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Abstract
In this paper, we establish the existence of normalized solutions to the following
Kirchhoff-type equation

{− (
a + b

∫
R3 |∇u|2dx) �u − λu = K (x) f (u), x ∈ R

3;
u ∈ H1(R3),

where a, b > 0, λ is unknown and appears as a Lagrange multiplier, K ∈
C(R3,R+) with 0 < lim|y|→∞ K (y) ≤ infR3 K , and f ∈ C(R,R) satisfies gen-
eral L2-supercritical or L2-subcritical conditions. We introduce some new analytical
techniques in order to exclude the vanishing and the dichotomy cases of minimizing
sequences due to the presence of the potential K and the lack of the homogeneity of
the nonlinearity f . This paper extends to the nonautonomous case previous results on
prescribed L2-norm solutions of Kirchhoff problems.
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1 Introduction

This paper deals with the existence of normalized solutions to the following nonau-
tonomous Kirchhoff-type equation:

{− (
a + b

∫
R3 |∇u|2dx) �u − λu = K (x) f (u), x ∈ R

3;
u ∈ H1(R3),

(1.1)

where a, b are positive real numbers, λ is unknown and will appear as a Lagrange
multiplier, K ∈ C(R3,R+) and f ∈ C(R,R). This equation is related to the stationary
analogue of the Kirchhoff equation

utt −
(
a + b

∫
R3

|∇u|2dx
)

�u = g(x, t), (1.2)

The Kirchhoff equation has been introduced for the first time in 1883 by Kirchhoff
[16] in dimension 1, without forcing term and with Dirichlet boundary conditions,
in order to describe the transversal free vibrations of a clamped string in which the
dependence of the tension on the deformation cannot be neglected. This is a quasi-
linear partial differential equation, namely the nonlinear part of the equation contains
as many derivatives as the linear differential operator. The Kirchhoff equation is an
extension of the classical D’Alembert wave equation for free vibrations of elastic
strings. Kirchhoff’s model takes into account the changes in length of the string pro-
duced by transverse vibrations. We refer to [1,5,6,12] for the physical background on
Kirchhoff’s model.

From themathematical point of view, problem (1.1) is nonlocal since the appearance
of the term

∫
R3 |∇u|2dx indicates that (1.1) is not a pointwise identity. This kind of

problem has been paid much attention after the pioneering work of Lions [19], in
which an abstract functional analysis framework was introduced.

If λ ∈ R is a fixed parameter or even in the presence of an additional external and
fixed potential V (x), the existence of solutions of problem (1.1) has been intensively
studied during the last decade; see, for example, [2,7,13,17,18,20–22,24,32] and the
references therein. In this case, solutions can be obtained as critical points of the
corresponding energy functional, but without any information on the L2-norm of the
solutions.

Nowadays, since physicists are interested in normalized solutions, mathematical
researchers began to focus on solutions having a prescribed L2-norm, that is, solutions
which satisfy ‖u‖22 = c > 0 for a priori given c. To the best of our knowledge, the study
of solutions with prescribed norm was initiated by Jeanjean [14] in the framework of
semilinear elliptic equations. We also refer to Bellazzini et al. [4] and Cingolani and
Jeanjean [11] for normalized solutions of the Schrödinger–Poisson system. In the
present paper, we are interested in the existence of solutions with L2-prescribed norm
and their qualitative properties in the framework of nonlocal Kirchhoff problems. Our
analysis includes both the L2-supercritical case and the L2-subcritical growth.
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Solutions of problem (1.1) with ‖u‖22 = c > 0 can be obtained by looking for
critical points of the following functional

I (u) = a

2

∫
R3

|∇u|2dx + b

4

(∫
R3

|∇u|2dx
)2

−
∫
R3

K (x)F(u)dx (1.3)

on the manifold
Sc =

{
u ∈ H1(R3) : ‖u‖22 = c

}
, (1.4)

where F(u) = ∫ u
0 f (t)dt . In this case, the parameter λ ∈ R cannot be fixed but instead

it appears as a Lagrangemultiplier, and each critical point uc ∈ Sc of I |Sc , corresponds
to a Lagrange multiplier λc ∈ R such that (uc, λc) solves (weakly) problem (1.1). In
particular, if uc ∈ Sc is a solution of the constrained minimization problem

σ(c) := inf
u∈Sc

I (u), (1.5)

then there exists λc ∈ R such that I ′(uc) = λcuc, that is, (uc, λc) is a solution of
problem (1.1).

To the best of our knowledge, solutions of problem (1.1) having a prescribed L2-
norm have been studied only if K (x) ≡ 1; see, e.g., [28–31,33]. Let us introduce
and review the few known results in this respect. Ye [29] studied the existence and
non-existence of normalized solutions to the special form of (1.1):

{− (
a + b

∫
R3 |∇u|2dx) �u − λu = |u|p−2u, x ∈ R

3;
u ∈ H1(R3)

(1.6)

for p ∈ (2, 6), and showed that p = 14
3 is a L2-critical exponent for problem (1.6),

that is, for any given c > 0,

{
σ(c) ∈ (−∞, 0], if p ∈ (2, 14

3 );
σ(c) = −∞, if p ∈ ( 143 , 6).

(1.7)

More precisely, for any p ∈ (2, 14
3 ), Ye [29] obtained the sharp existence of global

constraint minimizers for (1.6) by solving the minimization problem (1.5). If p ∈
( 103 , 14

3 ), Ye [29] found a local minimizer which is also a critical point of I |Sc by
constructing a geometry of local minima for I . For the case p ∈ ( 143 , 6), since the
minimization problem (1.5) is not available due to (1.7), to look for a critical point of
I |Sc , Ye [29] took a minimum on a suitable submanifold

Mc :=
{
u ∈ Sc : J (u) := d

dt
I (ut )

∣∣∣
t=1

= 0

}
, (1.8)

and showed that Mc is a natural constraint of I |Sc by using the Lagrange multiplier
method, where

ut (x) := t3/2u(t x), ∀ t > 0, u ∈ H1(R3), (1.9)
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and ut ∈ Sc for all t > 0 if u ∈ Sc. Note that this method relies heavily on the power-
type nonlinearity f (u) = |u|p−2u with p ∈ ( 143 , 6). Recently, in [28], Xie and Chen

generalized this special case to general nonlinearities f satisfying lim|t |→∞ F(t)
|t |14/3 =

+∞. Using some ideas developed in [24,29], Xie and Chen [28] proved the existence
of normalized solutions for problem (1.1) with K (x) ≡ 1 under additional growth and
monotonicity conditions. For the L2-critical case, Ye [30] proved that problem (1.6)
with p = 14

3 has a solution (uc, λc) which satisfies ‖uc‖22 = c > c∗ for some c∗ > 0.
We also recall that Ye [31] also analyzed the concentration behavior of solutions. If
p ∈ (2, 14

3 ), by using a differentmethod, Zeng andZhang [33] proved the existence and
uniqueness of normalized solutions for problem (1.6). Additionally, it was considered
in [29–31,33] the existence of normalized solutions for one-dimensional and two-
dimensional autonomous Kirchhoff type equations with power-type nonlinearity.

Let us also emphasize that all of the strategies used in [28–31,33] only work for
autonomous problems, and fail to adapt directly to problem (1.1) with non-constant
potential K (x). To the best of our knowledge, there are no results dealing with the
non-autonomous abstract setting. The main purpose of this paper is to extend and
complement the corresponding existence results in [29] to problem (1.1) in the presence
of the variable potential K (x).

2 Main Results

Motivated by the aboveworks,we first consider the L2-supercritical case, and establish
the existence of a critical point of I on Sc by considering the constrained minimization
problem

m(c) := inf
u∈Mc

I (u), (2.1)

where the definition ofMc is given by (1.8). To this end, we introduce the following
assumptions:

(F1) f ∈ C(R,R), there exists μ ∈ ( 143 , 6) such that 0 ≤ f (t)t ≤ μF(t) for all
t ∈ R, and meas{t ∈ R : μF(t) − f (t)t = 0} = 0;

(F2) there exists θ ∈ (2, 14
3 ) such that lim|t |→0

F(t)
|t |θ = 0 and lim|t |→∞ F(t)

|t |14/3 = +∞;

(F3) the mapping t �→ [ f (t)t − θF(t)]/|t |11/3t is nondecreasing on (−∞, 0) and
(0,+∞);

(K1) K ∈ C(R3,R+) and 0 < K∞ := lim|y|→∞ K (y) ≤ K (x) for all x ∈ R
3;

(K2) K ∈ C1(R3,R+), (6 − μ)K (x) + 2∇K (x) · x ≥ 0 for all x ∈ R
3, and

3(θ − 2)K (t x) − 2∇K (t x) · (t x) is nonincreasing on t ∈ (0,∞) for every
x ∈ R

3.

Our first result establishes the following qualitative property.

Theorem 2.1 Assume that (K1), (K2) and (F1)–(F3) hold. Then for any c > 0, problem
(1.1) has a couple of solution (ūc, λc) ∈ Sc × R

− such that
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I (ūc) = inf
u∈Mc

I (u) = inf
u∈Sc

max
t>0

I (ut ) > 0,

where the definitions of Mc and ut are given by (1.8) and (1.9).

Next, in the L2-subcritical case, we find a global minimizer and a local minimizer
of I which are critical points of I |Sc by solving the minimization problem (1.5) and
constructing a geometry of local minima for I (see Lemma 4.6), respectively. To this
end, in addition to (K1), we introduce the following assumptions:

(F4) f ∈ C(R,R), f (t) = o(t) as t → 0 and there exist constants C > 0 and
p ∈ ( 103 , 14

3 ) such that | f (t)| ≤ C(1 + |t |p−1);
(F5) there exists μ0 ∈ (2, 14

3 ) such that f (t)t ≥ μ0F(t) > 0 for all t ∈ R \ {0};
(F6) there exists q0 ∈ (2, 10

3 ) such that lim|t |→0
F(t)
|t |q0 > 0;

(F6′) lim|t |→0
F(t)

|t |10/3 = 0;

(K3) the mapping t �→ t (μ0−2)/2K (t x) is nondecreasing on (0,∞) for every
x ∈ R

3.

Let
c∗ := inf {c ∈ (0,+∞), σ (c) < 0} . (2.2)

We have the following statement.

Theorem 2.2 Assume that K and f satisfy (K1), (K3), (F4) and (F5).

(i) If (F6) holds, then c∗ = 0 and I admits a critical point uc on Sc, which is a
negative global minimum of I when c > 0.

(ii) If (F6′) holds, then c∗ > 0, and there exists c0 ∈ (0, c∗) such that I admits a
critical point uc on Sc which is a local minimum of I when c ∈ (c0, c∗), but uc
is a global minimum of I when c ∈ [c∗,+∞). In particular,

I (uc)

⎧⎨
⎩

> 0, if c ∈ (c0, c∗);
= 0, if c = c∗;
< 0, if c ∈ [c∗,∞).

(2.3)

Moreover, for the above critical point uc, there is a Lagrange multiplier λc ∈ R such
that (uc, λc) is a solution of problem (1.1).

Remark 2.3 Theorems 2.1 and 2.2 make a substantial improvement and extension to
the main results in [29]. In particular, if K (x) ≡ 1, the conclusion of Theorem 2.1
holds under hypotheses (F1)–(F3) with θ = 2, and it reduces to the result of [28,
Theorem 1.1].

Compared with the previous works, we have to overcome the essential difficulties
that the variable potential K (x) gives rise when searching for normalized solutions
of problem (1.1). These difficulties enforce the implementation of new ideas and
techniques for the proof of Theorems 2.1 and 2.2. Let us point them out in more detail.

For the L2-supercritical case, some useful remarks are stated in what follows.
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• When K (x) ≡ K∞, Ye [29] showed that

c �→ m(c) is strictly decreasing on (0,+∞) (2.4)

by using the translation invariance of I and the homogeneity of f . Then Ye can
exclude the vanishing and the dichotomy cases of the minimizing sequence {un}
for m(c) = infu∈Mc I (u) in applying the concentration-compactness principle.
However, the approach used in [29] is valid only for autonomous equations and
it does not work any more for (1.1) with K �= constant and more general f , see
Remark 3.10 for more details. Unlike [29], by establishing some new inequalities,
we prove thatm(c) is nonincreasing andm(c) > m(c̃) for any c̃ > c providedm(c)
is attained. To bypass the difficulty caused by the lack of compactness of Sobolev
embedding H1(R3) ↪→ Ls(R3) for 2 ≤ s < 6, we compare the constrained
minimum m(c) with the one of the “limit equation” (that is, problem (1.1) with
K (x) = K∞), and by using some subtle analysis we prove that un → ū in
H1(R3) (after a translation and extraction of a subsequence if necessary) as long
as m(c) < m∞(c), and ū ∈ S(c) is a minimizer of m(c), where the definition of
m∞(c) is given by (2.10).

• To verify thatMc is a natural constraint on Sc, we use a combination of the defor-
mation lemma, some new inequalities and an intermediary theorem for continuous
functions, other than the mountain pass theorem on Sc and the Lagrange multiplier
method used in [28,29], respectively.

For the L2-subcritical case, some remarks are as follows.

• The key step to prove that σ(c) = infSc I is achieved is to obtain the subadditivity
inequality

σ(c) < σ(α) + σ(c − α), ∀ 0 < α < c. (2.5)

To this end, Ye in [29] used the scaling t �→ u(t−2/3x). But this kind of scaling
is not suitable in our case, excepting the case when K (x) is a positive constant.
Instead, we present another scaling t �→ t1/2u(x/t), and we succeed to prove that
(2.5) still holds under assumptions of Theorem 2.2.

• Compared with [29], it is more complicated to find a local minimizer of I on
Sc which is a critical point of I |Sc because K (x) is variable and f is non-
homogeneous. For this purpose, we make some improvements of the method used
in [29] and employ some subtle analysis in the proofs.

When K ∈ C(R3,R+) is bounded, f satisfies (F1) and (F2) (or (F4)), we deduce
by a standard argument that I ∈ C1(H1(R3),R). Let us define the “limit equation”
associated to problem (1.1) by{− (

a + b
∫
R3 |∇u|2dx) �u − λu = K∞ f (u), x ∈ R

3;
u ∈ H1(R3).

(2.6)

Corresponding to (1.3), (1.5), (1.8) and (2.1), we define

I∞(u) = a

2

∫
R3

|∇u|2dx + b

4

(∫
R3

|∇u|2dx
)2

−
∫
R3

K∞F(u)dx, (2.7)
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σ∞(c) = inf
u∈Sc

I∞(u), (2.8)

M∞
c =

{
u ∈ Sc : J∞(u) := d

dt
I∞(ut )

∣∣∣
t=1

= 0

}
(2.9)

and
m∞(c) = inf

u∈M∞
c

I∞(u). (2.10)

Remark that all above conclusions on problem (1.1) in this paper are also true for
the limit equation (2.6), since K (x) ≡ K∞ satisfies (K1)–(K3).

Let a > 0 and b > 0 be fixed. Throughout this paper we make use of the following
notations:

• H1(R3) denotes the usual Sobolev space equipped with the inner product and
norm

(u, v) =
∫
R3

(∇u · ∇v + uv)dx, ‖u‖ = (u, u)1/2, ∀ u, v ∈ H1(R3);

• Ls(R3) (1 ≤ s < ∞) denotes the Lebesgue space with the norm ‖u‖s =(∫
R3 |u|sdx)1/s ;
• For any u ∈ H1(R3), ut (x) := t3/2u(t x) and ut (x) := t1/2u(x/t);
• For any x ∈ R

3 and r > 0, Br (x) := {y ∈ R
3 : |y − x | < r};

• S = infu∈D1,2(R3)\{0} ‖∇u‖22/‖u‖26;• C1,C2, . . . denote positive constants possibly different in different places.

3 First Existence Result

In this section, we give the proof of Theorem 2.1.

Lemma 3.1 Assume that hypotheses (K1) and (K2) hold. Then

h0(x, t) := t
3(θ−2)

2 [K (t−1x) − K (x)]

−
2

(
1 − t

3(θ−2)
2

)
3(θ − 2)

∇K (x) · x ≥ 0, ∀ x ∈ R
3, t > 0, (3.1)

t �→ K (t x) is nonincreasing on (0,∞) for every x ∈ R
3, (3.2)

and
|∇K (x) · x | → 0 as |x | → ∞. (3.3)
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Proof For any x ∈ R
3, by (K2), we have

d

dt
h0(x, t) = t

3(θ−2)
2 −1

2

[
3(θ − 2)K (t−1x) − 2∇K (t−1x) · (t−1x)

−3(θ − 2)K (x) + 2∇K (x) · x]{≥ 0, t ≥ 1,
≤ 0, 0 < t < 1,

which implies that h0(x, t) ≥ h0(x, 1) = 0 for all x ∈ R
3 and t > 0, hence relation

(3.1) holds. By (3.1) and the continuity of h0(x, ·), we have

lim
t→0

h0(x, t) = − 2

3(θ − 2)
∇K (x) · x ≥ 0, ∀ x ∈ R

3, (3.4)

which leads to (3.2). Since h0(x, 2) ≥ 0 for all x ∈ R
3, we have

0 ≤ −∇K (x) · x ≤ 2
3θ−8
2 3(θ − 2)[K (x/2) − K (x)]

2
3(θ−2)

2 − 1
, ∀ x ∈ R

3.

Thus, relation (3.3) holds by letting |x | → ∞ in the above inequality. ��
Lemma 3.2 Assume that hypotheses (F1)–(F3) hold. Then

h1(t, τ ) := 2
(
1 − t7−3θ/2

)
14 − 3θ

[ f (τ )τ − θF(τ )] − 2

3
F(τ ) + 2

3
t−3θ/2F(t3/2τ)

≥ 0, ∀ t > 0, τ ∈ R

(3.5)

and
F(t)

|t |11/3t is nondecreasing on both (−∞, 0) and (0,+∞). (3.6)

Proof For any τ ∈ R, by (F3), we have

d

dt
h1(t, τ ) = t6−3θ/2|τ |14/3

[
f (t3/2τ)t3/2τ − θF(t3/2τ)

|t3/2τ |14/3 − f (τ )τ − θF(τ )

|τ |14/3
]

{≥ 0, t ≥ 1,
≤ 0, 0 < t < 1,

which implies that h1(t, τ ) ≥ h1(1, τ ) = 0 for all t > 0 and τ ∈ R, that is, inequality
(3.5) holds. By (F3) and (3.5), we obtain

h1(0, τ ) := lim|t |→0
h(t, τ ) = 2

14 − 3θ

[
f (τ )τ − 14

3
F(τ )

]
≥ 0, ∀ τ ∈ R. (3.7)
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From (3.7), we derive

d

dt

F(t)

|t |11/3t = 3

2|t |7
[
f (t)t − 14

3
F(t)

]
≥ 0.

This shows that property (3.6) holds. ��
Lemma 3.3 Assume that hypotheses (K1), (K2) and (F1)–(F3) hold. Then

h2(x, t, τ ) := t−3K (t−1x)F(t3/2τ) − K (x)F(τ )+3(1−t4)

8
K (x)[ f (τ )τ−2F(τ )]

− 1 − t4

4
∇K (x) · xF(τ )

≥ 0, ∀ x ∈ R
3, t > 0, τ ∈ R.

(3.8)

Proof For any x ∈ R
3 and τ ∈ R, by (K1), (K2), (F1), (F3), (3.2) and (3.6), we have

d

dt
h2(x, t, τ ) = − 1

t4
∇K (t−1x) · (t−1x)F(t3/2τ) + 3

2t4
K (t−1x)

[
f (t3/2τ)t3/2τ − 2F(t3/2τ)

]
−3t3

2
K (x)[ f (τ )τ − 2F(τ )] + t3∇K (x) · x F(τ )

= 3

2t4
K (t−1x)

[
f (t3/2τ)t3/2τ − θF(t3/2τ)

]
+ 1

2t4
[
3(θ − 2)K (t−1x) − 2∇K (t−1x) · (t−1x)

]
F(t3/2τ)

−3t3

2
K (x)[ f (τ )τ − θF(τ )] − t3

2
[3(θ − 2)K (x) − 2∇K (x) · x] F(τ )

= t3|τ |7
2

{
3K (t−1x)

f (t3/2τ)t3/2τ − θF(t3/2τ)

|t3/2τ |14/3 − 3K (x)
f (τ )τ − θF(τ )

|τ |14/3

+ [
3(θ − 2)K (t−1x) − 2∇K (t−1x) · (t−1x)

] F(t3/2τ)

|t3/2τ |14/3

− [3(θ − 2)K (x) − 2∇K (x) · x] F(τ )

|τ |14/3
}

{ ≥ 0, t ≥ 1,
≤ 0, 0 < t < 1.

It follows that h2(x, t, τ ) ≥ h2(x, 1, τ ) = 0 for all x ∈ R
3, t > 0 and τ ∈ R, hence

relation (3.8) holds. ��
By the scaling (1.9), we have

I (ut ) = at2

2

∫
R3

|∇u|2dx + bt4

4

(∫
R3

|∇u|2dx
)2

− t−3
∫
R3

K (t−1x)F(t3/2u)dx

(3.9)
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and

I∞(ut ) = at2

2

∫
R3

|∇u|2dx + bt4

4

(∫
R3

|∇u|2dx
)2

− t−3
∫
R3

K∞F(t3/2u)dx .

(3.10)

Noting that J (u) = d
dt I (u

t )

∣∣∣
t=1

and J∞(u) := d
dt I

∞(ut )
∣∣∣
t=1

, it follows from (3.9)

and (3.10) that

J (u) = a‖∇u‖22 + b‖∇u‖42 − 3

2

∫
R3

K (x) [ f (u)u − 2F(u)] dx

+
∫
R3

∇K (x) · xF(u)dx
(3.11)

and

J∞(u) = a‖∇u‖22 + b‖∇u‖42 − 3

2

∫
R3

K∞ [ f (u)u − 2F(u)] dx . (3.12)

Inspired by [9,10], we prove the following lemma.

Lemma 3.4 Assume that hypotheses (K1), (K2) and (F1)–(F3) hold. Then

I (u) ≥ I
(
ut

) + 1 − t4

4
J (u) + a(1 − t2)2

4
‖∇u‖22, ∀ u ∈ H1(R3), t > 0. (3.13)

Proof By (1.3), (3.5), (3.6), (3.8), (3.9) and (3.11), we have

I (u) − I
(
ut

) = a(1 − t2)

2
‖∇u‖22 + b(1 − t4)

4
‖∇u‖42

+
∫
R3

[
t−3K (t−1x)F

(
t3/2u

)
− K (x)F(u)

]
dx

= 1 − t4

4

{
a‖∇u‖22 + b‖∇u‖42 − 3

2

∫
R3

K (x) [ f (u)u − 2F(u)] dx

+
∫
R3

∇K (x) · xF(u)dx

}
+ a(1 − t2)2

4
‖∇u‖22

+
∫
R3

{
t−3K (t−1x)F(t3/2u) − K (x)F(u)

+3(1 − t4)

8
K (x)[ f (u)u − 2F(u)]

−1 − t4

4
∇K (x) · xF(u)

}
dx

≥ 1 − t4

4
J (u) + a(1 − t2)2

4
‖∇u‖22, ∀ u ∈ H1(R3), t > 0. (3.14)

This shows that (3.13) holds. ��
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From Lemma 3.4, we have the following corollary. In what follows, the definitions
of Mc and ut are given by (1.8) and (1.9).

Corollary 3.5 Assume that hypotheses (K1), (K2) and (F1)–(F3) hold. Then

I (u) = max
t>0

I
(
ut

)
, ∀ u ∈ Mc. (3.15)

Lemma 3.6 Assume that hypotheses (K1), (K2) and (F1)–(F3) hold. Then for any
u ∈ H1(R3) \ {0}, there exists a unique tu > 0 such that utu ∈ Mc.

Proof Let u ∈ H1(R3) \ {0} be fixed and define a function ζ(t) := I
(
ut

)
on (0,∞).

Clearly, by (3.9) and (3.11), we have

ζ ′(t) = 0 ⇔ at‖∇u‖22 + bt3‖∇u‖42
− 3

2t4

∫
R3

K (t−1x)
[
f (t3/2u)t3/2u − 2F(t3/2u)

]
dx

+ 1

t4

∫
R3

∇K (t−1x) · (t−1x)F(t3/2u)dx = 0

⇔ 1

t
J

(
ut

) = 0 ⇔ ut ∈ Mc. (3.16)

Note that (3.2) and (3.6) lead to

K (t−1x)F(t3/2τ) ≤ t7K (x)F(τ ), ∀ x ∈ R
3, t ∈ (0, 1), τ ∈ R. (3.17)

From (3.9) and (3.17), we deduce that

I (ut ) ≥ at2

2
‖∇u‖22 + bt4

4
‖∇u‖42 − t4

∫
R3

K (x)F(u)dx, ∀ t ∈ (0, 1), (3.18)

which implies that ζ(t) > 0 for t > 0 small. Moreover, by (K1), (K2), (F1), (F2) and
(3.9), it is easy to verify that limt→0 ζ(t) = 0 and ζ(t) < 0 for t large. Therefore
maxt∈(0,∞) ζ(t) is achieved at tu > 0 so that ζ ′(tu) = 0 and utu ∈ Mc.

Next, we claim that tu is unique for any u ∈ H1(R3)\{0}. Otherwise, for any given
u ∈ H1(R3) \ {0}, there exist positive constants t1 �= t2 such that ut1 , ut2 ∈ Mc, that
is, J

(
ut1

) = J
(
ut2

) = 0. Then (3.13) implies

I
(
ut1

)
> I

(
ut2

) + t41 − t42
t41

J
(
ut1

) = I
(
ut2

)

> I
(
ut1

) + t42 − t41
t42

J
(
ut2

) = I
(
ut1

)
. (3.19)

This contradiction shows that tu > 0 is unique for any u ∈ H1(R3) \ {0}. ��
Combining Corollary 3.5 with Lemma 3.6, we obtain the following property.

123



784 Applied Mathematics & Optimization (2021) 84:773–806

Lemma 3.7 Assume that hypotheses (K1), (K2) and (F1)–(F3) hold. Then

inf
u∈Mc

I (u) = m(c) = inf
u∈Sc

max
t>0

I
(
ut

)
.

Lemma 3.8 Assume that hypotheses (K1), (K2) and (F1)–(F3) hold. Then

(i) there exists ρ0 > 0 such that ‖∇u‖2 ≥ ρ0, ∀ u ∈ Mc;
(ii) m(c) = infu∈Mc I (u) > 0.

Proof (i) By (F1), we deduce that

F(t)

|t |μ−1t
is nonincreasing on both (−∞, 0) and (0,+∞). (3.20)

From (3.6) and (3.20), we derive that for any s ∈ R,

{
|t |μF(s) ≤ F(st) ≤ |t | 143 F(s), if |t | ≤ 1;
|t | 143 F(s) ≤ F(st) ≤ |t |μF(s), if |t | ≥ 1,

(3.21)

which implies that there is a constant C0 > 0 such that

0 ≤ F(t) ≤ C0

(
|t | 143 + |t |μ

)
, ∀ t ∈ R. (3.22)

By the Gagliardo-Nirenberg inequality, we have

‖u‖ss ≤ C(s)‖∇u‖
3(s−2)

2
2 ‖u‖

6−s
2

2 , ∀ s ∈ (2, 6). (3.23)

Since J (u) = 0, ∀u ∈ Mc, by (K1), (K2), (3.11), (3.22), (3.23) and the Sobolev
inequality, we deduce that

a‖∇u‖22 ≤ a‖∇u‖22 + b‖∇u‖42
= 2

∫
R3

K (x) [ f (u)u − 2F(u)] dx − 2
∫
R3

∇K (x) · xF(u)dx

≤ C1

(
‖u‖

14
3
14
3

+ ‖u‖66
)

≤ C2‖∇u‖42‖u‖2/32 + C1S
−3‖∇u‖62

= C2c
1/3‖∇u‖42 + C1S

−3‖∇u‖62, ∀ u ∈ Mc, (3.24)

which concludes the proof of (i).
(ii) By (i) and (3.13) with t → 0, we have

I (u) = I (u) − 1

4
J (u) ≥ a

4
‖∇u‖22 ≥ a

4
ρ2
0 , ∀ u ∈ Mc. (3.25)

Hence, m(c) = infu∈Mc I (u) > 0. ��
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Lemma 3.9 Assume that hypotheses (K1), (K2) and (F1)–(F3) hold. Then m(c) is
nonincreasing on (0,∞). In particular, if m(c) is achieved, then m(c) > m(c̃) for any
c̃ > c.

Proof For any c2 > c1 > 0, there exists {un} ⊂ Mc1 such that

I (un) < m(c1) + 1

n
.

Let ξ = √
c2/c1 ∈ (1,∞) and vn(x) = ξ−1/2un(ξ−1x). Then ‖vn‖22 = c2 and

‖∇vn‖2 = ‖∇un‖2. By Lemma 3.6, there exists tn > 0 such that (vn)tn ∈ Mc2 . Note
that since (6 − μ)K (x) + ∇K (x) · x ≥ 0 for all x ∈ R

3 then

t �→ t
6−μ
2 K (t x) is nondecreasing on (0,+∞) for every x ∈ R

3. (3.26)

Next, by (K2), (3.9), (3.13), (3.20) and (3.26), it follows that

m(c2)

≤ I
(
(vn)

tn
)

= at2n
2

‖∇un‖22 + bt4n
4

‖∇un‖42 − t−3
n ξ3

∫
R3

K (t−1
n ξ x)F(t3/2n ξ−1/2un)dx

≤ I
(
(un)

tn
) + t−3

n

∫
R3

[
K (t−1

n x)F(t3/2n un) − ξ
6−μ
2 K (t−1

n ξ x)ξ
μ
2 F(t3/2n ξ−1/2un)

]
dx

≤ I (un) − a(1 − t2n )2

4
‖∇un‖22 < m(c1) + 1

n
,

which shows that m(c2) ≤ m(c1) by letting n → ∞.
We now assume that m(c) is achieved, that is, there exists u ∈ Mc such that

I (u) = m(c) for any given c < c̃. Let ξ̃ = c̃/c ∈ (1,∞) and v(x) = ξ̃−1/2u(ξ̃−1x).
Then ‖v‖22 = c̃ and ‖∇v‖2 = ‖∇u‖2. By Lemma 3.6, there exists t̃ > 0 such that

v t̃ ∈ Mc̃. Then it follows from (K2), (3.9), (3.13), (3.20) and (3.26) that

m(c̃) ≤ I
(
v t̃

)
= at̃2

2
‖∇u‖22 + bt̃4

4
‖∇u‖42 − t̃−3ξ̃3

∫
R3

K (t̃−1ξ̃ x)F(t̃3/2ξ̃−1/2u)dx

≤ I
(
ut̃

)
+ t̃−3

∫
R3

[
K (t̃−1x)F(t̃3/2u) − ξ̃

6−μ
2 K (t̃−1ξ̃ x)ξ̃

μ
2 F(t̃3/2ξ̃−1/2u)

]
dx

≤ I (u) − a(1 − t̃2)2

4
‖∇u‖22 < m(c).

The proof is completed. ��
Remark 3.10 Lemmas 3.1–3.4 provide technical ingredients allowing generalization
of the previous results to a new scenario when K (x) is variable and f (u) has a more
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general structure. But it is still difficult to prove that m(c) is strictly decreasing on
(0,∞) in the same way as the proof of [29, Lemma 4.5], because it is still unknown
that {tn}, involved in the proof of Lemma 3.9, is bounded from below for more general
nonlinearity f .

Lemma 3.11 Assume that (K1), (K2) and (F1)–(F3) hold. Then m(c) ≤ m∞(c).

Proof In view of Lemmas 3.6 and 3.8, we have M∞
c �= ∅ and m∞(c) > 0. Inspired

by [8,25], assume by contradiction that m(c) > m∞(c). Let ε := m(c) − m∞(c).
Then there exists u∞

ε such that

u∞
ε ∈ M∞

c and m∞(c) + ε

2
> I∞(u∞

ε ). (3.27)

In view of Lemma 3.6, there exists tε > 0 such that (u∞
ε )tε ∈ Mc. Since K∞ ≤ K (x)

for all R3, it follows from (1.3), (2.7), (3.27) and Corollary 3.5 that

m∞(c) + ε

2
> I∞(u∞

ε ) ≥ I∞ (
(u∞

ε )tε
) ≥ I

(
(u∞

ε )tε
) ≥ m(c).

This contradiction shows that m(c) ≤ m∞(c). ��
Similarly to [25, Lemma 2.7], [24, Lemma 2.10] and [27], we have the following

Brezis-Lieb type lemma.

Lemma 3.12 Assume that hypotheses (K1), (K2), (F1) and (F2) hold. If un⇀ū in
H1(R3), then

I (un) = I (ū) + I (un − ū) + b

2
‖∇ū‖22‖∇(un − ū)‖22 + o(1) (3.28)

and
J (un) = J (ū) + J (un − ū) + b‖∇ū‖22‖∇(un − ū)‖22 + o(1). (3.29)

Lemma 3.13 Assume that hypotheses (K1), (K2) and (F1)–(F3) hold. Then m(c) is
achieved.

Proof In viewofLemmas 3.6 and3.8,wehaveMc �= ∅ andm(c) > 0. Let {un} ⊂ Mc

be such that I (un) → m(c). Since J (un) = 0, then it follows from (3.13) with t → 0
that

m(c) + o(1) = I (un) ≥ a

4
‖∇un‖22. (3.30)

This relation togetherwith ‖un‖22 = c, implies that {un} is bounded in H1(R3). Passing
to a subsequence, we have un⇀ū in H1(R3). Then un → ū in Ls

loc(R
3) for 2 ≤ s < 6

and un → ū a.e. in R3. There are two possible cases: i) ū = 0 and ii) ū �= 0.
Case i) ū = 0, namely un⇀0 in H1(R3). Then un → 0 in Ls

loc(R
3) for 2 ≤ s < 6

and un → 0 a.e. in R3. By (K1) and (3.3), it is easy to show that

lim
n→∞

∫
R3

[K∞ − K (x)]F(un)dx = lim
n→∞

∫
R3

∇K (x) · xF(un)dx = 0. (3.31)
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From (1.3), (2.7), (3.11), (3.12) and (3.31), we deduce that

I∞(un) → m(c), J∞(un) → 0. (3.32)

From (3.12), (3.32), Lemmas 3.6 and 3.7 (i), we have

aρ2
0 ≤ a‖∇un‖22 + b‖∇un‖42 = 3

2

∫
R3

K∞ [ f (un)un − 2F(un)] dx. (3.33)

Using (3.22), (3.33) andLions’ concentration-compactness principle [27,Lemma1.21],
we prove that there exist δ > 0 and {yn} ⊂ R

3 such that
∫
B1(yn)

|un|2dx > δ. Let
ûn(x) = un(x + yn). Then we have ‖ûn‖ = ‖un‖ and

J∞(ûn) = o(1), I∞(ûn) → m(c),
∫
B1(0)

|ûn|2dx > δ. (3.34)

Therefore, there exists û ∈ H1(R3) \ {0} such that, up to a subsequence,

⎧⎨
⎩
ûn⇀û, in H1(R3);
ûn → û, in Ls

loc(R
3), ∀ s ∈ [1, 6);

ûn → û, a.e. on R
3.

(3.35)

Let wn = ûn − û. Then (3.35) and Lemma 3.12 yield

‖û‖22 := ĉ ≤ c, ‖wn‖22 := ĉn ≤ c for large n ∈ N, (3.36)

I∞(ûn) = I∞(û) + I∞(wn) + b

2
‖∇û‖22‖∇wn‖22 + o(1) (3.37)

and
J∞(ûn) = J∞(û) + J∞(wn) + b‖∇û‖22‖∇wn‖22 + o(1). (3.38)

Let

�∞(u) := I∞(u) − 1

4
J∞(u)

= a

4
‖∇u‖22 + 1

8

∫
R3

K∞[3 f (u)u − 14F(u)]dx, ∀ u ∈ H1(R3).(3.39)

By (3.7), we have �∞(u) > 0 for all u ∈ H1(R3) \ {0}. Moreover, it follows from
(3.34), (3.37), (3.38) and (3.39) that

�∞(wn) ≤ m(c) − �∞(û) + o(1), J∞(wn) ≤ −J∞(û) + o(1). (3.40)

If there exists a subsequence {wni } of {wn} such that wni = 0, then it follows from
(3.36), Lemmas 3.9 and 3.11 that

m∞(ĉ) ≤ I∞(û) = m(c) ≤ m(ĉ) ≤ m∞(ĉ), J∞(û) = 0,
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which, together with m∞(c) ≤ m∞(ĉ) ≤ I∞(û) = m(c) ≤ m∞(c), implies

I∞(û) = m∞(ĉ) = m(ĉ) = m(c) = m∞(c), J∞(û) = 0. (3.41)

Next, we assume thatwn �= 0.We claim that J∞(û) ≤ 0. Otherwise, if J∞(û) > 0,
then (3.40) implies J∞(wn) < 0 for large n. In view of Lemma 3.6, there exists tn > 0
such that (wn)

tn ∈ M∞
ĉn
. Then it follows from (2.7), (3.12), (3.13), (3.39), (3.40),

Lemmas 3.9 and 3.11 that

m(c) − �∞(û) + o(1) ≥ �∞(wn) = I∞(wn) − 1

4
J∞(wn)

≥ I∞ (
(wn)

tn
) − t4n

4
J∞(wn)

≥ m∞(ĉn) − t4n
4
J∞(wn)

≥ m∞(c) + o(1) ≥ m(c) + o(1),

which is impossible due to �∞(û) > 0. This shows that J∞(û) ≤ 0. In view of
Lemma 3.6, there exists t∞ > 0 such that ût∞ ∈ M∞

ĉ . From (2.7), (3.12), (3.13),
(3.34), (3.39), the weak semicontinuity of the norm, Fatou’s lemma, Lemmas 3.9
and 3.11, one has

m(c) = lim
n→∞

[
I∞(ûn) − 1

4
J∞(ûn)

]
= lim

n→∞ �∞(ûn) ≥ �∞(û)

= I∞(û) − 1

4
J∞(û) ≥ I∞ (

ût∞
) − t4∞

4
J∞(û)

≥ m∞(ĉ) − t4∞
4

J∞(û) ≥ m(ĉ) ≥ m(c),

which implies that (3.41) holds forwn �= 0. From (3.36), (3.41), Lemmas 3.9 and 3.11,
we deduce that

m∞(c) ≤ m∞(ĉ) = I∞(û) = m(ĉ) = m(c) ≤ m∞(c), J∞(û) = 0,

which implies that (3.41) holds for wn �= 0. Thus, m∞(ĉ) is achieved at û. In view of
Lemma 3.9, we deduce that ‖û‖22 = ĉ = c due to m∞(ĉ) = m∞(c). By Lemma 3.6,

there exists t̂ > 0 such that ût̂ ∈ Mc. Then it follows from (3.9), (3.13), (3.20), (3.26)
and (3.41) that

m(c) ≤ I
(
ût̂

)
≤ I∞ (

ût̂
)

≤ I∞(û) − a(1 − t̂2)2

4
‖∇û‖22 = m(c) − a(1 − t̂2)2

4
‖∇û‖22,
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which implies that û ∈ Mc and I (û) = m(c). Hence, m(c) is achieved at û ∈ Mc.
Case ii) ū �= 0. Let vn = un − ū. Then Lemma 3.12 yields

‖ū‖22 := c̄ ≤ c, ‖vn‖22 := cn ≤ c for large n ∈ N, (3.42)

I (un) = I (ū) + I (vn) + b

2
‖∇ū‖22‖∇vn‖22 + o(1) (3.43)

and
J (un) = J (ū) + J (vn) + b‖∇ū‖22‖∇vn‖22 + o(1). (3.44)

Let

�(u) := I (u) − 1

4
J (u)

= a

4
‖∇u‖22 + 1

8

∫
R3

K (x)[3 f (u)u − 14F(u)]dx

−1

4

∫
R3

∇K (x) · xF(u)dx, ∀ u ∈ H1(R3). (3.45)

By (3.4) and (3.7), one has �(u) > 0 for all u ∈ H1(R3) \ {0}. Similarly to the proof
of (3.40), we deduce that

�(vn) ≤ m(c) − �(ū) + o(1), J (vn) ≤ −J (ū) + o(1). (3.46)

If there exists a subsequence {vni } of {vn} such that vni = 0, then it follows from
Lemma 3.9 that

m(c̄) ≤ I (ū) = m(c) ≤ m(c̄), J (ū) = 0,

which implies
I (ū) = m(c) = m(c̄), J (ū) = 0. (3.47)

Next, we prove that (3.47) holds for vn �= 0. To this end, we assume that vn �= 0.
We claim that J (ū) ≤ 0. Otherwise J (ū) > 0, then (3.46) implies J (vn) < 0 for large
n. In view of Lemma 3.6, there exists tn > 0 such that (vn)

tn ∈ Mcn . From (3.13),
(3.45) and (3.46), we obtain

m(c) − �(ū) + o(1) ≥ �(vn) = I (vn) − 1

4
J (vn)

≥ I
(
(vn)

tn
) − t4n

4
J (vn) ≥ m(c̄n) ≥ m(c) + o(1),

which is impossible due to�(ū) > 0.This shows that J (ū) ≤ 0. In viewofLemma3.6,
there exists t̃ > 0 such that ūt̃ ∈ Mc̄. Then it follows from (3.13), (3.45), the weak
semicontinuity of norm, Fatou’s lemma and Lemma 3.11 that
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m(c) = lim
n→∞

[
I (un) − 1

4
J (un)

]
= lim

n→∞ �(un)

≥ �(ū) = I (ū) − 1

4
J (ū)

≥ I
(
ūt̃

)
− t̃4

4
J (ū) ≥ m(c̄) ≥ m(c),

which implies (3.47) holds for vn �= 0. This shows that m(c̄) is achieved at ū ∈ Mc̄.
In view of Lemma 3.9, we have ‖ū‖22 = c̄ = c due to m(c) = m(c̄). By Lemma 3.6,
there exists t̄ > 0 such that ūt̄ ∈ Mc. Then it follows from (3.9), (3.13), (3.20), (3.26)
and (3.47) that

m(c) ≤ I
(
ūt̄

)
≤ I (ū) − a(1 − t̄2)2

4
‖∇ū‖22 = m(c) − a(1 − t̄2)2

4
‖∇ū‖22,

which implies that ū ∈ Mc and I (ū) = m(c). Hence, m(c) is achieved at ū ∈ Mc. ��
Inspired by [8, Lemma 2.14], we prove the following lemma.

Lemma 3.14 Assume that hypotheses (K1), (K2) and (F1)–(F3) hold. If ū ∈ Mc and
I (ū) = m(c), then ū is a critical point of I

∣∣Sc
.

Proof Assume that I |′Sc
(ū) �= 0. Then there exist δ > 0 and � > 0 such that

u ∈ Sc, ‖u − ū‖ ≤ 3δ ⇒ ‖I |′Sc
(u)‖ ≥ �. (3.48)

Similarly to [25, (2.59)], we prove that

lim
t→1

∥∥ūt − ū
∥∥ = 0. (3.49)

Thus, there exists δ1 ∈ (0, 1/4) such that

|t − 1| < δ1 ⇒ ∥∥ūt − ū
∥∥ < δ. (3.50)

In view of (3.13), we have

I
(
ūt

) ≤ I (ū) − a(1 − t2)2

4
‖∇ū‖22 = m(c) − a(1 − t2)2

4
‖∇ū‖22, ∀ t > 0.

(3.51)

From (F3), (3.2), (3.11), (3.16) and (3.17), we deduce that there exist T1 ∈ (0, 1) and
T2 ∈ (1,∞) such that

J
(
ūT1

)
> 0, J

(
ūT2

)
< 0. (3.52)
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Let ε := min{a(1 − T 2
1 )2‖∇ū‖22/12, a(1 − T 2

2 )2‖∇ū‖22/12, 1, �δ/8} and S :=
B(ū, δ) ∩ Sc. By [27, Lemma 2.3] or [23], there exists a deformation η ∈ C([0, 1] ×
Sc,Sc) such that

(i) η(1, u) = u if I (u) < m(c) − 2ε or I (u) > m(c) + 2ε;
(ii) η

(
1, Im(c)+ε ∩ S) ⊂ Im(c)−ε;

(iii) I (η(1, u)) ≤ I (u), ∀ u ∈ Sc;
(iv) η(1, u) is a homeomorphism of Sc.

By Corollary 3.5, I
(
ūt

) ≤ I (ū) = m(c) for t > 0. Thus, by (3.50) and ii) we
obtain

I
(
η

(
1, ūt

)) ≤ m(c) − ε, ∀ t > 0, |t − 1| < δ1. (3.53)

On the other hand, by iii) and (3.51), one has

I
(
η

(
1, ūt

)) ≤ I
(
ūt

)
≤ m(c) − a(1 − t2)2

4
‖∇ū‖22

≤ m(c) − δ2‖∇ū‖22, ∀ t > 0, |t − 1| ≥ δ1, (3.54)

where

δ2 := a

4
min

{
(1 − T 2

1 )2, (1 − T 2
1 )2

}
> 0.

Combining (3.53) with (3.54), we have

max
t∈[T1,T2]

I
(
η

(
1, ūt

))
< m(c). (3.55)

Define�0(t) := J
(
η

(
1, ūt

))
for t > 0. It follows from (3.51) and i) that η(1, ūt ) =

ūt for t = T1 and t = T2, which, together with (3.52), implies

�0(T1) = J
(
ūT1

)
> 0, �0(T2) = J

(
ūT1

)
< 0.

Since �0(t) is continuous on (0,∞), then η
(
1, ūt

)∩Mc �= ∅ for some t0 ∈ [T1, T2],
contradicting the definition of m(c). ��

Lemma 3.15 Assume that hypotheses (K1), (K2) and (F1)–(F3) hold. If ū ∈ Sc is a
critical point of I

∣∣Sc
, then J (ū) = 0, and there existsλc < 0 such that I ′(ū)−λcu = 0.
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Proof Since (I |Sc)
′(ū) = 0, there exists λc ∈ R such that I ′(ū) − λcū = 0, and so

〈I ′(ū) − λcū, u〉 = a‖∇ū‖22 + b‖∇ū‖42 −
∫
R3

K (x) f (ū)ūdx − λc‖ū‖22 = 0.

(3.56)

Moreover, ū satisfies the following Pohozaev identity:

P(ū) := a

2
‖∇ū‖22 + b

2
‖∇ū‖42 −

∫
R3

[3K (x) + ∇K (x) · x]F(ū)dx − 3λc
2

‖ū‖22 = 0.

(3.57)
Then relations (3.11), (3.56) and (3.57) yield

J (ū) = 3

2
〈I ′(ū) − λcū, ū〉 − P(ū) = 0.

Noting that ‖ū‖22 = c, it follows from (K2), (F1), (3.56) and (3.57) that

2λc =
∫
R3

{K (x) f (ū)ū − [6K (x) + 2∇K (x) · x]F(ū)} dx

=
∫
R3

{K (x)[ f (ū)ū − μF(ū)] − [(6 − μ)K (x) + 2∇K (x) · x]F(ū)} dx < 0,

and so λc < 0. This completes the proof. ��
Proof of Theorem 2.1 In view of Lemmas 3.7, 3.8 and 3.13–3.15, for any c > 0 there
exists ūc ∈ Mc such that

I (ūc) = m(c) = inf
u∈Sc

max
t>0

I ((ūc)
t ) > 0, I ′(ūc) = 0,

and there exists Lagrangemultiplierλc ∈ R
− such that (ūc, λc) is a solution of problem

(1.1). ��

4 Second Existence Result and Qualitative Properties of Solutions

In this section, we give the proof of Theorem 2.2.

4.1 Global Minimizers on the ConstraintSc

Lemma 4.1 Assume that hypotheses (K1) and (F4) hold. Then

(i) for any c > 0, σ(c) = infu∈Sc I (u) is well defined and σ(c) ≤ 0;
(ii) for any c > 0, σ(c) < 0 if (F6) holds;
(iii) there exists C0 > 0 such that σ(c) < 0 for any c > C0 if (F5) holds.
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Proof (i) Using (F4), for any ε > 0, there exists Cε > 0 such that

| f (t)t | + |F(t)| ≤ ε|t |2 + Cε|t |p, ∀ t ∈ R. (4.1)

By (1.3), (3.23) and (4.1), we have

I (u) ≥ a

2
‖∇u‖22 + b

4
‖∇u‖42 − sup

R3
K

(
ε‖u‖22 + Cε‖u‖p

p

)

≥ a

2
‖∇u‖22 + b

4
‖∇u‖42 − sup

R3
K

(
ε‖u‖22 + CεC(p)‖∇u‖

3(p−2)
2

2 ‖u‖
6−p
2

2

)
,

∀ u ∈ Sc, c > 0.
(4.2)

This relation together with 0 < 3(p − 2)/2 < 4, shows that I is bounded from below
on Sc for any c > 0, that is, σ(c) is well defined. Noting that ut ∈ Sc for all u ∈ Sc,
from (3.9) and (4.1), we deduce that I (ut ) → 0 as t → 0, and so σ(c) ≤ 0 for any
c > 0.

(ii) By (F4) and (F6), there exist δ0, �0 > 0 such that

|F(t)| ≥ δ0|t |q0 , ∀ |t | ≤ �0. (4.3)

For any c > 0, we choose a function u0 ∈ C∞
0 (R3, [−�0, �0]) satisfying ‖u0‖22 = c.

Then it follows from (3.9) and (4.3) that

I (ut0) ≤ at2

2
‖∇u0‖22 + bt4

4
‖∇u0‖42 − K∞δ0t

3(q0−2)/2‖u0‖q0q0 , ∀ 0 < t ≤ 1. (4.4)

Since 0 < 3(q0 − 2)/2 < 2, (4.4) implies that I (u0t ) < 0 for small t ∈ (0, 1). Jointly
with the fact that ‖u0t‖2 = ‖u0t‖2, we have σ(c) ≤ inf t∈(0,1] I (u0t ) < 0.

(iii) We set the following scaling

ut (x) := t1/2u(x/t), ∀ u ∈ H1(R3), t > 0. (4.5)

Note that (F5) implies

F(t)

|t |μ0−1t
is nondecreasing on (−∞, 0) and (0,∞). (4.6)

For any u ∈ S1, by (1.3), (4.5) and (4.6), we have

I (ut ) = at2

2
‖∇u‖22 + bt4

4
‖∇u‖42 − t3

∫
R3

K (t x)F
(
t1/2u

)
dx

≤ at2

2
‖∇u‖22 + bt4

4
‖∇u‖42 − K∞t3+μ0/2

∫
R3

F(u)dx, ∀ t > 1,

(4.7)
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which, together with 3 + μ0/2 > 4, implies that I (ut ) → −∞ as t → +∞. Since
‖ut‖22 = t4‖u‖22 = t4 for u ∈ S1 and t > 0, there exists C0 > 0 such that σ(c) < 0
for any c > C0. ��

Noting that Lemma 4.1 implies

{c ∈ (0,+∞), σ (c) < 0} �= ∅, (4.8)

we have
c∗ = inf {c ∈ (0,+∞), σ (c) < 0}

is well-defined.

Lemma 4.2 Assume that hypotheses (K1) and (F4) hold. Then the following properties
hold:

(i) if (F6) holds, then c∗ = 0;
(ii) if (F5)and (F6′)hold, then c∗ ∈ (0,+∞);moreover,σ(c) = 0 for any c ∈ (0, c∗]

and σ(c) < 0 for any c > c∗.

Proof (i) Obviously, (i) follows directly from Lemma 4.1 (ii).
(ii) We first prove that c∗ > 0. From (F4), (F6′) and (3.23), we obtain

∫
R3

F(u)dx ≤ C3

(
‖u‖

10
3
10
3

+ ‖u‖p
p

)

≤ C4

(
‖∇u‖22‖u‖

4
3
2 + ‖∇u‖

3(p−2)
2

2 ‖u‖
6−p
2

2

)
, ∀ u ∈ H1(R3).

(4.9)

It is easy to check that there exists a constant ε > 0 small enough such that

ε
2
3 ≤ a

4C4
and ε

6−p
14−3p ≤ C

4
3p−14
4

4a

14 − 3p

(
4b

3p − 10

) 3p−10
14−3p

. (4.10)

For any u ∈ Sε , namely ‖u‖22 = ε, it follows from (1.3), (4.9) and (4.10) that

I (u) ≥ a

2
‖∇u‖22 + b

4
‖∇u‖42 − C4

(
‖u‖

4
3
2 ‖∇u‖22 + ‖u‖

6−p
2

2 ‖∇u‖
3(p−2)

2
2

)

≥ 1

4
‖∇u‖22

(
a + b‖∇u‖22 − C4ε

6−p
4 ‖∇u‖

3p−10
2

2

)
,

(4.11)
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By Young’s inequality and (4.10), we have

C4ε
6−p
4 ‖∇u‖

3p−10
2

2 =
(

4b

3p − 10

) 3p−10
4 ‖∇u‖

3p−10
2

2 ·
(
3p − 10

4b

) 3p−10
4

C4ε
6−p
4

≤ b‖∇u‖22 + C
4

14−3p
4

14 − 3p

4

(
3p − 10

4b

) 3p−10
14−3p

ε
6−p
14−3p

≤ b‖∇u‖22 + a,

(4.12)
which, together with (4.11), leads to I (u) ≥ 0 for u ∈ Sε . On the other
hand, by Lemma 4.1 (i), one has σ(c) ≤ 0 for c > 0. This shows that c∗ =
inf {c ∈ (0,+∞), σ (c) < 0} > 0.Moreover, from the definition of c∗ and Lemma 4.1
(i), we deduce that σ(c) = 0 for any c ∈ (0, c∗] and σ(c) < 0 for any c > c∗. ��

Lemma 4.3 Assume that (K1), (K3), (F4), (F5) and either of (F6) and (F6′) hold. Then

(i) for any c > 0, σ(c) is continuous;
(ii) for any c > c∗,

σ(c) < σ(α) + σ(c − α), ∀ 0 < α < c. (4.13)

Proof (i) For any c > 0, let cn > 0 and cn → c. For every n ∈ N, let un ∈ Scn such
that I (un) < σ(cn) + 1

n ≤ 1
n . Then (4.2) implies that {un} is bounded in H1(R3),

moreover, we have

σ(c) ≤ I

(√
c

cn
un

)
= I (un) + o(1) ≤ σ(cn) + o(1). (4.14)

On the other hand, given a minimization sequence {vn} ⊂ Sc for I , we have

σ(cn) ≤ I

(√
cn
c

vn

)
≤ I (vn) + o(1) = σ(c) + o(1),

which, jointly to (4.14), gives limn→∞ σ(cn) = σ(c).
(ii) Note that (1.3) and (4.6) lead to

I (ut ) = at2

2
‖∇u‖22 + bt4

4
‖∇u‖42 − t3

∫
R3

K (t x)F
(
t1/2u

)
dx

≤ at2

2
‖∇u‖22 + bt4

4
‖∇u‖42 − t4

∫
R3

t (μ0−2)/2K (t x)F(u)dx

≤ t4 I (u) + at2(1 − t2)

2
‖∇u‖22 < t4 I (u), ∀ u ∈ Sc, c > 0, t > 1,

(4.15)
where the definition of ut is given by (4.5).
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Let {un} ⊂ Sc be such that I (un) → σ(c) for any c > 0. Since ‖(un)t‖22 =
t4‖un‖22 = t4c for all t > 0, it follows from (4.15) that

σ(t4c) ≤ I ((un)t ) ≤ t4 I (un) − at2(t2 − 1)

2
‖∇un‖22

≤ t4σ(c) + o(1), ∀ t > 1,

which implies
σ(tc) ≤ tσ(c), t > 1, c > 0. (4.16)

Let {un} ⊂ Sc be such that I (un) → σ(c) for any c > c∗. We claim that exists a
constant ρ0 > 0 such that

lim inf
n→∞ ‖∇un‖2 > ρ0. (4.17)

Otherwise, if (4.17) is not true, then up to a subsequence, ‖∇un‖2 → 0, and so (4.2)
yields 0 > σ(c) = limn→∞ I (un) = 0. This contradiction shows that (4.17) holds.
Since ‖(un)t‖22 = t4‖un‖22 = t4c for all t > 0, it follows from (4.15) and (4.17) that

σ(t4c) ≤ I ((un)t ) ≤ t4 I (un) − at2(t2 − 1)

2
‖∇un‖22

≤ t4σ(c) − at2(t2 − 1)

2
ρ2
0 + o(1), ∀ t > 1,

which implies
σ(tc) < tσ(c), t > 1, c > c∗. (4.18)

If α > c∗ and c − α > c∗, we conclude from (4.18) that for any c > c∗,

σ(c) = α

c
σ(c) + c − α

c
σ(c) < σ(α) + σ(c − α), ∀ 0 < α < c.

If α ≤ c∗ or c− α ≤ c∗, then Lemma 4.2 (ii) implies that σ(c− α) = 0 or σ(α) = 0,
and we deduce easily from (4.18) that (4.13) holds for any c > c∗. This completes the
proof. ��
Lemma 4.4 Assume that hypotheses (K1), (K3), (F4) and (F5) hold. Then the following
properties hold:

(i) σ(c) ≤ σ∞(c) for any c > 0;
(ii) if (F6) holds, then σ(c) has a minimizer for any c > 0;
(iii) if (F6′) holds, then σ(c) has a minimizer for any c ≥ c∗ and σ(c∗) = 0.

Proof (i) Let {un} ⊂ Sc be such that I∞(un) → σ∞(c) for any c > 0. Since
K∞ ≤ K (x) for all x ∈ R

3, it follows from (1.3) and (2.7) that

σ(c) ≤ I (un) ≤ I∞(un) = σ∞(c) + o(1),

which implies that σ(c) ≤ σ∞(c) for any c > 0.
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(ii) In view of Lemma 4.1 (ii), we have σ(c) < 0 for any c > 0. Let {un} ⊂ Sc

be such that I (un) → σ(c) for any c > 0. Then (4.2) implies that {un} is bounded in
H1(R3). Thus, we can assume that for some ū ∈ H1(R3) and up to a subsequence,
un⇀ū in H1(R3). Here, we distinguish two cases: a) ū �= 0 and b) ū = 0.

Case a): ū �= 0. Then un⇀ū in H1(R3), un → ū in Ls
loc(R

3) for 2 ≤ s < 6 and
un → ū a.e. in R3. By Lemmas 3.12 and 4.3, we have

σ(c) = lim
n→∞ I (un) = I (ū) + lim

n→∞

[
I (un − ū) + b

2
‖∇ū‖22‖∇(un − ū)‖22

]
≥ σ(‖ū‖22) + lim

n→∞ σ(‖un − ū‖22)
= σ(‖ū‖22) + σ(c − ‖ū‖22).

(4.19)
If ‖ū‖22 < c, then relation (4.19) and Lemma 4.3 (ii) imply σ(c) ≥ σ(‖ū‖22) +

σ(c−‖ū‖22) > σ(c), which is impossible. This shows ‖ū‖22 = c = ‖un‖22. Moreover,
it follows from (4.19) that un → ū in H1(R3), and so σ(c) = limn→∞ I (un) = I (ū).
Hence, ū is a minimizer of σ(c) for any c > 0 if ū �= 0.

Case b): ū = 0, that is, un⇀0 in H1(R3). Then un → 0 in Ls
loc(R

3) for 2 ≤ s < 6
and un → 0 a.e. in R3. By (K1), it is easy to check that

∫
R3

[K (x) − K∞]F(un)dx = o(1). (4.20)

Then (1.3), (2.7) and (4.20) imply

I∞(un) → σ(c). (4.21)

We claim that

δ := lim sup
n→∞

sup
y∈R3

∫
B1(y)

|un|2dx > 0. (4.22)

In fact, if δ = 0, then by Lions’ concentration-compactness principle [27,
Lemma 1.21], one has un → 0 in Ls(R3) for 2 < s < 6, and so (4.1) implies
that

∫
R3 F(un)dx → 0. Then by (1.3), we have

0 > σ(c) = lim
n→∞ I (un) = lim

n→∞

(
a

2
‖∇un‖22 + b

4
‖∇un‖42

)
≥ 0,

which is impossible. It follows that δ > 0 and there exists {yn} ⊂ R
3 such that

∫
B1+√

3(yn)
|un|2dx ≥ δ

2
. (4.23)

Let ûn(x) = un(x + yn). Then (4.21) leads to

ûn ∈ Sc, I∞(ûn) → σ(c). (4.24)
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In view of (4.23), we may assume that there exists û ∈ H1(R3)\{0} such that, passing
to a subsequence, ⎧⎨

⎩
ûn⇀û, in H1(R3);
ûn → û, in Ls

loc(R
3), ∀ s ∈ [1, 6);

ûn → û, a.e. on R
3.

(4.25)

Then it follows from (4.24), (4.25), (i), Lemmas 3.12 and 4.3 that

σ(c) = lim
n→∞ I∞(ûn)

= I∞(û) + lim
n→∞

[
I∞(ûn − û) + b

2
‖∇û‖22‖∇(ûn − û)‖22

]
≥ σ∞(‖û‖22) + lim

n→∞ σ∞(‖ûn − û‖22)
= σ∞(‖û‖22) + σ∞(c − ‖û‖22) ≥ σ(‖û‖22) + σ(c − ‖û‖22),

(4.26)

If ‖û‖22 < c, then (4.26) and Lemma 4.3 (ii) imply σ(c) ≥ σ(‖û‖22)+ σ(c−‖û‖22) >

σ(c) which is impossible. Hence, ‖û‖22 = c, moreover, it follows from (4.26) that

ûn → û in H1(R3), σ (c) ≤ I (û) ≤ I∞(û) = lim
n→∞ I∞(ûn) = σ(c). (4.27)

This shows that û is a minimizer of σ(c) for any c > 0.
(iii) In view of Lemma 4.1 (iii), we have σ(c) < 0 for any c > c∗. Arguing as in

the proof of (ii), we deduce that σ(c) is attained for any c > c∗. Let cn = c∗ + 1
n .

Note that Lemma 4.2 (ii) leads to σ(cn) < 0 for every n ∈ N. Arguing as in the proof
of (ii), there exists {un} ⊂ Scn such that

I (un) = σ(cn) < 0 for every n ∈ N. (4.28)

By the definition of c∗ and Lemma 4.3 (i), we have I (un) = σ(cn) → σ(c∗) = 0.
Then (4.2) implies that {un} is bounded in H1(R3). We then may assume that there
exists ū ∈ H1(R3) such that, up to a subsequence, un⇀ū in H1(R3). To prove that
σ(c∗) is attained, we need to distinguish two cases: a) ū �= 0 and b) ū = 0.

Case a): ū �= 0. By Lemmas 3.12, 4.2 and 4.3, we have

0 = σ(c∗) = lim
n→∞ I (un) = I (ū) + lim

n→∞

[
I (un − ū) + b

2
‖∇ū‖22‖∇(un − ū)‖22

]
≥ σ(‖ū‖22) + lim

n→∞ σ(‖un − ū‖22)
= σ(‖ū‖22) + σ(c∗ − ‖ū‖22) = 0,

which implies
lim
n→∞ ‖∇(un − ū)‖2 = 0, (4.29)

and so a standard argument shows that I (ū) = limn→∞ I (un) = σ(c∗) = 0. To prove
that ū is a minimizer of σ(c∗), it suffices to show that ‖ū‖22 = c∗. By contradiction,
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let us assume that ‖ū‖22 < c∗. Let

t∗ =
(

c∗

‖ū‖22

) 1
4

.

Then t∗ > 1, and ‖ūt∗‖22 = (t∗)4‖ū‖22 = c∗ by the scaling (4.5). Thus it follows from
(4.15) that

0 = σ(c∗) ≤ I (ūt∗) ≤ (t∗)4 I (ū) + a(t∗)2[1 − (t∗)2]
2

‖∇ū‖22 < (t∗)4 I (ū) = 0.

(4.30)
This contradiction shows that ‖ū‖22 = c∗. Hence, ū ∈ Sc∗ and I (ū) = σ(c∗) = 0.

Case b): ū = 0. By (2.7) and (4.20), we deduce that I∞(un) → 0. We claim that
(4.22) holds. In fact, if δ = 0, by Lions’ concentration-compactness principle [27,
Lemma 1.21], we obtain that un → 0 in Ls(R3) for 2 < s < 6. By (F4) and (F6′), for
any ε > 0, there exists Cε > 0 such that

|F(t)| ≤ ε|t | 103 + Cε|t |p, ∀ t ∈ R. (4.31)

Then (4.31) implies
∫
R3 F(un)dx → 0. Jointly with I (un) → 0, we have ‖∇un‖2 →

0. From (1.3), (3.23) and (4.31), we deduce

I (un) ≥ 1

4
‖∇un‖22

(
2a + b‖∇un‖22 − 4ε‖un‖

4
3
2 − 4Cε‖un‖

6−p
2

2 ‖∇un‖
3p−10

2
2

)
, ∀ n ∈ N,

which, together with 3p − 10 > 0 and arbitrariness of ε, implies that I (un) ≥ 0 for
large n ∈ N. This contradicts (4.28), and thus (4.22) holds. Let ûn(x) = un(x + yn).
From (4.22), there exists û ∈ H1(R3)\{0} such that, passing to a subsequence, ûn⇀û
in H1(R3). Similarly to the proof of (4.26), we have

0 = σ(c∗) = lim
n→∞ I∞(ûn)

= I∞(û) + lim
n→∞

[
I∞(ûn − û) + b

2
‖∇û‖22‖∇(ûn − û)‖22

]
≥ σ∞(‖û‖22) + lim

n→∞ σ∞(‖ûn − û‖22)
= σ∞(‖û‖22) + σ∞(c∗ − ‖û‖22) ≥ σ(‖û‖22) + σ(c∗ − ‖û‖22) = 0,

(4.32)

which implies
lim
n→∞ ‖∇(ûn − û)‖2 = 0.

Proceeding as in the proof of Case a), we deduce that û ∈ Sc∗ and I (û) = σ(c∗) = 0.
��
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4.2 Local Minimizers on the ConstraintSc

In this subsection, we shall look for a local minimizer of I on the constraint Sc, which
is a critical point of I |Sc .

For k > 0, set

Sc(k) :=
{
u ∈ Sc : ‖∇u‖22 = k

}
.

For any 0 < c < c∗ and u ∈ Sc, it follows from (1.3), (3.23) and (4.31) that

I (u) ≥ 1

4
‖∇u‖22

(
2a + b‖∇u‖22 − 4εc

2
3∗ − 4Cεc

6−p
4∗ ‖∇u‖

3p−10
2

2

)
. (4.33)

Since 3p − 10 > 0 and ε is arbitrary, there exists k0 > 0 independent of c such that

I∞(u) ≥ I (u) ≥ ak

4
> 0, ∀ u ∈ Sc(k), 0 < k ≤ k0. (4.34)

In view of Lemma 4.1 (i), we have

σ̄ (c) := inf
u∈Sc\⋃0<k≤k0

Sc(k)
I (u) ≥ inf

u∈Sc

I (u) = σ(c) > −∞, ∀ c > 0. (4.35)

Lemma 4.5 Assume that hypotheses (K1), (K3), (F4), (F5) and (F6′) hold. Then σ̄ (c)
is continuous on (0,+∞) and for any c > 0,

σ̄ (c) < σ̄ (α) + σ̄ (c − α), ∀ 0 < α < c. (4.36)

Proof Similarly to the proof of Lemma 4.3, we deduce that σ̄ (c) is continuous for any
c > 0. Let {un} ⊂ Sc \ ⋃

0<k≤k0 Sc(k) be such that I (un) → σ̄ (c) for any c > 0.
Then (4.2) implies that {un} is bounded in H1(R3). Noting that ‖∇un‖22 > k0 and
‖(un)t‖22 = t4‖un‖22 = t4c for all n ∈ N and t > 0, it follows from (4.15) that

σ̄ (t4c) ≤ I ((un)t ) ≤ t4 I (un) − at2(t2 − 1)

2
‖∇un‖22

≤ t4σ̄ (c) − at2(t2 − 1)

2
k20 + o(1), ∀ t > 1, c > 0,

which implies
σ̄ (tc) < t σ̄ (c), t > 1, c > 0. (4.37)

Then it follows from (4.37) that

σ̄ (c) = α

c
σ̄ (c) + c − α

c
σ̄ (c) < σ̄ (α) + σ̄ (c − α), ∀ 0 < α < c,

which completes the proof. ��
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Lemma 4.6 (Geometry of local minima) Assume that hypotheses (K1), (K3), (F4),
(F5) and (F6′) hold. Then there exists 0 < c0 < c∗ such that

0 < σ̄(c) <
a

4
k0 ≤ inf

u∈Sc(k0)
I (u), ∀ c ∈ (c0, c∗). (4.38)

Proof By the definition of c∗ (see (2.2)), Lemma 4.1 (i) and (4.35), we obtain

σ̄ (c) ≥ σ(c) = 0, ∀ 0 < c < c∗. (4.39)

We first prove that σ̄ (c) > 0 for all 0 < c < c∗. If not, then σ̄ (c̄) = 0 for some
c̄ ∈ (0, c∗), and so there exists {un} ⊂ Sc̄ \ ⋃

0<k≤k0 Sc̄(k) such that I (un) → 0 and
‖∇un‖22 > k0. Since ‖(un)t‖22 = t4‖un‖22 = t4c̄ by the scaling (4.5), it follows from
(4.15) that

σ̄ (t4c̄) ≤ lim
n→∞ I ((un)t ) ≤ lim

n→∞

[
t4 I (un) − at2(t2 − 1)

2
‖∇un‖22

]

≤ −ak0t2(t2 − 1)

2
< 0, ∀ 1 < t <

(c∗
c̄

)1/4
,

which contradicts (4.39). Hence, σ̄ (c) > 0 for all 0 < c < c∗.
Next, inspired by [29, (3.9)], we prove that there exists c0 > 0 such that the last

inequality of (4.38) holds. In view of Lemma 4.4 (iii), there exists u∗ ∈ Sc∗ such that
I (u∗) = σ(c∗) = 0. From the continuity of I (tu∗) on t ∈ (0,∞), we deduce that
there exists a constant t0 ∈ (0, 1) sufficiently close to 1 such that

I (tu∗) <
a

4
k0, ∀ t0 ≤ t ≤ 1, (4.40)

which, together with (4.34), implies

tu∗ ∈ Stc∗ \
⋃

0<k≤k0

Stc∗(k), ∀ t0 ≤ t ≤ 1. (4.41)

Letting c0 = t0c∗, it follows from (4.34), (4.40) and (4.41) that for any c ∈ (c0, c∗),
there exists v∗ ∈ Sc \ ⋃

0<k≤k0 Sc(k) such that

σ̄ (c) ≤ I (v∗) <
a

4
k0 ≤ inf

u∈Sc(k0)
I (u).

The proof is completed. ��
Define

σ̄∞(c) := inf
u∈Sc\⋃0<k≤k0

Sc(k)
I∞(u) ≥ inf

u∈Sc

I∞(u) = σ∞(c) > −∞, ∀ c > 0.

(4.42)
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Lemma 4.7 Assume that hypotheses (K1), (K3), (F4), (F5) and (F6′) hold. Then
(i) σ̄ (c) ≤ σ̄∞(c) for any c > 0;
(ii) for any c ∈ (c0, c∗), problem (1.1) admits a solution (ūc, λ̄c) ∈(Sc \ ⋃

0<k<k0 Sc(k)
) × R such that I (ūc) = σ̄ (c) > 0.

Proof (i) Similarly to the proof of Lemma 4.4 (i), we get σ̄ (c) ≤ σ̄∞(c) for any c > 0.
(ii) By Ekeland’s variational principle, there exists a sequence {un} ⊂ Sc \⋃
0<k≤k0 Sc(k) such that

{
σ̄ (c) ≤ I (un) ≤ σ̄ (c) + 1

n ,

I (v) ≥ I (un) − 1
n ‖un − v‖, ∀ v ∈ Sc \ ⋃

0<k≤k0 Sc(k).
(4.43)

Then (4.2) implies that {un} is bounded in H1(R3). Thus, there exists ūc ∈ H1(R3)

such that, up to a subsequence, un⇀ūc in H1(R3), un → ūc in Ls
loc(R

3) for 2 ≤ s < 6
and un → ūc a.e. in R

3. For brevity, we denote ūc by ū. We complete our proof in
two steps as follows.

Step 1.We prove that if ū �= 0, then I (ū) = σ̄ (c) and there exists λ̄ ∈ R such that
I ′(ū) − λ̄u = 0 for any c ∈ (c0, c∗).

Similarly to the proof of [29, (3.17)], we have

|〈I ′(un) − λnun, ϕ〉| ≤ C

n
, ∀ ϕ ∈ C∞

0 (R3), (4.44)

where λn = −〈I ′(un),un〉
c and C > 0 is a constant independent of n. Since {λn} is

bounded, we may assume that up to a subsequence, λn → λ̄ for some λ ∈ R.
Now, we claim that

up to a subsequence, ‖∇(un − ū)‖2 → 0 if ū �= 0. (4.45)

Assume by contradiction that lim infn→∞ ‖∇(un − ū)‖22 > 0. Then it follows from
the scaling (4.5) that there exists T0 > 1 such that

‖∇ūt‖22 = t2‖∇ū‖22 > k0, ‖∇(un − ū)t‖22 = t2‖∇(un − ū)‖22 > k0, ∀ t > T0.
(4.46)

By (4.15), (4.43) and Lemma 3.12, we have

σ̄ (c) + o(1) = I (un) = I (ū) + I (un − ū) + b

2
‖∇ū‖22‖∇(un − ū)‖22

≥ 1

t4
[I (ūt ) + I ((un − ū)t )] + at2(t2 − 1)

2t4

[
‖∇ū‖22 + ‖∇(un − ū)‖22

]

≥ 1

t4

[
σ̄ (t4‖ū‖22) + σ̄ (t4c − t4‖ū‖22)

]
+ at2(t2 − 1)

2t4
‖∇un‖22 + o(1)

≥ 1

t4
σ̄ (t4c) + at2(t2 − 1)

2t4
k0 + o(1), ∀ t ≥ T0.

(4.47)
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From (4.2), we deduce

lim inf
t→+∞

σ̄ (t4c)

t4
≥ 0. (4.48)

By (4.48), there exists T1 ≥ T0 such that

1

T 4
1

σ̄ (T 4
1 c) ≥ −ak0

16
,

aT 2
1 (T 2

1 − 1)

2t4
k0 ≥ 3ak0

8
. (4.49)

Then (4.38), (4.47) and (4.49) lead to

ak0
4

> σ̄(c) ≥ 1

T 4
1

σ̄ (T 4
1 c) + aT 2

1 (T 2
1 − 1)

2t4
k0 ≥ 5ak0

16
. (4.50)

This contradiction shows that (4.45) holds. Thus, from (F4), (F5), (4.43), (4.44) and
(4.45), we derive

σ̄ (c) = lim
n→∞ I (un) = I (ū) (4.51)

and

0 = lim
n→∞〈I ′(un) − λnun, ϕ〉

= lim
n→∞

[
a

∫
R3

∇un · ∇ϕdx + b‖∇un‖22
∫
R3

∇un · ∇ϕdx

−
∫
R3

K (x) f (un)ϕdx − λn

∫
R3

unϕdx

]

= a
∫
R3

∇ū · ∇ϕdx+b‖∇ū‖22
∫
R3

∇ū · ∇ϕdx−
∫
R3

K (x) f (ū)ϕdx−λ̄

∫
R3

ūϕdx

= 〈I ′(ū) − λ̄ū, ϕ〉, ∀ ϕ ∈ C∞
0 (R3).

(4.52)
By Fatou’s lemma, we have ‖ū‖22 ≤ lim infn→∞ ‖un‖22 = c. In view of (4.51) and

(4.52), to finish the proof of Step 1, it suffices to show that ‖ū‖22 = c.
Suppose by contradiction that ‖ū‖22 < c. As in [29, (3.14)], for any ε > 0, there

exists δ = δ(ε) > 0 such that if u ∈ ⋃
k0−δ≤k≤k0+δ Sc(k), then

I (u) ≥ inf
u∈Sc(k0)

I (u) − ε,

and so
un ∈ Sc \

⋃
0≤k≤k0+δ

Sc(k), for n large enough, (4.53)

that is, {un} stays away from the boundary. Jointly with (4.45), we have ‖∇ū‖22 >

k0. Let t̄ := (c/‖ū‖22)1/4 > 1. By the scaling (4.5), one has ‖ūt̄‖22 = t̄4‖ū‖22 and
‖∇ūt̄‖22 = t̄2‖∇ū‖22 > k0. Then it follows from (4.15) and (4.51) that
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t̄4σ̄ (c) = t̄4 I (ū) ≥ I (ūt̄ ) + at̄2(t̄2 − 1)

2
‖∇ū‖22

≥ σ̄ (c) + at̄2(t̄2 − 1)

2
k0,

(4.54)

which implies

σ̄ (c) ≥ a
√
ck0

2(‖ū‖ + √
c)

>
ak0
4

, ∀ c ∈ (c0, c∗).

This contradicts (4.38). Hence, we have ‖ū‖22 = c. Moreover, (4.52) implies that
(ū, λ̄) ∈ (Sc \ ⋃

0<k≤k0 Sc(k)
) × R solves problem (1.1). The proof of Step 1 is

completed.
Step 2. We prove that ū �= 0.
Assume by contradiction that ū = 0, that is, un⇀0 in H1(R3). Then un → 0 in

Ls
loc(R

3) for 2 ≤ s < 6 and un → 0 a.e. in R
3. Then (1.3), (2.7), (4.20) and (4.43)

imply
I∞(un) → σ̄ (c). (4.55)

We first prove that {un} is not vanishing, that is, relation (4.22) holds. Otherwise, if
{un} is vanishing, by Lions’ concentration-compactness principle [27, Lemma 1.21],
one has un → 0 in Ls(R3) for 2 < s < 6, and so (4.31) implies that

∫
R3 F(un)dx → 0.

Since {un} ⊂ Sc \ ⋃
0<k≤k0 Sc(k), by (1.3), (4.38) and (4.43), we have

ak0
2

+ bk20
4

≤ lim
n→∞

(
a

2
‖∇un‖22 + b

4
‖∇un‖42

)

= lim
n→∞ I (un) = σ̄ (c) <

ak0
4

,

which is impossible. Hence, we have (4.22) holds, and so there exists {yn} ⊂ R
3 such

that (4.23) holds. Let ũn(x) = un(x + yn). Then (4.55) leads to

ũn ∈ Sc \
⋃

0<k≤k0

Sc(k), I∞(ũn) → σ̄ (c). (4.56)

Wemay assume that there exists ũ ∈ H1(R3)\{0} such that, passing to a subsequence,
⎧⎨
⎩
ũn⇀ũ, in H1(R3);
ũn → ũ, in Ls

loc(R
3), ∀ s ∈ [1, 6);

ũn → ũ, a.e. on R
3.

(4.57)

Similarly to the proof of [29, (3.17)], we have

|〈(I∞)′(ũn) − λnũn, ϕ〉| ≤ C

n
, ∀ ϕ ∈ C∞

0 (R3), (4.58)

where λn and C > 0 are the same as that of (4.44). Arguing as in (4.45), (4.51) and
(4.52), we prove that
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up to a subsequence ‖∇(ũn − ũ)‖2 → 0 (4.59)

and
σ̄ (c) = lim

n→∞ I∞(ũn) = I∞(ũ). (4.60)

Moreover, as in the proof of Step 1, we have ‖ũ‖22 = c and ‖∇ũ‖22 > k0. Hence,
ũ ∈ Sc \ ⋃

0<k≤k0 Sc(k). Since K (x) ≥ ( �≡)K∞ and ‖ũ‖22 = c > 0, it follows that
there exist r > 0 and x̄1, x̄2 ∈ R

3 such that

K (x) − K∞ > 0, ∀ |x − x̄1| < r , |ũ(x)| > 0, ∀ |x − x̄2| < r .

Let û(x) = ũ(x − x̄1 + x̄2). Then ‖û‖22 = c, ‖∇û‖22 > k0 and I∞(û) = I∞(ũ), which
together with (1.3), (2.7), implies that

σ̄ (c) = I∞(û) > I (û) ≥ σ̄ (c). (4.61)

This contradiction shows that ū �= 0. ��
Proof of Theorem 2.2 Note that if uc is a critical point of I |Sc , then there exists λc ∈ R

such that I ′(uc) − λcuc = 0. Combining Lemma 4.2, 4.4 and 4.7, we conclude the
proof of Theorem 2.2. ��
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