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NICUŞOR COSTEA 1 AND VICENŢIU RĂDULESCU 1,2,3
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ABSTRACT. We establish some existence results for hemivariational inequalities with relaxed

η − α monotone mappings on bounded, closed and convex subsets in reflexive Banach spaces. Our

proofs rely essentially on a fixed point theorem for set valued mappings which is due to Tarafdar [20].

We also give a sufficient condition for the existence of solutions in the case of unbounded subsets.
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1. INTRODUCTION

Inequality theory plays an important role in many fields, such as mechanics,

engineering sciences, economics, optimal control, etc. Because of their wide appli-

cability, inequality problems have become an important area of investigation in the

past several decades, an important part of this research focusing on the existence of

the solutions. Inequality problems can be divided into two main classes: that of vari-

ational inequalities and that of hemivariational inequalities. The study of variational

inequality problems began in the early sixties with the pioneering work of G. Fichera

[4], J. L. Lions and G. Stampacchia [8]. The most basic result is due to Hartman

and Stampacchia [5], which states that if X is a finite dimensional Banach space,

K ⊂ X is compact and convex, and A is a continuous operator, then the variational

inequality problem of finding u ∈ K such that

〈Au, v − u〉 ≥ 0, ∀v ∈ K (1.1)

has a solution. When K is not compact, or X is infinite dimensional, certain mono-

tonicity properties are required to prove the existence of solution. In the last years, a
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number of authors have introduced several important generalizations of monotonic-

ity, such as pseudomonotonicity, quasimonotonicity, semimonotonicity, relaxed mono-

tonicity, relaxed η − α monotonicity, etc; see for example [1, 3, 6, 7, 21] and the

references therein.

In 1999, Panagiotopoulos, Fundo and Rădulescu [17] extended the classical results

from [5], proving several versions of theorems of Hartman-Stampacchia’s type for the

case of hemivariational inequalities on compact or on closed and convex subsets, in

infinite and finite dimensional Banach spaces.

By replacing the subdifferential of a convex function by the generalized gradi-

ent (in the sense of F. H. Clarke) of a locally Lipschitz functional, hemivariational

inequalities arise whenever the energetic functional associated to a concrete problem

is nonconvex. This new type of inequalities appears as a generalization of the vari-

ational inequalities, but hemivariational inequalities are much more general, in the

sense that they are not equivalent to minimum problems but, give rise to substation-

arity problems. The theory of hemivariational inequalities can be viewed as a new

field of Nonsmooth Mechanics since the main ingredient used in the study of these

inequalities is the notion of Clarke subdifferential of a locally Lipschitz functional.

The mathematical theory hemivariational inequalities, as well as their applications in

Mechanics, Engineering or Economics were introduced and developed by P. D. Pana-

giotopoulos [13]–[16] in the case of nonconvex energy functions. For a treatment of this

theory and further comments we recommend the monographs by Z. Naniewicz and

P. D. Panagiotopoulos [12], D. Motreanu and P. D. Panagiotopoulos [9], D. Motreanu

and V. Rădulescu [10, 11], and V. Rădulescu [18, 19].

Inspired and motivated by [17], in this paper we propose an extension of the

results of Panagiotopoulos, Fundo and Rădulescu to a more general framework, that

of relaxed η − α monotone mappings. Using a fixed point theorem for set valued

mappings due to Tarafdar, some existence results are established.

2. THE ABSTRACT FRAMEWORK

Throughout this paper X will denote a real reflexive Banach space with its dual

space X∗, T : X → Lp(Ω; Rk) will be a linear and compact operator where 1 < p < ∞

and Ω is a bounded and open subset of R
N . We shall denote Tu = û and by p′ the

conjugated exponent of p. Let K be a nonempty subset of X (in order to simplify

some computations we shall assume that 0 ∈ K), A : K → X∗ a nonlinear operator

and j = j(x, y) : Ω × R
k → R is a Carathéodory function, locally Lipschitz with

respect to the second variable which satisfies the following condition:

-there exist g1 ∈ Lp/(p−1)(Ω; R) and g2 ∈ L∞(Ω; R) such that

|z| ≤ g1(x) + g2(x)|y|p−1 (2.1)
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a.e. x ∈ Ω, for all y ∈ R
k and all z ∈ ∂j(x, y).

We shall use the notation j 0(x, y; h) for the Clarke’s generalized directional deriv-

ative (see e.g. [2] or [11]) of the locally Lipschitz mapping j(x, ·) at the point y ∈ R
k

with respect to the direction h ∈ R
k, where x ∈ Ω, that is,

j 0(x, y; h) = lim sup
w→y

λ↓0

j(x, w + λh) − j(x, w)

λ
.

Accordingly, Clarke’s generalized gradient ∂j(x, y) of the locally Lipschitz map j(x, ·)

is defined by

∂j(x, y) = {z ∈ R
k : z · h ≤ j 0(x, y; h), for all h ∈ R

k},

where the symbol “·” means the inner product on R
k.

The euclidian norm in R
k, k ≥ 1, resp. the duality pairing between a Banach

space and its dual will be denoted by | · |, respectively 〈·, ·〉. We also denote by ‖ · ‖p

the norm in the space Lp(Ω; Rk) defined by

‖û‖p =

(
∫

Ω

|û(x)|p dx

)1/p

, 1 < p < ∞.

Definition 2.1. A mapping A : K → X∗ is said to be relaxed η − α monotone on

K(see [3]) if there exists a mapping η : K × K → X and a function α : X → R with

α(tw) = tqα(w) for all t > 0, all w ∈ X and q > 1 a constant, such that

〈Av − Au, η(v, u)〉 ≥ α(v − u), ∀u, v ∈ K. (2.2)

Special cases:

1. If η(v, u) = v − u for all u, v ∈ K and α ≡ 0 then (2.2) becomes

〈Av − Au, v − u〉 ≥ 0, ∀u, v ∈ K,

and A is said to be monotone.

2. If η(v, u) = v − u for all u, v ∈ K and α(w) = −µ‖w‖2, µ > 0 a constant, then

(2.2) becomes

〈Av − Au, v − u〉 ≥ −µ‖v − u‖2, ∀u, v ∈ K,

and A is said to be relaxed monotone.

3. If η(v, u) = v − u for all u, v ∈ K, then (2.2) becomes

〈Av − Au, v − u〉 ≥ α(v − u), ∀u, v ∈ K,

and A is said to be relaxed α monotone.

Example 2.2. Let K = [−1, 1], Au = u2 and η(v, u) = u2 − v2. Then A is relaxed

η−α monotone on K with α(w) = −4w2. It is easy to check that A is not monotone

on K.
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Example 2.3. Let K = [0,∞) and A : K → R defined by Au = −up with p > 1.

Then A is not monotone on K since

〈Av−Au, v−u〉 = (−vp+up)(v−u) = −(v−u)2(vp−1+uvp−2+. . .+up−2v+up−1) ≤ 0.

On the other hand, A is relaxed η − α monotone on K with η(v, u) = up − vp and

α ≡ 0.

Example 2.4. Let K = R and A : R → R defined by Au = −u. Obviously A is not

monotone on R. On the other hand A is simultaneous relaxed monotone (µ = 1),

relaxed α monotone (with α(w) = −cw2, where c ≥ 1 is a constant) and relaxed η−α

monotone (with η(v, u) = v − u and α(w) = −cw2, c ≥ 1). We point out the fact

that A is relaxed η − α monotone with

η(v, u) =

{

1
2
(u − v); if u ≤ v

1
2
(v − u); if u > v.

and

α(w) =
1

2
w|w|.

Remark 2.5. It is easy to check, by the above definitions and examples, that the class

of relaxed η − α monotone mappings is strictly broader than the class of monotone

mappings.

Definition 2.6. Let A : K → X∗ and η : K × K → X be two mappings. A

is said to be η-hemicontinuous (see [1]) if, for any fixed u, v ∈ K, the mapping

f : [0, 1] → (−∞, +∞) defined by f(t) = 〈A(u + t(v − u)), η(v, u)〉 is continuous at

0+.

The following lemma will be needed in the proof of the main result.

Lemma 2.7 (Tarafdar [20]). Let K 6= ∅ be a convex subset of a Hausdorff topological

vector space E. Let F : K → 2K (by 2K we understand the family of all the subsets

of K) be a set valued map such that

(T1) for each u ∈ K, F (u) is a nonempty convex subset of K;

(T2) for each v ∈ K, F−1(v) = { u ∈ K : v ∈ F (u)} contains an open set Ov which

may be empty;

(T3)
⋃

v∈K

Ov = K;

(T4) there exists a nonempty set V0 contained in a compact convex subset V1 of K

such that D =
⋂

v∈V0
Oc

v is either empty or compact (where Oc
v is the complement

of Ov in K).

Then there exist a point u0 ∈ K such that u0 ∈ F (u0).
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3. MAIN RESULTS

In this section, we study the existence of the following hemivariational inequality

problem:

Find u ∈ K such that

〈Au, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx ≥ 0, ∀v ∈ K. (3.1)

Lemma 3.1. Let K be a nonempty, closed and convex subset of X and A : K → X∗

a relaxed η − α monotone and η-hemicontinuous mapping. Assume that:

(i) η(u, u) = 0, ∀u ∈ K;

(ii) for any fixed v, w ∈ K, the mapping u 7−→ 〈Aw, η(u, v)〉 is convex.

Then u ∈ K is a solution of (3.1) if and only if it solves the following problem:

Find u ∈ K such that

〈Av, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx ≥ α(v − u), ∀v ∈ K. (3.2)

Proof. (“=⇒”) Let u be a solution of (3.1). Then

〈Au, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx ≥ 0 ∀v ∈ K.

On the other hand, by the relaxed η − α monotonicity of A we have

〈Av − Au, η(v, u)〉 ≥ α(v, u), ∀v ∈ K.

Combining the above estimates we obtain that

〈Av, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx ≥ α(v − u) ∀v ∈ K.

which implies that u is a solution of (3.2).

(“⇐=”) Conversely, we assume that u is a solution of (3.2) and fix v ∈ K. Letting

w = u + t(v − u), t ∈ (0, 1],

then w ∈ K. It follows from (3.2) that

〈Aw, η(w, u)〉+

∫

Ω

j0(x, û(x); ŵ(x) − û(x)) dx ≥ α(w − u)

= α(t(v − u))

= tqα(v − u).

By conditions (i) and (ii) we have

〈Aw, η(w, u)〉 ≤ t〈Aw, η(v, u)〉+ (1 − t)〈Aw, η(u, u)〉

= t〈Aw, η(v, u)〉.



298 N. COSTEA AND V. RADULESCU

Combining the above relations with the positive homogeneity of the mapping v̂ 7−→

j0(x, û; v̂) we obtain

t〈Aw, η(v, u)〉+ t

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx ≥ tqα(v − u)

which leads to

〈Aw, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx ≥ tq−1α(v − u), ∀v ∈ K. (3.3)

Letting t → 0+ in (3.3) and using the η-hemicontinuity of A we deduce that u solves

(3.1).

Theorem 3.2. Let K be a nonempty, bounded, closed and convex subset of X and

A : K → X∗ be a relaxed η − α monotone and η-hemicontinuous mapping. Assume

the following conditions are fulfilled:

(H1) η(u, v) + η(v, u) = 0, ∀u, v ∈ K;

(H2) For any fixed v, w ∈ K the mapping u 7−→ 〈Aw, η(u, v)〉 is convex and lower

semicontinuous;

(H3) For any sequence {xn} ⊂ X, xn ⇀ x implies

lim sup
n→∞

α(xn) ≥ α(x).

Then there exists at least one solution for (3.1).

Proof. Arguing by contradiction suppose that (3.1) has no solutions. Then, for each

u ∈ K there exists v ∈ K such that

〈Au, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx < 0. (3.4)

This implies by Lemma 3.1 that, for each u ∈ K there exists v ∈ K such that

〈Av, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx < α(v − u). (3.5)

We define the set valued map F : K → 2K

F (u) :=

{

v ∈ K : 〈Au, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx < 0

}

.

We shall prove that F satisfies the conditions of Lemma 2.7. Obviously, F (u) is

nonempty for each u ∈ K. Let u ∈ K be arbitrary fixed and w = (1 − t)v1 + tv2,

with v1, v2 ∈ F (u), t ∈ [0, 1]. Using the assumption (H2) and the convexity of the
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mapping v̂ 7−→ j0(x, û; v̂), we have

〈Au, η(w, u)〉+

∫

Ω

j0(x, û; ŵ − û) dx ≤ (1 − t)〈Au, η(v1, u)〉 + t〈Au, η(v2, u)〉

+(1 − t)

∫

Ω

j0(x, û; v̂1 − û) dx

+t

∫

Ω

j0(x, û; v̂2 − û) dx

< 0.

The above relation shows that w ∈ F (u), which implies that F (u) is convex for each

u ∈ K.

For each v ∈ K,

F−1(v) = {u ∈ K : v ∈ F (u)}

=

{

u ∈ K : 〈Au, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx < 0

}

⊇

{

u ∈ K : 〈Av, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx < α(v − u)

}

:= Ov.

To prove the above inclusion we will show that [F−1(v)]
c
⊆ Oc

v. If u ∈ [F−1(v)]
c
, then

〈Au, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx ≥ 0

Taking into account that A is relaxed η − α monotone we have

〈Av − Au, η(v, u)〉 ≥ α(v − u)

Summing the last two relations we deduce that

〈Av, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx ≥ α(v − u)

which is equivalent to u ∈ Oc
v.

We claim that Oc
v is weakly closed. Let {un} ⊂ Oc

v be a sequence that converges

weakly to u as n → ∞. We have to prove that u ∈ Oc
v. Since j satisfies condition

(2.1), by Lemma 1 [17] (p. 44) part (b) the application

(u, v) 7−→

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx
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is weakly upper semicontinuous. Using (H1)-(H3) we deduce that

α(v − u) ≤ lim sup
n→∞

α(v − un)

≤ lim sup
n→∞

[

〈Av,−η(un, v)〉 +

∫

Ω

j0(x, ûn(x); v̂(x) − ûn(x)) dx

]

≤ − lim inf
n→∞

〈Av, η(un, v)〉 + lim sup
n→∞

∫

Ω

j0(x, ûn(x); v̂(x) − ûn(x)) dx

≤ −〈Av, η(u, v)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx

= 〈Av, η(v, u)〉+

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx

This is equivalent to u ∈ Oc
v.

We have to prove next that
⋃

v∈K Ov = K. It suffices to show that K ⊆
⋃

v∈K Ov,

the converse inclusion being obvious. For an arbitrary u ∈ K, by (3.5) there exists

v ∈ K such that u ∈ Ov, hence the desired inclusion holds.

The set D =
⋂

v∈K Oc
v is empty or weakly closed as it is the intersection of weakly

closed sets Oc
v. Since K is nonempty, bounded, closed and convex and X is reflexive,

it follows that K is weakly compact, hence D is also weakly compact. Therefore, the

conditions (T1–T4) of Lemma 2.7 are satisfied in the weak topology. It follows that

there exists u0 ∈ F (u0) which implies

0 = 〈Au0, η(u0, u0)〉 +

∫

Ω

j0(x, û0(x); û0(x) − û0(x)) dx < 0.

Thus, we have reached a contradiction which assures that (3.1) has at least one

solution and the proof of Theorem 3.2 is now complete.

Corollary 3.3. Let K be a nonempty, bounded, closed and convex subset of X and

A : K → X∗ be a monotone and hemicontinuous operator. Then the problem:

Find u ∈ K such that

〈Au, v − u〉 +

∫

Ω

j0(x, û(x); v̂(x) − û(x)) dx ≥ 0, ∀v ∈ K; (3.6)

has at least one solution.

Proof. It suffices to define η : K × K → X, η(u, v) = u − v and α : X → R, α ≡ 0

and observe that A is relaxed η − α monotone and η-hemicontinuous. Applying

Theorem 3.2 the conclusion follows.

Theorem 3.4. Assume that the same hypotheses as in Theorem 3.2 hold without the

assumption of boundedness of K. Suppose in addition that there exists q ≥ p such

that
〈Aw, η(w, 0)〉

‖w‖q
→ ∞, as ‖w‖ → ∞.

Then the inequality problem (3.1) admits at leats one solution.
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Proof. Set Kn = {v ∈ K : ‖v‖ ≤ n}. Using Theorem 3.2, we get the existence of

un ∈ Kn such that

〈Aun, η(v, un)〉 +

∫

Ω

j0(x, ûn(x); v̂n(x) − ûn(x)) dx ≥ 0, ∀v ∈ Kn. (3.7)

Step 1. There exists a positive integer n0 such that ‖un0
‖ < n0.

Arguing by contradiction let us suppose that ‖un‖ = n for all n ≥ 1. Setting

v = 0 in (3.7), we have

〈Aun, η(un, 0)〉 ≤

∫

Ω

j0(x, ûn(x);−ûn(x)) dx (3.8)

On the other hand, for each x ∈ Ω where holds true the condition (2.1) and for

each y, h ∈ R
k, there exists z ∈ ∂j(x, y) such that

j0(x, y; h) = z · h = max{w · h : w ∈ ∂j(x, y)},

(see [2], Prop 2.1.2). It follows from (2.1) that

|j0(x, y; h)| ≤ |z| · |h| ≤ (g1(x) + g2(x)|y|p−1)|h|.

Using (3.8), Hölder’s inequality and the fact that T : X → Lp(Ω; Rk) is linear and

compact we get

〈Aun, η(un, 0)〉 ≤

∫

Ω

g1(x)|ûn(x)| + g2(x)|ûn(x)|p dx

≤ c1‖ûn‖p + c2‖ûn‖
p
p

≤ c3‖un‖ + c4‖un‖
p,

where c1, c2, c3, c4 are positive constants.

Thus,

〈Aun, η(un, 0)〉

‖un‖q
≤ c3‖un‖

1−q + c4‖un‖
p−q

and passing to the the limit as n → ∞ we obtain a contradiction, since 1 < p ≤ q.

Step 2. un0
solves inequality problem (3.1).

Since ‖un0
‖ < n0, for each v ∈ K we can choose ε > 0 such that w = un0

+ ε(v −

un0
) ∈ Kn0

(it suffices to take ε = 1 if v = un0
and ε < (n0 − ‖un0

‖)/‖v − un0
‖ if

v 6= un0
).
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It follows from (3.7) and the positive homogeneity of the map v̂ 7→ j0(x, û; v̂)

that

0 ≤ 〈Aun0
, η(w, un0

)〉 +

∫

Ω

j0(x, ûn0
(x); ŵ(x) − ûn0

(x)) dx

≤ ε〈Aun0
, η(v, un0

)〉 + (1 − ε)〈Aun0
, η(un0

, un0
)〉

+ε

∫

Ω

j0(x, ûn0
(x); v̂(x) − ûn0

(x)) dx

= ε

[

〈Aun0
, η(v, un0

)〉 +

∫

Ω

j0(x, ûn0
(x); v̂(x) − ûn0

(x)) dx

]

.

Dividing by ε the conclusion follows.

Remark 3.5. (a) If instead A is continuous on finite dimensional subspaces, the

conclusions of Theorems 3.2, 3.4 and Corollary 3.3 are also true.

(b) Corollary 3.3 states the same result as Theorem 2 in [17] which implies that The-

orems 3.2 and 3.4 improve and generalize the known results of Panagiotopoulos-

Fundo-Rădulescu [17].
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