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Abstract

In this paper, we study the following (p, q)-Laplacian equation with Lp-constraint:

⎧⎪⎨
⎪⎩

−�pu − �qu + λ|u|p−2u = f (u), in RN,∫
RN |u|p dx = cp,

u ∈ W1,p(RN) ∩ W1,q (RN),

where 1 < p < q < N , �i = div(|∇u|i−2∇u), with i ∈ {p, q}, is the i-Laplacian operator, λ is a Lagrange 
multiplier and c > 0 is a constant. The nonlinearity f is assumed to be continuous and satisfying weak mass 
supercritical conditions. The purpose of this paper is twofold: to establish the existence of ground states, 
and to reveal the basic behavior of the ground state energy Ec as c > 0 varies. Moreover, we introduce a 
new approach based on the direct minimization of the energy functional on the linear combination of Nehari 
and Pohozaev constraints intersected with the closed ball of radius cp in Lp(RN). The analysis developed 
in this paper allows to provide the general growth assumptions imposed to the reaction f .
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1. Introduction

In this paper, we consider the following (p, q)-Laplacian equation with Lp-constraint:⎧⎨
⎩

−�pu − �qu + λ|u|p−2u = f (u), in RN,∫
RN |u|p dx = cp,

u ∈ E,

(1.1)

where 1 < p < q < N , �i = div(|∇u|i−2∇u), with i ∈ {p, q}, is the i-Laplacian operator, λ ∈R
is a Lagrange multiplier, c > 0 is a given constant, f ∈ C(R, R), E := W 1,p(RN) ∩ W 1,q(RN).

The features of problem (1.1) are the following:

(i) The presence of two differential operators with different growth, which generates a double 
phase associated energy.

(ii) The problem combines the effects generated by a general nonlinearity and an unbalanced 
operator.

(iii) Due to the unboundedness of the domain, the Palais-Smale sequences do not have the com-
pactness property.

Since the content of the paper is closely concerned with unbalanced growth, we briefly in-
troduce in what follows the related background and applications and we recall some pioneering 
contributions to these fields. Equation (1.1) is driven by a differential operator with unbalanced 
growth due to the presence of the (p, q)-Laplace operator. This type of problem comes from a 
general reaction-diffusion system:

ut = div[A(∇u)∇u] + c(x,u), and A(∇u) = |∇u|p−2 + |∇u|q−2,

where the function u is a state variable and describes the density or concentration of multicompo-
nent substances, div[A(∇u)∇u] corresponds to the diffusion with coefficient A(∇u) and c(x, u)

is the reaction and relates to source and loss processes. Originally, the idea to treat such operators 
comes from Zhikov [49] who introduced such classes to provide models of strongly anisotropic 
materials, see also the monograph of Zhikov et al. [50]. We refer to the remarkable works initiated 
by Marcellini [31–33], where the author investigated the regularity and existence of solutions of 
elliptic equations with unbalanced growth conditions. The (p, q)-Laplacian equation (1.1) is 
also motivated by numerous models arising in mathematical physics. For instance, we can refer 
to the following Born-Infeld equation [15] that appears in electromagnetism, electrostatics and 
electrodynamics as a model based on a modification of Maxwell’s Lagrangian density:

−div

(
∇u

2 1
2

)
= h(u) in �.
(1 − 2|∇u| )
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L. Cai and V.D. Rădulescu Journal of Differential Equations 391 (2024) 57–104
Indeed, by the Taylor formula, we have

(1 − x)−
1
2 = 1 + x

2
+ 3

2 · 22 x2 + 5!!
3! · 23 x3 + · · · + (2n − 3)!!

(n − 1)! · 2n−1 xn−1 + · · · for |x| < 1.

Taking x = 2|∇u|2 and adopting the first order approximation, we obtain problem (1.1) for p = 2
and q = 4. Furthermore, the n-th order approximation problem is driven by the multi-phase 
differential operator

−�u − �4u − 3

2
�6u − · · · − (2n − 3)!!

(n − 1)! �2nu.

We also refer to the following fourth-order relativistic operator

u �→ div

(
|∇u|2

(1 − |∇u|4) 3
4

∇u

)
,

which describes large classes of phenomena arising in relativistic quantum mechanics. Again, by 
Taylor’s formula, we have

x2(1 − x4)−
3
4 = x2 + 3x6

4
+ 21x10

32
+ · · · .

This shows that the fourth-order relativistic operator can be approximated by the following op-
erator

u �→ �4u + 3

4
�8u.

For more details on the physical backgrounds and other applications, we refer to Bahrouni et 
al. [6] (for phenomena associated with transonic flows) and to Benci et al. [11] (for models 
arising in quantum physics).

In the past few decades, equation (1.1) has been the subject of extensive mathematical stud-
ies. Using various variational and topological arguments, many authors studied the existence 
and multiplicity results of nontrivial solutions, ground state solutions, nodal solutions and some 
qualitative properties of solutions, respectively. We refer to [19,35,38] for the case of bounded 
domains. In this classical setting, we recall the seminal papers by Ni et al. [36], Li et al. [28], del 
Pino et al. [16,17] and Ambrosetti et al. [5]. The regularity results, existence and multiplicity of 
solutions to problem (1.1) on the whole space can be found in [3,22,47].

The study developed in this paper is inspired by the interest of physicists to the existence 
of normalized solutions. Indeed, prescribed mass appears in nonlinear optics and in the theory 
of Bose-Einstein condensates, see [18,30] and the reference therein. In particular, when p = 2, 
q = 0, f (u) is replaced by |u|l−2u, equation (1.1) is reduced to the following semilinear elliptic 
equation

−�u = λu + |u|l−2u, (λ,u) ∈ R×RN. (1.2)
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In the L2-subcritical case, namely l < 2 
(
1 + 2

N

)
, the functional on the constraint is coercive. 

Hence one can obtain the existence of a global minimizer by minimizing on the sphere, cf. 
[29,42]. In the L2-subcritical case, that is l > 2 

(
1 + 2

N

)
, the functional on the sphere could not 

be bounded from below. But one of the main difficulties in dealing with normalized solutions 
as critical points of a functional constrained to a sphere consists in proving the Palais-Smale 
condition. Jeanjean [23] overcame this problem in the L2-supercritical case by using a mountain 
pass structure for an auxiliary functional proving the existence of at least one normalized solution 
of (1.2). More precisely, Jeanjean studied the following equation

−�u + λu = f (u), in RN. (1.3)

We recall below the conditions introduced there.

(H0) f :R → R is continuous and odd.
(H1) There exist α, β ∈R satisfying 2 + 4

N
< α ≤ β < 2∗ such that

0 < αF(t) ≤ f (t)t ≤ βF(t) for any t ∈ R\{0},
where 2∗ := 2N

N−2 for N ≥ 3 and 2∗ := +∞ when N = 1, 2, F(t) := ∫ t

0 f (τ) dτ .

(H2) The function F̃ (t) := f (t)t − 2F(t) is of class C1 and satisfies

F̃ ′(t)t >

(
2 + 4

N

)
F̃ (t) for any t �= 0.

In [23], under the conditions (H0) and (H1), Jeanjean obtained a radial normalized solution at 
a mountain pass value when N ≥ 2. Moreover, when (H2) is also assumed, the existence of 
normalized ground states was proved in any dimension N ≥ 1. Recently, Jeanjean and Lu [25]
made a more in-depth study of (1.3) in the mass supercritical case. First, they relaxed some of 
the classical growth assumptions on f . In particular, the first part of (H1) i.e.

there exists α > 2 + 4

N
such that 0 < αF(t) ≤ f (t)t for any t �= 0 (1.4)

was used in a technical but essential way not only in showing that the problem is mass supercrit-
ical but also in obtaining bounded constrained Palais-Smale sequences. They showed that under 
a weak and more natural mass supercritical condition. Consequently, they managed to extend 
the previous results on the existence of normalized ground states and the multiplicity of radial 
normalized solutions. Furthermore, they address new issues, such as the monotonicity of the 
ground state energy as a function of L2 constraint constant or the existence of infinitely many 
nonradial sign-changing solutions. In the last, they stressed that all of their results were obtained 
only assuming that the nonlinearity f , as any function built on f , is continuous. Similar to the 
results in [25], Bieganowski and Mederski [14] introduced a new view point to the problem of 
the existence of ground state on S̄m by searching a global minimum for the energy functional on

P̄ :=
{
u ∈ H 1(RN)\{0} : ‖u‖2

L2(RN)
≤ m and P̄ (u) = 0

}
,

where
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P̄ (u) :=
∫
RN

|∇u|2 dx − N

2

∫
RN

F̃ (u) dx, S̄m :=

⎧⎪⎨
⎪⎩u ∈ H 1(RN) :

∫
RN

u2 dx = m

⎫⎪⎬
⎪⎭ .

This interesting approach relies on stronger regularity assumptions and in particular the function 
F̃ needs to be of class C1. So the approach of [14] did not permit to recover the results of 
[25] in full generality. For other relevant results on the normalized solutions of elliptic equation, 
see [9,10,26]. When it comes to combined nonlinearities, the following works deserve to be 
highlighted. Soave in [39] first studied the following nonlinear Schrödinger equation

−�u + λu = |u|p−2u + μ|u|q−2u, in RN. (1.5)

The author considered the existence and nonexistence of the normalized solution for equation
(1.5) with μ ∈ R and combined power nonlinearities 2 < q ≤ 2 + 4

N
≤ p < 2∗ with 2∗ := 2N

N−2
if N ≥ 3 and 2∗ := +∞ if N = 1, 2, where N ≥ 1 and made pioneering work by using the 
variational method and Pohozaev constraint. In particular, when 2 < q < 2 + 4

N
< p < 2∗, the 

author obtained the existence of two solutions (local minimizer and Moutain-Pass type) for 
equation (1.5). Furthermore, the author got the orbital stability of the ground state set when 
q = 2 + 4

N
< p < 2∗. Later, Soave in [40] further studied the existence and nonexistence of the 

normalized solution for equation (1.5) with μ ∈ R, p = 2∗ = 2N
N−2 and q ∈ (2, 2∗) where N ≥ 3

by using the similar technique in [39]. However, when 2 < q < 2 + 4
N

< p = 2∗, the author 
obtained only the existence of local minimizer for equation (1.5). It is worth mentioning that the 
existence of the second normalized solution (Mountain-Pass type) for equation (1.5) in N ≥ 3 is 
given by [24,46].

Nowadays, to our best knowledge, when p �= 2, q = 0, f (u) is replaced by |u|l−2u, there are 
few results on the following p-Laplacian equation

−�pu = λ|u|p−2u + |u|l−2u. (1.6)

In particular, when |u|l−2u is g(x, t) with g(x, t) is Lp-subcritical in the sense that

lim|t |→+∞
g(x, t)

|t |p̃−1
= 0

holds uniformly for x ∈ RN , where p̃ := p2

N
+ p. Li and Yan [27] obtained the existence of 

normalized ground state solutions. In [21], Gu et al. proved the existence of normalized ground 
state solutions with a trapping potential for (1.6) in case of l = p̃. Recently, Zhang and Zhang 
[48] considered the following p-Laplacian equation with a Lp-norm constraint:

{−�pu = λ|u|p−2u + μ|u|q−2u + g(u), x ∈RN,∫
RN |u|p dx = ap,

(1.7)

where N > 1, a > 0, 1 < p < q ≤ p̃, μ ∈ R, g ∈ C(R, R). Assume that g is odd and Lp-
supercritical. When q < p̃ and μ > 0, using Schwarz rearrangement and Ekeland variational 
principle, they proved the existence of positive radial ground states for suitable μ. When q = p̃

and μ > 0 or q ≤ p̃ and μ ≤ 0, with an additional condition of g, they proved a positive radial 
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ground state if μ lies in a suitable range by the Schwarz rearrangement and minimax theo-
rems. Via a fountain theorem type argument, with suitable μ ∈ R, they showed the existence 
of infinitely many radial solutions for any N ≥ 2 and the existence of infinitely many nonradial 
sign-changing solutions for N = 4 or N ≥ 6. In addition, Baldelli and Yang in [7] were con-
cerned with the existence of normalized solutions to the following (2, q)-Laplacian equation in 
all possible cases according to the value of p with respect to the critical exponent 2 

(
1 + 2

N

)
{−�u − �qu = λu + |u|p−2u, x ∈RN,∫

RN |u|2 dx = c2.
(1.8)

In the L2-subcritical case, they studied a global minimization problem and obtained a ground 
state solution. While in the L2-critical case, they proved several nonexistence results, extended 
also in the Lq -critical case. For the L2-supercritical case, they derived a ground state and in-
finitely many radial solutions.

Inspired by the above literature, we want to study the existence of normalized solutions to the 
(p, q)-Laplacian equation (1.1) with Lp-constraint. Under mild conditions on f ∈ C(R, R), we 
can introduce the C1 functional

I (u) := 1

p

∫
RN

|∇u|p dx + 1

q

∫
RN

|∇u|q dx −
∫
RN

F (u)dx

on E, where F(t) := ∫ t

0 f (τ) dτ for t ∈ R. For any c > 0, we let

Sc :=

⎧⎪⎨
⎪⎩u ∈ E :

∫
RN

|u|p dx = cp

⎫⎪⎬
⎪⎭ .

Obviously, solutions to (1.1) correspond to critical points of the functional I constrained to the 
sphere Sc. if u is a solution to equation (1.1), then the following Nehari identity holds

∫
RN

|∇u|p dx +
∫
RN

|∇u|q dx + λ

∫
RN

|u|p dx =
∫
RN

f (u)udx. (1.9)

Here by a ground state it is intended a solution u to (1.1) that minimizes the functional I among 
all the solutions to (1.1):

dI |Sc (u) = 0 and I (u) = inf
{
I (v) : dI |Sc (v) = 0

}
.

From [7], we also know that if u is a solution to equation (1.1), then u satisfies the following 
Pohozaev identity

N − p

p

∫
RN

|∇u|p dx + N − q

q

∫
RN

|∇u|q dx + λN

p

∫
RN

|u|p dx = N

∫
RN

F (u)dx. (1.10)

Combining with (1.9), (1.10), we obtain that solution u satisfies
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P(u) = 0,

where

P(u) :=
∫
RN

|∇u|p dx +
(

N

p
− N

q
+ 1

) ∫
RN

|∇u|q dx − N

p

∫
RN

F̄ (u) dx

and F̄ (u) = f (u)u − pF(u).
To find the normalized solutions of equation (1.1), for given c > 0, we identify the suspected 

ground state energy

Ec := inf
u∈Pc

I (u), (1.11)

where Pc is the Pohozaev manifold defined by

Pc := {u ∈ Sc : P(u) = 0} .

Throughout this paper, we introduce some relevant results about the Sobolev spaces. For p ∈
(1, ∞) and N > p, we define D1,p(RN) as the closure of C∞

0 (RN) with respect to ‖∇u‖p :=(∫
RN |∇u|p dx

) 1
p . Let W 1,p(RN) be the usual Sobolev space endowed with the standard norm 

‖u‖W 1,p(RN) := (∫RN |∇u|p + |u|p dx
) 1

p . For equation (1.1), we introduce the working space E
endowed with the norm

‖u‖p,q := ‖u‖W 1,p(RN) + ‖u‖W 1,q (RN).

Next, we need to give the well-known Sobolev embedding theorem and Gagliardo–Nirenberg 
inequality.

Lemma 1.1. [1] Let N > p. There exists a constant S > 0 such that, for any u ∈ D1,p(RN),

‖u‖p
p∗ ≤ S−1‖∇u‖p

p.

Moreover, W 1,p(RN) is embedded continuously into Lm(RN) for any m ∈ [p, p∗] and com-
pactly into Lm

loc(R
N) for any m ∈ [1, p∗), where p∗ := Np

N−p
.

Lemma 1.2. [3] The space E is embedded continuously into Lm(RN) for m ∈ [p, q∗] and com-
pactly into Lm

loc(R
N) for m ∈ [1, q∗).

Lemma 1.3. [2,37] The following results hold:

(i) Let m ∈ (p, p∗). There exists a sharp constant CN,m > 0 such that

‖u‖m ≤ CN,m‖∇u‖δm
p ‖u‖1−δm

p , ∀u ∈ W 1,p(RN), (1.12)

where δm := N − N .

p m
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(ii) Let 1 < q < N and 1 ≤ p < m < q∗. Then there exists a sharp constant KN,m > 0 such that

‖u‖m ≤ KN,m‖∇u‖γm
q ‖u‖1−γm

p , ∀u ∈ E, (1.13)

where γm := Nq(m−p)
m[Nq−p(N−q)] .

From Lemma 1.3, combining with the definition of energy functional I (u), we know that 
p̄ := pq

N
+ q is mass critical exponent to equation (1.1).

Before stating the main results of this paper, we present our conditions on f .

(f1) limt→0
f (t)

|t |p̄−1 = 0 and limt→∞ f (t)

|t |p∗−1 = 0, where p̄ < p∗.

(f2) limt→∞ F(t)

|t |p̄ = +∞.

(f3) t �→ F̄ (t)

|t |p̄ is strictly decreasing on (−∞, 0) and strictly increasing on (0, ∞).

(f4) f (t)t < p∗F(t) for all t ∈R\{0}.
(f5) limt→0

f (t)t

|t |p∗ = +∞.

Conditions (f1) and (f2) show that (1.1) is Sobolev subcritical but mass supercritical. Hypothe-
ses (f3)-(f5) play a crucial role in ensuring the Lagrange multipliers are positive and guaranteeing 
that certain bounded Palais-Smale sequences are strongly convergent up to a subsequence and up 
to translations if necessary.

As an example of the nonlinearity that fulfills (f1)-(f5), setting αN,p = p2

N(N−p)
, we get the 

odd continuous function

f (t) :=
[
p̄ln(1 + |t |αN,p ) + αN,p|t |αN,p

1 + |t |αN,p

]
|t |p̄−2t

with the primitive function F(t) := |t |p̄ln(1 + |t |αN,p ).
Inspired by [8], we introduce some analytical techniques. To be more precise, for any u �=

0 and s ∈ R, let (s ∗ u)(x) := e
Ns
p u(esx) for almost everywhere x ∈ RN and define the free 

functional


u(s) := I (s ∗ u) = 1

p
eps‖∇u‖p

p + 1

q
eq(δq+1)s‖∇u‖q

q − e−Ns

∫
RN

F
(
e

Ns
p u
)

dx

on E\{0}. We shall see that critical points of 
u allow to project a function on the Pohozaev man-
ifold Pc. Thus, the properties of 
u strongly affect the structure of Pc, which will be reflected in 
subsequent proofs.

The main results read as follows.

Theorem 1.4. Assume that 1 < p < q < N and f ∈ C(R, R) satisfies (f1)-(f4). Then equa-
tion (1.1) admits a ground state for any c > 0 with the associated Lagrange multiplier λ > 0. 
Moreover, when f is odd, equation (1.1) admits a positive ground state for any c > 0 with the 
associated Lagrange multiplier λ > 0.
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Theorem 1.5. Assume that 1 < p < q < N and f ∈ C(R, R) satisfies (f1)-(f3). Then the function 
c �→ Ec is positive, continuous, nonincreasing and limc→0+ Ec = +∞. Moreover, when f also 
satisfies (f4) and (f5), the following results hold:

(i) Ec is strictly decreasing in c > 0.
(ii) limc→∞ Ec = 0.

Remark 1.6. Let us explain the strategy for the proof of Theorems 1.4 and 1.5. First, we show 
that the Pohozaev manifold Pc is nonempty and the ground state energy Ec > 0. Since Pc con-
tains all the possible critical points of I restricted to Sc, Our main task is to show that Ec is a 
critical level of I |Sc . In this process, we try to construct a bounded Palais-Smale sequence of I |Sc

at the level Ec and deal with the lack of compactness. In particular, the compactness would be 
proved with aid of the monotonicity of the function c �→ Ec. So the study of the behavior of the 
function c �→ Ec arises as a fundamental problem. We will develop robust arguments which can 
be used to treat other constrained problems in general mass supercritical settings.

Remark 1.7. To our best knowledge, it seems to be the first work on the existence of normalized 
solutions for the (p, q)-Laplacian equation with general nonlinearities. Compared with [25,48], 
the appearance of two differential operators with different growth will affect the geometry of the 
problem. We need to introduce the new Pohozaev manifold and use new analysis tools to judge 
the change of the energy of the (p, q)-Laplacian equation with respect to Lp-constraint constant 
c. In addition, compared with [7], we consider the general nonlinearity f , which satisfies weak 
mass supercritical conditions. This leads us to estimate the Pohozaev equality and describe the 
relationship between the general nonlinearity term and the local term in more detail.

Remark 1.8. Because of the unbounded domain, the main difficulty we encounter in proving the 
existence of normalized solutions is the lack of compactness. Since the embedding E ↪→ Lν(RN)

is not compact with ν ∈ (p, q∗). Then we need to rely on the monotonicity of energy Ec to 
equation (1.1) and some compactness lemmas to over this difficulty.

Compared with the conditions (f1)-(f5), inspired by [14], although we need F̄ to be of C1-
class, the more general growth conditions are given as follows. We want to study the existence 
of normalized ground state solutions from a different point of view than Theorems 1.4 and 1.5.

Theorem 1.9. Assume that 1 < p < q < N and f ∈ C(R, R) satisfies

(g1) F̄ ′(u) are continuous and there exists C > 0 such that

|F̄ ′(t)| ≤ C(|t |p−1 + |t |p∗−1) for t ∈ R.

(g2) lim sup|t |→0
F(t)

|t |p̄ < +∞.

(g3) lim|t |→∞ F(t)

|t |p̄ = ∞.

(g4) lim|t |→∞ F(t)

|t |p∗ = 0, where p̄ < p∗.

(g5) p̄F̄ (t) < F̄ ′(t)t for t ∈R.
(g6) (p̄ − p)F(t) ≤ F̄ (t) ≤ (p∗ − p)F(t) for t ∈R.
(g7) F̄ (ξ0) > 0 for some ξ0 �= 0.
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Then there exists u ∈ Mc such that Ēc := infMc
I > 0 and infPc

I = infMc
I . Moreover, if f

is odd, then u ∈ Pc is a positive, radially symmetric normalized ground state solution to (1.1), 
where

Mc := {u ∈ Ac : P(u) = 0} , Ac := {u ∈ E : ‖u‖p
p ≤ cp

}
.

Remark 1.10. Note that (g1) implies that I (u) and P(u) are of class C1. Furthermore, assuming 
in addition (g3) and (g6) hold, F(u) > 0, F̄ (u) > 0 for u �= 0 and (g7) hold. Observe that (g2)

admits Lp-critical growth of F(u) close to 0, but (g3) excludes the pure Lp-critical case. In 
addition, (g4) excludes the Sobolev critical case.

In order to illustrate Theorem 1.9, we provide the following examples and properties with 
regard to our assumptions (g1)-(g7). Suppose that f satisfies (g1)-(g7) and f is odd, e.g. F(u) =
1
m

|u|m with p̄ < m < p∗. Then f is of class C1 on (−∞, 0) ∪ (0, ∞) and note that f ′(ζ ) > 0 for 
some ζ > 0. On the one hand, we assume for simplicity ζ = 1. Then we define f̌ : R �→ R such 
that f̌ (0) = 0 and

f̌ ′(t) :=
{

f ′(1)|t |p∗−2 if |t | ≤ 1

f ′(t) if |t | > 1.

Hence F̌ (u) = ∫ u

0 f̌ (s) ds and ¯̌
F(u) := f̌ (u)u − pF̌ (u) satisfy (g1)-(g7). On the other hand, 

we observe that F̌ (u) = ξ |u|p̄ + F(u), ξ ≥ 0 and ¯̌
F(u) := f̌ (u)u − pF̌ (u) satisfy (g1)-(g7). In 

particular, we can deal with the case of f (u) = ξ |u|p̄−2u + |u|m−2u, p̄ < m < p∗.

Remark 1.11. Compared with Theorems 1.4 and 1.5, we consider the minimization problem 
on the closed Lp-ball in E of radius cp (instead of the sphere Sc) intersected with P in Theo-
rem 1.9, where P is introduced in (5.1). More precisely, we briefly sketch our strategy to prove 
Theorem 1.9. First of all, we show that I (u) is bounded away from 0 on Mc and coercive on 
Mc. Next, if {un} ⊂ Mc is a minimizing sequence, then by means of the profile decomposition 
theorem, we will find a sequence of translations {yn} ⊂ RN such that un(· + yn) weakly and a.e. 
converges to a minimizer u of I on Mc. Consequently, by the standard compactness lemma and 
the Schwartz symmetrization, we may find a nonnegative and radially symmetric minimizer. In 
the last, we show that for any u ∈ (Ac\Sc) ∩P , the crucial inequality holds infPc

I < I (u). Thus 
the minimizer u of I on Mc is achieved in Pc. Moreover, by analyzing Lagrange multipliers λ
and μ for constraints Sc and P respectively, we obtain that μ = 0 and u is a normalized ground 
state solution to (1.1).

Remark 1.12. From Theorem 1.9, we appropriately weaken the conditions of Theorem 1.1 in 
[14]. In particular, we do not need the inequality in (g6) to be strict due to the effect of two 
differential operators. We only need to make full use of the Pohozaev equality and Nehari-type 
equality to calculate the energy of equation (1.1).

The remaining part of this paper is organized as follows. In Section 2, we show some prelim-
inary results and then study in Section 3 some properties of the function c �→ Ec. In Section 4, 
we prove Theorems 1.4 and 1.5. Section 5 is dedicated to characterizing the relationship between 
Ec and Ēc and proving Theorem 1.9.
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2. Preliminary results

In this section, we prepare several technical results for the proof of our main results.

Lemma 2.1. Assume that 1 < p < q < N and f satisfies (f1). Then the following results hold.

(i) For any c > 0, there exists δ = δ(N, c) > 0 small enough such that

1

2p
‖∇u‖p

p + 1

2q
‖∇u‖q

q ≤ I (u) ≤ 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q

for all u ∈ Ac satisfying ‖∇u‖p
p ≤ δ, where Ac is defined in Theorem 1.9.

(ii) Suppose that {un} is a bounded sequence in E. If limn→∞ ‖un‖p̄ = 0, then

lim
n→∞

∫
RN

F (un) dx = 0 = lim
n→∞

∫
RN

F̄ (un) dx.

(iii) Suppose that {un}, {vn} are two bounded sequences in E. If limn→∞ ‖vn‖p̄ = 0, then

lim
n→∞

∫
RN

f (un)vn dx = 0.

Proof. (i) On the one hand, we observe that

I (u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q −
∫
RN

F (u)dx ≤ 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q . (2.1)

On the other hand, using (f1), there exists Cε > 0 such that |F(t)| ≤ ε|t |p̄ +Cε |t |p∗
for all t ∈ R, 

where ε > 0 is arbitrary. For any u ∈ Ac, by Lemma 1.1, (1.13), one has

∫
RN

|F(u)|dx ≤ ε‖u‖p̄
p̄ + Cε‖u‖p∗

p∗

≤ εKN,p̄‖∇u‖q
qcp̄(1−γp̄) + CεS

− N
N−p ‖∇u‖

Np
N−p
p .

Then

I (u) ≥ 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q − εKN,p̄‖∇u‖q
qcp̄(1−γp̄) − CεS

− N
N−p ‖∇u‖

Np
N−p
p

=
(

1

p
− CεS

− N
N−p ‖∇u‖

p2

N−p
p

)
‖∇u‖p

p +
(

1

q
− εKN,p̄cp̄(1−γp̄)

)
‖∇u‖q

q .

So we take ε, δ small enough, so that
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I (u) ≥ 1

2p
‖∇u‖p

p + 1

2q
‖∇u‖q

q . (2.2)

Combining with (2.1), (2.2), we know that (i) holds.
(ii) Using (f1), there exists Dε > 0 such that |F(u)| +|F̄ (t)| ≤ ε|t |p̄ +Dε |t |p∗

, which implies 
that ∫

RN

|F(u)| + |F̄ (u)|dx ≤ ε‖u‖p∗
p∗ + Dε‖u‖p̄

p̄.

By the boundedness of {un}, limn→∞ ‖un‖p̄ = 0 and the arbitrariness of ε, we infer that (ii)
holds.

(iii) Using (f1), there exists D̄ε > 0 such that |f (u)| ≤ ε|u|p∗−1 + D̄ε |u|p̄−1. Thus

∫
RN

|f (un)||vn|dx ≤ ε

⎛
⎜⎝∫
RN

|un|p∗
dx

⎞
⎟⎠

p∗−1
p∗

· ‖vn‖p∗ + D̄ε

⎛
⎜⎝∫
RN

|un|p̄ dx

⎞
⎟⎠

p̄−1
p̄

‖vn‖p̄.

It follows from the boundedness of {un} and {vn}, limn→∞ ‖vn‖p̄ = 0 and the arbitrariness of ε
that

lim
n→∞

∫
RN

f (un)vn dx = 0.

Hence (iii) holds. �
Lemma 2.2. Assume that 1 < p < q < N and f satisfies (f1) and (f2). For any u ∈ E\{0}, one 
has

(i) 
u(s) → 0+ as s → −∞.
(ii) 
u(s) → −∞ as s → +∞.

Proof. (i) Since s ∗ u ∈ Sc ⊂ Ac and

‖∇(s ∗ u)‖p
p = eps‖∇u‖p

p, ‖∇(s ∗ u)‖q
q = e(δq+1)s‖∇u‖q

q,

by Lemma 2.1(i), it follows that

1

2p
eps‖∇u‖p

p + 1

2q
eq(δq+1)s‖∇u‖q

q ≤ I (s ∗ u) ≤ 1

p
eps‖∇u‖p

p + 1

q
eq(δq+1)s‖∇u‖q

q

as s → −∞. Therefore, lims→−∞ 
u(s) = 0+.
(ii) For any λ ≥ 0, we define a function gμ : R → R as follows:

gμ(t) :=
{

F(t)

|t |p̄ + μ, for t �= 0,

μ, for t = 0.
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Obviously, F(t) = gμ(t)|t |p̄ − μ|t |p̄ for all t ∈ R. Moreover, it follows from (f1) and (f2) that 
gμ is continuous and

gμ(t) → +∞ as t → ∞.

Hence we take μ > 0 large enough such that gμ(t) ≥ 0 for any t ∈R. Then

lim
s→+∞

∫
RN

gμ

(
e

Ns
p u
)

|u|p̄ dx = +∞.

Since when s → +∞,


u(s) = 1

p
‖∇(s ∗ u)‖p

p + 1

q
‖∇(s ∗ u)‖q

q + μ‖s ∗ u‖p̄
p̄ −

∫
RN

gλ(s ∗ u)|s ∗ u|p̄ dx

= eps

p
‖∇u‖p

p + eq(δq+1)s

⎡
⎢⎣ 1

q
‖∇u‖q

q + μ‖u‖p̄
p̄ −

∫
RN

gλ

(
e

Ns
p u
)

|u|p̄ dx

⎤
⎥⎦ ,

we deduce that 
u(s) → −∞ as s → +∞. �
Lemma 2.3. Assume that 1 < p < q < N . If f satisfies (f1)-(f3), then

f (t)t > p̄F (t) for all t �= 0.

Proof. We divide the proof of Lemma 2.3 into five steps.
Step 1. F(t) > 0 for any t �= 0. If there exists t0 �= 0 such that F(t0) ≤ 0, then by (f1) and (f2), 

the function F(t)

|t |p̄ reaches the global minimum at some t1 �= 0 satisfying F(t1) ≤ 0 and

[
F(t)

|t |p̄
]′

t=t1

= f (t1)t1 − p̄F (t1)

|t1|p̄+1sign(t1)
= 0.

In addition, it follows from (f1) and (f3) that f (t)t > pF(t) for any t �= 0. So

0 < f (t1)t1 − pF(t1) = (p̄ − p)F(t1) ≤ 0.

This is impossible. Hence F(t) > 0 for any t �= 0.
Step 2. There exists a positive sequence {t+n } and a negative sequence {t−n } such that |t±n | → 0

and f (t±n )t±n > p̄F (t±n ) for each n ≥ 1. We mainly focus on the positive case since the negative 
case is similar. If we suppose that there exists t2 > 0 small enough such that f (t)t ≤ p̄F (t) for 
any t ∈ (0, t2]. Based on Step 1, we deduce that

F(t)

t p̄
≥ F(t2)

p̄
> 0 for all t ∈ (0, t2].
t2
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L. Cai and V.D. Rădulescu Journal of Differential Equations 391 (2024) 57–104
Observe that limt→0
F(t)

t p̄
= 0 by (f1). This is a contradiction. Hence we complete the proof of 

Step 2.
Step 3. There exists a positive sequence {τ+

n } and a negative sequence {τ−
n } such that |τ±

n | →
+∞ and f (τ±

n )τ±
n > p̄F (τ±

n ) for each n ≥ 1. Since the two cases are similar, we only need to 
show the existence of {τ+

n }. Assume by contradiction that there exists t3 > 0 such that f (t)t ≤
p̄F (t) for any t ≥ t3. Then

F(t)

|t |p̄ ≤ F(t3)

|t3|p̄ < +∞ for all t > t3,

which contradicts with (f2). So the sequence {τ+
n } exists and the proof of Step 3 is completed.

Step 4. f (t)t ≥ p̄F (t) for any t �= 0. We can assume by contradiction that there exists a t4 �= 0
such that f (t4)t4 < p̄F(t4). Without loss of generality, we can further assume that t4 > 0. Based 
on Step 2 and Step 3, there exist τ1, τ2 ∈ R such that 0 < τ1 < t4 < τ2,

f (t)t < p̄F (t) for all t ∈ (τ1, τ2) (2.3)

and

f (t)t = p̄F (t) when t = τ1, τ2. (2.4)

On the one hand, by (2.3), we get

F(τ1)

|τ1|p̄ >
F(τ2)

|τ2|p̄ . (2.5)

On the other hand, it follows from (2.4) and (f3) that

F(τ1)

|τ1|p̄ = (p̄ − p)
F̄ (τ1)

|τ1|p̄ > (p̄ − p)
F̄ (τ2)

|τ2|p̄ = F(τ2)

|τ2|p̄ ,

which contradicts with (2.5) and hence the proof of Step 4 is completed.
Step 5. f (t)t > p̄F (t) for any t �= 0. Based on Step 4, the function F(t)

|t |p̄ is nonincreasing 

on (−∞, 0) and nondecreasing on (0, ∞). Then in view of (f4), the function f (t)

|t |p̄−1 is strictly 
increasing on (−∞, 0) and (0, ∞). For any t �= 0, we infer that

p̄F (t) = p̄

t∫
0

f (s) ds < p̄
f (t)

|t |p̄−1

t∫
0

|s|p̄−1 ds = f (t)t

and this proves Step 5.
From Steps 1-5, we complete the proof of Lemma 2.3. �

Lemma 2.4. Assume that 1 < p < q < N and f satisfies (f1)-(f3). For any u ∈ E\{0}, the fol-
lowing results hold:

(i) There exists a unique su ∈R such that P(su ∗ u) = 0.
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(ii) 
u(su) > 
u(s) for any s �= su. In particular, 
u(su) > 0.
(iii) The mapping u �→ su is continuous in u ∈ E\{0}.
(iv) su(·+y) = su for any y ∈RN . If f is odd, then one has s-u = su.

Proof. (i) Since


u(s) = eps

p
‖∇u‖p

p + eq(δq+1)s

q
‖∇u‖q

q − e−Ns

∫
RN

F
(
e

Ns
p u
)

dx,

we easily find that I (s ∗ u) is of class C1 and by direct calculation,

d

ds

u(s) = eps‖∇u‖p

p + (δq + 1)eq(δq+1)s‖∇u‖q
q − N

p
e−Ns

∫
RN

F̄
(
e

Ns
p u
)

dx = P(s ∗ u).

From Lemma 2.2, we know that

lim
s→−∞
u(s) = 0+ and lim

s→+∞
u(s) = −∞.

Hence 
u(s) reaches the global maximum at some su ∈ R and then

P(su ∗ u) = d

ds

∣∣∣
su


u(s) = 0.

To prove the uniqueness of su, we define a continuous function h :R →R as follows:

h(t) :=
{

F̄ (t)

|t |p̄ , for t �= 0,

0 for t = 0.

Moreover, it is not difficult for us to see that h is strictly decreasing on (−∞, 0] and strictly 
increasing on [0, ∞). Then F̄ (t) = g(t)|t |p̄ for all t ∈R. It follows that

P(s ∗ u) = eps‖∇u‖p
p + eq(δq+1)s

⎡
⎢⎣(δq + 1)‖∇u‖q

q − N

p

∫
RN

h
(
e

Ns
p u
)

|u|p̄ dx

⎤
⎥⎦ .

Obviously, for fixed t ∈ R\{0}, the function t �→ h 
(
e

Ns
p t
)

is strictly increasing by (f3). So we 
conclude that su is unique.

(ii) Based on (i), by Lemma 2.2, we know that 
u(s) reaches the global maximum at su, su
is unique and 
u(su) > 0. Therefore 
u(su) > 
u(s) for any s �= su.

(iii) Based on (i), we find that the mapping u �→ su is well-defined. Let u ∈ E\{0} and {un} ⊂
E\{0} be any sequence such that un → u in E. Denoting sn := sun for any n ≥ 1, we only need 
to prove that up to a subsequence sn → su as n → ∞. First of all, we claim that {sn} is bounded. 
Recall the continuous coercive function gμ defined by Lemma 2.2. It follows from Lemma 2.3
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that g0(t) ≥ 0 for any t ∈ R. Using the Fatou’s lemma and the fact that un → u �= 0 almost 
everywhere in RN , we deduce that

lim
n→∞

∫
RN

g0

(
e

Nsn
p un

)
|un|p̄ dx = +∞.

Then from (ii), we obtain that

0 ≤ e−q(δq+1)sn
un(sn)

= epsn−q(δq+1)sn

p
‖∇un‖p

p + 1

q
‖∇un‖q

q −
∫
RN

g0

(
e

Nsn
p u
)

|un|p̄ dx → −∞,
(2.6)

which is a contradiction and the sequence {sn} is bounded. In addition, by (ii), one has


un(sn) ≥ 
un(su) for any n ≥ 1.

Since su ∗ un → su ∗ u in E, it follows that


un(sn) = 
u(su) + on(1).

Hence

lim inf
n→∞ 
un(sn) ≥ 
u(su) > 0. (2.7)

Using the fact that {sn ∗ un} ⊂ Ac for c > 0 large enough,

‖∇(sn ∗ un)‖p = esn‖∇un‖p

and (2.7), in view of Lemma 2.1(i), we obtain that {sn} is bounded from below. Then there exists 
a s1 ∈ R such that sn → s1. Since un → u in E, we get sn ∗un → s1 ∗u in E. On the other hand, 
P(sn ∗ un) = 0 for any n ≥ 1, it follows that P(s1 ∗ u) = 0. Based on (i), we find that s1 = su
and (iii) is completed.

(iv) For any y ∈RN , Note the fact that

P(su ∗ u(· + y)) = P(su ∗ u) = 0.

So it follows from (i) that su(·+y) = su. In particular, if f is odd, then

P(su ∗ (−u)) = P(−(su ∗ u)) = P(su ∗ u) = 0,

which yields that s-u = su. �
Lemma 2.5. Assume that 1 < p < q < N and f satisfies (f1)-(f3). Then

(i) Pc �= ∅.
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(ii) infu∈Pc
‖∇u‖p > 0.

(iii) infu∈Pc
I (u) > 0.

(iv) I is coercive on Pc, namely, I (un) → +∞ for any {un} ⊂ Pc with ‖un‖p,q → ∞.

Proof. (i) It follows from the definition of Pc and Lemma 2.4(i) that Pc �= ∅.
(ii) If there exists {un} ⊂ Pc such that ‖∇un‖p → 0, then P(un) = 0 as n → ∞. On the other 

hand, similar to the proof of Lemma 2.1(i), we obtain that for n large enough,

P(un) ≥ 1

2p
‖∇un‖p

p > 0.

Combining with the above two aspects, we know that this is a contradiction and infu∈Pc
‖∇u‖p >

0.
(iii) For any u ∈Pc , it follows from Lemma 2.4(i)(ii) that

I (u) = 
u(0) ≥ 
u(s) for all s ∈R.

Let δ > 0 introduced by Lemma 2.1(i) and s̄ := ln
(

δ
‖∇u‖p

)
. Then using ‖∇(s̄ ∗ u)‖p = δ and 

Lemma 2.1(i), we infer that

I (u) ≥ 
u(s̄) ≥ 1

2p
‖∇(s̄ ∗ u)‖p

p = 1

2p
δ2.

Therefore, the proof of (iii) is completed.
(iv) We assume by contradiction that there exists {un} ⊂ Pc such that ‖un‖p,q → ∞, 

supn≥1 I (un) ≤ d for some d ∈ (0, +∞). Without loss of generality, we further assume that

‖∇un‖
p

δq+1
q � ‖∇un‖p

p → +∞.

For any n ≥ 1, we set

s̃n := 1

(δq + 1)
ln(‖∇un‖q) and ωn := (−s̃n) ∗ un.

Obviously, s̃n → +∞, {ωn} ⊂ Sc, ‖∇ωn‖p ≤ 1 and ‖∇ωn‖q = 1 for any n ≥ 1. Let

ρ := lim sup
n→∞

⎛
⎜⎝ sup

y∈RN

∫
B(y,1)

|ωn|p dx

⎞
⎟⎠ .

In the following argument, we distinguish the two cases: ρ > 0 and ρ = 0.
Case 1. ρ > 0. Up to a subsequence, there exists {yn} ⊂ RN and ω̄ ∈ E\{0} such that

ω̄n := ωn(· + yn) ⇀ ω̄ in E

and
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ω̄n → ω̄ a.e. in RN.

Since s̃n → ∞, it follows from the continuous coercive function gμ, Lemma 2.3 and the Fatou’s 
lemma that

lim
n→∞

∫
RN

g0

(
e

Nsn
p ω̄n

)
|ω̄n|p̄ dx = +∞.

Hence in view of (iii), we deduce that

0 ≤ e−q(δq+1)s̃nI (un) = e−q(δq+1)s̃n
ωn(s̃n)

≤ 1

p
e(p−q(δq+1))s̃n + 1

q
−
∫
RN

g0

(
e

Ns̃n
p ωn

)
|ωn|p̄ dx

= 1

p
e(p−q(δq+1))s̃n + 1

q
−
∫
RN

g0

(
e

Ns̃n
p ω̄n

)
|ω̄n|p̄ dx

→ −∞.

This is impossible.
Case 2. ρ = 0. In this case, using Lemma I.1 in [29], we see that ωn → 0 in Lp̄(RN). Then it 

follows from Lemma 2.1(ii) that

lim
n→∞ e−Ns

∫
RN

F (e
Ns
p ωn) dx = 0 for any s ∈R.

Moreover, it follows that P(s̃n ∗ ωn) = P(un) = 0 and Lemma 2.4(i)(ii) that for any s ∈ R,

d ≥ I (un) = 
ωn(s̃n) ≥ 
ωn(s)

≥ 1

q
eq(δq+1)s‖∇ωn‖q

q − e−Ns

∫
RN

F (e
Ns
p ωn) dx = 1

q
eq(δq+1)s + on(1).

Clearly, this leads a contradiction for s >
ln(qd)

q(δq+1)
. Thus I is coercive on Pc. �

Remark 2.6. From Lemma 2.5(iv), suppose that 1 < p < q < N and f satisfies (f1)-(f3). For 
any sequence {un} ⊂ E\{0} such that

P(un) = 0, sup
n≥1

‖un‖p < +∞, and sup
n≥1

I (un) < +∞.

Then we know that {un} is bounded in E.
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3. The behavior of the function c �→ Ec

When 1 < p < q < N and f satisfies (f1)-(f3), for given c > 0, it follows from Lemma 2.5
that the infimum Ec is well defined and strictly positive. Next we will prove that Ec is continuous 
and nonincreasing in c > 0.

Lemma 3.1. Assume that 1 < p < q < N and f satisfies (f1)-(f3). Then the function c �→ Ec is 
continuous at each c > 0.

Proof. The result of Lemma 3.1 is equivalent to prove that for a given c > 0 and any positive 
sequence {cn} such that cn → c as n → ∞, one has limn→∞ Ecn = Ec. Then we first claim that

lim sup
n→∞

Ecn ≤ Ec. (3.1)

For any u ∈Pc , we define

un := cn

c
· u ∈ Scn, n ∈ N+.

Then un → u in E. Combining Lemma 2.4(iii), we deduce that limn→∞ sun = su = 0 and

sun ∗ un → su ∗ u = u in E as n → ∞,

which implies that

lim sup
n→∞

Ecn ≤ lim sup
n→∞


un(sun) = I (u).

Observe that u ∈Pc is arbitrary, hence (3.1) holds.
Next we show that

lim inf
n→∞ Ecn ≥ Ec. (3.2)

For each n ∈N+, there exists vn ∈Pcn such that

I (vn) ≤ Ecn + 1

n
. (3.3)

Denoting

tn :=
(

cp

c
p
n

) 1
N

and v̄n := vn

( ·
tn

)
∈ Sc,

it follows from Lemma 2.4 and (3.3) that
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Ec ≤ 
v̄n(sv̄n) ≤ 
vn(sv̄n) + ∣∣
v̄n(sv̄n) − 
vn(sv̄n)
∣∣

≤ I (vn) + ∣∣
v̄n(sv̄n) − 
vn(sv̄n)
∣∣

≤ Ecn + 1

n
+ ∣∣
v̄n(sv̄n) − 
vn(sv̄n)

∣∣
= Ecn + 1

n
+ C̄n,

where C̄n := ∣∣
v̄n(sv̄n) − 
vn(sv̄n)
∣∣. Obviously, if

lim
n→∞ C̄n = 0, (3.4)

then (3.2) holds. Noting that s ∗ (u ( ·
t

))= (s ∗ u) 
( ·

t

)
, we deduce that

C̄n =
∣∣∣∣∣ 1

p

(
t
N−p
n − 1

)
‖∇(sv̄n ∗ vn)‖p

p + 1

q

(
t
N−q
n − 1

)
‖∇(sv̄n ∗ vn)‖q

q

−
(
tNn − 1

) ∫
RN

F (sv̄n ∗ vn) dx

∣∣∣∣∣
≤ 1

p

∣∣∣tN−p
n − 1

∣∣∣ · ‖∇(sv̄n ∗ vn)‖p
p + 1

q

∣∣∣tN−q
n − 1

∣∣∣‖∇(sv̄n ∗ vn)‖q
q

+
∣∣∣tNn − 1

∣∣∣ · ∫
RN

|F(sv̄n ∗ vn)|dx

= 1

p

∣∣∣tN−p
n − 1

∣∣∣ ·An + 1

q

∣∣∣tN−q
n − 1

∣∣∣ ·Bn +
∣∣∣tNn − 1

∣∣∣ · Cn,

where

An := ‖∇(sv̄n ∗ vn)‖p
p, Bn := ‖∇(sv̄n ∗ vn)‖q

q, and Cn :=
∫
RN

|F(sv̄n ∗ vn)|dx.

From tn → 1 as n → ∞, we find that (3.4) is reduced to show that

lim sup
n→∞

An < +∞, lim sup
n→∞

Bn < +∞ and lim sup
n→∞

Cn < +∞. (3.5)

To verify (3.5), we prove below three steps in turn.
Step 1. The sequence {vn} is bounded in E. It follows from (3.1) and (3.3) that

lim supn→∞ I (vn) ≤ Ec. Since vn ∈ Pcn and cn → c, based on Remark 2.6, we see that Step 
1 is completed.

Step 2. The sequence {v̄n} is bounded in E, and there exists {yn} ⊂ RN and v ∈ E such that up 
to a subsequence v̄n(· + yn) → v �= 0 almost everywhere in RN . Indeed, by the fact that tn → 1
and Step 1, we infer that {v̄n} is bounded in E. Set
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ρ̄ := lim sup
n→∞

⎛
⎜⎝ sup

y∈RN

∫
B(y,1)

|v̄n|p dx

⎞
⎟⎠ .

Then we only need to exclude the case of ρ̄ = 0. If p̄ = 0, then by Lemma I.1 in [29], we get 
v̄n → 0 in Lp̄(RN). Consequently,

‖vn‖p̄
p̄ = ‖v̄n(tn·)‖p̄

p̄ = t−N
n ‖v̄n‖p̄

p̄ → 0.

Combining Lemma 2.1(ii) with that P(vn) = 0, we deduce that

‖∇vn‖p
p + (δq + 1)‖∇vn‖q

q = N

p

∫
RN

F̄ (vn) dx → 0. (3.6)

On the other hand, similar to the proof of Lemma 2.1(i), we obtain

P(vn) ≥ 1

2p
‖∇vn‖p

p > 0

for n large enough, which along with (3.6) yields that 0 = P(vn) ≥ 1
2p

‖∇vn‖p
p > 0 for n large 

enough. This is impossible. So we complete the proof of Step 2.
Step 3. lim supn→∞ sv̄n < +∞. We assume by contradiction that

sv̄n → +∞ (3.7)

as n → +∞. On the one hand, using Step 2, we see that up to a subsequence,

v̄n(· + yk) → v �= 0 a.e. in RN. (3.8)

On the other hand, it follows from Lemma 2.4(iv) and (3.7) that

sv̄n(·+yn) = sv̄n → +∞, (3.9)

which along with Lemma 2.4(ii) implies that

I (sv̄n(·+yk) ∗ v̄k(· + yk)) ≥ 0. (3.10)

Combining (3.8), (3.9) and (3.10), similar to (2.6), we can obtain a contradiction and Step 3 is 
completed.

Now, from Steps 1-3, we find that

lim sup
n→∞

‖sv̄n ∗ vn‖E < +∞,

which along with the conditions (f1), (f2) yields that (3.5) holds. So the proof of Lemma 3.1 is 
completed. �
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Lemma 3.2. Assume that 1 < p < q < N and f satisfies (f1)-(f3). Then the function c �→ Ec is 
nonincreasing on (0, ∞).

Proof. The result of Lemma 3.2 is equivalent to that for any c1 > c2 > 0 and any arbitrary ε > 0
one has

Ec1 ≤ Ec2 + ε. (3.11)

By the definition of Ec2 , there exists u ∈Pc2 such that

I (u) ≤ Ec2 + ε

2
. (3.12)

Suppose that γ ∈ C∞
0 (RN) is radial and satisfies

γ (x) =

⎧⎪⎨
⎪⎩

1, |x| ≤ 1,

∈ [0,1], |x| ∈ (1,2),

0, |x| ≥ 2.

Then for any small δ > 0, we define uδ(x) = u(x) · γ (δx) ∈ E\{0}. Noting that uδ → u in E as 
δ → 0+, by Lemma 2.4(iii), one has limδ→0+ suδ = su = 0. It follows that

suδ ∗ uδ → su ∗ u = u in E as δ → 0+.

Then we can take a δ > 0 small enough such that

I (suδ ∗ uδ) ≤ I (u) + ε

4
. (3.13)

In addition, we take χ ∈ C∞
0 (RN) such that supp(χ) ⊂ B

(
0,1 + 4

δ

)\B (0, 4
δ

)
and set

χ̄ :=
(

c
p

1 − ‖uδ‖p
p

‖χ‖p
p

) 1
p

χ.

For any ν ≤ 0, we define wν := uδ + λ ∗ v̄. Noting that

supp(uδ) ∩ supp(ν ∗ χ̄ ) = ∅,

we have wν ∈ Sc1 . Now we claim that swν is bounded from above as ν → −∞. Indeed, we 
assume by contradiction that |swν | → +∞. Observe that I (swν ∗ wν) ≥ 0 by Lemma 2.4(ii) and 
that wν → uδ �= 0 almost everywhere in RN as ν → −∞. Similar to (2.6), we can obtain a 
contradiction. That is, the claim is true. Next, since

swν + ν → −∞ as ν → −∞,

we deduce that
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‖∇[(swν + ν) ∗ χ̄]‖p → 0, ‖∇[(swν + ν) ∗ χ̄]‖q → 0 and (swν + ν) ∗ v̄ → 0 in Lp̄(RN).

Then it follows from Lemma 2.1(ii) that

I ((swν + ν) ∗ χ̄ ) ≤ ε

4
(3.14)

for ν < 0 small enough. In the last, in view of Lemma 2.4(ii), (3.11), (3.12) and (3.13), we get

Ec1 ≤ I (swν ∗ wν) = I (swν ∗ uδ) + I (swν ∗ (ν ∗ χ̄))

≤ I (suδ ∗ uδ) + I ((swν + ν) ∗ χ̄ )

≤ I (u) + ε

2
≤ Ec2 + ε.

Hence (3.10) holds and the proof of Lemma 3.2 is completed. �
Lemma 3.3. Assume that 1 < p < q < N and f satisfies (f1)-(f3). If there exist u ∈ Sc and λ ∈R
such that

−�pu − �qu + λ|u|p−2u = f (u)

and I (u) = Ec, then Ec > Ec̄ for any c̄ > c close enough to c if λ > 0 and for each c̄ < c near 
enough to c if λ < 0.

Proof. For any t > 0 and s ∈R, we set ut,s := s ∗ (tu) ∈ Sct . Define

a(t, s) := I (ut,s) = 1

p
tpeps‖∇u‖p

p + 1

q
tqeq(δq+1)s‖∇u‖q

q − e−Ns

∫
RN

F
(
te

Ns
p x
)

dx.

By direct calculation, it is clear that

∂

∂t
a(t, s) = tp−1eps‖∇u‖p

p + tq−1eq(δq+1)s‖∇u‖q
q − e−Ns

∫
RN

f
(
t

Ns
p u
)

e
Ns
p udx

= t−1I ′(ut,s)ut,s .

When λ > 0, combining the fact that ut,s → u in E as (t, s) → (1, 0) and that

I ′(u)u = −λ‖u‖p
p = −λcp < 0,

we can fix a δ̃ > 0 small enough such that

∂

∂t
a(t, s) < 0 for any (t, s) ∈ (1,1 + δ̃] × [−δ̃, δ̃].

It follows from the mean value theorem that
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a(t, s) = a(1, s) + (t − 1) · ∂

∂t
a(ζ, s) < a(1, s), (3.15)

where 1 < ζ < t ≤ 1 + δ̃ and |s| ≤ δ̃. From Lemma 2.4(iii), one has stu → su = 0 as t → 1+. In 
particular, for any c̄ > c close enough to c, we choose

t := c̄

c
∈ (1,1 + δ̃] and s := stu ∈ [−δ̃, δ̃].

In view of (3.15) and Lemma 2.4(ii), one has

Ec̄ ≤ a(t, stu) < a(1, stu) = I (stu ∗ u) ≤ I (u) = Ec.

The case of λ < 0 can be discussed similarly. So the proof Lemma 3.3 is completed. �
Lemma 3.4. Assume that 1 < p < q < N and f satisfies (f1)-(f3). Then Ec → +∞ as c → 0+.

Proof. From the result of Lemma 3.4, it is sufficient to prove that for any sequence {un} ⊂ E\{0}
such that

P(un) = 0 and lim
n→∞‖un‖p = 0,

one infers that I (un) → +∞ as n → ∞. Denote

ŝn := ln(‖∇un‖p) and v̂n := (−ŝn) ∗ un.

Obviously, ‖∇v̂n‖p = 1 and ‖v̂n‖p = ‖un‖p → 0. Noting that v̂n → 0 in Lp̄(RN), using 
Lemma 2.1(ii), we obtain that

lim
n→∞ e−Ns

∫
RN

F
(
e

Ns
p v̂n

)
dx = 0 for any s ∈ R.

Combining the fact that P(ŝn ∗ v̂n) = P(un) = 0, Lemma 2.4(i),(ii), we derive

I (un) = I (ŝn ∗ v̂n) ≥ I (s ∗ v̂n)

≥ 1

p
eps − e−Ns

∫
RN

F
(
e

Ns
p v̂n

)
dx = 1

p
eps + on(1),

which yields that I (un) → +∞ due to the arbitrariness of s ∈ R. We complete the proof of 
Lemma 3.4. �
Lemma 3.5. Assume that 1 < p < q < N and f satisfies (f1)-(f3) and (f5). Then Ec → 0 as 
c → ∞.
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Proof. Fix u ∈ S1 ∩L∞(RN) and set uc := c ·u ∈ Sc for any c > 1. It follows from Lemma 2.4(i) 
that there exists a unique sc ∈ R such that sc ∗ uc ∈ Pc. In addition, F is nonnegative by 
Lemma 2.3. Then

0 < Ec ≤ I (sc ∗ uc) ≤ 1

p
cpepsc‖∇u‖p

p + 1

q
cqeq(δq+1)sc‖∇u‖q

q .

Now we only need to show that

lim
c→∞ cpepsc = 0. (3.16)

Since P(sc ∗ uc) = 0, it follows that

epsc‖∇uc‖p
p + (δq + 1)eq(δq+1)sc‖∇uc‖q

q = N

p
e−Nsc

∫
RN

F̄
(
e

Nsc
p uc

)
dx,

which along with the definition of h yields that

cpepsc‖∇u‖p
p + (δq + 1)cqeq(δq+1)sc‖∇u‖q

q = N

p
cp̄eq(δq+1)sc

∫
RN

h
(
c · e Nsc

p u
)

|u|p̄ dx

This means that

(δq + 1)‖∇u‖q
q ≤ N

p
cp̄−q

∫
RN

h
(
c · e Nsc

p u
)

|u|p̄ dx

and thus

lim
c→∞ c · e Nsc

p = 0 (3.17)

Finally, in view of Lemma 2.3 and (f5), there exists δ̄ > 0 small enough such that F̄ (t) ≥ (p̄ −
p)F(t) ≥ ε−1|t |p∗

for any |t | ≤ δ̄. Based on P(sc ∗ uc) = 0 and (3.17), we derive

cpepsc‖∇u‖p
p + (δq + 1)cqeq(δq+1)sc‖∇u‖q

q = N

p
· e−Nsc

∫
RN

F̄
(
c · e Nsc

p u
)

dx

≥ N

p
ε−1e−Nsc ·

∣∣∣c · e Nsc
p

∣∣∣p∗
‖u‖p∗

p∗,

which implies that (3.16) holds. Thus the proof of Lemma 3.5 is completed. �
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4. Proof of Theorems 1.4 and 1.5

In this section, in order to establish the existence of ground states to (1.1), we need to construct 
a Palais-Smale sequence for the constrained functional I |Sc at the level Ec. Inspired by [20], we 
give the following technical result.

Definition 4.1. Let B be a closed subset of a metric space X. We say that a class G of compact 
subsets of X is a homotopy stable family with closed boundary B provided

(i) every set in G contains B .
(ii) for any set A ∈ G and any homotopy η ∈ C([0, 1] × X, X) that satisfies η(t, u) = u for all 

(t, u) ∈ ({0} × X) ∪ ([0, 1] × B), one has η({1} × A) ∈ G.

We remark that the case B = ∅ is admissible.

Inspired by [8], we introduce the free functional 
̄ : E\{0} →R,


̄(u) := I (su ∗ u) = epsu

p
‖∇u‖p

p + eq(δq+1)su

q
‖∇u‖q

q − e−Nsu

∫
RN

F
(
e

Nsu
p u
)

dx,

where su ∈ R is the unique number guaranteed by Lemma 2.4. Moreover, inspired by [43,44], 
we find 
̄ is of class C1 and

d
̄(u)[ϕ] = epsu

∫
RN

|∇u|p−2∇u∇ϕ dx + eq(δq+1)su

∫
RN

|∇u|q−2∇u∇ϕ dx

− e−Nsu

∫
RN

f (e
Nsu

2 u)e
Nsu

2 ϕ dx

= dI (su ∗ u)[su ∗ ϕ]

for any u ∈ E\{0} and ϕ ∈ E. In addition, for given c > 0, we define the constrained functional

J := 
̄|Sc : Sc → R.

Clearly, the functional J : Sc →R is of class C1 and

dJ (u)[ϕ] = d
̄(u)[ϕ] = dI (su ∗ u)[su ∗ ϕ]

for any u ∈ Sc and ϕ ∈ TuSc. Then we have the following result.

Lemma 4.1. Assume that G is a homotopy stable family of compact subsets of Sc(with B = ∅)

and set

Ec,G := inf maxJ (u).

A∈G u∈A
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If Ec,G > 0, then there exists a Palais-Smale sequence {un} ⊂ Pc for the constrained functional 
I |Sc at the level Ec,G . Moreover, when f is odd and G is the class of all singletons included in 
Sc, we have ‖u−

n ‖p → 0, where u− stands for the negative part of u.

Proof. Suppose that {An} ⊂ G is an arbitrary minimizing sequence of Ec,G . By Lemma 2.4(iii), 
we define the continuous mapping

η : [0,1] × Sc → Sc, η(t, u) = (tsu) ∗ u

satisfying η(t, u) = u for all (t, u) ∈ {0} × Sc. It follows from the definition of G that

Dn := ηn(1,An) = {su ∗ u|u ∈ An} ∈ G.

Obviously, Dn ⊂ Pc for every n ∈N+. Moreover,

max
Dn

J = max
An

J → Ec,G

and thus {Dn} ⊂ G is another minimizing sequence of Ec,G . Applying Theorem 3.2 in [20], we 
obtain a Palais-Smale sequence {vn} ⊂ Sc for J at the level Ec,G such that distE(vn, Dn) → 0
as n → ∞. Denote un := svn ∗ vn. Now we claim that there exists C̃ > 0 such that e−psvn ≤ C̃

for every n. Observe that e−psvn = ‖∇vn‖p
p

‖∇un‖p
p

. From {un} ⊂ Pc and Lemma 2.5(ii), we see that 

{‖∇un‖p} is bounded from below by a positive constant. In addition, since Dn ⊂ Pc for every n, 
we deduce that

max
Dn

I = max
Dn

J → Ec,G .

In view of Lemma 2.5(iv), we find that {Dn} is uniformly bounded in E. On the other hand, 
it follows from distE(vn, Dn) → 0 that supn ‖∇vn‖p < ∞. Combining the above argument, we 
know that the claim is true. Note that

I (un) = J (un) = J (vn) → Ec,G .

Then it is sufficient for us to prove that {un} is a Palais-Smale sequence for I on Sc. For any 
ψ ∈ TunSc, we can easily obtain that (−svn) ∗ ψ ∈ TvnSc. By the boundedness of e−psvn , there 
exists Ĉ > 0 such that

‖(−svn) ∗ ψ‖E ≤ Ĉ‖ψ‖E.

Then denoting by ‖ · ‖u,∗ the dual norm of (TuSc)
∗, we have
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‖dI (un)‖un,∗ = sup
ψ∈TunSc,‖ψ‖E≤1

|dI (un)[ψ]|

= sup
ψ∈TunSc,‖ψ‖E≤1

|dI (svn ∗ vn)[sn ∗ ((−sn) ∗ ψ)]|

= sup
ψ∈TunSc,‖ψ‖E≤1

|dJ (vn)[(−svn) ∗ ψ]|

≤ ‖dJ (vn)‖vn,∗ · sup
ψ∈TunSc,‖ψ‖E≤1

‖(−sn) ∗ ψ‖p,q

≤ Ĉ‖dJ (vn)‖vn,∗,

which along with the fact that {vn} ⊂ Sc is a Palais-Smale sequence of J yields that 
‖dI (un)‖un,∗ → 0.

In the last, we observe that the class of all singletons included in Sc is a homotopy stable 
family of compact subsets of Sc(with B = ∅). if f is odd, then by Lemma 2.4(iv), J (u) is even. 
Based on the above argument, we take a minimizing sequence {An} ⊂ G, which includes non-
negative functions and the sequence {Dn} also has this property. Combining distE(vn, Dn) → 0, 
we can find a Palais-Smale sequence {un} ⊂ Pc for I |Sc at the level Ec,G satisfying the property

‖u−
n ‖p

p = ‖svn ∗ v−
n ‖p

p = ‖v−
n ‖p

p → 0.

Hence the proof of Lemma 4.1 is completed. �
Lemma 4.2. There exists a Palais-Smale sequence {un} ⊂ Pc for the constrained functional I |Sc

at the level Ec. When f is odd, we have ‖u−
n ‖p → 0 as n → ∞.

Proof. In view of Lemma 4.1, by Ec > 0, we only need to show that Ec,G = Ec. Indeed, note 
that

Ec,G = inf
A∈G

max
u∈A

J (u) = inf
u∈Sc

I (su ∗ u).

On the one hand, for any u ∈ Sc, we get I (su ∗ u) ≥ Ec by su ∗ u ∈ Pc, which implies that 
Ec,G ≥ Ec. On the other hand, for any u ∈Pc, we have su = 0 and thus I (u) = I (0 ∗ u) ≥ Ec,G , 
which yields that Ec ≥ Ec,G . Combining the above aspects, we know that the proof of Lemma 4.2
is completed. �
Lemma 4.3. Assume that {un} ⊂ Sc is any bounded Palais-Smale sequence for the constrained 
functional I |Sc at the level Ec > 0, satisfying P(un) → 0. If (f4) holds, then there exists u ∈ Sc

and λ > 0 such that, up to the extraction of a subsequence and up to translations in RN , un → u

strongly in E and

−�pu − �qu + λ|u|p−2u = f (u).

Proof. Since {un} ⊂ Sc is bounded in E, we can obtain the existence of limits to ‖∇un‖p
p , 

‖∇un‖q
q , 
∫
RN F (un) dx and 

∫
RN f (un)un dx. Applying Lemma 3 in [13] and the condition that 

‖dI (un)‖un,∗, we deduce that
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−�pun − �qun + λn|un|p−2un − f (un) → 0 in E∗,

where

λn := 1

cp

⎛
⎜⎝∫
RN

f (un)un dx − ‖∇un‖p
p − ‖∇un‖q

q

⎞
⎟⎠ .

Since λn → λ for some λ ∈R, we get

−�pun(·+yn)−�qun(·+yn)+λ|un(·+yn)|p−2un(·+yn)−f (un(·+yn)) → 0 in E∗ (4.1)

for any {yn} ⊂ RN . Now we claim that {un} is non-vanishing. Indeed, we assume by contradic-
tion that {un} is vanishing. Then applying Lemma I.1 in [29], we derive un → 0 in Lp̄(RN). 
Combining with Lemma 2.1(ii) and P(un) → 0, we get 

∫
RN F (un) dx → 0 and

‖∇un‖p
p + (δq + 1)‖∇un‖q

q = P(un) + N

p

∫
RN

F̄ (un) dx → 0.

Hence Ec = limn→∞ I (un) = 0, which contradicts with Ec > 0. So the claim is true. That is, 
{un} is non-vanishing, up to a subsequence, there exists {y1

n} ⊂ RN and u1 ∈ Ac\{0} such that 
un(· + y1

n) ⇀ u1 in E, un(· + y1
n) → u1 in Lν

loc(R
N) for any ν ∈ [1, q∗) and un(· + y1

n) → u1

almost everywhere in RN . Then with the aid of Lemma A.I in [12] and compactness Lemma 2
in [41], one infers that

lim
n→∞

∫
RN

∣∣∣[f (un(· + y1
n)) − f (u1)]ϕ

∣∣∣ dx

≤ ‖ϕ‖L∞(RN) lim
n→∞

∫
supp(ϕ)

∣∣∣f (un(· + y1
n)) − f (u1)

∣∣∣ dx = 0

for any ϕ ∈ C∞
0 (RN). So by (4.1), we know that u1 satisfies

−�pu1 − �qu1 + λ|u1|p−2u1 = f (u1). (4.2)

Similarly, P(u1) = 0. Let v1
n := un − u1(· − y1

n) for every n ∈N+. It results that v1
n(· + y1

n) ⇀ 0
in E and

cp = lim
n→∞‖v1

n(· + y1
n) + u1‖p

p = lim
n→∞‖v1

n‖p
p + ‖u1‖p

p. (4.3)

Similarly,

lim
n→∞

∫
N

F (un(· + y1
n)) dx =

∫
N

F (u1) dx + lim
n→∞

∫
N

F (v1
n(· + y1

n)) dx.
R R R
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In addition, by [4], we obtain that

lim
n→∞

∥∥∥∇ (v1
n(· + y1

n) + u1
)∥∥∥i

i
=
∥∥∥∇(u1)

∥∥∥i

i
+ lim

n→∞
∥∥∥∇(v1

n)

∥∥∥i

i
,

where i = p, q . It follows that

Ec = lim
n→∞ I (un) = lim

n→∞ I (un(· + y1
n))

= I (u1) + lim
n→∞ I (v1

n(· + y1
n)) = I (u1) + lim

n→∞ I (v1
n).

(4.4)

Next we claim that limn→∞ I (v1
n) ≥ 0. Otherwise, limn→∞ I (v1

n) < 0. Then {v1
n} is not-

vanishing. So up to a subsequence, there exists a sequence {y2
n} ⊂ RN such that

lim
n→∞

∫
B(y2

n,1)

|v1
n|p dx > 0.

Based on the fact that v1
n(· + y1

n) → 0 in Lp

loc(R
N), one has |y2

n − y1
n| → ∞. Therefore, up to a 

subsequence, there exists u2 ∈ Ac\{0} such that v1
n(· + y2

n) ⇀ u2 in E. Then

un(· + y2
n) = v1

n(· + y2
n) + u1(· − y1

n + y2
n) ⇀ u2 in E.

Similarly, we also obtain that P(u2) = 0 and I (u2) > 0. Set

v2
n := v1

n − u2(· − y2
n) = un −

2∑
j=1

uj (· − y
j
n).

Consequently,

0 > lim
n→∞ I (v1

n) = I (u2) + lim
n→∞ I (v2

n) > lim
n→∞ I (v2

n).

We can continue this way to obtain an infinite sequence {uk} ⊂ Ac\{0} such that P(uk) = 0 and

k∑
j=1

‖∇uj‖p
p ≤ lim

n→∞‖∇un‖p
p < +∞

for any k ∈ N+. This is impossible since similar to the proof of Lemma 2.1, we see the fact 
that there exists a δ > 0 such that ‖∇u‖p ≥ δ for any u ∈ Ac\{0} satisfying P(u) = 0. Thus 
limn→∞ I (v1

n) ≥ 0. In the following, we set c̃ := ‖u1‖p ∈ (0, c]. It follows from limn→∞ I (v1
n) ≥

0, u1 ∈Pc̃ and (4.4) that

Ec = I (u1) + lim
n→∞ I (v1

n) ≥ I (u1) ≥ Ec̃.

Then using Lemma 3.2, one infers that
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I (u1) = Ec̃ = Ec lim
n→∞ I (v1

n) = 0. (4.5)

Combining (4.2), (4.5) and Lemmas 3.2, 3.3, we deduce that λ ≥ 0. Based on (f4), it follows 
from P(u1) = 0 and (4.2) that

λ = 1

cp

⎛
⎜⎝∫
RN

NF(u1) − N − p

p
f (u1)u1 dx + δq‖∇u1‖q

q

⎞
⎟⎠> 0.

If c̃ < c, using (4.2) and Lemmas 3.2, 3.3 again, we have I (u1) = Ec̃ > Ec, which contra-
dicts (4.5). So c̃ := ‖u1‖p = c and ‖v1

n‖p → 0 by (4.3). From Lemma 2.1(ii), we see that 
limn→∞

∫
RN F (v1

n) dx = 0, which along with (4.5) yields that ‖∇v1
n‖p → 0 and ‖∇v1

n‖q → 0. 
Then un(· + y1

n) → u1 strongly in E. The proof of Lemma 4.3 is completed. �
Proof of Theorem 1.4. Applying Lemmas 2.5(iv) and 4.1, we obtain a bounded Palais-Smale 
sequence {un} ⊂ Pc for the constrained functional I |Sc at the level Ec > 0. By Lemma 4.3, 
we get the existence of a ground state u ∈ Sc at the level Ec. Moreover, when f is odd, using 
Lemma 4.2, we deduce that ‖u−

n ‖p → 0. Then in view of Lemma 4.3, we obtain a nonnegative 
ground state u ∈ Sc at the level Ec. using the regularity in [22] and Harnack’s inequality in [45], 
we can conclude that u > 0. �
Proof of Theorem 1.5. Based on Theorem 1.4, Ec is achieved by a ground state of (1.1) with 
the associated Lagrange multiplier being positive. Applying Lemmas 3.1, 3.2 and 3.4, we know 
that the function c �→ Ec is positive, continuous, nonincreasing and limc→0+ Ec = +∞. More-
over, applying Lemmas 3.3, 3.5 and 4.3, we derive that Ec is strictly decreasing in c > 0 and 
limc→∞ Ec = 0. �
5. Proof of Theorem 1.9

Compared with Section 4, we want to study the existence of solutions for (1.1) with the 
level Ēc := infMc

I and discuss the relationship between Ēc and Ec, where Mc is defined in 
Theorem 1.9. In addition, using (g7) and argument in [12], for any R > 0, one can find a radial 
function u ∈ W

1,p

0 (B(0, R)) ∩ W
1,q

0 (B(0, R)) ∩ L∞(B(0, R)) such that 
∫
RN F̄ (u) dx > 0. Then 

let

G(t) := tp‖∇u‖p
p + (δq + 1)tq‖∇u‖q

q − N

p

∫
RN

F̄ (u) dx.

Since 1 < p < q < N , we can easily know that there exists t (u) ∈R such that G(t(u)) = 0. That 
is

u(t (u)·) ∈ P, (5.1)

where

P := {u ∈ E\{0} : P(u) = 0} .
87



L. Cai and V.D. Rădulescu Journal of Differential Equations 391 (2024) 57–104
Hence P is nonempty.

Lemma 5.1. Assume that (g1), (g2), (g4), (g6) and (g7) hold. There holds infu∈Mc
‖∇u‖p > 0.

Proof. Using (g2), (g4) and (g6), for any ε > 0, there exists Cε > 0 such that

F̄ (u) ≤ (p∗ − p)F(u) ≤ (p∗ − p)
(
ε|u|p∗ + (ε + κ)|u|p̄ + Cε |u|m

)

for any u ∈ E, where m ∈ (p̄, p∗) and κ := lim sup|u|→0
F(u)

|u|p̄ . Then since u ∈Mc, by (1.12), we 
get

‖∇u‖p
p + (δq + 1)‖∇u‖q

q

= N

p

∫
RN

F̄ (u) dx

≤ N

p
(p∗ − p)

[
ε
(
‖u‖p∗

p∗ + ‖u‖p̄
p̄

)
+ κ‖u‖p̄

p̄ + CεC
m
N,mcm(1−δm)‖∇u‖mδm

p

]

= p∗ [ε (‖u‖p∗
p∗ + ‖u‖p̄

p̄

)
+ κ‖u‖p̄

p̄ + CεC
m
N,mcm(1−δm)‖∇u‖mδm

p

]
≤ εp∗S− p∗

p ‖∇u‖p∗
p + εp∗Cp̄

N,p̄cp̄(1−δp̄)‖∇u‖p̄δp̄
p + κp∗Cp̄

N,p̄cp̄(1−δp̄)‖∇u‖p̄δp̄
p

+ p∗CεC
m
N,mcm(1−δm)‖∇u‖p̄δp̄

p ,

which implies that ‖∇u‖p is bounded away from 0 on Mc. So the proof of Lemma 5.1 is com-
pleted. �

Now we define

H(r) := I
(
r

N
p u(r·)

)
, r ∈ (0,∞), u ∈ E\{0}.

Lemma 5.2. Assume that (g2), (g4)-(g6) hold. Then there exists a unique r0 > 0 such that 

r
N
p

0 u(r0·) ∈ P .

Proof. Fix u ∈ E\{0}. From (g2),

H(r) = rp

p
‖∇u‖p

p + rq(δq+1)

q
‖∇u‖q

q − r−N

∫
RN

F (r
N
p u)dx → 0

as r → 0+. In addition, set R := ‖u‖p = ‖r N
p u(r·)‖p > 0. Then it follows from (g2), (g4), (g6)

and (1.13) that for every ε > 0, there exists Cε > 0 such that

∫
N

F (u)dx ≤ (ε + κ)‖u‖p̄
p̄ + Cε‖u‖p∗

p∗ ≤ (ε + κ)K
p̄
N,p̄‖∇u‖p̄γp̄

q Rp̄(1−γp̄) + CεS
− p∗

p ‖∇u‖p∗
p .
R
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Therefore,

H(r)

rq(δq+1)
= rp−q(δq+1)

p
‖∇u‖p

p + 1

q
‖∇u‖q

q − r−q(δq+1)

∫
RN

F
(
r

N
p u(rx)

)
dx

≥ 1

q
‖∇u‖q

q − (ε + κ)rp̄γp̄(δq+1)−q(δq+1)K
p̄
N,p̄‖∇u‖p̄δp̄

q Rp̄(1−γp̄)

− Cεr
p∗−q(δq+1)S

− p∗
p ‖∇u‖p∗

p

as r → 0+, which yields that H(r) > 0 for sufficiently small r > 0. On the other hand, it follows 
from (g3) that

H(r)

rq(δq+1)
= rp−q(δq+1)

p
‖∇u‖p

p + 1

q
‖∇u‖q

q −
∫
RN

F
(
r

N
p u
)

(
r

N
p

)p̄
dx → −∞

as r → ∞. So H has a maximum at some r0 > 0 and H ′(r0) = 0. That is,

0 = H ′(r0) = r
p−1
0 ‖∇u‖p

p + (δq + 1)r
q(δq+1)−1
0 ‖∇u‖q

q − N

p
r−N−1

0

∫
RN

F̄

(
r

N
p

0 u

)
dx.

This means that r
N
p

0 u(r0·) ∈ P . Moreover,

H ′(r) = rp−1‖∇u‖p
p + (δq + 1)rq(δq+1)−1‖∇u‖q

q − N

p
rq(δq+1)−1

∫
RN

F̄
(
r

N
p u
)

(
r

N
p

)p̄
dx

= rq(δq+1)−1

⎡
⎢⎣rp−q(δq+1)‖∇u‖p

p + (δq + 1)‖∇u‖q
q − N

p

∫
RN

F̄
(
r

N
p u
)

(
r

N
p

)p̄
dx

⎤
⎥⎦

From (g5), we see that r �→ ∫
RN

F̄

(
r

N
p u

)
(

r
N
p

)p̄ dx is strictly increasing. Thus we know that r0 is 

unique. So the proof of Lemma 5.2 is completed. �
Lemma 5.3. Assume that (g1)-(g6) hold. Then I is coercive on Mc.

Proof. First of all, for u ∈Mc , from (g6), we have

I (u) = I (u) − 1
P(u)
q(δq + 1)
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=
(

1

p
− 1

q(δq + 1)

)
‖∇u‖p

p + N

pq(δq + 1)

∫
RN

F̄ (u) dx −
∫
RN

F (u)dx ≥ 0,

which implies that I (u) is bounded from below on Mc. Next similar to the arguments in 
Lemma 2.5, we suppose that {un} ⊂ Mc is a sequence such that ‖un‖E → ∞ and I (un) is 
bounded from above. Without loss of generality, we assume that

‖∇un‖
p

δq+1
q � ‖∇un‖p

p → +∞.

Then we set rn := ‖∇un‖
− 1

δq+1
q > 0 and define vn := r

N
p

n un(rn·). Observe that rn → 0+ as n →
∞. Then

‖vn‖p
p = ‖un‖p

p ≤ cp.

Furthermore,

‖∇vn‖p
p = r

p
n ‖∇un‖p

p = ‖∇un‖p
p

‖∇un‖
p

δq+1
q

≤ 1

and

‖∇vn‖q
q = r

q(δq+1)
n ‖∇un‖q

q = 1.

Then {vn} is bounded in E. If we suppose that

lim sup
n→∞

⎛
⎜⎝ sup

y∈RN

∫
B(y,1)

|vn|p dx

⎞
⎟⎠> 0,

then up to a subsequence, we can find translations {yn} ⊂ RN such that

vn(· + yn) ⇀ v �= 0 in E

and vn(x + yn) → v(x) for a.e. x ∈ RN . Then using (g3), we deduce that

0 ≤ I (un)

‖∇un‖q
q

= 1

p

‖∇un‖p
p

‖∇un‖q
q

+ 1

q
−
∫
RN

F (un)

‖∇un‖q
q

dx

= r
q(δq+1)−p
n

p

‖∇vn‖p
p

‖∇vn‖q
q

+ 1

q
− r

q(δq+1)
n · rN

n

∫
RN

F (un(rnx)) dx

≤ r
q(δq+1)−p
n

p
+ 1

q
− r

N+q(δq+1)
n

∫
N

F

(
r
− N

p
n vn

)
dx
R
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= r
q(δq+1)−p
n

p
+ 1

q
− r

N+q(δq+1)
n

∫
RN

F

(
r
− N

p
n vn

)
∣∣∣∣r− N

p
n vn

∣∣∣∣
p̄

·
∣∣∣∣r− N

p
n vn

∣∣∣∣
p̄

dx

= r
q(δq+1)−p
n

p
+ 1

q
−
∫
RN

F

(
r
− N

p
n vn

)
∣∣∣∣r− N

p
n vn

∣∣∣∣
p̄

· |vn|p̄ dx

= r
q(δq+1)−p
n

p
+ 1

q
−
∫
RN

F

(
r
− N

p
n vn(x + yn)

)
∣∣∣∣r− N

p
n vn(x + yn)

∣∣∣∣
p̄

· |vn(x + yn)|p̄ dx → −∞

as n → ∞. This is a contradiction. Hence we may assume that

sup
y∈RN

∫
B(y,1)

|vn|p dx → 0.

Using Lemma I.1 in [29], we see that vn → 0 in Lp̄(RN). Note that un = r
− N

p
n vn

( ·
rn

)
∈ Mc. 

Then it follows from Lemma 5.2 that

I (un) = I

(
r
− N

p
n vn

( ·
rn

))
≥ I

(
r

N
p vn(r·)

)

= rp

p
‖∇vn‖p

p + rq(δq+1)

q
‖∇vn‖q

q − r−N

∫
RN

F
(
r

N
p vn

)
dx

≥ rq(δq+1)

q
− r−N

∫
RN

F
(
r

N
p vn

)
dx.

Combining the property that r−N
∫
RN F

(
r

N
p vn

)
dx → 0 as n → ∞, by taking sufficiently large 

r > 0, we can obtain a contradiction. So I is coercive on Mc. �
Lemma 5.4. Assume that (g1), (g2), (g4)-(g7) hold. Then

Ēc := inf
Mc

I > 0.

Proof. For any u ∈Mc, it follows from (1.12) that

∫
N

F (u)dx ≤ (ε + κ)‖u‖p̄
p̄ + Cε‖u‖p∗

p∗
R
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≤ (ε + κ)C
p̄
N,p̄c(1−δp̄)p̄‖∇u‖p̄δp̄

p + Cε · S− p∗
p ‖∇u‖p∗

p

=
(

(ε + κ)C
p̄
N,p̄c(1−δp̄)p̄‖∇u‖p̄δp̄−p

p + Cε · S− p∗
p ‖∇u‖p∗−p

p

)
‖∇u‖p

p.

Hence

I (u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q −
∫
RN

F (u)dx

≥
(

1

p
− (ε + κ)C

p̄
N,p̄c(1−δp̄)p̄‖∇u‖p̄δp̄−p

p − Cε · S− p∗
p ‖∇u‖p∗−p

p

)
‖∇u‖p

p.

Then there exists δ̂ > 0 such that ‖∇u‖p ≤ δ̂ and I (u) ≥ 1
2p

‖∇u‖p
p . Fix u ∈Mc, it follows from 

Lemma 5.2 that for every r > 0, I (u) ≥ I
(
r

N
p u (r·)

)
. In particular, we choose r̃ := δ̂

‖∇u‖p
> 0

and let v = r̃
N
p u(r̃·). Obviously, ‖v‖p = ‖u‖p and v ∈ Sc. In addition, ‖∇v‖p = δ̂. Thus

I (u) ≥ I (v) ≥ 1

2p
‖∇v‖p

p = 1

2p
δ̂p > 0.

This means that Ēc > 0. The proof of Lemma 5.4 is completed. �
Lemma 5.5. Suppose that {un} ⊂ E is bounded. Then there exist sequences {ûi}∞i=0 ⊂ E, 

{yi
n}∞i=0 ⊂ RN for any n ≥ 1, such that y0

n = 0, |yi
n − y

j
n | → ∞ as n → ∞ for i �= j , and passing 

to a subsequence, the following results hold for any i ≥ 0:

un(· + yi
n) ⇀ ûi in E as n → ∞,

lim
n→∞‖∇un‖p

p =
i∑

j=0

‖∇ûj‖p
p + lim

n→∞‖∇vi
n‖p

p,

lim
n→∞‖∇un‖q

q =
i∑

j=0

‖∇ûj‖q
q + lim

n→∞‖∇vi
n‖q

q,

(5.2)

where vi
n := un −∑i

j=0 ûj (· − y
j
n) and if

lim
t→0

F̄ (t)

|t |p = lim|t |→∞
F̄ (t)

|t |p∗ = 0, (5.3)

then

lim sup
n→∞

∫
N

F̄ (un) dx =
∞∑

j=0

∫
N

F̄ (ûj ) dx. (5.4)
R R
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Proof. Since the proof of Lemma 5.5 is similar to Theorem 1.4 in [34], for the convenience of 
the reader, we show the details of the proof. We claim that, passing to a subsequence, there exist 
sequences k ∈ N ∪ {∞}, {ûi}ki=0 ⊂ E, for 0 ≤ i < k + 1 (if k = ∞, then k + 1 = ∞ as well), 
{vi

n} ⊂ E, {yi
n} ⊂ RN and positive numbers {ci}ki=0, {ri}ki=0 such that y0

n = 0, r0 = 0 and for any 
0 ≤ i < k + 1 one has

(1) un(· + yi
n) ⇀ ûi in E and un(· + yi

n)χB(0,n) → ûi in Lp(RN) as n → ∞.
(2) ûi �= 0 if i ≥ 1.
(3) |yi

n − y
j
n | ≥ n − ri − rj for 0 ≤ j �= i < k + 1 and sufficiently large n.

(4) v−1
n := un and vi

n := vi−1
n − ûi (· − yi

n) for n ≥ 1
(5)

∫
B(yi

n,ri )
|vi−1

n |p dx ≥ ci ≥ 1
2 supy∈RN

∫
B(y,ri )

|vi−1
n |p dx for sufficiently large n, ri ≥

max{i, ri−1}, if i ≥ 1, and

ci = 3

4
lim

r→∞ lim sup
n→∞

sup
y∈RN

∫
B(y,r)

|vi−1
n |p dx > 0

(6)

lim
n→∞‖∇un‖p

p =
i∑

j=0

‖∇ûj‖p
p + lim

n→∞‖∇vi
n‖p

p,

lim
n→∞‖∇un‖q

q =
i∑

j=0

‖∇ûj‖q
q + lim

n→∞‖∇vi
n‖q

q,

Let {un} ⊂ E be a bounded sequence. Passing to a subsequence, we may assume that 
limn→∞ ‖∇un‖p

p , limn→∞ ‖∇un‖q
q exists and

un ⇀ û0 in E,

unχB(0,n) → û0 in Lp(RN),

where χB(0,n) is the characteristic function of B(0, n). Take v0
n := un − û0 and if

lim
n→∞ sup

yRN

∫
B(y,r)

|v0
n|p dx = 0

for every r ≥ 1, then we can finish the proof of our claim with k = 0. Otherwise we get

∞ > sup
n≥1

∫
RN

|v0
n|p dx ≥ c1 := 3

4
lim

r→∞ lim sup
n→∞

sup
y∈RN

∫
B(y,r)

|v0
n|p dx > 0

and there exists r1 ≥ 1 and, passing to subsequence, we find {y1
n} ⊂ RN such that

∫
1

|v0
n|p dx ≥ c1 ≥ 1

2
sup

y∈RN

∫
B(y,r )

|v0
n|p dx. (5.5)
B(yn,r1) 1
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Observe that {y1
n} is unbounded and we may suppose that |y1

n| ≥ n − r1. Since {un(· + y1
n)} is 

bounded in E, up to a subsequence, we find that there exists û1 ∈ E such that

un(· + y1
n) ⇀ û1 in E.

By (5.5), we deduce that û1 �= 0, and we may suppose that un(· + y1
n)χB(0,n) → û1 in Lp(RN). 

Since

lim
n→∞

⎛
⎜⎝∫
RN

|∇(un − û0)(· + y1
n)|p dx −

∫
RN

|∇v1
n(· + y1

n)|p dx

⎞
⎟⎠=

∫
RN

|∇û1|p dx

lim
n→∞

⎛
⎜⎝∫
RN

|∇(un − û0)(· + y1
n)|q dx −

∫
RN

|∇v1
n(· + y1

n)|q dx

⎞
⎟⎠=

∫
RN

|∇û1|q dx,

where v1
n := v0

n − û1(· − y1
n) = un − û0 − û1(· − y1

n), one has

lim
n→∞

∫
RN

|∇un|p dx =
∫
RN

|∇û0|p dx +
∫
RN

|∇û1|p dx + lim
n→∞

∫
RN

|∇v1
n|p dx,

lim
n→∞

∫
RN

|∇un|q dx =
∫
RN

|∇û0|q dx +
∫
RN

|∇û1|q dx + lim
n→∞

∫
RN

|∇v1
n|q dx.

If

lim
n→∞ sup

y∈RN

∫
B(y,r)

|v1
n|p dx = 0

for every r ≥ max{2, r1}, then we can complete the proof of our claim with k = 1. Otherwise,

c2 := 3

4
lim

r→∞ lim sup
n→∞

sup
y∈RN

∫
B(y,r)

|v1
n|p dx > 0.

Then there exists r2 ≥ max{2, r1} and, passing to a subsequence, we find {y2
n} ⊂ RN such that

∫
B(y2

n,r2)

|v1
n|p dx ≥ c2 ≥ 1

2
sup

y∈RN

∫
B(y,r2)

|v1
n|p dx (5.6)

and |y2
n| ≥ n − r2. Furthermore, |y2

n − y1
n| ≥ n − r2 − r1. Otherwise, B(y2

n, r2) ⊂ B(y1
n, n) and 

the convergence un(· +y1
n)χB(0,n) → û1 in Lp(RN), which contradicts with (5.6). Then, passing 

to a subsequence, we find û2 �= 0 such that

v1
n(· + y2

n), un(· + y2
n) ⇀ û2 in E
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and

un(· + y2
n)χB(0,n) → û2 in Lp(RN).

Similarly, if

lim
n→∞ sup

y∈RN

∫
B(y,r)

|v2
n|p dx = 0

for every r ≥ max{3, r2}, where v2
n := v1

n − û2(· − y2
n), then we complete the proof with k = 2. 

Continuing the above procedure, for each i ≥ 1, we find a subsequence of {un}, still denoted by 
{un}, satisfies (1)-(6). Similarly as above, if there exists i ≥ 0 such that

lim
n→∞ sup

y∈RN

∫
B(y,r)

|vi
n|p dx = 0 (5.7)

for every r ≥ max{n, ri−1}, then k = i and we complete the proof of claim. Otherwise, k = ∞. 
Using the standard diagonal method and passing to a subsequence, we show that (1)-(6) are 
satisfied for every i ≥ 0.

Next, we show that

lim sup
n→∞

∫
RN

F̄ (un) dx =
i∑

j=0

∫
RN

F̄ (ûj ) dx + lim sup
n→∞

∫
RN

F̄ (vi
n) dx. (5.8)

It follows from Vitali’s convergence theorem that

∫
RN

F̄ (un) − F̄ (v0
n) dx =

∫
RN

1∫
0

− d

ds
F̄ (un − sû0) dsdx

=
∫
RN

1∫
0

F̄ ′(un − sû0)û0 dsdx

=
1∫

0

∫
RN

F̄ ′(û0 − sû0)û0 dsdx + on(1)

=
∫
RN

1∫
0

− d

ds
F̄ (û0 − sû0) dsdx + on(1)

=
∫
RN

F̄ (û0) dx + on(1),
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which yields that

lim
n→∞

∫
RN

F̄ (un) − F̄ (v0
n) dx =

∫
RN

F̄ (û0) dx.

As a consequence,

lim sup
n→∞

∫
RN

F̄ (un) dx =
∫
RN

F̄ (û0) dx + lim sup
n→∞

∫
RN

F̄ (v0
n) dx. (5.9)

So (5.8) holds for i = 0. Similarly, we show that

lim
n→∞

∫
RN

F̄ ((un − û0)(· + y1
n)) − F̄ (v1

n(· + y1
n)) dx =

∫
RN

F̄ (û1) dx.

Based on (5.9), we derive that

lim sup
n→∞

∫
RN

F̄ (un) dx =
∫
RN

F̄ (û0) dx + lim sup
n→∞

∫
RN

F̄ (un − û0) dx

=
∫
RN

F̄ (û0) dx +
∫
RN

F̄ (û1) dx + lim sup
n→∞

∫
RN

F̄ (v1
n) dx.

Continuing the above procedure we obtain that (5.8) holds for every i ≥ 0. In the last, we show 
that

lim
i→∞

⎛
⎜⎝lim sup

n→∞

∫
RN

F̄ (vi
n) dx

⎞
⎟⎠= 0. (5.10)

Observe that if there exists i ≥ 0 such that (5.7) holds for every r ≥ max{i, ri}, then k = i. If
(5.3) holds, then we can easily obtain that

lim
n→∞

∫
RN

F̄ (vi
n) dx = 0.

Hence we complete the proof by setting ûj = 0 for j > i. Otherwise k = ∞. From (5), we infer 
that

cl+1 ≤
∫

l+1

|vl
n|p dx
B(yn ,rl+1)
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≤ p

∫
B(yl+1

n ,rl+1)

|vi
n|p dx + p

∫
B(yl+1

n ,rl+1)

∣∣∣∣∣∣
l∑

j=i+1

ûj (· − y
j
n)

∣∣∣∣∣∣
p

dx

≤ p sup
y∈RN

∫
B(y,rl+1)

|vi
n|p dx + p(k − i)

k∑
j=i+1

∫
B(yl+1

n −y
j
n ,rl+1)

|ûj |p dx

for any 0 ≤ i < l, which along with (3) yields that letting n → ∞, we get cl+1 ≤ 4p
3 ci+1. Choose 

l ≥ 1 and sufficiently large n > 4rl such that (3) and (5) are satisfied. Then

3

32
sup

y∈RN

∫
B(y,rl+1)

|vl
n|p dx

≤ 3

16
cl+1 ≤ 1

2l

l−1∑
i=0

ci+1 ≤ 1

2l

l−1∑
i=0

∫
B(yi+1

n ,ri+1)

|vi
n|p dx

≤ p

2l

l−1∑
i=0

∫
B(yi+1

n ,ri+1)

⎛
⎝|un|p +

∣∣∣∣∣∣
i∑

j=0

ûj (· − y
j
n)

∣∣∣∣∣∣
p⎞
⎠ dx

= p

2l

∫
∪l−1

i=0B(yi+1
n ,ri+1)

|un|p dx + p

2l

∫
RN

∣∣∣∣∣∣
l−1∑
i=0

i∑
j=0

ûj (· − y
j
n)χ

B(yi+1
n ,ri+1)

∣∣∣∣∣∣
p

dx

≤ p

2l
‖un‖p

p + p

2l

∥∥∥∥∥∥
l−1∑
i=0

i∑
j=0

ûj (· − y
j
n)χ

B(yi+1
n ,ri+1)

∥∥∥∥∥∥
p

p

.

In addition, using (3) and since n > 4rl , we have

B(yi+1
n − yi

n, ri+1) ⊂ RN\B(0, n − 3rl) for 0 ≤ j < i < l

and ∥∥∥∥∥∥
l−1∑
i=0

i∑
j=0

ûj (· − y
j
n)χ

B(yi+1
n ,ri+1)

∥∥∥∥∥∥
p

≤
l−1∑
i=0

i∑
j=0

‖ûjχB(yi+1
n −yi

n,ri+1)
‖p

≤
l−1∑
i=0

i∑
j=0

‖ûjχRN \B(0,n−3rl )
‖p

≤ l

l−1∑
j=0

‖ûj χB(yi+1
n −yi

n,ri+1)
‖p → 0
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as n → ∞. So

lim sup
n→∞

⎛
⎜⎝ sup

y∈RN

∫
B(y,rl+1)

|vl
n|p dx

⎞
⎟⎠≤ 16p

3l
lim sup
n→∞

‖un‖p
p. (5.11)

Assume by contradiction that (5.10) does not hold, namely, there exists a δ > 0 such that

lim sup
i→∞

⎛
⎜⎝lim sup

n→∞

∫
RN

F̄ (vi
n) dx

⎞
⎟⎠> δ. (5.12)

Then we see that increasing sequences {il}, {nl} ⊂ N such that

∫
RN

F̄ (vil
nl

) dx > δ

and

sup
y∈RN

∫
B(y,rl+1)

|vil
nl

|p ≤ lim sup
n→∞

⎛
⎜⎝ sup

y∈RN

∫
B(y,rl+1)

|vil
n |p dx

⎞
⎟⎠+ 1

il
.

Based on (5.11), we obtain that

lim
l→∞

⎛
⎜⎝ sup

y∈RN

∫
B(y,rl+1)

|vil
nl

|p dx

⎞
⎟⎠= 0.

Then

lim
l→∞

∫
RN

F̄ (vil
nl

) dx = 0.

This is impossible. Thus (5.10) holds. It results to (5.4). The proof of Lemma 5.5 is com-
pleted. �
Lemma 5.6. Assume that (g1)-(g6) hold. Then Ēc = infMc

I is achieved. Moreover, if f is odd, 
then Ēc is achieved by a nonnegative and radially symmetric function in Mc.

Proof. First of all, we choose any {un} ⊂ Mc such that I (un) → Ēc. By Lemma 5.3, we know 
that {un} is bounded in E. Then it follows from (g2), (g4), (g6) and Lemma 5.5 that there exist 
a profile decomposition of {un} satisfying (5.2) and (5.4). Now we claim that
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0 < ‖∇ûi‖p
p + (δq + 1)‖∇ûi‖q

q ≤ N

p

∫
RN

F̄ (ûi) dx

for some i ≥ 0. Let I := {i ≥ 0 : ûi �= 0
}
. Based on Lemma 5.1 and (5.4), I �= ∅. Assume by 

contradiction that

‖∇ûi‖p
p + (δq + 1)‖∇ûi‖q

q >
N

p

∫
RN

F̄ (ûi) dx

for all i ∈ I . Then by (5.2) and (5.4), we derive that

lim sup
n→∞

N

p

∫
R

F̄ (un) dx = lim sup
n→∞

‖∇un‖p
p + lim sup

n→∞
(δq + 1)‖∇un‖q

q

≥
∞∑

j=0

‖∇ûj‖p
p + (δq + 1)

∞∑
j=0

‖∇ûj‖q
q

=
∑
j∈I

‖∇ûj‖p
p + (δq + 1)

∑
j∈I

‖∇ûj‖q
q

≥
∞∑

j=0

N

p

∫
RN

F̄ (ûj ) dx = lim sup
n→∞

N

p

∫
RN

F̄ (un) dx.

This is a contradiction. Thus there is i ∈ I such that t (ûi) ≥ 1 and ûi (t (ûi )·) ∈ P , where t (u) is 
defined in (5.1). In addition,

‖ûi (t (ûi )·)‖p
p = t (ûi )

−N‖ûi‖p
p ≤ t (ûi )

−Ncp ≤ cp.

Then ûi (t (ûi )·) ∈ Mc. In particular, if t (ûi) > 1, then passing to a subsequence un(x + yi
n) →

ûi (x) for a.e. x ∈ RN . Based on the Fatou’s lemma,

0 < inf
Mc

I ≤ I (ûi(t (ûi)·))

= tp−N(ûi)

(
1

p
− 1

q(δq + 1)

)
‖∇ûi‖p

p

+ t−N(ûi)

⎡
⎢⎣ N

pq(δq + 1)

∫
RN

F̄ (ûi) dx −
∫
RN

F (ûi) dx

⎤
⎥⎦

<

(
1

p
− 1

q(δq + 1)

)
‖∇ûi‖p

p +
⎛
⎜⎝ N

pq(δq + 1)

∫
RN

F̄ (ûi) dx −
∫
RN

F (ûi) dx

⎞
⎟⎠

≤ lim inf
n→∞

[(
1 − 1

)
‖∇un(· + yi

n)‖p
p

p q(δq + 1)

99
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+
⎛
⎜⎝ N

pq(δq + 1)

∫
RN

F̄ (un(· + yi
n)) dx −

∫
RN

F (un(· + yi
n)) dx

⎞
⎟⎠
⎤
⎥⎦

= lim inf
n→∞ I (un) = Ēc = inf

Mc

I.

This is impossible. Therefore t (ûi) = 1, ûi ∈ Mc and I (ûi) = c.
Suppose that f is odd. Then F(u) and F̄ (u) are even, namely, F(|u|) = F(u) and F̄ (|u|) =

F̄ (u) for all u ∈ E. Set v̂i := |ûi |∗ as the Schwarz symmetrization of |ûi|. Then ‖v̂i‖p = ‖ûi‖p

and v̂i ∈ Sc. Furthermore, by

‖∇(v̂i)‖p
p + (δq + 1)‖∇(v̂i)‖q

q ≤ ‖∇(ûi)‖p
p + (δq + 1)‖∇(ûi)‖q

q = N

p

∫
RN

F̄ (ûi) dx

= N

p

∫
RN

F̄ (v̂i) dx

Similarly, we get t (v̂i) = 1 and v̂i ∈ Mc, where t (v̂i) is defined in (5.1). Moreover, I (v̂i) =
infMc

I , v̂i ≥ 0 and v̂i is radially symmetric. �
Lemma 5.7. Assume that (g1)-(g6) hold. Then for any u ∈ (Ac\Sc) ∩P , there holds

inf
Pc

I < I (u).

Proof. Assume by contradiction that there exists ǔ ∈ P such that ‖ǔ‖p < c and Ēc = I (ǔ) ≤
infPc

I . Hence ǔ is a local minimizer for I on Mc. On the other hand, (Ac\Sc) ∩ P is an open 
set in P , we find that ǔ is a local minimizer of I on P . Hence there is a Lagrange multiplier 
λ̌ ∈R such that

I ′(ǔ)v + λ̌

·
⎛
⎜⎝p

∫
RN

|∇ǔ|p−2∇ǔ∇v dx + q(δq + 1)

∫
RN

|∇ǔ|q−2∇ǔ∇v dx − N

p

∫
RN

F̄ ′(ǔ)v dx

⎞
⎟⎠= 0

for any v ∈ W 1,p(RN) ∩ W 1,q (RN). Hence ǔ is a weak solution to

−(1 + λ̌p)�pǔ − (1 + λ̌q(δq + 1))�qǔ = f (ǔ) + Nλ̌

p
F̄ ′(ǔ).

In particular, ǔ satisfies the following Nehari-type identity

(1 + λ̌p)‖∇ǔ‖p
p + (1 + λ̌q(δq + 1))‖∇ǔ‖q

q =
∫
N

f (ǔ)ǔ dx + Nλ̌

p

∫
N

F̄ ′(ǔ)ǔ dx
R R
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If we take λ̌ = − 1
q(δq+1)

, then

(
1 − p

q(δq + 1)

)
‖∇ǔ‖p

p =
∫
RN

f (ǔ)ǔ dx − N

pq(δq + 1)

∫
RN

F̄ ′(ǔ)ǔ dx. (5.13)

In addition, it follows from (g5) and (g6) that

∫
RN

f (ǔ)ǔ dx − N

pq(δq + 1)

∫
RN

F̄ ′(ǔ)ǔ dx ≤
∫
RN

f (ǔ)ǔ dx − N

pq(δq + 1)

∫
RN

p̄F̄ (ǔ) dx

= p

∫
RN

F (ǔ) dx − p

p̄ − p

∫
RN

F̄ (ǔ) dx ≤ 0,

which contradicts with (5.13). So λ̌ �= − 1
q(δq+1)

. Moreover, on the one hand, since ǔ ∈P , we get

‖∇ǔ‖p
p + (δq + 1)‖∇ǔ‖q

q = N

p

∫
RN

F̄ (ǔ) dx. (5.14)

On the other hand, ǔ satisfies Nehari-type and Pohozaev identities. That is, ǔ satisfies

(1 + λ̌p)‖∇ǔ‖p
p + (δq + 1)(1 + λ̌q(δq + 1))‖∇ǔ‖q

q

= N

p

∫
RN

F̄ (ǔ) dx + λ̌

∫
RN

N2

p2 F̄ ′(ǔ)ǔ − N2

p
F̄ (ǔ) dx.

(5.15)

Combining (5.14) and (5.15), we deduce that

λ̌(p − q(δq + 1))‖∇ǔ‖p
p = λ̌

N2

p2

∫
RN

F̄ ′(ǔ)ǔ − p̄F̄ (ǔ) dx.

In view of (g5), we find that λ̌ = 0 and ǔ is a weak solution to

−�pǔ − �qǔ = f (ǔ).

Similarly, we also obtain that ǔ satisfies

‖∇ǔ‖p
p + ‖∇ǔ‖q

q =
∫
RN

f (ǔ)ǔ dx (5.16)

and

‖∇ǔ‖p
p + (δq + 1)‖∇ǔ‖q

q = N

p

∫
N

F̄ (ǔ) dx (5.17)
R
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Combining (5.16) and (5.17), we deduce that

δq‖∇ǔ‖q
q = N − p

p

⎡
⎢⎣∫
RN

F̄ (ǔ) dx − (p∗ − p)

∫
RN

F (ǔ) dx

⎤
⎥⎦ .

By (g6), we obtain a contradiction. So for any u ∈ (Ac\Sc) ∩P , there holds

inf
Pc

I < I (u).

The proof of Lemma 5.7 is completed. �
Proof of Theorem 1.9. Using Lemmas 5.6 and 5.7, we derive that Ec = infPc

I is attained. 
Moreover, if f is odd, then by the regularity in [22] and Harnack’s inequality in [45], we know 
that Ec = infPc

I is achieved by ũ > 0, which is a radially symmetric function. Now there exist 
Lagrange multipliers λ, μ ∈R such that ũ ∈ Pc solves

− �pũ − �qũ − f (ũ) + λ|ũ|p−2ũ + μ

·
(

−p�pũ − q(δq + 1)�qũ − N

p
F̄ ′(ũ)

)
= 0,

namely,

−(1 + μp)�pũ − (1 + μ · q(δq + 1)
)
�qũ + λ|ũ|p−2ũ = f (ũ) + N

p
μF̄ ′(ũ).

Similar to Lemma 5.7, we can find that μ = 0. Finally, by (g5) and (g6), one has

λ‖ũ‖p
p = −

(
1 − p

q(δq + 1)

)
‖∇ũ‖p

p +
∫
RN

f (ũ)ũ dx − N

pq(δq + 1)

∫
RN

F̄ ′(ũ)ũ dx

≤ −
(

1 − p

q(δq + 1)

)
‖∇ũ‖p

p + p

∫
RN

F (ũ) dx − p

p̄ − p

∫
RN

F̄ (ũ) dx < 0,

which implies that λ < 0. The proof of Theorem 1.9 is completed. �
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[19] L. Gasiński, P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via 

the Nehari manifold, J. Differ. Equ. 274 (2021) 1037–1066.
[20] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press, Cambridge, 

1993.
[21] L. Gu, X. Zeng, H. Zhou, Eigenvalue problem for a p-Laplacian equation with trapping potentials, Nonlinear Anal. 

148 (2017) 212–227.
[22] C. He, G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing p&q-Laplacians, 

Ann. Acad. Sci. Fenn., Math. 33 (2006) 337–371.
[23] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28 (1997) 

1633–1659.
103

http://refhub.elsevier.com/S0022-0396(24)00053-6/bib90A8BA7FD77474B6990C12D8E1B44227s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bibE1653AF38188B079404CDD47827220E8s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bibE1653AF38188B079404CDD47827220E8s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib71AE199F23BE1FDEAF77C92F6A0A97F6s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib71AE199F23BE1FDEAF77C92F6A0A97F6s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib850F00DA464A07E1EF95C4BC34F24C78s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib850F00DA464A07E1EF95C4BC34F24C78s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib1591EBD827452B93A8C015CD192EDAB0s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib1591EBD827452B93A8C015CD192EDAB0s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib8BC604FE82922322612E9FDC69326BDCs1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib8BC604FE82922322612E9FDC69326BDCs1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib356A016DE75B8308BFD5F05C819D7AC6s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib79AB9274ED3706285EA9A3BDAABE51BCs1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib79AB9274ED3706285EA9A3BDAABE51BCs1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib08B2030416A08CDA8B0F4EAF807968E9s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib08B2030416A08CDA8B0F4EAF807968E9s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bibE600960CD304F258DBA321D2B0AC0633s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bibE600960CD304F258DBA321D2B0AC0633s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib720197908064F745B6B200E0B3A326D2s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib720197908064F745B6B200E0B3A326D2s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bibEAE06962ED9B9E0D1412B509E7C8B5CCs1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bibEAE06962ED9B9E0D1412B509E7C8B5CCs1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib1F235DB44F89AF8E4F3E9E981A701E55s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib1F235DB44F89AF8E4F3E9E981A701E55s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib2E5670EC43E7BFD421E4ABF967E5BD78s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib2E5670EC43E7BFD421E4ABF967E5BD78s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib161211B209D1662D6401C7EBEC5DC6D0s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib161211B209D1662D6401C7EBEC5DC6D0s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib8ECAFB67DD5993E4ED4B4F5EAC77F90Es1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib8ECAFB67DD5993E4ED4B4F5EAC77F90Es1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bibAB1C4D1C18A5B959E251BC194AA795C1s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bibAB1C4D1C18A5B959E251BC194AA795C1s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib4B4DDF2A2D7C7583C3718E3173DCAB11s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib4B4DDF2A2D7C7583C3718E3173DCAB11s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bibAD46190677846285AAEB5F81729AF3BBs1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bibAD46190677846285AAEB5F81729AF3BBs1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bibA00D0204C931B1BF820607EA54104534s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bibA00D0204C931B1BF820607EA54104534s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib58CBA9C6C76B26A3ADA6452B4F155D77s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib58CBA9C6C76B26A3ADA6452B4F155D77s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib44F9AFC0D636A2176D0D67A8015471E5s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib44F9AFC0D636A2176D0D67A8015471E5s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib33744CF77D1B8DEE3264DF42496A1106s1
http://refhub.elsevier.com/S0022-0396(24)00053-6/bib33744CF77D1B8DEE3264DF42496A1106s1
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