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HIGH ENERGY BLOWUP AND BLOWUP TIME FOR A CLASS OF
SEMILINEAR PARABOLIC EQUATIONS WITH SINGULAR

POTENTIAL ON MANIFOLDS WITH CONICAL SINGULARITIES∗

YUXUAN CHEN† , VICENŢIU D. RĂDULESCU‡ , AND RUNZHANG XU§

Abstract. In this paper, we consider a class of semilinear parabolic equations with singular
potential on manifolds with conical singularities. At high initial energy level J(u0)>d, we present
a new sufficient condition to describe the global existence and nonexistence of solutions for problem
(1.1)-(1.3) respectively. Moreover, by applying the Levine’s concavity method, we give some affirmative
answers to finite time blow up of solutions at arbitrary positive initial energy J(u0)>0, including the
upper bound of blowup time. Finally, we show a lower bound of the blowup time and blowup rate for
problem (1.1)-(1.3) under arbitrary initial energy level.
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1. Introduction
In this paper, we concern with the following initial boundary value problem for

semilinear conical degenerate parabolic equations with singular potential

ut−∆Bu+κV (x)u=g(x)|u|p−1u, x∈ intB,t>0, (1.1)

u(x,0)=u0, x∈ intB, (1.2)

u(x,t)=0, x∈∂B,t≥0, (1.3)

where u0∈H1,N2
2,0 (B), 1<p< N+2

N−2 and N >2 is the dimension of B, N ∈N, κ∈R. Here
the domain B=[0,1)×X is regarded as the local model near the conical point on conical
singular manifolds, where X⊂RN−1 is a closed compact C∞ manifold. Denote by intB
the interior of B and the boundary of B by ∂B :={0}×X. Near ∂B we often use the
coordinates x=(x1,x̃)=(x1,x2,x3,...,xN )∈B for 0≤x1<1 and x̃∈X. The Fuchsian
type Laplacian is defined as

∆B=∇2
B=(x1∂x1

)2+∂2x2
+ ...+∂2xN

,

which is a special case of totally characteristic degeneracy operators on a stretched con-
ical manifold and ∇B=(x1∂x1 ,∂x2 ,...,∂xN

) denotes the corresponding gradient operator
with conical degeneracy on the boundary ∂B.

In Equation (1.1), we assume that g=g(x1,x̃)∈L∞(intB)∩C(intB) is a positive
weighted function and V =V (x1,x̃)∈L∞(intB)∩C(intB) is non-negative potential func-
tion which satisfies the cone Hardy’s inequality (see Lemma 2.1 for detail). Specifically,
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the potential V (x1,x̃) contains two kinds of singular potential functions:

V1=

(
N−3

2

)2
1

|x21+ x̃2|

and

V2=

(
N−1

2

)2
x−2
1 e

− 1

x2
1

e
− 1

x2
1 + x̃2

.

Obviously, original point is the singular point of V1, meanwhile, V2 is unbounded on ∂B.
Notice that V1 is the classical Hardy potential for ∆ and V2 is a new Hardy potential
induced by ∆B [1]. Before further exploring the conical singular manifold, we briefly
introduce some of the dynamics of the parabolic equations associated with this paper,
including the related progress of the heat equation problem with potential function, and
the topics to be dealt with in our paper.

Due to the fact that the study of the classical semilinear heat equation on the
bounded domain Ω⊂Rn

ut−∆u= |u|p−1u (1.4)

has been tackled with so many different unlinked tools, it is impossible to describe
all of these conclusions systematically. Depending on suitable properties of the initial
datum in H1

0 (Ω), we shall focus on the special interests of the dynamical behavior of the
solution for different initial energy levels. As reported in [2], these conclusions revealed
the relations between the solution and the initial datum by using the variational method,
so-called potential well method. Hence the following discussions aim to describe all of
the manifolds of the initial data which leads to the global solution or finite time blow
up solution as shared and summarized in [3–12].

Before this, we concentrate first on the celebrated potential term. For bounded
potentials or potentials with moderate singularities, the existence, uniqueness, and be-
havior of solutions to the linear parabolic equation ut−∆u−V (|x|)u=0 is similar with
the corresponding properties of the heat kernel as the potential V is small enough. Inter-
estingly, such situation changes dramatically for very singular potentials, a particularly
typical one of singular potentials is the so-called inverse-square potential V (ξ)∼λ|ξ|−2

due to many physical models, such as the reaction-diffusion of chemicals [13] and some
combustion models [14,15]. In particular, as a consequence of the important character of
a lack of regularity in the origin, the inverse-square potential has a number of remarkable
mathematical properties which make it useful in the linearized analysis for nonlinear
diffusion equations in solid-fuel ignition phenomena [16]. Another prominent applica-
tion of singular potentials can be found in nonrelativistic quantum mechanics when we
consider the Schrödinger equation by referring to [17–20] for a detailed discussion of the
backgrounds.

From the purely mathematical theoretical point of view, the singular potential has
mathematical interest in itself as it represents a threshold. To survey the singular
potential Baras and Goldstein [21] considered the linear heat equation with singular
potential

ut−∆u=V (x)u+f(x,t)

and discovered that existence and non-existence of positive solutions is crucially de-
termined by the value of the parameter c of V (x)= c|x|−2. Even an attempt at a
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brief review of this linear case is beyond the scope of this introduction, here we refer
to [13, 22–25] for more details. For the nonlinear case, P. Souplet [26] obtained the
stability properties of the parabolic equation with decaying potentials in Rn as follows

ut−∆u+V (x)u=up. (1.5)

Assuming the initial data u0∈L∞
k satisfies ∥u0∥∞,k≤ δ, it was shown that the corre-

sponding solution u of Cauchy problem of (1.5) is global in time under suitable con-
ditions on V (x). When u0∈L∞

k ∩H1(R) and u0≥0, they further achieved a uniform
priori estimate for global solutions and E(t)≥0. Besides that, if V (x) and u0 are radial,
there is an additional result that some global solutions have ω-limit sets containing a
positive equilibrium. More literature on potential functions can be found in [27,28] and
the references therein.

Different from the classical domain Ω⊂Rn, in the case of a singular manifold do-
main, say conical points on the boundary, it is no longer possible to define the derivative
in the classical sense. Therefore, its scope and techniques fall out of the traditional
analysis when near these singularities. Fortunately, there is a special pseudo-differential
operator that can reflect the singular structure of manifold, i.e., Fuchsian type Laplace
operator; such mathematical advances were sharpened in the work of Kondrat’ev [29]
as well as in related works of Schulze and collaborators [30–33]. In short, with the help
of the pseudo-differential operator, the specific differential and integral are properly
defined, and the corresponding functional analysis framework is constructed. Through
these analysis tools, the dynamic behavior of several different types of solutions for
differential equations in the distribution sense is studied, which provides an affirmative
method for dealing with problems of partial differential equations that arise in singu-
lar or degenerate geometric situations. With this observation a lot of mathematicians
began a variety of studies of differential equations associated with the manifold with
singularities, see [34–39]. Especially, comparing with the classical case of problem (1.4),
Chen [40] first investigated the initial boundary value problem of semilinear conical
degenerate parabolic equation

ut−∆Bu= |u|p−1u, (1.6)

and obtained not only the existence of global solutions with exponential decay, but also
the blow up in finite time with low initial energy and critical initial energy J(u0)≤d.
Until recently, M. Alimohammady [41] also focused on the influence of the initial data
to solution of differential equation especially the critical value of the singular poten-
tial and discussed the existence theorem for a class of semilinear totally characteristic
hypoelliptic equations on manifold with singularities

∂kt u−∆Bu−V (x)u=g(x)|u|p−1u, (1.7)

where k≥1. As a key ingredient, in cone Sobolev space H1,n2
2,0 (B), by utilizing the cone

Sobolev embedding inequality, cone Poincaré inequality and potential well method,
M. Alimohammady proved the global existence and finite time blow up of solution to
problem (1.7) under sub-critical initial energy level, i.e, J(u0)<d. As another main
result, he also derived an exponential decay of solution with J(u0)<d provided the
solution exists globally.

An interesting as well as important point is the dynamic behavior of the solution to
problem (1.1)-(1.3) at high initial energy level, i.e., J(u0)>d. In fact, as the potential
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energy functional J(u) lacks the sharp constraints of mountain pass level d, demonstrat-
ing the invariant set under arbitrary high initial energy level will be a challenging task.
Corresponding to the case of usual Euclidean domain studied in [42,43], a new different
obstacle for studying the well-posedness of problem (1.1)-(1.3) at high initial energy lev-
els would be the analysis of the dynamic behavior of solutions in a degenerate measure
space, including the use of various forms of inequalities governed by cone differential
operator, which would bring additional technical complications caused by the singular-
ity of the domain. In addition, the existence of the undefinite sign potential function
is one of the important features of this paper as it covers the applicability of a wider
range of problems, but it increases the difficulty of estimating the conditions of both the
existence of global solutions and blowup solutions. Noticing the proof in [41], to decide
whether or not the resulting solution is global or blows up in finite time, they indicated
the sharp criteria stem from initial datum u0 and exhibited the sufficient condition by
freezing the upper bound of initial energy, i.e., J(u0)<d. However, the unexpected re-
strictions of initial energy occupies our present attention, after releasing the subcritical
initial energy to the arbitrary positive case, (from 0<J(u0)<d to J(u0)>0), a corre-
sponding attraction motivates us to explore whether there are still sharp-like conditions
similar to the above described in [41]? Or, at least to provide sufficient conditions for
the initial datum u0 to determine whether the solution of the problem (1.1)-(1.3) exists
globally or blows up in finite time, respectively. To handle these, the present paper will
give the sufficient condition of initial datum u0 under high initial energy which leads to
global existence and nonexistence of solutions, including a sufficient condition for the
finite time blow up of solutions at arbitrary positive initial energy. At the same time,
we will also complete some estimates about the blow up time and the blow up rate.

For the high initial energy levels case, according to the discussion above, the three
basic successive issues we will focus on include what, when and how. Specifically, what
kind of initial data will lead to the solution existing globally or blowing up in finite
time? Granted that finite time blow up occurs, when does the blow up occur? Can we
estimate the blow up time? Last but not least, how does finite time blow up occur?
In summary, our paper will give some affirmative answers as the main results of this
paper.

(a) Global existence and finite time blow up for high initial energy. (The-
orem 3.1 in the present paper). When the initial energy is larger than the
critical initial energy level, i.e., J(u0)>d, by characterizing the high-energy steady-

state set Nα, Theorem 3.1 gives a sharp-like condition, which uses the L
N
2
2 -norm as

the radius to divide the phase space H1,N2
2,0 (B) into three parts, as shown in Figure

1.1. It not only shows the sufficient condition of initial datum u0 leading to global
existence and blow up of solutions respectively, but also clarifies the distribution of

these initial data in terms of L
N
2
2 -norm in H1,N2

2,0 (B).
(b) Finite time blow up and upper bound of blowup time for positive initial

energy I (Theorem 3.2 in the present paper) and positive initial energy
II (Theorem 3.3 in the present paper). The most interesting part of the
present paper seems to be these two theorems, i.e., Theorem 3.2 and Theorem 3.3,
roughly speaking, which can be regarded as some kind of sacrifice of the wide range
of conditions for initial data ensuring the finite time blow up of the solution in order
to obtain the estimates of the upper bound of the blowup time corresponding to two
different sets of the initial data. Different from the sharp-like condition of the global
existence in time and finite time blow up of the solution given in Theorem 3.1 aiming
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Fig. 1.1. Schematic diagram of H1,N
2

2,0 (B) space segmentation

to reveal the relations between the conditions of the initial data for global existence
and finite time blow up of solution respectively, Theorem 3.2 and Theorem 3.3 aim
to focus on the upper bound of the blowup time by adding some more restrictive
conditions on the initial data. Indeed, these restrictions can be given in many
possible ways and forms, but our two theorems describe two important aspects of
them, by the coefficients of the norm of the initial datum ∥u0∥2

L
N
2
2 (B)

in the conditions

of Theorem 3.2 and Theorem 3.3 in the present paper. Generally speaking, such
coefficient in Theorem 3.2 is about the parameters related to diffusion term and the
potential term on the left side of the equation, while the coefficient in Theorem 3.3
is from the parameters close to the nonlinear source term on the right side of the
equation. Based on these two different restrictions about the initial conditions, the
finite time blow up of solution is proved, and the corresponding different estimates
of upper bounds of blowup time are derived. More detailed analysis will be given
in Remarks 5.1 and 6.1.

(c) Lower bound of blowup time and blowup rate for blowup solution. (The-
orem 3.4 in the present paper). Based on the blowup solution by supposing
that the finite time blow up happens to the solution, Theorem 3.4 estimates the
lower bound of the blowup time and the lower bound of the blowup rate of the
blowup solution. Unlike Theorem 3.2 and Theorem 3.3, the lower bound of the
blowup time is independent of the initial energy condition, so the results given by
Theorem 3.4 can apply to the finite time blow up solution described in Theorem
3.1-Theorem 3.3 and all the other possible and suitable finite time blow up solutions,
as long as the condition of Theorem 3.4 can be satisfied.

Open problems. (Global existence for positive initial energy). It is well known
that Laplacian operators in Euclidean space can be used as infinitesimal generators of
semigroups. Therefore, using semigroups method to represent the solution, then com-
bined with the potential well method and comparison principles, we can analyze the
dynamic behavior of solutions for nonlinear parabolic equations more clearly. For ex-
ample, to discuss the existence for global solutions and blowup solutions in N+ under
positive initial energy level, see [2,8,44] for details. However, it is still unknown whether
conclusions similar to the classical comparison principle can be obtained for the degen-
erate cone operator case. Thus, it prevents us from discussing further the other results
tied to the global well-posedness of the solution with high initial energy case. Another
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important research topic on problem (1.1)-(1.3) is what kind of sufficient conditions the
initial data needs to satisfy under positive initial energy levels to induce the global exis-
tence of solutions. However, as an open problem, we would like to point that it is truly
difficult to find such a sufficient condition. The reason for this is that the appropriate
boundedness estimation is the necessary tool to demonstrate the global solutions, while
we nowadays have not found the right ways to control the long-term global dynamic
behavior of solutions by virtue of the boundedness of the initial energy. Another brief
explanation is the lack of a proof of invariant set. Perhaps there is a deeper level of
topological invariance and other profound mechanisms that we have not fully realized
yet, which may guide one to explore further.

2. Preliminaries

2.1. Cone Sobolev spaces. Owing to the differential topology defect, the sin-
gular domain; which means that the boundary has singularity such as conical, edge,
corner, etc., compared with the smooth one, there are more difficulties in analysis in-
cluding sufficient generality and regularity. For instance, the doubling property1 as a
normal property for smooth domain does not apply to singular domain (see [45] Ex-
ample 3.1), but the doubling property plays a major role for establishing many basic
inequalities such as Poincaré inequality [46]. Moreover, it is rarely the real smooth
case. The non-smooth domain is naturally encountered in various practical settings in
applications, in which many inconveniences appear in microlocal non-smooth part [47].
Of course, after drawing the singular domain as singular manifold, the most difficult
task is to identify the differential operator reasonably on the singular manifold, which
should depend on the geometry of the corresponding manifold. Hence, instead of gen-
eral singular one, we focus on the essential singular space equipped with rich additional
structures, which permit one to define differential operators in a natural way. We call
it a manifold with conical singularities.

We first give the definition of a manifold with conical singularities.

Definition 2.1. Let B be a second countable Hausdorff space and b1,b2,...,bn∈B
such that B\{b1,b2,...,bn} is a smooth manifold (without boundary) of dimension N .
To say that B is a manifold with conical singularities b1,b2,...,bn means to require the
existence of a system Φ of homeomorphisms ϕ :B→Bϕ/∼, where

(i) Bϕ is a smooth compact manifold with boundary ∂Bϕ=∪nj=1Xϕ(j) with N−1 di-
mensional smooth compact manifolds Xϕ(j);

(ii) ∼ means shrinking each of the Xϕ(j) to a point;

(iii) ϕ :B\{b1,b2,...,bn}→ intBϕ is a diffeomorphism and ϕ(bj)=Xϕ/∼;

(iv) for each ϕ1,ϕ2∈Φ the restriction ϕ1 ◦ϕ−1
2 : intBϕ2

→ intBϕ1
extends to a diffeomor-

phism (of manifolds with boundary) Bϕ2
→Bϕ1

.

As showed in [29, 30], to construct the associated geometric operators on conic
manifolds needs resolving the singularity of the manifold, which is reflected in Definition
2.1. Details of this desingularization, for instance, by introducing polar coordinates, can
be found in [30]. In order to make the reader understand this process more intuitively, we
show in Figure 2.1 a graph formed by stretching and quotient map of a singular manifold
B, and indicate the relationship between the singular manifold B, the stretched manifold

1For a metric space M with a metric d, a measure f over (M,d) is said to have the doubling property
if f(2B)/f(B) is bounded where B and 2B are balls with the same center and the radius of 2B is twice
as that of B.
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B and the projection of the stretched manifold B/∼.

Fig. 2.1. The relationship between B, B and B/∼

Smooth manifold B is produced by stretching singular manifold B, which provides
facility to construct the differential structures. Naturally, when the operators contained
in the differential structure act near the boundary ∂B, the behavior of operators should
be restricted so that they can reflect the singular characteristics. In details, this re-
striction should have two effects: to accurately express the derivative calculation near
the boundary and to definitely exhibit the singularity on the boundary as shown by the
operator A which will be defined below. Of course, the “stretching” does not commit
us to stray from the subject. The projection of the smooth manifold B/∼, specified
by above differential structure in the quotient topology sense, is exactly homeomorphic
to the original singular manifold B. Such viewpoint of B.W. Schulze and other col-
laborators [30–32] makes our research finally focus on the pair (B,DB), rather than the
troublesome B, where DB⊂Diff(B)2 consists of the so-called cone-degenerate operators,
which provide a smooth continuation to the entire stretched manifold B but degenerates
on the boundary ∂B.

To understand the degenerate behavior of the cone-degenerate operators clearly,
we herein mention the −x1∂x1 -differential form appearing in operator ∆B and discuss
some details. The typical −x1∂x1 differential operators, called Fuchsian type operators,
defined in a neighborhood of x1=0 of the following form

A :=x−s1

s∑
k=0

ak(x1)

(
−x1

∂

∂x1

)k
,

where (x1,x̃)∈X∧ :=R+×X is a cylinder manifold near the boundary ∂B (see Figure
2.2), and ak(x1)∈C∞(R+,Diffs−k(X)), s∈R are smooth up to x1=0 [30–33]. Such
operators exhibit both degenerate and singular behaviors as follows: the derivative

2Diffs(Ω) is a Fréchet space, which denotes all differential operators on Ω of order s with smooth
coefficients in local coordinates, where Ω is a C∞ manifold. In particular, Diff0(Ω):=Diff(Ω).
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x1∂x1 in the direction of cone axis vanishes at x1=0 and the factor x−s1 is singular at
x1=0.

Fig. 2.2. Stretched manifold B and cylinder manifold (0,1)×X

Fig. 2.3. A mind map of the construction of functional spaces.

As a widely accepted idea from the works by Kondrat’ev and Schulze [29–31] that
the Mellin transform being a Fourier transform in logarithmic variables is particularly
adapted to conical degeneration calculus which is well behaved under a R+ direction.
Moreover, the Fuchsian type operator −x1∂x1

can be translated by Mellin transform
into multiplication with complex covariable, which motivates a better pseudodifferential
symbols calculus near the singularities. Cost-effectively, we will skip the calculation
related to Mellin transform and give the weighted Sobolev spaces directly [30,31,39,41],
details related to Mellin transform can also be found in [48].

The key to constructing the Sobolev space is to reasonably define it on the cylinder
manifold, in which the cylinder manifold is in accordance with the stretched manifold
near the boundary. However, the metrics are different in the R+ direction and non-
R+ directions near the boundary, thus, it is necessary to consider their actions in the
function spaces respectively. Firstly, introducing the usual Lebesgue space in the sense
of polar coordinates may be the best choice as it just meets our needs. Subsequently, we
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realize the normalization of Lp(RN+ ) through the weight factor x−γ1 and introduce the
derivative to get the Hs,γ

p (RN+ ) space. With the aid of the pull back function, we map

the Hs,γ
p space from the half space RN+ onto the cylinder manifold X∧. Finally, we give

the weighted Sobolev spaces Hs,γ
p,0(B) space combined by Hs,γ

p,0(X
∧) and W s,p

0 (int(B))
via non-direct Fréchet sum (Refer to [30] in page 6). We present a mind map in Figure
2.3, which will help guide the reader to understand the path we use to construct the
weighted Sobolev spaces.

Firstly, we define the weighted Sobolev spaces on RN+ :=R+×RN−1.

Definition 2.2 (The space Lp(RN+ ) and Lγp(RN+ ) [31] p. 139, [39]). For (x1,x̃)∈RN+ ,

we say that u(x1,x̃)∈Lp(RN+ , dx1

x1
dx̃) with 1<p<∞, if

∥u∥Lp(RN
+ )=

(∫
R+

∫
RN−1

xN1 |u(x1,x̃)|p
dx1
x1

dx̃

) 1
p

<∞.

The weighted Lp spaces with weight γ∈R is denoted by Lγp(RN+ , dx1

x1
dx̃), i.e., if u∈

Lγp(RN+ , dx1

x1
dx̃), then x−γ1 u∈Lp(RN+ , dx1

x1
dx̃), which consists of functions u(x1,x̃) with

∥u∥Lγ
p(RN

+ )=

(∫
R+

∫
RN−1

xN1 |x−γ1 u(x1,x̃)|p
dx1
x1

dx̃

) 1
p

<∞.

Definition 2.3 (The space Hs,γ
p (RN+ ) [30] p. 3, [39]). For s∈N,γ∈R and 1<p<∞,

assuming u(x1,x̃)∈D′(RN+ ), where the dual (C∞
0 (RN+ ))′=:D′(RN+ ) is the space of all

distributions in RN+ , we denote the spaces

Hs,γ
p (RN+ ) :=

{
u∈D′(RN+ )

∣∣∣∣(x1∂x1
)k∂βx̃u∈L

γ
p(RN+ ,

dx1
x1

dx̃)

}
for any k∈N, multi-index β∈NN−1 with k+ |β|≤s. Therefore, Hs,γ

p (RN+ ) is a Banach
space with norm

∥u∥Hs,γ
p (RN

+ )=
∑

k+|β|≤s

(∫
R+

∫
RN−1

xN1 |x−γ1 (x1∂x1
)k∂βx̃u(x1,x̃)|

p dx1
x1

dx̃

) 1
p

.

Turning to the weighted Sobolev spaces on cylinder manifold R+×X, we now briefly
mention the necessary constructs from [30,31] as follows.

Note that X is a closed compact C∞ manifold and let O={O1,...,OM} be an open
covering of X by coordinate neighborhoods. If we fix a subordinate partition of unity3

{ψ1,...,ψM} and charts χj :Oj→RN−1, j=1,...,M , M ∈N, then Hs,γ
p (X∧) denotes the

closure of C∞
0 (X∧) with the norm

∥u∥Hs,γ
p (X∧)=

 M∑
j=1

∥(1×χ∗
j )

−1ψju∥pHs,γ
p (RN

+ )

 1
p

.

3Partition of unity: The set of continuous functions from a topological space to the unit interval
[0,1] such that for every point x, there is a neighborhood of x where a cofinite number of the functions
are 0, and such that the sum of all the function values at x is 1.
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Here 1×χ∗
j :C

∞
0 (R+×RN−1)→C∞

0 (R+×Oj) is the pull back function4 with respect to

1×χj :R+×Oj→R+×RN−1. Roughly speaking, the Hs,γ
p (X∧) consists, by definition,

of all functions belonging to Hs,γ
p (RN+ ) in arbitrary local coordinates on X. Denote

Hs,γ
p,0(X

∧) as the subspace of Hs,γ
p (X∧) which is defined as the closure of C∞

0 (X∧) with
respect to the norm ∥·∥Hs,γ

p (X∧).
Finally, after all the above preparations, we will give the weighted Sobolev space

on the stretched manifold B=[0,1)×X with the help of cut-off function. The weighted
Sobolev spaces Hs,γ

p,0(B) on stretched manifold B consists of two parts. The first part is
denoted by Hs,γ

p,0(X
∧) on a collar neighborhood of ∂B; and the another one is denoted

by W s,p
0 (intB) on intB, which are coherent with each other via the non-direct Fréchet

sum [30]. Specifically, assume ω(x1)∈C∞
0 (R+) is a non-negative real-valued cut-off

function which equals 1 near ∂B and equals 0 outside the collar neighborhood of the
boundary, i.e.,

ω(x1)=

{
1 near x1=0,

0 for x1≥ const.

Then, we have the following definition.

Definition 2.4 (The space Hs,γ
p (B) and Hs,γ

p,0(B) [30, 39]). The space Hs,γ
p (B) for

s∈N,γ∈R denotes the subspace of all u∈W s,p
loc (intB) such that

Hs,γ
p (B)=

{
u∈W s,p

loc (intB) |ωu∈Hs,γ
p (X∧)

}
for any cut-off function ω, supported by a collar neighborhood of [0,1). Here W s,p

loc (intB)
denotes the subspace of all u∈D′(intB) such that ϕu∈W s,p(intB) for every ϕ∈
C∞

0 (intB).
Moreover, the subspace Hs,γ

p,0(B) of Hs,γ
p (B) is defined as follows

Hs,γ
p,0(B)= [ω]Hs,γ

p,0(X
∧)+[1−ω]W s,p

0 (intB),

where W s,p
0 (intB) denotes the closure of C∞

0 (intB) in Sobolev spaces W s,p(X̃) and X̃ is
a closed compact C∞ manifold of dimension N that contains B as a submanifold with
boundary.5

Proposition 2.1 (Cone Sobolev inequality [39]). Let 1≤p<N, 1
p∗ =

1
p−

1
N and

γ∈R. The following estimate

∥u∥
Lγ∗

p∗ (RN
+ )

≤c1∥(x1∂x1)u∥Lγ
p(RN

+ )+(c1+c2)

N∑
i=2

∥∂xiu∥Lγ
p(RN

+ )+
c2
c3

∥u∥Lγ
p(RN

+ )

holds for all u(x1,x̃)∈C∞
0 (RN+ ), where

γ∗=γ−1,

c1=
(N−1)p

N(N−p)
,

4The pull back by χ of a function v on RN−1 is the function χ∗
j v=v◦χ on O, where v :RN−1→O.

In short, pull-back can be interpreted as a composition.
5Let A is an algebra, E a Fréchet space which is a left module over A, i.e., the elements a∈A

induce by mulitiplication e→ae linear oprators a :E→E with the usual algebraic rules, then we set
[a]E :={the closure of {ae :e∈E} in E} for every a∈A.
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c2=
(N−1)p

∣∣∣(N−1)− (γ−1)(N−1)p
N−p

∣∣∣ 1
N

N(N−p)
,

c3=
(N−1)p

N−p
.

Moreover, if u(x1,x̃)∈H1,γ
p,0(RN+ ), we have

∥u∥
Lγ∗

p∗ (RN
+ )

≤ c∥u∥H1,γ
p (RN

+ ),

where the constant c= c1+c2.

Proposition 2.2 (Cone Poincaré inequality [39]). Let 1<p<∞, γ∈R. If u(x1,x̃)∈
H1,γ
p,0(B) then

∥u(x1,x̃)∥Lγ
p(B)≤C

1
2
poin∥∇Bu(x1,x̃)∥Lγ

p(B),

where the constant Cpoin depends only on B and p. In particular, it follows that
∥u∥H1,γ

2,0 (B)
and ∥∇Bu∥Lγ

2 (B) are the equivalent norms in the bounded domain by using

the cone Poincaré inequality.

Proposition 2.3 (Cone Hölder inequality [41]). If u∈L
N
p
p (B),v∈L

N
p′

p′ (B) with p,p′∈
[1,∞] and 1

p+
1
p′ =1, then we have the following cone type Hölder inequality

(u,v)B≤∥u∥
L

N
p
p (B)

∥v∥
L

N
p′
p′ (B)

,

where we denote (u,v)B :=
∫
Buv

dx1

x1
dx̃ and use it throughout this paper.

Lemma 2.1 (Cone Hardy’s inequality [1,26]). For all u∈H1,N2
2,0 (B)\{0} and κ∈R\{0},

the following inequality(∫
B
V (x1,x̃)|u|2

dx1
x1

dx̃

) −κ
2|κ|

≤C
−κ
|κ|
∗

(∫
B
|∇Bu|2

dx1
x1

dx̃

) −κ
2|κ|

holds, where the best constant C∗>0 is selected as follows

C2
∗ =


inf


∥V

1
2 u∥

L

N
2
2 (B)

∥∇Bu∥
L

N
2
2 (B)

∣∣∣∣∣ u∈H1,N2
2,0 (B)

, if κ>0;

sup


∥V

1
2 u∥

L

N
2
2 (B)

∥∇Bu∥
L

N
2
2 (B)

∣∣∣∣∣ u∈H1,N2
2,0 (B)

, if κ<0.

Remark 2.1. The Hardy’s inequality and its extensions and refinements are not
only of intrinsic interest but are indispensable tools in many areas of mathematics
and mathematical physics, such as to deal with the potential functions like those in our
paper. According to different model backgrounds, the potential function in the equation
considered by the previous work frequently appears as a positive one or a negative
one [1, 26]. Naturally, the Hardy’s inequality will also have different manifestations.



36 SEMILINEAR PARABOLIC EQUATIONS WITH SINGULAR POTENTIAL

As a simplification, the Hardy’s inequality given by Lemma 2.1 contains the above two
cases, namely

∥V 1
2u∥2≥C2

∗∥∇Bu∥2 for κ>0

and

∥V 1
2u∥2≤C2

∗∥∇Bu∥2 for κ<0,

which allow us to deal with both cases simultaneously as shown in the problem (1.1)-
(1.3).

2.2. Potential well. To prove our main results, we begin by giving the definition
of weak solution of (1.1)-(1.3). Then we introduce the mathematical analysis tool, the
potential well method with its structures.

Definition 2.5 (Weak solution). Function u(x,t) is called a weak solution to problem
(1.1)-(1.3) on [0,T )×B, in which T is the maximum existence time of solution, if it
satisfies

(i) u∈L∞(0,T ;H1,N2
2,0 (B)) and ut∈L2(0,T ;L

N
2
2 (B));

(ii) for any v∈H1,N2
2,0 (B) and a.e. t∈ [0,T ), the identity∫
B
ut(t)v

dx1
x1

dx̃+

∫
B
∇Bu(t)∇Bv

dx1
x1

dx̃+κ

∫
B
V u(t)v

dx1
x1

dx̃

=

∫
B
g|u(t)|p−1u(t)v

dx1
x1

dx̃

holds.

Now, we introduce the potential energy functional

J(u(t))=
1

2
∥∇Bu(t)∥2

L
N
2
2 (B)

+
κ

2
∥V 1

2u(t)∥2
L

N
2
2 (B)

− 1

p+1
∥g

1
p+1u(t)∥p+1

L
N

p+1
p+1 (B)

(2.1)

and the Nehari functional

I(u(t))=∥∇Bu(t)∥2
L

N
2
2 (B)

+κ∥V 1
2u(t)∥2

L
N
2
2 (B)

−∥g
1

p+1u(t)∥p+1

L
N

p+1
p+1 (B)

, (2.2)

which helps define the Nehari manifold

N =
{
u∈H1,N2

2,0 (B)\{0}
∣∣∣ I(u)=0

}
,

which can divide the H1,N2
2,0 (B) space into two parts, that is the positive part

N+=
{
u∈H1,N2

2,0 (B)
∣∣∣ I(u)>0

}
and the negative part

N−=
{
u∈H1,N2

2,0 (B)
∣∣∣ I(u)<0

}
.

In aid of the Nehari manifolds we can also define the depth of potential well

d= inf
u∈N

J(u).



Y.X. CHEN, V.D. RĂDULESCU, AND R.Z. XU 37

Furthermore, we consider the levels of J(u) by

Jα=
{
u∈H1,N2

2,0 (B)
∣∣∣ J(u)<α}.

Hence, for all α>d, we define

Nα :=N ∩Jα≡
{
u∈N

∣∣∣ ∥∇Bu∥2
L

N
2
2 (B)

<
2α(p+1)

(1+κC2
∗)(p−1)

}
̸=∅

≡
{
u∈N

∣∣∣ ∥u∥2
L

N
2
2 (B)

<
2Cpoinα(p+1)

(1+κC2
∗)(p−1)

}
̸=∅.

Remark 2.2 (Some explanations on Nα). As the manifolds Nα is a key tool for
us to partition the manifold of the initial data under the high initial energy level,
which connects the Nehari manifold N and the upper bound of the potential functional

J(u), also the top norm

(
∥∇Bu∥2

L
N
2
2 (B)

)
and the base norm

(
∥u∥2

L
N
2
2 (B)

)
of the space

H1,N2
2,0 (B), we need to explain these connections clearly in this remark. In aid of the cone

Hardy’s inequality, we can derive the relationship between J(u) and I(u) as follows

J(u)=
1

2
∥∇Bu∥2

L
N
2
2 (B)

+
κ

2
∥V 1

2u∥2
L

N
2
2 (B)

− 1

p+1
∥g

1
p+1u∥p+1

L
N

p+1
p+1 (B)

=
p−1

2(p+1)

(
∥∇Bu∥2

L
N
2
2 (B)

+κ∥V 1
2u∥2

L
N
2
2 (B)

)
+

1

p+1
I(u)

≥ p−1

2(p+1)
(1+κC2

∗)∥∇Bu∥2
L

N
2
2 (B)

+
1

p+1
I(u), (2.3)

here as we need to consider the two possible opposite signs of κ∈R, both the versions of
the cone Poincaré inequality will be applied. For any u∈Nα, i.e., u∈N and J(u)<α,
we obtain from (2.3) that

α>J(u)≥ (p−1)(1+κC2
∗)

2(p+1)
∥∇Bu∥2

L
N
2
2 (B)

,

which means

∥∇Bu∥2
L

N
2
2 (B)

<
2α(p+1)

(p−1)(1+κC2
∗)
.

i.e., the definition of the first line of Nα.
From the cone Poincaré inequality, we also rewrite the above inequality as

∥u∥2
L

N
2
2 (B)

<
2αCpoin(p+1)

(1+κC2
∗)(p−1)

,

which is the definition of the second line of Nα.
Now it is convenient for us to define

λα := inf

{
∥u∥2

L
N
2
2 (B)

∣∣∣∣u∈Nα

}
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and

Λα := sup

{
∥u∥2

L
N
2
2 (B)

∣∣∣∣u∈Nα

}
.

Clearly we have the following monotonicity properties

α 7→λα is nonincreasing

and

α 7→Λα is nondecreasing.

Finally, let us introduce following two sets,

SG :=N+∩
{
u∈H1,N2

2,0 (B)
∣∣∣∥u∥2

L
N
2
2 (B)

≤λα,J(u)<α
}

and

SB :=N−∩
{
u∈H1,N2

2,0 (B)
∣∣∣∥u∥2

L
N
2
2 (B)

≥Λα,J(u)<α

}
.

But SG or SB is not sharp.

3. The main results
As shown in (a)-(c) in Section 1, as the descriptions, summaries and explanations of

the main conclusions obtained in the present paper, in this section we shall exhibit these
main results in the following four theorems. Roughly speaking, Theorem 3.1 provides
a very general condition on the initial data to classify them for the global solution and
the non-global solution. By further restricting the initial condition for the finite time
blow up solution, Theorem 3.2 estimates the upper bound of the blowup time, when the
initial condition is related to the parameters associated to the diffusion term and the
potential term, comparing to Theorem 3.3, which makes it by the parameters related to
the nonlinearity. Finally, Theorem 3.4 estimates the lower bound of the blowup time,
and the lower bound of the blowup rate of the blowup solution without any restrictions
on the initial data but assuming the finite time blowup to be true.

Theorem 3.1 (Global existence and finite time blow up for high initial energy). For
any α∈ (d,+∞) and κ∈ (−C−2

∗ ,+∞), the following conclusions hold

(i) If u0∈SG, then the weak solution of problem (1.1)-(1.3) exists global in time and
u(t)→0 as t→+∞;

(ii) If u0∈SB, then the weak solution of problem (1.1)-(1.3) blows up in finite time.

Theorem 3.2 (Finite time blow up and upper bound of blowup time for positive initial

energy I). Let u0∈H1,N2
2,0 (B) and κ∈ (−C−2

∗ ,+∞), assume that J(u0)>0 and

J(u0)<
(p−1)(κC2

∗ +1)

2Cpoin(p+1)
∥u0∥2

L
N
2
2 (B)

(3.1)

hold, then the weak solution u of problem (1.1)-(1.3) blows up in finite time, where Cpoin
is the optimal constant of cone Poincaré inequality

Cpoin∥∇Bu∥2
L

N
2
2 (B)

≥∥u∥2
L

N
2
2 (B)

.
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Moreover, there exists a time T ∗
1 satisfying

T ∗
1 ≤

4∥u0∥2
L

N
2
2 (B)

(p−1)

(
(p−1)(1+κC2

∗)
2Cpoin(p+1) ∥u0∥2

L
N
2
2 (B)

−J(u0)
)

such that

lim
t→T∗

1

∫ t

0

∥u(τ)∥2
L

N
2
2 (B)

dτ =+∞.

Theorem 3.3 (Finite time blow up and upper bound of blowup time for positive initial

energy II). Let u0∈H1,N2
2,0 (B), assume that J(u0)>0 and

J(u0)<
p−1

2|B|
(p−1)2

4 C
p−1
2

g∗ (p+1)
∥u0∥p+1

L
N
2
2 (B)

(3.2)

hold, then the solution u of problem (1.1)-(1.3) blows up in finite time, where Cg∗ is
the essential supremum of the weighted function g−1∈L∞(intB)∩C(intB), i.e., Cg∗ =
inf{M | |g(x)|−1≤M,a.e. x∈B} and |B| denotes the volume of B. Moreover, there exists
a time T ∗

2 satisfying

T ∗
2 ≤

4∥u0∥2
L

N
2
2 (B)

(p−1)

(
p−1

2C
p−1
2

g∗ (p+1)

∥u0∥p+1

L
N
2
2 (B)

−J(u0)

)
such that

lim
t→T∗

2

∫ t

0

∥u(τ)∥2
L

N
2
2 (B)

dτ =+∞.

Theorem 3.4 (Lower bound of blowup time and blowup rate of blowup solution). Let

u0∈H1,N2
2,0 (B) and κ∈ (−C−2

∗ ,+∞). Suppose that u is the blowup solution of problem
(1.1)-(1.3), then a lower bound for the blow up time T∗ of the solution is given by

T∗≥
54(4ϵ−4+κC2

∗ϵ
2)2

8ϵ5C̃3C3
gS

4|B|2(1−δ)(2δ−1)∥u0∥ϵ(2δ−1)

LN
ϵ

and the lower estimate of the blow up rate is described by

∥u(t)∥LN
ϵ
≥

(
8ϵ5C̃3C3

gS
4|B|2(1−δ)(2δ−1)

54(4ϵ−4+κC2
∗ϵ

2)2

) 1
ϵ(1−2δ)

(T∗− t)
1

ϵ(1−2δ) ,

where |B| denotes the volume of B,

δ=
1

2
+

3(p−1)

2ϵ

and the odd number ϵ satisfies

ϵ>3(p−1).
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Furthermore, Cg>0 is the essential supremum which depends on the weighted func-

tion g∈L∞(intB)∩C(intB), i.e., Cg=inf{M | |g(x)|≤M,a.e. x∈B}, C̃ is the optimal

imbedding constant for L
3N2

N−2
N−2
3N

(B) ↪→L∞(B) and S is the optimal constant of the cone

Sobolev embedding, i.e.,

S−1= inf
u∈H

1, N
2

2,0 (B)\{0}

∥∇Bu∥
L

N
2
2 (B)

∥u∥
L

N
p+1
p+1 (B)

.

4. Proof of Theorem 3.1
Our goal in this section is to achieve a sharp-like theorem depending tightly on the

initial data in H1,N2
2,0 (B) which can describe what kinds of initial data lead to the global

existence or the finite time blow up of the solution at arbitrary high initial energy level,
i.e., J(u0)>d. To begin, we provide some of the significant characteristics of the Nehari
manifold. Without the special claim, here and in the following sections, the solution
u(t) for t∈ [0,T ) we mentioned in each beginning always represents a local solution.

As some auxiliary results to prove Theorem 3.1, we first state the relationship
between the invariant set N+ and the potential energy functional J(u), and combine
the two to give a bounded conclusion. Both results play a key role in proving the global
existence of the solution under the high initial energy level. At the same time, we also

give a fundamental feature of the invariant manifold N− in space H1,N2
2,0 (B), which is

regarded as a powerful point for blow up analysis.

Lemma 4.1. Suppose that u∈H1,N2
2,0 (B), then

(i) for every u∈N+, we infer J(u)>0;

(ii) for each α>0, we assert that Jα∩N+ is a bounded set in H1,N2
2,0 (B);

(iii) for any u∈N−, we conclude

dist(0,N−) := min
u∈N−

∥∇Bu∥
L

N
2
2 (B)

≥
(
1+κC2

∗
CgSp+1

) 1
p−1

>0.

Proof.

(i) For u∈N+, i.e., I(u)>0, which implies ∥∇Bu∥
L

N
2
2 (B)

̸=0, then by cone Hardy’s

inequality we have

J(u)=
1

2
∥∇Bu∥2

L
N
2
2 (B)

+
κ

2
∥V 1

2u∥2
L

N
2
2 (B)

− 1

p+1
∥g

1
p+1u∥p+1

L
N

p+1
p+1 (B)

=
p−1

2(p+1)

(
∥∇Bu∥2

L
N
2
2 (B)

+κ∥V 1
2u∥2

L
N
2
2 (B)

)
+

1

p+1
I(u)

≥ p−1

2(p+1)
(1+κC2

∗)∥∇Bu∥2
L

N
2
2 (B)

+
1

p+1
I(u)

>
(p−1)(1+κC2

∗)

2(p+1)
∥∇Bu∥2

L
N
2
2 (B)

>0.

(ii) Since I(u)>0, from the proof of (i) and J(u)<α, we get

α>J(u)>
(p−1)(1+κC2

∗)

2(p+1)
∥∇Bu∥2

L
N
2
2 (B)

,
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which yields ∥∇Bu∥2
L

N
2
2 (B)

< 2α(p+1)
(p−1)(1+κC2

∗)
.

(iii) For u∈N−, i.e., I(u)<0, we also have ∥∇Bu∥
L

N
2
2 (B)

̸=0. From the definition of

N−, we get

∥∇Bu∥2
L

N
2
2 (B)

+κ∥V 1
2u∥2

L
N
2
2 (B)

<∥g
1

p+1u∥p+1

L
N

p+1
p+1 (B)

=

∫
B
|g||u|p+1 dx1

x1
dx̃. (4.1)

For the last term in (4.1), recalling g∈L∞(intB)∩C(intB), we know∫
B
|g||u|p+1 dx1

x1
dx̃≤∥g∥L∞(B)

∫
B
|u|p+1 dx1

x1
dx̃=∥g∥L∞(B)∥u∥p+1

L
N

p+1
p+1 (B)

. (4.2)

Thus, together with (4.1), (4.2) and the cone embedding inequality, we obtain

∥∇Bu∥2
L

N
2
2 (B)

+κ∥V 1
2u∥2

L
N
2
2 (B)

≤CgSp+1∥∇Bu∥p+1

L
N
2
2 (B)

, (4.3)

where Cg=inf{M | |g(x)|≤M,a.e. x∈B}.
On the other hand, using cone Hardy’s inequality, we have

(1+κC2
∗)∥∇Bu∥2

L
N
2
2 (B)

≤∥∇Bu∥2
L

N
2
2 (B)

+κ∥V 1
2u∥2

L
N
2
2 (B)

. (4.4)

Combining (4.3) and (4.4) gives ∥∇Bu∥
L

N
2
2 (B)

>
(

1+κC2
∗

CgSp+1

) 1
p−1

>0.

To clarify some monotonic properties and conservation law with respect to t for
problem (1.1)-(1.3), we need the following lemmas.

Lemma 4.2. Suppose that u∈H1,N2
2,0 (B), then we assert

d

dt
J(u(t))=−∥ut(t)∥2

L
N
2
2 (B)

, t∈ [0,T ), (4.5)

d

dt
∥u(t)∥2

L
N
2
2 (B)

=−2I(u(t)), t∈ [0,T ), (4.6)

furthermore,

J(u(t))+

∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ =J(u0). (4.7)

Proof. Let u be any weak solution of problem (1.1)-(1.3). Multiplying (1.1) by ut
and integrating on B gives

∥ut∥2
L

N
2
2 (B)

=−1

2

d

dt
∥∇Bu∥2

L
N
2
2 (B)

− κ

2

d

dt
∥V 1

2u∥2
L

N
2
2 (B)

+
1

p+1

d

dt
∥g

1
p+1u∥p+1

L
N

p+1
p+1 (B)

,

that is

−∥ut∥2
L

N
2
2 (B)

=
d

dt

(
1

2
∥∇Bu∥2

L
N
2
2 (B)

+
κ

2
∥V 1

2u∥2
L

N
2
2 (B)

− 1

p+1
∥g

1
p+1 ∥p+1

L
N

p+1
p+1 (B)

)
,
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then

d

dt
J(u(t))=−∥ut(t)∥2

L
N
2
2 (B)

≤0.

On the other hand, testing (1.1) by u also gives

1

2

d

dt
∥u(t)∥2

L
N
2
2 (B)

=∥g
1

p+1u(t)∥p+1

L
N

p+1
p+1 (B)

−∥∇Bu(t)∥2
L

N
2
2 (B)

−κ∥V 1
2u(t)∥2

L
N
2
2 (B)

=−I(u(t)).

Finally, integrating (4.5) with respect to t from 0 to t, one infers (4.7) immediately.

Next we define T ∗(u0) as the maximum existence time for initial datum u0 and give
the proof of Theorem 3.1.

Proof. (Proof of Theorem 3.1.)
(i) In this case, as u0∈SG, namely u0∈N+, J(u0)<α and ∥u0∥2

L
N
2
2 (B)

≤λα. Re-

calling that λα is non-increasing, one also sees that ∥u0∥2
L

N
2
2 (B)

≤λα≤λJ(u0). Then we

need the invariance of N+, which claims that u(t)∈N+ for any t∈ [0,T ∗(u0)) provided
u0∈N+. Arguing by contradiction, due to the continuity of I(t) in t, we suppose that
there exists the first time t1∈ (0,T ∗(u0)) such that u(t)∈N+ for 0≤ t<t1 and u(t1)∈N .
From u(t)∈N+ for 0≤ t<t1, ∥u0∥2

L
N
2
2 (B)

≤λα≤λJ(u0) and Lemma 4.2 one deduces that

∥u(t1)∥2
L

N
2
2 (B)

<∥u0∥2
L

N
2
2 (B)

≤λJ(u0) (4.8)

and

J(u(t1))<J(u0). (4.9)

Then by u(t1)∈N and (4.9), we have u(t1)∈NJ(u0). Together with the definition of
λJ(u0) and u(t1)∈NJ(u0), it follows that ∥u(t1)∥2

L
N
2
2 (B)

≥λJ(u0), which contradicts (4.8),

hence u(t)∈N+ for any t∈ [0,T ∗(u0)). In addition, combining (4.9) and (ii) of Lemma

4.1, JJ(u0)∩N+ is bounded in H1,N2
2,0 (B), i.e., ∥∇Bu∥2

L
N
2
2 (B)

< 2J(u0)(p+1)
(1+κC2

∗)(p−1) , which yields

T ∗(u0)=∞ and the global existence of the weak solution.
Next we deal with the asymptotic behavior of the solution as t→+∞. We firstly

denote the ω-limits set of u0∈SG as follows,

ω(u0)=
⋂
t≥0

{u(ξ) | ξ≥ t}.

Clearly, the ω-limits set consists of all the stationary solutions of (1.1)-(1.3) which solve
the following elliptic problem

−∆Bu+κV (x)u=g(x)|u|p−1u,x∈B,
u(x)=0,x∈∂B.

According to the fact u(t)∈N+ for all t≥0 and Lemma 4.1-(i), we derive from (4.5)
that J(u(t))>0 is bounded below and decreasing with respect to t, which means that
there is a constant c≥0 such that

lim
t→+∞

J(u(t))= c.
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Obviously, for any û0∈ω(u0), we can infer that J(û(t))= c for all t≥0, where û(t)
denotes the weak solution of (1.1)-(1.3) with initial data û0. Meanwhile, we know that
û(t)= û0 for all t≥0, which together with (4.6) shows that

−2I(û(t))=0,t∈ [0,∞). (4.10)

Thus, the formula (4.10) implies that

ω(u0)∈N ∪{0}. (4.11)

However, if û0∈ω(u0), by the fact that û0∈SG, we also have

J(û0)<α and ∥û0∥2
L

N
2
2 (B)

<∥u0∥2
L

N
2
2 (B)

≤λα.

Then from the definition of Nα, it follows that û0 ̸∈Nα and

ω(u0)∩N =∅. (4.12)

Hence, from (4.11) and (4.12), we conclude that ω(u0)={0}, which means that the
solution u of problem (1.1)-(1.3) exists global in time and decays to zero as t→+∞
provided u0∈SG.

(ii) If u0∈SB . A similar contradictory argument as that in (i) of this proof indicates
that u(t)∈N− for all t∈ [0,T ∗(u0)). In order to prove the finite time blow up we suppose
T ∗(u0)=+∞. As (4.5) shows that J(u(t)) is non-increasing with respect to t, it has the
following two possible cases:

(a) There is a constant C such that lim
t→+∞

J(u(t))=C

or

(b) lim
t→+∞

J(u(t))=−∞.

Next, we shall prove that neither of the above cases can hold by showing the contradic-
tion to T ∗(u0)=+∞, then we infer that the solution u blows up in finite time.

For case (a), that is to suppose that case (a) happens, by (4.5) and lim
t→+∞

J(u(t))=C,

we deduce

d

dt
J(u(t))=−∥ut(t)∥2

L
N
2
2 (B)

→0 as t→+∞,

which indicates that u(t) is approaching the stationary solution of problem (1.1)-(1.3)
as t→+∞, i.e., u(t)∈N or u(t)=0 as t→+∞. However, u(t)∈N− for any t>0 implies
that u(t) ̸∈N for any t>0, which tells us that u(t)=0 as t→+∞. On the other hand,
from u(t)∈N− and (iii) in Lemma 4.1, we can conclude that u(t) ̸=0 as t→+∞, which
contradicts u(t)=0 as t→+∞. Hence, case (a) does not happen.

Next we test the possibility of case (b), similar to what we did for case (a), we
suppose that case (b) happens, then due to the continuity of J(u) with respect to t,
there must exist a first t1<T

∗(u0) such that J(u(t1))<0. Since we have proved that
u(t)∈N− for all t∈ [0,T ∗(u0)), then u(t1)∈N−. Taking u(t1) as a new initial data, by
Theorem 1.3 in [41] we know that the corresponding solution U(t)=u(t1+ t) blows up
in finite time, which contradicts the assumption that u is a global solution. Hence, case
(b) does not happen.

Therefore, combining (a) and (b), we assert that T ∗(u0)<∞, i.e., the solution u of
problem (1.1)-(1.3) blows up in finite time provided u0∈SB .
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5. Proof of Theorem 3.2
The well-known lemma that we introduce here originated from [49] and will be used

to demonstrate the trend of the auxiliary function to effectively analyze the finite time
blow up of solutions. At the same time, this lemma can also estimate the upper bound
of the blowup time.

Lemma 5.1 ([49]). Suppose that a positive, twice-differentiable function ψ(t) satisfies
the inequality

ψ′′(t)ψ(t)−(1+θ)(ψ′(t))2≥0, t>0,

where θ>0 is some positive constant. If ψ(0)>0 and ψ′(0)>0, then there exists 0<

t∗≤ ψ(0)
θψ′(0) such that ψ(t) tends to infinity as t→ t∗.

Next, we establish the following invariant lemma, which plays a crucial role in the
proof of the blowup theorem at arbitrary positive initial energy.

Lemma 5.2. Assume that u0∈H1,N2
2,0 (B) satisfies (3.1), then u(t)∈N− for all t∈

[0,T ).

Proof. Noting that

J(u0)=
p−1

2(p+1)

(
∥∇Bu0∥2

L
N
2
2 (B)

+κ∥V 1
2u0∥2

L
N
2
2 (B)

)
+

1

p+1
I(u0),

then (3.1) indicates that u0∈N−.
Now, we prove u(t)∈N− for all t∈ [0,T ). Arguing by contradiction, by the continu-

ity of I(u(t)) in t, we suppose that there exists a first time ι∈ (0,T ) such that u(t)∈N−
for 0≤ t< ι and u(ι)∈N , then by (4.6) we have

d

dt
∥u(t)∥2

L
N
2
2 (B)

=−2I(u(t))>0 for all t∈ [0,ι), (5.1)

which implies that

∥u0∥2
L

N
2
2 (B)

<∥u(ι)∥2
L

N
2
2 (B)

. (5.2)

From (4.5) it follows that

J(u(ι))≤J(u0). (5.3)

By the definition of J(u), u(ι)∈N and cone Hardy’s inequality, we derive

J(u(ι))=
p−1

2(p+1)

(
∥∇Bu(ι)∥2

L
N
2
2 (B)

+κ∥V 1
2u(ι)∥2

L
N
2
2 (B)

)
+

1

p+1
I(u(ι))

=
p−1

2(p+1)

(
∥∇Bu(ι)∥2

L
N
2
2 (B)

+κ∥V 1
2u(ι)∥2

L
N
2
2 (B)

)
≥ p−1

2(p+1)

(
1+κC2

∗
)
∥∇Bu(ι)∥2

L
N
2
2 (B)

.

Combining (5.3) and (3.1), we get

(p−1)(1+κC2
∗)

2Cpoin(p+1)
∥u(ι)∥2

L
N
2
2 (B)

≤J(u0)<
(p−1)(1+κC2

∗)

2Cpoin(p+1)
∥u0∥2

L
N
2
2 (B)

,
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that is

∥u0∥2
L

N
2
2 (B)

>∥u(ι)∥2
L

N
2
2 (B)

,

which contradicts (5.2). Hence, we have proved this lemma.

Now we prove the high energy blowup and estimate the upper bound of the blowup
time of solutions for problem (1.1)-(1.3).

Proof. (Proof of Theorem 3.2.) For the sake of clarity, we divide the proof of
the theorem into two parts.

Part I. Finite time blow up. Arguing by contradiction, we assume the maximum
existence time T =+∞. From the definition of J(u), I(u) and (4.6) we have

d

dt
∥u(t)∥2

L
N
2
2 (B)

=−2I(u(t))

=−2

(
∥∇Bu(t)∥2

L
N
2
2 (B)

+κ∥V 1
2u(t)∥2

L
N
2
2 (B)

−∥g
1

p+1u(t)∥p+1

L
N

p+1
p+1 (B)

)

=−4

(
1

2
∥∇Bu(t)∥2

L
N
2
2 (B)

+
κ

2
∥V 1

2u(t)∥2
L

N
2
2 (B)

− 1

p+1
∥g

1
p+1u(t)∥p+1

L
N

p+1
p+1 (B)

)

+

(
2− 4

p+1

)
∥g

1
p+1u(t)∥p+1

L
N

p+1
p+1 (B)

=−4J(u(t))+
2(p−1)

p+1
∥g

1
p+1u(t)∥p+1

L
N

p+1
p+1 (B)

. (5.4)

In the rest of the proof, we consider the following two cases.

Case I. J(u(t))≥0 for all t>0.
From (3.1), we choose ρ satisfying

1<ρ<

ξ1∥u0∥2
L

N
2
2 (B)

4J(u0)
,

where ξ1 :=
2(p−1)(1+κC2

∗)
Cpoin(p+1) . Then substituting (4.7) into (5.4) and by virtue of J(u)≥0,

we get

d

dt
∥u(t)∥2

L
N
2
2 (B)

=4(ρ−1)J(u(t))−4ρJ(u(t))+
2(p−1)

p+1
∥g

1
p+1u(t)∥p+1

L
N

p+1
p+1 (B)

≥−4ρJ(u0)+4ρ

∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ+
2(p−1)

p+1
∥g

1
p+1u(t)∥p+1

L
N

p+1
p+1 (B)

.

(5.5)

From Lemma 5.2 (i.e., I(u)<0) and Lemma 2.1, we know

∥g
1

p+1u∥p+1

L
N

p+1
p+1 (B)

>∥∇Bu∥2
L

N
2
2 (B)

+κ∥V 1
2u∥2

L
N
2
2 (B)

≥ 1+κC2
∗

Cpoin
∥u∥2

L
N
2
2 (B)

,
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which makes (5.5) to be

d

dt
∥u(t)∥2

L
N
2
2 (B)

>−4ρJ(u0)+4ρΨ1(t)+ξ1∥u(t)∥2
L

N
2
2 (B)

, (5.6)

where Ψ1(t) :=
∫ t
0
∥ut(τ)∥2

L
N
2
2 (B)

dτ . Hence we get the following differential inequality

d

dt
∥u(t)∥2

L
N
2
2 (B)

−ξ1∥u(t)∥2
L

N
2
2 (B)

>−4ρJ(u0),

which yields

ξ1∥u(t)∥2
L

N
2
2 (B)

>ξ1∥u0∥2
L

N
2
2 (B)

eξ1t+4ρJ(u0)
(
1−eξ1t

)
. (5.7)

Next, we define

Ψ2(t) :=

∫ t

0

∥u(τ)∥2
L

N
2
2 (B)

dτ.

As the solution has been already supposed to be global in time, Ψ2(t) is bounded for
t∈ [0,∞). Here we have

Ψ2
′(t)=∥u(t)∥2

L
N
2
2 (B)

(5.8)

and

Ψ2
′′(t)=

d

dt
∥u(t)∥2

L
N
2
2 (B)

.

Taking

0<ε<
1

2ρ∥u0∥2
L

N
2
2 (B)

(
ξ1∥u0∥2

L
N
2
2 (B)

−4ρJ(u0)

)
,

we derive

ξ1∥u0∥2
L

N
2
2 (B)

−4ρJ(u0)>2ρε∥u0∥2
L

N
2
2 (B)

. (5.9)

Substituting (5.7) into (5.6), by (5.9) and eξ1t≥1 for t≥0, we arrive at

Ψ2
′′(t)>4ρΨ1(t)+

(
ξ1∥u0∥2

L
N
2
2 (B)

−4ρJ(u0)

)
eξ1t

>4ρΨ1(t)+2ρε∥u0∥2
L

N
2
2 (B)

. (5.10)

Let

Ψ3(t) :=

(∫ t

0

∥u(τ)∥2
L

N
2
2 (B)

dτ

)2

+ε−1∥u0∥2
L

N
2
2 (B)

∫ t

0

∥u(τ)∥2
L

N
2
2 (B)

dτ+c,
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where

c>
1

4
ε−2∥u0∥4

L
N
2
2 (B)

. (5.11)

According to the definition of Ψ3(t), we can derive

Ψ3
′(t)=

(
2Ψ2(t)+ε

−1∥u0∥2
L

N
2
2 (B)

)
Ψ2

′(t) (5.12)

and

Ψ3
′′(t)=

(
2Ψ2(t)+ε

−1∥u0∥2
L

N
2
2 (B)

)
Ψ2

′′(t)+2(Ψ2
′(t))2. (5.13)

In order to well exhibit the coming results, we define (its positivity can be ensured by
(5.11))

δ :=4c−ε−2∥u0∥4
L

N
2
2 (B)

>0,

then (5.12) gives

(Ψ3
′(t))2=

(
4Ψ2

2(t)+4ε−1∥u0∥2
L

N
2
2 (B)

Ψ2(t)+ε
−2∥u0∥4

L
N
2
2 (B)

)
(Ψ2

′(t))2

=

(
4Ψ2

2(t)+4ε−1∥u0∥2
L

N
2
2 (B)

Ψ2(t)+4c−δ
)
(Ψ2

′(t))2

=(4Ψ3(t)−δ)(Ψ2
′(t))2, (5.14)

which says

4Ψ3(t)(Ψ2
′(t))2=(Ψ3

′(t))2+δ(Ψ2
′(t))2. (5.15)

Taking advantage of the inner product in L
N
2
2 (B), we have the following identity

1

2

d

dt
∥u(t)∥2

L
N
2
2 (B)

=(u(t),ut(t))B.

Integrating the above identity over [0,t] gives

∥u(t)∥2
L

N
2
2 (B)

=∥u0∥2
L

N
2
2 (B)

+2

∫ t

0

(u(τ),ut(τ))Bdτ. (5.16)

Combining (5.8) and (5.16), by Hölder and Cauchy’s inequalities we get

(
Ψ2

′(t)
)2

=∥u(t)∥4
L

N
2
2 (B)

=

(
∥u0∥2

L
N
2
2 (B)

+2

∫ t

0

(u(τ),ut(τ))Bdτ

)2

≤
(
∥u0∥2

L
N
2
2 (B)

+2(Ψ2(t))
1
2 (Ψ1(t))

1
2

)2

=∥u0∥4
L

N
2
2 (B)

+4∥u0∥2
L

N
2
2 (B)

(Ψ2(t))
1
2 (Ψ1(t))

1
2 +4Ψ2(t)Ψ1(t)

≤∥u0∥4
L

N
2
2 (B)

+4Ψ2(t)Ψ1(t)+2ε∥u0∥2
L

N
2
2 (B)

Ψ2(t)+2ε−1∥u0∥2
L

N
2
2 (B)

Ψ1(t)
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:=Ψ4(t). (5.17)

From (5.13), (5.15) and (5.10), we get

2Ψ3(t)Ψ3
′′(t)

=2

((
2Ψ2(t)+ε

−1∥u0∥2
L

N
2
2 (B)

)
Ψ2

′′(t)+2(Ψ2
′(t))2

)
Ψ3(t)

=2

(
2Ψ2(t)+ε

−1∥u0∥2
L

N
2
2 (B)

)
Ψ2

′′(t)Ψ3(t)+4(Ψ2
′(t))2Ψ3(t)

=2

(
2Ψ2(t)+ε

−1∥u0∥2
L

N
2
2 (B)

)
Ψ2

′′(t)Ψ3(t)+(Ψ3
′(t))2+δ(Ψ2

′(t))2

>4ρΨ3(t)

(
2Ψ2(t)+ε

−1∥u0∥2
L

N
2
2 (B)

)(
2Ψ1(t)+ε∥u0∥2

L
N
2
2 (B)

)
+(Ψ3

′(t))2+δ(Ψ2
′(t))2

=4ρΨ3(t)Ψ4(t)+(Ψ3
′(t))2+δ(Ψ2

′(t))2. (5.18)

Combining (5.18), (5.14) and (5.17), we obtain

2Ψ3(t)Ψ3
′′(t)−(1+ρ)(Ψ3

′(t))2

>4ρΨ3(t)Ψ4(t)+δ(Ψ2
′(t))2−ρ(Ψ3

′(t))2

=4ρΨ3(t)Ψ4(t)−ρ(4Ψ3(t)−δ)(Ψ2
′(t))2+δ(Ψ2

′(t))2

=4ρΨ3(t)Ψ4(t)−4ρΨ3(t)(Ψ2
′(t))2+δ(1+ρ)(Ψ2

′(t))2

≥4ρΨ3(t)Ψ4(t)−4ρΨ3(t)Ψ4(t)

=0,

that is

Ψ3(t)Ψ3
′′(t)− 1+ρ

2
(Ψ3

′(t))2>0, t∈ [0,+∞),

which implies that(
Ψ3

−β(t)
)′′

=− β

Ψ3
β+2(t)

(
Ψ3

′′(t)Ψ3(t)−(β+1)(Ψ3
′(t))2

)
<0, t∈ [0,+∞),

where β= ρ−1
2 >0. Since Ψ3(0)= c>

1
4ε

−2∥u0∥4
L

N
2
2 (B)

>0 and Ψ3
′(0)=ε−1∥u0∥4

L
N
2
2 (B)

>

0, by Lemma 5.1, it follows that there exists a

0<T ∗≤ 2Ψ3(0)

(ρ−1)Ψ3
′(0)

(5.19)

such that

lim
t→T∗

Ψ3
−β(t)=0,

i.e.,

lim
t→T∗

Ψ3(t)=+∞,

which contradicts T =+∞. Now, by employing the continuity of both Ψ3(t) and Ψ2(t)
with respect to t, we can conclude that Ψ2(t) tends to infinity as t approaches T ∗, which
contradicts T ∗=+∞.
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Case II. There exist some t̃ such that J(u(t̃))<0.
Since J(u0)>0, by the continuity of J(u) in t, we can assume that there exists a

first time t0>0 such that J(u(t0))=0 and J(u(t̂))<0 for some t̂> t0. We take u(t̂) as
a new initial datum, then from Lemma 5.2, we have u(t)∈N− for t> t̂. Similarly as
the proof of Theorem 1.3 in [41], we can deduce that the solution of problem (1.1)-(1.3)
blows up in finite time.

Combining the above two cases, we conclude that u blows up in finite time.

Remark 5.1. Although we have given an estimate of the upper bound of the blow
up time in (5.19) in a specific form as follows by simple calculation

0<T ∗≤ 2c

(ρ−1)ε−1∥u0∥4
L

N
2
2 (B)

,

where c> ε−2

4 ∥u0∥4
L

N
2
2 (B)

is a constant, due to the unknown constant c the work of the

argument has not reached the end. In order to further clarify the upper bound of the
blow up time T ∗, and even clarify what factors such an upper bound is related to, we
need to carry out in-depth analysis, for example, to estimate the bound of the constant
c, so as to reach the conclusion, which is the task of the following Part II.

Part II. Upper bound of blowup time estimate. Next, we estimate the upper
bound of blowup time as follows. Let u be the weak solution of problem (1.1)-(1.3), T
is the maximum existence time. For t∈ [0,T ), we denote

Ψ5(t) :=

∫ t

0

∥u(τ)∥2
L

N
2
2 (B)

dτ+(T − t)∥u0∥2
L

N
2
2 (B)

+µ(t+ν)2,

where µ>0 and ν >0 are two constants, which will be determined later in the argu-
mentation process. Then we have

Ψ5
′(t)=∥u(t)∥2

L
N
2
2 (B)

−∥u0∥2
L

N
2
2 (B)

+2µ(t+ν), t∈ [0,T ).

By (4.6) and the relationship between J(u) and I(u) in (2.3), it follows that

Ψ5
′′(t)=−2I(u(t))+2µ

≥(p−1)(1+κC2
∗)∥∇Bu(t)∥2

L
N
2
2 (B)

−2(p+1)J(u(t)), t∈ [0,T ). (5.20)

Combining the cone Poincaré inequality and (4.7), (5.20) becomes

Ψ5
′′(t)≥ (p−1)(1+κC2

∗)

Cpoin
∥u(t)∥2

L
N
2
2 (B)

−2(p+1)J(u(t))

≥ (p−1)(1+κC2
∗)

Cpoin
∥u(t)∥2

L
N
2
2 (B)

−2(p+1)J(u0)+2(p+1)

∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ.

From Lemma 5.2 and Lemma 4.2, we know ∥u(t)∥2
L

N
2
2 (B)

is strictly increasing on [0,T ).

Therefore, we obtain

Ψ5
′′(t)≥2(p+1)

(
ξ1
4
∥u0∥2

L
N
2
2 (B)

−J(u0)+Ψ1(t)

)
(5.21)
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and Ψ5
′(t)≥2µ(t+ν)>0 for t∈ [0,T ), which implies Ψ5(t)≥Ψ5(0)=T∥u0∥2

L
N
2
2 (B)

+

µν2>0 for all t∈ [0,T ).

On the other hand, we derive

−1

4
(Ψ5

′(t))2=−
(
1

2

(
∥u(t)∥2

L
N
2
2 (B)

−∥u0∥2
L

N
2
2 (B)

)
+µ(t+ν)

)2

=

(∫ t

0

∥u(τ)∥2
L

N
2
2 (B)

dτ+µ(t+ν)2
)(∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ+µ

)
︸ ︷︷ ︸

I1

−
(
1

2

(
∥u(t)∥2

L
N
2
2 (B)

−∥u0∥2
L

N
2
2 (B)

)
+µ(t+ν)

)2

︸ ︷︷ ︸
I2

−
(
Ψ5(t)−(T − t)∥u0∥2

L
N
2
2 (B)

)(∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ+µ

)
.

To estimate the above inequality clearly, we show I1−I2≥0 next. Firstly, we have

I1−I2=I1−
(
1

2

∫ t

0

d

dτ
∥u(τ)∥2

L
N
2
2 (B)

dτ+µ(t+ν)

)2

=I1−
(∫ t

0

(u(τ),ut(τ))Bdτ+µ(t+ν)

)2

.

By using the cone Hölder inequality, it follows that

I1−I2

≥I1−
(∫ t

0

∥u(τ)∥
L

N
2
2 (B)

∥ut(τ)∥
L

N
2
2 (B)

dτ+µ(t+ν)

)2

≥I1−

((∫ t

0

∥u(τ)∥2
L

N
2
2 (B)

dτ

) 1
2
(∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ

) 1
2

+µ(t+ν)

)2

=
(
Ψ2(t)+µ(t+ν)

2
)
(Ψ1(t)+µ)−

(
(Ψ2(t))

1
2 (Ψ1(t))

1
2 +µ(t+ν)

)2
=
(√

µ(Ψ2(t))
1
2

)2
−2

√
µ(Ψ2(t))

1
2
√
µ(t+ν)(Ψ1(t))

1
2 +
(√

µ(t+ν)(Ψ1(t))
1
2

)2
=
(√

µ(Ψ2(t))
1
2 −√

µ(t+ν)(Ψ1(t))
1
2

)2
≥0.

Hence, we have

−(Ψ5
′(t))2≥−4

(
Ψ5(t)−(T − t)∥u0∥2

L
N
2
2 (B)

)(∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ+µ

)
≥−4Ψ5(t)(Ψ1(t)+µ). (5.22)

Then by (5.22), we achieve

Ψ5(t)Ψ5
′′(t)− p+1

2
(Ψ5

′(t))2
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≥Ψ5(t)
(
Ψ5

′′(t)−2(p+1)(Ψ1(t)+µ)
)
. (5.23)

Substituting (5.21) into (5.23), we get

Ψ5(t)Ψ5
′′(t)− p+1

2
(Ψ5

′(t))2≥2(p+1)Ψ5(t)

(
ξ1∥u0∥2

L
N
2
2 (B)

−J(u0)−µ
)
.

By (3.1), we can choose a small enough µ∈ (0,σ] such that

ξ1
4
∥u0∥2

L
N
2
2 (B)

−J(u0)−µ≥0,

where σ := ξ1
4 ∥u0∥

2

L
N
2
2 (B)

−J(u0). Then,

Ψ5(t)Ψ5
′′(t)− p+1

2
(Ψ5

′(t))2≥0,

which implies that the conditions of Lemma 5.1 are satisfied. It is easy to verify that
Ψ5(0)=T∥u0∥2

L
N
2
2 (B)

+µν2>0, Ψ5
′(0)≥2µν >0, then by Lemma 5.1, we derive

T ∗≤ 2Ψ5(0)

(p−1)Ψ5
′(0)

≤
∥u0∥2

L
N
2
2 (B)

(p−1)µν
T +

ν

p−1
. (5.24)

Now we choose ν to be large enough such that

ν ∈

∥u0∥2
L

N
2
2 (B)

(p−1)µ
,+∞

 , (5.25)

then it follows from (5.24) that

T ∗≤ µν2

(p−1)µν−∥u0∥2
L

N
2
2 (B)

. (5.26)

Next, we need to deal with the two parameters µ and ν in (5.26) to specify the upper
bound of the blow up time. First we introduce the following set to describe a pair of
(µ,ν)

M :=

(µ,ν)

∣∣∣∣∣ ν ∈
∥u0∥2

L
N
2
2 (B)

(p−1)σ
,+∞

 ,µ∈
∥u0∥2

L
N
2
2 (B)

(p−1)ν
,σ


,

then the upper bound of the blow up time can be considered as

T ∗≤ inf
(µ,ν)∈M

µν2

(p−1)µν−∥u0∥2
L

N
2
2 (B)

. (5.27)
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Letting f(µ,ν) := µν2

(p−1)µν−∥u0∥2

L

N
2
2 (B)

, and then differentiating f(µ,ν) with respect to µ,

we deduce

f ′(µ,ν)=

−ν2∥u0∥2
L

N
2
2 (B)(

(p−1)µν−∥u0∥2
L

N
2
2 (B)

)2 <0,

which means that f(µ,ν) is decreasing with µ, then for any ν, we have

inf
(µ,ν)∈M

f(µ,ν)= inf
ν
f(σ,ν)= inf

ν

σν2

(p−1)σν−∥u0∥2
L

N
2
2 (B)

. (5.28)

By differentiating f(σ,ν) with respect to ν and taking f ′(σ,ν)=0, we can get the min-

imum point νmin=

2∥u0∥2

L

N
2
2 (B)

(p−1)σ , then

inf
ν
f(σ,ν)=f(σ,νmin)=

4∥u0∥2
L

N
2
2 (B)

(p−1)σ
,

which together with (5.28) implies that

inf
(µ,ν)∈M

f(µ,ν)=f(σ,νmin)=

4∥u0∥2
L

N
2
2 (B)

(p−1)σ
. (5.29)

Hence, from (5.27) and (5.29), we obtain

T ∗≤ inf
(µ,ν)∈M

f(µ,ν)=

4∥u0∥2
L

N
2
2 (B)

(p−1)σ

=

8Cpoin(p+1)∥u0∥2
L

N
2
2 (B)

(p−1)2(1+κC2
∗)∥u0∥2

L
N
2
2 (B)

−2Cpoin(p2−1)J(u0)
.

Since both the conclusions of Theorem 3.1 and Theorem 3.2 involve the finite time
blow up of solutions, next we explain the correlation between them and compare their
own characteristics in the following remark.

Remark 5.2. As we said in the introduction, both Theorem 3.1 and Theorem 3.2 give
sufficient conditions for finite time blow up, while they place the different concerns on
blow up, which naturally require different assumptions on the initial data. Obviously,
as the sharp condition for the global existence and finite time blow up of the solution
with low initial energy level has been obtained in [41], Theorem 3.1 concerns the key
task to classify the initial data under high initial energy (J(u0)>d). We hope to make a
complete division of the whole space as far as possible, so as to expect that the sufficient
conditions obtained in this way can cover more initial data to help us judge the global
existence and finite time blow up of solutions. However, the intention of Theorem 3.2 lies
in not only obtaining the sufficient conditions that satisfy the initial data leading to the
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solution blowing up in finite time, but also estimating the corresponding upper bound of
blow up time. Comparing the sufficient conditions in Theorem 3.1 and Theorem 3.2, we
find that the sufficient conditions for finite time blow up of solutions have overlapping
parts, but the overlapping parts between them are not easy to see. Therefore, we want
to explain this important conclusion through the following simple argument, namely,
assuming that the initial energy level satisfies J(u0)>d, we assert that if the initial data
satisfies (3.1) in Theorem 3.2, then u0∈SB .

From the proof of Lemma 5.2, we know that if u0 satisfies (3.1), then u0∈N−.
For any u∈NJ(u0), together with the definition of NJ(u0), we deduce ∥∇Bu∥2

L
N
2
2 (B)

<

2J(u0)(p+1)
(1+κC2

∗)(p−1) . By cone Poincaré inequality, we have

∥u∥2
L

N
2
2 (B)

≤Cpoin∥∇Bu∥2
L

N
2
2 (B)

<
2CpoinJ(u0)(p+1)

(1+κC2
∗)(p−1)

. (5.30)

Picking ΛJ(u0)=sup

{
∥u∥2

L
N
2
2 (B)

∣∣∣∣u∈NJ(u0)

}
, then (5.30) tells us

ΛJ(u0)<
2CpoinJ(u0)(p+1)

(1+κC2
∗)(p−1)

. (5.31)

Substituting (3.1) into (5.31), we get ∥u0∥2
L

N
2
2 (B)

>ΛJ(u0). Hence, we conclude that if

u0 satisfies (3.1), then

u0∈N−∩
{
u0∈H1,N2

2,0 (B)
∣∣∣∥u0∥2

L
N
2
2 (B)

≥ΛJ(u0),J(u)<J(u0)

}
=SB .

However, rearranging (3.1), we obtain

∥u0∥2
L

N
2
2 (B)

>
2CpoinJ(u0)(p+1)

(κC2
∗ +1)(p−1)

,

together with (5.31), which tells that if u0∈SB , it does not necessarily satisfy (3.1).
Therefore, through the above demonstration, we find that the conditions of Theorem

3.2 are more strict, while this “strictness” enables us to obtain a better estimation of
the upper bound of blow up time.

6. Proof of Theorem 3.3
In order to prove that the solution to problem (1.1)-(1.3) blows up in finite time at

arbitrary positive initial energy, we start with the following invariant manifold related
to initial data.

Lemma 6.1. Assume that u0∈H1,N2
2,0 (B) satisfies (3.2), then u(t)∈N− for all t∈ [0,T ).

Proof. By using the cone Hölder inequality and the fact 0<g∈L∞(intB)∩C(intB),
we have

∥u∥p+1

L
N
2
2 (B)

=

(∫
B
g−

2
p+1 ·g

2
p+1 |u|2 dx1

x1
dx̃

) p+1
2

≤

((∫
B
|g−

2
p+1 |

p+1
p−1

dx1
x1

dx̃

) p−1
p+1
(∫

B
|g

2
p+1u2|

p+1
2

dx1
x1

dx̃

) 2
p+1

) p+1
2
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≤

((∫
B
|g−1|

2
p−1

dx1
x1

dx̃

) p−1
p+1
(∫

B
|g

1
p+1u|p+1 dx1

x1
dx̃

) 2
p+1

) p+1
2

=∥g−1∥
p−1
2

L
N(p−1)

2
2

p−1

(B)
∥g

1
p+1u∥p+1

L
N

p+1
p+1 (B)

. (6.1)

On the other hand, due to the imbedding theorem that L∞(B) ↪→L
N(p−1)

2
2

p−1

(B), it follows
that

∥g−1∥
p−1
2

L
N(p−1)

2
2

p−1

(B)
≤|B|

(p−1)2

4 ∥g−1∥
p−1
2

L∞(B)≤|B|
(p−1)2

4 C
p−1
2

g∗ , (6.2)

where Cg∗ =inf{M | |g(x)|−1≤M,a.e. x∈B}. Therefore, from (6.1) and (6.2), one can
deduce

∥g
1

p+1u∥p+1

L
N

p+1
p+1 (B)

≥
∥u∥p+1

L
N
2
2 (B)

|B|
(p−1)2

4 C
p−1
2

g∗

. (6.3)

Substituting (3.2) into (6.3) and using the relationship of J(u) and I(u) in (2.3), we
arrive at

∥g
1

p+1u0∥p+1

L
N

p+1
p+1 (B)

>
2(p+1)

p−1
J(u0)=∥∇Bu0∥2

L
N
2
2 (B)

+κ∥V 1
2u0∥2

L
N
2
2 (B)

+
2

p−1
I(u0). (6.4)

Recalling the definition of I(u), (6.4) turns into

0>∥∇Bu0∥2
L

N
2
2 (B)

+κ∥V 1
2u0∥2

L
N
2
2 (B)

−∥g
1

p+1u0∥p+1

L
N

p+1
p+1 (B)

+
2

p−1
I(u0)>

p+1

p−1
I(u0),

which implies u0∈N−.
Next, we prove u(t)∈N− for all t∈ [0,T ). Arguing by contradiction, by the conti-

nuity of I(u(t)) in t, we suppose that there exists a first time ι∈ (0,T ) such that u∈N−
for 0≤ t< ι and u(ι)∈N . Similar as the proof of Lemma 5.2, we can retrieve (5.1), (5.2)
and (5.3), and only need to modify the remainder as follows

J(u(ι))=
p−1

2(p+1)

(
∥∇Bu(ι)∥2

L
N
2
2 (B)

+κ∥V 1
2u(ι)∥2

L
N
2
2 (B)

)
+

1

p+1
I(u(ι))

=
p−1

2(p+1)

(
∥∇Bu(ι)∥2

L
N
2
2 (B)

+κ∥V 1
2u(ι)∥2

L
N
2
2 (B)

)
=

p−1

2(p+1)
∥g

1
p+1u(ι)∥p+1

L
N

p+1
p+1 (B)

,

which together with (6.3) yields

J(u(ι))≥ p−1

2|B|
(p−1)2

4 C
p−1
2

g∗ (p+1)
∥u(ι)∥p+1

L
N
2
2 (B)

.

Combining (5.3) with (3.2), we get

p−1

2|B|
(p−1)2

4 C
p−1
2

g∗ (p+1)
∥u(ι)∥p+1

L
N
2
2 (B)

≤J(u0)<
p−1

2|B|
(p−1)2

4 C
p−1
2

g∗ (p+1)
∥u0∥p+1

L
N
2
2 (B)

,
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that is

∥u0∥2
L

N
2
2 (B)

>∥u(ι)∥2
L

N
2
2 (B)

,

which contradicts (5.2). Hence, we finish the proof.

Next we prove the high energy blowup and estimate the upper bound of the blowup
time of solutions to problem (1.1)-(1.3).

Proof. (Proof of Theorem 3.3.) For the sake of clarity, we divide the proof of
the theorem into two parts.

Part I. Finite time blow up
Similar as the proof of Theorem 3.2, we can attain the blowup results by slightly

modifying the corresponding argument in Theorem 3.2 as follows.
Arguing by contradiction, we assume the maximum existence time T =+∞. From

the definition of J(u), I(u) and (4.6) we also have (5.4). Similarly, in the rest of the
proof, we again consider the following two cases.

Case I. J(u(t))≥0 for all t>0.
From (3.2), we choose ρ′ satisfying

1<ρ′<

ξ2∥u0∥p+1

L
N
2
2 (B)

4J(u0)
, (6.5)

where ξ2 :=
2(p−1)

|B|
(p−1)2

4 C
p−1
2

g∗ (p+1)

. Substituting (4.7) into (5.4) and by virtue of J(u)≥0,

we get

d

dt
∥u(t)∥2

L
N
2
2 (B)

=4(ρ′−1)J(u(t))−4ρ′J(u(t))+
2(p−1)

p+1
∥g

1
p+1u(t)∥p+1

L
N

p+1
p+1 (B)

≥−4ρ′J(u0)+4ρ′
∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ+
2(p−1)

p+1
∥g

1
p+1u(t)∥p+1

L
N

p+1
p+1 (B)

.

(6.6)

From (6.3), (4.6) and Lemma 6.1, we know

∥g
1

p+1u∥p+1

L
N

p+1
p+1 (B)

≥
∥u∥p+1

L
N
2
2 (B)

|B|
(p−1)2

4 C
p−1
2

g∗

>

∥u0∥p+1

L
N
2
2 (B)

|B|
(p−1)2

4 C
p−1
2

g∗

,

which makes (6.6) to be

d

dt
∥u(t)∥2

L
N
2
2 (B)

>−4ρ′J(u0)+4ρ′Ψ1(t)+ξ2∥u0∥p+1

L
N
2
2 (B)

. (6.7)

Similar as the proof of Theorem 3.2, thanks to (6.5) and (3.2), we can choose a constant
ε′ such that

0<ε′<
1

2ρ′∥u0∥2
L

N
2
2 (B)

(
ξ2∥u0∥p+1

L
N
2
2 (B)

−4ρ′J(u0)

)
,
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therefore,

ξ2∥u0∥p+1

L
N
2
2 (B)

−4ρ′J(u0)>2ρ′ε′∥u0∥2
L

N
2
2 (B)

. (6.8)

Substituting (6.8) into (6.7), one arrives at

Ψ2
′′(t)>4ρ′Ψ1(t)+2ρ′ε′∥u0∥2

L
N
2
2 (B)

.

The remainder proof for Part I is completely similar as the proof of Theorem 3.2, hence,
we omit it.

Part II. Estimate of the upper bound of blowup time. Next, we estimate
the upper bound of blowup time as follows. Let u be the weak solution of problem
(1.1)-(1.3), T be the maximum existence time. For t∈ [0,T ), we denote

Ψ6(t) :=p

∫ t

0

∥u(τ)∥2
L

N
2
2 (B)

dτ+p(T − t)∥u0∥2
L

N
2
2 (B)

+µ(t+ν)2,

where µ>0 and ν >0 are two constants, which will be determined later in the argu-
mentation process. Differentiating Ψ6(t) with respect to t, we have

Ψ6
′(t)=p∥u(t)∥2

L
N
2
2 (B)

−p∥u0∥2
L

N
2
2 (B)

+2µ(t+ν).

Note that the relationship between J(u) and I(u) in (2.3) can also be expressed as

J(u)=
1

2
∥∇Bu∥2

L
N
2
2 (B)

+
κ

2
∥V 1

2u∥2
L

N
2
2 (B)

− 1

p+1
∥g

1
p+1u∥p+1

L
N

p+1
p+1 (B)

=
1

2
I(u)+

p−1

2(p+1)
∥g

1
p+1u∥p+1

L
N

p+1
p+1 (B)

. (6.9)

From (4.6) and (6.9), it follows that

Ψ6
′′(t)=−2pI(u(t))+2µ

≥2p(p−1)

p+1
∥g

1
p+1u(t)∥p+1

L
N

p+1
p+1 (B)

−4pJ(u(t)),

which together with (6.3) and (4.7) turns into

Ψ6
′′(t)≥ 2p(p−1)

|B|
(p−1)2

4 C
p−1
2

g∗ (p+1)
∥u(t)∥p+1

L
N
2
2 (B)

−4pJ(u(t))

=
2p(p−1)

|B|
(p−1)2

4 C
p−1
2

g∗ (p+1)
∥u(t)∥p+1

L
N
2
2 (B)

−4pJ(u0)+4p

∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ.

From Lemma 6.1 and (4.6) in Lemma 4.2, we know that ∥u(t)∥2
L

N
2
2 (B)

is strictly increasing

on [0,T ). Therefore, we obtain

Ψ6
′′(t)≥4p

(
ξ2
4
∥u0∥p+1

L
N
2
2 (B)

−J(u0)+Ψ1(t)

)
(6.10)
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and Ψ6
′(t)≥2µ(t+ν)>0, which implies Ψ6(t)≥Ψ6(0)=T∥u0∥2

L
N
2
2 (B)

+µν2>0 for all

t∈ [0,T ).
On the other hand, we derive

−1

4
(Ψ6

′(t))2=−
(
p

2

(
∥u(t)∥2

L
N
2
2 (B)

−∥u0∥2
L

N
2
2 (B)

)
+µ(t+ν)

)2

=

(
p

∫ t

0

∥u(τ)∥2
L

N
2
2 (B)

dτ+µ(t+ν)2
)(∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ+µ

)
︸ ︷︷ ︸

I3

−
(
p

2

(
∥u(t)∥2

L
N
2
2 (B)

−∥u0∥2
L

N
2
2 (B)

)
+µ(t+ν)

)2

︸ ︷︷ ︸
I4

−
(
Ψ6(t)−p(T − t)∥u0∥2

L
N
2
2 (B)

)(∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ+µ

)
.

Then we show I3−I4≥0 as follows

I3−I4=I3−
(
p

2

∫ t

0

d

dτ
∥u(τ)∥2

L
N
2
2 (B)

dτ+µ(t+ν)

)2

=I3−
(
p

∫ t

0

(u(τ),ut(τ))Bdτ+µ(t+ν)

)2

,

by using the cone Hölder inequality, which tells

I3−I4

≥I3−
(
p

∫ t

0

∥u(τ)∥
L

N
2
2 (B)

∥ut(τ)∥
L

N
2
2 (B)

dτ+µ(t+ν)

)2

≥I3−

((
p

∫ t

0

∥u(τ)∥2
L

N
2
2 (B)

dτ

) 1
2
(
p

∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ

) 1
2

+µ(t+ν)

)2

=
(
pΨ2(t)+µ(t+ν)

2
)
(Ψ1(t)+µ)−

(
(pΨ2(t))

1
2 (pΨ1(t))

1
2 +µ(t+ν)

)2
=
(√

µ(pΨ2(t))
1
2

)2
−2

√
µ(pΨ2(t))

1
2
√
µ(t+ν)(Ψ1(t))

1
2 +
(√

µ(t+ν)(Ψ1(t))
1
2

)2
=
(√

µ(pΨ2(t))
1
2 −√

µ(t+ν)(Ψ1(t))
1
2

)2
≥0.

Hence, we have

−(Ψ6
′(t))2≥−4

(
Ψ6(t)−p(T − t)∥u0∥2

L
N
2
2 (B)

)(∫ t

0

∥ut(τ)∥2
L

N
2
2 (B)

dτ+µ

)
≥−4Ψ6(t)(Ψ1(t)+µ). (6.11)

Then in view of (6.11) and (6.10), for any ϑ>1, we achieve

Ψ6(t)Ψ6
′′(t)−ϑ(Ψ6

′(t))2
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≥Ψ6(t)
(
Ψ6

′′(t)−4ϑ(Ψ1(t)+µ)
)

≥4Ψ6(t)

(
pξ2
4

∥u0∥2
L

N
2
2 (B)

−pJ(u0)+(p−ϑ)Ψ1(t)−ϑµ
)
,

taking ϑ=p, we have

Ψ6(t)Ψ6
′′(t)−ϑ(Ψ6

′(t))2≥4pΨ6(t)

(
ξ2
4
∥u0∥2

L
N
2
2 (B)

−J(u0)−µ
)
.

Choose a small enough µ′∈ (0,σ′] such that

ξ2
4
∥u0∥2

L
N
2
2 (B)

−J(u0)−µ≥0,

where σ′ := ξ2
4 ∥u0∥

2

L
N
2
2 (B)

−J(u0). Then we have

Ψ6(t)Ψ6
′′(t)−ϑ(Ψ6

′(t))2≥0,

which implies that the conditions of Lemma 5.1 are satisfied. It is easy to verify that
Ψ6(0)=pT∥u0∥2

L
N
2
2 (B)

+µν2>0, Ψ6
′(0)≥2µν >0. The remainder proof is similar as

the proof of Theorem 3.2-Part II, hence, we omit it.

As we did in Remark 5.2, Theorem 3.1 and Theorem 3.3 also have the correlations
similar to Theorem 3.1 and Theorem 3.2, so we give the following remark.

Remark 6.1. Similar to the phenomenon discussed in Remark 5.2, Theorem 3.1 and
Theorem 3.3 also have different emphases on finite time blow up of solutions, and we
mainly discuss the overlapping parts of Theorem 3.1 and Theorem 3.3 when considering
the finite time blow up of solutions under high initial energy levels. Comparing the
sufficient conditions in Theorem 3.1 and Theorem 3.3, we conclude the result through
the following simple argument, namely, assuming that the initial energy level satisfies
J(u0)>d, we assert that if the initial data satisfies (3.2) in Theorem 3.3, then u0∈SB .

From the proof of Lemma 6.1, we know that if u0 satisfies (3.2), then u0∈N−.
Similar as the proof in Remark 5.2, for any u∈NJ(u0), together with the definition of
NJ(u0), we get

∥∇Bu∥2
L

N
2
2 (B)

+κ∥V 1
2u∥2

L
N
2
2 (B)

<
2(p+1)

p−1
J(u0).

Combining above inequality with (4.5), (6.3), we have

∥u∥p+1

L
N
2
2 (B)

|B|
(p−1)2

4 C
p−1
2

g∗

≤∥g
1

p+1u∥p+1

L
N

p+1
p+1 (B)

=∥∇Bu∥2
L

N
2
2 (B)

+κ∥V 1
2u∥2

L
N
2
2 (B)

<
2(p+1)

p−1
J(u0). (6.12)

Picking ΛJ(u0)=sup

{
∥u∥2

L
N
2
2 (B)

∣∣∣∣u∈NJ(u0)

}
, and (6.12) tells us

Λ
p+1
2

J(u0)
=

(
∥u∥2

L
N
2
2 (B)

) p+1
2

<
2|B|

(p−1)2

4 C
p−1
2

g∗ J(u0)(p+1)

p−1
. (6.13)
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Substituting (3.2) into (6.13), we get ∥u0∥2
L

N
2
2 (B)

>ΛJ(u0). Hence, from above discussion

we know that if u0 satisfies (3.2), then

u0∈N−∩
{
u0∈H1,N2

2,0 (B)
∣∣∣∥u∥2

L
N
2
2 (B)

≥ΛJ(u0),J(u)<J(u0)

}
=SB .

However, rearranging (3.2), we obtain

∥u0∥2
L

N
2
2 (B)

>

2|B|
(p−1)2

4 C
p−1
2

g∗ J(u0)(p+1)

p−1

− p+1
2

,

together with (6.13), we see that if u0∈SB , it does not necessarily satisfy (3.2).
Therefore, compared with (ii) in Theorem 3.1, the sufficient conditions of Theorem

3.3 are stricter, but they also give us a better estimate of the upper bound of blow up
time.

7. Proof of Theorem 3.4
In this section we seek the lower bound of blow up time to problem (1.1)-(1.3).

Proof. (Proof of Theorem 3.4.) Let

Ψ7(t) :=

∫
B
|u(t)|ϵ dx1

x1
dx̃,

where the constant ϵ is an odd number and will be chosen later.
Since u is the solution of (1.1)-(1.3), we have

dΨ7(t)

dt
=ϵ
(
|u|ϵ−2u,ut

)
B

=ϵ
(
|u|ϵ−2u,∆Bu−κV u+g(x)|u|p−1u

)
B

=ϵ

(
−(ϵ−1)

∫
B
|u|ϵ−2|∇Bu|2

dx1
x1

dx̃−κ
∫
B
V |u|ϵ dx1

x1
dx̃

+

∫
B
g(x)|u|ϵ+p−1 dx1

x1
dx̃

)
.

For convenience we now set v= |u| ϵ2 , then

dΨ7(t)

dt
=− 4(ϵ−1)

ϵ

∫
B
|∇Bv|2

dx1
x1

dx̃−κϵ
∫
B
V |v|2 dx1

x1
dx̃

+ϵ

∫
B
g(x)v2+

2(p−1)
ϵ

dx1
x1

dx̃. (7.1)

By virtue of the cone Hardy’s inequality (Lemma 2.1), (7.1) turns into

dΨ7(t)

dt
≤−

(
4(ϵ−1)

ϵ
+κC2

∗ϵ

)∫
B
|∇Bv|2

dx1
x1

dx̃+ϵ

∫
B
g(x)v2+

2(p−1)
ϵ

dx1
x1

dx̃. (7.2)

For the second term on the right-hand side of (7.2), we deal with it by using the cone

Hölder inequality and imbedding theorem L∞(B) ↪→L
N
3
3 (B) as follows∫

B
g(x)v2+

2(p−1)
ϵ

dx1
x1

dx̃≤
(∫

B
g(x)3

dx1
x1

dx̃

) 1
3
(∫

B
v3+

3(p−1)
ϵ

dx1
x1

dx̃

) 2
3
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≤ C̃∥g∥L∞(B)

∫
B
v2+

2(p−1)
ϵ

dx1
x1

dx̃,

where C̃ is the optimal imbedding constant of L∞(B) ↪→L
N
3
3 (B). Together with the fact

that g(x)∈L∞(B)∩C(B), it follows that∫
B
g(x)v2+

2(p−1)
ϵ

dx1
x1

dx̃≤ C̃Cg
∫
B
v2+

2(p−1)
ϵ

dx1
x1

dx̃, (7.3)

where Cg>0 is the essential supremum which depends on the weighted function g(x),
i.e., Cg=inf{M | |g(x)|≤M,a.e. x∈B}.

Again from the cone Hölder inequality, we know that∫
B
v2+

2(p−1)
ϵ

dx1
x1

dx̃≤
(∫

B
v4

dx1
x1

dx̃

) 1
3
(∫

B
v1+

3(p−1)
ϵ

dx1
x1

dx̃

) 2
3

, (7.4)

then applying the cone Sobolev inequality∫
B
v4

dx1
x1

dx̃≤S4

∫
B
|∇Bv|4

dx1
x1

dx̃ (7.5)

and substituting (7.4) and (7.5) into (7.3), we see∫
B
g(x)v2+

2(p−1)
ϵ

dx1
x1

dx̃≤C̃CgS
4
3

(∫
B
|∇Bv|2

dx1
x1

dx̃

) 2
3
(∫

B
v1+

3(p−1)
ϵ

dx1
x1

dx̃

) 2
3

, (7.6)

where S is the optimal constant of the cone Sobolev embedding H1,N2
2,0 (B) ↪→L

N
4
4 (B).

By reusing the cone Hölder inequality and recalling v= |u| ϵ2 , we can easily get∫
B
v1+

3(p−1)
ϵ

dx1
x1

dx̃=

∫
B
|u|

ϵ+3(p−1)
2

dx1
x1

dx̃≤|B|1−δ (Ψ7(t))
δ
, (7.7)

where |B| denotes the volume of B and δ := 1
2 +

3(p−1)
2ϵ . In particular, the constant ϵ

needs to satisfy ϵ>3(p−1) in order to ensure δ<1.
Hence, substituting (7.7) into (7.6), we arrive at∫

B
g(x)v2+

2(p−1)
ϵ

dx1
x1

dx̃≤ C̃CgS
4
3 |B| 23 (1−δ)

(∫
B
|∇Bv|2

dx1
x1

dx̃

) 2
3

(Ψ7(t))
2δ
3

:=K

(∫
B
|∇Bv|2

dx1
x1

dx̃

) 2
3

(Ψ7(t))
2δ
3 . (7.8)

Using the following Young’s inequality

XrY s≤ rX+sY for r+s=1,X,Y ≥0,

we can rewrite (7.8) with a parameter θ>0 as follows∫
B
g(x)v2+

2(p−1)
ϵ

dx1
x1

dx̃≤K
(
θ

∫
B
|∇Bv|2

dx1
x1

dx̃

) 2
3 (
θ−2(Ψ7(t))

2δ
) 1

3

≤2Kθ

3

∫
B
|∇Bv|2

dx1
x1

dx̃+
Kθ−2

3
(Ψ7(t))

2δ
. (7.9)
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Combining (7.8), (7.9) with (7.2), we obtain

dΨ7(t)

dt
≤ (θη2−η1)

∫
B
|∇Bv(t)|2

dx1
x1

dx̃+
θ−2η2

2
(Ψ7(t))

2δ
,

where {
η1 :=

4(ϵ−1)
ϵ +κC2

∗ϵ,

η2 :=
2
3ϵC̃CgS

4
3 |B| 23 (1−δ).

Choosing θ to make the coefficient of
∫
B |∇Bv|2 dx1

x1
dx̃ vanish, we reach to

dΨ7(t)

dt
≤γ(Ψ7(t))

2δ, (7.10)

where γ := θ−2η2
2 . Or upon integration we have for t<T∗

1

Ψ7(0)2δ−1
− 1

Ψ7(t)2δ−1
≤γ(2δ−1)t.

So that letting t→T∗, we conclude that

T∗≥
1

γ(2δ−1)(Ψ7(0))2δ−1
=

54(4ϵ−4+κC2
∗ϵ

2)2

8ϵ5C̃3C3
gS

4|B|2(1−δ)(2δ−1)∥u0∥ϵ(2δ−1)

LN
ϵ

.

Moreover, integrating (7.10) from t to T∗, we obtain

T∗− t≥
∫ ∞

Ψ7(t)

dθ

γθ2δ
:=F (Ψ7(t)). (7.11)

Obviously, F (Ψ7(t)) is a decreasing function of Ψ7(t), which means its inverse function
F−1 exists and it is also a decreasing one. Therefore, we know

Ψ7(t)≥F−1(T∗− t),

which implies the existence of the lower bound of blowup rate. By calculating the
generalized integral in (7.11), we deduce that

T∗− t≥
1

γ(2δ−1)
(Ψ7(t))

1−2δ
,

which yields

Ψ7(t)≥
(
γ(2δ−1)(T∗− t)

) 1
1−2δ .

That is,

∥u(t)∥LN
ϵ
≥

(
8ϵ5C̃3C3

gS
4|B|2(1−δ)(2δ−1)

54(4ϵ−4+κC2
∗ϵ

2)2

) 1
ϵ(1−2δ)

(T∗− t)
1

ϵ(1−2δ) .
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