World Scientific

Vol. 21, No. 4 (2019) 1850004 (36l pages) oW worldssientilic.com

(© World Scientific Publishing Company
DOI: 10.1142/S0219199718500049

Communications in Contemporary Mathematics \\’

A critical fractional Choquard—Kirchhoff
problem with magnetic field

Xiang Mingqi
College of Science, Civil Aviation University of China
Tiangin 300300, P. R. China
zriangmingqi_hit@163.com

Vicentiu D. Radulescu*

Faculty of Applied Mathematics
AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Krakéw, Poland

Department of Mathematics, University of Craiova
200585 Craiova, Romania
vicentiu.radulescu@math.cnrs. fr

Binlin Zhang

Department of Mathematics
Heilongjiang Institute of Technology
Harbin 150050, P. R. China
zhangbinlin2012@163.com

Received 10 January 2017
Accepted 26 December 2017
Published 28 February 2018

In this paper, we are interested in a fractional Choquard—Kirchhoff-type problem involv-
ing an external magnetic potential and a critical nonlinearity
F(lul®)
2
Ml )((-A)u+ ) = A [ )
RN |z —

” dyf(Jul?)u + [uf*s "2u  in RV,

. z+y 1/2

|’U,(£E) _ez(zf’y)-A( p) )u(y)‘Q / 5

= dwd d :
“u” A (_/Az}v ‘Z‘—y‘N+2S xdy + RN |’U,‘ €z

where N > 2s with 0 < s < 1, M is the Kirchhoff function, A is the magnetic
potential, (—A)% is the fractional magnetic operator, f is a continuous function,

F(lu|) = fo‘u‘ f(@)dt, X > 0 is a parameter, 0 < a < min{N,4s} and 2% = NQiVQS is
the critical exponent of fractional Sobolev space. We first establish a fractional version

of the concentration-compactness principle with magnetic field. Then, together with the
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mountain pass theorem, we obtain the existence of nontrivial radial solutions for the
above problem in non-degenerate and degenerate cases.

Keywords: Choquard-Kirchhoff equation; fractional magnetic operator; variational
methods; critical Sobolev exponent.
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1. Introduction and Main Results
In this paper, we consider the existence of solutions to the following Choquard-—

Kirchhoff-type problem:

M(||u %72, RN, (1.1)

e (=) 5w+ u] = AMKa + F(|ul?) f(Jul*)u + |u

where V : RN — R* is the scalar potential, K (z) = |z|7%, A : RV — R is the
magnetic potential, A > 0 is a real parameter and (—A)? is the fractional magnetic
operator which, up to normalization, may be defined as

u(x) = A u(y)
o =y [N

(=A)5u(z) =2 lim dy, VxRN,

e—=0" JRN\B. ()

whenever u € C§°(RY, C), see [[2] and the references therein for further details on
these kinds of operators. Here s € (0,1), N > 2s and B.(z) denotes a ball in RY
with radius € > 0 centered at € RY. Clearly, the operator (—A)? is consistent
with the definition of fractional Laplacian (—A)® if A = 0. For more details on the
fractional Laplacian, we refer to [14]. The fractional Laplacian operator (—A)® can
be seen as the infinitesimal generators of Lévy stable diffusion processes (see []).
Moreover, the fractional Laplacian allows to develop a generalization of quantum
mechanics and also to describe the motion of a chain or array of particles that
are connected by elastic springs and unusual diffusion processes in turbulent fluid
motions and material transports in fractured media (for more details see for exam-
ple [4, 9] and the references therein). In fact, a great attention has been focused on
the study of fractional and nonlocal operators of elliptic type in recent years. This
type of operators arises in a quite natural way in many different applications, such
as, continuum mechanics, phase transition phenomena, population dynamics and
game theory, as they are the typical outcome of stochastically stabilization of Lévy
processes, see [4, [9]. The literature on nonlocal operators and on their applications
is very interesting and quite large, we refer the interested readers to [10, 15, 28, 33]
and the references therein. For the basic properties of fractional Sobolev spaces and
their applications by variational methods, we refer the readers to 21].

On the one hand, this paper is motivated by some works that appeared in recent
years concerning the following fractional Schrodinger equations with magnetic field:

(=A)au+V(z)u = f(u), (1.2)
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where the magnetic Schrodinger operator is defined as
—(V —id)?u = —Au + 2iA(x) - Vu + |A(z)|*u + iudivA(z).

As stated in [34], up to correcting the operator with factor (1 — s) it follows that
(—A)%u converges to —(Vu — iA)%u in the limit s 1 1. Thus, up to normalization,
we may think the nonlocal case as an approximation of the local case. If A =
0, then (I2)) becomes the fractional Schrodinger equation, which was proposed
by Laskin 21} 2] as a result of expanding the Feynman path integral, from the
Brownian-like to the Lévy-like quantum mechanical paths. In the last 10 years,
there has been a lot of interest in the study of Eq. (I2)), see for instance, 7} 10,
[[5] [33], B9]. If the interaction between the particles is considered, that is, f(u) =
(Ko * [u|P)|u|P~2u, this kind of problem is usually named Choquard equation and
has been investigated by many authors, see [5] [I1] [13] 20].
On the other hand, Lii in [25] studied the following Kirchhoff-type equation

- (a + b/ |Vu|2d:1c> Au A+ Vy(z)u = (Ko *uf)|u/??u  in R3, (1.3)
R3

where a € RT, b € R are given numbers, V) (z) = 1+ \g(z), A € R* is a parameter
and g(z) is a continuous potential function on R3, ¢ € (2,6 — ). By using the
Nehari manifold and the concentration-compactness principle, the author obtained
the existence of ground state solutions for (I3)) if the parameter X is large enough.
Indeed, problem (ICTI) is related to the Kirchhoff equation proposed by Kirchhoff in
1883 as a generalization of the well-known D’Alembert’s wave equation

0%u po  E [F 2 0%u
pw—<7+ﬁ o dx ﬁ—o (1.4)

Jdu
ox

for free vibrations of elastic strings. Kirchhoff’s model takes into account the
changes in length of the string produced by transverse vibrations. Here, L is the
length of the string, h is the area of the cross-section, FE is the Young modulus of the
material, p is the mass density and py is the initial tension. In [I], it was pointed out
that the problem (L4) models several physical systems, where u describes a process
which depends on the average of itself. Nonlocal effect also finds its applications
in biological systems. A parabolic version of Eq. (L4 can be used to describe the
growth and movement of a particular species. The movement, modeled by the inte-
gral term, is assumed to be dependent on the energy of the entire system with u
being its population density. In [17], Fiscella and Valdinoci first proposed a station-
ary Kirchhoff variational model, in bounded regular domains of RY, which takes into
account the nonlocal aspect of the tension arising from nonlocal measurements of
the fractional length of the string. For more details about stationary Kirchhoff prob-
lems involving the fractional Laplacian, we refer the interested readers to [16] 30 37].
Recently, the solvability or multiplicity of the Kirchhoff-type equations with critical
growth has been paid much attention by many authors, see [6] 3T].
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In [26], Mingqi et al. first investigated the existence and multiplicity of solu-
tions for fractional Schrodinger—Kirchhoff-type equation with an external mag-
netic potential. Subsequently, Pucci, Xiang and Zhang in [32] studied the following
fractional p-Laplacian equation of Schridinger—Choquard—Kirchhoff type:

M ([[ull)(=A)pu + V(@) |ul~?u]

= M (2, u) + (Kq * |ulPas)|u|Pes 20 in RV, (1.5)

where p}, = (pN —pa/2)/(N — ps) is the critical exponent in the sense of Hardy-
Littlewood—Sobolev inequality. The authors obtained several existence results for
Eq. (T5) by using variational methods in non-degenerate and degenerate cases. As
M(t) = a+ bt and p = 2, with the help of variational methods, Wang and Xiang
in [36] investigated the existence of two solutions and infinitely many solutions for
problem (LCH) with external magnetic operator in non-degenerate and degenerate
cases.

Motivated by the above works, we are devoted to the study of radial solutions for
problem (CI) involving an external magnetic field and critical Sobolev exponent.
For this purpose, we first establish a fractional version of concentration-compactness
principle with magnetic field. Then, together with the mountain pass theorem, we
obtain the existence of nontrivial radial solutions for problem (). It is worth
stressing that the appearance of the magnetic field also brings additional difficul-
ties to the problem. For example, the effects of the magnetic fields on the linear
spectral sets and on the solution structure, and the possible interactions between
the magnetic fields and the linear potentials. Concerning the study of elliptic equa-
tions with critical Sobolev exponent, we refer to the pioneering contributions of
Brézis and Nirenberg [g].

Now we begin with the assumptions on the Kirchhoff function M:

(My) M : Rg — R* is continuous and there exists mg > 0 such that inf;>¢
M(t) = my.
(Ms) There exists 6 € [1,2%/2) such that

M)t <0#(), VteR],
where ./ (t) = [7 M(r)dr.

A typical example is given by M(t) = mg + bt?~!, where b € R{, t € RJ. If
M(t) = a+ bt with a > 0,b > 0, for all t > 0, f(u) = |u[P"?u and s /~ 17,
then (I1) reduces to the following equation:

(a + b||u||2)[—(V —iA)%u + u] = MKy * |u|P) [uP~?u + |u 2*_2u, (1.6)

where 2* = 2N/(N —2). Hence problem (ILTl) can be regarded as a fractional version
of Eq. (TA). In particular, when b = 0, Eq. (IL6l) without the critical term has been
studied by some authors recently, see for example [2, 25]. Here we call Eq. (L) is
non-degenerate if a > 0, b > 0, while Eq. (IT]) is degenerate if a =0, b > 0.
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Moreover, we impose the following assumptions on the nonlinearity f:

(f1) feCR"R);
(f2) There exist C' > 0 and p € (2, 2¥52) such that

If)] < CL+t") for allt € RY;

(f3) There ex1sts o€ (29 2%) such that 0 < oF(t) < f(t)t> whenever t € RY,
where F(t fo 7)TdT.

To state our main results, we first give the definition of (weak) solutions for prob-

lem ().

Definition 1.1. We say that u € H5(RY,C) is a (weak) solution of prob-

lem (), if
z+y

_ ei(I*y)'A(‘ 2 )u ) — ei(m_y)‘A(#)
M (2 4 [ I e D yay

+/ updz

RN

- / (Ko 5 F(uf?)) £ (luf upde + R / %~ 2ugpd,
RN RN

for any ¢ € H5 (RN, C).

Theorem 1.1 (Non-degenerate case). Let s € (0,1), N > 2s and 0 < o <
min{N,4s}. Assume that A € C(RN,RY), M satisfies (M) and (Ms), f satisfies
(f1)~(f3) with 20 < p < 2X=2 Then there exists A* > 0 such that for any A > \*
problem (1)) has a nontrwzal radial solution in H%(RYN,C).

Next we consider the degenerate case for problem (). To this aim, we also
require:

(M3) there exists m1 > 0 such that M (t) > mt?~! for all t € R* and M (0) = 0.
For the nonlinearity f, we also need the following hypothesis:
(f4) there exist C' > 0 and max{2,0} < p < 2% such that
If(®)] < Clt|™=  for allt € Ry
Our second result reads as follows.

Theorem 1.2 (Degenerate case). Let s € (0,1), N > 2s and 0 < a < N.
Assume that A € C(RN,RYN), M satisfies (M) and (Ms), f satisfies (f1),(f3)
and (fa). Then there exists \* > 0 such that for any X\ > \* problem (1) has a
nontrivial radial solution in H5 (RN, C).
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Finally, we would like to point out that it remains an open problem to verify the
multiplicity of solutions or the existence of sign-changing solutions for problem (ITJ).
In particular, the existence of infinitely many solutions for problem (IIl) would be
interesting. All these problems will be investigated in a future work by the authors.

This paper is organized as follows. In Sec. [2] we recall some necessary defini-
tions and properties of spaces H*(RY) and H5(RY,C). In Sec.[3 we establish the
principle of concentration-compactness in fractional Sobolev space H(RY,C). In
Secs. [ and [l we give the proofs of Theorems [l and [[.2] respectively.

2. Preliminaries

In this section, we first give some basic results of fractional Sobolev spaces that will
be used in the next sections. Let 0 < s < 1 be real number satisfying 2s < N and
the fractional critical exponent 2% be defined as 2% = N2N2 (RY) denote
the Lebesgue space of real-valued functions with [py [u|?dz < oo. The fractional
Sobolev space H*(RY) is defined as follows:

HS(RN) = {u € LA R") : [u]s < o0},

where [u]s denotes the Gagliardo semi-norm

u(y)|? 3
<// |x—y|N+25 dxdy) ’

equipped with the inner product

(u,v) //sz y))(v(w) - U(y))dxdy + /RN wodz, Yu,v € H*(RY)

|N+25

and the norm
1
[ulls = (ullZ2 @y + [u]?)2.

The embedding H*(RY) < L"(R¥) is continuous for any v € [2,2%] by [I4, Theo-
rem 6.7], that is, there exists a positive constant C, such that

ull o mry < Cyllulls  for allu € H*(RY). (2.1)

To prove the existence of radial weak solutions of Eq. (IT)), we need the following
embedding theorem due to Lions in [23] Théoreme I1.1]. For further comments we

refer to [35].

Theorem 2.1. Let 0 < s < 1 be real numbers with 2s < N. Then for any 2 < v <
2%, there is a compact embedding

H(RY) —— LY(RY),
where

HERYN) = {uec H*RY) : u(x) = u(|z]), Vo e RN},
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Let L2(RN,C) be the Lebesgue space of complex-valued functions with
fRN |u|?dz < 0o endowed with the scalar product

(u,v)p2 =N uvdz  for allu,v € L*(RY,C),
RN

where the bar denotes complex conjugation. Suppose that A : RN — RV is a
continuous function. Consider the magnetic Gagliardo semi-norm defined by

. . 1/2
. Ju(z) — eE 9 ACT )y ()2
[U]&A . (//Rmv |.%' - y|N+28 dxdy ’

H={uc L*RY,C) : [uls.a < o0},

and set

endowed with the norm

s.a = (lullZe + [ulf Y2

where |[u||r2 = ([pn [u[?dz)/?. The scalar product on H defined by

lu

(U,U)S,A = <U7U>L2 + <’U,7U>S’A,

where

(u(z) = o=V ACT u(y)) (v(e) — 07V A 0(y))
(u,v)5,4 = &e//w P dady.

By [12| Proposition 2.1, we know (H, (,)s,.a) is a real Hilbert space. Moreover,
the space C°(RY, C) is a subspace of H, see Proposition 2.2].
Now we define H(RY) as the closure of C>*(RY,C) in H.

Lemma 2.1. For each u € H5(RY) it holds |u| € H*(RY). More precisely,
llells < llulls,a,  for all w e H3(RY).
Proof. The proof follows by using the pointwise diamagnetic inequality:
z4y

[lu(@)] = [u()]] < |u(z) — AT u(y)),

for a.e. 7,y € RY, see [I2, Lemma 3.1, Remark 3.2]. O

Following Lemma 2T and using the same discussion as in |12, Lemma 3.5], we
have the following embedding result.

Lemma 2.2. The embedding H5(RY,C) — LP(RN,C) is continuous for all p €
[2,2%]. Furthermore, H5(RY,C) — LP(K,C) is compact for all 1 < p < 2% and
any compact set K C RV,

By Lemma 21l Theorem[ZTl and the Brézis-Lieb Lemma, we have the following
result.
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Lemma 2.3. Set

SARYN,C) = {u e HYy(R",C) : u(z) = u(|z]), Vo € RN}
Then for any v € (2,2%) the embedding Hf7A(RN7 C) — L¥(RM,C) is compact.

Lemma 2.4. Assume 1 < r, t < 0o and 0 < a < Nwith%—f—%—f—% =2.1If
u € L"(RY) and v € LY(RYN), then there exists C(N,a,r,t) > 0 such that

ulx)||v\y
// o ” |d dy < C(N, a,r,t)||ull @) l|v]] e @y
Ry |7

3. The Concentration-Compactness Principle
with Magnetic Operator

In [24], Lions established the principle of concentration-compactness in classical
Sobolev space, and then the concentration-compactness principle was well used
to solve elliptic problems involving critical exponent, see also [18]. In [29], the
authors established the principle of concentration-compactness in fractional Sobolev
spaces by using profile decomposition. In [38], Xiang, Zhang and Zhang established
the concentration-compactness principle in fractional Sobolev space, which can be
regarded as the fractional version of the principle of concentration-compactness in
classical Sobolev space. However, their version of concentration-compactness prin-
ciple cannot be directly applied to solve our problem because of the presence of a
magnetic field. To this end, we will establish the concentration-compactness prin-
ciple in H5(RY) with magnetic operator.

Let C.(RY) be the functions in C(RY) with compact support sets and denote
by Co(RY) the closure of C.(RY) with respect to the norm [n|s = sup,epn [7(2)].
As is known to all, a finite measure on RY is a continuous linear functional on
Co(RY). Now we give a norm for measure

|ull = sup [(pe-m)l,
Co(RN),|n] =1

where (1,1) = [~ ndp.
From now on, we shortly denote by || - ||, the norm of L4(R™).

Definition 3.1. Let M(RY) denote the finite non-negative Borel measure space
on RY. For any 1 € M(RY), u(RY) = ||u|| holds. We say that j,, — p weakly *
MRN), if (1, 1) — (12,m) holds for all € Co(RY) as n — oo.

Theorem 3.1. Let {u,}, C H5(RY,C) such that ||u,||s,a < C for alln > 1, where

i T+71
‘un(w)iex(z—y)A( 2y)un(y

2
C is a positive constant. Put pn(x) = [pn FETRaE Wy + [un(2)|?,

1850004-8
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z € RN, n e N. Assume
u, —u  weakly in H(RY,C),
pn — o weakly * in M(RN),
2 .y weakly * in M(RY),

|un
then
: z+y
u(z) — VAT Dy (y)[? .
o [ O e s 47w < O

JjeJ

— ul* + 3 v, v(RY) < STFC,

jeJ

where J is at most countable, sequences {y;};,{v;}; C [0,00), {z;}; C RN, &, is
the Dirac mass centered at {x;};, [t is a non-atomic measure,

1 o 1
v(RY)* < STEuRN)E, v <STVuE Ve,

and

2; — 1}

Lemma 3.1. Assume that {u,}, C H5(RY,C) is the sequence given by Theo-
rem B} let xg € RY fized and let p € CE(RY) such that 0 < p < 1; ¢ = 1 in
B(0,1), ¢ = 0 in RN\B(0,2) and [Vy| < 2. For any e > 0, set ¢.(x) = p(¥=22)
for all z € RN. Then

|un (T | |‘P€( ) — @a(y)|2
1 li dxdy = 0.
1m 17rlnﬂsotip //R2N y|N+25 rdy

S = inf{[|ull? A

Proof. The proofis completely similar to that of [38, Lemma 2.3], so we omit it. O

Proof of Theorem [B.1] We divide the proof into four parts.
Part 1. u(RY) < C? and v(RY) < §-2/2C2,
For R > 0, take n € C§°(B2r(0)) satisfying 0 < n < 1 and = 1 on Bg(0).

Then
/ pnnda ﬁ/ nd.
RN RN
Since ||u,|| < C, we obtain

/ M ndx S/ pndz < C2.
RN RN

Hence p(Bgr(0)) < fRN ndu < CP. Let R — 00, we get u(RY) < C2. Similarly, we
have v(RN) < §2/2C2, 2dx < §~2:/2C? by the definition of S and
Huan,A <C.
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Ceilemw) AR 2 ~
Part 2. =[x u(z)—e |m—y|N+2§ uWI” gy 4 [ul® + 37 e 7 150, + [, where {z;}; C
RN, {u;} C [0,00), J is at most countable set, i € M(RY) is a non-negative

non-atomic measure and d, , is the Dirac mass at x;.

Take 0 < 7 € Cp(RY) and set

zt+y

w(z) — eE—VACE) ()2
ﬁ(u):/ﬂw (/RN| (z) T—cET W)l dy + [u(z)* | ndx.

It is easy to verify that .# is a continuously differentiable convex functional on
H5(RYN,C). So .Z is weakly lower semicontinuous on H4(RY,C). Thus,

n—oo

ula) = ATy :
= d da.
o /RN (/RN |z — y|N+2s y + |u(x)|” | ndx

It follows from j,, — p weakly * in M (R™) that

lim inf / Lnndx
RN

lim ,unndx:/ ndp.
RN

n—oo [pN

Hence

u(z) — e A u(y)|?
/]RN iy 2 /]RN (/RN |z — y|NF2s dy + [u(@)|” | ndz.

The arbitrariness of n € Co(R™) with 7 > 0 implies that

Ju(a) — o=V AE u(y) 2
ME/RN |.’I;_y|N+2S dy+|u|
Therefore, we obtain
Ju(z) — AT Dy (y)|2 2 ~
u—/ . dy — |ul* = 1i0q. + [I.
-~ |z — y[N 12 J;] 39

Part 3. v =|u

%+ > jes Vjda,, where {z;}; is as above and {v;}; C [0, 00).

Since u, — u weakly in H%(RY,C), there exists a subsequence still denoted
by {un}n such that u, — u a.e. in RY. Take € Co(RY). It follows from the
boundedness of {u,}, in L? (RY,C) and the Brézis-Lieb Lemma that

2y — % pde = /

RN

% ndzx.

lim (|t lu

n—oo [pN

1850004-10
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27 By the fact that fRN [,

Set v=v—|u Zindx — [on ndv as n — oo, it yields

/ ndﬁ:/ ndu—/ |u
RN RN RN

2. —~ 7 weakly * in M(RY). Furthermore,

=) " viby, + 7

JjeJ’

%nde, (3.1)

Zipdr = lim [ty —u
n—0o0 JpN

so that |u, —u

v=v—|u

Next, we prove that the atom of v is that of y and 7 = 0. Let g € RY fixed
and let p € C5°(RY) such that 0 < » < 1; o = 1 in B(0,1), ¢ = 0 in RN\ B(0, 2),
and [Ve| < 2. Denote ¢ (x) = ¢(2=22) for all z € RY. Then,

[ eFiae= [
RN RN

/ gpgzdy —v({xo}) ase—0.
RN

« or 2%
26<p55dac—>/ podv  asn — oo,
RN

and

Similarly, we have

/ pnp?ds —>/ ©2dp asn — oo
RN RN

and
/ p2du — p({zo}) ase— 0.
RN

Hence, we obtain

lim lim lun|® de = v({zo}) (3.2)
e—0n—oo RN

and
lim lim pnp2dr = p({zo}). (3.3)
e—0n—oo RN

In view of the definition of S, we get

/ [tnpe
RN

Cox _ pilz—y)-A(%FY) 2
< g (// [un (z)p:(z) — e un(y)pe(y)| drdy
RQN

PR
2%/2
+ / |un<p6|2dac>
RN

2 dx

1850004-11
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72* |un | |‘P€( ) @a(y)|2
— dzd
<// o — y[NT2s e

e (2)n (y)e @V ACT) (y, (a) — @9 AT )y, (y))
X (pe(2) — ()
+ 2% //R2N PR dxdy
) ot 2;/2
[n () — €@ Ay, ()P pe () 2 / 2\
dxd n d )
L. o= g Tyt el
(3.4)
By the Holder inequality, we have
e (@)t (y)e @ AT (1, () — om0 Ay, (y))
X (= (@) — = (v))
§R//Rzzv |z — y|N+2s ey
1/2
[un (y)]*(pe (1) — ‘PE(Z‘/))Q
(//R2N — y|N+2s dxdy
oty 1/2
e
1/2
[un (y) 1 (¢e(x) = we(y))?
< dxd .
C(//sz |x_ |N+2s zray
Therefore, in view of Lemma [3.1] we have
( )un(y)e_i(m_y)iA(m;ry)(Un(x)_ei(z_y)‘A(z;y)un(y))
X (p=(2) — = (y))
hm llisolip%//Rw PRV EER dxdy
(3.5)

By B2)-@33X), we deduce that
v({ao}) < S72 2p({ao} )22, (3.6)

Then the arbitrary of o implies that the atom of v is that of p, that is {y; : j €
J'} C {xz; : j € J}. Therefore, we get
v—lu* =Y v;b., + 7.
=
It remains to show that v = 0. To this aim, let w,, = u, — w. Then u,, — 0

weakly in H4 (RN, C). Hence there exists a subsequence of {1}, still denoted by
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{t,}n such that

T () — i@ AT ()2

_ Unp(x) —€ Un(y _ _ .

1= /N [in () o =y W)l dy + |t (z)|*> =7 weakly in M(RY).
0 _

For any 0 < r < R, take n € C5°(Br(z¢)) satistying 0 <n <1 and n =1 on
B, (z0). It follows from the definition of S that

Br(zo)
:/ |7lﬂn2
Br(zo)

~ ot z+1 ~
272 [n(@)tin (x) — e AE Dy, (y)
<S dy
RN JRN |z — y|NF2s

5
s

5

2o da:

5

sdx

+ |77€Zn|2dx>

1(y))tn (z)]?
=S~ 2/2{/RN/RN |x_ |N+25 dydzx

Un(@)1(y) (@ (z) — €@V ACTIT, (1))

x (n(x) —n(y))
2
+ %/]RN/RN o=y dydz
. () (i () — =A@, )P
RN JRN |z — y|Nt2s Y
27 /2
+ /RN Iniinl2dw] : (3.7)

Note that [n(z) —n(y)|*> < (|n]lcr +2)? min{1, |z —y|?} for all z,y € Br(zo). Hence,
by the compact embedding for fractional Sobolev spaces on bounded domains, we

obtain that w,, — 0 strongly in L2(BR(;L‘0), C). Furthermore,
n(y))N ()|
dydx
/BR(I()) /BR wo |N+25

min{1, |z - y[?} o
< (Inlles +2)? / miml |2~y g i () 2
Br(zo) |7 —y[NT2e Br(z0)

Cllnllor +2)2/ () 2z — 0 a5 m — 00,
Br(zo)

and with a similar discussion as in [38] and [39], we obtain
~ 2
lim sup/ / %dxdy =0
n—00 JRN\Bg(zo) / Br(zo) |z =yl
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so that

n—oo

. 1n(y))un (y)[?
1 dydx = .
1msup/RN /RN |ac— |N+25 ydx =0, (3-8)

this together with the Holder inequality implies that

Un(@)(y) (Un () — €@ ACT) G, (1)) (n(2) — n(y))
1
171isolip%/RN /RN o g dydx
(3.9)
Note that
_ ilr—y) A(ZEY) ~ 2
. un e 2 up(y ~
hmsup/RN /RN 2l |x_y|N+28 W 4y 4 52 (@)l (2) 2
< / n2df < / dfi = (B (o). (3.10)
RN Br(zo)

Inserting (B8)-BI0) in (BX), we obtain

de < 872 2(A(Br(w0)))* 2.

(B (z0)) S/ n?dv = lim |,

RN n—0o0 JRN
Let r — R, we get
7(Br(wo)) < S™*/2((Br(w)))*/, (3.11)

this means that 7 is absolutely continuous with respect to zi. Hence the Radon-
Nikodym theorem implies that there exists a function h € L'(R™,z) such that
dv = hdp. Then we derive from Lebesgue’s differential theorem and (BII))
that

= lim M
h(zg) = }gHo (Br(xo))

< 5T/ Lim i(Br(xo))? !

= S7%/20 ({0 }) 31 (3.12)

Now we show that 7 = 0. For Vo € RN¥\{x, : j € J}. If h(z) # 0, then by [BI2) we
know that m({z}) # 0, thus 7({z}) # 0. Note that (3I) implies that 7 and v have
the same atom, so that x is an atom of u, which is a contradiction. Hence h = 0 on
RM\{z; : j € J}. Therefore, 7 = 0 on RN\ {z; : j € J}. In conclusion, 7 = 0, since
v is a non-atomic measure.
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Part 4. v(RY) < 5*2:/2M(RN)2757 and V;/Zﬁ < S’%u;ﬂ for all j € J.
Take n € C§°(B2r(0)) satisfying 0 < n < 1,7 =1 on Bg(0) and |Vn| < 2/R.
Observe that

RN
n(y))un ()|
< 522 (//RQN |N+25 dady

z+y

mn(y)(un(x) — @A D, (y) (n(2) —n(y))
+25R//R2N oy dxdy

_ ity AR 2 e
n // In(y) (un(x) e_ v un (y))] dxdy—i—/ 2 7
R2N |z — y| RN

‘// Un(@)(y) (un(2) — @ ACF )y, (1)) (() —n(y))dxdy
R2N

|z — y[N+2s

/2
Jun (2) 2 () — 1(y))> '
<//R2N |N+25 dxdy
. zty 1/2
xuﬁ"n@%mw—wIWM$MMme /
RaN o — [N+ vl

Since n = 1 on Br(0), we obtain

() un()[?
//Rw s
_ 2
_ / / |(n(=) n(i/v)lgs(x)l dyda
RN\ Br(0) JRN\Bg(0) |z —yl
_ 2
Br(0) JRN\Br(0) |ac—y|

_ 2
n / / |(n() n(ylg)fgz(x)l dydz
RN\ Br(0) J Br(0) lz -yl

<CR™ | Juy(a)Pde
RN

2o da

Un

and

<CR* -0 asR— co. (3.13)

Letting n — oo, we have

*
s

/ e dy < S—F <C’R_25—|—/ 772du) . (3.14)
RN RN
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Using v(Bg(0)) < Jen m?*dv and letting R — oo (BI4), we get
V(RY) < 57 F (u(RM))E 2.
A similar discussion as ([B.6) gives that 1/;/ %< gV Q,u}/ % Thus, the theorem is

proved. O

Actually, Theorem[31] does not provide any information about the possible loss
of mass at infinity of a weakly convergent sequence. The following theorem expresses
this fact in quantitative terms.

Theorem 3.2. Let {u,}, C H4(RY,C) such that
A(REY)

— eilz—y) 2
I WO gy 4 [ e = o weakty *in M(E)
- FEFIREER R

%~ weakly * in M(RY),

|tn
and define
fhoo = hm hmsup/ / [un (@) _ei(GEiy).A(I;y)un(y)Pdydac,
R=00 n—oo Jjz|>R JRN |z — y|N+2s
and

Voo = hm hmbup/ [ty | d.
|z|>R

R—oo nooco

Then the quantities oo and Vs are well defined and satisfy

z+ty

— ellz—y) A(Y) 2
lim Sup/ / [un(@) — e * un(y)] dydx = / dp+ oo,
RN JRN |z — y[N+2e RN

n—oo

and

limsup/ |un|2:dx:/ dv + Vo
n—oo JRN RN

Proof. Let n € C*°(RY) such that 0 <7 < 1;np=1in R¥\B2(0), n =0 in B;1(0).
For any R > 0, define nr(xz) = n(xz/R), then

o
/ / |Un($) _ ez(z y)-A( 2y)un(y)|2dydx
|z|>2R JRN |z — y[N+2s
|y () — /@9 ACT )y, (y)]2
< d d
< () e e ) s

_ pile—y)-A(*EY) 2
le|>R \ JRN |z — y|NF2s
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This means that

_ pile—y)-A(HY) 2
Lhoo = hm lim sup [un(@) — T un(y)] dy | nrdx.
RN \ JRN o — y|N+2s

R—oo pn—oo
A similar discussion gives that

.
2 da.

R—o0 nooco n—oo

Voo = hm hmsup/ snpdr = hm hmsup/ [unnr
RN RN

Note that

/ / Jun () — ' AT, ()
y | do
RN \ JRN |z — y|N+2s
| () — /@9 ACT )y, (y)]2
— d d
[ ([ e e )
z+y

Un (T —ei(m*y)'A(' oh )un Yy 2
+ /RN (/RN al) |z — y|N+2s W)l dy | (1 —nr)dz. (3.15)

It is easy to see that

Un(z) — e@VACT )y, (y)[2
/RN </RN| @ |z — y[N+2s )l dy + |un()* | (1 — ngr)dz

— / (1 — nR)dM,
RN

as n — oo. Hence, we get

Unp(T) — ei(Ify)'A(x;y)un y 2
p(RY) = lim lim . (/RN| (z) PR ET ) dy | (1 = nr)dx.

R—o00 n—o00

Here we have used the fact that limp_, oo lim,, o0 f]RN [un (2))2(1 —nr(x))dz = 0. It
follows from (B13) that

o | () — /@9 ACT )y, (y)]2
e [ ([, ey
— lim hmsup/ / [ty () — et@=v)-Al 2y)un(y)|2dy i
R—00 nooo JRN RN |z — y|N+2s
z+y

[un () — €70 ATy ()|
- A MN (/RN o)

+ /RN(l —nR)du]
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_ pilz—y)-A(ZEY) 2
Un (T e 2 Uy
= 11m hmsup/RN (/RN [un () PEE=T W)l dy) nrdz + p(RY)

R—oo n—oo

= fioe + p(RY).

Similarly, Zdr = v(RY) + veo. |

4. Proof of Theorem [I.1]
The functional associated with problem (IHI) is defined as

1, Fllu@P)F(uw?) 1 [
IA(U)_Q /RQN |$—y|o‘ ddy 2; /RN|

for all u € Hf,,A(RN,(C).
By (f2), we have

F(lu?) < C(Jul? + |uf?),  Yu e H;(RY,C).

2 dx.

Note that, by the Hardy—Littlewood—Sobolev inequality, the integral

//RN (fu(z |x—yT|aU( y)I? ) dudy

is well defined if F(|u|?) € L"(R") for some 7 > 1 satisfying
2 o
a2 o
PN TS

that is r = 2N . Actually, by o < min{N,4s}, it follows that 2 < 2r < 2%.
Moreover, from 2 < pr < 2%, we deduce

/ |F(Ju?)|"dz < 27 1C" (/ [u|?" dx —|—/ |u|prdx>
RN N RN

<2 (O ullZs + Chy (|ullEy) < 00, Vu € Hi(RY,C).
(4.1)

By a standard discussion, one can show that Z) is of class C' and
(Zx(u),v)
. z+y
[u(z) — =0 Ay (y)]

o(z) — eile—v) AT,
it [ [ ) ) o

|(L‘ _ y|N+2s

+R uvdx —)\8%/ (Ko *F(|u|2))f(|u|2)u6dx—§}3/ |u|%~2uTdz,
RN RN

RN
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for all u,v € HﬁA(RN,(C). Hence a critical point of 7, is a (weak) solution
of (TI)).

Since the embedding H? ,(RY,C) — L% (RM,C) is not compact, we will use
Theorem Bl to get the existence of solutions of [LI)). Some techniques for finding
the solutions are borrowed from [T9].

Lemma 4.1. Let {un}n C Hi ,(RY,C) be a Palais-Smale sequence of functional
Iy, that is,

In(un) = cx  and Ii(un) — 0 in (HS 4(RY,C)),

as n — 0o, where (Hf,A(RN,(C))’ is the dual of Hf’A(]RN, C). If 2 <p < =2 and

where S comes from Theorem B then there exists a subsequence of {uy,} strongly
convergent in Hy ,(RY,C).

Proof. By Zy(un) — ¢\ and Zj(u,) — 0 in (HS 4(RY,C))’, there exists C' > 0
such that

L (T (0n) 0m)

g

C+ Cllunlls,a > Txa(un) —

1 1
= 5 ([[unll? ) = =M

g,A)H“TL”i,A

=3 o Pl ) P

i * U |? Un|?)|un|?dz
+ /RNaca F(fun[2)) £ (| un]?d

a

+ 1 1 / | x
- Up |
g 2; RN

It follows from (M) and (f3) that

1 1 1 1
O+ Cllunlhn = (35— ) Mlunl )l 2 0 (35 3 ) unl

this together with 2 < 20 < o implies that {u,} is bounded in H; 4(R",C). Then
there exists v € H! A(RN ,C) such that, up to a subsequence, it follows that

up, = u in Hi ,(RY,C) and in L% (RY, C),

Uy — U a.e.in ]RN,

-
272, — |u)?%u  weakly in Lﬁ—il(RN, 0),

|un
[unlls,a — B.
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Since 2 < p < 252 < 2% and 2 < 4N/(2N — ) < 2%, by Theorem [ZI we get that
|un| — |u| strongly in Lov7s R¥) N L7 (RY). Hence the Brézis-Lieb Lemma

4N

implies that u, — u strongly in Lovs (RN, C)n L2v== (RN, C). By (f2), we have

2N
[ PGl = Py o

_2N IN
< /RN |f(|u|2 +19(|un|2 - |'U;|2))|2N—a ||Un|2 _ |U|2|—2N—ﬂdaj
RN
< O w2 w / (Jun| + |u|)—2£¥a |t — u|_213130dx
RN

+2ﬁo%/ ([un| + )P~V 28" |y, — u| 28 da.
]RN

By the Holder inequality, we arrive at
[ 1Fun) = B 785 d
RN

2N o 2N _an
< C2v=a 238 | (Jun| + [u]) =5 || g2y l[[un — ul 282 || 2w

2

_ o 2N 1) 2N _2N
+ 93— (2N-= (|| + |u|)(p Dsnv—a I P [ty — u|2N=a || Lo &v)
Lp—1(RN)

2N 2N
< COll|lun — w2 2@ny + Cll|un — w7 == Lo mn)
— 0,

as n — oo, where C' > 0 independent of n. Thus, we obtain that F(|u,|?) — F(Ju|?)
2N
in Lzv-= (RY). Note that by the Hardy-Littlewood-Sobolev inequality, the Riesz
2N
potential defines a linear continuous map from L¥=== (RY) to L (RN). Then

(K # F(Jun|*) = (Ko F(Jul?)) in L& (RY) (4.3)

as n — 0o.
For ¢ € H} ,(RY,C) fixed, by (f2) with & = 1 we have

[ 1Pyl o

commont ([ Qulla) ot [ julo05s st )
RN RN

_ o 2N _2N _2N
< 25w O7 (| un 7 | 2 ol 7 2y

_ 2N 2N
PO e el o))

<C,
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thanks to 2 < 2;\%& < 2Fand 2 < pQJ%,]Xa < 2%, where C' > 0 denotes various

constants. Clearly, f(|u,|?)un® — f(Ju|>)u@ a.e. in RY. Hence, up to a subse-
2N

quence, R f (|u,|?)u, @ weakly converges to R f (|u|?)up in Lzv== (RN). This together

with ([E3) yields that

lim R [ (Ko * F(lunl*)) f(Jun|*)unpde = 3‘3/ (Ko * F(lul*)) f(luf*)upda
RN RN

(4.4)
for each ¢ € HS ,(RY,C).
Now we claim that
Up — u in Hf’A(RN, C) (4.5)

as n — oo. In fact, it follows from Theorem[3T] that there exist an at most countable
set of distinct points {x;};cs, non-negative numbers {; }ic.s, {vi}ies C [0,00) and
a non-atomic measure p such that
u(z) — i@ ACT )y (y) |2 ~
R - ;
i€J (46)

2 + Z yiéxi .

icJ

v =|u(x)

Now, in order to prove (EH) we proceed by steps.

Step 1. Fix iy € J. Then we prove that either v;, =0 or
Vi, > (moS)%s/ (272, (4.7)

Let ¢ € C3°(RY;[0,1]) be a radial symmetric function satisfying ¢ = 1 in
B(0,1); ¢ = 0 in R¥\B(0,2) and |Vy| < 2. For any € > 0 we set . = p(Z=2).
Clearly {¢.un} is bounded in Hf’A(]RN,(C) and (7 (un), pcun) — 0 as n — oo.
Hence

M([funll3 4) (un, petin)s,a

23

=R (Ko * F(|un|®) f(|un|?)tnpetimdz + §R/ [t | 2 U o dee.
RN RN

(4.8)

It is easy to verify that

lim lim (Ko * F(|un]®) f(|tn]®)|un|?pedr = 0,

e—~0n—oo JpN

since

lim [ (Ko * F(Junl*))f (jun|*) [un|* 0eda = /RN (Ko F(lu*) f(Jul*)lul*pedz

n—o0 RN
and lime o fon (Ko * F(Jul?) f(Juf*)ul*peda = 0.
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Observe that

(Um @sun)s A= <Um @sun>s A+ <Um @sun>

zty
() — e rACS >un< Pee@)
- =y o

(un(z) — =9 ATy, () (e (2) = e (y))un(y)
—|—§R//RN dxdy

|z — y[N+2s

+ / [t |?peda. (4.9)
RN

First, it is easy to see that

Jun(z) — €@V ACT Dy, (y)Po. (2) 2
//RN |z — y[Nt2s drdy + - |un|“pedz — x Ye(w)dp
(4.10)

as n — oo and
/RN pe()dp — p(ws) = i, (4.11)

as € — 0. Similarly,

2 pe(2)da — v({zi}) = vy (4.12)

lim lim
e—0n—oo JpN

Note that the Holder inequality implies

/ / (un(@) = 07D A (1) (e (@) = el)un®) 0
R2N

|IL‘ _ y|N+2s

. zty 1/2
[ () — /@9 ACT )y, (y)]2
: <// FEFIREE oy
/2
|02 () — e (1) [un ()2 '
X (//Rw |x—y|N+2S dxdy
/2
0= () — 0o (1) [un () 2 '
<C<//RzN |x— |N+28 dxdy .

By Lemma BJ] we have

|pe () — @ (y) PP un (y)]?
hm lim sup //RzN |$ N dzdy =0

n—oo

Hence,

_ eilz—y)-A(THY) _
n—oo J Jran |z —y| N+

(4.13)
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Combining (£9), (E1I) with (£13), we obtain by |luy|ls,4 — B that
Elim lim (Huan,A)(unv QDEUn)s,A = M(62)Nio~

—0n—oo

Inserting this into (X)) and using ([@IZ), we deduce
M(ﬂz):uio = Vig-

By (M), we get mop, < vi,. It follows from v; < S™2:/2(y;)%/2 for all i € J that

» 2%/2
Viy < §—2:/2 (ﬂ) .

mo
Hence v;, = 0 or vy, > (moS)%/(2:-2),
Step 2. We claim that ({Z) cannot occur, hence v; = 0 for all ¢ € J.

By contradiction we assume that there exists a ig such that (£7) holds true. By
Ix(un) — cx and T4 (un) — 0 as n — oo, it follows that

cx = lim (I,\(un) - %(Iﬁ\(un),uw) : (4.14)
Moreover, by (M) and (f3), we have
1
Ta(tn) = 55 (T ), 1)

1
M ([wnll3a) = 55M (unllZ ) lwnlZa

+3 /RNUCQ e P ) (P — 5 /RNUCa # B (|n|?) P (|un|*) da

>

DO | =

1 1 .
> (= - = ol ood 4.1

thanks to 0 > 1, 20 < 0 < 2% and 0 < ¢. < 1, where . = w(%) is defined as
above. Combining (@) with ({LIH), we have

. . 1, 11
— — _ > -
cy lim Zy(uy) lim (Ik(un) 53 (IA(un),uT)) > <29 22) /]RN wedv,

n—oo n—00

from which, by letting ¢ — 0 and using (), it yields that

11 11 .
>=—— )y, >(= - = §)2:/(25-2)
A= (29 2;) Vio = (29 2;) (mo5) :

which contradicts the assumption. Hence v; = 0 for any ¢ € J.
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Step 3. The assertion (€5) holds

We first show that wu, — u in L% (RN, C). Assume that yp € C°(RV) satisfies
Xr € [0,1] and xgr(z) =0 for || < R, xr(z) =1 for |z| > 2R, and |Vxgr| < 2/R.
With a similar discussion as in the proof of Theorem B2] we have

_ eilz—y)-A(TEY) 2
oo = hm hmsup//RN [un(z) — € |x_y|;+2gn(y)| XR(x)dydx (4.16)

R—oo n—oo

and

% xp(x)dz. (4.17)

Voo = hm lim sup /
R—oo pooo RN
Thus a similar discussion as in the proof of Theorem Bl (see Part 2 of the proof of
Theorem B.1) gives that

Voo < §72/2%02, (4.18)

It follows from (Z} (un), Xxrun) — 0 as n — oo that

up(z) — @A)y () 2y g (z
N l //| (x) S Wi*xn@ ,
L / / (un(w) = A un () () = Xe@Dun®)
RN

PR
—|—/ |un|2XRdx}
RN

A [ (Ko 5 F(fun ) f () P x e + /
RN RN

Lxrdz+o(1).  (4.19)

With a similar discussion as in Lemma B.1], we have

a)

lim limsup M (
R—oo nooo

=0.

(un(z) — €C=9 ATy, () (xR (@) = XR(Y))Un(y)
X //RN dxdy

|z — y[N+2s

Hence we deduce from (f16) and ({I7) that
_ 2
hm limsup M (||un |2 4 [// [un(@ z _un|(N)+|28 R(7) da:dy+/RN |un|2XRdx}

_ pile—y)-A(5E) 2
> hm lim sup mg // [un(@) — e T un(y)| XR(x)da:dy
R—%0 n—oo R2N |z — y|NH2s
—|—/ |un|2XR(x)dx]
RN
= Molloo- (4.20)
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It is easy to see that

Jim limsup/ (K # F(Jtn|2) F(|tn[2)x
RN

R—oo pooo

= lim (Ko * F(|u|®))F(Jul?)xrdz = 0. (4.21)

R—oo JpN

Therefore, we conclude from (Z19)-(Z21) and (ZI7) that

Mofloo < Voo,

this together with ([IR) yields

2
Mo SV < Voo,
which implies that v, =0 or

«
25

Voo > (moS) %2, (4.22)

Assume ([@22) holds. Since [Jun||2 4 and |uy, ; are bounded, up to a subsequence,

we can assume that [lu,|2 4 and |lu, 33 are both convergent. Then by (HI6)

and (LI7), we obtain

i un 20 = [ it e
]RN

n—oo

and

ot
2 = dV + Veo.

lim ||uy,
n— 00 RN

Thus, we have

er = Jim ()~ 2} ) ))

n—oo

1 1
> lim — — = n 2
= h [(20 )mou

3\ 9 9
#20  Ka F(unP)F  Pt]|

- 1 1 du+ 1 1 4 1 1 / dv+ 1 1
—— = —— = poo - — v+ | — — —) Vo

="\ 5 RN pomo\gg ) o 2¥) Jgn o 2

- 1 1 n 1 1

=MoNag o)t g T )

1 Ngzen (1 1 1 1 21/(2:-2)
2m0<20_0>5”"° CE: Voo 2 20 2 (mo§)™ %7,

due to 20 < ¢ and ([@22)), which is a contradiction. Hence v, = 0. In view of J = (),
we have [py |un|*dz — [y~ [u[*dz as n — oo. Furthermore, the Brezis-Lieb
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Lemma implies that

lim | — ul?dx = 0. (4.23)
n—oo |pN
Now we define an operator as follows
i zty ; zty
(v(z) = VAT y(y)) (w(x) — AT w(y))
(L(v),w) = %//RQN PR dxdy
+ R vwdz,
RN

for all v,w € H; A(RY . C). Obviously, £ is a bounded bi-linear operator, being
(L(v), w)| < [lv

s,A ‘w”&Av

by the Holder inequality. Hence the weak convergence of u,, — u in H A(RYN.C)
implies
lim (Lup,u) = (Lu,u) and  lim (Lu,u, —u) = 0. (4.24)

n—oo n—oo

Clearly, (Zx(uy), u, —u) — 0 as n — oo. Hence, by (f24), one has

M(||un||z,A)<£(un) - E(u),un —u) = AR . (Ko * F(|un|2))f(|un|2)un(un - u)dx

—l—%/ [t
RN

Thus, we deduce from (Z) and (£23) that

M(B%) lim lup = ull2 4 = 0.

%20 (U, —w)dz + o(1).

It follows from (M) that u, — u in HS 4,(RY) as n — oo. Therefore, (LF) holds
true. O

Now we state the general version of the mountain pass theorem in [3], which
will be used later.

Theorem 4.1. Let K be a functional on a Banach space E and K € C'(E,R).
Let us assume that there exist a,,p > 0 such that

(i) K(u) > a, Vu € E with ||u| = p,
(ii) K(0) =0 and K(e) < « for some e € E with ||e|| > p.

Let us define I' = {y € C([0,1]; E) : v(0) = 0,v(1) = e}, and

— inf K(v(t)).
¢= inf max (v(t))

Then there exists a sequence {un}n C E such that K (u,) — ¢ and K'(u,) — 0 in
E' (dual of E).
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In the following, we show that Z, satisfies geometric properties (i) and (ii) of
mountain pass.

Lemma 4.2. The functional Iy satisfies the assumptions (1)—(ii) in Theorem EI1

Proof. For each A > 0, by the fractional Sobolev embedding H; 4(RY,C) —
LP(RN, C), we have for all u € Hf ,(RY,C) that

A 1 o
O QIE(ul) — ST

mo 2
7 > —
A(w) > Ll 4 e 3

> ™Mo AC(N, a)2 s 0 ol M e
> ||U||sA OV, a)2ev=a (O an” Jlull sy

Czﬁvpa [|lu ||2N “)ZNA?O‘ _ %5—2;/2
7o 2 1 o
> S lull? 4 = ACUlulld 4 + lull) - 58 22

S

It follows from 2 < p that there exist p > 0 small enough and ap > 0 such that
Zx(u) > ag > 0 for all u € HE ,(RY,C) with [|ulls,a = p, and all A > 0. Hence (i)
in Theorem [Tl holds true.

Now we verify condition (ii) in Theorem [l Let pg € C§°(RY.C) be a radial
symmetric function, with |¢ol/s,4 = 1. By (M3), we have

M) < (D) for allt > 1.

Then by (f3), there holds

T(too) < A =2 [ (s PP (it - 5 [

2
<.y -

o
o sdx,
S

and hence ) (tpo) — —o0 as t — o0, since 20 < 2%. Therefore, there exists ¢y large
enough such that Zy(topo) < 0. Then we take e = topo and Zy(e) < 0. Hence (ii)
of Theorem 1] holds true. This completes the proof. O

Proof of Theorem [I.1] We claim that

ey = inf max Z)(v(¢))

~eT t€[0,1]
< (L1 nesy= (4.25)
99  o2x ) \T00 :

Now we assume (23] holds true, then Lemmas BT} B2 and Theorem BT give the
existence of nontrivial critical points of 7).
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To prove [@25), we choose vy € H 4(RY,C) such that

||U0H5,A =1, ||U0 2% > 0, tlirgloIA(tvo) = —00,

then sup; > Zx(tvo) = TIx(tavg) for some ty > 0. Hence t) satisfies

Zde. (4.26)

M(83)t3 = A/ (Ka *F(|tw0|2))f(|t,\v0|2)|t,\v0|2dac+/ |tavo
RN RN
Furthermore, by (Ms) and (f3), we get

0.4 (|[tavoll2 4) = M(l[tavoll*)l|vollZ 4

.
2 da.

:)\/ (/Ca*F(|t>\v0|2))f(|t>\vo|2)|t>\vo|2dx+t§:/ 0
RN .

> 2 / |vo |2 da. (4.27)
]RN

Now we show that {tx} is bounded. Without loss of generality, we assume that
tx > 1 for all A > 0. Using (M) again, we deduce from (217) that

2 dz.

0. (1)120 > 13 / v
RN

It follows from 6 < 2%/2 that {¢x} is bounded.

We claim that ¢ty — 0 as A\ — oo. Arguing by contradiction, we can assume that
there exist {p > 0 and a sequence \,, with \,, — oo as n — oo such that ¢y, — to
as n — o0. By (f2) and Lebesgue’s dominated convergence theorem, we deduce

[ s Bt P, 00, w0 Pl
RN

= [ (s Fltavo) (oo tovo e
R
as n — o0o. From which it follows that

/\n/ (K # F(ltovo))f (ltove2)ltovel2dz — 00 as n — oo.
RN

Hence, ([@26) implies that
M ()t = oo,

which is absurd. Therefore, ty — 0 as A — oo. Further, we deduce from ({28 that

lim )\/ (Ko * F(|tavo|*)) f([tavo]?)[trvol*dz = 0.
RN

A—00

Moreover,

lim A (Ko * F(|tavo)®))F([tavo|*)dz = 0,

A—00 RN
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from this, tx — 0 as A — oo and the definition of Z,, we get
lim (supIA(tvg)> = lim Zx(txvo) = 0.
A—00 \ t>0 A—00
Then there exists A, > 0 such that for any A > A,
supTa(tee) < (= — L) (mos) 7 =
o MO g T gr ) V0 '

If we take e = Tvg, with T large enough to verify Z)(e) < 0, then we obtain

ex < tm{g)ﬁ Ix(7v(t)) by taking v(t) = tTvp.
€lo,

2
Therefore, cx < sup;>qZa(tvo) < (55 — 5)(moS) % ? for A large enough. O

o %

5. Proof of Theorem

In this section, we start with the study of the degenerate case of ([ILT]). To this end,
we always assume that s € (0,1), N >2s,0<a < N, 0 € [1,2}), A€ C(RY,RY),
M satisfies (Ms) and (Ms3), and f satisfies (f1), (f3) and (f1). We first give a crucial
lemma in the proof of existence of solutions for problem (ITJ).

Lemma 5.1. Let {u,}, C Hf’A(RN, C) be a Palais-Smale sequence of functional
Iy, that is,

Ia(up) — ex  and Zh(up) — 0 in( f’A(RN,(C))’,

as n — oo, where (Hf,A(RN, C))’ is the dual of Hf’A(]RN, C). If
o < (i ~ i) (my §0)2:/ (2 -20),

where S is the number given in Theorem Bl then there erists a subsequence of
{un}n strongly convergent in Hf’A(]RN, C).

Proof. Ifinf,>1 ||un|/s,a = 0, then there exists a subsequence of {uy, }, still denoted
by {un}n such that w, — 0 in HTS,A(RN) as n — 00. Thus, we assume that d :=
inf,,>1 ||tnl|s,a > 0 in the following proof.

By Zx(un) — cx and I} (un) — 0 in (H7 4(RY,C))’, there exists C' > 0 such
that

C+ Cllun|s,a

> Ty () — = (T4 () )
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A

1 1
= 5o ll2.0) = M (unl ) nla = 5 [ (o x F(Qun) ()
RN

2 dx.

A N 2 2 2 1 1
2 [ o )PP+ (= 5 [

It follows from (Ms), (Ms) and (f3) that

1

1
O+ Cllunlln = (55— ) MClunl )l

1 1
> (35 3 ) Tl

this together with 2 < 20 < o implies that {u,},, is bounded in H ,(RY,C). Then
there exists u € H! 4 (RN C) such that, up to a subsequence, it follows that

u, = u in Hi ,(RY,C) and in L% (RN, C),

Uy — U a.e. in RN,

« 5.1
[ |? "2y, — |u|? 72w weakly in L%(RN,C), o
[tnlls,a — B.
Similar to Lemma ] we have as n — oo
(Ka # F(lun[?) = (Ko + F(Ju?)) in L' (RY) (5.2)

and

lim R [ (Ko F(Jual*)f(Jual* unpde = §1‘3/ (Ko * F(luf*) f(Jul*)uipda
RN RN

(5.3)
for each ¢ € HS ,(RY, C).
Now we claim that
u, —u in H ,(RY,C) (5.4)

as n — 00. By Theorem B.J] there exist an at most countable set of distinct points
{x;}ies, non-negative numbers {y; }ics, {vi }ics C [0, 00) and a non-atomic measure
11 such that
u(z) — "V A Du(y)? ~
u=/ NT3s dy + [ul* + Y i, + 7,
RN lz =y Py
(5.5)

v = [u(@) + > vids,.

icJ
Next, in order to prove (54]) we proceed by steps.
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Step 1. Fix ip € J. Then we prove that either v;, =0 or
Vi, 2> (m15)2 /2*72) (56)

Let ¢ € C§°(RY;[0,1]) be a radial symmetric function satisfying ¢ = 1 in B(0,1);
= 0 in RV\B(0,2) and |V¢| < 2. For any £ > 0 we set . = p(>—2). Clearly
{(psun}n is bounded in H} 4 (RY,C) and (Z} (uy), pctun) — 0 as n — oo. Hence

M(llunll? 4)(tn, 9etin)s,a

2% 2 —
nl%s T TUn U d.

=R [ (o Bl P Punpctde + R [
RN RN
(5.7)
It is easy to verify that
lim lim (Ko * F(|un]®) f(|un]?)|un*0edz = 0. (5.8)
e—0n—oo RN

Note that by (Ms3), there holds
z+y
|un () — "9 Ay, (y) P (@) 2
M) ff e dsdy+ [ funf? e

ile—y)A(TEY) 2 0
' // e N %(x)dwdw/ [n|* pedz |
RN |z — y[NH2s RN

Using a similar discussion as in Lemma E.T], we deduce that

lim sup M (|[un||? 4)(n, @etin)s,a > mapf,. (5.9)
Similar to Lemma ETl, we have

%20 et dr = 0. (5.10)

lim lim [,
e—=0n—oo JpN

Inserting (5.8)-(E10) into (E7), we obtain
ml,ufo < V4.
It follows from v; < S~2:/2(p;)%/2 for all i € J that v;, = 0 or
> (my §%)2%:/(2:720), (5.11)

Vig

Step 2. We claim that (5:I1) cannot occur, hence v; =0 for all i € J.

By contradiction we assume that there exists a iy such that (BEI1]) holds true.
Similar to Lemma BT, by (Ms) and (f3), we deduce

(1 1/
N=\20" 27 ) Jun

It follows from (G.11]) that
1 1 ok
x> <% - —> (m1§7)%/ (22 720),

which contradicts the assumption. Hence v; = 0 for any ¢ € J.

% pedi. (5.12)
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Step 3. The assertion (5.4) holds.

We first show that u, — u in L% (RY,C) as n — co. Assume that yr € C(RY)
satisfies xg € [0,1] and xgr(z) = 0 for |2| < R, xr(z) = 1 for |z| > 2R, and
[Vxr| < 2/R. With a similar discussion as in the proof of Theorem[32 we have

i) A ()2
Lhoo = hrréohmsup//RN fun(2) — e |ac— |;+25 n(y)l XR(x)dydx, (5.13)
Voo = ll_{r;ollmsup/RN | (2)x g (z)d (5.14)
and
Voo < §72/2 %02, (5.15)
It follows from the fact that (Z{ (u,), xpun) — 0 as n — oo that
i(z—y) A(ZE
2 ) // |t () — €= ATy, (1) |2 xR () ddy
oA | PR
v [f L) = A ) (r(@) — xr )W)
- =y o
+/ |un|2XRdx‘|
RN
= )\/RN(ICa *F(|un|2))f(|un|2)|un|2XRdac—|—/RN %xrdz +o(1).  (5.16)
With a similar discussion as in Lemma B.1], we have
hm hmsupM(HuanA)
Tty -
(tn () = AT () () ~ X)), |
RN |z — y|N+2s ray) = v
Hence we deduce from (BI3) that
|un () — un(y)|*xr() / 2
oo e sA |:// |.’IJ— |N+25 da:dy+ - |Un| XRdJZ
_ pilw—y)-A(HEY) 2
> hm lim sup my [un(@) — e T un(y)| XR(x)dxdy
o |z — y|N+2s
X n—oo R2N Y
6
—|—/ |un|2XR(x)dx]
RN
=mip’,. (5.17)
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Similar to Lemma FI we can obtain that
miply < Voo,

this together with (BI5) yields

2
2F
m1Svss < Voo,

which implies that v, =0 or

o*

Voo > (my8%)7 77 (5.18)

Assume (BI8) holds. Since [Jun||2 4 and |uy,
33 are both convergent. Then by (BI3)

27
52 are bounded, up to a subsequence,
:

we can assume that [lu, |2 4 and |lu,

and (BI4)), we obtain
tim ua20 = [ it e
n—oo RN

and

-
ol = dv + Vo
: RV

lim ||u,
n—oo
Thus, we have

er = i ()~ B ) )

n—oo

. 1 1 1 1 «
3A
2 [ K F (P Pt
RN

>y (-1 ) + (L /d+ Lo
— — = 0o - — = v el R 25
="M\20 o RN g o 2F) Jpn o 2
L1y e (11
- _ = S
"M\9g T 5 ) Hee o 2

1o Iygen (L_ 1 11 6121/(2:~26)
Zm1<2a_a>5”"° o)z gy ) ST

S

Y

thanks to 20 < ¢ and (G.18), which is a contradiction. Hence vo, = 0. In view of
J =0, we have [, [un Lde — Jan lu 2idx as n — oo. Furthermore, the Brézis—
Lieb Lemma implies that

lim |t — ul% dx = 0. (5.19)

n—oo [pN

A similar discussion as in Lemma BTl yields that u, — u in H? ,(RY) as n — oc.
Therefore, (54]) holds true. O
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In what follows, we prove that T satisfies geometric properties (i) and (ii) of
mountain pass.

Lemma 5.2. The functional I satisfies the conditions (i) and (ii) in Theorem EIl.

Proof. For each A > 0, by the fractional Sobolev embedding Hf7A(RN7(C) —
LP(RYC), we have by (M3) and (f4) that

1 .
—§—2/2
2 |

S

mi 23
Ta(w) > "L 2y~ ACul?, - ull%,
for all u € HE ,(RY,C). It follows from max{2,6} < p that there exist p; > 0
small enough and aq > 0 such that Zy(u) > «; > 0 for all u € Hf7A(RN7(C)
with [Jul|s,a = p1, and all A > 0. Hence (i) in Theorem F1] holds true. Similar to
Lemma [4.2], we can show that (ii) in Theorem E.1] holds true. O

Proof of Theorem[T:2] By using the same discussion as the proof of Theorem [T-1]
we deduce that

1 1 25
= inf T t i Sfy2r=20
ex = Inf max Th(v(1)) < (20 2;;)(”“ )

The rest of the proof is the same as in the proof to Theorem [LT] O
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