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a b s t r a c t

In this paper we study an anisotropic implicit obstacle problem driven by the (p(·), q(·))-
Laplacian and an isotropic implicit obstacle problem involving a nonlinear convection
term (a reaction term depending on the gradient) which contain several interesting
and challenging untreated problems. These two implicit obstacle problems have both
highly nonlinear and nonlocal functions and three multivalued terms where two of them
are appearing on the boundary and the other one is formulated in the domain. Under
very general assumptions on the data, we develop general frameworks to examine the
nonemptiness and compactness of the set of weak solutions to the problems under
consideration. The proofs of our main results use the theory of nonsmooth analysis, Ty-
chonoff’s fixed point theorem for multivalued operators, the theory of pseudomonotone
operators and variational approach.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study isotropic and anisotropic quasilinear implicit obstacle problems involving multivalued mappings
nd mixed boundary conditions. These classes of problems include several interesting special cases which have not been
reated largely in the literature to date. Originally, the study of so-called obstacle problems is due the pioneering work

∗ Corresponding author at: Simion Stoilow Institute of Mathematics of the Romanian Academiei, Calea Griviţei 21, 010702 Bucharest, Romania.
E-mail addresses: zengshengda@163.com (S. Zeng), leszek.gasinski@up.krakow.pl (L. Gasiński), radulescu@inf.ucv.ro (V.D. Rădulescu),

winkert@math.tu-berlin.de (P. Winkert).
https://doi.org/10.1016/j.cnsns.2022.106997
1007-5704/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cnsns.2022.106997
https://www.elsevier.com/locate/cnsns
http://www.elsevier.com/locate/cnsns
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2022.106997&domain=pdf
mailto:zengshengda@163.com
mailto:leszek.gasinski@up.krakow.pl
mailto:radulescu@inf.ucv.ro
mailto:winkert@math.tu-berlin.de
https://doi.org/10.1016/j.cnsns.2022.106997


S. Zeng, L. Gasiński, V.D. Rădulescu et al. Communications in Nonlinear Science and Numerical Simulation 118 (2023) 106997

w

a

f
c
S

c

by Stefan [1] in which the temperature distribution in a homogeneous medium undergoing a phase change, typically a
body of ice at zero degrees centigrade submerged in water, was studied. In this direction we also mention the renowned
contribution of Lions [2] who studied the equilibrium position of an elastic membrane which lies above a given obstacle
and which turns out as the unique solution of the Dirichlet energy functional minimized on the closed convex set driven
by the obstacle.

Let us formulate the two problems under consideration. To this end, let Ω be a bounded domain in RN (N ≥ 2) with a
Lipschitz boundary Γ := ∂Ω such that Γ is divided into three mutually disjoint parts Γ1, Γ2, and Γ3 where Γ1 has positive
Lebesgue measure. Note that Γ2 and Γ3 could be empty which means that Γ1 could be the whole boundary Γ1 = Γ . In
this paper, we are interested in the study of two implicit obstacle problems. The first problem of this paper is formulated
by the following anisotropic implicit obstacle problem given in the form

−a(u)∆p(·)u − b(u)∆q(·)u + g(x, u) ∈ U1(x, u) in Ω,

u = 0 on Γ1,

∂u
∂νn

∈ U2(x, u) on Γ2,

−
∂u
∂νn

∈ ∂cφ(x, u) on Γ3,

L(u) ≤ J(u),

(1.1)

here p, q : Ω → (1, +∞) are continuous functions, ∆p(·) is the p(·)-Laplace differential operator defined by

∆p(·)u = div
(
|∇u|p(x)−2

∇u
)

for all u ∈ W 1,p(·)(Ω),

nd
∂u
∂νn

:=
(
a(u)|∇u|p(x)−2

∇u + b(u)|∇u|q(x)−2
∇u

)
· ν, (1.2)

with ν being the unit normal vector on Γ . Furthermore, g : Ω × R → R is a Caratheódory function, φ : Γ3 × R → R is a
convex function with respect to the second argument, a : Lp

∗(·)(Ω) → (0, +∞), b : Lp
∗(·)(Ω) → [0, +∞) are two continuous

unctions and U1 : Ω × R → 2R as well as U2 : Γ2 × R → 2R are two given multivalued functions. Also, ∂cφ(x, u) is the
onvex subdifferential of s ↦→ φ(x, s), and L, J : W 1,p(·)(Ω) → R are given functions defined on the variable exponent
obolev space W 1,p(·)(Ω), see Section 2 for its precise definition.
The second goal of this paper is the study of the following isotropic implicit obstacle problem involving a nonlinear

onvection function f : Ω × R × RN
→ R of the form

−a(u)∆pu − b(u)∆qu + g(x, u) ∈ U1(x, u) + f (x, u, ∇u) in Ω,

u = 0 on Γ1,

∂u
∂νn

∈ U2(x, u) on Γ2,

−
∂u
∂νn

∈ ∂cφ(x, u) on Γ3,

L(u) ≤ J(u),

(1.3)

where L, J :W 1,p(Ω) → R are two given functions and ∂u
∂νn

is defined by

∂u
∂νn

:=
(
a(u)|∇u|p−2

∇u + b(u)|∇u|q−2
∇u

)
· ν. (1.4)

As mentioned above, problems (1.1) and (1.3) combine several interesting and challenging phenomena which have not
been treated in the literature so far. To be more precise, these problems include

• a nonlinear, nonhomogeneous differential operator with different anisotropic/isotropic growth;
• two highly nonlinear nonlocal terms a and b, where the function b can be degenerate;
• mixed boundary conditions;
• multivalued mappings in which one of them is formulated by the subdifferential operator to a convex function;
• an implicit obstacle effect;
• a nonlinear convection term for the isotropic case.

The main goal of the paper is to develop general frameworks for determining the existence of a (weak) solution to
the nonlinear implicit obstacle problems (1.1) and (1.3) via Tychonoff’s fixed point theorem for multivalued operators,
the theory of nonsmooth analysis and variational methods for pseudomonotone operators. In fact, to the best of our
knowledge, this is the first work which combines a nonlinear anisotropic/isotropic partial differential operator along
with two highly abstract nonlocal terms, an implicit obstacle constraint, a nonlinear convection term for the isotropic
2
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case, mixed boundary conditions and multivalued mixed terms which include a convex subdifferential operator and two
abstract multivalued functions.

Such combination of an implicit obstacle effect with mixed boundary conditions along with multivalued mappings
which include as special case Clarke’s generalized gradients, see Clarke [3]) arise in several engineering and economic
odels, such as Nash equilibrium problems with shared constraints and transport route optimization with feedback
ontrol. We refer to books of Panagiotopoulos [4,5] and Naniewicz–Panagiotopoulos [6] for more models related to
onsmooth mechanical problems. In general, equations driven by the sum of two differential operators of different nature
rise often in mathematical models of physical processes, see, for example, the works of Bahrouni–Rădulescu–Repovš
7] for transonic flow problems, Cherfils–Il’yasov [8] for reaction diffusion systems, Zhikov [9] for elasticity problems
nd Papageorgiou–Vetro–Vetro [10] for least energy problems. For implicit obstacle effects involving Clarke’s generalized
radient or general multivalued mappings but without nonlocal term we refer to the papers of Alleche–Rădulescu
11], Aussel–Sultana–Vetrivel [12], Bonanno–Motreanu–Winkert [13], Liu et al. [14], Carl–Le–Winkert [15], Iannizzotto–
apageorgiou [16], Migórski–Khan–Zeng [17,18], Liu–Migórski–Nguyen–Zeng [19], Zeng–Bai–Gasiński–Winkert [20,21],
eng–Rădulescu–Winkert [22] and the references therein. We also mention the recent monograph of Carl–Le [23]
bout multivalued variational inequalities and inclusions. For single-valued equations with convection term we refer
o the works of Faraci–Motreanu–Puglisi [24], Faraci–Puglisi [25], Figueiredo–Madeira [26], Gasiński–Papageorgiou [27],
asiński–Winkert [28], Liu–Motreanu–Zeng [29], Marano–Winkert [30] and Papageorgiou–Rădulescu–Repovš [31]. We
lso mention the overview articles of Rădulescu [32] about isotropic and anisotropic problems and of Mingione–Rădulescu
33] about recent developments for problems with nonstandard growth and nonuniform ellipticity.

Let us comment on some relevant special cases of problems (1.1) and (1.3). To the best of our knowledge, these
roblems have not been studied yet in the literature. We start with (1.1).

(i) Let j1 : Ω × R → R and j2 : Γ2 × R → R be two functions which are measurable in the first argument and locally
Lipschitz in the second one. Moreover, let r1, r2 :R → R be two functions and denote by ∂ ji Clarke’s generalized
gradient of ji(x, ·) for i = 1, 2. If U1 and U2 are defined by U1(x, s) = r1(s)∂ j1(x, s) for a. a. x ∈ Ω , s ∈ R and
U2(x, s) = r2(s)∂ j2(x, s) for a. a. x ∈ Γ2, s ∈ R, then problem (1.1) becomes

−a(u)∆p(·)u − b(u)∆q(·)u + g(x, u) ∈ r1(u)∂ j1(x, u) in Ω,

u = 0 on Γ1,

∂u
∂νn

∈ r2(u)∂ j2(x, u) on Γ2,

−
∂u
∂νn

∈ ∂cφ(x, u) on Γ3,

L(u) ≤ J(u),

(1.5)

where ∂u
∂νn

is given in (1.2). We show in Theorem 3.13 that the solution set of (1.5) is nonempty and compact which
follows from Theorem 3.4.

(ii) If Γ2 = ∅ and Γ3 = ∅, i.e., Γ1 = Γ , then problem (1.1) reduces to the following implicit obstacle inclusion problem
with Dirichlet boundary condition

−a(u)∆p(·)u − b(u)∆q(·)u + g(x, u) ∈ U1(x, u) in Ω,

u = 0 on Γ ,

L(u) ≤ J(u),
(1.6)

where ∂u
∂νn

is given in (1.2). As a direct consequence, Corollary 3.12 guarantees the existence of a solution of (1.6).
(iii) Let Ψ : Ω → R be a given obstacle. When J(u) ≡ 0 and L(u) :=

∫
Ω
(u(x) − Ψ (x))+ dx for all u ∈ W 1,p(·)(Ω), then our

problem (1.1) can be rewritten to the following obstacle inclusion problem

−a(u)∆p(·)u − b(u)∆q(·)u + g(x, u) ∈ U1(x, u) in Ω,

u = 0 on Γ1,

∂u
∂νn

∈ U2(x, u) on Γ2,

−
∂u
∂νn

∈ ∂cφ(x, u) on Γ3,

u(x) ≤ Ψ (x) in Ω,

(1.7)

where ∂u
∂νn

is given in (1.2). We can also suppose that Φ : Γa → R is a given obstacle on the boundary Γa ⊂ Γ with
Γa having positive Lebesgue measure. Then the last inequality in (1.7) is replaced by u(x) ≤ Φ(x) on Γa. The main
results to problem (1.7) are given in Corollary 3.10.
3
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(iv) Finally, if J(u) ≡ +∞ or L(u) ≡ −∞ for all u ∈ W 1,p(·)(Ω), then problem (1.1) turns into the following mixed
boundary value problem without obstacle effect

−a(u)∆p(·)u − b(u)∆q(·)u + g(x, u) ∈ U1(x, u) in Ω,

u = 0 on Γ1,

∂u
∂νn

∈ U2(x, u) on Γ2,

−
∂u
∂νn

∈ ∂cφ(x, u) on Γ3,

(1.8)

where ∂u
∂νn

is given in (1.2). We prove that there exists a weak solution of (1.8) and the solution set of (1.8) is
compact, see Corollary 3.11.

Next, we mention some special cases of problem (1.3).

(a) If U1 and U2 are defined by U1(x, s) = r1(s)∂ j1(x, s) for a. a. x ∈ Ω , s ∈ R and U2(x, s) = r2(s)∂ j2(x, s) for a. a. x ∈ Γ2,
s ∈ R, where j1, j2, r1, r2 are given in problem (1.5), then problem (1.3) becomes the following implicit obstacle
problem involving a nonlinear convection term and generalized Clarke’s subgradients:

−a(u)∆pu − b(u)∆qu + g(x, u) ∈ r1(u)∂ j1(x, u) + f (x, u, ∇u) in Ω,

u = 0 on Γ1,

∂u
∂νn

∈ r2(u)∂ j2(x, u) on Γ2,

−
∂u
∂νn

∈ ∂cφ(x, u) on Γ3,

L(u) ≤ J(u),

(1.9)

where ∂u
∂νn

is given in (1.4). We also obtain the nonemptiness and compactness of the solution set of problem (1.9),
see Corollary 4.17. If f is independent of ∇u, then problem (1.9) can be seemed as a special case of problem (1.5).

(b) If Γ2 = ∅ and Γ3 = ∅, i.e., Γ1 = Γ , problem (1.3) reduces to the following nonlinear implicit obstacle problem with
nonlinear convection term and Dirichlet boundary condition:

−a(u)∆pu − b(u)∆qu + g(x, u) ∈ U1(x, u) + f (x, u, ∇u) in Ω,

u = 0 on Γ ,

L(u) ≤ J(u).
(1.10)

In this case, we obtain Corollary 4.10 getting one weak solution to problem (1.10).
(c) If f is independent of ∇u, then problem (1.3) becomes the following problem:

−a(u)∆pu − b(u)∆qu + g(x, u) ∈ U1(x, u) in Ω,

u = 0 on Γ ,

L(u) ≤ J(u).
(1.11)

This is exactly the particular case of problem (1.6) if the exponents p, q are constants.
(d) Let Ψ : Ω → R be a given obstacle. When J(u) ≡ 0 and L(u) :=

∫
Ω
(u(x) − Ψ (x))+ dx for all u ∈ W 1,p(Ω), then

problem (1.3) can be rewritten to the following obstacle inclusion problem with nonlinear convection term:

−a(u)∆pu − b(u)∆qu + g(x, u) ∈ U1(x, u) + f (x, u, ∇u) in Ω,

u = 0 on Γ1,

∂u
∂νn

∈ U2(x, u) on Γ2,

−
∂u
∂νn

∈ ∂cφ(x, u) on Γ3,

u(x) ≤ Ψ (x) in Ω,

(1.12)

where ∂u
∂νn

is given in (1.4). In the case a, b to be independent of u ∈ W 1,p(Ω), i.e., a, b are two nonnegative constants,
problem (1.12) has been recently studied by Zeng–Bai–Gasiński [34].
4
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(e) If J(u) ≡ +∞ or L(u) ≡ −∞ for all u ∈ W 1,p(Ω), then problem (1.3) turns into the following mixed boundary value
problem with nonlinear convection term, but without obstacle effect:

− div
(
|∇u|p−2

∇u + µ(x)|∇u|q−2
∇u

)
∈ U1(x, u) + f (x, u, ∇u) in Ω,

u = 0 on Γ1,

∂u
∂νn

∈ U2(x, u) on Γ2,

−
∂u
∂νn

∈ ∂cφ(x, u) on Γ3,

(1.13)

here ∂u
∂νn

is given in (1.4).
The paper is organized as follows. Section 2 presents a detailed overview about variable exponent Lebesgue/Sobolev

spaces, the eigenvalue problem of the p-Laplacian with Steklov boundary condition and we state some results from
nonsmooth analysis, the properties of Clarke’s generalized gradient and Tychonoff’s fixed point theorem for multivalued
operators which will be used in the next sections to establish the main results of this paper. In Section 3, in order to
establish the solvability of the anisotropic implicit obstacle problem (1.1), we first introduce an auxiliary problem defined
in (3.3) and apply an existence theorem for a class of mixed variational inequalities involving coercive and monotone
operators to prove the existence and uniqueness of the auxiliary problem. Finally, we introduce two multivalued operators,
which are proved to be strongly-weakly u.s.c. and apply Tychonoff’s fixed point theorem for multivalued operators along
with the theory of nonsmooth analysis to examine the nonemptiness and compactness of the solution set of problem (1.1).
After that, in Section 4, we move our attention to prove the solvability of the implicit obstacle problem (1.3) with nonlinear
convection term. Lastly, several special and interesting cases of our problem (1.3) are discussed and the corresponding
and extended existence results are obtained at the end of the paper.

2. Preliminaries

In this section we present the main tools which are needed in the sequel. For this purpose, let Ω ⊂ RN be a bounded
domain with Lipschitz boundary Γ := ∂Ω , where Γ is divided into three mutually disjoint parts Γ1, Γ2 and Γ3 with Γ1
having positive Lebesgue measure. For any fixed r ∈ [1, ∞) and for any subset D of Ω we denote the usual Lebesgue
spaces by Lr (D) := Lr (D;R) and Lr (D;RN ) equipped with the norm ∥ · ∥r,D given by

∥u∥r,D :=

(∫
D
|u|r dx

) 1
r

for all u ∈ Lr (D).

Moreover, we set Lr (D)+ := {u ∈ Lr (D) : u(x) ≥ 0 for a. a. x ∈ D}. By W 1,r (Ω) we define the corresponding Sobolev space
endowed with the norm ∥ · ∥1,r,Ω given by

∥u∥1,r,Ω := ∥u∥r,Ω + ∥∇u∥r,Ω for all u ∈ W 1,r (Ω).

In the entire paper, the symbols ‘‘
w

−→ ’’ and ‘‘→’’ stand for the weak and the strong convergence, respectively. Moreover,
the conjugate of r > 1 is denoted by r ′ > 1, e.g., 1

r +
1
r ′ = 1. The critical exponents of r > 1 in the domain and on the

boundary, denoted by r∗ and r∗, are defined by

r∗
=

{ Nr
N−r if r < N,

+∞ if r ≥ N,
and r∗ =

{ (N−1)r
N−r if r < N,

+∞ if r ≥ N,
(2.1)

respectively. From Simon [35, formula (2.2)], we have the well-known inequality(
|x|r−2x − |y|r−2y

)
· (x − y) ≥ k(r)|x − y|r (2.2)

for r ≥ 2 and for all x, y ∈ RN , where k(r) is a positive constant.
The eigenvalue problem of the r-Laplacian (r > 1) with Steklov boundary condition is given by

−∆ru = −|u|r−2u in Ω,

|u|r−2u · ν = λ|u|r−2u on Γ .
(2.3)

We know that problem (2.3) has a smallest eigenvalue λS
1,r > 0 that is isolated and simple, see Lê [36]. Also, λS

1,r > 0 can
be characterized by

λS
1,r = inf

u∈W1,r (Ω)\{0}

∥∇u∥r
r,Ω + ∥u∥r

r,Ω

∥u∥r
r,Γ

. (2.4)

n what follows, we denote by uS
1,r the first eigenfunction of problem (2.3) corresponding to the first eigenvalue λS

1,r . It is
lear that uS

1,r ∈ int
(
C1(Ω)+

)
, where int

(
C1(Ω)+

)
stands for the interior of

C1(Ω) := {u ∈ C1(Ω) : u(x) ≥ 0 for all x ∈ Ω},
+

5
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that is

int
(
C1(Ω)+

)
=

{
u ∈ C1(Ω) : u(x) > 0 for all x ∈ Ω

}
.

Without any loss of generality, we suppose that
uS

1,r


r,Γ

= 1.
Next, we introduce the subset C+(Ω) of C(Ω) defined by

C+(Ω) :=
{
s ∈ C(Ω) : 1 < s(x) for all x ∈ Ω

}
.

or any r ∈ C+(Ω), we define

r− := min
x∈Ω

r(x) and r+ := max
x∈Ω

r(x).

Let p ∈ C+(Ω). In what follows, we denote by p′
∈ C+(Ω) the conjugate variable exponent to p, namely,

1
p(x)

+
1

p′(x)
= 1 for all x ∈ Ω.

Also, we denote by s∗ and s∗ the critical Sobolev variable exponents to s ∈ C+(Ω) in the domain and on the boundary,
respectively, given by

s∗(x) =

{
Ns(x)
N−s(x) if s(x) < N,

+∞ if s(x) ≥ N,
for all x ∈ Ω, (2.5)

nd

s∗(x) =

{
(N−1)s(x)
N−s(x) if s(x) < N,

+∞ if s(x) ≥ N
for all x ∈ Ω, (2.6)

espectively.
By M(Ω) we denote the space of all measurable functions u : Ω → R. For r ∈ C+(Ω) the variable exponent Lebesgue

space Lr(·)(Ω) is defined by

Lr(·)(Ω) :=

{
u ∈ M(Ω) :

∫
Ω

|u|r(x) dx < +∞

}
.

It is well-known that Lr(·)(Ω) equipped with the Luxemburg norm given by

∥u∥r(·),Ω := inf

{
λ > 0 :

∫
Ω

(
|u|
λ

)r(x)

dx ≤ 1

}
s a separable and reflexive Banach space, the dual space of Lr(·)(Ω) is Lr

′(·)(Ω) and the following Hölder inequality holds:∫
Ω

|uv| dx ≤

[
1
r−

+
1
r ′
−

]
∥u∥r(·),Ω∥v∥r ′(·),Ω ≤ 2∥u∥r(·),Ω∥v∥r ′(·),Ω

for all u ∈ Lr(·)(Ω) and for all v ∈ Lr
′(·)(Ω). Moreover, if r1, r2 ∈ C+(Ω) are such that r1(x) ≤ r2(x) for all x ∈ Ω , then we

have the continuous embedding

Lr2(·)(Ω) ↪→ Lr1(·)(Ω).

For any r ∈ C+(Ω), we consider the modular function ϱr(·),Ω : Lr(·)(Ω) → R+ := [0, +∞) given by

ϱr(·),Ω (u) :=

∫
Ω

|u|r(x) dx for all u ∈ Lr(·)(Ω). (2.7)

The following proposition states some important relations between the norm of Lr(·)(Ω) and the modular function ϱr(·),Ω
defined in (2.7).

Proposition 2.1. If r ∈ C+(Ω) and u ∈ Lr(·)(Ω), then we have the following assertions:

(i) ∥u∥r(·),Ω = λ ⇐⇒ ϱr(·),Ω
( u

λ

)
= 1 with u ̸= 0;

(ii) ∥u∥r(·),Ω < 1 (resp. = 1, > 1) ⇐⇒ ϱr(·),Ω (u) < 1 (resp. = 1, > 1);
(iii) ∥u∥r(·),Ω < 1 H⇒ ∥u∥r+

r(·),Ω ≤ ϱr(·),Ω (u) ≤ ∥u∥r−
r(·),Ω ;

(iv) ∥u∥r(·),Ω > 1 H⇒ ∥u∥r−
r(·),Ω ≤ ϱr(·),Ω (u) ≤ ∥u∥r+

r(·),Ω ;
(v) ∥u∥r(·),Ω → 0 ⇐⇒ ϱr(·),Ω (u) → 0;
(vi) ∥u∥ → +∞ ⇐⇒ ϱ (u) → +∞.
r(·),Ω r(·),Ω

6
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H

P

Let D be a nonempty subset of Ω . In what follows, we denote by ∥ · ∥r(·),D the norm of the variable exponent Lebesgue
pace Lr(·)(D). We set ϱr(·),D(u) =

∫
D |u|r(x) dx for u ∈ Lr(·)(D).

Further, for r ∈ C+(Ω), we denote by W 1,r(·)(Ω) the variable exponent Sobolev space given in

W 1,r(·)(Ω) :=
{
u ∈ Lr(·)(Ω) : |∇u| ∈ Lr(·)(Ω)

}
,

which is equipped with the norm

∥u∥1,r(·),Ω := ∥u∥r(·),Ω + ∥∇u∥r(·),Ω for all u ∈ W 1,r(·)(Ω),

to be a separable and reflexive Banach space, where ∥∇u∥r(·),Ω := |||∇u|||r(·),Ω . Moreover we define

W 1,r(·)
0 (Ω) = C∞

0 (Ω)
∥·∥1,r(·),Ω

.

with norm ∥ · ∥1,r(·),Ω . From Poincaré’s inequality, we know that we can endow the space W 1,r(·)
0 (Ω) with the equivalent

orm

∥u∥1,r(·),0,Ω = ∥∇u∥r(·),Ω for all u ∈ W 1,r(·)
0 (Ω).

Additionally, we introduce a closed subset V of W 1,p(·)(Ω) given by

V :=
{
u ∈ W 1,p(·)(Ω) : u = 0 for a. a. x ∈ Γ1

}
.

t is clear that V equipped with the norm V ∋ u ↦→ ∥u∥1,r(·),Ω ∈ R becomes a reflexive Banach space.
Employing Proposition 2.1, we also have the following proposition.

Proposition 2.2. Let r ∈ C+(Ω) and ιr(·),Ω :W 1,r(·)(Ω) → R+ := [0, +∞) be the modular function given by

ιr(·),Ω (u) :=

∫
Ω

|∇u|r(x) dx +

∫
Ω

|u|r(x) dx for all u ∈ W 1,r(·)(Ω).

If u ∈ W 1,r(·)(Ω), then we have the following assertions:

(i) ∥u∥1,r(·),Ω = λ ⇐⇒ ιr(·),Ω
( u

λ

)
= 1 with u ̸= 0;

(ii) ∥u∥1,r(·),Ω < 1 (resp. = 1, > 1) ⇐⇒ ιr(·),Ω (u) < 1 (resp. = 1, > 1);
(iii) ∥u∥1,r(·),Ω < 1 H⇒ ∥u∥r+

1,r(·),Ω ≤ ιr(·),Ω (u) ≤ ∥u∥r−
1,r(·),Ω ;

(iv) ∥u∥1,r(·),Ω > 1 H⇒ ∥u∥r−
1,r(·),Ω ≤ ιr(·),Ω (u) ≤ ∥u∥r+

1,r(·),Ω ;
(v) ∥u∥1,r(·),Ω → 0 ⇐⇒ ιr(·),Ω (u) → 0;
(vi) ∥u∥1,r(·),Ω → +∞ ⇐⇒ ιr(·),Ω (u) → +∞.

In the sequel, we denote by C0, 1
| log t| (Ω) the set of all functions r : Ω → R that are log-Hölder continuous, namely,

there is a constant C > 0 satisfying

|r(x) − r(y)| ≤
C

|log |x − y||
for all x, y ∈ Ω with |x − y| <

1
2
.

The following propositions give several important embeddings results, its detailed proof can be found in Diening–
arjulehto–Hästö–Ružička [37, Corollary 8.3.2] and Fan [38, Propositions 2.1 and 2.2].

roposition 2.3.

(i) If r ∈ C0, 1
| log t| (Ω) ∩ C+(Ω) and s ∈ C(Ω) is such that

1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω,

then the embedding

W 1,r(·)(Ω) ↪→ Ls(·)(Ω)

is continuous.
(ii) If s ∈ C+(Ω) is such that

1 ≤ s(x) < r∗(x) for all x ∈ Ω,

then the embedding

W 1,r(·)(Ω) ↪→ Ls(·)(Ω)

is compact.
7
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R

c

Proposition 2.4.

(i) If r ∈ C+(Ω) ∩ W 1,ς (Ω) for some ς > N and s ∈ C(Ω) is such that

1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω,

then the embedding

W 1,r(·)(Ω) ↪→ Ls(·)(∂Ω)

is continuous.
(ii) If s ∈ C+(Ω) is such that

1 ≤ s(x) < r∗(x) for all x ∈ Ω,

then the embedding

W 1,r(·)(Ω) ↪→ Ls(·)(∂Ω)

is compact.

emark 2.5. The embeddings in Propositions 2.3 and 2.4 remain valid if we replace the space W 1,r(·)(Ω) by V .

Next, we introduce the nonlinear operator F : V → V ∗ given by

⟨F (u), v⟩ :=

∫
Ω

|∇u|p(x)−2
∇u · ∇v dx +

∫
Ω

|u|p(x)−2uv dx, (2.8)

for u, v ∈ V with ⟨·, ·⟩ being the duality pairing between V and its dual space V ∗. Arguing as in the proof of Proposition
2.5 of Gasiński–Papageorgiou [39] or Rǎdulescu–Repovš [40, p. 40], we have the following result which states the main
properties of F : V → V ∗.

Proposition 2.6. The operator F defined by (2.8) is bounded, continuous, monotone (hence maximal monotone) and of type
(S+), that is,

un
w

−→ u in V and lim sup
n→∞

⟨F (un), un − u⟩ ≤ 0,

imply un → u in V .

In the last part of this section we are going to recall some results from nonsmooth analysis and multivalued analysis.
First, we recall some definitions and properties of semicontinuous multivalued operators.

Definition 2.7. Let Y and Z be topological spaces, let D ⊂ Y be a nonempty set, and let G : Y → 2Z be a multivalued map.

(i) The map G is called upper semicontinuous (u.s.c. for short) at y ∈ Y , if for each open set O ⊂ Z such that G(y) ⊂ O,
there exists a neighborhood N(y) of y satisfying G(N(y)) := ∪z∈N(y)G(z) ⊂ O. If it holds for each y ∈ D, then G is
called to be upper semicontinuous in D.

(ii) The map G is closed at y ∈ Y , if for every sequence {(yn, zn)}n∈N ⊂ Gr(G) satisfying (yn, zn) → (y, z) in Y × Z , it
holds (y, z) ∈ Gr(G), where Gr(G) is the graph of G defined by

Gr(G) := {(y, z) ∈ Y × Z | z ∈ G(y)} .

If it holds for each y ∈ Y , then G is called to be closed or G has a closed graph.

The next proposition gives equivalent characterizations of multivalued functions to be upper semicontinuous.

Proposition 2.8. Let F : X → 2Y with X and Y being topological spaces. The following statements are equivalent:

(i) F is upper semicontinuous.
(ii) For each closed set C ⊂ Y , F−(C) := {x ∈ X | F (x) ∩ C ̸= ∅} is closed in X.
(iii) For each open set O ⊂ Y , F+(O) := {x ∈ X | F (x) ⊂ O} is open in X.

In the following, let E be real Banach space with norm ∥ · ∥E . A function ϕ : E → R := R ∪ {+∞} is said to be proper,
onvex and lower semicontinuous, if the following conditions are fulfilled:

• D(ϕ) := {u ∈ E : ϕ(u) < +∞} ̸= ∅;
• for any u, v ∈ E and t ∈ (0, 1), it holds ϕ(tu + (1 − t)v) ≤ tϕ(u) + (1 − t)ϕ(v);
• lim inf ϕ(u ) ≥ ϕ(u) where the sequence {u } ⊂ E is such that u → u in E as n → ∞ for some u ∈ E.
n→∞ n n n∈N n

8
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Let ϕ be a convex mapping. An element x∗
∈ E∗ is said to be a subgradient of ϕ at u ∈ E if

⟨x∗, v − u⟩ ≤ ϕ(v) − ϕ(u) (2.9)

holds for all v ∈ E. The set of all elements x∗
∈ E∗ which satisfies (2.9) is called the convex subdifferential of ϕ at u and

is denoted by ∂cϕ(u).
Moreover, a function j : E → R is said to be locally Lipschitz at x ∈ E if there is a neighborhood O(x) of x and a constant

Lx > 0 such that

|j(y) − j(z)| ≤ Lx∥y − z∥E for all y, z ∈ O(x).

We denote by

j◦(x; y) := lim sup
z→x, λ↓0

j(z + λy) − j(z)
λ

,

the generalized directional derivative of j at the point x in the direction y and ∂ j : E → 2E∗

given by

∂ j(x) :=
{
ξ ∈ E∗

: j◦(x; y) ≥ ⟨ξ, y⟩E∗×E for all y ∈ E
}

for all x ∈ E

is the generalized gradient of j at x in the sense of Clarke.
The next proposition summarizes the properties of generalized gradients and generalized directional derivatives of a

locally Lipschitz function. We refer to Migórski–Ochal–Sofonea [41, Proposition 3.23] for its proof.

Proposition 2.9. Let j : E → R be locally Lipschitz with Lipschitz constant Lx > 0 at x ∈ E. Then we have the following:

(i) The function y ↦→ j◦(x; y) is positively homogeneous, subadditive, and satisfies

|j◦(x; y)| ≤ Lx∥y∥E for all y ∈ E.

(ii) The function (x, y) ↦→ j◦(x; y) is upper semicontinuous.
(iii) For each x ∈ E, ∂ j(x) is a nonempty, convex, and weak∗ compact subset of E∗ with ∥ξ∥E∗ ≤ Lx for all ξ ∈ ∂ j(x).
(iv) j◦(x; y) = max {⟨ξ, y⟩E∗×E | ξ ∈ ∂ j(x)} for all y ∈ E.
(v) The multivalued function E ∋ x ↦→ ∂ j(x) ⊂ E∗ is upper semicontinuous from E into the subsets of E∗ with weak∗

topology.

Finally, we recall Tychonoff’s fixed point theorem for multivalued operators. The proof of this result can be found in
Granas–Dugundji [42, Theorem 8.6].

Theorem 2.10. Let D be a bounded, closed and convex subset of a reflexive Banach space E, and Λ :D → 2D be a multivalued
map such that

(i) Λ has bounded, closed and convex values,
(ii) Λ is weakly–weakly u.s.c.

Then Λ has a fixed point in D.

3. Anisotropic implicit obstacle problems

The main objective of this section is to develop a generalized framework for examining the existence of weak solutions
to the nonlinear implicit obstacle inclusion problem with multivalued boundary conditions and nonlocal terms given by
(1.1). Our method is based on the theory of nonsmooth analysis, convex analysis, Tychonoff’s fixed point theorem for
multivalued operators and variational approach.

We start by imposing the precise assumptions on the data of problem (1.1).

H(0): p, q ∈ C+(Ω) are such that

q(x) < p(x) for all x ∈ Ω.

H(1): a : Lp
∗(·)(Ω) → (0, +∞) and b : Lp

∗(·)(Ω) → [0, +∞) are such that

(i) a is weakly continuous in V , i.e., if {un}n∈N ⊂ V ⊂ Lp
∗(·)(Ω) is such that un

w
−→ u in V , then it holds

a(u) = lim
n→∞

a(un),

and there exists a constant ca > 0 satisfying

a(u) ≥ ca for all u ∈ V ,

where p∗ is the critical exponent of p in the domain Ω given in (2.5);
9
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H

(ii) b is a weakly continuous in V .

H(g): The function g : Ω × R → R is such that

(i) the function x ↦→ g(x, s) is measurable in Ω for all s ∈ R;
(ii) the function s ↦→ g(x, s) is continuous for a. a. x ∈ Ω;
(iii) there exist a constant αg > 0 and a function βg ∈ Lδ′

0(·)(Ω)+ such that

|g(x, s)| ≤ βg (x) + αg |s|δ0(x)−1

for a. a. x ∈ Ω and for all s ∈ R, where δ0 ∈ C+(Ω) is such that

δ0(x) < p∗(x) for all x ∈ Ω;

(iv) there exist a constant ag > 0 and a function bg ∈ L1(Ω) such that

g(x, s)s ≥ ag |s|ς (x) − bg (x)

for a. a. x ∈ Ω and for all s ∈ R, where ς ∈ C+(Ω) is such that

p(x) < ς (x) < p∗(x) for all x ∈ Ω;

(v) the function s ↦→ g(x, s) is nondecreasing for a. a. x ∈ Ω , i.e.,

(g(x, s1) − g(x, s2))(s1 − s2) ≥ 0

for all s1, s2 ∈ R and for a. a. x ∈ Ω .

H(U1): The multivalued function U1 : Ω × R → 2R is such that

(i) U1(x, s) is a nonempty, bounded, closed and convex set in R for a. a. x ∈ Ω and all s ∈ R;
(ii) x ↦→ U1(x, s) is measurable in Ω for all s ∈ R;
(iii) s ↦→ U1(x, s) is u.s.c. for a. a. x ∈ Ω;
(iv) there exist a function αU1 ∈ Lδ′

1(·)(Ω)+ and a constant aU1 ≥ 0 such that

|η| ≤ αU1 (x) + aU1 |s|
δ1(x)−1

for all η ∈ U1(x, s), for a. a. x ∈ Ω and for all s ∈ R, where δ1 ∈ C+(Ω) is such that

δ1(x) < p(x) for all x ∈ Ω.

H(U2): The multivalued function U2 : Γ2 × R → 2R is such that

(i) U2(x, s) is a nonempty, bounded, closed and convex set in R for a. a. x ∈ Γ2 and all s ∈ R;
(ii) x ↦→ U2(x, s) is measurable on Γ2 for all s ∈ R;
(iii) s ↦→ U2(x, s) is u.s.c. for a. a. x ∈ Γ2;
(iv) there exist a function αU2 ∈ Lδ′

2(·)(Γ2)+ and a constant aU2 > 0 such that

|ξ | ≤ αU2 (x) + aU2 |s|
δ2(x)−1

for all ξ ∈ U2(x, s), for a. a. x ∈ Γ2 and for all s ∈ R, where δ2 ∈ C+(Ω) is such that

δ2(x) < p(x) for all x ∈ Ω.

(φ): The function φ : Γ3 × R → R is such that

(i) x ↦→ φ(x, r) is measurable on Γ3 for all r ∈ R;
(ii) r ↦→ φ(x, r) is convex and l.s.c. for a. a. x ∈ Γ3;
(iii) for each function u ∈ Lp∗(·)(Γ3) the function x ↦→ φ(x, u(x)) belongs to L1(Γ3), where p∗ is the critical exponent

of p on the boundary Γ given in (2.6).

H(L): L : V → R is positively homogeneous and subadditive such that

L(u) ≤ lim sup
n→∞

L(un), (3.1)

whenever {un}n∈N ⊂ V is such that un
w

−→ u in V for some u ∈ V .

H(J): J : V → (0, +∞) is weakly continuous, that is, for any sequence {un}n∈N ⊂ V such that un
w

−→ u for some u ∈ V ,
we have

J(u ) → J(u).
n

10
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Remark 3.1. From hypotheses H(L), we can observe that on the one hand, the homogeneity and subadditivity of L
uarantee the convexity of L and on the other hand, if L : V → R is weak lower semicontinuous, then inequality (3.1)

holds automatically.

Example 3.2. Given a constant ca > 0, the functions

a(u) = ca +

∫
Ω

|u|τ dx and b(u) =

k∏
i=1

⏐⏐⏐⏐∫
Ω

|u|τi dx − πi

⏐⏐⏐⏐ ,
satisfy hypotheses H(g), where τ , τ1, . . . , τk ∈ [1, p∗

−
) and π1, . . . , πk ∈ [0, +∞). Observe that the function b given above

s finite degenerate.
Let cg > 0 and ς0, ς ∈ C+(Ω) and βg ∈ Lς ′(·)(Ω) be such that

ς0(x) ≤ p(x) < ς (x) < p∗(x) for all x ∈ Ω.

Then, the following function satisfies hypotheses H(g)

g(x, s) =

{
cg |s|ς0(x)−2s + βg (x) if |s| ≤ 1,
cg |s|ς (x)−2s + βg (x) if |s| > 1,

for a. a. x ∈ Ω.

Let ω ∈ L∞(Γ3)+. Then, the function φ : Γ3 × R → R fulfills assumption H(φ)

φ(x, s) =

{
ω(x)|s| if |s| ≤ 1,
ω(x)|s|ς2(x) if |s| > 1,

for a. a. x ∈ Γ3.

In order to formulate the implicit obstacle effect to a suitable variational constraint, we consider the multivalued map
K : V → 2V defined by

K (u) := {v ∈ V : L(v) ≤ J(u)} (3.2)

for all u ∈ V .
Next, we state the definition of a weak solution of problem (1.1).

Definition 3.3. A function u ∈ V is said to be a weak solution of problem (1.1), if u ∈ K (u) and there exist functions
η ∈ Lδ′

1(·)(Ω), ξ ∈ Lδ′
2(·)(Γ2) such that η(x) ∈ U1(x, u(x)) for a. a. x ∈ Ω , ξ (x) ∈ U2(x, u(x)) for a. a. x ∈ Γ2 and the inequality

a(u)
∫

Ω

|∇u|p(x)−2
∇u · ∇(v − u) dx + b(u)

∫
Ω

|∇u|q(x)−2
∇u · ∇(v − u) dx

+

∫
Ω

g(x, u)(v − u) dx +

∫
Γ3

φ(x, v) dΓ −

∫
Γ3

φ(x, u) dΓ

≥

∫
Ω

η(x)(v − u) dx +

∫
Γ2

ξ (x)(v − u) dΓ

s satisfied for all v ∈ K (u), where the multivalued function K : V → 2V is defined by (3.2).

The main result in this section is stated by the following theorem.

heorem 3.4. Assume that H(0), H(1), H(g), H(U1), H(U2), H(φ), H(L) and H(J) are satisfied. Then, the solution set of problem
(1.1), denoted by Υ , is nonempty and compact in V .

In order to prove Theorem 3.4, we need the following important auxiliary result which delivers several significant
properties for the multivalued mapping K : V → 2V . More precisely, this lemma reveals an essential characteristic that K
is Mosco continuous (see Mosco [43], i.e., K is sequentially weakly–weakly closed and sequentially weakly–strongly l.s.c.).
The detailed proof of this lemma can be found in Lemma 3.3 of Zeng–Rǎdulescu–Winkert [22].

Lemma 3.5. Let J : V → (0, +∞) and L : V → R be two functions such that H(L) and H(J) are satisfied. Then, the following
statements hold:

(i) for each u ∈ V , K (u) is closed and convex in V such that 0 ∈ K (u);
(ii) the graph Gr(K ) of K is sequentially closed in Vw × Vw , that is, K is sequentially closed from V with the weak topology

into the subsets of V with the weak topology;
(iii) if {un}n∈N ⊂ V is a sequence such that

un
w

−→ u in V

for some u ∈ V , then for each v ∈ K (u) there exists a sequence {vn}n∈N ⊂ V such that
vn ∈ K (un) and vn → v in V .

11
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Note that problem (1.1) has several interesting and complicated characterizations, such as, highly abstract nonlocal
unctions (which could be specialized to a nonlinear Kirchhoff type condition (see for example, in [44], the authors
ombined the effects of a nonlocal Kirchhoff coefficient and a double phase operator with a singular term and a critical
obolev nonlinearity in which the proof of main result is based on a suitable minimization argument on the Nehari
anifold; the work [45] investigates the effects of an indefinite Kirchhoff type function on the geometry of an elliptic
roblem, by adopting an approximation process based on the Galerkin method, multivalued terms (which can be seemed
s feedback control effect from the control point of view), and also nonsmooth boundary conditions. This leads to
remendous difficulties from various perspectives. For example, we are not able to use directly variational methods,
opological techniques and the theory of set-valued analysis for determining the existence of a weak solution. In order to
ypass those difficulties, we consider the following auxiliary problem: for given functions (w, η, ξ ) ∈ V × X∗

× Y ∗, find
function u : Ω → R such that

−a(w)∆p(·)u − b(w)∆q(·)u + g(x, u) = η(x) in Ω,

u = 0 on Γ1,

∂u(x)
∂νw

= ξ (x) on Γ2,

−
∂u(x)
∂νw

∈ ∂cφ(x, u) on Γ3,

L(u) ≤ J(w),

(3.3)

where X := Lδ1(·)(Ω), Y := Lδ2(·)(Γ2), and X∗ and Y ∗ are the dual spaces of X and Y (i.e., X∗
:= Lδ′

1(·)(Ω) and Y ∗
:= Lδ′

2(·)(Γ2)),
respectively, and

∂u
∂νw

:=
(
a(w)|∇u|p(x)−2

∇u + b(w)|∇u|q(x)−2
∇u

)
· ν.

Note that problem (3.3) is an anisotropic obstacle problem with mixed boundary conditions.
From Definition 3.3, it is not difficult to see that a function u ∈ V is a weak solution of problem (3.3), if the following

holds: u ∈ K (w) and

a(w)
∫

Ω

|∇u|p(x)−2
∇u · ∇(v − u) dx + b(w)

∫
Ω

|∇u|q(x)−2
∇u · ∇(v − u) dx

+

∫
Ω

g(x, u)(v − u) dx +

∫
Γ3

φ(x, v) dΓ −

∫
Γ3

φ(x, u) dΓ

≥

∫
Ω

η(x)(v − u) dx +

∫
Γ2

ξ (x)(v − u) dΓ

or all v ∈ K (w).
The following lemma examines the existence and uniqueness of problem (3.3).

emma 3.6. Suppose that H(0), H(g) and H(φ) are fulfilled. Then, for each fixed (w, η, ξ ) ∈ V × X∗
× Y ∗, problem (3.3) has

a unique solution.

Proof. Recall that V ↪→ X , V ↪→ Y and V ↪→ Lδ0(·)(Ω) are continuous embeddings. We introduce the nonlinear operator
F : V → V ∗ given by

⟨F(u), v⟩ := a(w)
∫

Ω

|∇u|p(x)−2
∇u · ∇v dx + b(w)

∫
Ω

|∇u|q(x)−2
∇u · ∇v dx

+

∫
Ω

g(x, u)v dx −

∫
Ω

η(x)v dx −

∫
Γ2

ξ (x)v dΓ

for all u, v ∈ V . By virtue of hypotheses H(0) and H(g), we can see that F : V → V ∗ is a continuous, bounded and strictly
monotone operator. Furthermore, let us consider the function ϕ : V → R defined by

ϕ(u) :=

∫
Γ3

φ(x, u) dΓ for all u ∈ V ,

which is well-defined due to hypothesis H(φ)(iii). Applying standard arguments, it is not difficult to prove that ϕ is a
proper, convex and l.s.c. function in V . In fact, it is convex and continuous, because the effective domain of ϕ contains V .

Utilizing the notation above, it is obvious that u is a weak solution of problem (3.3), if and only if it solves the following
mixed variational inequality problem: find u ∈ K (w) such that

⟨F(u), v − u⟩ + ϕ(v) − ϕ(u) ≥ 0 (3.4)
12
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for all v ∈ K (w). Moreover, using hypotheses H(0) and H(g)(iv), we obtain

⟨Fu, u⟩

≥ a(w)
∫

Ω

|∇u|p(x) dx + b(w)
∫

Ω

|∇u|q(x) dx +

∫
Ω

ag |u|ς (x) − bg (x) dx

−

∫
Ω

η(x)u dx −

∫
Γ2

ξ (x)u dΓ

≥ caϱp(·),Ω (∇u) + b(w)ϱq(·),Ω (∇u) − (∥η∥V∗ + ∥ξ∥V∗) ∥u∥V − ∥bg∥1,Ω + agϱς (·),Ω (u),

where ca > 0 is given in hypotheses H(1). Keeping in mind that p(x) < ς (x) for all x ∈ Ω , it follows from Young’s
nequality that

agϱς (·),Ω (u) ≥ caϱp(·),Ω (u) − m0

for some m0 > 0. Taking the last two inequalities into account, we have

⟨Fu, u⟩
≥ caϱp(·),Ω (∇u) + b(w)ϱq(·),Ω (∇u) − (∥η∥V∗ + ∥ξ∥V∗) ∥u∥V − ∥bg∥1,Ω + caϱp(·),Ω (u) − m0

≥ ca
(
ϱp(·),Ω (∇u) + ϱp(·),Ω (u)

)
− (∥η∥V∗ + ∥ξ∥V∗) ∥u∥V − ∥bg∥1,Ω − m0

≥ ca min
{
∥u∥p−

V , ∥u∥p+

V

}
− (∥η∥V∗ + ∥ξ∥V∗) ∥u∥V − ∥bg∥1,Ω − m0,

where the last inequality is obtained by using Proposition 2.2(iii) and (iv). This means that F is a coercive operator.
Therefore, all conditions of Theorem 3.2 of Liu–Migórski–Zeng [46] are satisfied. Using this theorem, we conclude that

inequality (3.4) has at least one solution. On the other hand, the strict monotonicity of F implies that this solution is
unique. This completes the proof. □

In particular, if J(w) = +∞ for all w ∈ V , problem (3.3) reduces to the following nonlinear anisotropic mixed boundary
problem involving a convex subdifferential term: find u ∈ V such that

−a(w)∆p(·)u − b(w)∆q(·)u + g(x, u) = η(x) in Ω,

u = 0 on Γ1,

∂u
∂νw

= ξ (x) on Γ2,

−
∂u
∂νw

∈ ∂cφ(x, u) on Γ3.

(3.5)

n this special case, we have the following result.

orollary 3.7. Suppose that H(0), H(g) and H(φ) are fulfilled. Then, problem (3.5) has a unique solution.

Lemma 3.6 permits us to consider the solution mapping S : V × X∗
× Y ∗

→ V of problem (3.3) defined by

S(w, η, ξ ) := u(w,η,ξ ) for all (w, η, ξ ) ∈ V × X∗
× Y ∗,

where u(w,η,ξ ) is the unique solution of problem (3.3) corresponding to (w, η, ξ ) ∈ V × X∗
× Y ∗. The following lemma

shows that the solution mapping S is a completely continuous operator, that is, if {(wn, ηn, ξn)}n∈N ⊂ V × X∗
× Y ∗ and

u, η, ξ ) ∈ V × X∗
× Y ∗ satisfy (wn, ηn, ξn)

w
−→ (w, η, ξ ) in V × X∗

× Y ∗, then we have S(wn, ηn, ξn) → S(w, η, ξ ) in V .

emma 3.8. Assume that H(0), H(1), H(g), H(φ), H(L) and H(J) are satisfied. Then, the solution map S : V × X∗
× Y ∗

→ V
of problem (3.3) is completely continuous.

Proof. Let {(wn, ηn, ξn)}n∈N ⊂ V × X∗
× Y ∗, {un}n∈N ⊂ V be sequences and (w, η, ξ ) ∈ V × X∗

× Y ∗ such that

(wn, ηn, ξn)
w

−→ (w, η, ξ ) in V × X∗
× Y ∗

and un = S(wn, ηn, ξn) for each n ∈ N. Hence, for any n ∈ N, the function un ∈ K (wn) is the unique solution of the
following inequality

a(wn)
∫

Ω

|∇un|
p(x)−2

∇un · ∇(v − un) dx + b(wn)
∫

Ω

|∇un|
q(x)−2

∇un · ∇(v − un) dx

+

∫
Γ3

φ(x, v) dΓ −

∫
Γ3

φ(x, un) dΓ +

∫
Ω

g(x, un)(v − un) dx

≥

∫
ηn(x)(v − un) dx +

∫
ξn(x)(v − un) dΓ for all v ∈ K (wn).

(3.6)
Ω Γ2

13
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Claim 1. The solution sequence {un}n∈N is uniformly bounded in V .

If the sequence {un}n∈N is unbounded in V , then, passing to a subsequence if necessary, we may suppose that

∥un∥V → +∞ as n → ∞. (3.7)

ote that 0 ∈ K (wn) for each n ∈ N (see Lemma 3.5(i)), we can take v = 0 in inequality (3.6) in order to obtain

a(wn)
∫

Ω

|∇un|
p(x) dx + b(wn)

∫
Ω

|∇un|
q(x) dx +

∫
Ω

g(x, un)un dx +

∫
Γ3

φ(x, un(x)) dΓ

≤

∫
Ω

ηn(x)un(x) dx +

∫
Γ2

ξn(x)un(x) dΓ +

∫
Γ3

φ(x, 0) dΓ

≤ ∥φ(·, 0)∥1,Γ3 + ∥ηn∥V∗∥un∥V + ∥ξn∥V∗∥un∥V .

(3.8)

ondition H(g)(iv) and Young’s inequality imply that∫
Ω

g(x, un)un dx ≥

∫
Ω

ag |un|
ς (x)

− bg (x) dx

= agϱς (·),Ω (un) − ∥bg∥1,Ω ≥ caϱp(·),Ω (un) − m1 − ∥bg∥1,Ω

(3.9)

or some m1 > 0 which is independent of n. Recall that v ↦→ ϕ(v) =
∫

Γ3
φ(x, v) dΓ is a proper, convex and l.s.c. function.

hus, from Brézis [47, Proposition 1.10], we are able to find two positive constants αϕ, βϕ ≥ 0 such that

ϕ(v) ≥ −αϕ∥v∥V − βϕ (3.10)

or all v ∈ V . Taking into account (3.8), (3.9) and (3.10) and using hypothesis H(1) leads to

0 ≥ caϱp(·),Ω (∇un) + b(wn)ϱq(·),Ω (∇un) + caϱp(·),Ω (un) − m1 − ∥bg∥1,Ω − αϕ∥un∥V − βϕ

− ∥φ(·, 0)∥1,Γ3 − (∥ηn∥V∗ + ∥ξn∥V∗) ∥un∥V

≥ ca
(
ϱp(·),Ω (∇un) + ϱp(·),Ω (un)

)
− m1 − ∥bg∥1,Ω − αϕ∥un∥V − βϕ − ∥φ(·, 0)∥1,Γ3

− (∥ηn∥V∗ + ∥ξn∥V∗) ∥un∥V

≥ ca min
{
∥un∥

p−

V , ∥un∥
p+

V

}
− m1 − ∥bg∥1,Ω − αϕ∥un∥V − βϕ − ∥φ(·, 0)∥1,Γ3

− (∥ηn∥V∗ + ∥ξn∥V∗) ∥un∥V .

Because {ηn}n∈N and {ξn}n∈N are bounded in X∗ and Y ∗, respectively, and the embeddings of V into X and of V into Y
are continuous, we know that {ηn}n∈N and {ξn}n∈N are bounded in V ∗. Passing to the lower limit as n → ∞ in the above
inequalities and then using (3.7), it leads to a contradiction. Therefore, we conclude that the sequence {un}n∈N is uniformly
bounded in V . The claim follows.

Using this claim, without any loss of generality, we are able to find a function u ∈ V satisfying

un
w

−→ u in V .

Claim 2. The sequence {un}n∈N converges strongly to u in V .

Recall that the graph of K , Gr(K ), is sequentially closed in Vw × Vw (see Lemma 3.5(ii)). So, it follows from the
convergence (un, wn)

w
−→ (u, w) in V × V and {(un, wn)}n∈N ⊂ Gr(K ), that u belongs to K (w), that is, u ∈ K (w). By

means of Lemma 3.5(iii), it permits us to find a sequence {yn}n∈N ⊂ V such that yn ∈ K (wn) for each n ∈ N and

yn → u in V .

Taking v = yn in (3.6) one has

a(wn)
∫

Ω

|∇un|
p(x)−2

∇un · ∇(un − yn) dx + b(wn)
∫

Ω

|∇un|
q(x)−2

∇un · ∇(un − yn) dx

≤

∫
Γ3

φ(x, yn) dΓ −

∫
Γ3

φ(x, un) dΓ +

∫
Ω

g(x, un)(yn − un) dx

−

∫
Ω

ηn(x)(yn − un) dx −

∫
Γ2

ξn(x)(yn − un) dΓ .
14
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Passing to the upper limit as n → ∞ in the above inequality, we obtain

lim sup
n→∞

[
a(wn)

∫
Ω

|∇un|
p(x)−2

∇un · ∇(un − yn) dx

+ b(wn)
∫

Ω

|∇un|
q(x)−2

∇un · ∇(un − yn) dx
]

≤ lim sup
n→∞

[ ∫
Γ3

φ(x, yn) dΓ −

∫
Γ3

φ(x, un) dΓ +

∫
Ω

g(x, un)(yn − un) dx

−

∫
Ω

ηn(x)(yn − un) dx −

∫
Γ2

ξn(x)(yn − un) dΓ

]
≤ lim sup

n→∞

∫
Γ3

φ(x, yn) dΓ − lim inf
n→∞

∫
Γ3

φ(x, un) dΓ + lim sup
n→∞

∫
Ω

g(x, un)(yn − un) dx

− lim inf
n→∞

∫
Ω

ηn(x)(yn − un) dx − lim inf
n→∞

∫
Γ2

ξn(x)(yn − un) dΓ .

(3.11)

Keeping in mind that V is embedded compactly into Lδ0(·)(Ω) (resp. X and Y ), we have

lim
n→∞

∫
Ω

g(x, un)(yn − un) dx = 0,

lim
n→∞

∫
Ω

ηn(x)(yn − un) dx = 0,

lim inf
n→∞

∫
Γ2

ξn(x)(yn − un) dΓ = 0,

(3.12)

where we have used the boundedness of {ηn}n∈N ⊂ X∗ and {ξn}n∈N ⊂ Y ∗ as well as hypotheses H(g). Hypotheses H(φ)
ndicate that s ↦→ φ(x, s) is continuous for a. a. x ∈ Γ3. Employing Fatou’s lemma and the convergence (un, yn) → (u, u)
n Y × Y implies

lim sup
n→∞

∫
Γ3

φ(x, yn) dΓ − lim inf
n→∞

∫
Γ3

φ(x, un) dΓ ≤ 0. (3.13)

ote that a and b are continuous. Applying Hölder’s inequality we get

lim inf
n→∞

b(wn)
∫

Ω

|∇un|
q(x)−2

∇un · ∇(un − yn) dx

≥ lim inf
n→∞

b(wn)
∫

Ω

|∇yn|q(x)−2
∇yn · ∇(un − yn) dx = 0

(3.14)

nd

lim sup
n→∞

a(wn)
∫

Ω

|∇un|
p(x)−2

∇un · ∇(un − yn) dx

= lim sup
n→∞

[
a(wn)

∫
Ω

|∇un|
p(x)−2

∇un · ∇(un − yn) dx +

∫
Ω

|un|
p(x)−2un(un − u) dx

]
≥ lim sup

n→∞

[
a(w)

∫
Ω

|∇un|
p(x)−2

∇un · ∇(un − yn) dx +

∫
Ω

|un|
p(x)−2un(un − u) dx

]
− lim sup

n→∞

|a(wn) − a(w)|
⏐⏐⏐⏐∫

Ω

|∇un|
p(x)−2

∇un · ∇(un − yn) dx
⏐⏐⏐⏐

≥ lim sup
n→∞

[
a(w)

∫
Ω

|∇un|
p(x)−2

∇un · ∇(un − yn) dx +

∫
Ω

|un|
p(x)−2un(un − u) dx

]
− lim sup

n→∞

2k0|a(wn) − a(w)|∥∇un∥p(·),Ω∥∇(yn − un)∥p(·),Ω

≥ lim sup
n→∞

[
a(w)

∫
Ω

|∇un|
p(x)−2

∇un · ∇(un − u) dx +

∫
Ω

|un|
p(x)−2un(un − u) dx

+ a(w)
∫

Ω

|∇un|
p(x)−2

∇un · ∇(u − yn) dx
]

(3.15)
15
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≥ lim sup
n→∞

[
a(w)

∫
Ω

|∇un|
p(x)−2

∇un · ∇(un − u) dx +

∫
Ω

|un|
p(x)−2un(un − u) dx

]
+ lim inf

n→∞
a(w)

∫
Ω

|∇un|
p(x)−2

∇un · ∇(u − yn) dx

≥ lim sup
n→∞

[
a(w)

∫
Ω

|∇un|
p(x)−2

∇un · ∇(un − u) dx +

∫
Ω

|un|
p(x)−2un(un − u) dx

]
or some k0 > 0 which is independent of n, where we have used the compactness of the embedding of V into Lp(·)(Ω)
nd the equality

lim
n→∞

∫
Ω

|un|
p(x)−2un(un − u) dx = 0.

Let us consider the bifunction A : V × V → V ∗ defined by

⟨A(w, u), v⟩ := a(w)
∫

Ω

|∇u|p(x)−2
∇u · ∇v dx for all w, u, v ∈ V .

nserting (3.12), (3.13), (3.14) and (3.15) into (3.11) yields

lim sup
n→∞

[
a(w)

∫
Ω

|∇un|
p(x)−2

∇un · ∇(un − u) dx +

∫
Ω

|un|
p(x)−2un(un − u) dx

]
= lim sup

n→∞

⟨A(w, un), un − u⟩ ≤ 0.

he latter combined with the (S+)-property of A(w, ·) (see Proposition 2.6) implies that un → u in V . Therefore, the claim
s proved.

laim 3. The function u is the unique solution of problem (3.3) corresponding to (w, η, ξ ) ∈ V×X∗
×Y ∗, that is, u = S(w, η, ξ ).

Let z ∈ K (w) be arbitrary. We use Lemma 3.5(iii) to find a sequence {zn}n∈N ⊂ V satisfying

zn ∈ K (wn) and zn → z in V .

hoosing v = zn in (3.6) and passing to the upper limit as n → ∞, we obtain

a(w)
∫

Ω

|∇u|p(x)−2
∇u · ∇(z − u) dx + b(w)

∫
Ω

|∇u|q(x)−2
∇u · ∇(z − u) dx

+

∫
Γ3

φ(x, z) dΓ −

∫
Γ3

φ(x, u) dΓ +

∫
Ω

g(x, u)(z − u) dx

≥ lim sup
n→∞

a(wn)
∫

Ω

|∇un|
p(x)−2

∇un · ∇(zn − un) dx

+ lim sup
n→∞

b(wn)
∫

Ω

|∇un|
q(x)−2

∇un · ∇(zn − un) dx + lim sup
n→∞

∫
Γ3

φ(x, zn) dΓ

− lim inf
n→∞

∫
Γ3

φ(x, un) dΓ + lim sup
n→∞

∫
Ω

g(x, un)(zn − un) dx

≥ lim sup
n→∞

∫
Ω

ηn(x)(zn − un) dx + lim sup
n→∞

∫
Γ2

ξn(x)(zn − un) dΓ

=

∫
Ω

η(x)(z − u) dx +

∫
Γ2

ξ (x)(z − u) dΓ .

ince z ∈ K (w) is arbitrary, we can apply Lemma 3.6 and have that u is the unique solution of problem (3.3) corresponding
o (w, η, ξ ), that is, u = S(w, η, ξ ).

Because each convergent subsequence of {un}n∈N converges to the same limit u, we know that the whole sequence
un}n∈N converges strongly to u in V . This means that S : V × X∗

× Y ∗
→ V is completely continuous. □

In what follows, we write i : V → X and γ : V → Y for the embedding operators of V to X and the trace operator from
into Y , respectively. It is obvious that i and γ are linear, bounded and compact. Also, by i∗ : X∗

→ V ∗ and γ ∗
: Y ∗

→ V ∗

X∗
e denote the dual operators of i and γ , respectively. Moreover, let us consider two multivalued mappings U1 : X → 2

16
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and U2 : Y → 2Y∗

given by

U1(u) :=
{
η ∈ X∗

: η(x) ∈ U1(x, u(x)) a. a. in Ω
}
, (3.16)

U2(v) :=
{
ξ ∈ Y ∗

: ξ (x) ∈ U2(x, v(x)) a. a. on Γ2
}
, (3.17)

for all (u, v) ∈ X × Y , respectively. The following lemma indicates that U1 and U2 are well-defined and strongly-weakly
u.s.c.

Lemma 3.9. Let H(U1) and H(U2) be satisfied. Then, the following statements hold:

(i) U1 and U2 are well-defined and for each u ∈ X and for each v ∈ Y , the sets U1(u) and U2(v) are bounded, closed and
convex in X∗ and Y ∗, respectively;

(ii) U1 and U2 are strongly-weakly u.s.c., i.e., U1 is u.s.c. from X with the strong topology to the subsets of X∗ with the weak
topology, and U2 is u.s.c. from Y with the strong topology to the subsets of Y ∗ with the weak topology.

roof. (i) Note that U1 and U2 satisfy an upper Carathéodory condition, that is, Ω ∋ x ↦→ U1(x, s) ⊂ R and Γ2 ∋ x ↦→

2(x, s) ⊂ R are measurable and R ∋ s ↦→ U1(x, s) ⊂ R and R ∋ s ↦→ U2(x, s) ⊂ R are u.s.c. Employing Theorem 1.3.4 of
amenskii–Obukhovskii–Zecca [48], we can see that for each (u, v) ∈ X × Y , the functions Ω ∋ x ↦→ U1(x, u(x)) ⊂ R and

Γ2 ∋ x ↦→ U2(x, v(x)) ⊂ R are both measurable in Ω and on Γ2, respectively. This allows us to invoke the Yankov–von
Neumann–Aumann selection theorem (see e. g. Papageorgiou–Winkert [49, Theorem 2.7.25]) which implies that there are
two measurable functions η : Ω → R and ξ : Γ2 → R satisfying

η(x) ∈ U1(x, u(x)) for a. a. x ∈ Ω and ξ (x) ∈ U2(x, v(x)) for a. a. x ∈ Γ2.

From hypotheses H(U1)(iv) and H(U2)(iv) we have that

ϱδ′
1(·),Ω

(η) =

∫
Ω

|η(x)|δ
′
1(x) dx ≤

∫
Ω

(
αU1 (x) + aU1 |u(x)|

δ1(x)−1)δ′
1(x) dx

≤ m2

∫
Ω

(
αU1 (x)

δ′
1(x) + |u(x)|δ1(x)

)
dx

= m2

(
ϱδ′

1(·),Ω
(αU1 ) + ϱδ1(·),Ω (u)

)
< +∞,

(3.18)

for some m2 > 0, and

ϱδ′
2(·),Γ2 (ξ ) =

∫
Γ2

|ξ (x)|δ
′
2(x) dΓ ≤

∫
Γ2

(
αU2 (x) + aU2 |s|

δ2(x)−1)δ′
2(x) dΓ

≤ m3

∫
Γ2

(
αU2 (x)

δ′
2(x) + |u(x)|δ2(x)

)
dΓ

= m3

(
ϱδ′

2(·),Γ2 (αU2 ) + ϱδ2(·),Γ2 (u)
)

< +∞,

(3.19)

for some m3 > 0, where we have used the elementary inequality (s + t)r ≤ 2r−1(sr + t r ) for all s, t ≥ 0 and r ≥ 1 as
well as the continuity of δ1 and δ2. The latter together with Proposition 2.1(vi) implies that η ∈ X∗ and ξ ∈ Y ∗. Thus, the
multivalued mappings U1 and U2 are well-defined and for each (u, v) ∈ X × Y , the sets U1(u) and U2(v) are bounded in
X∗ and Y ∗, respectively. Recall that U1 and U2 have closed and convex values. So we can use standard arguments to show
that for each (u, v) ∈ X × Y the sets U1(u) and U2(v) are closed and convex in X∗ and Y ∗, respectively.

(ii) We only prove that U1 is u.s.c., the upper semicontinuity of U2 can be shown in a similar way. It follows from
Proposition 2.8 that it is sufficient to show that for each weakly closed set D of X∗, the set U−

1 (D) is closed in X . Let
{un}n∈N ⊂ U−(D) be such that un → u in X for some u ∈ X . Due to the continuity of the embedding V ↪→ L1(Ω), by
passing to a subsequence if necessary, we may assume that

un(x) → u(x) as n → ∞ for a. a. x ∈ Ω. (3.20)

Let {ηn}n∈N ⊂ X∗ be a sequence such that ηn ∈ U1(un) ∩ D for each n ∈ N. By virtue of (3.18), we infer that sequence
{ηn}n∈N is bounded in X∗. Because X∗ is reflexive, we may assume that

ηn
w

−→ η in X∗

for some η ∈ D owing to the weak closedness of D. Our objective is to prove that η ∈ U1(u), namely, η(x) ∈ U1(x, u(x)) for
a. a. x ∈ Ω .

Employing Mazur’s theorem, we are able to find a sequence {ζn}n∈N of convex combinations of {ηn}n∈N such that

ζ → η in Lδ′
1(·)(Ω) and ζ (x) → η(x) for a. a. x ∈ Ω as n → ∞. (3.21)
n n

17
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The convexity of U1 guarantees that ζn(x) ∈ U1(x, un(x)) for a. a. x ∈ Ω . Applying the convergences in (3.20) and (3.21)
long with the upper semicontinuity of U1 (see hypothesis H(U1)(iii)), we get that η(x) ∈ U1(x, u(x)) for a. a. x ∈ Ω . This

means that η ∈ U1(u)∩D. Hence, u ∈ U−

1 (D). Therefore, we can apply Proposition 2.8 to conclude that U1 is strongly-weakly
u.s.c. This completes the proof. □

Using the results above, we are now in a position to provide the detailed proof of Theorem 3.4.

Proof of Theorem 3.4. First, we prove the following claims.

Claim 4. The solution set Υ of problem (1.1) is bounded, if Υ is nonempty.

Let u ∈ V be a weak solution of problem (1.1). Then, there exist functions (η, ξ ) ∈ X∗
× Y ∗ with η(x) ∈ U1(x, u(x)) for

. a. x ∈ Ω and ξ (x) ∈ U2(x, u(x)) for a. a. x ∈ Γ2 such that

a(u)
∫

Ω

|∇u|p(x)−2
∇u · ∇(v − u) dx + b(u)

∫
Ω

|∇u|q(x)−2
∇u · ∇(v − u) dx

+

∫
Ω

g(x, u)(v − u) dx +

∫
Γ3

φ(x, v) dΓ −

∫
Γ3

φ(x, u) dΓ

≥

∫
Ω

η(x)(v − u) dx +

∫
Γ2

ξ (x)(v − u) dΓ

for all v ∈ K (u). Since 0 ∈ K (u) we take v = 0 in the above inequality to obtain

a(u)
∫

Ω

|∇u|p(x) dx + b(u)
∫

Ω

|∇u|q(x) dx +

∫
Ω

g(x, u)u dx

≤

∫
Γ3

φ(x, 0) dΓ −

∫
Γ3

φ(x, u) dΓ +

∫
Ω

η(x)u dx +

∫
Γ2

ξ (x)u dΓ .

(3.22)

It follows from hypotheses H(U1)(iv) and H(U2)(iv) that∫
Ω

η(x)u(x) dx ≤

∫
Ω

|η(x)||u(x)| dx

≤

∫
Ω

(
αU1 (x) + aU1 |u(x)|

δ1(x)−1)
|u(x)| dx

≤ aU1ϱδ1(·),Ω (u) + 2∥αU1∥δ′
1(·),Ω

∥u∥δ1(·),Ω ,

(3.23)

and ∫
Γ2

ξ (x)u(x) dΓ ≤

∫
Γ2

|ξ (x)||u(x)| dΓ

≤

∫
Γ2

(
αU2 (x) + aU2 |u(x)|

δ2(x)−1)
|u(x)| dΓ

≤ aU2ϱδ2(·),Γ2 (u) + 2∥αU2∥δ′
2(·),Ω

∥u∥δ2(·),Γ2 .

(3.24)

Since the embeddings of V into X and of V into Y are continuous, we are able to find two constants CX , CY > 0 such that

∥u∥δ1(·),Ω ≤ CX∥u∥V and ∥u∥δ2(·),Γ2 ≤ CY∥u∥V for all u ∈ V . (3.25)

Keeping in mind that ς (x) > p(x) for all x ∈ Ω , using hypothesis H(g)(iv), we have∫
Ω

g(x, u)u dx ≥

∫
Ω

ag |u|ς (x) − bg (x) dx = agϱς (·),Ω (u) − ∥bg∥1,Ω . (3.26)

Putting (3.23), (3.24), (3.25) and (3.26) into (3.22), we have

caϱp(·),Ω (∇u) + agϱς (·),Ω (u) − ∥bg∥1,Ω − αϕ∥u∥V

≤ aU2ϱδ2(·),Γ2 (u) + 2∥αU2∥δ′
2(·),Ω

∥u∥δ2(·),Γ2 + aU1ϱδ1(·),Ω (u) + 2∥αU1∥δ′
1(·),Ω

∥u∥δ1(·),Ω + βϕ,
18
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where we have used inequality (3.10). Employing Propositions 2.1(iii), (iv) and 2.2(iii) and (iv) we get

ca min
{
∥u∥p−

V , ∥u∥p+

V

}
− ca min

{
∥u∥p−

p(·),Ω , ∥u∥p+

p(·),Ω

}
+ ag min

{
∥u∥ς−

ς (·),Ω , ∥u∥ς+

ς (·),Ω

}
− αϕ∥u∥V

≤ ca
(
ϱp(·),Ω (∇u) + ϱp(·),Ω (u)

)
− caϱp(·),Ω (u) + agϱς (·),Ω (u) − αϕ∥u∥V

≤ aU2ϱδ2(·),Γ2 (u) + 2∥αU2∥δ′
2(·),Ω

∥u∥δ2(·),Γ2 + aU1ϱδ1(·),Ω (u) + 2∥αU1∥δ′
1(·),Ω

∥u∥δ1(·),Ω

+ βϕ + ∥bg∥1,Ω

≤ aU2 max
{
∥u∥δ2−

δ2(·),Γ2
, ∥u∥δ2+

δ2(·),Γ2

}
+ aU1 max

{
∥u∥δ1−

δ1(·),Ω
, ∥u∥δ1+

δ1(·),Ω

}
+ 2∥αU2∥δ′

2(·),Ω
∥u∥δ2(·),Γ2 + 2∥αU1∥δ′

1(·),Ω
∥u∥δ1(·),Ω + βϕ + ∥bg∥1,Ω

≤ aU2 max
{
C δ2−
Y ∥u∥δ2−

V , C δ2+
Y ∥u∥δ2+

V

}
+ aU1 max

{
C δ1−
X ∥u∥δ1−

V , C δ1+
X ∥u∥δ1+

δ1(·),Ω

}
+ 2∥αU2∥δ′

2(·),Ω
∥u∥δ2(·),Γ2 + 2∥αU1∥δ′

1(·),Ω
∥u∥δ1(·),Ω + βϕ + ∥bg∥1,Ω .

(3.27)

Recall that ς− > p− > δ1− and p− > δ2−. From the estimates above, it is not difficult to prove that there exists a constant
m4 > 0 such that

∥u∥V ≤ m4 for all u ∈ Υ .

Thus, the claim is verified.

Claim 5. There exists a constant M∗ > 0 such that

S(BV (0,M∗), U1(iBV (0,M∗)), U2(γ BV (0,M∗))) ⊂ BV (0,M∗), (3.28)

where BV (0,M∗) := {u ∈ V : ∥u∥V ≤ M∗
}.

Arguing by contradiction, suppose that there is no such constant M∗ such that the inclusion holds. Then for each n > 0
here exist wn, zn, yn ∈ BV (0, n) and (ηn, ξn) ∈ X∗

× Y ∗ with ηn ∈ U1(izn) and ξn ∈ U2(γ yn) such that

un = S(wn, ηn, ξn) and ∥un∥V > n.

ence, for every n > 0, we have

a(wn)
∫

Ω

|∇un|
p(x)−2

∇un · ∇(v − un) dx + b(wn)
∫

Ω

|∇un|
q(x)−2

∇un · ∇(v − un) dx

+

∫
Γ3

φ(x, v) dΓ −

∫
Γ3

φ(x, un) dΓ +

∫
Ω

g(x, un)(v − un) dx

≥

∫
Ω

ηn(x)(v − un) dx +

∫
Γ2

ξn(x)(v − un) dΓ

or all v ∈ K (wn). Taking v = 0 in the above inequality gives

a(wn)
∫

Ω

|∇un|
p(x) dx + b(wn)

∫
Ω

|∇un|
q(x) dx

+

∫
Ω

g(x, un)un dx +

∫
Γ3

φ(x, un(x)) dΓ

≤

∫
Ω

ηn(x)un(x) dx +

∫
Γ2

ξn(x)un(x) dΓ +

∫
Γ3

φ(x, 0) dΓ .

(3.29)

rom hypotheses H(U1)(iv) and H(U2)(iv), we have∫
Ω

ηn(x)un(x) dx ≤

∫
Ω

|ηn(x)||un(x)| dx

≤

∫
Ω

(
αU1 (x) + aU1 |zn(x)|

δ1(x)−1)
|un(x)| dx( )

′

(3.30)
≤ m5 ϱδ1(·),Ω (zn) + ϱδ1(·),Ω (un) + 2∥αU1∥δ1(·),Ω
∥un∥δ1(·),Ω ,

19
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for some m5 > 0, and∫
Γ2

ξn(x)un(x) dx ≤

∫
Γ2

|ξn(x)||un(x)| dx

≤

∫
Γ2

(
αU2 (x) + aU2 |yn(x)|

δ2(x)−1)
|un(x)| dx

≤ m6
(
ϱδ2(·),Γ2 (yn) + ϱδ2(·),Γ2 (un)

)
+ 2∥αU2∥δ′

2(·),Γ2∥un∥δ2(·),Γ2 ,

(3.31)

for some m6 > 0, where we have used Young’s inequality and the continuity of δ1 and δ2. Putting u = un into (3.26) leads
to ∫

Ω

g(x, un)un dx ≥ agϱς (·),Ω (un) − ∥bg∥1,Ω . (3.32)

Inserting (3.30), (3.31), (3.32) into (3.29), we obtain

ca
(
ϱp(·),Ω (∇un) + ϱp(·),Ω (un)

)
− caϱp(·),Ω (un) + agϱς (·),Ω (un) − αϕ∥un∥V

≤ m6
(
ϱδ2(·),Γ2 (yn) + ϱδ2(·),Γ2 (un)

)
+ 2∥αU2∥δ′

2(·),Γ2∥un∥δ2(·),Γ2 + βϕ + ∥φ(·, 0)∥1,Γ3 + ∥bg∥1,Ω

+ m5
(
ϱδ1(·),Ω (zn) + ϱδ1(·),Ω (un)

)
+ 2∥αU1∥δ′

1(·),Ω
∥un∥δ1(·),Ω .

Hence,

ca min
{
∥un∥

p−

V , ∥un∥
p+

V

}
− ca

{
∥un∥

p−

p(·),Ω , ∥un∥
p+

p(·),Ω

}
+ ag

{
∥un∥

ς−

ς (·),Ω , ∥un∥
ς+

ς (·),Ω

}
− αϕ∥un∥V

≤ m6

(
max

{
∥yn∥

δ2−
δ2(·),Γ2

, ∥yn∥
δ2+
δ2(·),Γ2

}
+ max

{
∥un∥

δ2−
δ2(·),Γ2

, ∥un∥
δ2+
δ2(·),Γ2

})
+ 2∥αU2∥δ′

2(·),Γ2∥un∥δ2(·),Γ2 + βϕ + ∥φ(·, 0)∥1,Γ3 + 2∥αU1∥δ′
1(·),Ω

∥un∥δ1(·),Ω

+ m5

(
max

{
∥zn∥

δ1−
δ1(·),Ω

, ∥zn∥
δ1+
δ1(·),Ω

}
+ max

{
∥un∥

δ1−
δ1(·),Ω

, ∥un∥
δ1+
δ1(·),Ω

})
≤ m6

(
max

{
C δ2−
Y ∥yn∥

δ2−
V , C δ2+

Y ∥yn∥
δ2+
V

}
+ max

{
C δ2−
Y ∥un∥

δ2−
V , C δ2+

Y ∥un∥
δ2+
V

})
+ 2∥αU2∥δ′

2(·),Γ2CY∥un∥V + βϕ + ∥φ(·, 0)∥1,Γ3 + 2∥αU1∥δ′
1(·),Ω

CX∥un∥V

+ m5

(
max

{
C δ1−
X ∥zn∥

δ1−
V , C δ1+

X ∥zn∥
δ1+
V

}
+ max

{
C δ1−
X ∥un∥

δ1−
V , C δ1+

X ∥un∥
δ1+
V

})
≤ m6

(
max

{
C δ2−
Y ∥un∥

δ2−
V , C δ2+

Y ∥un∥
δ2+
V

}
+ max

{
C δ2−
Y ∥un∥

δ2−
V , C δ2+

Y ∥un∥
δ2+
V

})
+ 2∥αU2∥δ′

2(·),Γ2CY∥un∥V + βϕ + ∥φ(·, 0)∥1,Γ3 + 2∥αU1∥δ′
1(·),Ω

CX∥un∥V

+ m5

(
max

{
C δ1−
X ∥un∥

δ1−
V , C δ1+

X ∥un∥
δ1+
V

}
+ max

{
C δ1−
X ∥un∥

δ1−
V , C δ1+

X ∥un∥
δ1+
V

})
.

ecause of ς− > p− > δ1− and p− > δ2−, passing to the upper limit as n → ∞ in the above inequalities, we get a
ontradiction. Hence there exists a constant M∗ > 0 such that (3.28) is fulfilled.
As mentioned before, the main tool in the proof of the existence of a solution to problem (1.1) is the Tychonoff’s fixed

point theorem for multivalued operators, see Theorem 2.10. For this purpose, let us consider the multivalued mapping
Λ : V × X∗

× Y ∗
→ 2V×X∗

×Y∗

defined by

Λ(u, η, ξ ) := (S(u, η, ξ ),U1(iu),U2(γ u)),

here U1 and U2 are given in (3.16) and (3.17). Observe that if (u, η, ξ ) is a fixed point of Λ, then we have u = S(u, η, ξ )
nd (η, ξ ) ∈ U1(iu) × U2(γ u). It is obvious from the definitions of S , U1 and U2 that u is also a weak solution of problem
1.1). Therefore, we are going to examine the validity of the conditions of Theorem 2.10. Invoking Lemmas 3.6 and 3.9,
e can see that for each (w, η, ξ ) ∈ V × X∗

× Y ∗, the set Λ(w, η, ξ ) is a nonempty, bounded, closed and convex subset
f V × X∗

× Y ∗.
Employing hypotheses H(U1)(iv) and H(U2)(iv), it is not difficult to prove that U1 : X → 2X∗

and U2 : Y → 2Y∗

are two
ounded operators (see (3.18) and (3.19)), and there exist two constants M1 > 0 and M2 > 0 satisfying

B (0,M∗))∥ ∗ ≤ M and ∥U (γ B (0,M∗))∥ ∗ ≤ M .
∥U1(i V X 1 2 V Y 2

20
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Additionally, we introduce a bounded, closed and convex subset D of V × X∗
× Y ∗ defined by

D =
{
(u, η, ξ ) ∈ V × X∗

× Y ∗
: ∥u∥V ≤ M∗, ∥η∥X∗ ≤ M1 and ∥ξ∥Y∗ ≤ M2

}
.

rom this and (3.28) we know that Λ maps D into itself.
Next, we are going to prove that the multivalued mapping Λ is weakly–weakly u.s.c. For any weakly closed set E in

×X∗
×Y ∗ such that Λ−(E) ̸= ∅, let {(wn, ηn, ξn)}n∈N ⊂ Λ−(E) be such that (wn, ηn, ξn)

w
−→ (w, η, ξ ) in V ×X∗

×Y ∗ for
ome (w, η, ξ ) ∈ V × X∗

× Y ∗. Our goal is to show that (w, η, ξ ) ∈ Λ−(E), namely, there exists (u, δ, σ ) ∈ Λ(w, η, ξ ) ∩ E.
ndeed, for each n ∈ N, we are able to find (un, δn, σn) ∈ Λ(wn, ηn, ξn) ∩ E, so, un = S(wn, ηn, ξn), δn ∈ U1(iwn)
nd σn ∈ U2(γwn). From (3.18) and (3.19), one has that the sequences {δn}n∈N and {σn}n∈N are bounded in X∗ and Y ∗,
espectively. Passing to a subsequence if necessary, we may assume that

δn
w

−→ δ in X∗ and σn
w

−→ σ in Y ∗

or some (δ, σ ) ∈ X∗
× Y ∗. Recall that S is completely continuous. So, it holds un = S(wn, ηn, ξn) → S(w, η, ξ ) := u in V .

ote that i and γ are both compact. Hence iwn → iw in X and γwn → γw in Y . Since U1 (resp. U2) is strongly-weakly
.s.c. and has nonempty, bounded, closed and convex values, it follows from Theorem 1.1.4 of Kamenskii–Obukhovskii–
ecca [48] that U1 (resp. U2) is strongly-weakly closed. The latter combined with the convergences above implies that
∈ U1(iw) and σ ∈ U2(γw), namely, (u, δ, σ ) ∈ Λ(w, η, ξ ) ∩ E, because of the weak closedness of E. Therefore, we

onclude that Λ is weakly–weakly u.s.c.
Therefore, all conditions of Theorem 2.10 are satisfied. Using this theorem, we conclude that Λ has at least a fixed

oint, say (u∗, η∗, ξ ∗) ∈ V × X∗
× Y ∗. Hence, u∗

∈ V is a weak solution of problem (1.1).
Next, let us prove the compactness of the solution set Υ . As proved before, we can see that the solution set Υ

f problem (1.1) is bounded in V . By the definitions of a weak solution (see Definition 3.3) and of Λ, there exist
η, ξ ) ∈ X∗

× Y ∗ such that u = S(u, η, ξ ), η ∈ U1(iu) and ξ ∈ U2(γ u), that is, (u, η, ξ ) ∈ Λ(u, η, ξ ). Let {un}n∈N be
ny sequence of solutions to problem (1.1). Then, there are two sequences {ηn}n∈N ⊂ X∗ and {ξn}n∈N ⊂ Y ∗ such that
n ∈ U1(iun), ξn ∈ U2(γ un) and un = S(un, ηn, ξn) for all n ∈ N. From the boundedness of Υ we may assume that

un
w

−→ u in V

or some u ∈ V . This together with the estimates (3.18) and (3.19) deduces that {ηn}n∈N ⊂ X∗ and {ξn}n∈N ⊂ Y ∗ are both
ounded. So, passing to a subsequence if necessary, we suppose that

ηn
w

−→ η in X∗ and ξn
w

−→ ξ in Y ∗

or some η ∈ U1(iu) and ξ ∈ U2(γ u), owing to the compactness of i and γ as well as the strongly-weakly closedness of
1 and U2. Using the complete continuity of S , we conclude that

un = S(un, ηn, ξn) → S(u, η, ξ ) = u.

his means that u is a solution to problem (1.1). Consequently, the solution set Υ of problem (1.1) is compact. □

We end this section by considering some particular cases of problem (1.1).
Let Ψ : Ω → (0, +∞). If J(u) ≡ 0 and

L(u) =

∫
Ω

(u(x) − Ψ (x))+ dx for all u ∈ V ,

hen problem (1.1) becomes the anisotropic obstacle problem (1.7) with mixed boundary conditions. A careful observation
ives the following corollary.

orollary 3.10. Assume that H(0), H(1), H(g), H(U1), H(U2) and H(φ) are satisfied. Then, the solution set of problem (1.7) is
onempty and compact in V .

If J(u) ≡ +∞ for all u ∈ V , then problem (1.1) becomes the non-obstacle mixed boundary value problem (1.8). In this
ituation, we obtain the following corollary.

orollary 3.11. Assume that H(0), H(1), H(g), H(U1), H(U2) and H(φ) are satisfied. Then, the solution set of problem (1.8) is
onempty and compact in V .

In addition, if Γ2 = ∅ and Γ3 = ∅, i.e., Γ1 = Γ , then problem (1.1) reduces to problem (1.6). Using Theorem 3.4, we
ave the following corollary.

orollary 3.12. Assume that H(0), H(1), H(U1) and H(φ) are satisfied. Then, the solution set of problem (1.6) with g ≡ 0 is
onempty and compact in V .
21
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Let us now consider problem (1.5) and suppose the following assumptions:

H(j1): The functions j1 : Ω × R → R and r1 :R → R are such that

(i) x ↦→ j1(x, s) is measurable in Ω for all s ∈ R with x ↦→ j1(x, 0) belonging to L1(Ω);
(ii) for a. a. x ∈ Ω , s ↦→ j1(x, s) is locally Lipschitz continuous and the function r1 :R → R is continuous;
(iii) there exist a function αj1 ∈ Lδ′

1(·)(Ω)+ and a constant aj1 ≥ 0 such that

|r1(s)η| ≤ αj1 (x) + aj1 |s|
δ1(x)−1

for all η ∈ ∂ j1(x, s), for a. a. x ∈ Ω and for all s ∈ R, where δ1 ∈ C+(Ω) is such that

δ1(x) < p(x) for all x ∈ Ω.

H(j2): The functions j2 : Γ2 × R → R and r2 :R → R are such that

(i) x ↦→ j2(x, s) is measurable on Γ2 for all s ∈ R with x ↦→ j2(x, 0) belonging to L1(Γ2);
(ii) for a. a. x ∈ Γ2, s ↦→ j2(x, s) is locally Lipschitz continuous and the function r2 :R → R is continuous;
(iii) there exist a function αj2 ∈ Lδ′

2(·)(Γ2)+ and a constant aj2 ≥ 0 such that

|r2(s)ξ | ≤ αj2 (x) + aj2 |s|
δ2(x)−1

for all ξ ∈ ∂ j2(x, s), for a. a. x ∈ Γ2 and for all s ∈ R, where δ2 ∈ C+(Ω) is such that

δ2(x) < p(x) for all x ∈ Ω.

If U1 and U2 are given by U1(x, s) = r1(s)∂ j1(x, s) for a. a. x ∈ Ω , for s ∈ R and U2(x, s) = r2(s)∂ j2(x, s) for a. a. x ∈ Γ2,
or s ∈ R, problem (1.1) becomes the implicit obstacle problem (1.5) with generalized subgradient term in the sense of
larke. We have the following result.

heorem 3.13. Assume that H(0), H(1), H(g), H(φ), H(L), H(J), H(j1) and H(j2) are satisfied. Then, the solution set of problem
1.5) is nonempty and compact in V .

roof. It is obvious that the conclusion is a direct consequence of Theorem 3.4. So, we have to verify that the functions
1 and U2, defined by U1(x, s) = r1(s)∂ j1(x, s) for a. a. x ∈ Ω , for s ∈ R and U2(x, s) = r2(s)∂ j2(x, s) for a. a. x ∈ Γ2, for
∈ R, fulfill hypotheses H(U1) and H(U2), respectively.
It follows from Proposition 2.9 that for a. a. x ∈ Ω (resp. for a. a. x ∈ Γ2) and all s ∈ R the set U1(x, s) (resp. U2(x, s))

s nonempty, bounded, closed and convex in R, namely, condition H(U1)(i) (resp. H(U2)) is satisfied. Hypotheses H(j1)(i)
nd H(j2)(i) indicate that for all s ∈ R, the functions x ↦→ U1(x, s) = r1(s) ∂ j1(x, s) and x ↦→ U2(x, s) = r2(s)∂ j2(x, s) are
easurable in Ω and on Γ2, respectively. This means that H(U1)(ii) and H(U2)(ii) hold.
We claim that s ↦→ r1(s)∂ j1(x, s) is u.s.c. From Proposition 2.8, it is sufficient to show that (r1(·)∂ j1(x, ·))−(D) is closed

or each closed set D ⊂ R. Let {sn}n∈N ⊂ (r1(·)∂ j1(x, ·))−(D) be such that sn → s. Then, there exists a sequence {ηn}n∈N ⊂ R
atisfying ηn ∈ r1(sn)∂ j1(x, sn) ∩ D for each n ∈ N. We are able to find a sequence {ξn}n∈N such that ηn = r1(sn)ξn and
n ∈ ∂ j1(x, sn) for all n ∈ N and for a. a. x ∈ Ω . Recall that sn → s, we can apply Proposition 2.9(iii) and (v) to conclude
hat {ξn}n∈N is bounded in R. Hence, we may assume that ξn → ξ in R for some ξ ∈ D, because of the closedness of
. But, the closedness of ∂ j1 (see Proposition 2.9(v)) admits that ξ ∈ ∂ j1(x, s). This combined with the continuity of r1
educes that ηn = r1(sn)ξn → r1(s)ξ ∈ r1(s)∂ j1(x, s). This implies that s ∈ (r1(·)∂ j1(x, ·))−(D), that is, (r1(·)∂ j1(x, ·))−(D) is
losed. Applying Proposition 2.8 we see that s ↦→ r1(s)∂ j1(x, s) is u.s.c. Using the same arguments as before, we can also
how that s ↦→ r2(s)∂ j2(x, s) is u.s.c. Therefore, H(U1)(iii) and H(U2)(iii) are verified.
Finally, hypotheses H(U1)(iv) and H(U2)(iv) are consequences of the assumptions H(j1)(iii) and H(j2)(iii). Consequently,

e apply Theorem 3.4 to obtain the desired conclusion. □

In particular, when p, q are constants such that 1 < q < p, then problem (1.1) reduces to the following isotropic
mplicit obstacle problem:

−a(u)∆pu − b(u)∆qu + g(x, u) ∈ U1(x, u) in Ω,

u = 0 on Γ1,

∂u
∂νn

∈ U2(x, u) on Γ2,

−
∂u
∂νn

∈ ∂cφ(x, u) on Γ3,

L(u) ≤ J(u),

(3.33)

where ∆p is the well-known p-Laplace operator, i.e.,

∆pu = div(|∇u|p−2
∇u) for all u ∈ W 1,p(Ω).

Then, we have the following corollary.
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Corollary 3.14. Assume that H(1), H(g), H(U1), H(U2), H(φ), H(L) and H(J) are satisfied such that the exponents p, q, δ0, δ1, δ2
are constants. Then, the solution set of problem (3.33) is nonempty and weakly compact in V .

4. Isotropic implicit obstacle problems with nonlinear convection terms

In this section, we are going to move our attention to study the implicit obstacle problem (1.3) which involves a
nonlinear convection function, two nonlocal terms and three multivalued mappings where two of them are formulated
on the boundary and the other one is defined in the domain. If the exponents p, q are constants in problem (1.1), then
problem (1.3) is a generalization of problem (1.1). The goal of this section is to establish the existence of a weak solution
to problem (1.3) under more general assumptions.

We suppose the following assumptions on the functions g , U1 and U2.

H(g ′): The function g : Ω × R → R is such that H(g)(i), (ii), (iii) are satisfied, x ↦→ g(x, 0) belongs to Lp
′

(Ω) and there
exists a constant mg > 0 such that

(g(x, s) − g(x, t))(s − t) ≥ mg |s − t|p

for all s, t ∈ R and for a. a. x ∈ Ω .

H(U ′

1): The multivalued function U1 : Ω × R → 2R is such that H(U1)(i), (ii), (iii) are satisfied and there exist a function
αU1 ∈ Lp

′

(Ω)+ and a constant aU1 ≥ 0 such that

|η| ≤ αU1 (x) + aU1 |s|
p−1 (4.1)

for all η ∈ U1(x, s), for a. a. x ∈ Ω and for all s ∈ R.

H(U ′

2): The multivalued function U2 : Γ2 × R → 2R is such that H(U2)(i), (ii), (iii) are satisfied and there exist a function
αU2 ∈ Lp

′

(Γ2)+ and a constant aU2 > 0 such that

|ξ | ≤ αU2 (x) + aU2 |s|
p−1 (4.2)

for all ξ ∈ U2(x, s), for a. a. x ∈ Γ2 and for all s ∈ R.

For the convection term we suppose the following conditions.

H(f ): f : Ω × R × RN
→ R is a Carathéodory function such that

(i) there exist af , bf ≥ 0 and a function αf ∈ L
q1

q1−1 (Ω)+ satisfying

|f (x, s, ξ )| ≤ af |ξ |

p(q1−1)
q1 + bf |s|q1−1

+ αf (x)

for a. a. x ∈ Ω , for all s ∈ R and for all ξ ∈ RN , where 1 < q1 < p∗ and p∗ is the critical exponents to p in
the domain (see (2.1) with r = p);

(ii) there exist cf , df ≥ 0 and a function βf ∈ L1(Ω)+ such that

f (x, s, ξ )s ≤ cf |ξ |
p
+ df |s|p + βf (x)

for a. a. x ∈ Ω , for all s ∈ R and for all ξ ∈ RN ;
(iii) there exist ef , hf ≥ 0 such that

(f (x, s, ξ ) − f (x, t, ξ ))(s − t) ≤ ef |s − t|p

|f (x, s, ξ1) − f (x, s, ξ2)| ≤ hf |ξ1 − ξ2|
p−1

for a. a. x ∈ Ω , for all s, t ∈ R and for all ξ1, ξ2 ∈ RN .

H(2): The inequalities

ca > aU2

(
λS
1,p

)−1
+ cf ,

k(p)ca > hf λ̂
1
p

mg > max{aU2

(
λS
1,p

)−1
+ df + aU1 , ef }

hold, where k(p) is given in (2.2), λS
1,p is the first eigenvalue of the p-Laplacian with Steklov boundary condition

(see (2.3) and (2.4)) and λ̂ > 0 is the smallest constant such that

∥u∥ ≤ λ̂∥∇u∥ for all u ∈ W 1,p(Ω) with u = 0 on Γ . (4.3)
p,Ω p,Ω 1
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Remark 4.1. Observe that hypotheses H(U ′

1) and H(U ′

2) are weaker than H(U1) and H(U2) in case if δ1, δ2 are constants.
Indeed, if δ1 (resp. δ2) is a constant and ε > 0 is arbitrary, then from H(U1)(iv) (resp. H(U1)(iv)), there exists a constant
l(ε) > 0 such that

|η| ≤ αU1 (x) + aU1 |s|
δ1−1

≤ αU1 (x) + l(ε) + ε|s|p−1

for all η ∈ U1(x, s), for a. a. x ∈ Ω and for all s ∈ R, where we have used Young’s inequality and the fact that 1 < δ1 < p.
Then, the inequality (4.1) (resp. (4.2)) is valid. Therefore, H(U ′

1) (resp. H(U
′

2)) holds.

Example 4.2. The following functions satisfy hypotheses H(g) and H(f )

g(x, s) = ζ (x) + κ0s,

f (x, s, ξ ) =

N∑
i=1

ζiξi − κ1s + ω(x)

for a. a. x ∈ Ω , for all s ∈ R and for all ξ ∈ R, where p = q1 = 2, ω ∈ L2(Ω), κ0 > 0 and ζ = (ζ1, . . . , ζN ) ∈ RN is a given
vector.

Now, let V be the closed subspace of W 1,p(Ω) defined by

V :=
{
u ∈ W 1,p(Ω) : u = 0 on Γ1

}
.

As in Section 3, the multivalued mapping K is defined as in (3.2). In what follows, if we refer to the conditions mentioned
in Section 3, then it should be regarded as that the conditions hold in the constant exponents setting. For example, if we
assume that H(φ) holds, then condition H(φ)(iii) is valid in the following sense: for each function u ∈ Lp∗ (Γ3) the function
x ↦→ φ(x, u(x)) belongs to L1(Γ3), where p∗ is the critical exponent of p on the boundary Γ (see (2.1) with r = p).

Next, we give the definition of a weak solution.

Definition 4.3. We say that a function u ∈ V is a weak solution of problem (1.3) if u ∈ K (u) and there exist functions
η ∈ Lp

′

(Ω), ξ ∈ Lp
′

(Γ2) such that η(x) ∈ U1(x, u(x)) for a. a. x ∈ Ω , ξ (x) ∈ U2(x, u(x)) for a. a. x ∈ Γ2 and the inequality

a(u)
∫

Ω

|∇u|p−2
∇u · ∇(v − u) dx + b(u)

∫
Ω

|∇u|q−2
∇u · ∇(v − u) dx

+

∫
Ω

g(x, u)(v − u) dx +

∫
Γ3

φ(x, v) dΓ −

∫
Γ3

φ(x, u) dΓ

≥

∫
Ω

η(x)(v − u) dx +

∫
Γ2

ξ (x)(v − u) dΓ +

∫
Ω

f (x, u, ∇u)(v − u) dx

(4.4)

holds for all v ∈ K (u).

Let (w, η, ξ ) ∈ V × X∗
× Y ∗ be arbitrary fixed, where X = Lp(Ω), Y = Lp(Γ2), X∗

= Lp
′

(Ω) and Y ∗
= Lp

′

(Γ2). In order
to solve problem (1.3), we first consider the following auxiliary obstacle problem with dependence on the gradient

−a(w)∆pu − b(w)∆qu + g(x, u) = η(x) + f (x, u, ∇u) in Ω,

u = 0 on Γ1,

∂u(x)
∂νw

= ξ (x) on Γ2,

−
∂u(x)
∂νw

∈ ∂cφ(x, u) on Γ3,

L(u) ≤ J(w),

(4.5)

here ∂u(x)
∂νw

is defined by

∂u
∂νw

:=
(
a(w)|∇u|p−2

∇u + b(w)|∇u|q−2
∇u

)
· ν.

The next lemma shows that problem (4.5) has a unique solution.

Lemma 4.4. Let p ≥ 2 and 1 < q < p. Suppose that H(1), H(g ′), H(φ), H(f ), H(L) and H(J) are fulfilled. Then, for each fixed
(w, η, ξ ) ∈ V × X∗

× Y ∗, problem (4.5) has a unique solution.

Proof. The existence result is a direct consequence of Theorem 3.4 of Zeng–Bai–Gasiński [34]. It remains to verify the
uniqueness of problem (4.5).
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Let u1, u2 ∈ V be two weak solutions of problem (4.5). Then, for each i = 1, 2, we have ui ∈ K (w) and

a(w)
∫

Ω

|∇ui|
p−2

∇ui · ∇(v − ui) dx + b(w)
∫

Ω

|∇ui|
q−2

∇ui · ∇(v − ui) dx

+

∫
Γ3

φ(x, v) dΓ −

∫
Γ3

φ(x, ui) dΓ +

∫
Ω

g(x, ui)(v − ui) dx

≥

∫
Ω

η(x)(v − ui) dx +

∫
Γ2

ξ (x)(v − ui) dΓ +

∫
Ω

f (x, ui, ∇ui)(v − ui) dx

for all v ∈ K (w). Inserting v = u2 and v = u1 in the above inequalities with i = 1 and i = 2, respectively, we sum up the
resulting inequalities to obtain

a(w)
∫

Ω

(
|∇u1|

p−2
∇u1 − |∇u2|

p−2
∇u2

)
· ∇(u1 − u2) dx

+ b(w)
∫

Ω

(
|∇u1|

q−2
∇u1 − |∇u2|

q−2
∇u2

)
· ∇(u1 − u2) dx

+

∫
Ω

(g(x, u1) − g(x, u2)) (u1 − u2) dx

≤

∫
Ω

(f (x, u1, ∇u1) − f (x, u2, ∇u2))(u1 − u2) dx

=

∫
Ω

(f (x, u1, ∇u1) − f (x, u2, ∇u1))(u1 − u2) dx

+

∫
Ω

(f (x, u2, ∇u1) − f (x, u2, ∇u2))(u1 − u2) dx.

Taking (2.2), H(g ′) and H(f )(iii) into account implies

k(p)ca∥∇u1 − ∇u2∥
p
p,Ω + mg∥u1 − u2∥

p
p,Ω

≤

∫
Ω

ef |u1 − u2|
p dx +

∫
Ω

hf |∇u1 − ∇u2|
p−1

|u1 − u2| dx.

Applying Hölder’s inequality and (4.3) gives

k(p)ca∥∇u1 − ∇u2∥
p
p,Ω + mg∥u1 − u2∥

p
p,Ω

≤ ef ∥u1 − u2∥
p
p,Ω + hf ∥∇u1 − ∇u2∥

p−1
p,Ω ∥u1 − u2∥p,Ω

≤ ef ∥u1 − u2∥
p
p,Ω + hf λ̂

1
p ∥∇u1 − ∇u2∥

p
p,Ω .

ence,(
k(p)ca − hf λ̂

1
p
)

∥∇u1 − ∇u2∥
p
p,Ω +

(
mg − ef

)
∥u1 − u2∥

p
p,Ω ≤ 0.

y assumption, we know that hf λ̂
1
p < cak(p) and mg > ef , thus u1 = u2. Therefore, for each (w, η, ξ ) ∈ V × X∗

× Y ∗,
roblem (4.5) has a unique weak solution u ∈ V . □

Let S : V × X∗
× Y ∗

→ V be the solution mapping of problem (4.5) defined by

S(w, η, ξ ) = uw,η,ξ for all (w, η, ξ ) ∈ V × X∗
× Y ∗,

here uw,η,ξ is the unique solution of problem (4.5) corresponding to (w, η, ξ ) ∈ V × X∗
× Y ∗, see Lemma 4.4.

Next, we can prove that S is a completely continuous operator.

Lemma 4.5. Let p ≥ 2 and 1 < q < p. Assume that H(1), H(g ′), H(φ), H(f ), H(L) and H(J) are satisfied. Then, the solution
map S : V × X∗

× Y ∗
→ V of problem (4.5) is completely continuous.

Proof. Let {(wn, ηn, ξn)}n∈N ⊂ V × X∗
× Y ∗ and (w, η, ξ ) ∈ V × X∗

× Y ∗ be such that

(w , η , ξ )
w

−→ (w, η, ξ ) in V × X∗
× Y ∗.
n n n
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Then, for any n ∈ N, we have un ∈ K (wn) and

a(wn)
∫

Ω

|∇un|
p−2

∇un · ∇(v − un) dx + b(wn)
∫

Ω

|∇un|
q−2

∇un · ∇(v − un) dx

+

∫
Γ3

φ(x, v) dΓ −

∫
Γ3

φ(x, un) dΓ +

∫
Ω

g(x, un)(v − un) dx

≥

∫
Ω

ηn(x)(v − un) dx +

∫
Γ2

ξn(x)(v − un) dΓ +

∫
Ω

f (x, un, ∇un)(v − un) dx

(4.6)

or all v ∈ K (wn). Using hypotheses H(f )(ii) and H(g ′), we have∫
Ω

f (x, un, ∇un)un(x) dx ≤

∫
Ω

cf |∇un(x)|p + df |un(x)|p + βf (x) dx

= cf ∥∇un∥
p
p,Ω + df ∥un∥

p
p,Ω + ∥βf ∥1,Ω ,

(4.7)

nd ∫
Ω

g(x, un)un(x) dx

=

∫
Ω

(g(x, un) − g(x, 0)) un(x) dx +

∫
Ω

g(x, 0)un(x) dx

≥

∫
Ω

mg |un(x)|p dx − ∥g(·, 0)∥p′,Ω∥un∥p,Ω = mg∥un∥
p
p,Ω − ∥g(·, 0)∥p′,Ω∥un∥p,Ω .

(4.8)

utting v = 0 in (4.6) and using the inequalities (3.10), (4.6), (4.7) and (4.8), we get

min
{(

ca − cf
)
,
(
mg − df

)}
∥un∥

p
V − ∥g(·, 0)∥p′,Ω∥un∥V + ∥βf ∥1,Ω − αϕ∥un∥V

≤
(
ca − cf

)
∥∇un∥

p
p,Ω +

(
mg − df

)
∥un∥

p
p,Ω − ∥g(·, 0)∥p′,Ω∥un∥p,Ω + ∥βf ∥1,Ω − αϕ∥un∥V

≤ ∥φ(·, 0)∥1,Γ3 + ∥ηn∥V∗∥un∥V + ∥ξn∥V∗∥un∥V + βϕ .

From the inequalities ca > cf and mg > df , it is not difficult to see that sequence {un}n∈N is bounded in V . Passing to a
subsequence if necessary, we may assume that

un
w

−→ u in V

for some u ∈ K (w) due to Lemma 3.5(ii). Again from Lemma 3.5(ii), we are able to find a sequence {yn}n∈N with yn ∈ K (wn)
atisfying yn → u in V . Condition H(f )(i) reveals that the sequence {f (·, un, ∇un)}n∈N is bounded in Lq

′
1 (Ω) and since

1 < p∗ we have

lim
n→∞

∫
Ω

f (x, un, ∇un)(yn − un) dx = 0. (4.9)

nserting v = yn in (4.6) and passing to the upper limit as n → ∞ for the resulting inequality gives

lim sup
n→∞

[
a(wn)

∫
Ω

|∇un|
p−2

∇un · ∇(un − yn) dx + b(wn)
∫

Ω

|∇un|
q−2

∇un · ∇(un − yn) dx
]

≤ lim sup
n→∞

[ ∫
Γ3

φ(x, yn) dΓ −

∫
Γ3

φ(x, un) dΓ +

∫
Ω

g(x, un)(yn − un) dx

−

∫
Ω

ηn(x)(yn − un) dx −

∫
Γ2

ξn(x)(yn − un) dΓ −

∫
Ω

f (x, un, ∇un)(yn − un)
]

.

pplying (3.12), (3.13), (3.14), (4.9) and the arguments of the proof of inequality (3.15) leads to

lim sup
n→∞

[
a(w)

∫
Ω

|∇un|
p−2

∇un · ∇(un − u) dx +

∫
Ω

|un|
p−2un(un − u) dx

]
≤ 0.

herefore, it holds that un → u in V .
For any fixed z ∈ K (w), we apply Lemma 3.5(iii) to find a sequence {zn}n∈N ⊂ V such that zn ∈ K (wn) and zn → z in

. We take v = zn in (4.6) and pass to the upper limit as n → ∞ for the resulting inequality to obtain that

a(w)
∫

Ω

|∇u|p−2
∇u · ∇(z − u) dx + b(w)

∫
Ω

|∇u|q−2
∇u · ∇(z − u) dx

+

∫
Γ3

φ(x, z) dΓ −

∫
Γ3

φ(x, u) dΓ +

∫
Ω

g(x, u)(z − u) dx

≥

∫
η(x)(z − u) dx +

∫
ξ (x)(z − u) dΓ +

∫
f (x, u, ∇u)(z − u) dx.
Ω Γ2 Ω
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Because z ∈ K (w) is arbitrary, we conclude that u is the unique solution of problem (4.5) corresponding to (w, η, ξ ) ∈

V × X∗
× Y ∗. Consequently, it holds un = S(wn, ηn, ξn) → S(w, η, ξ ) = u in V , namely, S is completely continuous. □

Furthermore, we introduce the following multivalued mappings U1 : X → 2X∗

and U2 : Y → 2Y∗

given by

U1(u) :=
{
η ∈ X∗

: η(x) ∈ U1(x, u(x)) a. a. in Ω
}
,

U2(v) :=
{
ξ ∈ Y ∗

: ξ (x) ∈ U2(x, v(x)) a. a. on Γ2
}
,

for all (u, v) ∈ X × Y , respectively. As before, by i : V → X and γ : V → Y , we denote the embedding operator of V ↪→ X
and the trace operator from V ↪→ Y , respectively. It is clear that both are linear, bounded and compact. Then, their dual
operators i∗ : X∗

→ V ∗ and γ ∗
: Y ∗

→ V ∗ are linear, bounded and compact as well. The following lemma is a direct
consequence of Lemma 3.8.

Lemma 4.6. Let H(U ′

1) and H(U ′

2) be satisfied. Then, the following statements hold:

(i) U1 and U2 are well-defined and for each u ∈ X and v ∈ Y , the sets U1(u) and U2(v) are bounded, closed and convex in
X∗ and Y ∗, respectively;

(ii) U1 and U2 are strongly-weakly u.s.c., i.e., U1 is u.s.c. from X with the strong topology to the subsets of X∗ with the weak
topology, and U2 is u.s.c. from Y with the strong topology to the subsets of Y ∗ with the weak topology.

We are now in a position to give the following existence theorem to problem (1.3).

Theorem 4.7. Let 2 ≤ p and 1 < q < p. Assume that H(1), H(2), H(f ), H(g ′), H(U ′

1), H(U
′

2), H(φ), H(L) and H(J) are satisfied.
hen, the solution set of problem (1.3) is nonempty and compact in V .

roof. From the proof of Theorem 3.4, it is sufficient to prove that the solution set of problem (1.3) is bounded and that
he inclusion

S(BV (0,M∗), U1(iBV (0,M∗)), U2(γ BV (0,M∗))) ⊂ BV (0,M∗) (4.10)

is satisfied for some M∗ > 0.
We only examine the boundedness of Υ . The validity of (4.10) can be obtained by employing the same arguments to

the boundedness of Υ and the techniques applied in the proof of Claim 5 in Theorem 3.4.
For any u ∈ Υ , we are able to find functions η ∈ U1(iu) and ξ ∈ U2(γ u) such that inequality (4.4) holds. Using

ypotheses H(g ′) and H(f )(ii) yields∫
Ω

g(x, u)u(x) dx =

∫
Ω

(g(x, u) − g(x, 0)) u(x) dx +

∫
Ω

g(x, 0)u(x) dx

≥ mg∥u∥
p
p,Ω − ∥g(·, 0)∥p′,Ω∥u∥p,Ω

(4.11)

nd ∫
Ω

f (x, u, ∇u)u(x) dx ≤ cf ∥∇u∥p
p,Ω + df ∥u∥

p
p,Ω + ∥βf ∥1,Ω . (4.12)

y means of H(U ′

1) and H(U ′

2), we have∫
Ω

η(x)u(x) dx ≤

∫
Ω

|η(x)||u(x)| dx

≤

∫
Ω

(
αU1 (x) + aU1 |u(x)|

p−1)
|u(x)| dx

≤ aU1∥u∥
p
p,Ω + ∥αU1∥p′,Ω∥u∥p,Ω ,

(4.13)

nd ∫
Γ2

ξ (x)u(x) dΓ ≤

∫
Γ2

|ξ (x)||u(x)| dΓ

≤

∫
Γ2

(
αU2 (x) + aU2 |u(x)|

δ2(x)−1)
|u(x)| dΓ

≤ aU2∥u∥
p
Γ2,p + ∥αU2∥p′,Γ2∥u∥p,Γ2

≤ a
(
λS )−1 (

∥∇u∥p
+ ∥u∥p )

+ ∥α ∥ ′

(
λS )−

1
p
(
∥∇u∥ + ∥u∥

)
,

(4.14)
U2 1,p p,Ω p,Ω U2 p ,Γ2 1,p p,Ω p,Ω
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where we have used the elementary inequality (s + t)r ≤ sr + t r for all s, t > 0 with 0 < r < 1 and the inequality

∥u∥p
p,Γ2

≤
(
λS
1,p

)−1 (
∥∇u∥p

p,Ω + ∥u∥p
p,Ω

)
for all u ∈ W 1,p(Ω),

which comes from the eigenvalue problem of the p-Laplacian with Steklov boundary condition (see (2.3) and (2.4)).
Taking (4.11), (4.12), (4.13) and (4.14) into account, we have the following estimate

a(u)
∫

Ω

|∇u|p dx + b(u)
∫

Ω

|∇u|q dx +

∫
Ω

g(x, u)u dx −

∫
Ω

η(x)u(x) dx

−

∫
Γ2

ξ (x)u(x) dΓ −

∫
Ω

f (x, u, ∇u)u dx

≥

(
ca − aU2

(
λS
1,p

)−1
− cf

)
∥∇u∥p

p,Ω +

(
mg − aU2

(
λS
1,p

)−1
− df − aU1

)
∥u∥p

p,Ω

− ∥αU2∥p′,Γ2

(
λS
1,p

)−
1
p
∥u∥V − ∥αU1∥p′,Ω∥u∥p,Ω − ∥g(·, 0)∥p′,Ω∥u∥p,Ω − ∥βf ∥1,Ω .

Arguing as in the proof of (3.27), we can use the estimates above and hypotheses H(2) to conclude that Υ is bounded.
Subsequently, we can invoke the same arguments as in the proof of Theorem 3.4 to conclude that the solution set of

problem (1.3) is nonempty and compact in V . □

Let us consider some special cases to problem (1.3).
If J(u) ≡ 0 and

L(u) =

∫
Ω

(u(x) − Ψ (x))+ dx for all u ∈ V ,

then problem (1.1) becomes the obstacle problem (1.12) with mixed boundary conditions, where Ψ : Ω → (0, +∞) is a
given obstacle function. A careful observation gives the following corollary.

Corollary 4.8. Let 1 < q < p. Assume that H(1), H(f )(i), (ii), H(g ′), H(U ′

1), H(U
′

2) and H(φ) are satisfied. If, in addition, the
following inequalities hold

ca > aU2

(
λS
1,p

)−1
+ cf and mg > aU2

(
λS
1,p

)−1
+ df + aU1 ,

then the solution set of problem (1.12) is nonempty and compact in V .

If J(u) ≡ +∞ or L(u) ≡ −∞ for all u ∈ V , then problem (1.3) becomes the non-obstacle elliptic inclusion problem
(1.13) involving a monotone and a nonmonotone multivalued boundary conditions, respectively. Hence, we have the
following corollary.

Corollary 4.9. Let 1 < q < p. Assume that H(1), H(f )(i), (ii), H(g ′), H(U ′

1), H(U
′

2) and H(φ) are satisfied. If, in addition, the
following inequalities hold

ca > aU2

(
λS
1,p

)−1
+ cf and mg > aU2

(
λS
1,p

)−1
+ df + aU1 ,

then the solution set of problem (1.13) is nonempty and compact in V .

In addition, if Γ2 = ∅ and Γ3 = ∅, i.e., Γ1 = Γ , then problem (1.3) reduces to implicit obstacle problem (1.10) with
Dirichlet boundary condition. Using Theorem 4.7, we obtain the following corollary.

Corollary 4.10. Assume that H(1), H(f )(i), (ii), H(U1) and H(φ) are satisfied. If, in addition, the following inequalities hold

ca > cf and mg > df + aU1 ,

then the solution set of problem (1.10) with g ≡ 0 is nonempty and compact in V .

It should be mentioned that hypotheses H(1) in problem (1.13) can be relaxed to the following weaker conditions.

H(1′): a : V → (0, +∞) and b : Lp
∗

(Ω) → [0, +∞) are such that a(u) = la(u) + ka(u) for all u ∈ V and b is a continuous
function, where la : V → [ca, +∞) is weakly continuous with some ca > 0 and ka : V → [0, +∞) is continuous.

Obviously, we do not require in H(1′) that a and b are weakly continuous on V . This extends enormously the scope of
applications to our results. A concrete example to hypotheses H(1′) is the following functions

a(u) = ca + e−
∫
Ω |∇u|τ dx and b(u) = ∥u∥p∗,Ω for all u ∈ V ,

where 1 ≤ τ ≤ p.
We have the following result for (1.13) by using H(1′) instead of H(1).
28
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Theorem 4.11. Let 1 < q < p. Assume that H(1′), H(f )(i), (ii), H(g ′), H(U ′

1), H(U
′

2) and H(φ) are satisfied. If, in addition, the
following inequalities hold

ca > aU2

(
λS
1,p

)−1
+ cf and mg > aU2

(
λS
1,p

)−1
+ df + aU1 ,

hen the solution set of problem (1.13) is nonempty and compact in V .

roof. Let B : V × V → V ∗, F : V → V ∗ and G : V → V ∗ be the functions defined by

⟨B(u, u), v⟩ := b(u)
∫

Ω

|∇u|q−2
∇u · ∇v dx,

⟨Fu, v⟩ :=

∫
Ω

f (x, u, ∇u)v dx,

⟨G(u), v⟩ :=

∫
Ω

g(x, u)v dx,

for all u, v ∈ V . Then, using standard arguments, it is not difficult to see that u ∈ V is a solution of problem (1.13) if and
only if it solves the following inclusion problem:

G(u) + ∂cϕ(u) ∋ 0 in V ∗,

where the multivalued mapping G : V → 2V∗

is defined by

G(u) = A(u, u) + B(u, u) + G(u) − F (u) − i∗U1(u) − γ ∗U2(u) (4.15)

for all u ∈ V . From the proof of Theorem 3.4 of Zeng–Bai–Gasiński [34], we can see that the continuity of a and b plays a
ignificant role to verify the pseudomonotonicity of G. More precisely, it directly effects the validity of the condition that

• if {un}n∈N ⊂ V with un
w

−→ u in V and u∗
n ∈ G(un) are such that

lim sup
n→∞

⟨u∗

n, un − u⟩ ≤ 0, (4.16)

then to each element v ∈ V , there exists u∗(v) ∈ G(u) with

⟨u∗(v), u − v⟩ ≤ lim inf
n→∞

⟨u∗

n, un − v⟩. (4.17)

Let {un}n∈N ⊂ V and {u∗
n}n∈N ⊂ V ∗ be sequences such that u∗

n ∈ G(un) and suppose inequality (4.16) holds. Then, there
xist sequences {ηn}n∈N ⊂ X∗ and {ξn}n∈N ⊂ Y ∗ satisfying

u∗

n = A(un, un) + B(un, un) + G(un) − F (un) − i∗ηn − γ ∗ξn for all n ∈ N.

sing hypotheses H(U ′

1) and H(U ′

2), we know that the sequences {ηn}n∈N ⊂ X∗ and {ξn}n∈N ⊂ Y ∗ are both bounded. Passing
o a subsequence if necessary, we may assume that

ηn
w

−→ η in X∗ and ξn
w

−→ ξ in Y ∗ (4.18)

or some (η, ξ ) ∈ X∗
× Y ∗. Besides, hypotheses H(f ) reveal that the sequence {F (un)}n∈N is bounded in Lq

′
1 (Ω). Then, we

se the compactness of i and γ as well as of the embedding from V into Lq1 (Ω) to obtain

0 ≥ lim sup
n→∞

⟨u∗

n, un − u⟩

≥ lim sup
n→∞

⟨A(un, un), un − u⟩ + lim inf
n→∞

⟨B(un, un), un − u⟩ + lim inf
n→∞

⟨G(un), un − u⟩

− lim sup
n→∞

⟨F (un), un − u⟩
Lq

′
1 (Ω)×Lq1 (Ω)

− lim sup
n→∞

⟨ηn, un − u⟩Lp′ (Ω)×Lp(Ω)

− lim sup
n→∞

⟨ξn, un − u⟩Lp′ (Γ2)×Lp(Γ2)

≥ lim sup
n→∞

⟨A(un, un), un − u⟩ + lim inf
n→∞

⟨B(un, u), un − u⟩ + lim inf
n→∞

⟨G(u), un − u⟩

≥ lim sup
n→∞

⟨A(un, un), un − u⟩,

here we have used the monotonicity of u ↦→ B(v, u) and u ↦→ G(u). Hence, we have

0 ≥ lim sup
n→∞

⟨A(un, un), un − u⟩

= lim sup
n→∞

(
(la(un) + ka(un))

∫
Ω

|∇un|
p−2

∇un · ∇ (un − u) dx
)

≥ lim sup la(un)
∫

|∇un|
p−2

∇un · ∇ (un − u) dx

n→∞ Ω

29
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P
G

+ lim inf
n→∞

ka(un)
∫

Ω

|∇un|
p−2

∇un · ∇ (un − u) dx

≥ lim sup
n→∞

la(un)
∫

Ω

|∇un|
p−2

∇un · ∇ (un − u) dx

+ lim inf
n→∞

ka(un)
∫

Ω

|∇u|p−2
∇u · ∇ (un − u) dx

≥ lim sup
n→∞

la(u)
∫

Ω

|∇un|
p−2

∇un · ∇ (un − u) dx

− lim sup
n→∞

|la(un) − la(u)|
⏐⏐⏐⏐∫

Ω

|∇un|
p−2

∇un · ∇ (un − u) dx
⏐⏐⏐⏐

≥ lim sup
n→∞

la(u)
∫

Ω

|∇un|
p−2

∇un · ∇ (un − u) dx.

This implies that un → u in V .
Recall that U1 and U2 are strongly-weakly closed. Therefore, from (4.18) it follows that η ∈ U1(u) and ξ ∈ U2(u). For

ny v ∈ V , we have, due to the continuity of a, b, F and G, that

lim
n→∞

⟨u∗

n, un − v⟩ = ⟨A(u, u) + B(u, u) + G(u) − F (u) − i∗η − γ ∗ξ, u − v⟩.

he latter combined with the fact that η ∈ U1(iu) and ξ ∈ U2(γ u) implies that u∗
= A(u, u)+ B(u, u)+G(u)− F (u)− i∗η −

∗ξ ∈ G(u). Therefore, we conclude that (4.17) holds.
Arguing as in the proof of Theorem 3.4 of Zeng–Bai–Gasiński [34], we can prove that the solution set of problem (1.13)

s nonempty. Invoking the same arguments as in the proof of Theorem 3.4, we conclude that the solution set of problem
1.13) is compact. □

Furthermore, we suppose that the function ka in hypotheses H(1′) satisfies the following condition:

ka(u) → ∞ as u ∈ V with ∥∇u∥p,Ω → ∞. (4.19)

hen inequality ca > aU2

(
λS
1,p

)−1
+ cf can be dropped and the domain of la can be replaced by (0, +∞).

heorem 4.12. Let 1 < q < p. Assume that H(1′) with la : (0, +∞) → (0, +∞), H(f )(i), (ii), H(g ′), H(U ′

1), H(U
′

2) and H(φ)
re satisfied. If, in addition, (4.19) and the inequality

mg > aU2

(
λS
1,p

)−1
+ df + aU1

old, then the solution set of problem (1.13) is nonempty and compact in V .

roof. We will see that the inequality ca > aU2

(
λS
1,p

)−1
+ cf plays an important role in order to prove that the operator

: V → 2V∗

defined in (4.15) is coercive in the sense that

lim
n→∞

⟨Gun, un⟩

∥un∥V
= +∞, (4.20)

whenever the sequence {un}n∈N ⊂ V is such that ∥un∥V → +∞.
Let {un}n∈N ⊂ V be such that ∥un∥V → +∞. Then, from (4.11), (4.12), (4.13) and (4.14), we have

⟨G(un), un⟩

≥

(
a(un) − aU2

(
λS
1,p

)−1
− cf

)
∥∇un∥

p
p,Ω +

(
mg − aU2

(
λS
1,p

)−1
− df − aU1

)
∥un∥

p
p,Ω

− ∥αU2∥p′,Γ2

(
λS
1,p

)−
1
p
∥un∥V − ∥αU1∥p′,Ω∥un∥p,Ω − ∥g(·, 0)∥p′,Ω∥un∥p,Ω − ∥βf ∥1,Ω .

(4.21)

Since ∥un∥V = ∥un∥p,Ω + ∥∇un∥p,Ω → +∞, one of the following cases can occur:

(a) ∥un∥p,Ω → +∞ and {∥∇un∥p,Ω}n∈N is bounded;
(b) ∥∇un∥p,Ω → ∞ and {∥un∥p,Ω}n∈N is bounded;
(c) ∥un∥p,Ω → +∞ and ∥∇un∥p,Ω → ∞.

Let us discuss the cases above separately. If case (a) holds, then we have

lim inf

(
a(un) − aU2

(
λS
1,p

)−1
− cf

)
∥∇un∥

p
p,Ω

= 0,

n→∞ ∥un∥V
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T

H

f

and

lim inf
n→∞

(
mg − aU2

(
λS
1,p

)−1
− df − aU1

)
∥un∥

p
p,Ω

∥un∥V
= +∞.

his shows that (4.20) is valid. If (b) occurs, then from (4.19) we are able to find n0 ∈ N such that

a(un) − aU2

(
λS
1,p

)−1
− cf > 0 for all n ≥ n0

and

lim
n→∞

(
a(un) − aU2

(
λS
1,p

)−1
− cf

)
∥∇un∥

p
p,Ω +

(
mg − aU2

(
λS
1,p

)−1
− df − aU1

)
∥un∥

p
p,Ω

∥un∥V
+ ∞.

ence, also in this case we have (4.20). Finally, if case (c) takes place, then we have

a(un) − aU2

(
λS
1,p

)−1
− cf ≥ mg − aU2

(
λS
1,p

)−1
− df − aU1 > 0

or all n ≥ n1, for some n1 ∈ N, and

lim
n→∞

⟨G(un), un⟩

∥un∥V

≥ lim
n→∞

(
mg − aU2

(
λS
1,p

)−1
− df − aU1

) (
∥∇un∥

p
p,Ω + ∥un∥

p
p,Ω

)
∥un∥

− lim sup
n→∞

∥αU2∥p′,Γ2

(
λS
1,p

)−
1
p ∥un∥V + ∥αU1∥p′,Ω∥un∥p,Ω + ∥g(·, 0)∥p′,Ω∥un∥p,Ω − ∥βf ∥1,Ω

∥un∥V

= +∞.

Thus, (4.20) is verified. Therefore, we have shown that G is coercive.
Employing the same arguments as in the proof of Theorem 4.11, we can conclude that the solution set of problem

(1.13) is nonempty and compact in V . □

Example 4.13. The following functions satisfy hypotheses H(1′) and (4.19):

a(u) = c0 +

∫
Ω

|∇u|p dx and a(u) = e
∫
Ω |u|p dx

+

∫
Ω

|∇u|p dx

for all u ∈ V and for some c0 > 0.

Similarly, if J(u) ≡ 0 and

L(u) =

∫
Ω

(u(x) − Ψ (x))+ dx for all u ∈ V (4.22)

we also have the following theorem concerning problem (1.12).

Theorem 4.14. Let 1 < q < p. Assume that H(1′), H(f )(i), (ii), H(g ′), H(U ′

1), H(U
′

2) and H(φ) are satisfied. If, in addition,
(4.19) and the inequality

mg > aU2

(
λS
1,p

)−1
+ df + aU1 ,

hold, then the solution set of problem (1.12) is nonempty and compact in V .

Additionally, if g ≡ 0 and Γ2 = Γ3 = ∅, i.e., Γ1 = Γ , and J(u) ≡ 0 and L as in (4.22) (resp. J(u) ≡ +∞ for all u ∈ V ),
then problem (1.3) reduces to the following elliptic obstacle inclusion problem with Dirichlet boundary and nonlinear
convection (resp. elliptic non-obstacle inclusion problem with Dirichlet boundary and nonlinear convection):

−a(u)∆pu − b(u)∆qu ∈ U1(x, u) + f (x, u, ∇u) in Ω,

u = 0 on Γ ,

u(x) ≤ Ψ (x) in Ω,

(4.23)

resp.,

−a(u)∆pu − b(u)∆qu ∈ U1(x, u) + f (x, u, ∇u) in Ω,
(4.24)
u = 0 on Γ .
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T

i

h

Now, we can remove the inequality

mg > aU2

(
λS
1,p

)−1
+ df + aU1 .

For problems (4.23) and (4.24) we have the following results.

heorem 4.15. Let 1 < q < p. Assume that H(1′), H(f )(i), (ii), and H(U ′

1) are satisfied. If, in addition, (4.19) holds, then the
solution set of problem (4.23) is nonempty and compact in V .

Proof. Since Γ1 = Γ , we see that V = W 1,p
0 (Ω) and ∥u∥V = ∥∇u∥p,Ω for all u ∈ V . From the proof of Theorem 4.12, it is

sufficient to examine that G is coercive in the sense of (4.20).
Let {un}n∈N ⊂ V be such that ∥un∥V → +∞. Then, we have

⟨G(un), un⟩ ≥
(
a(un) − cf

)
∥∇un∥

p
p,Ω − ∥αU1∥p′,Ω∥un∥p,Ω − ∥βf ∥1,Ω .

Applying (4.19), there exists n2 ∈ N such that a(un) − cf ≥ 1 for all n ≥ n2. Passing to the limit as n → ∞ in the last
inequality, we conclude that (4.20) holds, that is, G is coercive.

Arguing as in the proof of Theorem 4.11, we infer that the solution set of problem (1.13) is nonempty and compact
in V . □

A similar result holds for problem (4.24).

Theorem 4.16. Let 1 < q < p. Assume that H(1′), H(f )(i), (ii), and H(U ′

1) are satisfied. If, in addition, (4.19) holds, then the
solution set of problem (4.24) is nonempty and compact in V .

Next, we consider the problems (1.9) and (3.33). For this purpose, we assume the following conditions.

H(j′1): The functions j1 : Ω × R → R and r1 :R → R are such that

(i) x ↦→ j1(x, s) is measurable in Ω for all s ∈ R with x ↦→ j1(x, 0) belonging to L1(Ω);
(ii) s ↦→ j1(x, s) is locally Lipschitz continuous for a. a. x ∈ Ω and the function r1 :R → R is continuous;
(iii) there exist a function αj1 ∈ Lp

′

(Ω)+ and a constant aj1 ≥ 0 such that

|r1(s)η| ≤ αj1 (x) + aj1 |s|
p−1

for all η ∈ ∂ j1(x, s), for a. a. x ∈ Ω and for all s ∈ R.

H(j′2): The functions j2 : Γ2 × R → R and r2 :R → R are such that

(i) x ↦→ j2(x, s) is measurable on Γ2 for all s ∈ R with x ↦→ j2(x, 0) belonging to L1(Γ2);
(ii) s ↦→ j2(x, s) is locally Lipschitz continuous for a. a. x ∈ Γ2 and the function r2 :R → R is continuous;
(iii) there exist a function αj2 ∈ Lp

′

(Γ2)+ and a constant aj2 ≥ 0 such that

|r2(s)ξ | ≤ αj2 (x) + aj2 |s|
p−1

for all ξ ∈ ∂ j2(x, s), for a. a. x ∈ Γ2 and for all s ∈ R.

From the proofs of Theorems 3.13 and 4.7, we obtain the following result.

Corollary 4.17. Let 2 ≤ p and 1 < q < p. Assume that H(1), H(f ), H(g ′), H(j′1), H(j
′

2) and H(φ) are satisfied. If, in addition,
the inequalities

ca > aj2
(
λS
1,p

)−1
+ cf , k(p)ca > hf

(
λ̂

) 1
p

and mg > max{aj2
(
λS
1,p

)−1
+ df + aj1 , ef }

hold, then the solution set of problem (1.9) is nonempty and compact in V .

More particularly, when f ≡ 0, then problem (1.3) reduces to problem (3.33). In some sense, the following corollary
extends the one in Corollary 3.14.

Corollary 4.18. Let 1 < q < p. Assume that H(1), H(g ′), H(U ′

1), H(U
′

2), H(φ), H(L) and H(J) are satisfied. If, in addition, the
nequalities

ca > aU2

(
λS
1,p

)−1
and mg > aU2

(
λS
1,p

)−1
+ aU1

old, then the solution set of problem (3.33) is nonempty and compact in V .
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