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1. Introduction

The growing attention for the study of the p-Laplacian operator A, in the last few
decades is motivated by the fact that it arises in various applications. For instance,
in Fluid Mechanics, the shear stress T and the velocity gradient V,u of certain fluids
obey a relation of the form 7(x) = a(x)Vju(x), where Vu=|Vu|P~2Vu. Here p > 1 is
an arbitrary real number and the case p =2 (respectively p <2, p > 2) corresponds
to a Newtonian (respectively pseudoplastic, dilatant) fluid. The resulting equations of
motion then involve div(aV,u), which reduces to aA,u = adiv V,u, provided that a
is constant. The p-Laplacian also appears in the study of torsional creep (elastic for
p =2, plastic as p—oo, see [7]), flow through porous media (p = %, see [12]) or
glacial sliding (p € (1, %], see [9]).

Let Q C RV be an unbounded domain with (possible noncompact) smooth boundary
I" and »n is the unit outward normal on I". We consider the nonlinear elliptic boundary
value problem:

—div(a(x)|Vu|P72Vu) = 2(1 + |[x])* [u|?2u+ (1 + |x|)?|u|*u in Q,
a(x)|Vu|P7*Vu - n+ b(x) - [u|?2u=g(x,u) onT. (A)
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We assume throughout that 1<p<N, p<g < p* = Np/(N — p), —-N<au; < — p,
—N<op<qg-(N—p)/p—N, 0<ay < a € L®(Q) and b : '>R is a continuous
function satisfying

c C
R T (N T
for constants 0 < ¢ < C.
Let g : I' x R—R be a Carathéodory function such that
(A1) [g(x,5)] < gox) +gi1X)s|" ™Y g <m < p- 3=,
where g;:I'—R (i=0, 1) are measurable functions satlsfylng go € L™ m=1)(T; w;/ (lfm)),

0<g;<Cyws ae. inT,

for a constant C; > 0, with w3(x)=(1+1x|)*, x € I, and —N < a3 <m-(N—p)/p—
N+ 1.
We also assume

(A2) lim,_q b(f)(ﬂ ‘S,) + = 0 uniformly in x.

(A3) There exists u € (p, g] such that
uG(x,s) < sg(x,s) forae.x €I and every s € R.

(A4) There is a non-empty open set U C I with G(x,s) > 0 for (x,s) € U x (0,00),
where G is the primitive function of g with respect to the second variable, i.e., G(x,s)=
fos g(x,t)dr.

Our first result asserts that, under the above hypotheses, problem (A) has at least a
solution in an appropriate space.

Eigenvalue problems involving the p-Laplacian have been the subject of much recent
interest (we refer only to [1,3,4,6]). Our purpose is to prove the existence of an
eigensolution for the following eigenvalue problem:

—div(a()|[VulP~2Vu) = L1+ ey fulP~2u 4 (14 [x])2[ul"2u] - in Q,
a(x)|Vu|?7>Vu - n + b(x)|u|?"*u = Jg(x,u) onT. (B)
In the study of this problem we drop assumptions (A2) and (A4).

2. Preliminaries and the main results

Let C5°(£2) be the space of C5°(RY) — functions restricted on Q. We define the
weighted Sobolev space E as the completion of C5°(£2) in the norm

1/p
— Py
el = ([ (19007 + o) ax)

Denote by LP(2;wy),L9(Q;wy) and L™(I'; w3) the weighted Lebesgue spaces with
weight functions

wi(x) =1+ [xD*%, i=1,2,3
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and the norms defined by

lul?,, = [ G| dx,

= [ weluolrax andfull,, = [ sl ar,
r
Then we have the following embedding and trace theorem.

Theorem 1. If

N N —
p<r< P and —N<oc§r-7p—
N—-p r

N, (D)
then the embedding E C L"(Q;w) is continuous, where w(x) = (1 + |x|)*. If the upper
bounds for r in (1) are strict, then the embedding is compact. If

N -1
N-p

N —
p<m<p and —N<oc3§m-—p—N—|—1, 2)
p

then the trace operator E—L™(T';ws) is continuous. If the upper bounds for m in (2)
are strict, then the trace is compact.

This theorem is a consequence of Theorem 2 and Corollary 6 of Pfliiger [11].

Lemma 1. The quantity
||u|\f:/ a(x)\Vu|de+/ b(x)|u|? dT
Q r
defines an equivalent norm on E.

For the proof of this result we refer to [10], Lemma 2.
We denote by N,, Ng the corresponding Nemytskii operators.

Lemma 2. The operators
Ny 2 L"(T;w3)— L™= D@ wi/ ™) NG - L"(T; ws)—LY(T)
are bounded and continuous.

Proof. Let m' =m/(m — 1) and u € L"™(T;ws3). Then, by (Al) we have

/r‘N”(”le T dr <27 (/Fgﬁ” w17 AT /rgi”'|u|m = dF)

<~ (C +Cy- / u|™ - w3 dF) ,
r
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which shows that N, is bounded. In a similar way, we obtain

/\Nc(u)|dI‘§/go|u|dF+/ g1 |u|™ dT
r T r

, 1/m’ 1/m
< (/qu)” -w;/(lm)df> : (/Fu|m w3 dF) + Cl-/F\u|m~W3 dar

and we claim that Ng is bounded.
Now, from the usual properties of Nemytskii operators we deduce the continuity of
these operators. [

By weak solution of problem (A) we mean a function u € E such that

/a(x)|vu|17*2vu.vudx+/ b(x)|u|Puv dT
Q T

:),/ w1|u|p_2uvdx—|—/ W2|u|‘1_2uvdx+/g(x,u)vd1", Yv € E.
Q Q r

Define
5 - Jo a)|Vul? dx + [ b(x)[ul? dT
‘= in .
u€Eu#0 fQ |u|1’ -wy dx

Our first result is

Theorem 2. Assume that conditions (A1)—(A4) hold. Then, for every A < /., problem
(A) has a nontrivial weak solution.

We stress that for the following result of the paper we drop assumptions (A2) and
(A4).
By weak solution of problem (B) we mean a function u € E such that

/a(x)|Vu|p_2Vu~Vde+/b(x)|u|p_2uUdF
Q r

=1 [/ wl\u|p_2uvdx+/ W2|u|q_2uvdx+/ g(x,u)vdF] , Yv€E.
Q Q r

We now state the main result of solving problem (B).

Theorem 3. Assume that hypotheses (A1) and (A3) hold. Let d be an arbitrary real
number such that 1/d is not an eigenvalue A in problem (B), and satisfying

d> % 3)

Then there exists p > 0 such that for all r > p > p, eigenvalue problem (B) has an
eigensolution (u, ) = (uq,Aq) € E X R for which one has

1 1
d +r2||ugy =" d + p2||ually ="

Ad €
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3. Proof of Theorem 2

The key argument in the proof is the Mountain-Pass Theorem in the following variant

(see [2]):

Ambrosetti—-Rabinowitz Theorem. Let X be a real Banach space and F : X—R be a
C'-functional. Suppose that F satisfies the Palais—Smale condition and the following
geometric assumptions:

there exist positive constants R and cq such that F(u) > c,
Sfor all u € X with |u|| =R; 4)
F(0) < cg and there exists v € X such that

lv|| > R and F(v) < cy. (5)

Then the functional F possesses at least a critical point.

Throughout this section we use the same notations as was previously done in the
case of problem (A) excepting that A(x,s) = wy(x)|s|?2s, Vx € , s € R.
The energy functional corresponding to (A) is defined as F : E—R

_ ! VP dy L ul?
F(u)—p /Qa(x) [Vul dx+p /Fb(x) |u|? dT

A

- = / wi - |ul? dx 7/ G(x,u)dl’ —/ H(x,u)dx,
P Ja r Q

where H denotes the primitive function of # with respect to the second variable.
By Lemma 1 we have || - ||, ~ | - || We may write

1 A
F(u)=—-|jul} - = / wy - |u|pdx—/ G(x,u)dF—/ H(x,u)dx.
p P Ja r Q
We observe that
1
|H (x,u)| = 5Wz(}f)|u|q- (6)

Since p<g< p*,—N <oy <—pand —N <oy <q-(N — p)/p— N we can apply
Theorem 1 and we obtain that the embeddings E C L?(£2; wy) and E C L1(2;wy) are
compact. This and (6) imply that F is well defined.

Our hypothesis

T [lully

A< ii=
ueEu0 [|ull®

implies the existence of some Cy > 0 such that, for every v € E

lolly = Allelly, = Collvlly-
We shall prove in what follows that F' satisfies the hypotheses of the Mountain-Pass

Theorem.
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Lemma 3. Under assumptions (A1)—(A4), the functional F is Fréchet-differentiable
on E and satisfies the Palais—Smale condition.

Proof. Denote I(u) = (1/p)||ull;, Ko(u) = [ G(x,u)dT, Ky(u)= |, H(x,u)dx and
Ky(u)= |, (1/p)wi|u|? dx, where ®(x,u)=(1/p)w;(x)|u|?. Then the directional deriva-
tive of F' in the direction v € E is

<F/(1/l), U> = <I/(u)9 U> - /I<K&,(M), U> - <K/G(u)s U> - <KI/-I(M)5 U>,

where

(]’(u),v>:/ a(x)|Vu|”_2Vqudx—|—/ b(x)|u|”2uvdl;
Q r
(Kotu0) = [ otapar

(K,’,(u),v>:/gh(x,u)vdx; <K<’I,(u),v>:/ wi|ul?2uv dx.

Q

Clearly, I’ : E—E* is continuous. The operator K/, is a composition of the operators

K« E—L™(T;ws) 5 L= D(r !/ =my L
where (/(u),v) = [ uvdT. Since

1/m’ 1/m
/|uv|dF§ (/ |u|™ w§/<1’”>dr> (/ |v|’”W3dF) ,
T r r

then / is continuous, by Theorem 1. As a composition of continuous operators, K, is
continuous, too. Moreover, by our assumptions on wj, the trace operator E—L"(I'; ws)
is compact and therefore, K, is also compact.

Set ¢(u) = wi|u|?~%u. By the proof of Lemma 2 we deduce that the Nemytskii
operator corresponding to any function which satisfies (A1) is bounded and continuous.
Hence N, and N, are bounded and continuous. We note that

N _
K&, :ECLP(Q;W]) ¢ LP/(P*I)(Q;Wi/(l P))L E*,

where (n(u),v) = fQ uvdx. Since

v (p=1)/p 1/p
/ |uv| dx < </ |u\p/(p_1)w1/( P)dx) . (/ |v|Pw) dx) ,
Q Q Q

it follows that # is continuous. But K, is the composition of three continuous operators
and by the assumptions on wi, the embedding £ C L?(£2;w;) is compact. This implies
that K} is compact.

In a similar way, we obtain that Kj, is compact and the continuous Fréchet-
differentiability of F follows.

Now, let u, € E be a Palais—Smale sequence, i.e.,

|F(u,)| < C for all n (7)
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and
|F'(tn)|| g« —0 as n—oo.
We first prove that (u,) is bounded in E. Note that (8) implies:
[(F'(un),un)| < p- |lunl|, for n large enough.
This and (7) imply that

1
C + [lunll, = Fun) — h (F'(uy), ).

But
(F' (up), un) :/ a(x)|Vu,|? dx + / b(x)|u,|?dl — 4 - / wi|un|? dx
0 r Q
—/ h(x, uy )u, dx —/ g, uy Yy AT = J|uy ||} — 2+ [|un|
0 r
—/ h(x, uy, )uy, dx—/ g(x, uy u, dT’
0 r
and

1
F(up) = —(lunll) — 4~ H”nHﬁ,wl)_/ H(x,u,,)dx—/ G(x,uy,)dT.
p Q r
We have

o, 11
P = P ) = (=) (Il = 2+ 0, )

— </ H(x,u,)dx — l / h(x,u,,)u,,dx)
Q nJa
1
— </ G(x,u,)dl’ — — / g(x,u,,)u,,dl") .
r B Jr
By (A3) we deduce that

1
/ Gx,uy)dl' < - / 9,1, Yy T
T nJr

A simple computation yields
1

1
/H(x,un)dx:f / h(x, uy )u, dx < — / h(x, uy, )u, dx.
Q q Ja nJa

By (10) and (11) we obtain that

1 11
F(uy) — — - (F' (), ) > (— - —) Collunl|f-
T P K

Relations (9) and (12) imply that

1 1
C+ Jull, > < - ) Collua?.
b p U b

This shows that (u,) is bounded in E.

629

(8)

)

(10)

(11)

(12)
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To prove that (u,) contains a Cauchy sequence we use the following inequalities for
&L € RN (see [5, Lemma 4.10]):

E= L < CeP?e - [P0 E -0 for p22, (13)

&=L < CEP2e =[PP E = O (g + L) P for 1< p<2. (14)

Then we obtain in the case p > 2:

|ltn — ukH;; = / a(x)|Vu, — Vuk|pdx+/b(x)|un — | dT
Q T

< CUI () un — i) — (I (i), un — ug))
= C({F" (un ),y — ue) — (F" (uk),  — i)
+ 2K (), tn — uie) — (K (v )s tn — uie)
+ (KG () tty — uie) — (K (g )t — u)
+ (K (un), y — ) — (K (), — uge) )
< CUF un)llpx + I1F (i)l px
12 - 1Kp(un) = Kg (i)l g + [1K6(un) — K (i) g

+ 1K (un) — Ky (i) n = e[

Since F’(u,)—0 and K}, K, Kj; are compact, we can assume, passing eventually
to a subsequence, that (u,) converges in E.
If 1 < p <2, then we use the estimate

et = w1 < C[(1 )t = ) = ('t st = ) |l + e[ 77 (15)

Since ||u,l|, is bounded, the same arguments lead to a convergent subsequence. In
order to prove estimate (15) we recall the following result: for all s € (0,00) there is
a constant C, > 0 such that

(x+ ) < Cy(x*+ ') forany x,y € (0,00). (16)

Then, we obtain

2/p
ity — g2 = ( [ v, -l axs [ sl —uk|pdr)
Q T

2/p 2/p
(/ a(x)|Vu, — Vuk|pdx) + (/ b(x)|u, — uk|pd1"> ] .
Q r

(17)

<G
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Using (14) and (16) and the Hoélder inequality we find

/ a(x)|Vu, — Vug|? dx
Q
= / a(x) (|Vu, — Vug[*)P? dx
Q

<c / o) ([ Vit P2V 4y — [Vt |P> V)
Q
(Vu, — V) ?2(|Vuy| + |V | )PP P2 dx
—c / (@) (V| P2Vt — [Vt |2V 0g) (Vit — Vg )
Q

x(a(x) (|Vu,| + |Vuk|)p)(2—p)/2 dx

p/2
<C (/ a(x) (|Vun|P 2 Vu, — |Vue|P V) (Vu, — Vuk)dx>
Q

(2—p)/2
(/ a(x) (|Vuy| + |Vug|)? dx)
0

N (2—p)/2
<C, </ a(x)Vu,,|pdx+/G(X)|V”k|pdx>
QO Q

P2
( / a(x) (|Vun [PV, — [Vur P>V ) (Vu, — Vuk)dx)
Q

(2—p)/2 2-p)2
</ a(x)|Vun|pdx> + </ a(x)|Vuk|pdx> ]
0 0

p/2
(/ a(x) (|Vun| P>V u, — [Vug|P 2V ) (Vu, — Vuk)dx)
Q

<C,

p/2
< €, ([ )Tl 2%, = 19l Vi) (Tt~ Vi) )
Q
X(”uan(pr)P)/z + ”ukHE)(Z*P)P)/z)_
Using the last inequality and (16) we have the estimate
2/p
(/ a(x)|Vu, — Vuk|pdx)
Q
<C, (/ a(x) (|Vun|P 2V, — |Vue|P V) - (Vu, — Vuk)dx>
Q

<(lunlly ™+ Ny~ 7)- (18)
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In a similar way, we can obtain the estimate

2/p
(/ b(x)|u, — uk|de>
r

<C, (/p b) (letn P2t — ||~ u10) (ut — uk)dx)

< (lunlly ™7+ llurll3~7)- (19)

It is now easy to observe that inequalities (17)—(19) imply estimate (15). The proof
of Lemma 3 is complete.
Verification of (4): Using (6) we have

‘/ H(x,u)dx
Q

and by Theorem 1 we have that there exists 4 > 0 such that

1
< H(x,u)ldx < —|jul|?,
A\ e < 2l

Null ., <A|u|] foralluc E.

q,w2

This fact implies that

_l P _ P _ _
Py = —(lullf = 2l = [ Hwads— [ Gnar

Co A
> ullf = =||u qf/G(x,u)dF.
pll I qH 5 g

By (A1) and (A2) we deduce that for every € > 0 there exists C, > 0 such that
|G(x,u)| < €b(x)|u|? + Cews(x)|u|™.

Consequently,
Co A m
F = < ullf = 2l ~ [ (ebeolul? + Covsolul™y i
p q r
Co A m
> —lully - EHMIIZ — €cqlully — CeCollulfy-

For € >0 and R > 0 small enough, we deduce that, for every u € E with [jul|, =
R, F(u) > ¢y > 0.

Verification of (5): We choose a nonnegative function y € C5°(£2) such that () #
suppy NT'C U. From G(x,s) > c3s* —cq4 on U X (0,00) and (Al) we claim that

_ﬁ P _ p _ _
P =Wl = 21015, — [ Hendr = [ Gempar

tP 14
S—NM$%WMM—@ﬂ/Wﬂ+MW—f/wWw
P U q Jqa
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Since ¢ > pu > p, we obtain F(fy)— — oo as t—oo. It follows that if > 0 is large

enough, F(#y) < 0. By Ambrosetti-Rabinowitz Theorem, problem (A) has a nontrivial
weak solution. [

4. Proof of Theorem 3
We start with the following auxiliary result.

Lemma 4. Under assumption (A1), if ¢ < m, there exists a number p > 0 such that
for each p > p the function

2 m 1
v — p—||1;|\b - —||v||;Wl f/H(x,v) dxf/G(x,v)dF, Yv € E,
m p 0 r
is bounded from below on E.

Proof. The growth condition for g implies that

(/QMNTS/(Mﬂv+lMMWQH
r r m

fm=1). 11—y X
s(Aﬂm w! ma) 1ol + Collol o

< Co+Clv|,, Vv€eE,

with constants Cy > 0, C > 0. One also obtains that

/QH(x,v)dx

with constants Cy > 0, C > 0. Clearly, we can choose now the positive number p as
desired. [

1 .
= gllvllzurw < Glo||f < Co+Clolly, Vv €E,

In view of Lemma 4, one can find numbers by > 0 and o > 0 such that

=2
Prym 2, L
Pl + b0 = bl = [ s ax

- / G(x,v)dl > o >0, Yve€E. (20)
T

With by > 0 and p > 0 as above we consider numbers » > p > p and a function
B € C'(R) such that

p0)=p(r)=0, p(p)=bo, (21)
B(t)<0 &t<0 or p<t<r, (22)

lim f(1) = +o0. (23)
—+00

l¢]
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Lemma 5. Assume that conditions (A1) and (A3) are fulfilled. Then, for any d >0
satisfying (3), the functional J : E x R—R is defined by

12 2 1
Jw,0)=—|ply + =p&)— =2, — | H d
0.0y = el + 2 )=~ ol — [ Hex dx

d
,/G@md»+gwm,vmneExR (24)
r
is of class C' and satisfies the Palais—Smale condition.

Proof. The property of J which is continuously differentiable has been already justified
in the proof of Theorem 2.

In order to check the Palais—Smale condition let the sequences {v,} C E and {#,} CR
satisfy

[J(Ons t)| <M, Vn>1 (25)
T nstn) = 7 |[oally 7T (v0)

— Ky (va) — Ky (v) — Kg(va) + dI'(v4)—0  as n—o0, (26)

2 m o
I (Onstn) = p” (tallonlly + B'(22))—0, (27)

where I/, K¢, Ky, K have been introduced in the proof of Lemma 3.
From (20), (21), (24), and (25) we infer that

2w 2 | .
M2 el B~ el

d
_ H(x,u,,)dx—/G<x,vn>dx+— [EATs
Q r P
f2 2

_ .2 d
= P (B — B + el
p

Condition (23) in conjunction with the inequality above yields the boundedness
of {t,}.

Let us check the boundedness of {v,} along a subsequence. Without loss of gener-
ality, we may admit that {v,} is bounded away from 0. From (22) we deduce that the
sequence {7,|[v,]|; } is bounded. Therefore, it is sufficient to argue in the case where
t,—0. From (24) it turns out that

| d
ﬂmmm+/meM+/amwm——MM
p Q r p

is bounded. By (26) it is seen that

1
7(*<K&>(Un), Un> - <K1/-[(Un)’ Un> - <K/G(Un)s Un> + den”;;)‘)O as n—:oo.

[[onll,
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Then, for n sufficiently large, assumption (A3) allows to write

11 11
M+ 1+ |, >d(———) v,,p—i—(———) Onll oo
H ”b P 7 H ”b L q H ”L(.m 2)

1 1 1
+/ (—g(x,v,,)v,, - G(xyvn)) dr' + (_ - _) ||U"||§w1
r \H# nop ’

1 1 1 1 1
> (5= 3) @l =1l = (5 3) (4= 3) ol
(5 3) @l =l = (5= 3 ) (4= 5) o

By (3), this establishes the boundedness of {v,} in E.
In view of the compactness of the mappings Kj, Kj,, K; (see the proof of
Lemma 3), by (26) we get that

(d + ty [|vally =) 1 (vn)

converges in E as n—oo. The boundedness of {#,} and {v,} ensures that {I'(v,)} is
convergent in £* along a subsequence. Assume that p > 2. Inequality (13) shows that

|y — we|f < C [/ a(x) (|Vu|P 7>V, — |V |P~>Vuy) - (Vu, — Vi) dx
Q

4 / BC) (a0 — Ja) P20 (ty — 1) AT
I

=C{I"(up) = I' (uge ),y — iz
< CI () = 1) ||t — el if p > 2.

Consequently, if p > 2, {v,} possesses a convergent subsequence. Proceeding in the
same way with inequality (14) in place of (13) we obtain the result for 1 < p < 2.
O

In the proof of Theorem 3 we shall make use of the following variant of the
Mountain-Pass Theorem (see [8]):

Lemma 6. Let E be a Banach space and let J : ExR—R be a C' functional verifying
the hypotheses
(a) there exist constants p > 0 and o > 0 such that J(v,p) > o, for every v € E;
(b) there is some r > p with J(0,0)=J(0,r)=0.
Then the number

= inf J
¢:= inf max (9(7))

is a critical value of J, where

Z:={g € C([0,1]),E x R); ¢(0) = (0,0), g(1) = (0,r)}.
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Proof of Theorem 3. We apply Lemma 6 to the function J defined in (24). It is
clear that assertion (a) is verified with p > 0 and o > 0 described in Lemma 4 and
(20). Due to relation (21), condition (b) in Lemma 6 holds. Lemma 5 ensures that the
functional J satisfies the Palais—Smale condition. Therefore, Lemma 6 yields a nonzero
element (u,¢) € E x R such that

Jo(u,t) = (d + 2/ ully ") ') — Kg(u) = Kpp(u) — Kg(u) =0, (28)

Ty =2 (@ully + B (1) =0, 29)
From (29) it follows that

(1) < 0. (30)
Combining (30) and (22) we derive that if ¢t # 0, then u # 0 and

p<t<r. (31)

Therefore, for each d in (3) such that 1/d is not an eigenvalue in (B) and each
r > p > p we deduce that there exists a critical point (u,7) = (ug4,;) € E X Ry of J,
where ¢t = ¢, verifies (31). Consequently, relation (28) establishes that u; € E is an
eigenfunction in problem (B) where the corresponding eigenvalue is
B 1

d + 1 |lually ™"

with ¢ = ¢; satisfying (31). This completes the proof. [
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