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1 Introduction

The theory of variational inequalities appeared in the middle 60’s in con-
nection with the notion of subdifferential in the sense of Convex analysis
(see e.g. [6,22,33] for the main aspects of this theory). All the inequality
problems treated to the beginning 80’s were related to convex energy func-
tionals and therefore strictly connected to monotonicity: for instance, only
monotone (possibly multivalued) boundary conditions and stress-strain laws
could be studied.

Nonconvex inequality problems first appeared in [35] in the setting of
Global analysis and were related to the subdifferential introduced in [17]
(see A. Marino [34] for a survey of the developments in this direction).

In the setting of Continuum mechanics, P. D. Panagiotopoulos started
the study of nonconvex and nonsmooth potentials by using Clarke’s sub-
differential for locally Lipschitz functionals. Due to the lack of convexity,
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new types of inequality problems, called hemivariational inequalities, have
been generated. Roughly speaking, mechanical problems involving non-
monotone stress-strain laws or boundary conditions derived by nonconvex
superpotentials lead to hemivariational inequalities. We refer the reader to
[41,42] for the main aspects of this theory.

A typical feature of nonconvex problems is that, while in the convex case
the stationary variational inequalities give rise to minimisation problems for
the potential or for the energy, in the nonconvex case the problem of the
stationarity of the potential emerges and therefore it becomes reasonable to
expect results also in the line of critical point theory.

For hemivariational inequalities, several contributions have been recently
obtained by techniques of nonsmooth critical point theory (see [5,23,25–28,
38–40,43] and references therein). The associated functionalf is typically of
the formf = f0+f1, wheref0 is the principal part satisfying some standard
coerciveness condition andf1 is locally Lipschitz. In such a setting, the main
abstract tool is constituted by the nonsmooth critical point theory developed
in [12] for locally Lipschitz functionals.

The aim of our paper is to obtain existence and multiplicity results for
hemivariational inequalities associated with functionals which come from
the relaxation of, say,

f(u) =
∫

Ω

√
1 + |Du|2 dx+

∫
Ω
G(x, u) dx ,

u ∈ W 1,1
0 (Ω;RN ),Ω open inRn, n ≥ 2 .

The first feature is that the functionalf does not satisfy the Palais-Smale
condition inBV (Ω;RN ), the natural domain off , as it is already known in
the case of equations (see e.g. [36]). Therefore we extendf toL

n
n−1 (Ω;RN )

with value+∞ outsideBV (Ω;RN ). This larger space is better behaved
for the compactness properties, but the nonsmoothness of the functional
increases. The second feature is that the assumptions we impose onG imply
the second term off to be continuous onL

n
n−1 (Ω;RN ), but not locally

Lipschitz. More precisely, the function{s 7→ G(x, s)} is supposed to be
locally Lipschitz for a.e.x ∈ Ω, but the growth conditions we impose do
not ensure the corresponding property for the integral onL

n
n−1 (Ω;RN ).

Because of these facts, we will take advantage of the nonsmooth techniques
developed in [7,16,19], which have been already applied in the setting of
equations (see [8–10,15,18,20,21,23,36,37] and references therein) and
turn out to be suitable also for our setting.

In Sect. 2 we recall the main tools we will need, while in Sect. 3 we
prove some general results for a class of lower semicontinuous functionals
f : Lp(Ω;RN ) → R ∪ {+∞}. In Sect. 4 we show that the area-type
integrals fall into the class considered in Sect. 3. By the way, we also prove
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a relation between the convergence in the so-called intermediate topologies
ofBV (Ω;RN ) and the convergence inL

n
n−1 (Ω;RN ) (see Theorem 4.10),

which seems to be new. Finally, in sections 5 and 6 we apply the general
setting of Sect. 3 to obtain multiplicity results of Clark and Ambrosetti-
Rabinowitz type. Of course, we believe that our approach could be equally
applied to other situations with different geometries.

2 Recalls of nonsmooth analysis

LetX be a metric space endowed with the metricd and letf : X → R be
a function. We denote byBr (u) the open ball of centreu and radiusr and
we set

epi (f) = {(u, λ) ∈ X × R : f(u) ≤ λ} .
In the following,X × R will be endowed with the metric

d ((u, λ), (v, µ)) =
(
d(u, v)2 + (λ− µ)2

) 1
2

andepi (f) with the induced metric.

Definition 2.1 For everyu ∈ X with f(u) ∈ R, we denote by|df | (u) the
supremum of theσ’s in [0,+∞[ such that there existδ > 0 and a continuous
map

H : (Bδ (u, f(u)) ∩ epi (f)) × [0, δ] → X

satisfying

d(H((w, µ), t), w) ≤ t , f(H((w, µ), t)) ≤ µ− σt ,

whenever(w, µ) ∈ Bδ (u, f(u)) ∩ epi (f) andt ∈ [0, δ].
The extended real number|df | (u) is calledthe weak slopeof f at u.

The above notion has been introduced in [19], following an equivalent ap-
proach. Whenf is continuous, it has been independently introduced also in
[32], while a variant has been considered in [30,31]. The version we have
recalled here is taken from [7].

Now, according to [17], we define a functionGf : epi (f) → R by
Gf (u, λ) = λ. Of course,Gf is Lipschitz continuous of constant1.

Proposition 2.2 For everyu ∈ X with f(u) ∈ R, we havef(u) =
Gf (u, f(u)) and

|df | (u) =


|dGf | (u, f(u))√

1 − |dGf | (u, f(u))2
if |dGf | (u, f(u)) < 1 ,

+∞ if |dGf | (u, f(u)) = 1 .
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Proof. See [7, Proposition 2.3]. ut
The previous proposition allows us to reduce, at some extent, the study

of the general functionf to that of the continuous functionGf .
Definition 2.1 can be simplified, whenf is continuous.

Proposition 2.3 Letf : X → R be continuous. Then|df | (u) is the supre-
mum of theσ’s in [0,+∞[ such that there existδ > 0 and a continuous
map

H : Bδ (u) × [0, δ] → X

satisfying

d(H(w, t), w) ≤ t , f(H(w, t)) ≤ f(w) − σt ,(2.4)

wheneverw ∈ Bδ (u) andt ∈ [0, δ].

Proof. See [7, Proposition 2.2]. ut
We need also, in a particular case, the notion of equivariant weak slope

(see e.g. [10] for the general definition).

Definition 2.5 LetX be a normed space andf : X → R an even function
withf(0) < +∞. For every(0, λ) ∈ epi (f) we denote by|dZ2Gf | (0, λ) the
supremum of theσ’s in [0,+∞[ such that there existδ > 0 and a continuous
map

H = (H1,H2) : (Bδ (0, λ) ∩ epi (f)) × [0, δ] → epi (f)

satisfying

d (H((w, µ), t), (w, µ)) ≤ t , H2((w, µ), t) ≤ µ− σt ,

H1((−w, µ), t) = −H1((w, µ), t) ,

whenever(w, µ) ∈ Bδ (0, λ) ∩ epi (f) andt ∈ [0, δ].

Remark 2.6In Proposition 2.3, if there exist% > 0 and a continuous map
H satisfying

d(H(w, t), w) ≤ %t , f(H(w, t)) ≤ f(w) − σt ,

instead of (2.4), we can deduce that|df | (u) ≥ σ/%.
A similar remark applies to Definition 2.5.

By means of the weak slope, we can now introduce the two main notions of
critical point theory.
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Definition 2.7 We say thatu ∈ X isa (lower) critical pointoff , if f(u) ∈ R
and|df | (u) = 0. We say thatc ∈ R is a (lower) critical valueof f , if there
exists a (lower) critical pointu ∈ X of f with f(u) = c.

Definition 2.8 Letc ∈ R. A sequence(uh) inX is said to bea Palais-Smale
sequence at levelc ((PS)c−sequence, for short) forf , if f(uh) → c and
|df | (uh) → 0.

We say thatf satisfiesthe Palais-Smale condition at levelc ((PS)c, for
short), if every(PS)c−sequence(uh) for f admits a convergent subse-
quence(uhk

) in X.

The main feature of the weak slope is that it allows to prove natural exten-
sions of the classical critical point theory for general continuous functions
defined on complete metric spaces. Moreover, one can try to reduce the study
of a lower semicontinuous functionf to that of the continuous functionGf .
Actually, Proposition 2.2 suggests to exploit the bijective correspondence
between the set wheref is finite and the graph off . This approach can be
successful, if we can ensure that the remaining part ofepi (f) does not carry
much information. The next notion turns out to be useful for this purpose.

Definition 2.9 Let c ∈ R. We say thatf satisfies condition(epi)c, if there
existsε > 0 such that

inf {|dGf | (u, λ) : f(u) < λ, |λ− c| < ε} > 0 .

The next two results may help in dealing with condition(epi)c.

Proposition 2.10 Let(u, λ) ∈ epi (f). Assume that there exist%, σ, δ, ε > 0
and a continuous map

H : {w ∈ Bδ (u) : f(w) < λ+ δ} × [0, δ] → X

satisfying

d(H(w, t), w) ≤ %t , f(H(w, t)) ≤ max{f(w) − σt, λ− ε}
wheneverw ∈ Bδ (u), f(w) < λ+ δ andt ∈ [0, δ].

Then we have

|dGf | (u, λ) ≥ σ√
%2 + σ2

.

If moreoverX is a normed space,f is even,u = 0 and H(−w, t) =
−H(w, t), then we have

|dZ2Gf | (0, λ) ≥ σ√
%2 + σ2

.
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Proof. Let δ′ ∈]0, δ] be such thatδ′ + σδ′ ≤ ε and let

K :
(
Bδ′ (u, λ) ∩ epi (f)

)× [0, δ′] → epi (f)

be defined byK((w, µ), t
)

=
(H(w, t), µ − σt

)
. If (w, µ) ∈ Bδ′ (u, λ) ∩

epi (f) andt ∈ [0, δ′], we have

λ− ε ≤ λ− δ′ − σδ′ < µ− σt , f(w) − σt ≤ µ− σt ,

hence

f(H(w, t)) ≤ max{f(w) − σt, λ− ε} ≤ µ− σt .

ThereforeK actually takes its values inepi (f). Furthermore, it is

d
(K((w, µ), t

)
, (w, µ)

) ≤
√
%2 + σ2 t ,

Gf

(K((w, µ), t
))

= µ− σt = Gf (w, µ) − σt .

Taking into account Proposition 2.3 and Remark 2.6, the first assertion fol-
lows.

In the symmetric case,K automatically satisfies the further condition
required in Definition 2.5. ut

Corollary 2.11 Let (u, λ) ∈ epi (f) with f(u) < λ. Assume that for every
% > 0 there existδ > 0 and a continuous map

H : {w ∈ Bδ (u) : f(w) < λ+ δ} × [0, δ] → X

satisfying

d(H(w, t), w) ≤ %t , f(H(w, t)) ≤ f(w) + t
(
f(u) − f(w) + %

)
wheneverw ∈ Bδ (u), f(w) < λ+ δ andt ∈ [0, δ].

Then we have|dGf | (u, λ) = 1. If moreoverX is a normed space,f is
even,u = 0 andH(−w, t) = −H(w, t), then we have|dZ2Gf | (0, λ) = 1.

Proof. Let ε > 0 with λ− 2ε > f(u), let 0 < % < λ− f(u) − 2ε and letδ
andH be as in the hypothesis. By reducingδ, we may also assume that

δ ≤ 1 , δ
(|λ− 2ε| + |f(u) + %|) ≤ ε .

Now considerw ∈ Bδ (u) with f(w) < λ + δ andt ∈ [0, δ]. If f(w) ≤
λ− 2ε, we have

f(w) + t(f(u) − f(w) + %) = (1 − t)f(w) + t(f(u) + %) ≤
≤ (1 − t)(λ− 2ε) + t(f(u) + %) ≤
≤ λ− 2ε+ t|λ− 2ε| + t|f(u) + %| ≤ λ− ε ,
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while, if f(w) > λ− 2ε, we have

f(w) + t(f(u) − f(w) + %) ≤ f(w) − (λ− f(u) − 2ε− %)t .

In any case it follows

f(H(w, t)) ≤ max {f(w) − (λ− f(u) − 2ε− %)t, λ− ε} .
From Proposition 2.10 we get

|dGf | (u, λ) ≥ λ− f(u) − 2ε− %√
%2 + (λ− f(u) − 2ε− %)2

and the first assertion follows by the arbitrariness of%.
The same proof works also in the symmetric case.ut
Now we recall two critical point theorems we will apply later. The first

one is an adaptation of a result of D. C. Clark (see [13] and [44, Theorem
9.1]) to our setting.

Theorem 2.12 LetX be a Banach space andf : X → R∪{+∞} an even
lower semicontinuous function. Assume that

(a) f is bounded from below;
(b) for everyc < f(0), the functionf satisfies(PS)c and(epi)c;
(c) there existk ≥ 1 and an odd continuous mapψ : Sk−1 → X such that

sup
{
f(ψ(x)) : x ∈ Sk−1

}
< f(0) ,

whereSk−1 denotes the unit sphere inRk.

Thenf admits at leastk pairs (u1,−u1), . . . , (uk,−uk) of critical
points withf(uj) < f(0).

Proof. See [20, Theorem 2.5]. ut
The next result is an adaptation of the classical Theorem of Ambrosetti-

Rabinowitz [1,44,48].

Theorem 2.13 LetX be a Banach space andf : X → R∪{+∞} an even
lower semicontinuous function. Assume that there exists a strictly increas-
ing sequence(Vh) of finite-dimensional subspaces ofX with the following
properties:

(a) there exist a closed subspaceZ of X, % > 0 andα > f(0) such that
X = V0 ⊕ Z and

∀u ∈ Z : ‖u‖ = % =⇒ f(u) ≥ α ;
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(b) there exists a sequence(Rh) in ]%,+∞[ such that

∀u ∈ Vh : ‖u‖ ≥ Rh =⇒ f(u) ≤ f(0) ;

(c) for everyc ≥ α, the functionf satisfies(PS)c and(epi)c;
(d) we have|dZ2Gf | (0, λ) 6= 0 wheneverλ ≥ α.

Then there exists a sequence(uh) of critical points off with f(uh) →
+∞.

Proof. Because of assumption(c), the functionGf satisfies(PS)c for any
c ≥ α. Then the assertion follows from [36, Theorem (2.7)].ut

Now assume thatX is a normed space overR and f : X → R a
function.

Definition 2.14 For everyu ∈ X with f(u) ∈ R, v ∈ X and ε > 0,
let f◦

ε (u; v) be the infimum ofr’s in R such that there existδ > 0 and a
continuous map

V : (Bδ (u, f(u)) ∩ epi (f))×]0, δ] → Bε (v)

satisfying

f(z + tV((z, µ), t)) ≤ µ+ rt

whenever(z, µ) ∈ Bδ (u, f(u)) ∩ epi (f) andt ∈]0, δ]. Then let

f◦ (u; v) = sup
ε>0

f◦
ε (u; v) .

Let us recall that the functionf◦ (u; ·) is convex, lower semicontinuous and
positively homogeneous of degree1 (see [7, Corollary 4.6]).

Definition 2.15 For everyu ∈ X with f(u) ∈ R, we set

∂f(u) = {u∗ ∈ X∗ : 〈u∗, v〉 ≤ f◦ (u; v) ∀v ∈ X} .
It turns out thatf◦ (u; v) is greater than or equal to the generalized directional
derivative in the sense of Rockafellar (see [14,47]). Consequently,∂f(u)
contains the subdifferential off atu in the sense of Clarke. These modified
notions off◦ (u; v) and∂f(u) have been introduced in [7,18], because they
are better related with the notion of weak slope and hence more suitable for
critical point theory, as the next result shows.

Theorem 2.16 If u ∈ X andf(u) ∈ R, the following facts hold:

(a) |df | (u) < +∞ ⇐⇒ ∂f(u) 6= ∅;
(b) |df | (u) < +∞ =⇒ |df | (u) ≥ min {‖u∗‖ : u∗ ∈ ∂f(u)}.
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Proof. See [7, Theorem 4.13]. ut
However, iff : X → R is locally Lipschitz, these notions agree with

those of Clarke (see [7, Corollary 4.10]). Thus, in such a case,f◦ (u; ·) is
also Lipschitz continuous and we have that

∀u, v ∈ X : f◦ (u; v) = lim sup
z→u, w→v

t→0+

f(z + tw) − f(z)
t

,(2.17)

{(u, v) 7→ f◦ (u; v)} is upper semicontinuous onX ×X .(2.18)

3 The general framework

Let n ≥ 1, N ≥ 1, Ω be an open subset ofRn and1 < p < ∞. In the
following, we will denote by‖ · ‖q the usual norm inLq (1 ≤ q ≤ ∞). We
now define the functional setting we are interested in.

Let E : Lp(Ω;RN ) → R ∪ {+∞} be a functional such that:

(E1) E is convex, lower semicontinuous and0 ∈ D (E), where

D (E) =
{
u ∈ Lp(Ω;RN ) : E(u) < +∞} ;

(E2) there existsϑ ∈ Cc(RN ) with 0 ≤ ϑ ≤ 1 andϑ(0) = 1 such that

(E2.1) ∀u ∈ D (E) , ∀v ∈ D (E) ∩ L∞(Ω;RN ), ∀c > 0 :

lim
h→∞

 sup
‖z−u‖p≤c

E(z)≤c

E
(
ϑ
( z
h

)
v
) = E(v) ;

(E2.2) ∀u ∈ D (E) : lim
h→∞

E
(
ϑ
(u
h

)
u
)

= E(u) .

Moreover, letG : Ω × RN → R be a function such that

(G1) G(·, s) is measurable for everys ∈ RN ;
(G2) for everyt > 0 there existsαt ∈ L1(Ω) such that

|G(x, s1) −G(x, s2)| ≤ αt(x)|s1 − s2|
for a.e.x ∈ Ω and everys1, s2 ∈ RN with |sj | ≤ t; for a.e.x ∈ Ω
we set

G◦(x, s; ŝ) = γ◦ (s; ŝ) , ∂sG(x, s) = ∂γ(s) ,

whereγ(s) = G(x, s);
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(G3) there exista0 ∈ L1(Ω) andb0 ∈ R such that

G(x, s) ≥ −a0(x) − b0|s|p for a.e.x ∈ Ω and everys ∈ RN ;

(G4) there exista1 ∈ L1(Ω) andb1 ∈ R such that

G◦(x, s;−s) ≤ a1(x) + b1|s|p for a.e.x ∈ Ω and everys ∈ RN .

Because of(E1) and(G3), we can define a lower semicontinuous functional
f : Lp(Ω;RN ) → R ∪ {+∞} by

f(u) = E(u) +
∫

Ω
G(x, u(x)) dx .

Remark 3.1According to(E1), the functionalE is lower semicontinuous.
Condition (E2) ensures thatE is continuous at least on some particular
restrictions.

Remark 3.2If {s 7→ G(x, s)} is of classC1 for a.ex ∈ Ω, the estimates in
(G2) and in(G4) are respectively equivalent to

|s| ≤ t =⇒ |DsG(x, s)| ≤ αt(x) ,

DsG(x, s) · s ≥ −a1(x) − b1|s|p .

Because of(G2), for a.e.x ∈ Ω and anyt > 0 ands ∈ RN with |s| < t
we have

∀ŝ ∈ RN : |G◦(x, s; ŝ)| ≤ αt(x)|ŝ| ;(3.3)

∀s∗ ∈ ∂sG(x, s) : |s∗| ≤ αt(x) .(3.4)

In the following, we setϑh(s) = ϑ(s/h), whereϑ is a function as in(E2),
and we fixM > 0 such thatϑ = 0 outsideBM (0). Therefore

∀s ∈ RN : |s| ≥ hM =⇒ ϑh(s) = 0 .(3.5)

Our first result concerns the connection between the notions of gen-
eralized directional derivative and subdifferential in the functional space
Lp(Ω;RN ) and the more concrete setting of hemivariational inequalities,
which also involves the notion of generalized directional derivative, but in
RN .
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If u, v ∈ Lp(Ω;RN ), we can define
∫
Ω G

◦(x, u; v) dx if we agree, as
in [46], that∫

Ω
G◦(x, u; v) dx = +∞ whenever∫

Ω
[G◦(x, u; v)]+ dx =

∫
Ω

[G◦(x, u; v)]− dx = +∞ .

With this convention,
{
v 7→ ∫

Ω G
◦(x, u; v) dx

}
is a convex functional from

Lp(Ω;RN ) into R.

Theorem 3.6 Letu ∈ D (f). Then the following facts hold:

(a) for everyv ∈ D (E) there exists a sequence(vh) in D (E)∩L∞(Ω;RN )
satisfying[G◦(x, u; vh −u)]+ ∈ L1(Ω), ‖vh − v‖p → 0 andE(vh) →
E(v);

(b) for everyv ∈ D (E) we have

f◦(u; v − u) ≤ E(v) − E(u) +
∫

Ω
G◦(x, u; v − u) dx ;(3.7)

(c) if ∂f(u) 6= ∅, we haveG◦(x, u;−u) ∈ L1(Ω) and

E(v) − E(u) +
∫

Ω
G◦(x, u; v − u) dx ≥

∫
Ω
u∗ · (v − u) dx(3.8)

for everyu∗ ∈ ∂f(u) andv ∈ D (E) (the dual space ofLp(Ω;RN ) is
identified withLp′

(Ω;RN ) in the usual way);
(d) if N = 1, we have[G◦(x, u; v − u)]+ ∈ L1(Ω) for everyv ∈ L∞

(Ω;RN ).

Proof. (a) Let us setG(v) =
∫
Ω G/x, v)dx. Givenε > 0, by(E2.2) we have

‖ϑh(v)v− v‖p < ε and|E(ϑh(v)v) − E(v)| < ε for h large enough. Then,
by(E2.1)we get‖ϑk(u)ϑh(v)v−v‖p < εand|E(ϑk(u)ϑh(v)v)−E(v)| < ε
for k large enough. Of courseϑk(u)ϑh(v)v ∈ L∞(Ω;RN ) and by (3.3) we
have

G◦(x, u;ϑk(u)ϑh(v)v − u) ≤ ϑk(u)ϑh(v)G◦(x, u; v − u) +
+(1 − ϑk(u)ϑh(v))G◦(x, u;−u) ≤

≤ (h+ k)MαkM (x) + [G◦(x, u;−u)]+ .
From (G4) we infer that[G◦(x, u;−u)]+ ∈ L1(Ω) and assertion(a) fol-
lows.
(b) Without loss of generality, we may assume that[G◦(x, u; v − u)]+ ∈
L1(Ω). Suppose first thatv ∈ D (E) ∩ L∞(Ω;RN ) and takeε > 0.
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We claim that for everyz ∈ Lp(Ω;RN ), t ∈]0, 1/2] andh ≥ 1 with
hM > ‖v‖∞, we have

G(x, z + t(ϑh(z)v − z)) −G(x, z)
t

≤
≤ 2 (‖v‖∞ αhM + a1 + b1(|z| + |v|)p) .(3.9)

In fact, for a.e.x ∈ Ω, by Lebourg’s Theorem (see e.g. [14]) there exist
t ∈]0, t[ andu∗ ∈ ∂sG(x, z + t(ϑh(z)v − z)) such that

G(x, z + t(ϑh(z)v − z)) −G(x, z)
t

=

= u∗ · (ϑh(z)v − z) =

=
1

1 − t

[
ϑh(z)u∗ · v − u∗ · (z + t(ϑh(z)v − z))

]
.

By (3.4) and (3.5), it easily follows that

|ϑh(z)u∗ · v|
1 − t

≤ 2 ‖v‖∞ αhM .

On the other hand, from(G4) we deduce that for a.e.x ∈ Ω

u∗ · (z + t(ϑh(z)v − z))
1 − t

≥ − 1
1 − t

G◦(x, z + t(ϑh(z)v − z);

−(z + t(ϑh(z)v − z)) ≥ − 1
1 − t

(a1 + b1|z + t(ϑh(z)v − z)|p)
≥ −2 (a1 + b1(|z| + |v|)p) .

Then (3.9) easily follows.
For a.e.x ∈ Ω we have

G◦(x, u;ϑh(u)v − u) ≤ ϑh(u)G◦(x, u; v − u) +
+(1 − ϑh(u))G◦(x, u;−u) ≤

≤ [G◦(x, u; v − u)]+ + [G◦(x, u;−u)]+ .
Furthermore, for a.e.x ∈ Ω and everys ∈ RN , (G2) impliesG◦(x, s; ·) to
be Lipschitz continuous, so in particular

lim
h
G◦(x, u;ϑh(u)v − u) = G◦(x, u; v − u) a.e. inΩ .

Then, given

λ >

∫
Ω
G◦(x, u; v − u) dx ,
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by Fatou’s Lemma there existsh ≥ 1 such that

∀h ≥ h :
∫

Ω
G◦(x, u;ϑh(u)v − u) dx < λ and ‖ϑh(u)v − v‖p < ε .

(3.10)

By the lower semicontinuity ofG, there existsδ ∈]0, 1/2] such that
for every z ∈ Bδ (u) it is G(z) ≥ G(u) − 1

2 . Then for every(z, µ) ∈
Bδ (u, f(u)) ∩ epi (f) it follows

E(z) ≤ µ− G(z) ≤ µ+
1
2

− G(u) ≤ f(u) + δ − G(u) +
1
2

≤ E(u) + 1 .

Let nowσ > 0. By assumptions(E1) and(E2.1) there existh ≥ h and
δ ≤ δ such that

‖v‖∞ < hM,

E(z) > E(u)−σ, E(ϑh(z)v) < E(v)+σ, ‖(ϑh(z)v−z)−(v−u)‖p < ε,

for anyz ∈ Bδ (u) with E(z) ≤ E(u) + 1.
Taking into account (2.17), (3.9) and (3.10), we deduce by Fatou’s

Lemma that, possibly reducingδ, for anyt ∈]0, δ] and for anyz ∈ Bδ (u)
we have ∫

Ω

G(x, z + t(ϑh(z)v − z)) −G(x, z)
t

dx < λ .

Now let V : (Bδ (u, f(u)) ∩ epi (f))×]0, δ] → Bε (v − u) be defined
setting

V((z, µ), t) = ϑh(z)v − z .

SinceV is evidently continuous and

f(z + tV((z, µ), t)) = f(z + t(ϑh(z)v − z)) ≤
≤ E(z) + t (E(ϑh(z)v) − E(z)) +

+G(z + t(ϑh(z)v − z)) ≤
≤ E(z) + (E(v) − E(u) + 2σ)t+ G(z) + λt =
= f(z) + (E(v) − E(u) + λ+ 2σ)t ,

we have

f◦
ε (u; v − u) ≤ E(v) − E(u) + λ+ 2σ .

By the arbitrariness ofσ > 0 andλ >
∫

Ω
G◦(x, u; v − u) dx, it follows

f◦
ε (u; v − u) ≤ E(v) − E(u) +

∫
Ω
G◦(x, u; v − u) dx .
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Passing to the limit asε → 0+, we get (3.7) whenv ∈ D (E)∩L∞(Ω;RN ).
Let us now treat the general case. If we setvh = ϑh(v)v, we have

vh ∈ L∞(Ω;RN ). Arguing as before, it is easy to see that

G◦(x, u; vh − u) ≤ [G◦(x, u; v − u)]+ + [G◦(x, u;−u)]+ ,
so that

lim sup
h

∫
Ω
G◦(x, u; vh − u) dx ≤

∫
Ω
G◦(x, u; v − u) dx .

On the other hand, by the previous step it holds

f◦(u; vh − u) ≤ E(vh) − E(u) +
∫

Ω
G◦(x, u; vh − u) dx .

Passing to the lower limit ash → ∞ and taking into account the lower
semicontinuity off◦(u, ·) and(E2.2), we get (3.7).
(c) We already know that[G◦(x, u;−u)]+ ∈ L1(Ω). If we choosev = 0
in (3.7), we obtain

f◦(u;−u) ≤ E(0) − E(u) +
∫

Ω
G◦(x, u;−u) dx .

Since∂f(u) 6= ∅, it is f◦(u;−u) > −∞, hence∫
Ω

[G◦(x, u;−u)]− dx < +∞ .

Finally, if u∗ ∈ ∂f(u) we have by definition that

f◦(u; v − u) ≥
∫

Ω
u∗ · (v − u) dx

and (3.8) follows from (3.7).
(d) From (3.3) it readily follows thatG◦(x, u; v − u) is summable where
|u(x)| ≤ ‖v‖∞. On the other hand, where|u(x)| > ‖v‖∞ we have

G◦(x, u; v − u) =
(
1 − v

u

)
G◦(x, u;−u)

and the assertion follows from(G4). ut
Sincef is only lower semicontinuous, we are interested in the verifi-

cation of the condition(epi)c. For this purpose, we consider an assumption
(G′

3) onG stronger than(G3).

Theorem 3.11 Assume that

(G′
3) there exista ∈ L1(Ω) andb ∈ R such that

|G(x, s)| ≤ a(x) + b|s|p for a.e.x ∈ Ω and everys ∈ RN .
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Then for every(u, λ) ∈ epi (f) with λ > f(u) it is |dGf | (u, λ) =
1. Moreover, if E and G(x, ·) are even, for everyλ > f(0) we have
|dZ2Gf | (0, λ) = 1.

Proof. Let % > 0. Since

∀τ ∈ [0, 1] : G◦(x, u; τu− u)=(1 − τ)G◦(x, u;−u)≤ [G◦(x, u;−u)]+,
by (E2.2) and(G4) there existsh ≥ 1 such that

‖ϑh(u)u− u‖p < % , E(ϑh(u)u) < E(u) + % ,

∀h ≥ h :
∫

Ω
G◦(x, u;ϑh(u)ϑh(u)u− u) dx < % .

Setv = ϑh(u)u.
By (E2.1) there existh ≥ h andδ ∈]0, 1] such that

‖ϑh(z)v − z‖p < % , E(ϑh(z)v) < E(u) + % ,

whenever‖z − u‖p < δ andE(z) ≤ λ+ 1 − G(u) + %.
By decreasingδ, from (G′

3), (3.9) and (2.17) we deduce that

|G(z) − G(u)| < % ,

∫
Ω

G(x, z + t(ϑh(z)v − z)) −G(x, z)
t

dx < %

whenever‖z − u‖p < δ and0 < t ≤ δ.
Define a continuous map

H : {z ∈ Bδ (u) : f(z) < λ+ δ} × [0, δ] → X

by H(z, t) = z+ t(ϑh(z)v−z). It is readily seen that‖H(z, t)−z‖p ≤ %t.
If z ∈ Bδ (u), f(z) < λ+ δ and0 ≤ t ≤ δ, we have

E(z) = f(z) − G(z) < λ+ δ − G(u) + % ≤ λ+ 1 − G(u) + % ,

hence, taking into account the convexity ofE ,

E(z + t(ϑh(z)v − z)) ≤ E(z) + t(E(ϑh(z)v) − E(z))
≤ E(z) + t(E(u) − E(z) + %) .

Moreover, we also have

G(z + t(ϑh(z)v − z)) ≤ G(z) + t% ≤ G(z) + t(G(u) − G(z) + 2%) .

Therefore

f(z + t(ϑh(z)v − z)) ≤ f(z) + t(f(u) − f(z) + 3%)

and the first assertion follows by Corollary 2.11.
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Now assume thatE andG(x, ·) are even and thatu = 0. Then, in the
previous argument, we havev = 0, so thatH(−z, t) = −H(z, t) and the
second assertion also follows.ut

Now we want to provide a criterion which helps in the verification of the
Palais-Smale condition. For this purpose, we consider further assumptions
onE , which ensure a suitable coerciveness, and a new condition(G′

4) onG,
stronger than(G4), which is a kind of one-sided subcritical growth condition.

Theorem 3.12 Let c ∈ R. Assume that

(E3) for every(uh) bounded inLp(Ω;RN ) with (E(uh)) bounded, there
exists a subsequence(uhk

) and a functionu ∈ Lp(Ω;RN ) such that

lim
k→∞

uhk
(x) = u(x) for a.e.x ∈ Ω ;

(E4) if (uh) is a sequence inLp(Ω;RN ) weakly convergent tou ∈ D (E)
and E(uh) converges toE(u), then(uh) converges tou strongly in
Lp(Ω;RN );

(G′
4) for everyε > 0 there existsaε ∈ L1(Ω) such that

G◦(x, s;−s) ≤ aε(x) + ε|s|p for a.e.x ∈ Ω and everys ∈ RN .

Then any(PS)c-sequence(uh) for f bounded inLp(Ω;RN ) admits a
subsequence strongly convergent inLp(Ω;RN ).

Proof. From(G3) we deduce that(G(uh)) is bounded from below. Taking
into account(E1), it follows that(E(uh)) is bounded. By(E3) there exists a
subsequence, still denoted by(uh), converging weakly inLp(Ω;RN ) and
a.e. to someu ∈ D (E).

Givenε > 0, by (E2.2) and(G4) we may findk0 ≥ 1 such that

E(ϑk0(u)u) < E(u) + ε ,

∫
Ω

(1 − ϑk0(u))G
◦(x, u;−u) dx < ε .

Sinceϑk0(u)u ∈ D (E)∩L∞(Ω;RN ), by (E2.1) there existsk1 ≥ k0 such
that

∀h ∈ N : E(ϑk1(uh)ϑk0(u)u) < E(u) + ε ,(3.13)

∫
Ω

(1 − ϑk1(u)ϑk0(u))G
◦(x, u;−u) dx < ε .

It follows thatϑk1(uh)ϑk0(u)u ∈ D (E). Moreover, from (3.3) and(G′
4)

we get
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G◦(x, uh;ϑk1(uh)ϑk0(u)u− uh) ≤
≤ ϑk1(uh)G◦(x, uh;ϑk0(u)u− uh) +

+(1 − ϑk1(uh))G◦(x, uh;−uh) ≤
≤ αk1M (x)(k0M + k1M) + aε(x) + ε|uh|p .

From (2.18) and Fatou’s Lemma we deduce that

lim sup
h→∞

∫
Ω

[G◦(x, uh;ϑk1(uh)ϑk0(u)u− uh) − ε|uh|p] dx ≤

≤
∫

Ω
[G◦(x, u;ϑk1(u)ϑk0(u)u− u) − ε|u|p] dx ≤

≤
∫

Ω
(1 − ϑk1(u)ϑk0(u))G

◦(x, u;−u) dx < ε ,

hence

lim sup
h→∞

∫
Ω
G◦(x, uh;ϑk1(uh)ϑk0(u)u− uh) dx < ε sup

h
‖uh‖p

p + ε .

(3.14)

Since(uh) is a(PS)c-sequence, by Theorem 2.16 there existsu∗
h ∈ ∂f(uh)

with ‖u∗
h‖p′ ≤ |df | (uh), so that lim

h→∞
‖u∗

h‖p′ = 0. Applying (c) of Theo-

rem 3.6, we get

E(ϑk1(uh)ϑk0(u)u) ≥ E(uh) −
∫

Ω
G◦(x, uh;ϑk1(uh)ϑk0(u)u− uh) dx+

+
∫

Ω
u∗

h · (ϑk1(uh)ϑk0(u)u− uh) dx .

Taking into account (3.13), (3.14) and passing to the upper limit, we obtain

lim sup
h→∞

E(uh) ≤ E(u) + 2ε+ ε sup
h

‖uh‖p
p .

By the arbitrariness ofε > 0, we finally have

lim sup
h→∞

E(uh) ≤ E(u)

and the strong convergence of(uh) to u follows from (E4). ut
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4 Area type functionals

Let n ≥ 2, N ≥ 1, Ω be a bounded open subset ofRn with Lipschitz
boundary and let

Ψ : RnN → R

be a convex function satisfying

(Ψ)

{
Ψ(0) = 0, Ψ(ξ) > 0 for anyξ 6= 0 and

there existsc > 0 such thatΨ(ξ) ≤ c|ξ| for anyξ ∈ RnN .

We want to study the functionalE : L
n

n−1 (Ω;RN ) → R ∪ {+∞} defined
by

E(u) =



∫
Ω

Ψ(Dua) dx+
∫
Ω

Ψ∞
(
Dus

|Dus|
)
d|Dus|(x)+

+
∫

∂Ω

Ψ∞(u⊗ ν) dHn−1(x) if u ∈ BV (Ω;RN ),

+∞ if u ∈ L
n

n−1 (Ω;RN )\BV (Ω;RN ),

whereDu = Dua dx+Dus is the Lebesgue decomposition ofDu, |Dus|
is the total variation ofDus,Dus/|Dus| is the Radon-Nikodym derivative
of Dus with respect to|Dus|, Ψ∞ is the recession functional associated
with Ψ , ν is the outer normal toΩ and the trace ofu on∂Ω is still denoted
by u (see e.g. [4,29]).

Theorem 4.1 The functionalE satisfies conditions(E1),(E2),(E3)and(E4).
The section will be devoted to the proof of this result. We begin establishing
some technical lemmas. For notions concerning the spaceBV , such as those
of ũ, Su, u+ andu−, we refer the reader to [2,3].

In BV (Ω;RN ) we will consider the norm

‖u‖BV =
∫

Ω
|Dua| dx+ |Dus|(Ω) +

∫
∂Ω

|u| dHn−1(x) ,

which is equivalent to the standard norm ofBV (Ω;RN ).
Lemma 4.2 For everyu ∈ BV (Ω;RN ) and everyε > 0 there exists
v ∈ C∞

c (Ω;RN ) such that

‖v − u‖ n
n−1

< ε ,

∣∣∣∣∣∣
∫
Ω

|Dv| dx− ‖u‖BV

∣∣∣∣∣∣ < ε ,

|E(v) − E(u)| < ε , ‖v‖∞ ≤ ess sup
Ω

|u| .
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Proof. Let δ > 0, letR > 0 with Ω ⊆ BR (0) and let

ϑh(x) = 1 − min
{

max
{
h+ 1
h

[1 − h d(x,Rn \Ω)], 0
}
, 1
}
.

Defineû ∈ BV (BR (0) ;RN ) by

û(x) =
{
u(x) if x ∈ Ω ,
0 if x ∈ BR (0) \Ω .

According to [11, Lemma 7.4 and formula(7.2)], if h is sufficiently large,
we have thatϑhu ∈ BV (Ω;RN ), ‖ϑhu− u‖ n

n−1
< δ and∫

Ω

√
1 + |D(ϑhu)a|2 dLn + |D(ϑhu)s|(Ω) <

<

∫
Ω

√
1 + |Dua|2 dLn + |Dus|(Ω) +

∫
∂Ω

|u| dHn−1 + δ =

=
∫

BR(0)

√
1 + |Dûa|2 dLn + |Dûs|(BR (0)) + δ .

Moreover,ϑhu has compact support inΩ andess sup
Ω

|ϑhu| ≤ ess sup
Ω

|u|.
If we regularizeϑhu by convolution, we easily getv ∈ C∞

c (Ω;RN )
with

‖v‖∞ ≤ ess sup
Ω

|u| , ‖v − u‖ n
n−1

< δ

and∫
Ω

√
1 + |Dv|2 dLn <

∫
BR(0)

√
1 + |Dûa|2 dLn + |Dûs|(BR (0)) + δ .

Since

‖u‖BV =
∫

BR(0)
|Dûa| dx+ |Dûs|(BR (0)) ,

E(u) =
∫

BR(0)
Ψ(Dûa) dx+

∫
BR(0)

Ψ∞
(
Dûs

|Dûs|
)
d|Dûs| ,

by the results of [45] the assertion follows (see also [4, Fact 3.1]).ut

Lemma 4.3 The following facts hold:

(a) Ψ : RnN → R is Lipschitz continuous of some constantLip(Ψ) > 0;
(b) for anyξ ∈ RnN ands ∈ [0, 1] we haveΨ(sξ) ≤ sΨ(ξ);
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(c) for everyσ > 0 there existsdσ > 0 such that

∀ξ ∈ RnN : Ψ(ξ) ≥ dσ(|ξ| − σ) ;

(d) E : BV (Ω;RN ) → R is Lipschitz continuous of constantLip(Ψ);
(e) if σ anddσ are as in(c), we have

∀u ∈ BV (Ω;RN ) : E(u) ≥ dσ

(
‖u‖BV − σLn(Ω)

)
.

Proof. Properties(a) and (b) easily follow from the convexity ofΨ and
assumption(Ψ).

To prove(c), assume by contradiction thatσ > 0 and(ξh) is a sequence
with Ψ(ξh) < 1

h(|ξh| − σ). If |ξh| → +∞, we have eventually

Ψ

(
ξh
|ξh|

)
≤ Ψ(ξh)

|ξh| <
1
h

(
1 − σ

|ξh|
)
.

Up to a subsequence,(ξh/|ξh|) is convergent to someη 6= 0 with Ψ(η) ≤ 0,
which is impossible. Since|ξh| is bounded, up to a subsequence we have
ξh → ξ with |ξ| ≥ σ andΨ(ξ) ≤ 0, which is again impossible.

Finally, (d) easily follows from(a) and the definition of‖ · ‖BV , while
(e) follows from (c) (see e.g. [37, Lemma 4.1]). ut

Let nowϑ ∈ C1
c (RN ) with 0 ≤ ϑ ≤ 1, ‖∇ϑ‖∞ ≤ 2, ϑ(s) = 1 for

|s| ≤ 1 andϑ(s) = 0 for |s| ≥ 2. Defineϑh : RN → R andTh, Rh :
RN → RN by

ϑh(s) = ϑ
( s
h

)
, Th(s) = ϑh(s)s , Rh(s) = (1 − ϑh(s))s .

Lemma 4.4 There exists a constantcΨ > 0 such that

E
(
ϑ
(u
h

)
v
)

≤ E(v) +
cΨ
h

‖v‖∞‖u‖BV ,

E(Th ◦ u) ≤ E(u) + cΨ

[
|Du|({x ∈ Ω \ Su : |ũ(x)| > h}) +

+
∫

{x∈Su:|u+(x)|>h or |u−(x)|>h}
|u+ − u−| dHn−1(x) +

+
∫

{x∈∂Ω:|u(x)|>h}
|u| dHn−1(x)

]
,

E(Th ◦ w) + E(Rh ◦ w) ≤ E(w) + cΨ

∫
{x∈Ω:h<|w(x)|<2h}

|Dw| dx

wheneverh ≥ 1, u ∈ BV (Ω;RN ), v ∈ BV (Ω;RN ) ∩ L∞(Ω;RN ) and
w ∈ C∞

c (Ω;RN ).



Multiple solutions of hemivariational inequalities with area-type term 375

Proof. Suppose first thatu, v ∈ C∞
c (Ω;RN ). Then, since

D
[
ϑ
(u
h

)
v
]

= ϑ
(u
h

)
Dv +

1
h
v ⊗

[
Dϑ

(u
h

)
Du
]
,

by (Ψ) and Lemma 4.3 it follows that

E
(
ϑ
(u
h

)
v
)

≤ E(v) + Lip(Ψ)
‖Dϑ‖∞

h
‖v‖∞

∫
Ω

|Du| dx .(4.5)

In the general case, let us consider two sequences(uk), (vk) inC∞
c (Ω;RN )

converging tou, v in L1(Ω;RN ) with
∫
Ω |Duk| dx → ‖u‖BV , E(vk) →

E(v) and‖vk‖∞ ≤ ‖v‖∞. Passing to the lower limit in (4.5), we obtain the
first inequality in the assertion.

To prove the second inequality, we first observe that by Lemma 4.3 we
have

E(Th ◦ u) ≤ E(u) + Lip(Ψ)‖Rh ◦ u‖BV .(4.6)

In order to estimate the last term in (4.6), we apply the chain rule of [2,49].
SinceRh(s) = 0 if |s| ≤ h and‖DRh‖∞ ≤ kϑ for somekϑ > 0, we have∫

Ω
|D(Rh(u))a| dx ≤

∫
Ω\Su

|DRh(ũ)||Dua| dx ≤

≤ kϑ

∫
{x∈Ω\Su:|ũ(x)|>h}

|Dua| dx ,

∣∣∣D(Rh(u))s
∣∣∣(Ω) ≤

∫
Ω\Su

|DRh(ũ)| d|Dus|(x) +

+
∫

Su

|Rh(u+) −Rh(u−)| dHn−1(x) ≤

≤ kϑ

(
|Dus| ({x ∈ Ω \ Su : |ũ(x)| > h}) +

+
∫

{x∈Su:|u+(x)|>h or |u−(x)|>h}
|u+ − u−| dHm−1(x)

)

and ∫
∂Ω

|Rh(u)| dHn−1(x) ≤ kϑ

∫
{x∈∂Ω:|u(x)|>h}

|u| dHn−1(x) .
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Combining these three estimates, we get

‖Rh ◦ u‖BV ≤ kϑ

(∫
{x∈Ω\Su:|ũ(x)|>h}

|Dua| dx+

+|Dus|({x ∈ Ω \ Su : |ũ(x)| > h}) +

+
∫

{x∈Su:|u+(x)|>h or |u−(x)|>h}
|u+ − u−| dHn−1(x) +

+
∫

{x∈∂Ω:|u(x)|>h}
|u| dHn−1(x)

)
.(4.7)

Then the second inequality follows from (4.6) and (4.7).
Again, sinceΨ is Lipschitz continuous, we have∣∣∣∣∫

Ω
Ψ(D(Th ◦ w)) dx−

∫
Ω
Ψ(ϑh(w)Dw) dx

∣∣∣∣ ≤
≤ Lip(Ψ)

h

∫
Ω

∣∣∣Dϑ(w
h

)
Dw

∣∣∣ |w| dx ≤

≤ 2 Lip(Ψ)‖∇ϑ‖∞
∫

{h<|w|<2h}
|Dw| dx .

In a similar way, it is also∣∣∣∣∫
Ω
Ψ(D(Rh ◦ w)) dx−

∫
Ω
Ψ((1 − ϑh(w))Dw) dx

∣∣∣∣ ≤
≤ 2 Lip(Ψ)‖∇ϑ‖∞

∫
{h<|w|<2h}

|Dw| dx .

Hence, combining the last two estimates and taking into account(b) of
Lemma 4.3, we get∫

Ω
Ψ
(
D(Th ◦ w)

)
dx+

∫
Ω
Ψ
(
D(Rh ◦ w)

)
dx ≤

≤
∫

Ω
Ψ(Dw) dx+ 4 Lip(Ψ)‖∇ϑ‖∞

∫
{h<|w|<2h}

|Dw| dx

and the proof is complete. ut

Lemma 4.8 Let (uh) be a sequence inC∞
c (Ω;RN ) and assume that(uh)

is bounded inBV (Ω;RN ).
Then for everyε > 0 and everyk ∈ N there existsk ≥ k such that

lim inf
h→∞

∫
{k<|uh|<2k}

|Duh| dx < ε .
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Proof. Letm ≥ 1 be such that

sup
h

∫
Ω

|Duh| dx ≤ mε

2

and leti0 ∈ N with 2i0 ≥ k. Then, since

i0+m−1∑
i=i0

∫
{2i<|uh|<2i+1}

|Duh| dx ≤
∫

Ω
|Duh| dx ≤ mε

2
,

there existsih betweeni0 andi0 +m− 1 such that∫
{2ih<|uh|<2ih+1}

|Duh| dx ≤ ε

2
.

Passing to a subsequence(ihj
), we can supposeihj

≡ i ≥ i0, and setting
k = 2i we get

∀j ∈ N :
∫

{k<|uhj
|<2k}

|Duhj
| dx ≤ ε

2
.

Then the assertion follows. ut

Lemma 4.9 Let (uh) be a sequence inC∞
c (Ω;RN ) and letu ∈ BV (Ω;

RN ) with ‖uh − u‖1 → 0 andE(uh) → E(u).
Then for everyε > 0 and everyk ∈ N there existsk ≥ k such that

lim inf
h→∞

‖Rk ◦ uh‖BV < ε .

Proof. Givenε > 0, let d > 0 be such that

∀ξ ∈ RnN : Ψ(ξ) ≥ d

(
|ξ| − ε

3Ln(Ω)

)
,

according to Lemma 4.3. Let alsocΨ > 0 be as in Lemma 4.4. By (4.7) and
Lemma 4.8, there existsk ≥ k such that

‖Rk ◦ u‖BV <
dε

3Lip(Ψ)
,

lim inf
h→∞

∫
{k<|uh|<2k}

|Duh| dx < dε

3cΨ
.
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From Lemma 4.4 we deduce that

E(Tk ◦ u) + lim inf
h→∞

E(Rk ◦ uh) ≤
≤ lim inf

h→∞
E(Tk ◦ uh) + lim inf

h→∞
E(Rk ◦ uh) ≤

≤ lim inf
h→∞

(
E(Tk ◦ uh) + E(Rk ◦ uh)

)
≤

≤ E(u) + cΨ lim inf
h→∞

∫
{k<|uh|<2k}

|Duh| dx <

< E(u) +
dε

3
≤ E(Tk ◦ u) + Lip(Ψ)‖Rk ◦ u‖BV +

dε

3
<

< E(Tk ◦ u) +
2
3
dε ,

whence

lim inf
h→∞

E(Rk ◦ uh) <
2
3
dε .

On the other hand, by Lemma 4.3 we have

E(Rk ◦ uh) ≥ d
(
‖Rk ◦ uh‖BV − ε

3

)
and the assertion follows. ut

Now we can prove the main auxiliary result we need for the proof of
Theorem 4.1. It is a property of the spaceBV which could be interesting
also in itself.

Theorem 4.10 Let(uh) be a sequence inBV (Ω;RN ) and letu ∈ BV (Ω;
RN ) with ‖uh − u‖1 → 0 andE(uh) → E(u).

Then(uh) is strongly convergent tou in L
n

n−1 (Ω;RN ).

Proof. By Lemma 4.2 we may findvh ∈ C∞
c (Ω;RN ) with

‖vh − uh‖1 <
1
h
, ‖vh − uh‖ n

n−1
<

1
h
, |E(vh) − E(uh)| < 1

h
.

Therefore it is sufficent to treat the case in whichuh ∈ C∞
c (Ω;RN ).

By contradiction, up to a subsequence we may assume that there exists
ε > 0 such that‖uh − u‖ n

n−1
≥ ε. Let c̃ be a constant such that‖w‖ n

n−1
≤

c̃‖w‖BV for anyw ∈ BV (Ω;RN ) (see [24, Theorem 1.28]). According to
Lemma 4.9, letk ∈ N be such that

‖Rk ◦ u‖ n
n−1

<
ε

2
, lim inf

h→∞
‖Rk ◦ uh‖ n

n−1
≤ c̃ lim inf

h→∞
‖Rk ◦ uh‖BV <

ε

2
.
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Then we have

‖uh − u‖ n
n−1

≤ ‖Rk ◦ uh‖ n
n−1

+ ‖Tk ◦ uh − Tk ◦ u‖ n
n−1

+

+‖Rk ◦ u‖ n
n−1

.(4.11)

SinceTk ◦ uh → Tk ◦ u in L
n

n−1 (Ω;RN ) ash → ∞, passing to the lower
limit in (4.11) we get

lim inf
h→∞

‖uh − u‖ n
n−1

< ε ,

whence a contradiction. ut

Proof of Theorem4.1. It is well known thatE satisfies condition(E1). Con-
ditions (E2) are an immediate consequence of Lemma 4.4. From(e) of
Lemma 4.3 and Rellich’s Theorem (see [24, Theorem 1.19]) it follows
that E satisfies condition(E3). To prove(E4), let (uh) be a sequence in
L

n
n−1 (Ω;RN ) weakly convergent tou ∈ BV (Ω;RN ) such thatE(uh)

converges toE(u). Again by(e) of Lemma 4.3 and Rellich’s Theorem we
deduce that(uh) is strongly convergent tou in L1(Ω;RN ). Then the asser-
tion follows from Theorem 4.10. ut

5 A result of Clark type

Letn ≥ 2 andΩ be a bounded open subset ofRn with Lipschitz boundary,
let Ψ : RnN → R be an even convex function satisfying(Ψ) and let
G : Ω × RN → R be a function satisfying(G1), (G2), (G′

3), (G′
4) with

p = n
n−1 and the following conditions:

{
there exist̃a ∈ L1(Ω) andb̃ ∈ Ln(Ω) such that

G(x, s) ≥ −ã(x) − b̃(x)|s| for a.e.x ∈ Ω and everys ∈ RN ;

(5.1)

lim
|s|→∞

G(x, s)
|s| = +∞ for a.e.x ∈ Ω ;(5.2)

{s 7−→ G(x, s)} is even for a.e.x ∈ Ω .(5.3)

Finally, defineE as in Section4. The main result of this section is:
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Theorem 5.4 For everyk ∈ N there existsΛk such that for anyλ ≥ Λk

the problem

u ∈ BV (Ω;RN )

E(v) − E(u) +
∫

Ω
G◦(x, u; v−u) dx ≥

≥ λ

∫
Ω

u√
1 + |u|2 · (v−u) dx ∀v ∈ BV (Ω;RN )

admits at leastk pairs (u,−u) of distinct solutions.

For the proof we need the following

Lemma 5.5 Let (uh) be a bounded sequence inL
n

n−1 (Ω;RN ), which is
convergent a.e. tou, and let(%h) be a positively divergent sequence of real
numbers.

Then we have

lim
h

∫
Ω

G(x, %huh)
%h

dx = +∞ if u 6= 0 ,

lim inf
h

∫
Ω

G(x, %huh)
%h

dx ≥ 0 if u = 0 .

Proof. If u = 0, the assertion follows directly from (5.1). Ifu 6= 0, we have∫
Ω

G(x, %huh)
%h

dx ≥
∫

{u 6=0}
G(x, %huh)

%h
dx−

− 1
%h

∫
{u=0}

ã dx−
∫

{u=0}
b̃|uh| dx .

From (5.1), (5.2) and Fatou’s Lemma, we deduce that

lim
h

∫
{u 6=0}

G(x, %huh)
%h

dx = +∞ ,

whence the assertion. ut

Proof of Theorem5.4. First of all, set

G̃(x, s) = G(x, s) − λ
(√

1 + |s|2 − 1
)
.

It is easy to see that alsõG satisfies(G1), (G2), (G′
3), (G′

4), (5.1), (5.2),
(5.3) and that

G̃◦(x, s; ŝ) = G◦(x, s; ŝ) − λ
s√

1 + |s|2 · ŝ .
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Now define a lower semicontinuous functionalf : L
n

n−1 (Ω;RN ) → R ∪
{+∞} by

f(u) = E(u) +
∫

Ω
G̃(x, u) dx .

Thenf is even by (5.3) and satisfies condition(epi)c by Theorem 3.11. We
claim that

lim
‖u‖ n

n−1
→∞

f(u) = +∞ .(5.6)

To prove it, let(uh) be a sequence inBV (Ω;RN ) with ‖uh‖ n
n−1

= 1 and

let %h → +∞. By (e) of Lemma 4.3 there exist̃c > 0 andd̃ > 0 such that

∀u ∈ BV (Ω;RN ) : E(u) ≥ d̃
(
‖u‖BV − c̃Ln(Ω)

)
.

If ‖uh‖BV → +∞, it readily follows from (5.1) thatf(%huh) → +∞.
Otherwise, up to a subsequence,uh is convergent a.e. and the assertion
follows from the previous Lemma and the inequality

f(%huh) ≥ %h

[
d̃

(
‖uh‖BV − c̃

%h
Ln(Ω)

)
+
∫

Ω

G̃(x, %huh)
%h

dx

]
.

Sincef is bounded below on bounded subsets ofL
n

n−1 (Ω;RN ), it fol-
lows from (5.6) thatf is bounded below on allL

n
n−1 (Ω;RN ); furthermore,

it also turns out from (5.6) that any(PS)c sequence is bounded, hencef
satisfies(PS)c by Theorem 3.12.

Finally, letk ≥ 1, letw1, . . . , wk be linearly independent elements of
BV (Ω;RN ) and letψ : Sk−1 → L

n
n−1 (Ω;RN ) be the odd continuous

map defined by

ψ(ξ) =
k∑

j=1

ξjwj .

Because of(G′
3), it is easily seen that

sup
{

E(u) +
∫

Ω
G(x, u) dx : u ∈ ψ(Sk−1)

}
< +∞

and

inf
{∫

Ω

(√
1 + |u|2 − 1

)
dx : u ∈ ψ(Sk−1)

}
> 0 .
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Therefore there existsΛk > 0 such that sup
ξ∈Sk−1

f(ψ(ξ)) < 0 whenever

λ ≥ Λk.
Applying Theorem 2.12, it follows thatf admits at leastk pairs(uk,−uk)

of critical points. Therefore, by Theorem 2.16, for anyuk it is possible to
apply Theorem 3.6 (with̃G instead ofG), whence the assertion.ut

6 A superlinear potential

Letn ≥ 2 andΩ be a bounded open subset ofRn with Lipschitz boundary,
let Ψ : RnN → R be an even convex function satisfying(Ψ) and let
G : Ω × RN → R be a function satisfying(G1), (G2), (G′

3), (G′
4), (5.3)

with p = n
n−1 and the following condition:

there existq > 1 andR > 0 such that

G◦(x, s; s) ≤ qG(x, s) < 0

for a.e.x ∈ Ω and everys ∈ RN with |s| ≥ R .

(6.1)

Define E as in Sect. 4 and an even lower semicontinuous functionalf :
L

n
n−1 (Ω;RN ) → R ∪ {+∞} by

f(u) = E(u) +
∫

Ω
G(x, u) dx .

Theorem 6.2 There exists a sequence(uh) of solutions of the problem
u ∈ BV (Ω;RN )

E(v) − E(u) +
∫

Ω
G◦(x, u; v − u) dx ≥ 0 ∀v ∈ BV (Ω;RN )

with f(uh) → +∞.

Proof. According to (3.3), we have

|s| < R =⇒ |G◦(x, s; s)| ≤ αR(x)|s| .
Combining this fact with (6.1) and(G′

3), we deduce that there existsa0 ∈
L1(Ω) such that

G◦(x, s; s) ≤ qG(x, s) + a0(x)
for a.e.x ∈ Ω and everys ∈ RN .(6.3)

Moreover, from (6.1) and Lebourg’s Theorem [14] it follows that for every
s ∈ RN with |s| = 1 the function{t → t−qG(x, ts)} is nonincreasing
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on [R,+∞[. Taking into account(G′
3) and possibly substitutinga0 with

another function inL1(Ω), we deduce that

G(x, s) ≤ a0(x) − b0(x)|s|q
for a.e.x ∈ Ω and everys ∈ RN ,(6.4)

where

b0(x) = inf
|s|=1

(−R−qG(x,Rs)) > 0 for a.e.x ∈ Ω .

Finally, since{ŝ → G◦(x, s; ŝ)} is a convex function vanishing at the origin,
we haveG◦(x, s; s) ≥ −G◦(x, s;−s). Combining (6.3) with(G′

4), we
deduce that for everyε > 0 there exists̃aε ∈ L1(Ω) such that

G(x, s) ≥ −ãε(x) − ε|s| n
n−1

for a.e.x ∈ Ω and everys ∈ RN .(6.5)

By Theorem 3.11 we have thatf satisfies(epi)c for anyc ∈ R and that
|dZ2Gf | (0, λ) = 1 for anyλ > f(0).

We also recall that, sinceΨ is Lipschitz continuous, there existsM ∈ R
such that

(q + 1)Ψ(ξ) − Ψ(2ξ) ≥ q − 1
2

Ψ(ξ) −M ,(6.6)

(q + 1)Ψ∞(ξ) − Ψ∞(2ξ) ≥ q − 1
2

Ψ∞(ξ)(6.7)

(see also [36]).
We claim thatf satifies the condition(PS)c for everyc ∈ R. Let (uh)

be a(PS)c-sequence forf . By Theorem 2.16 there exists a sequence(u∗
h) in

Ln(Ω;RN ) with u∗
h ∈ ∂f(uh) and‖u∗

h‖n → 0. According to Theorem 3.6
and (6.3), we have

E(2uh) ≥ E(uh) −
∫

Ω
G◦(x, uh;uh) dx+

∫
Ω
u∗

h · uh dx ≥

≥ E(uh) − q

∫
Ω
G(x, uh) dx+

∫
Ω
u∗

h · uh dx−
∫

Ω
a0(x) dx .

By the definition off , it follows

qf(uh) + ‖u∗
h‖n‖uh‖ n

n−1
+
∫

Ω
a0(x) dx ≥ (q + 1)E(uh) − E(2uh) .

Finally, applying (6.6) and (6.7) we get

qf(uh) + ‖u∗
h‖n‖uh‖ n

n−1
+
∫

Ω
a0(x) dx ≥ q − 1

2
E(uh) −MLn(Ω) .
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By (e) of Lemma 4.3 we deduce that(uh) is bounded inBV (Ω;RN ),
hence inL

n
n−1 (Ω;RN ). Applying Theorem 3.12 we get that(uh) admits a

strongly convergent subsequence and(PS)c follows.
By [36, Lemma 3.8], there exist a strictly increasing sequence(Wh) of

finite-dimensional subspaces ofBV (Ω;RN ) ∩ L∞(Ω;RN ) and a strictly
decreasing sequence(Zh) of closed subspaces ofL

n
n−1 (Ω;RN ) such that

L
n

n−1 (Ω;RN ) = Wh ⊕ Zh and
∞⋂

h=0
Zh = {0}. By (e) of Lemma 4.3 there

exists% > 0 such that

∀u ∈ L
n

n−1 (Ω;RN ) : ‖u‖ n
n−1

= % =⇒ E(u) ≥ 1 .

We claim that

lim
h

(
inf{f(u) : u ∈ Zh, ‖u‖ n

n−1
= %}

)
> f(0) .

Actually, assume by contradiction that(uh) is a sequence withuh ∈ Zh,
‖uh‖ n

n−1
= % and

lim sup
h

f(uh) ≤ f(0) .

Taking into account(G′
3) and Lemma 4.3, we deduce that(E(uh)) is

bounded, so that(uh) is bounded inBV (Ω;RN ). Therefore, up to a sub-
sequence,(uh) is convergent a.e. to0. From (6.5) it follows that

lim inf
h

∫
Ω

(
G(x, uh) + ε|uh| n

n−1

)
dx ≥

∫
Ω
G(x, 0) dx ,

hence

lim inf
h

∫
Ω
G(x, uh) dx ≥

∫
Ω
G(x, 0) dx

by the boundedness of(uh) in L
n

n−1 (Ω;RN ) and the arbitrariness ofε.
Therefore

lim sup
h

E(uh) ≤ E(0) = 0

which contradicts the choice of%.
Now, fix h with

inf{f(u) : u ∈ Zh, ‖u‖ n
n−1

= %}
)
> f(0)

and setZ = Zh andVh = Wh+h. ThenZ satisfies assumption(a) of
Theorem 2.13 for someα > f(0).
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Finally, sinceVh is finite-dimensional,

‖u‖G :=
(∫

Ω
b0|u|qdx

) 1
q

is a norm onVh equivalent to the norm ofBV (Ω;RN ). Then, combin-
ing (6.4) with(d) of Lemma 4.3, we see that also assumption(b) of Theo-
rem 2.13 is satisfied.

Therefore there exists a sequence(uh) of critical points for f with
f(uh) → +∞ and, by Theorems 2.16 and 3.6, the result follows.ut
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