, (w)u) < E(u) + ¢,

/ (1 =Ygy (u)G°(z,u; —u)de < €.
9]

Sincedy, (u)u € D (£)NL®(2; RY), by (&2.1) there existd; > ko such
that

(3.13) Vh e N:  E(Uk (up)Ok, (u)u) < E(u) + ¢,

/0(1 — Oy (w) Vg (1)) G (2, u; —u) dx < €.

It follows that ¥y, (up )V, (u)u € D (E). Moreover, from (3.3) andG)
we get
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G°(x, up; Vg, (up) ko (w)u — up) <
< Ok, (un)G® (@, up; Oy (w)u — up) +
+(1 = O, (un))G® (2, up; —up) <
< gy m () (koM + k1 M) + ac(z) + elup | .

From (2.18) and Fatou’s Lemma we deduce that

lim sup/ (G° (2, un; Vg, (un) Ok, (w)u — up) — elup|?] de <
P

h—o0

< [ 6% 0 109 () — ) — ] d <
< /Q(l — O, (0) 0 (1) G (2, u; —u) dx < €,

hence

(3.14)
lim sup/ G (@, up; Vg, (up) ko (wW)u — up) dov < esup |lup|lh + €.
7} h

h—o00

Since(uy,) is a(PS).-sequence, by Theorem 2.16 there exigts 0 f (us)
with |[u} ||,y < |df| (u), SO thathlim |lup |l = 0. Applying (c) of Theo-
—00

rem 3.6, we get
E (W (un) Vo (w)u) > E(un) — /Q G°(z, up; Vg, (up) Vg, (w)u — up) dz +
+ /QUZ (O, (un)Ino (w)u — up) da.
Taking into account (3.13), (3.14) and passing to the upper limit, we obtain

limsup £(up,) < E(u) + 2¢ + esup ||up|/? .
h

p
h—00

By the arbitrariness of > 0, we finally have

limsup €(up,) < E(u)

h—o00

and the strong convergence(af, ) to u follows from (&4). O
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4 Area type functionals

Letn > 2, N > 1, {2 be a bounded open subsetRf* with Lipschitz
boundary and let

7:R"™ 5 R
be a convex function satisfying
U(0) =0,%(&) > 0forany¢ # 0 and
{there exists: > 0 such that? (&) < c[¢]| for any¢ € R™Y.

We want to study the functiondl : L#(Q; RY) = R U {400} defined
by

/u‘x(Dua) dx+/u7°° <£Z:|> d| Duf|(z)+
02 02

£(u) = —|—/LT/°°(u @ v)dH" ) (2) if u e BV(2:RY),
a1

+00 if we L1 (2;RY)\BV(2;RY),

whereDu = Du® dx + Du? is the Lebesgue decomposition Bi:, | Du®|
is the total variation oDu?®, Du® /| Du?| is the Radon-Nikodym derivative
of Du® with respect tg Du®|, ¥*° is the recession functional associated
with ¥, v is the outer normal t62 and the trace o& on 042 is still denoted
by u (see e.g. [4,29]).
Theorem 4.1 The functionaf satisfies condition&), (£2), (€3) and(&y).
The section will be devoted to the proof of this result. We begin establishing
some technical lemmas. For notions concerning the sB&tesuch as those
of @, Sy, u™ andu~, we refer the reader to [2, 3].
In BV (£2; R™) we will consider the norm

yuHBV:/ Du“]dx+\Dus|(Q)+/ | A" (z) |
(] on

which is equivalent to the standard norm®¥ (2; R").

Lemma 4.2 For everyu € BV (£2;RY) and everys > 0 there exists
v € C(82; RY) such that

v —ul o <e, /\Dv\dw—HuHBV <e,
Q

IE(W) —E(u)] <e, ||v|loc < esssup|ul.
Q
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Proof. Let§ > 0, let R > 0 with 2 C By (0) and let

In(z) = 1 — min {max{h—;;l[l ~ hd(z, R\ rz)],o} , 1} |

Defined € BV (Bg (0); RY) by

o Ju(z)ifz e 2,
“(5”)—{0 it 2 € Bp (0)\ 2.

According to [11, Lemma 7.4 and formu(&@.2)], if h is sufficiently large,
we have that,u € BV (£2;RN), ||[9pu — ul|_»_ < & and

/ VT DO AL + | D(0u)|(2) <
(9
</ \/1+|Du“|2d£"+]Dus(_Q)+/ u AP 5 =
0 ofn
:/ V14 D@ dC" + |Da*|(BR (0)) + 6.
Br(0)

Moreover,J;u has compact support i? andess sup |9, u| < esssup |ul.
2 2

If we regularized,u by convolution, we easily gat € C°(£2;RY)
with

lv]lso < esssuplul,  flv—ul o <o
1) n-
and
/\/1+|Dv|2dL”</ V 1+ |Da]2dL™ + |Da’|(Bgr (0)) + 4.
0? Br(0)

Since
lullsy = / Da?|dz + | Da?|(BR (0))
Br(0)

g(u):/ W(Dﬂ“)dm+/ Py ( ba )d\DﬂS\,
BR(0) BR(0) | D |

by the results of [45] the assertion follows (see also [4, Fact 3.11).

Lemma 4.3 The following facts hold:

(a) ¥ : R™ — R is Lipschitz continuous of some constaig(¥) > 0;
(b) forany¢ € R™Y ands € [0,1] we havel (s&) < s¥(€);
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(c) for everys > 0 there existsl, > 0 such that
Ve ER™ : W(E) 2 do(€] - 0);

(d) &€: BV (£2;RN) — R is Lipschitz continuous of constalip (¥);
(e) if o andd, are as in(c), we have

Vue BV(2;RY):  E(u) > d,,(HuHBV - a,c"(rz)) .

Proof. Properties(a) and (b) easily follow from the convexity o and
assumption{¥).

To prove(c), assume by contradiction that> 0 and () is a sequence
with ¥ (&,) < +(|&n| — o). If |€4] = +o0, we have eventually

S\ - P(&n) 1< _0)
L”(w)g & “a\ el

Up to a subsequence;, /|y |) is convergent to some# 0 with ¥ (n) < 0,
which is impossible. Sincg,| is bounded, up to a subsequence we have
& — Ewith €] > o and? (&) < 0, which is again impossible.

Finally, (d) easily follows from(a) and the definition of| - || gy, while
(e) follows from (c) (see e.g. [37, Lemma 4.1]). O

Let nowd € CHRM)with 0 < 9 < 1, [|[VY]|oo < 2, 9(s) = 1 for
|s| < 1 andd(s) = 0 for |s| > 2. Defined;, : RV — R andTj, Ry, :
RY — RN by

S

Ip(s) =9 <E> s Th(s) =Ux(s)s, Rp(s)=(1—19p(s))s.
Lemma 4.4 There exists a constany > 0 such that

£(v(3)v) <E@+Flollelulsy

E(Myou) <E(u)+cy||Dul({x € 2\ Sy : |u(x)| > h}) +

—i—/ jut —u | dH  (2) +
{zeSu:|lut(z)|>h or |[u=(x)|>h}

+f |u|dH"—1<x>] ,
{z€d2:|u(z)|>h}

E(Thow)—i—E(Rhow)gé’(w)—i-c&p/ |Dw| dx
{ze2:h<|w(z)|<2h}
wheneverh > 1,u € BV (2;RY), v € BV(2;RN) N L>*(2;RY) and
w € CX(2;RN),
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Proof. Suppose first that, v € C°(£2; RY). Then, since

[0 (2)e] =0 () Do s o () ]

by (¥) and Lemma 4.3 it follows that
u o 1DV
@5)  £(9 (1) v) < €@+ Lip@) = o] /Q \Dul da

Inthe general case, let us consider two sequefggs(v,) in C°(§2; RY)
converging tou, v in L'(2;RY) with [, |Dug|dz — ||ul|pv, E(vg) —
E(v) and||vk ||~ < ||v|lo- Passing to the lower limitin (4.5), we obtain the
first inequality in the assertion.

To prove the second inequality, we first observe that by Lemma 4.3 we

have
(46) E(Thou) < S(u)—i—Lip(&T/)HRhouHBV.

In order to estimate the last term in (4.6), we apply the chain rule of [2,49].
SinceRy,(s) = 01if |s| < hand|| DRy~ < kg for someky > 0, we have

/\D (Ru(u \da:</ DRy ()| Du®| da: <
2\5.

< kﬁ / ’Dua| dx )
{ze2\Su:|a(z)|>h}

D)

@< [ PR @D ) +
—i—/ |Rp(ut) — Ry (u™)|dH" 1 (z) <
Sy

< ky (yDusy ({z € 2\ Sy : |a(x)| > h}) +

+/ lut — | dH™ ()
{z€Sy:|ut (x)>h or |u=(z)|>h}

and

/ Ry ()| dHP () < kg / lul dH ()
082

{zed2:|u(z)|>h}
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Combining these three estimates, we get

1Ry, o ull By S@(/ |Du®| dz +
{ze\Su:|a(z)|>h}

+|Du?|({z € 2\ Sy : |u(z)| > h}) +

+/ lut — [ dH  (z) +
{ze€Su:|ut(z)|>h or |u=(z)|>h}

4.7) +/ |ul d?—[”_l(m)> .
{z€d2:|u(x)|>h}

Then the second inequality follows from (4.6) and (4.7).
Again, since/ is Lipschitz continuous, we have

/ U(D(Tp ow))dx — / U (9 (w)Dw) dz
9]

Q
< Lip}f@) /Q ’Dﬁ (%) Dw) |lw|dx <

<2Lp()| V] [ Dwlda.
{h<|w|<2h}

<

In a similar way, it is also

/W(D(Rhow))dm—/ 7 (1 — 9, (w)) Dw) dz| <
2 2
< 2Lip(#) | V9| /{ o 01

Hence, combining the last two estimates and taking into acc@ynof
Lemma 4.3, we get

/ W(D(Thow))dx—&—/ ¥ (D(Rpow))dx <
0 2

< / (Duw) da:+4Lip(W)|Vz9||oo/ | Duw| da
Q {h<|w|<2h}
and the proof is complete. O

Lemma 4.8 Let (u;,) be a sequence i (2; RY) and assume thdtu,)
is bounded iNBBV (£2;RYN). B B
Then for every > 0 and everyk € N there existg > k such that

lim inf / |Dup| dx < €.
h—o00

{k<|up|<2k}
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Proof. Let m > 1 be such that
sup/ | Dup| dx < me
n Jo 2

and letio € N with 2% > k. Then, since

0+m—1

Z / Duhdxg/ ]Duh\d:cgm—g,
{2i<|up|<2t+1} 0 2

=10

there existsg;, betweeny andig + m — 1 such that

| Dup| dz <

CTNY)

/{2ih<|uh|<2ih+1}
Passing to a subsequen@g, ), we can supposg,, = i > i, and setting
k = 2° we get

VjeN: / | Dup, | dx <

{k<\uhj |<2k}

€
5
Then the assertion follows. O

Lemma 4.9 Let (uy,) be a sequence i (2; RY) and letu € BV (2,
RY) with [|u, — ully — 0 and&(uz) — E(u). B
Then for every > 0 and everyk € N there existég > k such that

lim inf ||Rk o UhHBV <eg.
h—o0

Proof. Givene > 0, letd > 0 be such that

3
VeeR™W: w(©)>d|(|f — ———x
according to Lemma 4.3. Let alsg > 0 be as in Lemma 4.4. By (4.7) and
Lemma 4.8, there exists > k such that

de

R < —_—
| Ry, o ull v SLip(@)

de

lim inf D — .

imin / |Dup| dx < 3w
{k<|up|<2k}
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From Lemma 4.4 we deduce that
E(Tyou) + ligninfg(Rk oup) <
—00
< liminf E(T o up) + liminf E(Ry o up) <
h—o0 h—o00

< liminf(E(Tk oup) + E(Ry o uh)) <

h—o0
< E(u) + ey lihm inf / |Dup,| dx <
—00
{k<|up|<2k}
de

. d
<€)+ 5 < E(Tkou) + Lip@)|Rioullpy + 5 <

2
<E(Tgou)+ §ds,
whence
.. 2
liminf E(Ry o uyp,) < =de.
h—o00 3
On the other hand, by Lemma 4.3 we have

€
5(Rk Ouh) Z d (HRk ouh||BV — §>

and the assertion follows. O

Now we can prove the main auxiliary result we need for the proof of
Theorem 4.1. It is a property of the spaB& which could be interesting
also in itself.

Theorem 4.10 Let(uy,) be a sequence iBV (£2; RV) and letu € BV (£2;
RN) with ||uy, — ul|; — 0 and& (up,) — E(u).
Then(uy) is strongly convergent ta in LT (£2;RM).

Proof. By Lemma 4.2 we may find;, € C°(£2; RY) with

1 1
lon = unlly < - llon = wunll 2 < [€(vn) = E(un)| < .

h’ h’
Therefore it is sufficent to treat the case in whighe C°(£2; RY).
By contradiction, up to a subsequence we may assume that there exists
e > 0 such thafjuy, — uf_»_ > e. Let¢ be a constant such thigt[|_»_ <

é|w|| gy for anyw € BV (£2;RYN) (see [24, Theorem 1.28]). According to
Lemma 4.9, lek € N be such that
9

|70 ul .

n—1

n_ < E, liminf | Ry o up|| » <¢ liminf | Ry o up|| gy <
2 h—o0 n—1 h—so0
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Then we have

Jun —ul| o < ||Rgoun|l 2, + Tk oup — Thouf = +
(4.11) +| Ry o uf|

SinceT, oup — T ocuin Lﬁ(ﬂ; R") ash — oo, passing to the lower
limitin (4.11) we get

liminf ||up —u|| . <e,
h—o0 n—1

whence a contradiction. O

Proof of Theorend.1 It is well known that€ satisfies conditioi&; ). Con-
ditions (&) are an immediate consequence of Lemma 4.4. Ffenof
Lemma 4.3 and Rellich’'s Theorem (see [24, Theorem 1.19)) it follows
that £ satisfies conditior{&3). To prove (&), let (uy) be a sequence in
La1(£2;RY) weakly convergent ta, € BV (2;RY) such thate (uy)
converges t&(u). Again by (e) of Lemma 4.3 and Rellich’s Theorem we
deduce thatuy,) is strongly convergent toin L' (£2; RY). Then the asser-
tion follows from Theorem 4.10. O

5 A result of Clark type

Letn > 2 and{? be a bounded open subse®? with Lipschitz boundary,
let ¥ : R™ — R be an even convex function satisfyirig) and let
G : 2 x RN — R be a function satisfyingG,), (Ga2), (G%), (G?) with
p = "5 and the following conditions:

(5.1)
{there exist € L'(2) andb € L*(2) such that

G(x,s) > —a(z) —b(x)|s|  fora.e.x e 22 andeverys € RV ;

(5.2) lim Gla,s) = +00 fora.e.x € 2;
jsl=oo |5
(5.3) {s — G(x,s)}isevenfora.er € £2.

Finally, define€ as in Sectiont. The main result of this section is:



380 M. Degiovanni et al.

Theorem 5.4 For everyk € N there exists/; such that for anyx > Ay
the problem

u € BV(§2;R"N)
E(w)—-¢& /Goxuv u)dx >

/ (v—u)dx Vv e BV(2;RY)
V1+ \UP
admits at least: pairs (u, —u) of distinct solutions.

For the proof we need the following

Lemma 5.5 Let (uy,) be a bounded sequencelnq%l((z; RY), which is
convergent a.e. ta, and let(gy,) be a positively divergent sequence of real
numbers.

Then we have

lim/ Md:ﬁ:Jrooifu#O,
hJe h

liminf/ Mdl’ZOifUZO.
h 02 On

Proof. If u = 0, the assertion follows directly from (5.1).4f# 0, we have

/ G(.%', Qhuh) de/ G(ﬂf,QhUh) dr —
] Oh {uz£0} Ohn

1 dd:v—/ bluy| dz .
on J{u=0 {u=0}

From (5.1), (5.2) and Fatou’s Lemma, we deduce that

G(z, opun)
{u#0} Oh
whence the assertion. O

lim dr = +o00,

Proof of Theoren®.4. First of all, set

G(z,s) = G(z,s) — AMyV1+s)2=1).
It is easy to see that als@ satisfies(G), (Ga), (G%), (G), (5.1), (5.2),
(5.3) and that

S

Ao
V1+]s|?

éo(:r,s; 5)=G°(x,s;8) —

w>
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Now define a lower semicontinuous functiorfal Lﬁ(ﬂ; RM) - RU
{+oc} by

f(u):S(u)—i—/Qé(x,u)dx.

Thenf is even by (5.3) and satisfies conditi@m:). by Theorem 3.11. We
claim that

(5.6) lim  f(u) = +o00.

llull_n —oo
To prove it, let(uy) be a sequence iBV (2; RY) with [ju,||_»_ = 1and
let o, — +00. By (e) of Lemma 4.3 there exigt> 0 andd > 0 such that

Vue BV(2;RY): E(u) > J(||uHBV - 55”(9)) .

If |lup||gy — —+oo, it readily follows from (5.1) thatf (opun) — +oo.
Otherwise, up to a subsequeneg, is convergent a.e. and the assertion
follows from the previous Lemma and the inequality

il — S} + [ Gl onun) da:] .

f(onun) > on
Oh

Sincef is bounded below on bounded subsetsL@%(Q; RY), it fol-

lows from (5.6) thatf is bounded below on allnT (£2; RN); furthermore,
it also turns out from (5.6) that anyP.S). sequence is bounded, hente
satisfieg PS). by Theorem 3.12.

Finally, letk > 1, letwy, ..., w; be linearly independent elements of

BV (2;RY) and letyy : S~ — L#-1(£2; RY) be the odd continuous
map defined by

k
Y€)= Gw,.

j=1

Because ofG}), it is easily seen that

sup {E(u) + /QG(ZL‘,U) dr :u € w(S’k_l)} < 400
and

inf{/g(m—l)daz:uew(Skl)} >0.
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Therefore there existd;, > 0 such that sup f(¢(£)) < 0 whenever
Eeskfl
A > Ag.
Applying Theorem 2.12, it follows thgtadmits at least pairs(uy, —uy,)
of critical points. Therefore, by Theorem 2.16, for anyit is possible to
apply Theorem 3.6 (witld7 instead of(z), whence the assertiond

6 A superlinear potential

Letn > 2 and{? be a bounded open subse®? with Lipschitz boundary,
let ¥ : R™W — R be an even convex function satisfyirig) and let
G : 2 x RN — R be a function satisfyingG1), (G2), (G%), (GY), (5.3)

with p = "+ and the following condition:

there exisiy > 1 andR > 0 such that
(6.1) G°(z,s;8) < qG(x,s) <0
fora.e.xr € 22 and everys € RN with |s| > R.
Define £ as in Sect.4 and an even lower semicontinuous functignal

L1 (2;RY) = R U {+oo} by

flu) =E(u) +/ G(z,u)dz.
Q

Theorem 6.2 There exists a sequen¢ey, ) of solutions of the problem

u € BV (2;RN)

E(w) —E(u) +/ G(z,u;v —u)dz >0 Yo e BV(2;RY)

Q
with f(up) — +o0.
Proof. According to (3.3), we have
|s] <R = |G°(z,s;s)| < ag(x)|s|.

Combining this fact with (6.1) an@=%), we deduce that there exists €
L'(£2) such that

G°(x,s;8) < qG(z,s) + ap(x)
(6.3) fora.e.x € 2 and everys € RV .

Moreover, from (6.1) and Lebourg’s Theorem [14] it follows that for every
s € RY with |s| = 1 the function{t — t~9G(z,ts)} is nonincreasing
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on [R, +oo[. Taking into accountGy) and possibly substituting, with
another function in.! (2), we deduce that

G(x,5) < ao(x) — bo(x)]s|?
(6.4) fora.e.x € 2 and everys € RV,

where

bo(z) = |i|n_f1(—R*qG(:Jc,Rs)) >0 fora.e.x € 2.

Finally, since{s — G°(z, s; §)} is a convex function vanishing at the origin,
we haveG°(z,s;s) > —G°(z,s; —s). Combining (6.3) with(G)), we
deduce that for every > 0 there existsi. € L'(§2) such that
Glz,s) > —ae(z) —e|s|71
(6.5) fora.e.x € 2 and everys € RV .
By Theorem 3.11 we have thgtsatisfie§epi). for anyc € R and that
|dz,G¢| (0,\) = 1foranyA > f(0).

We also recall that, sing& is Lipschitz continuous, there exist$ € R
such that

(6.6) (a+1)0(€) ~ w(26) > L Fw(e) - M,

67) (a0 + P26 - 0 (26) > T20(g)

(see also [36]).

We claim thatf satifies the conditiofPS). for everyc € R. Let (uy,)
be a(PS).-sequence fof. By Theorem 2.16 there exists a sequepgg in
L™(82; RN) with u}, € 9 (up) and||uj ||, — 0. According to Theorem 3.6
and (6.3), we have

E(2up) > E(up) — / G°(x,up;up) dx —l—/ up, - up dr >
Q Q
> E(up) — q/ G(x,uh)dx—i—/ up, - up, dx —/ ap(z) dz .
Q Q Q
By the definition off, it follows
qf (un) + [lupllnllunll = + /an(:v) dr > (q+1)E(un) — E(2up) .
Finally, applying (6.6) and (6.7) we get

. ~1 ,
af (un) + luyl|nlunll 2 + /an(w) dr > —5—E(up) = ML™(2).
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By (e) of Lemma 4.3 we deduce thét;,) is bounded inBV (2; RY),
hence inL="1 (£2;RY). Applying Theorem 3.12 we get théi;,) admits a
strongly convergent subsequence aRd). follows.

By [36, Lemma 3.8], there exist a strictly increasing sequéig) of
finite-dimensional subspaces BV (£2; RY) N L*°(£2; RY) and a strictly
decreasing sequen¢g},) of closed subspaces ;m%(rz; R") such that

Lo1(2;RN) =W, @ Z, and () Zj, = {0}. By (e) of Lemma 4.3 there
existsp > 0 such that "
Vue Lt (RY) . ull o, =0 = Eu)>1.
We claim that
tim (inf{f (u) : w € Zn, Jull =, = o}) > £(0).

Actually, assume by contradiction thaty) is a sequence with;, € Z,
[un|| = = oand

lim sup f(un) < £(0).
h

Taking into accountG%) and Lemma 4.3, we deduce th@f(uy)) is
bounded, so thaty,) is bounded inBV (£2; RY). Therefore, up to a sub-
sequence(uy,) is convergent a.e. 0. From (6.5) it follows that

h 0 (0]
hence
liminf/ G(m,uh)dacz/ G(z,0)dx
h 0 Q

by the boundedness df.;,) in Lﬁ((z; RY) and the arbitrariness af
Therefore

limsup &(up) < £(0) =0
h

which contradicts the choice of
Now, fix k with

inf{f(u) : u € Zg, |ul =, = o}) > £(0)

and setZ = Zz andV,, = W3 ,. ThenZ satisfies assumptiofu) of
Theorem 2.13 for some > f(0).
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Finally, sinceV}, is finite-dimensional,

1
q
lullg == ( / bo|u|qd$>
(9}

is a norm onV}, equivalent to the norm oBV (£2; RY). Then, combin-
ing (6.4) with(d) of Lemma 4.3, we see that also assumptignof Theo-
rem 2.13 is satisfied.

Therefore there exists a sequeneg,) of critical points for f with
f(up) — 400 and, by Theorems 2.16 and 3.6, the result follows]
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