ANALIZĂ FUNCTIONALĂ
Teorie și aplicații

Haim BREZIS
Université Pierre et Marie Curie
Membru al Academiei Franceze
Membru al Institut Universitaire de France
Membru de onoare al Academiei Române
Distinguished Visitor la Rutgers University, U.S.A.

(traducerea: Profesor universitar Vicențiu Rădulescu)
Cuprins

CUVÂNT ÎNAINTE LA EDIȚIA ÎN LIMBA ROMÂNĂ 5

INTRODUCERE 9

I TEOREMELE HAHN-BANACH. INTRODUCERE ÎN TEORIA FUNCȚIILOR CONVEXE CONJUGATE 12
I.1 Forma analitică a teoremei Hahn-Banach: prelungirea funcționalelor lineare . 12
I.2 Forme geometrice ale teoremei Hahn-Banach: separarea multimilor convexe . 16
I.3 Introducere în teoria funcțiilor convexe conjugate . . . 21
I.4 Comentarii asupra capitolului I 29

II TEOREMELE LUI BANACH-STEINHAUS ȘI A GRAFICULUI ÎNCHIS. RELAȚII DE ORTOGONALITATE. OPERATORI NEMĂRGINIȚI. NOTIUNEA DE ADJUNCT. CARACTERIZAREA OPERATORILOR SURJECTIVI 32
II.1 Lema lui Baire 32
II.2 Teorema lui Banach-Steinhaus 33
II.3 Teorema aplicației deschise și teorema graficului închis . 37
II.4 ✷ Suplementul topologic. Operatori inversabili la dreapta (resp. la stânga). 40
II.5 Relații de ortogonalitate 44
II.6 Introducere în teoria operatorilor liniari nemârginiți. Definiția adjunctului. 48
II.7 Caracterizarea operatorilor cu imaginea închisă.
Operatori surjectivi. Operatori mărghiniți. 52
II.8 Comentarii asupra capitolului II 56

III TOPOLOGII SLABE. SPAȚII REFLEXIVE. SPAȚII SEPARABILE. SPAȚII UNIFORM CONVEXE 57
III.1 Preliminarii asupra topologiei celei mai putin fine care face continue toate aplicațiile unei familii 57
III.2 Definiția și proprietățile elementare ale topologiei slabe \(\sigma(E, E') \) 59
III.3 Topologii slabe, mulțimi convexe și operatori liniari 63
III.4 Topologia \(\star \) slabă \(\sigma(E', E) \) 65
III.5 Spații reflexive 72
III.6 Spații separabile 77
III.7 Spații uniform convexe 82
III.8 Comentarii asupra capitolului III 85

IV SPAȚIILE \(L^p \) 87
IV.1 Câteva rezultate de integrare care trebuie neapărat cunoscute 87
IV.2 Definiția și proprietățile elementare ale spațiilor \(L^p \) 89
IV.3 Reflexivitate. Separabilitate. Dualul lui \(L^p \) 93
IV.4 Convoluție și regularizare 103
IV.5 Criteriu de compactate tare în \(L^p \) 111
IV.6 Comentarii asupra capitolului IV 115

V SPAȚII HILBERT 118
V.1 Definiții. Proprietăți elementare. Proiecția pe o mulțime convexă închisă 118
V.2 Dualul unui spațiu Hilbert 122
V.3 Teoremele lui Stampacchia și Lax-Milgram 125
V.4 Sume Hilbertiene. Bază Hilbertiană 128
V.5 Comentarii asupra capitolului V 131
VI OPERATORI COMPACTI. DECOMPNUNEREA SPEC-
TRALĂ A OPERATORILOR AUTOADJUNCTI COM-
PACTI 134
VI.1 Definiții. Proprietăți elementare. Adjunct 134
VI.2 Teoria Riesz-Fredholm 137
VI.3 Spectrul unui operator compact 141
VI.4 Descompunerea spectrală a operatorilor autoadjuncti com-
pacti 144
VI.5 Comentarii asupra capitolului VI 147

VII TEOREMA LUI HILLE-YOSIDA 150
VII.1 Definiția și proprietățile elementare ale operatorilor ma-
ximal monotoni 150
VII.2 Soluția problemei de evoluție 154
VII.3 Regularitate 162
VII.4 Cazul autoadjunct 165
VII.5 Comentarii asupra capitolului VII 170

VIII SPAȚII SOBOLEV ȘI FORMULAREA VARIATI-
ONALĂ A PROBLEMELOR LA LIMITĂ ÎN DIMENSI-
UNE UNU 173
VIII.1 Motivația 173
VIII.2 spațiul Sobolev $W^{1,p}(I)$ 174
VIII.3 spațiul $W^{1,p}_0(I)$ 191
VIII.4 Câteva exemple de probleme la limită 195
VIII.5 Principiul de maxim 204
VIII.6 Funcții proprii și descompunere spectrală 207
VIII.7 Comentarii asupra capitolului VIII 209

IX SPAȚII SOBOLEV ȘI FORMULAREA VARIATI-
ONALĂ A PROBLEMELOR LA LIMITĂ ELIPTICE ÎN DI-
MENSIUNE N 212
IX.1 Definiția și proprietățile elementare ale spațiilor Sobolev $W^{1,p}(\Omega)$ 212
IX.2 Operatori de prelungire 223
IX.3 Inegalitățile lui Sobolev 229
IX.4 Spațiu $W^{1,p}_0(\Omega)$ 240
IX.5 Formularea variațională a câtorva probleme la limită eliptice .. 246
IX.6 Regularitatea soluțiilor slabe 254
IX.7 Principiul de maxim 265
IX.8 Funcții proprii și descompunere spectrală 269
IX.9 Comentarii asupra capitolului IX 270

X PROBLEME DE EVOLUȚIE: ECUAȚIA CĂLDURII ȘI ECUAȚIA UNDELOR 285
X.1 Ecuția căldurii: existență, unicitate și regularitate ... 285
X.2 Principiul de maxim .. 294
X.3 Ecuția undelor .. 297
X.4 Comentarii asupra capitolului X 304

BIBLIOGRAFIE 314
CUVÂNT ÎNAINTE LA EDIȚIA ÎN LIMBA ROMÂNĂ

A realiza traducerea uneia dintre cărțile de referință ale matematicii reprezintă o sarcină și o îndatorire de maximă importanță. Căci așa stau cu adevărat lucrurile în privința cărții de Analiză Funcțională a Profesorului Brezis, după care au învățat și învață studenții la Matematică din foarte multe universități ale lumii. În fața unei asemenea lucrări, dense, moderne și cu numeroase deschideri, cuvintele sunt de prisos.

Sunt recunoscător Dacăului meu pentru deosebitul privilegiu oferit alegându-mă să traduc în limba română această importantă carte.

Îi mulțumesc colegului Mircea Preda de la Facultatea de Matematică-Informatică a Universității din Craiova pentru scanarea figurilor și pentru îmbunătățirea considerabilă a fișierului inițial în L\TeX al acestei lucrări.

Vicențiu Rădulescu
NOTAȚII

Notatii generale

E' spațiul dual al lui E
$\langle \ , \ \rangle$ produsul scalar în dualitatea E', E
$[f = \alpha] = \{x; f(x) = \alpha\}$
$B(x_0, r) = \{x; \|x - x_0\| < r\}$ bila deschisă centrată în x_0 și de rază r
$B_E = \{x \in E; \|x\| \leq 1\}$
epi $\varphi = \{(x, \lambda); \varphi(x) \leq \lambda\}$ epigraful lui φ
φ^* funcția conjugată a lui φ
$L(E, F)$ spațiul operatorilor liniari și continui de la E în F
M^\perp ortogonalul lui M
$D(A)$ domeniul operatorului A
$G(A)$ graful operatorului A
$N(A)$ nucleul operatorului A
$R(A)$ imaginea operatorului A
$\sigma(E, E')$ topologia slabă definită pe E
$\sigma(E', E)$ topologia * slabă definită pe E'
\rightharpoonup convergența slabă
J injecția canonică de la E în E''
p' exponentul conjugat al lui p, adică $\frac{1}{p} + \frac{1}{p'} = 1$
a.p.t. aproape peste tot
$|A|$ măsura (Lebesgue) a mulțimii A
$\text{Supp}\ f$ suportul funcției f
$f * g$ produsul de convoluție
ρ_n sir regularizant
$(\tau_n f)(x) = f(x + h)$ translata funcției f
$\omega \subset \Omega$ deschis ω inclus în sens tare în Ω, adică $\bar{\omega}$ compact și $\bar{\omega} \subset \Omega$
P_K proiecția pe convexul închis K
norma Hilbertiană
\(\rho(T) \) multimea rezolvantă a operatorului \(T \)
\(\sigma(T) \) spectrul operatorului \(T \)
\(J_\lambda = (I + \lambda A)^{-1} \) rezolvanta operatorului \(T \)
\(A_\lambda = A J_\lambda \) regularizata Yosida a operatorului \(T \)
\(\nabla u = \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \ldots, \frac{\partial u}{\partial x_N} \right) \) grad \(u \)
\(D^\alpha u = \frac{\partial^{\alpha_1+\alpha_2+\ldots+\alpha_N} u}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\ldots\partial x_N^{\alpha_N}} \), \(|\alpha| = \sum_{i=1}^{N} \alpha_i \)
\(\Delta u = \sum_{i=1}^{N} \frac{\partial^2 u}{\partial x_i^2} \) Laplacianul lui \(u \)
\(R_N^+ = \{ x = (x', x_N) \in \mathbb{R}^{N-1} \times \mathbb{R}, \ x_N > 0 \} \)
\(Q = \{ x = (x', x_N) \in \mathbb{R}^{N-1} \times \mathbb{R}, \ |x'| < 1 \text{ și } |x_N| < 1 \} \)
\(Q_+ = Q \cap R_N^+ \)
\(Q_0 = \{ x \in Q; \ x_N = 0 \} \)
\((D_h u)(x) = \frac{1}{|h|} (u(x + h) - u(x)) \)
\(\frac{\partial u}{\partial n} \) derivata normală exterioară

Spatii functionale

\(\Omega \subset \mathbb{R}^N \) deschis
\(\partial \Omega = \Gamma \) frontiera lui \(\Omega \)
\(L^p(\Omega) = \left\{ u \text{ măsurabilă pe } \Omega \text{ și } \int_{\Omega} |u|^p dx < \infty \right\}, \ 1 \leq p < \infty \)
\(L^\infty(\Omega) = \{ u \text{ măsurabilă pe } \Omega \text{ și } \exists C \text{ astfel încât } |u(x)| \leq C \text{ a.p.t. în } \Omega \} \)
\(C_c(\Omega) \) funcțiile continue cu suportul compact inclus în \(\Omega \)
\(C^k(\Omega) \) funcțiile de \(k \) ori continuu diferențiable pe \(\Omega \) (\(k \) întreg \(\geq 0 \))
\(C^\infty(\Omega) = \bigcap_{k \geq 0} C^k(\Omega) \)
\(C_c^k(\Omega) = C^k(\Omega) \cap C_c(\Omega) \)
\(C_c^\infty(\Omega) = C^\infty(\Omega) \cap C_c(\Omega) = \mathcal{D}(\Omega) \)
\(C(\bar{\Omega}) \) funcțiile continue pe \(\bar{\Omega} \)
\(C^k(\bar{\Omega}) \) funcțiile \(u \) din \(C^k(\Omega) \) astfel încât pentru orice multi-indice \(\alpha \), \(|\alpha| \leq k \), aplicația
$x \in \Omega \mapsto D^\alpha u(x)$ se prelungeste continuu pe Ω

$C^\infty(\Omega) = \bigcap_k C^k(\Omega)$

$C^{0,\alpha}(\Omega) = \left\{ u \in C(\Omega); \; \sup_{x,y \in \Omega} \frac{|u(x) - u(y)|}{|x - y|^\alpha} < \infty \right\}$ cu $0 < \alpha < 1$

$C^{k,\alpha}(\Omega) = \left\{ u \in C^k(\Omega); \; D^j u \in C^{0,\alpha}(\Omega) \; \forall j, \; |j| \leq k \right\}$

$W^{1,p}, W_0^{1,p}, W^{m,p}, H^1, H_0^1, H^m$ spații Sobolev
INTRODUCERE

Prima parte a cursului (Capitolele I-VII) dezvoltă mai multe rezultate abstracte de Analiză Funcțională. Partea a doua (Capitolele VIII-X) are în vedere studiul spațiilor funcționale “concrete” care intervin în teoria ecuațiilor cu derivate parțiale. Aceste două ramuri ale Analizei sunt strâns legate. Din punct de vedere istoric, Analiza Funcțională “abstractă” s-a dezvoltat mai întâi pentru a răspunde unor întrebări legate de rezolvarea ecuațiilor cu derivate parțiale. Pe de altă parte, progresele Analizei Funcționale “abstracte” au stimulat în mod considerabil teoria ecuațiilor cu derivate parțiale. Acest curs nu conține nici o referință istorică; recomandăm cititorului să consulte lucrarea J. Dieudonné [3]. Sperăm că această carte va putea fi utilă atât studenților interesați de “Matematici Pure” cât și celor care doresc să se orienteze către “Matematicile Aplicate”.

Multumesc
– Domnului G. Tronel care mi-a sugerat numeroase ameliorări.
– Domnilor Ph. Ciarlet și P. Rabinowitz pentru sfaturile lor prețioase și pentru încurajări.
– Domnilor Berestycki, Gallouet, Kavian, Mcintosh pentru remarcile lor utile.
– Următoarelor instituții: Mathematics Research Center, University of Wisconsin și Department of Mathematics, University of Chicago, unde au fost redactate unele părți din această carte.
Dedic această carte memoriei lui Guido Stampacchia, ca omagiu unui Maestru al Analizei Funcționale, dispărut prematur.

H. BREZIS
Avertismente

2) Anumite enunțuri sau paragrafe sunt precedate de simbolul ♦; este vorba de aspecte foarte importante. Simbolul ⋆ precedă anumite enunțuri care pot fi omise la o primă citire.

3) Am adoptat o numerotare continuă pentru propoziții, teoreme și corolare; doar lemele sunt numerotate separat.

4) Pe tot parcursul lucrării considerăm doar spații vectoriale peste \(\mathbb{R} \) (ceea ce este regretabil, dar simplifică prezentarea). Majoritatea enunțurilor rămân valabile pentru spații vectoriale peste \(\mathbb{C} \); câteva modificări sunt totuși necesare uneori în acest caz. În [EX] se prezintă lista schimbărilor care trebuie aduse atunci când se lucrează cu spații vectoriale peste \(\mathbb{C} \).
Capitolul I

TEOREMELE HAHN-BANACH.
INTRODUCERE ÎN TEORIA
FUNCTIILOR CONVEXE CONJUGATE

I.1 Forma analitică a teoremei Hahn-Banach: prelungirea funcționalelor liniare

Fie E un spațiu vectorial peste \mathbb{R}. Reamintim că o formă liniară este o funcție definită pe E sau pe un subspațiu vectorial al lui E, cu valori în \mathbb{R}. Rezultatul esențial din această secțiune este legat de prelungirea unei forme liniare definite pe un subspațiu vectorial al lui E la o formă liniară definită pe întregul spațiu E.

Teorema I.1 (Hahn-Banach, forma analitică). – Fie $p : E \to \mathbb{R}$ o aplicație care verifică (1)

\[(1) \quad p(\lambda x) = \lambda p(x) \quad \forall x \in E \quad \text{și} \quad \forall \lambda > 0,
\]

\[(2) \quad p(x + y) \leq p(x) + p(y) \quad \forall x, y \in E.
\]

Fie $G \subset E$ un subspațiu vectorial și $g : G \to \mathbb{R}$ o aplicație liniară astfel încât

\[(3) \quad g(x) \leq p(x) \quad \forall x \in G.
\]

Sub aceste ipoteze, există o funcțională liniară f definită pe întregul spațiu E care prelungeste g, adică

\[g(x) = f(x) \quad \forall x \in G\]

\[\text{În nota:} \quad \text{functie p care satisface (1) și (2) se numeste adesea funcțională Minkowski.}\]
și astfel încât

\[f(x) \leq p(x) \quad \forall x \in E. \]

Demonstrația teoremei I.1 face apel la lema lui Zorn, al cărei enunț îl vom reaminti în cele ce urmează. Vom începe prin a preciza câteva noțiuni legate de teoria mulțimilor ordonate.

Fie \(P \) o mulțime înestrată cu o relație de ordine (partițională) \(\leq \). Spunem că o submulțime \(Q \subset P \) este **total ordonată** dacă pentru orice pereche \((a, b) \) din \(Q \) are loc (cel puțin) una dintre relațiile \(a \leq b \) sau \(b \leq a \).

Fie \(Q \subset P \) o submulțime a lui \(P \); spunem că \(c \in P \) este un **majorant** al lui \(Q \) dacă \(a \leq c \) pentru orice \(a \in Q \).

Spunem că \(m \in P \) este un element **maximal** al lui \(P \) dacă pentru orice \(x \in P \) astfel încât \(m \leq x \) rezultă cu necesitate că \(x = m \). Observăm că un element maximal al lui \(P \) nu este neapărat un majorant al lui \(P \).

Spunem că \(P \) este **inductivă** dacă orice submulțime total ordonată a lui \(P \) are un majorant.

Lema I.1 (Zorn). – Orice mulțime inductiv ordonată, nevidă, admit un element maximal.

REMARCĂ 1. – Nu este indispensabil pentru un analist de a cunoaște demonstrația lemei lui Zorn. Din contră, este esențial să înțeleagă bine enunțul acestui rezultat și să-l aplice corect în diverse situații. Lema lui Zorn are numeroase și importante aplicații în analiză; este un instrument indispensabil pentru stabilirea unor rezultate de existență.

DEMONstrația Teoremei I.1. – Considerăm mulțimea

\[
P = \left\{ h : D(h) \subset E \rightarrow \mathbb{R}, \begin{array}{l}
D(h) \text{ este un subspațiu liniar al lui } E, \ h \text{ este liniară, } \\
G \subset D(h), \ h \text{ prelungeste } g \text{ și } h(x) \leq p(x) \quad \forall x \in D(h)
\end{array} \right\}
\]

Pe mulțimea \(P \) definim relația de ordine

\[(h_1 \leq h_2) \Leftrightarrow (D(h_1) \subset D(h_2) \text{ și } h_2 \text{ prelungeste } h_1). \]
Prelungirea funcționalelor liniare

Evident, P nu este vidă, deoarece $g \in P$. Pe de altă parte, P este inductive ordonată. Intr-adevăr, fie $Q \subseteq P$ o submulțime total ordonată; fie $Q = (h_i)_{i \in I}$. Definim

$$D(h) = \bigcup_{i \in I} D(h_i), \quad h(x) = h_i(x) \text{ dacă } x \in D(h_i) \text{ pentru un anume } i.$$

Este ușor de verificat că definiția lui h are sens, că $h \in P$ și h este un majorant al lui Q. Conform lemei lui Zorn, rezultă că P admite un element maximal notat f. Arătăm în cele ce urmează că $D(f) = E$, ceea ce completează demonstrația teoremei I.1.

Presupunem, prin reducere la absurd, că $D(f) \neq E$. Fie $x_0 \notin D(f)$; notăm $D(h) = D(f) + R x_0$ și, pentru orice $x \in D(f)$, fie $h(x + tx_0) = f(x) + t \alpha$ ($t \in R$), unde $\alpha \in R$ este o constantă care va fi alesă ulterior astfel încât $h \in P$. Trebuie să ne asigurăm că

$$f(x) + t \alpha \leq p(x + tx_0) \quad \forall x \in D(f) \text{ și } \forall t \in R.$$

Conform (1), e suficient să verificăm că

$$\begin{cases} f(x) + \alpha \leq p(x + x_0) & \forall x \in D(f) \\ f(x) - \alpha \leq p(x - x_0) & \forall x \in D(f). \end{cases}$$

Altfel spus, trebuie găsit α astfel ca

$$\sup_{y \in D(f)} \{f(y) - p(y - x_0)\} \leq \alpha \leq \inf_{x \in D(f)} \{p(x + x_0) - f(x)\}.$$

Alegerea lui α cu această proprietate este posibilă deoarece

$$f(y) - p(y - x_0) \leq p(x + x_0) - f(x) \quad \forall x \in D(f), \quad \forall y \in D(f);$$

într-adevăr, rezultă din (2) că

$$f(x) + f(y) \leq p(x + y) \leq p(x + x_0) + p(y - x_0).$$

Deducem astfel că $f \leq h$, contradicție, căci f este element maximal și $h \neq f$.

Indicăm în continuare câteva aplicații simple ale teoremei I.1 dacă E este un spațiu vectorial normat (s.v.n.) cu norma $\| \|$.
Notăție: Notăm prin E' dualul topologic (2) al lui E, adică spațiul tuturor funcționalelor liniare și continue pe E; norma duală pe E' este definită prin

$$(5) \quad \|f\|_{E'} = \sup_{\|x\| \leq 1} |f(x)| = \sup_{\|x\| \leq 1} f(x).$$

Dacă $f \in E'$ și $x \in E$ vom scrie în general $\langle f, x \rangle$ în loc de $f(x)$; spunem că \langle , \rangle este produsul scalar pentru dualitatea E', E.

Este cunoscut că E' este un spațiu Banach, adică E' este complet (chiar dacă E nu este complet); aceasta rezultă din faptul că \mathbb{R} este complet.

- **Corolarul I.2.** – Fie G un subspațiu vectorial al lui E și $g : G \to \mathbb{R}$ o funcțională liniară și continuă de normă

$$\|g\|_{G'} = \sup_{\|x\| \leq 1} g(x).$$

Atunci există $f \in E'$ o prelungire a lui g astfel încât

$$\|f\|_{E'} = \|g\|_{G'}.$$

Demonstrație. – Aplicăm teorema I.1 cu $p(x) = \|g\|_{G'} \|x\|$.

- **Corolarul I.3.** – Pentru orice $x_0 \in E$ există $f_0 \in E'$ astfel încât (3)

$$\|f_0\| = \|x_0\| \; \; \text{și} \; \; \langle f_0, x_0 \rangle = \|x_0\|^2.$$

Demonstrație. – Aplicăm corolarul I.2 cu $G = \mathbb{R}x_0$ și $g(tx_0) = t\|x_0\|^2$ astfel că $\|g\|_{G'} = \|x_0\|$.

Remarca 2. – Elementul f_0 dat în corolarul I.3 nu este în general unic (încercați să construiți un exemplu sau vedeti [EX]). Totuși, dacă E' este strict convex (4) – de exemplu dacă E este un spațiu Hilbert (vezi Capitolul V) sau dacă $E = L^p(\Omega)$ cu $1 < p < \infty$ (vezi Capitolul IV) – atunci f_0 este unic. In general, notăm, pentru orice $x_0 \in E$

$$F(x_0) = \{ f_0 \in E' ; \|f_0\| = \|x_0\| \; \; \text{și} \; \; \langle f_0, x_0 \rangle = \|x_0\|^2 \} .$$

2În literatura americană dualul topologic al lui E se notează cu E^*. Atenție la confuzii!

3Dacă nu este pericol de confuzie vom scrie $\|f\|$ în loc de $\|f\|_{E'}$.

4Un spațiu normat se numește strict convex dacă $\|tx + (1 - t)y\| < 1 \; \; \forall t \in (0, 1), \; \; \forall x, y \in E$ cu $\|x\| = \|y\| = 1$ și $x \neq y$.

SEPARAREA MULTIMILOR CONVEXE

Aplicația (multivocă) $x_0 \mapsto F(x_0)$ este numită aplicația de dualitate de la E în E'; unele dintre proprietățile sale sunt descrise în [EX].

- Corolarul I.4. – Pentru orice $x \in E$ avem

$$\|x\| = \sup_{f \in E'} |\langle f, x \rangle| \leq \|x\| \quad \text{si} \quad \langle f_0, x \rangle = \|x\|^2.$$

Demonstrație. Fără a micșora generalitatea, putem presupune că $x \neq 0$. Este evident că

$$\sup_{\|f\| \leq 1} |\langle f, x \rangle| \leq \|x\|.$$

Pe de altă parte (corolarul I.3), există $f_0 \in E'$ astfel încât $\|f_0\| = \|x\|$ și $\langle f_0, x \rangle = \|x\|^2$. Fie $f_1 = f_0 / \|x\|$. Rezultă că $\|f_1\| = 1$ și $\langle f_1, x \rangle = \|x\|$.

Remarca 3. – Formula (5) – care este o definiție – nu trebuie confundată cu formula (6), care este un rezultat. În general, “Sup” din (5) nu este atins (a se vedea un exemplu în [EX]). Totuși, “Sup” din (5) este atins dacă E este un spațiu Banach reflexiv (a se vedea Capitolul III); o teoremă dificilă datorată lui R. C. James afirmă reciprocă: dacă E este un spațiu Banach astfel încât pentru orice $f \in E'$, “Sup” din (5) este atins, atunci E este reflexiv (a se vedea un exemplu în Diestel [1] (Capitolul 1) sau Holmes [1]).

I.2 Forme geometrice ale teoremei Hahn-Banach: separarea multimilor convexe

Începem cu câteva preliminarii relative la hiperplane. În cele ce urmează, notăm prin E un s.v.n.

Definiție. – Un hiperplan (afin) este o submulțime H a lui E de forma

$$H = \{x \in E ; f(x) = \alpha\},$$

unde f este o funcțională liniară (în E care nu este identic nulă și $\alpha \in \mathbb{R}$ este o constantă dată. Spunem că H este un hiperplan de ecuație $f = \alpha$.}

5Nu este neapărat necesar ca f să fie continuă (Dacă E este de dimensiune infinită, atunci există întotdeauna funcționale liniare care nu sunt continue; a se vedea [EX]).
Propoziția I.5. – Hiperplanul de ecuație \([f = \alpha]\) este închis dacă și numai dacă \(f\) este continuă.

Demonstrație. – Este limpede că dacă \(f\) este continuă atunci \(H\) este închisă. Reciproc, presupunem că \(H\) este închisă. Complementara \(H^c\) a lui \(H\) este deschisă și nevidă (deoarece \(f\) nu este identic nulă). Fie \(x_0 \in H^c\) și presupunem (pentru a fixa ideile) că \(f(x_0) < \alpha\). Fie \(r > 0\) astfel încât \(B(x_0, r) \subset H^c\), unde
\[
B(x_0, r) = \{x \in E; \|x - x_0\| < r\}.
\]
Avem
\[
(7) \quad f(x) < \alpha \quad \forall x \in B(x_0, r).
\]
Intr-adevăr, \(f(x_1) > \alpha\) pentru un anume \(x_1 \in B(x_0, r)\). Segmentul
\[
\{x_t = (1 - t)x_0 + tx_1; t \in [0, 1]\}
\]
este conținut în \(B(x_0, r)\) și deci \(f(x_t) \neq \alpha, \forall t \in [0, 1]:\) pe de altă parte \(f(x_t) = \alpha,\) pentru un anume \(t \in [0, 1],\) mai precis \(t = \frac{\alpha - f(x_0)}{f(x_1) - f(x_0)}\). Aceasta este o contradicție, deci relația (7) este demonstrată. Rezultă din (7) că
\[
f(x_0 + rz) < \alpha \quad \forall z \in B(0, 1).
\]
Deci \(f\) este continuă și \(\|f\| \leq \frac{1}{r}(\alpha - f(x_0)).\)

Definiție. – Fie \(A\) și \(B\) două submulțimi ale lui \(E\). Spunem că hiperplanul \(H\) de ecuație \([f = \alpha]\) separă \(A\) și \(B\) în sens larg dacă
\[
f(x) \leq \alpha \quad \forall x \in A \quad \text{și} \quad f(x) \geq \alpha \quad \forall x \in B.
\]
Spunem că \(H\) separă \(A\) și \(B\) în sens strict dacă există \(\varepsilon > 0\) astfel încât
\[
f(x) \leq \alpha - \varepsilon \quad \forall x \in A \quad \text{și} \quad f(x) \geq \alpha + \varepsilon \quad \forall x \in B.
\]
Din punct de vedere geometric, separarea exprimă faptul că \(A\) și \(B\) se află de o parte și de alta a lui \(H\).
In final reamintim că o mulțime $A \subset E$ este convexă dacă

$$tx + (1-t)y \in A \quad \forall x, y \in A, \quad \forall t \in [0, 1].$$

- Teorema I.6 (Hahn-Banach, prima formă geometrică). Fie $A \subset E$ și $B \subset E$ două mulțimi convexe, nevide și disjuncte. Presupunem că A este deschisă. Atunci există un hiperplan închis care separă A și B în sens larg.

Demonstrația teoremei I.6 face apel la următoarele două rezultate auxiliare.

Lema I.2. – Fie $C \subset E$ o mulțime deschisă și convexă astfel încât $0 \in C$. Pentru orice $x \in E$ notăm

$$p(x) = \inf \{\alpha > 0 ; \alpha^{-1}x \in C\}$$

(p se numește funcționala Minkowski asociată lui C).

Atunci p satisface (1), (2) și proprietățile

(9) există o constantă M astfel încât $0 \leq p(x) \leq M\|x\| \quad \forall x \in E$

(10) $$C = \{x \in E ; p(x) < 1\}.$$

Demonstrația Lemei I.2. – Proprietatea (1) este evidență.

Demonstrația lui (9). Fie $r > 0$ astfel încât $B(0, r) \subset C$; este evident că

$$p(x) \leq \frac{1}{r}\|x\| \quad \forall x \in E.$$

Demonstrația lui (10). Presupunem mai întâi că $x \in C$; deoarece C este deschisă, rezultă că $(1 + \varepsilon)x \in C$ pentru orice $\varepsilon > 0$ suficient de mic. Deci $p(x) \leq \frac{1}{1+\varepsilon} < 1$. Reciproc, dacă $p(x) < 1$, atunci există $\alpha \in (0, 1)$ astfel încât $\alpha^{-1}x \in C$ și deci $x = \alpha(\alpha^{-1}x) + (1 - \alpha)0 \in C$.

Demonstrația lui (2). Fie $x, y \in E$ și fie $\varepsilon > 0$. Folosind (1) și (10) obținem că $\frac{x}{p(x)+\varepsilon} \in C$ și $\frac{y}{p(y)+\varepsilon} \in C$. Așadar $\frac{tx}{p(x)+\varepsilon} + \frac{(1-t)y}{p(y)+\varepsilon} \in C$ pentru orice $t \in [0, 1]$. In particular, pentru $t = \frac{x+y}{p(x)+p(y)+2\varepsilon}$ obținem $\frac{x+y}{p(x)+p(y)+2\varepsilon} \in C$ Folosind încă o dată (1) și (10) rezultă că

$$p(x + y) < p(x) + p(y) + 2\varepsilon, \quad \forall \varepsilon > 0,$$
Lema I.3. – Fie $C \subset E$ o mulțime convexă, deschisă, nevidă și fie $x_0 \in E$ cu $x_0 \notin C$. Atunci există $f \in E'$ astfel încât $f(x) < f(x_0)$ $\forall x \in C$. In particular, hiperplanul $[f = f(x_0)]$ separă mulțimile $\{x_0\}$ și C în sens larg.

Demonstrația lemei I.3. – Prin translație putem întotdeauna presupune că $0 \in C$. Definim apoi funcționala Minkowski p asociată lui C (veză lema I.2). Considerăm spațiul liniar $G = \mathbb{R}x_0$ și funcționala $g : G \rightarrow \mathbb{R}$ definită prin

$$g(tx_0) = t, \quad t \in \mathbb{R}.$$

Este evident că

$$g(x) \leq p(x) \quad \forall x \in G$$

(se ia $x = tx_0$ și se disting situațiile $t > 0$ și $t \leq 0$). Conform teoremei I.1, există o funcțională liniară f definită pe E care prelungeste g astfel încât

$$f(x) \leq p(x) \quad \forall x \in E.$$

In particular, avem $f(x_0) = 1$ și f este continuă, conform (9). Pe de altă parte, deducem din (10) că $f(x) < 1$ pentru orice $x \in C$.

Demonstrația teoremei I.6. – Fie $C = A - B$, deci C este convexă (verificare ușoară), C este deschisă (deoarece $C = \bigcup_{y \in B} (A - y)$ și $0 \notin C$ (pentru că $A \cap B = \emptyset$). Conform lemei I.3, există $f \in E'$ astfel încât

$$f(z) < 0 \quad \forall z \in C;$$

adică

$$f(x) < f(y) \quad \forall x \in A, \quad \forall y \in B.$$

Fixăm $\alpha \in \mathbb{R}$ astfel încât

$$\text{Sup}_{x \in A} f(x) \leq \alpha \leq \text{Inf}_{y \in B} f(y).$$

Evident, hiperplanul de ecuație $[f = \alpha]$ separă mulțimile A și B în sens larg.
Teorema I.7 (Hahn-Banach, a doua formă geometrică). – Fie \(A \subset E \) și \(B \subset E \) două mulțimi convexe, nevide și disjuncte. Presupunem că \(A \) este închisă și \(B \) este compactă. Atunci există un hiperplan închis care separă mulțimile \(A \) și \(B \) în sens strict.

Demonstrație. – Pentru \(\varepsilon > 0 \) definim \(A_\varepsilon = A + B(0, \varepsilon) \) și \(B_\varepsilon = B + B(0, \varepsilon) \). Multimile \(A_\varepsilon \) și \(B_\varepsilon \) sunt convexe, deschise și nevide. In plus, pentru \(\varepsilon > 0 \) suficient de mic, \(A_\varepsilon \) și \(B_\varepsilon \) sunt disjuncte (dacă nu, există șirurile \(\varepsilon_n \rightarrow 0, x_n \in A \text{ și } y_n \in B \) astfel \(\|x_n - y_n\| < 2\varepsilon_n \); am putea apoi extrage un subșir \(y_{n_k} \rightarrow y \in A \cap B \). Conform teoremei I.6, există un hiperplan închis de ecuație \([f = \alpha] \) care separă mulțimile \(A_\varepsilon \) și \(B_\varepsilon \) în sens larg. Avem așadar

\[
f(x + \varepsilon z) \leq \alpha \leq f(y + \varepsilon z) \quad \forall x \in A, \forall y \in B, \forall z \in B(0, 1).
\]

Rezultă că

\[
f(x) + \varepsilon\|f\| \leq \alpha \leq f(y) - \varepsilon\|f\|, \quad \forall x \in A, \forall y \in B.
\]

Deducem de aici că \(A \) și \(B \) sunt separate în sens strict de hiperplanul \([f = \alpha]\) deoarece \(\|f\| \neq 0 \).

Remarca 4. – Fie \(A \subset E \) și \(B \subset E \) două mulțimi convexe nevide astfel \(A \cap B = \emptyset \). Fără o ipoteză suplimentară este în general imposibil de a separa mulțimile \(A \) și \(B \) în sens larg printr-un hiperplan închis. Putem totuși construi un exemplu în care \(A \) și \(B \) sunt mulțimi convexe și închise, nevide, disjuncte astfel \(A \cap B = \emptyset \) există nici un hiperplan închis care separă \(A \) și \(B \) în sens larg (a se vedea [EX]). Totuși, dacă \(E \) este finit dimensional, atunci putem întotdeauna separa în sens larg două mulțimi \(A \) și \(B \) convexe, nevide și disjuncte (fără nici o ipoteză suplimentară!); vezi [EX].

Incheiem această secțiune cu un corolar foarte util atunci când dorim să arătăm că un subspațiu vectorial este dens.

Corolarul I.8. – Fie \(F \subset E \) un subspațiu vectorial astfel că \(F \neq E \). Atunci există \(f \in E', f \neq 0 \) astfel încât

\[
\langle f, x \rangle = 0 \quad \forall x \in F.
\]
Demonstrație. – Fie $x_0 \in E$ cu $x_0 \not\in \overline{F}$. Aplicăm teorema I.7 cu $A = \overline{F}$ și $B = \{x_0\}$. Există deci $f \in E'$, $f \neq 0$ astfel încât hiperplanul de ecuație $[f = \alpha]$ separă în sens strict multimele \overline{F} și $\{x_0\}$. Așadar

$$\langle f, x \rangle < \alpha < \langle f, x_0 \rangle \quad \forall x \in F.$$

Rezultă că $\langle f, x \rangle = 0$ $\forall x \in F$, deoarece $\lambda \langle f, x \rangle < \alpha$ pentru orice $\lambda \in \mathbb{R}$.

- **Remarca 5.** – Corolarul 1.8 este aplicat adesea pentru a arăta că un subspațiu vectorial $F \subset E$ este dens. Pentru aceasta considerăm o funcțională liniară și continuă astfel încât $f = 0$ pe F și demonstrăm că f este identic nulă pe E.

I.3 Introducere în teoria funcțiilor convexe conjugate

Începem cu câteva preliminarii despre funcțiile inferior semicontinue și funcțiile convexe.

În această secțiune vom considera funcții φ definite pe o mulțime E cu valori în $(-\infty, +\infty]$, deci φ poate lua valoarea $+\infty$ (dar valoarea $-\infty$ este exclusă). Notăm prin $D(\varphi)$ domeniul lui φ, adică

$$D(\varphi) = \{x \in E; \varphi(x) < +\infty\}.$$

Notație: Epigraful lui φ este mulțimea

$$\text{epi } \varphi = \{[x, \lambda] \in E \times \mathbb{R}; \varphi(x) \leq \lambda\}^{(6)}.$$

Presupunem acum că E este un spațiu topologic. Reamintim următoarea

Definiție. – O funcție $\varphi : E \to (-\infty, +\infty]$ se numește inferior semicontinuă (i.s.c.) dacă pentru orice $\lambda \in \mathbb{R}$ mulțimea

$$[\varphi \leq \lambda] = \{x \in E; \varphi(x) \leq \lambda\}$$

(6)Insistăm asupra faptului că $\mathbb{R} = (-\infty, \infty)$ și că, în cazul nostru, λ nu poate lua valoarea ∞.

- $\lambda \in \mathbb{R}$.
este închisă.

Prezentăm în continuare câteva proprietăți ale funcțiilor i.s.c. (vezi Choquet [1] sau Dixmier [1]):

(a) Dacă φ este i.s.c. atunci epi φ este închisă în $E \times \mathbb{R}$; și reciproc.

(b) Dacă φ este i.s.c., atunci pentru orice $x \in E$ și pentru orice $\varepsilon > 0$ există o vecinătate V a lui x astfel încât

$$\varphi(y) \geq \varphi(x) - \varepsilon \quad \forall y \in V;$$

și reciproc.

In particular, dacă φ este i.s.c. și (x_n) este un șir în E astfel încât $x_n \to x$, atunci

$$\lim_{n \to \infty} \varphi(x_n) \geq \varphi(x).$$

(c) Dacă φ_1 și φ_2 sunt i.s.c. atunci $\varphi_1 + \varphi_2$ este i.s.c.

(d) Dacă $(\varphi_i)_{i \in I}$ este o familie de funcții i.s.c. atunci anvelopa superioară a acestei familii este i.s.c., adică funcția φ definită prin

$$\varphi(x) = \text{Sup}_{i \in I} \varphi_i(x)$$
este i.s.c.

(e) Dacă E este compactă și φ este i.s.c. atunci φ își atinge marginea inferioară în E.

Presupunem acum că E este un spațiu vectorial. Reamintim

Definiție. – O funcție $\varphi : E \to (-\infty, +\infty]$ se numește convexă dacă

$$\varphi(tx + (1-t)y) \leq t\varphi(x) + (1-t)\varphi(y) \quad \forall x, y \in E, \quad \forall t \in (0, 1).$$

Vom utiliza câteva proprietăți elementare ale funcțiilor convexe:

(a) Dacă φ este o funcție convexă, atunci epi φ este o mulțime convexă în $E \times \mathbb{R}$; și reciproc.

(b) Dacă φ este o funcție convexă, atunci, pentru orice $\lambda \in \mathbb{R}$ mulțimea $[\varphi \leq \lambda]$ este convexă; reciproc nu este adevărată.

(c) Dacă φ_1 și φ_2 sunt convexe, atunci $\varphi_1 + \varphi_2$ este convexă.

(d) Dacă $(\varphi_i)_{i \in I}$ este o familie de funcții convexe, atunci anvelopa superioară a acestei familii este, de asemenea, convexă.
Presupunem în cele ce urmează că E este un s.v.n.

Definiție. – Fie $\varphi : E \to (-\infty, +\infty]$ astfel încât $\varphi \not\equiv +\infty$ (adică $D(\varphi) \neq \emptyset$). Definim funcția conjugată a lui φ prin $\varphi^* : E' \to (-\infty, +\infty]$ (unde $D(\varphi)^*$)

$$
\varphi^*(f) = \operatorname{Sup}_{x \in E} \{(f, x) - \varphi(x)\} \quad (f \in E').
$$

Observăm că φ^* este convexă și i.s.c. pe E'. Intr-adevăr, pentru orice $x \in E$ fixat, aplicația $f \mapsto \langle f, x \rangle - \varphi(x)$ este convexă și continuă (deci i.s.c.) pe E'. Rezultă că anvelopa superioară a acestor funcții (când x parcurge E) este convexă și i.s.c.

Propoziția I.9. – Presupunem că $\varphi : E \to (-\infty, +\infty]$ este convexă, i.s.c. și $\varphi \not\equiv +\infty$. Atunci $\varphi^* \not\equiv +\infty$, și, în particular, φ este mărginită inferior de o funcție continuă aﬁnă.

Demonstrație. – Fie $x_0 \in D(\varphi)$ și fie $\lambda_0 < \varphi(x_0)$. Aplicăm teorema I.7 (Hahn-Banach, a doua formă geometrică) în spațiul $E \times \mathbb{R}$ cu $A = \operatorname{epi} \varphi$ și $B = \{[x_0, \lambda_0]\}$.

Deci există un hiperplan închis $H = \{\Phi = \alpha\}$ în $E \times \mathbb{R}$ care separă strict multimile A și B. Observăm că aplicația $x \in E \mapsto \Phi([x, 0])$ este o funcțională liniară și continuă pe E și deci $\Phi([x, 0]) = \langle f, x \rangle$, pentru un anume $f \in E'$. Punând $k = \Phi([0, 1])$ avem

$$
\Phi([x, \lambda]) = \langle f, x \rangle + k\lambda \quad \forall [x, \lambda] \in E \times \mathbb{R}.
$$

Scriind că $\Phi > \alpha$ pe A și $\Phi < \alpha$ pe B obținem

$$
\langle f, x \rangle + k\lambda > \alpha, \quad \forall [x, \lambda] \in \operatorname{epi} \varphi
$$

și

$$
\langle f, x_0 \rangle + k\lambda_0 < \alpha.
$$

În particular, avem

$$
\langle f, x \rangle + k\varphi(x) > \alpha \quad \forall x \in D(\varphi)
$$

\(^7\varphi^*\) se numește uneori transformata Legendre a lui φ.
şi deci
\[\langle f, x_0 \rangle + k \varphi(x_0) > \alpha > \langle f, x_0 \rangle + k \lambda_0. \]
Rezultă \(k > 0 \). Deducem din (11) că
\[\langle -\frac{1}{k} f, x \rangle - \varphi(x) < -\frac{\alpha}{k} \quad \forall x \in D(\varphi) \]
şi deci \(\varphi^*(-\frac{1}{k} f) < +\infty \).

Definim acum, dacă \(\varphi^* \neq +\infty \), aplicația \(\varphi^{**} : E'' \to (-\infty, +\infty] \) prin
\[\varphi^{**}(x) = \operatorname{Sup}_{f \in E'} \{ \langle f, x \rangle - \varphi^*(f) \} \quad (x \in E) \]

- **Teorema I.10 (Fenchel-Moreau).** – Presupunem că \(\varphi : E \to (-\infty, +\infty] \) este convexă, i.e.c. și \(\varphi \neq +\infty \). Atunci \(\varphi^{**} = \varphi \).

DEMONSTRĂRIE. – Procedăm în două etape:

Etapa 1: Presupunem, în plus, că \(\varphi \geq 0 \) și afirmăm că \(\varphi^{**} = \varphi \). Observăm mai întâi că \(\varphi^{**} \leq \varphi \); într-adevăr, din definiția lui \(\varphi^* \), este evident că
\[\langle f, x \rangle - \varphi^*(f) \leq \varphi(x) \quad \forall x \in E, \forall f \in E'. \]
Pentru a demonstra că \(\varphi^{**} = \varphi \) raționăm prin absurd și presupunem că \(\varphi^{**}(x_0) < \varphi(x_0) \), pentru un anume \(x_0 \in E \). Este posibil să avem \(\varphi(x_0) = +\infty \), dar întotdeauna \(\varphi^{**}(x_0) < +\infty \). Aplică teorema I.7 (Hahn-Banach, a doua formă geometrică) în spațiul \(E \times \mathbb{R} \) cu \(A = \operatorname{epi} \varphi \) și \(B = [x_0, \varphi^{**}(x_0)] \). Așadar, există—ca în demonstrația propoziției I.9 –\(-f \in E', k \in \mathbb{R} \) și \(\alpha \in \mathbb{R} \) astfel încât
\[(12) \quad \langle f, x \rangle + k \lambda > \alpha \quad \forall [x, \lambda] \in \operatorname{epi} \varphi \]
\[(13) \quad \langle f, x_0 \rangle + k \varphi^{**}(x_0) < \alpha. \]
Rezultă \(k \geq 0 \) (în (12) fixăm \(x \in D(\varphi) \) și luăm \(\lambda = n \to +\infty \). [Aici nu putem concluziona –ca în demonstrația propoziției I.9 –că avem \(k > 0 \); am putea avea \(k = 0 \) – care corespunde unui hiperplan “vertical” \(H \) în \(E \times \mathbb{R} \).]
FUNȚII CONVEXE CONJUGATE

Fie \(\varepsilon > 0 \); deoarece \(\varphi \geq 0 \) avem, conform (12),

\[
\langle f, x \rangle + (k + \varepsilon)\varphi(x) \geq \alpha \quad \forall x \in D(\varphi).
\]

Deci

\[
\varphi^\ast \left(-\frac{f}{k + \varepsilon} \right) \leq -\frac{\alpha}{k + \varepsilon}.
\]

Conform definiției lui \(\varphi^{**}(x_0) \) rezultă că

\[
\varphi^{**}(x_0) \geq \langle -\frac{f}{k + \varepsilon}, x_0 \rangle - \varphi^\ast \left(-\frac{f}{k + \varepsilon} \right) \geq \langle -\frac{f}{k + \varepsilon}, x_0 \rangle + \frac{\alpha}{k + \varepsilon}.
\]

Prin urmare

\[
\langle f, x_0 \rangle + (k + \varepsilon)\varphi^{**}(x_0) \geq \alpha \quad \forall \varepsilon > 0
\]

care contrazice (13).

Etapă 2: Cazul general. Fixăm \(f_0 \in D(\varphi^\ast) \) \((D(\varphi^\ast) \neq \emptyset, \) conform propoziției I.9) și definim

\[
\overline{\varphi}(x) = \varphi(x) - \langle f_0, x \rangle + \varphi^\ast(f_0).
\]

Deci \(\overline{\varphi} \) este convexă, i.e.c., \(\overline{\varphi} \neq +\infty \) și \(\overline{\varphi} \geq 0 \). Știm din Etapa 1 că \((\overline{\varphi})^{**} = \overline{\varphi} \). Calculăm acum \((\overline{\varphi})^\ast \) și \((\overline{\varphi})^{**} \). Avem

\[
(\overline{\varphi})^\ast(f) = \varphi^\ast(f + f_0) - \varphi^\ast(f_0)
\]

și

\[
(\overline{\varphi})^{**}(x) = \varphi^{**}(x) - \langle f_0, x \rangle + \varphi^\ast(f_0).
\]

Rezultă că \(\varphi^{**} = \varphi \).

Un exemplu. — Considerăm \(\varphi(x) = \|x\| \). Este ușor de verificat că

\[
\varphi^\ast(f) = \begin{cases}
0 & \text{dacă } \|f\| \leq 1 \\
+\infty & \text{dacă } \|f\| > 1.
\end{cases}
\]

Deci

\[
\varphi^{**}(x) = \sup_{\|f\| \leq 1} \langle f, x \rangle.
\]
Scriind egalitatea
\[\varphi^{**} = \varphi \]
regăsim (partial) corolarul I.4.

Incheiem acest capitol cu o altă proprietate a funcțiilor convexe conjugate.

* Teorema I.11 (Fenchel-Rockafellar). — Fie \(\varphi \) și \(\psi \) funcții convexe. Presupunem că există \(x_0 \in D(\varphi) \cap D(\psi) \) astfel încât \(\varphi \) este continuă în \(x_0 \). Atunci

\[
\inf_{x \in E} \{\varphi(x) + \psi(x)\} = \sup_{f \in E'} \{-\varphi^*(-f) - \psi^*(f)\}
\]

\[
= \max_{f \in E'} \{-\varphi^*(-f) - \psi^*(f)\}.
\]

Demonstrația teoremei I.11 face apel la

Lema I.4. — Fie \(C \subset E \) o mulțime convexă; atunci \(\operatorname{Int} C \) \(^8\) este o mulțime convexă. Dacă, în plus, \(\operatorname{Int} C \neq \emptyset \) atunci

\[
\overline{C} = \operatorname{Int} C.
\]

Pentru demonstrația lemei I.4 cităm L. Schwartz [2], Bourbaki [1].

DEMONSTRĂTIA TEOREMEI I.11. — Fie

\[
a = \inf_{x \in E} \{\varphi(x) + \psi(x)\}
\]

\[
b = \sup_{f \in E'} \{-\varphi^*(-f) - \psi^*(f)\}.
\]

Se verifică cu ușurință că \(b \leq a \). Dacă \(a = -\infty \), concluzia teoremei I.11 este evidentă.

Presupunem acum că \(a \in \mathbb{R} \). Notăm

\[
C = \operatorname{epi} \varphi.
\]

Este evident că \(\operatorname{Int} C \neq \emptyset \) (deoarece \(\varphi \) este continuă în \(x_0 \)). Aplicăm acum teorema (Hahn-Banach, prima formă geometrică) cu \(A = \operatorname{Int} C \) și

\[
B = \{[x, \lambda] \in E \times \mathbb{R}; \ \lambda \leq a - \psi(x)\}.
\]

\(^8\)Int \(C \) reprezintă interiorul lui \(C \).
A și B sunt convexe și nevide. Mai mult, $A \cap B = \emptyset$; într-adevăr, dacă $[x, \lambda] \in A$, atunci
\[
\lambda > \varphi(x) \geq a - \psi(x)
\]
(din definiția lui a) – și deci $[x, \lambda] \notin B$. Există deci un hiperplan închis H care separă A și B în sens larg. Rezultă că H separă în sens larg și multimile \overline{A} și B, conform lemei I.4. Deci există $f \in E'$, $k \in \mathbb{R}$ și $\alpha \in \mathbb{R}$ astfel încât hiperplanul $H = [\Phi = \alpha]$ separă în $E \times \mathbb{R}$ multimele C și B, unde
\[
\Phi([x, \lambda]) = \langle f, x \rangle + k\lambda \quad \forall [x, \lambda] \in E \times \mathbb{R}.
\]
Deci
\[
\langle f, x \rangle + k\lambda \geq \alpha \quad \forall [x, \lambda] \in C,
\]
\[
\langle f, x \rangle + k\lambda \leq \alpha \quad \forall [x, \lambda] \in B.
\]
Alegând $x = x_0$ și luând $\lambda \to +\infty$ în (14) observăm că avem $k \geq 0$. Afirmăm că, de fapt
\[
k > 0.
\]
Reamintim că $\Phi \neq 0$, ceea ce înseamnă că $\|f\| + |k| \neq 0$. Presupunem, prin absurd, $k = 0$. Din (14) și (15) rezultă că
\[
\langle f, x \rangle \geq \alpha \quad \forall x \in D(\varphi)
\]
\[
\langle f, x \rangle \leq \alpha \quad \forall x \in D(\psi).
\]
Dar $B(x_0, \varepsilon_0) \subset D(\varphi)$ pentru $\varepsilon_0 > 0$ suficient de mic, deci
\[
\langle f, x_0 + \varepsilon_0 z \rangle \geq \alpha \quad \forall z \in B(0, 1).
\]
Rezultă că $\langle f, x_0 \rangle \geq \alpha + \varepsilon_0 \|f\|$. Pe de altă parte,
\[
\langle f, x_0 \rangle \leq \alpha \quad \text{deoarece } x_0 \in D(\psi).
\]
Deci $f = 0$, ceea ce este absurd (deoarece $k = 0$). Am demonstrat astfel (16).
Din (14) și (15) deducem că
\[\varphi^*\left(-\frac{f}{k}\right) \leq -\frac{\alpha}{k} \]
și
\[\psi^*\left(\frac{f}{k}\right) \leq \frac{\alpha}{k} - a \]
decì
\[-\varphi^*\left(-\frac{f}{k}\right) - \psi^*\left(\frac{f}{k}\right) \geq a. \]
Pe de altă parte (conform definiției lui b),
\[-\varphi^*\left(-\frac{f}{k}\right) - \psi^*\left(\frac{f}{k}\right) \leq b. \]
Deducem că
\[a = b = -\varphi^*\left(-\frac{f}{k}\right) - \psi^*\left(\frac{f}{k}\right). \]

Un exemplu. – Fie \(K \subset E \) o mulțime convexă și nevidă. Fie
\[I_K(x) = \begin{cases} 0 & \text{dacă } x \in K \\ +\infty & \text{dacă } x \notin K. \end{cases} \]
\(I_K \) se numește **funcția indicatoare** a lui \(K \). Observăm că \(I_K \) este convexă, i.e.c și \(I_K \neq +\infty \). Funcția conjugată \((I_K)^*\) se numește **funcția de suport** a lui \(K \). Aratăm că pentru orice \(x_0 \in E \) avem
\[\text{dist} \ (x_0, K) = \inf_{x \in K} \|x - x_0\| = \sup_{\|f\| \leq 1} \{\langle f, x_0 \rangle - I_K^*(f)\}. \]
Intr-adevăr, avem
\[\inf_{x \in K} \|x - x_0\| = \inf_{x \in E} \{\varphi(x) + \psi(x)\} \]
cu
\[\varphi(x) = \|x - x_0\| \ și \ \psi(x) = I_K(x). \]
Aplicând teorema I.11 obținem (17).
Remarca 6. – Relația (17) poate oferi informații interesante în cazul în care $\text{Inf}_{x \in K} \|x - x_0\|$ nu este atins (a se vedea [EX]).

Teoria suprafețelor minimale oferă un cadru foarte instructiv în care problema inițială (adică $\text{Inf}_{x \in E} \{\varphi(x) + \psi(x)\}$) nu are (în general) soluție, în timp ce problema duală (adică $\text{Max}_{f \in E'} \{-\varphi^*(-f) - \psi^*(f)\}$) are o soluție; vezi Ekeland–Temam [1].

I.4 Comentarii asupra capitolului I

1) Generalizări și variante ale teoremelor Hahn-Banach.

2) Aplicații ale teoremelor Hahn-Banach.

Teoremele Hahn-Banach au aplicații numeroase și variate. Iată două exemple:

a) Teorema Krein-Milman

Reamintim mai întâi câteva definiții. Fie E un s.v.n. și fie $A \subset E$. Anvelopa convexă închisă a lui A—notată prin $\text{conv } A$—este cea mai mică mulțime convexă și închisă care conține A. Fie $K \subset E$ o mulțime convexă. Spunem că $x \in K$ este extremal dacă x nu poate fi scris ca o combinație convexă de două puncte $x_0, x_1 \in K$, adică $x \neq (1 - t)x_0 + tx_1$ cu $t \in (0, 1)$, și $x_0 \neq x_1$.

• Teorema I.12 (Krein-Milman). – Fie $K \subset E$ o mulțime convexă și compactă. Atunci K coincide cu anvelopa convexă și închisă a punctelor sale extreme.

Teorema Krein-Milman are numeroase aplicații și generalizări (teorema de reprezentare integrală a lui Choquet, teorema lui Bochner, teorema lui Bernstein, etc.). Asupra acestui subiect se pot consulta Bourbaki [1], Choquet [2] (Vol. 2), Phelps [1], Dunford-Schwartz [1] (Vol. 1),
COMENTARIILE

b) Teoria ecuațiilor cu derivate parțiale

Menționăm, în particular, existența unei soluții elementare pentru orice operator diferențial \(P(D) \) cu coeficienți constanți (teorema Malgrange–Ehrenpreis); vezi Hörmander [1], Yosida [1], Rudin [1], Treves [2], Reed-Simon [1] (Vol. 2). In același spirit, menționăm demonstrația existenței unei funcții Green pentru Laplacian prin metoda lui Garabedian și Lax; vezi Garabedian [1].

3) Funcții convexe.

Teoria funcțiilor convexe și problemele de dualitate s-au dezvoltat considerabil în ultimele decenii; vezi Moreau [1], Rockafellar [1], Ekeland-Temam [1]. Printre aplicații cităm:

(a) Teoria jocurilor, economie, optimizare, programare convexe; vezi Aubin [1], [2], Karlin [1], Balakrishnan [1], Barbu-Precupanu [1], Moulin-Fogelman [1], Stoer-Witzgall [1].

(c) Teoria operatorilor monotoni și a semigrupurilor nelineare, vezi Brezis [1].

(d) Probleme variaționale legate de soluții periodice pentru sistemele hamiltoniene și ecuațiile nelineare ale coardelor vibrante; vezi lucrările recente ale lui Clarke, Ekeland, Lasry, Brezis, Coron și Nirenberg (cităm Clarke-Ekeland [1], Brezis-Coron-Nirenberg [1] și referințele acestor articole).

4) Prelungirea operatorilor liniari și continui.

Fie \(E \) și \(F \) spații Banach și fie \(G \subset E \) un subspațiu vectorial închis. Fie \(g : G \to F \) un operator liniar și continuu. Ne putem pune întrebarea de a ști dacă există un operator liniar și continuu \(f : E \to F \) care prelungește \(g \). Corolarul I.2 rezolvă această problemă doar dacă \(F = \mathbb{R} \). Răspunsul este afirmativ în unele cazuri:

a) Dacă \(\dim F < \infty \), se poate alege o bază în \(F \) și aplicăm corolarul I.2 fiecărei componente a lui \(g \).
b) Dacă G admite un suplement topologic (vezi capitolul II); aceasta se întâmplă, de exemplu, dacă dim $G < \infty$ sau dacă codim $G < \infty$ sau dacă E este un spațiu Hilbert. Răspunsul este negativ în cazul general, chiar dacă E și F sunt spații reflexive (vezi [EX]).

Bineînțeles, ne putem întreba dacă există o prelungire f a lui g astfel încât $\|f\|_{\mathcal{L}(E,F)} = \|g\|_{\mathcal{L}(G,F)}$. Aceasta este o problemă dificilă.
Capitolul II

TEOREMELE LUI BANACH-STEINHAUS ȘI A GRAFICULUI ÎNCHIS. RELAȚII DE ORTOGONALITATE. OPERATORI NEMĂRGINIȚI. NOIȚIUNEA DE ADJUNCT. CARACTERIZAREA OPERATORILOR SURJECTIVI

II.1 Lema lui Baire

Următoarea lemă este un rezultat clasic ce joacă un rol esențial în demonstrațiile din capitolul II.

Lema II.1 (Baire). – Fie \(X \) un spațiu metric complet. Fie \((X_n)_{n \geq 1}\) un șir de multimi închise în \(X \). Presupunem că

\[
\text{Int} \ X_n = \emptyset \quad \text{pentru orice } n \geq 1.
\]

Atunci

\[
\text{Int} \left(\bigcup_{n=1}^{\infty} X_n \right) = \emptyset.
\]

Remarca 1. – Lema lui Baire este în general utilizată în forma următoare. Fie \(X \) un spațiu metric complet nevid. Fie \((X_n)_{n \geq 1}\) un șir de mulțimi închise astfel încât

\[
\bigcup_{n=1}^{\infty} X_n = X.
\]
TEOREMA BANACH-STEINHAUS

Atunci există n_0 astfel încât $\text{Int} X_{n_0} \neq \emptyset$.

DEMONSTRĂTIE. – Fie $O_n = X_n^c$. Rezultă că O_n este o mulțime deschisă și densă. Este suficient să demonstrăm că $G = \bigcap_{n=1}^{\infty} O_n$ este densă în X. Fie ω o mulțime deschisă și nevidă în X; vom demonstra că $\omega \cap G \neq \emptyset$.

Notăm

$$B(x, r) = \{y \in X; d(y, x) < r\}.$$ Alegem $x_0 \in \omega$ și $r_0 > 0$ astfel încât

$$\overline{B(x_0, r_0)} \subset \omega.$$ Alegem apoi $x_1 \in B(x_0, r_0) \cap O_1$ și $r_1 > 0$ astfel încât

$$\begin{cases} B(x_1, r_1) \subset B(x_0, r_0) \cap O_1 \hfill \\
0 < r_1 < \frac{r_0}{2}. \hfill \end{cases}$$ Această alegere este posibilă deoarece O_1 este deschisă și densă. Construim astfel prin recurență două șiruri (x_n) și (r_n) astfel încât

$$\begin{cases} B(x_{n+1}, r_{n+1}) \subset B(x_n, r_n) \cap O_{n+1}, \quad \forall n \geq 0 \hfill \\
0 < r_{n+1} < \frac{r_n}{2}. \hfill \end{cases}$$ Rezultă că (x_n) este un șir Cauchy; fie $x_n \to \ell$. Intrucât $x_{n+p} \in B(x_n, r_n)$ pentru orice $n \geq 0$ și pentru orice $p \geq 0$, obținem prin trecere la limită (când $p \to \infty$):

$$\ell \in \overline{B(x_n, r_n)}, \quad \forall n \geq 0.$$ In particular, $\ell \in \omega \cap G$.

II.2 Teorema lui Banach-Steinhaus

Notatia. – Fie E și F două spații vectoriale normate. Notăm prin $\mathcal{L}(E, F)$ spațiul operatorilor liniari și continui de la E în F înzestrat cu norma

$$\|T\|_{\mathcal{L}(E, F)} = \sup_{\|x\| \leq 1} \|Tx\|.$$
Notăm $\mathcal{L}(E) = \mathcal{L}(E, E)$.

- **Teorema II.1 (Banach-Steinhaus).** – Fie E și F două spații Banach. Fie $(T_i)_{i \in I}$ o familie (nu neapărat numărabilă) de operatori liniari și continui de la E în F. Presupunem că

$$(1) \quad \sup_{i \in I} \|T_i x\| < \infty \quad \forall x \in E.$$ Atunci

$$(2) \quad \sup_{i \in I} \|T_i\|_{\mathcal{L}(E,F)} < \infty.$$ Cu alte cuvinte, există o constantă c astfel încât

$$\|T_i x\| \leq c\|x\| \quad \forall x \in E, \quad \forall i \in I.$$

Remarca 2. – În literatura americană teorema II.1 este adesea cunoscută sub numele de **Principiul Mărginirii Uniforme**, ceea ce exprimă cât se poate de bine conținutul rezultatului: se deduce o estimare uniformă pornind de la estimări punctuale.

Demonstrație. – Pentru fiecare număr întreg $n \geq 1$, fie

$$X_n = \{x \in E; \quad \forall i \in I, \quad \|T_i x\| \leq n\}.$$ Deci X_n este închisă și, conform (1),

$$\bigcup_{n=1}^{\infty} X_n = E.$$ Din lema lui Baire rezultă că $\text{Int} (X_{n_0}) \neq \emptyset$, pentru un anumit $n_0 \geq 1$. Fie $x_0 \in E$ și $r > 0$ astfel încât $B(x_0, r) \subset X_{n_0}$. Avem

$$\|T_i (x_0 + rz)\| \leq n_0 \quad \forall i \in I, \quad \forall z \in B(0, 1).$$ De aici rezultă că

$$r \|T_i\|_{\mathcal{L}(E,F)} \leq n_0 + \|T_i x_0\|$$ ceea ce implică (2).

Prezentăm în cele ce urmează câteva consecințe imediate ale teoremei lui Banach-Steinhaus.
Corolarul II.2. – Fie E și F două spații Banach. Fie (T_n) un șir de operatori liniari și continui de la E în F astfel încât pentru orice $x \in E$, $T_n x$ converge (când $n \to \infty$) la o limită notată cu $T x$.

Atunci

(a) Sup$_n \|T_n\|_{\mathcal{L}(E,F)} < \infty$

(b) $T \in \mathcal{L}(E,F)$

(c) $\|T\|_{\mathcal{L}(E,F)} \leq \lim \inf_{n \to \infty} \|T_n\|_{\mathcal{L}(E,F)}$.

DEMONSTRĂȚIE. – (a) rezultă direct din teorema II.1. Există deci o constantă c astfel încât

$$\|T_n x\| \leq c \|x\| \quad \forall n, \forall x \in E.$$

Prin trecere la limită obținem

$$\|Tx\| \leq c \|x\| \quad \forall x \in E.$$

Pe de altă parte, este evident că T este liniar, de unde obținem (b).

Pe de altă parte,

$$\|T_n x\| \leq \|T_n\|_{\mathcal{L}(E,F)} \|x\| \quad \forall x \in E,$$

de unde rezultă (c).

• Corolarul II.3. – Fie G un spațiu Banach și fie B o submulțime a lui G. Presupunem că pentru orice

(3) $f \in G'$, mulțimea $f(B) = \bigcup_{x \in B} \langle f, x \rangle$ este mărginită (în \mathbb{R}).

Atunci

(4) B este mărginită.

DEMONSTRĂȚIE. – Aplicăm teorema II.1 cu $E = G'$, $F = \mathbb{R}$ și $I = B$. Pentru fiecare $b \in B$, fie

$$T_b(f) = \langle f, b \rangle, \quad f \in E = G'.$$

Din ipoteză rezultă că

$$\text{Sup}_{b \in B} |T_b(f)| < \infty \quad \forall f \in E.$$
Conform teoremei II.1, există o constantă c astfel încât
\[|⟨f, b⟩| \leq c∥f∥ \quad ∀f ∈ G' \quad ∀b ∈ B. \]
Deci (folosind corolarul I.4)
\[∥b∥ \leq c \quad ∀b ∈ B. \]

Remarca 3. – Pentru a verifica faptul că o mulțime este mărginită este suficient de a o “privi” prin comportamentul tuturor formelor liniare și continue; așa procedăm în general în dimensiune finită utilizând componentele unei baze. Corolarul II.3 înlocuiește în dimensiune infinită apelarea la o bază. Putem exprima concluzia corolarului II.3 spunând că “slab închisă” $⇒$ “tare închisă”.

Avem următorul enunț “dual” al corolarului II.3:

Corolarul II.4. – Fie G un spațiu Banach și fie B' o submulțime a lui G'. Presupunem că pentru orice
\[x ∈ G \text{ mulțimea } ⟨B', x⟩ = \bigcup_{f ∈ B'} ⟨f, x⟩ \text{ este mărginită (în } R). \]

Atunci
\[B' \text{ este mărginită.} \]

DEMONSTRAȚIE. – Aplicăm teorema II.1 pentru $E = G$, $F = R$ și $I = B'$. Pentru orice $b ∈ B'$, fie
\[T_b(x) = ⟨b, x⟩ \quad (x ∈ G = E). \]
Deducem de aici și din ipoteză că există o constantă c astfel încât
\[|⟨b, x⟩| ≤ c∥x∥ \quad ∀b ∈ B', \quad ∀x ∈ G. \]
Deci (folosind definiția normei duale)
\[∥b∥ ≤ c \quad ∀b ∈ B'. \]
II.3 Teorema aplicației deschise și teorema graficului închis

Rezultatele fundamentale următoare sunt datorate lui Banach.

- Teorema II.5 (Teorema aplicației deschise). - Fie E și F două spații Banach și fie T un operator liniar, continuu și surjectiv de la E în F.

Atunci există o constantă $c > 0$ astfel încât

$$T(B_E(0,1)) \supset B_F(0,c).$$

Remarca 4. - Proprietatea (7) antrenează faptul că T transformă orice deschis din E într-un deschis din F (de unde numele acestei teoreme!). Intr-adevăr, fie U o mulțime deschisă din E; să arătăm că $T(U)$ este deschisă. Fie $y_0 \in T(U)$, deci $y_0 = Tx_0$, cu $x_0 \in U$. Fie $r > 0$ astfel încât $B(x_0,r) \subset U$, adică $x_0 + B(0,r) \subset U$. Rezultă că

$$y_0 + T(B(0,r)) \subset T(U).$$

Deci, din (7),

$$T(B(0,r)) \supset B(0,rc)$$

și, în consecință,

$$B(y_0,rc) \subset T(U).$$

Din teorema II.5 deducem imediat

Demonstrația corolarului II.6. - Relația (7) exprimă faptul că pentru orice $x \in E$ cu $\|Tx\| < c$, avem $\|x\| < 1$. Prin omogenitate rezultă că

$$\|x\| \leq \frac{1}{c} \|Tx\| \quad \forall x \in E,$$

deci T^{-1} este continuu.

- Remarca 5. - Fie E un spațiul vectorial înzestrat cu două norme $\|x\|_1$ și $\|x\|_2$. Presupunem că E înzestrat cu fiecare dintre aceste norme
este un spațiu Banach. Presupunem în plus că există o constantă $C \geq 0$ astfel încât
$$\|x\|_2 \leq C\|x\|_1 \quad \forall x \in E.$$ Atunci există o constantă $c > 0$ astfel încât
$$\|x\|_1 \leq c\|x\|_2 \quad \forall x \in E.$$ Altfel spus, cele două norme sunt echivalente. Pentru aceasta este suficient să aplicăm corolarul II.6 cu
$$E = (E, \|\|_1), \quad F = (E, \|\|_2) \quad \text{și} \quad T = \text{Id}.$$

Demonstrația teoremei II.5. – Demonstrația se face în două etape:

Prima etapă. – Fie T un operator liniar și surjectiv de la E în F. Atunci există o constantă $c > 0$ astfel încât

$$T(B(0,1)) \supset B(0,2c).$$

Demonstrație. – Fie $X_n = nT(B(0,1))$. Deoarece T este surjectiv, avem $\bigcup_{n=1}^{\infty} X_n = F$ și, conform lemei lui Baire, există n_0 astfel încât $\text{Int}(X_{n_0}) \neq \emptyset$. Rezultă că
$$\text{Int}[T(B(0,1))] \neq \emptyset.$$ Fie $c > 0$ și $y_0 \in F$ astfel încât
$$B(y_0, 4c) \subset T(B(0,1)).$$ In particular, $y_0 \in \overline{T(B(0,1))}$ și, prin simetrie,
$$-y_0 \in \overline{T(B(0,1))}.$$

Adunând (9) și (10) obținem
$$B(0, 4c) \subset T(B(0,1)) + T(B(0,1)).$$ In sfârșit, deoarece $\overline{T(B(0,1))}$ este convexă, avem
$$\overline{T(B(0,1))} + \overline{T(B(0,1))} = 2\overline{T(B(0,1))},$$
de unde rezultă (8).

Etapa a doua. Presupunem că T este un operator liniar și continuu de la E în F care verifică relația (8). Atunci avem

(11) $T(B(0,1)) \supset B(0,c)$.

DEMONSTRĂȚIE. Fixăm $y \in F$ cu $\|y\| < c$. Cautăm $x \in E$ astfel încât

$$\|x\| < 1 \quad \text{și} \quad Tx = y.$$

Conform (8), știm că

(12) $\forall \varepsilon > 0 \: \exists z \in E$ cu $\|z\| < \frac{1}{2}$ și $\|y - Tz\| < \varepsilon$.

Alegând $\varepsilon = c/2$ obținem $z_1 \in E$ astfel încât

$$\|z_1\| < \frac{1}{2} \quad \text{și} \quad \|y - Tz_1\| < \frac{c}{2}.$$

Cu aceeași construcție aplicată lui $y - Tz_1$ (în locul lui y) și cu $\varepsilon = c/4$, obținem $z_2 \in E$ astfel încât

$$\|z_2\| < \frac{1}{4} \quad \text{și} \quad \|(y - Tz_1) - Tz_2\| < \frac{c}{4}.$$

Prin recurentă construim astfel un șir (z_n) astfel încât

$$\|z_n\| < \frac{1}{2^n} \quad \text{și} \quad \|y - T(z_1 + z_2 + \ldots + z_n)\| < \frac{c}{2^n} \quad \forall n.$$

Deci șirul $x_n = z_1 + z_2 + \ldots + z_n$ este un șir Cauchy. Fie $x_n \to x$. Evident, $\|x\| < 1$ și $y = Tx$ (deoarece T este continuu).

- **Teorema II.7 (Teorema graficului închis).** Fie E și F spații Banach. Fie T un operator liniar de la E în F. Presupunem că graficul lui T, $G(T)$, este închis în $E \times F$. Atunci

T este continuu.

REMARCA 6. Bineînțeles, reciprocă este adevărată, pentru că orice aplicație continuă (liniară sau neliniară) are graficul închis.
Demonstrația teoremei II.7. – Aplicăm remarca 5. Considerăm pe E normele

$$\|x\|_1 = \|x\|_E + \|Tx\|_F$$ \(1\) și $$\|x\|_2 = \|x\|_E.$$ Cum $G(T)$ este închis, rezultă că E înestrat cu norma $\|\|_1$ este un spațiu Banach. Pe de altă parte, $\|x\|_2 \leq \|x\|_1$. In consecință, cele două norme sunt echivalente, deci există o constantă $c > 0$ astfel încât $\|x\|_1 \leq c\|x\|_2$. Deci $\|Tx\|_F \leq c\|x\|_E.$

II.4 * Suplementul topologic. Operatori inversabili la dreapta (resp. la stânga).

Incepem prin a descrie câteva proprietăți geometrice ale subspațiilor închise ale unui spațiu Banach, care rezultă din teorema aplicăției deschise.

* Teorema II.8. – Fie E un spațiu Banach. Fie G și L două subspații vectoriale închise astfel încât

$$G + L$$ este închis.

Atunci există o constantă $C \geq 0$ astfel încât

(13) \[
\left\{ \begin{array}{l}
\text{orice } z \in G + L \text{ admite o decompoziție de forma } \\
 z = x + y \text{ cu } x \in G, y \in L, \|x\| \leq C\|z\| \text{ și } \|y\| \leq C\|z\|.
\end{array} \right.
\]

Demonstrație. – Considerăm spațiul produs $G \times L$ înestrat cu norma

$$\|[x, y]\| = \|x\| + \|y\|$$ și spațiul $G + L$ cu norma induși de E. Aplicația $T : G \times L \rightarrow G + L$ definită prin $T[x, y] = x + y$ este continuă, liniară și surjectivă. Conform teoremei aplicației deschise, există o constantă $c > 0$ astfel încât orice

\[1\] Această normă se numește norma grafului.
z \in G + L cu \|z\| < c se poate scrie sub forma z = x + y, cu x \in G, y \in L și \|x\| + \|y\| < 1. Prin omogenitate, orice z \in G + L se scrie

\[
z = x + y \text{ cu } x \in G, y \in L \text{ și } \|x\| + \|y\| \leq \frac{1}{c} \|z\|.
\]

* Corolarul II.9. – Presupunem satisfăcute ipotezele teoremei II.8. Atunci există o constantă C astfel încât

(14) \dist(x, G \cap L) \leq C[\dist(x, G) + \dist(x, L)] \forall x \in E.

Demonstratie. – Fie x \in E și \varepsilon > 0. Atunci există a \in G și b \in L astfel încât

\[
\|x - a\| \leq \dist(x, G) + \varepsilon, \quad \|x - b\| \leq \dist(x, L) + \varepsilon.
\]

Proprietatea (13) aplicată lui z = a − b arată că există a’ \in G și b’ \in L astfel încât

\[
a - b = a' + b', \quad \|a'\| \leq C\|a - b\|, \quad \|b'\| \leq C\|a - b\|.
\]

Rezultă că a − a’ \in G \cap L și

\[
\dist(x, G \cap L) \leq \|x - (a - a')\| \leq \|x - a\| + \|a'\| \\
\leq \|x - a\| + C\|a - b\| \leq \|x - a\| + \\
C(\|x - a\| + \|x - b\|) \\
\leq (1 + C)[\dist(x, G) + \dist(x, L)] + (1 + 2C)\varepsilon.
\]

Deducem de aici relația (14) trecând la limită cu \varepsilon \to 0.

Remarca 7. – Reciproc corolarului II.9 este adevărată: dacă G și L sunt subspații închise care verifică (14), atunci G + L este închis (vezi [EX]).

Definiție. – Fie G ⊂ E un subspațiu închis al unui spațiu Banach E. Un subspațiu L ⊂ E se numește suplement topologic al lui G dacă:

(i) L este închis
(ii) G ∩ L = \{0\} și G + L = E.
Suplementul Topologic

In acest caz, orice \(z \in E \) se scrie în mod unic sub forma \(z = x + y \), cu \(x \in G \) și \(y \in L \). Rezultă din teorema II.8 că proiectorii \(z \mapsto x \) și \(z \mapsto y \) sunt operatori liniari și continui. (Această proprietate ar putea servi ca definiție a suplementului topologic.)

Exemple:

1) Orice subspațiu finit dimensional \(G \) admite un suplement topologic. Intr-adevăr, fie \(e_1, e_2, \ldots, e_n \) o bază a lui \(G \). Orice \(x \in G \) se poate scrie \(x = \sum_{i=1}^{n} x_i e_i \). Fie \(\varphi_i(x) = x_i \). Prelungim fiecare funcțională \(\varphi_i \) la o funcțională liniară și continuă \(\tilde{\varphi}_i \) definită pe \(E \) (conform teoremei Hahn-Banach, forma analitică, mai precis corolarul I.2). Se verifică cu ușurință că \(L = \cap_{i=1}^{n} (\tilde{\varphi}_i)^{-1}(0) \) este un suplement topologic al lui \(G \).

2) Orice subspațiu închis \(G \) de codimensiune finită admite un suplement topologic. Intr-adevăr, este suficient să alegem orice suplement algebric al lui \(G \). Acesta este automat închis, fiind de dimensiune finită.

Iată un exemplu tipic care ilustrează această situație. Fie \(N \subset E' \) un subspațiu de dimensiune \(p \). Atunci

\[
G = \{ x \in E; \langle f, x \rangle = 0 \quad \forall f \in N \}
\]

este un subspațiu închis de codimensiune \(p \). Intr-adevăr, fie \(f_1, f_2, \ldots, f_p \) o bază a lui \(N \). Atunci există \(e_1, e_2, \ldots, e_p \in E \) astfel încât

\[
\langle f_i, e_j \rangle = \delta_{ij} \quad \forall i, j = 1, 2, \ldots, p.
\]

[Considerăm aplicația \(\Phi : E \rightarrow \mathbb{R}^p \) definită prin

\[
x \in E \mapsto \Phi(x) = (\langle f_1, x \rangle, \langle f_2, x \rangle, \ldots, \langle f_p, x \rangle)
\]

Aplicația \(\Phi \) este surjective – în caz contrar, conform teoremei Hahn-Banach (a doua formă geometrică), există \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_p) \neq 0 \) astfel încât

\[
\alpha \cdot \Phi(x) = \sum_{i=1}^{p} \alpha_i f_i, x = 0 \quad \forall x \in E,
\]

ceea ce este absurd].
Este ușor de verificat că vectorii \((e_i)_{1 \leq i \leq p}\) sunt liniar independenti și că spațiul vectorial generat de vectorii \((e_i)_{1 \leq i \leq p}\) este un suplement topologic al lui \(G\).

3) Intr-un spațiu Hilbert orice subspațiu închis \(G\) admite un suplement topologic (vezi capitolul V.2).

Remarca 8. – Chiar în spațiile reflexive se pot construi subspații închise care nu posedă nici un suplement topologic. Un rezultat remarcatibil al lui Lindenstrauss și Tzafriri [1] afirmă că orice spațiu Banach care nu este izomorf cu un spațiu Hilbert are subspații închise fără suplement topologic.

Fie \(T\) un operator liniar, continuu și surjectiv de la \(E\) în \(F\). Teorema aplicației deschise arată că

\[
\forall f \in F, \ \exists x \in E \text{ astfel încât } Tx = f \text{ și } \|x\| \leq C\|f\|.
\]

Este natural să ne întrebăm dacă putem construi un operator liniar și continuu \(S\) de la \(F\) în \(E\) astfel încât \(T \circ S = \Id_F\). Spunem în acest caz că \(S\) este un invers la dreapta al lui \(T\).

* Teorema II.10. – Fie \(T\) un operator liniar, continuu și surjectiv de la \(E\) în \(F\).

Următoarele proprietăți sunt echivalente:

(i) \(T\) admite un invers la dreapta.

(ii) \(N(T) = T^{-1}(0)\) admite un suplement topologic în \(E\).

Demonstrație.

(i) \(\Rightarrow\) (ii). Fie \(S\) un invers la dreapta al lui \(T\). Se verifică ușor că \(R(S) = S(F)\) este un suplement topologic al lui \(N(T)\).

(ii) \(\Rightarrow\) (i). Fie \(L\) un suplement topologic al lui \(N(T)\). Notăm cu \(P\) proiectorul lui \(E\) pe \(L\) (\(P\) este un operator liniar și continuu). Fiind dat \(f \in F\), notăm cu \(x\) una dintre soluțiile ecuației \(Tx = f\) și punem \(Sf = Px\); observăm că \(S\) este independent de alegerea lui \(x\). Se verifică ușor că \(S\) este un operator liniar, continuu și că \(T \circ S = \Id_F\).

Remarca 9. – Putem construi exemple de spații reflexive \(E\) și \(F\) și de operatori surjectivi care nu au invers la dreapta. Într-adevăr, fie \(G \subset E\) un subspațiu închis fără suplement topologic (remarca 8), \(F = E/G\) și
fie T proiecția canonică a lui E pe F (pentru definiție și proprietăți ale spațiului cât, vezi [EX]).

Prin analogie spunem că S este un invers la stânga al lui T dacă S este un operator liniar și continuu de la F în E astfel încât $S \circ T = \text{Id}_E$.

* Teorema II.11. – Fie T un operator liniar, continuu și injectiv de la E în F.

Următoarele proprietăți sunt echivalente:

(i) T admite un invers la stânga.

(ii) $R(T) = T(E)$ este închis și admite un suplement topologic în F.

Demonstrație.

(i) \Rightarrow (ii). Este ușor de verificat că $R(T)$ este închis și că $N(S)$ este un suplement topologic al lui $R(T)$.

(ii) \Rightarrow (i). Fie P un proiector continuu al lui F pe $R(T)$. Fie $f \in F$; deoarece $Pf \in R(T)$, rezultă că există un unic $x \in E$ astfel încât $Tx = Pf$. Definim $Sf = x$. Este clar că $S \circ T = \text{Id}_E$; pe de altă parte, S este continuu, conform corolarului II.6.

II.5 Relații de ortogonalitate

Notatii. – Fie X un spațiu Banach.

Dacă $M \subset X$ este un subspațiu vectorial, punem

$$M^\perp = \{f \in X'; \langle f, x \rangle = 0, \forall x \in M\}.$$

Dacă $N \subset X'$ este un subspațiu vectorial, punem

$$N^\perp = \{x \in X; \langle f, x \rangle = 0, \forall f \in N\}.$$

Spunem că M^\perp (resp. N^\perp) este ortogonalul lui M (resp. N). Remarcăm că M^\perp (resp. N^\perp) este un subspațiu vectorial închis al lui X' (resp. X).

Începem cu un rezultat simplu:

• Propoziția II.12. – Fie $M \subset X$ un subspațiu vectorial. Atunci

$$(M^\perp)^\perp = \overline{M}.$$
Fie $N \subset X'$ un subspațiu vectorial. Atunci

$$(N^\perp)^\perp = \overline{N}.$$

REMARCA 10. – Se poate întâmpla ca $(N^\perp)^\perp \neq \overline{N}$; a se vedea un exemplu în [EX]. Vom vedea în capitolul III că dacă X este reflexiv atunci $(N^\perp)^\perp = \overline{N}$. Mai general, vom vedea că dacă X este un spațiu Banach oarecare atunci $(N^\perp)^\perp$ coincide cu închiderea lui N pentru topologia $\sigma(X',X)$.

DEMONSTRĂȚIA PROPOZIȚIEI II.12. – Este clar că $M \subset (M^\perp)^\perp$ și, întrucât $(M^\perp)^\perp$ este închis, avem $\overline{M} \subset (M^\perp)^\perp$.

Invers, să arătăm că $(M^\perp)^\perp \subset \overline{M}$. Raționăm prin reducere la absurd și presupunem că există $x_0 \in (M^\perp)^\perp$ astfel încât $x_0 \notin \overline{M}$. Separăm în sens strict multimi $\{x_0\}$ și \overline{M} printr-un hiperplan închis. Există deci $f \in X'$ și $\alpha \in \mathbb{R}$ astfel încât

$$(15) \quad \langle f, x \rangle < \alpha < \langle f, x_0 \rangle \quad \forall x \in M.$$

Deoarece M este un subspațiu vectorial, rezultă că $\langle f, x \rangle = 0 \ \forall x \in M$. Deci $f \in M^\perp$. Prin urmare $\langle f, x_0 \rangle = 0$ – ceea ce contrazice (15).

De asemenea, este clar că $N \subset (N^\perp)^\perp$ și deci $\overline{N} \subset (N^\perp)^\perp$.

REMARCA 11. – Este instructiv să se urmeze demonstrația de mai sus pentru a încerca să se arate că $(N^\perp)^\perp = \overline{N}$. Presupunem, prin absurd, că există $f_0 \in (N^\perp)^\perp$ astfel încât $f_0 \notin \overline{N}$. Separăm în sens strict multimi $\{f_0\}$ și \overline{N} printr-un hiperplan închis în X'. Există deci $\varphi \in X''$ și $\alpha \in \mathbb{R}$ astfel încât

$$\varphi(f) < \alpha < \varphi(f_0) \quad \forall f \in N.$$

Avem, în plus, $\varphi(f) = 0$, $\forall f \in N$, dar nu putem continua argumentul decât dacă, “prin hazard”, există $x_0 \in X$ astfel încât

$$\varphi(f) = \langle f, x_0 \rangle \quad \forall f \in X'$$

(este exact ce se întâmplă dacă X este reflexiv!).

PROPUNIȚIA II.13. – Fie G și L două subspații închise ale lui X. Atunci

$$(16) \quad G \cap L = (G^\perp + L^\perp)^\perp$$
(17) \[G^\perp \cap L^\perp = (G + L)^\perp. \]

Demonstrație. – Justificarea lui (16). Este evident că \(G \cap L \subset (G^\perp + L^\perp)^\perp \); într-adevăr, dacă \(x \in G \cap L \) și \(f \in G^\perp + L^\perp \) atunci \(\langle f, x \rangle = 0 \). Invers, avem \(G^\perp \subset G^\perp + L^\perp \) și deci \((G^\perp + L^\perp)^\perp \subset G^{\perp\perp} = G \) (remarcăm că dacă \(N_1 \subset N_2 \) atunci \(N_2^\perp \subset N_1^\perp \)); în mod similar, \((G^\perp + L^\perp)^\perp \subset L \).

Deci \((G^\perp + L^\perp)^\perp \subset G \cap L \).

Justificarea lui (17). Folosim același argument ca în demonstrarea relației (16).

Corolarul II.14. – Fie \(G \) și \(L \) două subspatii închise ale lui \(X \). Atunci

(18) \[(G \cap L)^\perp \supset G^\perp + L^\perp \]

(19) \[(G^\perp \cap L^\perp)^\perp = G + L. \]

Demonstrație. – Se aplică propozițiile II.12 și II.13.

Iată acum un rezultat mai profund:

* Teorema II.15. – Fie \(G \) și \(L \) două subspatii închise ale lui \(X \).

Proprietățile următoare sunt echivalente:

(a) \(G + L \) este închis în \(X \)
(b) \(G^\perp + L^\perp \) este închis în \(X' \)
(c) \(G + L = (G^\perp \cap L^\perp)^\perp \)
(d) \(G^\perp + L^\perp = (G \cap L)^\perp \).

Demonstrație.

(a) \(\iff \) (c) rezultă din (17).

(d) \(\implies \) (b) este evident.

Rămâne așadar să demonstrăm implicațiile (a) \(\implies \) (d) și (b) \(\implies \) (a).

(a) \(\implies \) (d). Conform (16), este suficient să arătăm că \((G \cap L)^\perp \subset G^\perp + L^\perp \). Fiind dat \(f \in (G \cap L)^\perp \), considerăm funcționala \(\varphi : G + L \to \mathbb{R} \)
definită după cum urmează. Pentru orice $x \in G + L$, scriem $x = a + b$, cu $a \in G$ și $b \in L$. Definim

$$\varphi(x) = \langle f, a \rangle.$$

Evident, φ nu depinde de descompunerea lui x și φ este liniară. Pe de altă parte (teorema II.8), se poate alege o descompunere a lui x astfel încât $\|a\| \leq C \|x\|$ și deci

$$|\varphi(x)| \leq C \|x\| \quad \forall x \in G + L.$$

Prelungim φ la o funcțională liniară și continuă $\tilde{\varphi}$ definită pe X. Obținem astfel

$$f = (f - \tilde{\varphi}) + \tilde{\varphi} \text{ cu } f - \tilde{\varphi} \in G^\perp \text{ și } \tilde{\varphi} \in L^\perp.$$

$(b) \implies (a)$. Știm deja, conform corolarului II.9, că există o constantă C astfel încât

$$(20) \quad \text{dist}(f, G^\perp \cap L^\perp) \leq C[\text{dist}(f, G^\perp) + \text{dist}(f, L^\perp)] \quad \forall f \in X'.$$

Pe de altă parte,

$$(21) \quad \text{dist}(f, G^\perp) = \sup_{x \in G} \langle f, x \rangle \quad \forall f \in X'.$$

[Aplicăm teorema I.11 cu $\varphi(x) = I_{B_X(0,1)}(x) - \langle f, x \rangle$ și $\psi(x) = I_G(x)]$. În mod similar, obținem

$$(22) \quad \text{dist}(f, L^\perp) = \sup_{x \in L} \langle f, x \rangle \quad \forall f \in X'$$

și, conform (17),

$$(23) \quad \text{dist}(f, G^\perp \cap L^\perp) = \text{dist}(f, (G + L)^\perp) = \sup_{x \in G + L} \langle f, x \rangle \quad \forall f \in X'.$$

Combinând (20), (21), (22) și (23) găsim

$$(24) \quad \sup_{x \in G + L} \langle f, x \rangle \leq C[\sup_{x \in G} \langle f, x \rangle + \sup_{x \in L} \langle f, x \rangle] \quad \forall f \in X'.$$

Rezultă din (24) că

$$(25) \quad B_G(0,1) + B_L(0,1) \supset \frac{1}{C} B_{G+L}(0,1).$$
Intr-adevăr, presupunem prin absurd că există $x_0 \in \overline{G + L}$ cu

$$\|x_0\| < \frac{1}{C} \quad \text{și} \quad x_0 \notin \overline{B_G(0,1) + B_L(0,1)}.$$

In acest caz s-ar putea separa în sens strict mulțimile $\{x_0\}$ și $\overline{B_G(0,1) + B_L(0,1)}$ printr-un hiperplan închis în X. Deci există $f \in X'$ și $\alpha \in \mathbb{R}$ astfel încât

$$\langle f, x \rangle < \alpha < \langle f, x_0 \rangle \quad \forall x \in B_G(0,1) + B_L(0,1).$$

În consecință,

$$\sup_{\|x\| \leq 1} \langle f, x \rangle + \sup_{\|x\| \leq 1} \langle f, x \rangle \leq \alpha < \langle f, x_0 \rangle,$$

ceea ce contrazice (24). Am stabilit astfel (25).

In sfârșit, considerăm spațiul $E = G \times L$ înzestrat cu norma

$$\| [x,y] \| = \max \{ \|x\|, \|y\| \}$$

și spațiul $F = \overline{G + L}$ înzestrat cu norma lui X.

Aplicația $T : E \to F$ definită prin $T([x,y]) = x + y$ este liniară, continuă și, conform (25), știm că

$$T(B_E(0,1)) \supset B_F \left(0, \frac{1}{C} \right).$$

Deducem [a se vedea demonstrația teoremei II.5 (teorema aplicației deschise), etapa a doua] că

$$T(B_E(0,1)) \supset B_F \left(0, \frac{1}{2C} \right).$$

În particular, T este surjectiv de la X pe Y, adică $G + L = \overline{G + L}$.

II.6 Introducere în teoria operatorilor liniari nemărginitori. Definitia adjunctului.

Definiții. – Fie E și F două spații Banach. Se numește operator liniar nemărginit definit pe E cu valori în F orice aplicație liniară
OPERATORI NEMĂRGINIȚI

$A : D(A) \subset E \rightarrow F$ definită pe un subspațiu linear $D(A) \subset E$ cu valori în F. $D(A)$ se numește domeniul lui A.

Spunem că A este mărginit dacă există o constantă $c \geq 0$ astfel încât
\[\|Au\| \leq c\|u\| \quad \forall u \in D(A). \]

Remarca 12. – Se poate întâmpla ca un operator nemărginit să fie mărginit. Terminologia nu este fericită, dar este răspândită în comunitatea matematică și nu creează confuzii!

Precizăm câteva notări și definiții importante.

| Graful lui A = $G(A) = \bigcup_{u \in D(A)}[u, Au] \subset E \times F$ |
| Imaginaria lui A = $R(A) = \bigcup_{u \in D(A)}Au \subset F$ |
| Nucleul lui A = $N(A) = \{u \in D(A); Au = 0\} \subset E$. |

Definiție. – Un operator A se numește închis dacă $G(A)$ este o mulțime închisă în $E \times F$.

- **Remarca 13.** – Pentru a demonstra că un operator A este închis se procedează în general în modul următor. Se consideră un șir (u_n) în $D(A)$ astfel încât $u_n \rightarrow u$ în E și $Au_n \rightarrow f$ în F. Este vorba apoi de a verifica două lucruri:

 (a) $u \in D(A)$
 (b) $f = Au$.

- **Remarca 14.** – Dacă A este închis, atunci $N(A)$ este închis.

- **Remarca 15.** – În practică, majoritatea operatorilor nemărginiți pe care îi întâlnim sunt închiși și cu domeniul $D(A)$ dens în E.

Definiția adjunctului A^*. Fie $A : D(A) \subset E \rightarrow F$ un operator linear nemărginit cu domeniul dens. Definim operatorul nemărginit $A^* : D(A^*) \subset F' \rightarrow E'$ după cum urmează. Fie mai întâi
\[D(A^*) = \{v \in F'; \exists c \geq 0 \text{ astfel încât } |\langle v, Au \rangle| \leq c\|u\| \quad \forall u \in D(A)\}. \]

Este evident că $D(A^*)$ este un subspațiu vectorial al lui F'. Definim în continuare A^*v pentru $v \in D(A^*)$. Fiind dat $v \in D(A^*)$, considerăm
aplicația \(g : D(A) \to \mathbb{R} \) definită prin

\[g(u) = \langle v, Au \rangle, \quad u \in D(A). \]

Avem

\[|g(u)| \leq c\|u\| \quad \forall u \in D(A). \]

Conform teoremei I.1 (Hahn-Banach, forma analitică) știm că există \(f : E \to \mathbb{R} \) o extensie a lui \(g \) astfel încât

\[|f(u)| \leq c\|u\| \quad \forall u \in E. \]

Rezultă că \(f \in E' \). Remarcăm că extensia lui \(g \) este unică deoarece \(f \) este continuă și \(D(A) \) este dens în \(E \).

Fie \(A^*v = f \).

Este clar că \(A^* \) este liniar. Operatorul \(A^* : D(A^*) \subset F' \to E' \) se numește adjunctul lui \(A \). Avem, în consecință, relația fundamentală următoare care leagă \(A \) și \(A^* \)

\[\langle v, Au \rangle_{F',F} = \langle A^*v, u \rangle_{E',E} \quad \forall u \in D(A), \quad \forall v \in D(A^*). \]

REMARCA 16. – Nu este necesar să facem apel la teorema Hahn-Banach pentru a prelungi \(g \). Este suficient să folosim prelungirea prin continuitate a lui \(g \) (deoarece \(g \) este definită pe \(D(A) \), care este densă, \(g \) este uniform continuă și \(\mathbb{R} \) este complet); a se vedea, de exemplu, Choquet [1], teorema 20-14 în capitolul V.

* REMARCA 17. – Se poate întâmpina ca \(D(A^*) \) să nu fie dens în \(F' \); chiar dacă \(A \) este închis; a se vedea un exemplu în [EX]. Totuși se arată că dacă \(A \) este închis, atunci \(D(A^*) \) este dens în \(F' \) pentru topologia \(\sigma(F',F) \) definită în capitolul III; a se vedea [EX]. In particular, dacă \(F \) este reflexiv, atunci \(D(A^*) \) este dens în \(F' \) pentru topologia uzuală asociată normei; a se vedea cap. III.5.

• Propoziția II.16. – Fie \(A : D(A) \subset E \to F \) un operator nemărginit cu domeniul dens. Atunci \(A^* \) este închis, adică \(G(A^*) \) este închis în \(F' \times E' \).
Demonstrație. – Fie \(v_n \in D(A^*) \) astfel încât \(v_n \to v \) în \(F' \) și \(A^*v_n \to f \) în \(E' \). Trebuie să demonstrăm că (a) \(v \in D(A^*) \) și (b) \(A^*v = f \).

Avem
\[
\langle v_n, Au \rangle = \langle A^*v_n, u \rangle \quad \forall u \in D(A).
\]

Prin trecere la limită obținem
\[
\langle v, Au \rangle = \langle f, u \rangle \quad \forall u \in D(A).
\]
Deci \(v \in D(A^*) \) (din definiția lui \(D(A^*) \)) și \(A^*v = f \).

Grafurile lui \(A \) și \(A^* \) sunt legate printr-o relație de ortogonalitate foarte simplă. Intr-adevăr, considerăm aplicația \(J : F' \times E' \to E' \times F' \) definită prin
\[
J([v, f]) = [-f, v].
\]
Fie \(A : D(A) \subset E \to F \) un operator nemărginit și dens definit. Atunci
\[
J[G(A^*)] = G(A)^\perp
\]

Intr-adevăr, fie \([v, f] \in F' \times E' \); atunci
\[
[v, f] \in G(A^*) \iff \langle f, u \rangle = \langle v, Au \rangle \quad \forall u \in D(A)
\]
\[
\iff -\langle f, u \rangle + \langle v, Au \rangle = 0 \quad \forall u \in D(A)
\]
\[
\iff [-f, v] \in G(A)^\perp.
\]

Este comod să introducem spațiul \(X = E \times F \) (deci \(X' = E' \times F' \)) și să considerăm subspațiile \(G = G(A) \) și \(L = E \times \{0\} \) ale lui \(X \). Putem descrie \(N(A) \), \(N(A^*) \), \(R(A) \) și \(R(A^*) \) în funcție de \(G \) și \(L \).

Se verifică ușor că

(26) \(N(A) \times \{0\} = G \cap L \)

(27) \(E \times R(A) = G + L \)

(28) \(\{0\} \times N(A^*) = G^\perp \cap L^\perp \)

(29) \(R(A^*) \times F' = G^\perp + L^\perp \).
• Corolarul II.17. – Fie $A : D(A) \subset E \rightarrow F$ un operator nemărginit, închis și dens definit. Atunci

(i) $N(A) = R(A^*)^\perp$
(ii) $N(A^*) = R(A)^\perp$
(iii) $N(A)^\perp \supset R(A^*)$
(iv) $N(A^*)^\perp = R(A)$.

Demonstrație. – (i) – Conform (29) avem

$$R(A^*)^\perp \times \{0\} = (G^\perp + L^\perp)^\perp = G \cap L \text{ (conform (16))}$$
$$= N(A) \times \{0\} \text{ (conform (26)).}$$

(ii) – Conform (27) avem

$$\{0\} \times R(A)^\perp = (G + L)^\perp = G^\perp \cap L^\perp \text{ (conform (17))}$$
$$= \{0\} \times N(A^*) \text{ (conform (28)).}$$

(iii) și (iv) rezultă direct din (i) și (ii), trecerea la ortogonal și propoziția II.12.

Remarca 18. – Cu titlu de exercițiu, dați o demonstrație directă a lui (i) și (ii), fără a introduce G și L; a se vedea [EX].

Remarca 19. – Se poate întâmpla, chiar dacă A este un operator liniar și continuu de la E în F că $N(A)^\perp \neq R(A^*)$; a se vedea un exemplu în [EX]. Totuși (cf. remarci 10) se poate arăta că $N(A)^\perp$ coîncide întotdeauna cu inchierea lui $R(A^*)$ pentru topologia $\sigma(E', E)$; în particular, dacă E este reflexiv, avem întotdeauna $N(A)^\perp = R(A^*)$.

* Teorema II.18. – Fie $A : D(A) \subset E \rightarrow F$ un operator nemărginit, închis și dens definit. Următoarele proprietăți sunt echivalente:

(i) $R(A)$ este închis
(ii) $R(A^*)$ este închis
(iii) $R(A) = N(A^*)^\perp$
(iv) $R(A^*) = N(A)^\perp$.
Demonstrație. – Se reiau notățiile introduse în Cap. II.6. De aceea

\[(i) \iff G + L este închis in X (cf. (27))\]
\[(ii) \iff G^+ + L^+ este închis in X' (cf. (29))\]
\[(iii) \iff G + L = (G^+ \cap L^+) (cf. (27) și (28))\]
\[(iv) \iff (G \cap L)^+ = G^+ + L^+ (conform (26) și (29)).\]

Concluzia rezultă apoi din teorema II.15.

Remarca 20. – Fie \(A : D(A) \subset E \to F\) un operator nemărginit și închis. Atunci \(R(A)\) este închis dacă și numai dacă există o constantă \(C\) astfel încât
\[
\text{dist} (u, N(A)) \leq C\|Au\| \quad \forall u \in D(A);
\]
a se vedea [EX].

Rezultatul care urmează este o caracterizare utilă a operatorilor surjectivi.

⋆ Teorema II.19. – Fie \(A : D(A) \subset E \to F\) un operator nemărginit, închis și dens definit. Următoarele proprietăți sunt echivalente:

\[(a) \ A \text{ este surjectiv, adică } R(A) = F,\]
\[(b) \text{ există o constantă } C \geq 0 \text{ astfel încât} \]
\[
\|v\| \leq C\|A^*v\| \quad \forall v \in D(A^*),
\]
\[(c) \ N(A^*) = \{0\} \text{ şi } R(A^*) \text{ este închis.}\]

Remarca 21. – In practică, dacă se doresc să se arate că operatorul \(A\) este surjectiv, se utilizează implicația \((b) \Rightarrow (a)\) în felul următor. Se consideră ecuația \(A^*v = f\) cu \(f \in E'\) și se arată că \(\|v\| \leq C\|f\|\) (cu \(C\) independentă de \(f\)). Această tehnică se numește metoda estimărilor a priori: nu ne preocupăm să știm dacă ecuația \(A^*v = f\) are sau nu o soluție; presupunem că \(v\) este a priori o soluție a acestei ecuații și încercăm să estimăm norma sa.

Demonstrație.

\[(a) \Rightarrow (c).\] Este o consecință directă a corolarului II.17 și a teoremei II.18.

\[(b) \Rightarrow (c)\] este evident (se raționează cu șiruri Cauchy).
(c) ⇒ (b). Conform (28) și (29) avem \(G^\perp \cap L^\perp = \{0\} \) și \(G^\perp + L^\perp \) este închis. Se poate aplica teorema II.8: există o constantă \(C \) astfel incât orice \(z \in G^\perp + L^\perp \) se descompune în mod unic (deoarece \(G^\perp \cap L^\perp = \{0\} \)) în
\[
z = a + b \quad \text{cu} \quad a \in G^\perp, \ b \in L^\perp, \ \|a\| \leq C\|z\|, \ ||b|| \leq C\|z\|.
\]
Fie \(v \in D(A^\ast) \). Atunci \(z = [A^\ast v, 0] \) se scrie \(z = a + b \) cu
\[
a = [A^\ast v, -v] \in G^\perp \quad \text{și} \quad b = [0, v] \in L^\perp.
\]
Deci
\[
\|b\| = \|v\| \leq C\|z\| = C\|A^\ast\|.
\]

Remarca 22. – Cu titlu de exercițiu, se poate demonstra implicația \((a) \Rightarrow (b)\) printr-o altă metodă. Se poate demonstra – în ipoteza \((a)\) – că mulțimea \(\{v \in D(A^\ast); \|A^\ast v\| \leq 1\} \) este închisă în \(F' \), cu ajutorul teoremei Banach-Steinhaus.

Există următorul rezultat “dual”:

Teorema II.20. – Fie \(A : D(A) \subset F \) un operator nemărginit, închis și dens definit. Următoarele proprietăți sunt echivalente:
\[
(a) \quad A^\ast \text{ este surjectiv, adică } R(A^\ast) = E',
\]
\[
(b) \quad \text{există o constantă } C \text{ astfel incât}
\]
\[
\|u\| \leq C\|Au\| \quad \forall u \in D(A),
\]
\[
(c) \quad N(A) = \{0\} \text{ și } R(A) \text{ este închis}.
\]

Demonstrație. – Este similară cu cea a teoremei II.19. Cititorul poate redacta detaliile cu titlu de exercițiu.

Remarca 23. – Dacă presupunem că, fie \(\text{dim } E < \infty \), fie că \(\text{dim } F < \infty \), atunci au loc echivalențele:
\[
A \text{ surjectiv } \iff A^\ast \text{ injectiv}
\]
\[
A^\ast \text{ surjectiv } \iff A \text{ injectiv}.
\]
Intr-adevăr, \(R(A) \) și \(R(A^\ast) \) au în acest caz dimensiune finită și sunt deci închise.
In cazul general au loc doar implicațiile:

\[A \text{ surjectiv} \Rightarrow A^* \text{ injectiv} \]
\[A^* \text{ surjectiv} \Rightarrow A \text{ injectiv.} \]

Reciproca este falsă, așa cum o arată următorul exemplu: fie \(E = F = \ell^2 \); pentru orice \(x \in \ell^2, x = (x_n)_{n \geq 1}, \) asociem mulțimea \(Ax = \left(\frac{1}{n} x_n \right)_{n \geq 1}. \) Se verifică ușor că \(A^* = A; A^* \) (resp. \(A \)) este injectiv, dar \(A \) (resp. \(A^* \)) nu este surjectiv; \(R(A) \) (resp. \(R(A^*)) \) este dens definit și nu este închis.

Teorema II.21. – Fie \(A : D(A) \subset E \to F \) un operator ne-mărginit, închis și dens definit. Următoarele proprietăți sunt echivalente:

(i) \(D(A) = E \)
(ii) \(A \) este mărginit
(iii) \(D(A^*) = F' \)
(iv) \(A^* \) este mărginit.

In aceste condiții avem

\[\|A\|_{\mathcal{L}(E,F)} = \|A^*\|_{\mathcal{L}(F',E')} \].

Demonstrație. – (i) ⇒ (ii) Se aplică teorema graficului închis.
(ii) ⇒ (iii) Se folosește definiția lui \(D(A^*) \).
(iii) ⇒ (iv) Se aplică propoziția II.16 și teorema graficului închis.
* (iv) ⇒ (i) este mai delicat. Observăm mai întâi că \(D(A^*) \) este închis. Intr-adevăr, fie \(v_n \in D(A^*) \) astfel încât \(v_n \to v \) în \(F' \). Avem

\[\|A^*(v_n - v_m)\| \leq c\|v_n - v_m\| \]

decii \(A^*v_n \) este convergent către o limită \(f \). Cum \(A^* \) este închis, \(v \in D(A^*) \) și \(A^*v = f \). În spațiul \(X = E \times F \) se consideră subspațiile \(G = G(A) \) și \(L = \{0\} \times F \), astfel că

\[G + L = D(A) \times F \quad \text{și} \quad G^\perp + L^\perp = E' \times D(A^*). \]

Deci \(G^\perp + L^\perp \) este închis în \(X' \). Teorema II.15 ne permite să deducem că \(G + L \) este închis, deci \(D(A) \) este închis. Cum \(A \) este dens definit, rezultă că \(D(A) = E \).
Să arătăm în continuare că \(\|A\|_{\mathcal{L}(E,F)} = \|A^*\|_{\mathcal{L}(F',E')} \). Avem
\[
\langle v, Au \rangle = \langle A^*v, u \rangle \quad \forall u \in E, \forall v \in F'.
\]
Deci
\[
\|\langle v, Au \rangle\| \leq \|A^*\|\|v\|\|u\|
\]
și
\[
\|Au\| = \operatorname{Sup}_{\|v\| \leq 1} |\langle v, Au \rangle| \leq \|A^*\|\|u\|
\]
(conform corolarului I.4). Prin urmare, \(\|A\| \leq \|A^*\| \). Inegalitatea contrară se deduce astfel:
\[
\|A^*v\| = \operatorname{Sup}_{\|u\| \leq 1} |\langle A^*v, u \rangle| = \operatorname{Sup}_{\|u\| \leq 1} |\langle v, Au \rangle| \leq \|A\|\|v\|.
\]
In consecință, \(\|A^*\| \leq \|A\| \).

II.8 Comentarii asupra capitolului II

1) Se pot descrie în mod explicit câteva subspecii închise care nu au nici un suplement topologic. De exemplu, \(c_0 \) nu are nici un suplement topologic al lui \(\ell^\infty \) (vezi De Vito [1]); reamintim că \(\ell^\infty \) desemnează spațiul șirurilor \(x = (x_n) \) mărginite în \(\mathbb{R} \) și înzestrat cu norma \(\|x\| = \operatorname{Sup}_n |x_n| \), iar \(c_0 \) este subspatiul închis al șirurilor astfel încât \(\lim_{n \to \infty} x_n = 0 \). Alte exemple se găsesc în Rudin [1] (un subspațiu al lui \(L^1 \)) sau în Köthe [1] și Beauzamy [1] (un subspațiu al lui \(\ell^p \), \(p \neq 2 \)).

2) Majoritatea rezultatelor din capitolul II se extind la spații Fréchet (spații local convexe, metrizabile, complete). Sunt posibile numeroase generalizări; vezi, de exemplu, Schaefer [1], Horváth [1], Edwards [1], Treves [1], [3], Köthe [1]. Aceste extensii sunt motivate de teoria distribuțiilor (vezi L. Schwartz [1]), unde multe spații importante nu sunt spații Banach. Pentru aplicații în teoria ecuațiilor cu derive parțiale cititorul poate consulta Hörmander [1], Treves [1], [2], [3].

3) In Kato [1] se găsesc câteva extensii ale rezultatelor din cap. II.5.
Capitolul III

TOPOLOGII SLABE. SPAȚII REFLEXIVE. SPAȚII SEPARABILE. SPAȚII UNIFORM CONVEXE

III.1 Preliminarii asupra topologiei celei mai puțin fine care face continue toate aplicațiile unei familii

Vom începe cu câteva preliminarii de topologie generală. Fie X o mulțime și $(Y_i)_{i \in I}$ o familie de spații topologice. Pentru fiecare $i \in I$ considerăm o aplicație $\varphi_i : X \to Y_i$.

Problema 1. – Să se construiască pe X o topologie astfel încât toate aplicațiile $(\varphi_i)_{i \in I}$ să fie continue. Dacă este posibil, să se construiască topologia **cea mai puțin fină T**, adică aceea cu cele mai puține mulțimi deschise [altfel zis, topologia cea mai “economică”] care face ca orice aplicație φ_i să fie continuă.

Observăm că dacă X este înzestrat cu topologia discretă (adică orice submulțime a lui X este deschisă), atunci orice aplicație φ_i este continuă; desigur, această topologie este departe de a fi cea mai “economică” – este chiar cea mai puțin economică! Fie $\omega_i \subset Y_i$ o mulțime deschisă; atunci $\varphi_i^{-1}(\omega_i)$ este, în mod **necesar** o mulțime deschisă pentru topologia T.

Dacă ω_i descrie familia mulțimilor deschise ale lui Y_i și i parcurge I, mulțimile $\varphi_i^{-1}(\omega_i)$ formeză o familie de submulțimi ale lui X care sunt, în mod necesar, deschiși în topologia T; notăm această familie cu $(U_\lambda)_{\lambda \in A}$.

Topologia T este topologia cea mai puțin fină astfel încât toate mulțimile
\((U_\lambda)_{\lambda \in \Lambda}\) sunt deschise. Am ajuns așadar la problema următoare:

Problema 2. – Să se construiască familia \(\mathcal{F}\) de submulțimi ale lui \(X\), cea mai economică cu putință, care să fie stabilă în raport cu \(\bigcap_{\text{finit}}\) și \(\bigcup_{\text{arbitrar}}\) și astfel încât \(U_\lambda \in \mathcal{F}\), pentru orice \(\lambda \in \Lambda\). Răspunsul la problema 2 este dat de construcția următoare.

Considerăm mai întâi intersectiile finite \(\bigcap_{\lambda \in \Gamma} U_\lambda\), \(\Gamma \subset \Lambda\), \(\Gamma\) finită. Obținem astfel o familie \(\Phi\) de submulțimi ale lui \(X\), stabilă în raport cu \(\bigcap_{\text{finit}}\). Se consideră apoi familia \(\mathcal{F}\) obținută prin reuniuni arbitrat de elemente din \(\Phi\). Este clar că familia \(\mathcal{F}\) este stabilă în raport cu reuniuni arbitrate; din contrar, nu este evident că familia \(\mathcal{F}\) este stabilă în raport cu intersectiile finite. Acest lucru face obiectul următorului rezultat

Lema III.1. – Familia \(\mathcal{F}\) este stabilă în raport cu intersectiile finite.

Demonstrația lemei III.1 este lăsată cititorului. Ea constituie un agradabil (!) divertisment în teoria mulțimilor.

Remarca 1. – Nu trebuie inversată ordinea operațiilor în construcția lui \(\mathcal{F}\). Ar fi, de asemenea, natural să începem prin a considera \(\bigcup_{\text{arbitrar}}\) de mulțimi \((U_\lambda)\) și apoi de a lua \(\bigcap_{\text{finit}}\). Familia astfel obținută este bineînțeles stabilă prin \(\bigcap_{\text{finit}}\), dar ea nu este stabilă prin \(\bigcup_{\text{arbitrar}}\). Ar trebui în acest caz să se considere încă o dată reuniuni arbitrate.

Să recapitulăm: deschișii topologiei \(T\) se obțin considerând mai întâi intersectiile finite de mulțimi de forma \(\varphi_i^{-1}(\omega_i)\), \(\omega_i\) deschis în \(Y_i\) și apoi reuniuni arbitrate de asemenea mulțimi.

Rezultă că pentru orice \(x \in X\) se obține o bază de vecinătăți a lui \(x\) pentru topologia \(T\) considerând mulțimile de forma \(\bigcap_{\text{finit}} \varphi_i^{-1}(V_i)\), unde \(V_i\) este o vecinătate a lui \(\varphi_i(x)\) în \(Y_i\).

In continuare înzestrăm \(X\) cu topologia \(T\); reamintim câteva proprietăți elementare ale acestei topologii.

1. **Propoziția III.1.** – Fie \((x_n)\) un șir în \(X\). Atunci \(x_n \to x\) (în \(T\)) dacă și numai dacă \(\varphi_i(x_n) \to \varphi_i(x)\) pentru orice \(i \in I\).

Demonstrație. – Dacă \(x_n \to x\), atunci \(\varphi_i(x_n) \to \varphi_i(x)\) pentru orice \(i\), deoarece fiecare aplicațiune \(\varphi_i\) este continuă.
Reciproc, fie U o vecinătate a lui x. Din cele de mai sus, se poate presupune că U este de forma $U = \bigcap_{i \in J} \varphi_i^{-1}(V_i)$ cu $J \subset I$ finită. Pentru fiecare $i \in J$, există un întreg N_i astfel încât $\varphi_i(x_n) \in V_i$ pentru orice $n \geq N_i$. Rezultă că $x_n \in U$ pentru $n \geq N = \max_{i \in J} N_i$.

• Propoziția III.2. – Fie Z un spațiu topologic și fie ψ o aplicație de la Z în X. Atunci ψ este continuă dacă și numai dacă $\varphi_i \circ \psi$ este continuă de la Z în Y_i pentru orice $i \in I$.

Demonstrație. – Dacă ψ este continuă atunci $\varphi_i \circ \psi$ este, de asemenea, continuă pentru orice $i \in I$. Invers, fie U un deschis în X; trebuie să demonstrăm că $\psi^{-1}(U)$ este deschisă în Z. Știm însă că U este de forma $U = \bigcup_{\text{oarecare finit}} \varphi_i^{-1}(\omega_i)$, unde ω_i sunt deschise în Y_i. Deci

$$\psi^{-1}(U) = \bigcup_{\text{oarecare finit}} \varphi_i^{-1}(\omega_i) = \bigcup_{\text{oarecare finit}} (\varphi_i \circ \psi)^{-1}(\omega_i);$$

care este deschisă în Z, deoarece orice aplicație $\varphi_i \circ \psi$ este continuă.

III.2 Definiția și proprietățile elementare ale topologiei slabe $\sigma(E, E')$

Fie E un spațiu Banach și $f \in E'$. Notăm prin $\varphi_f : E \to \mathbb{R}$ aplicația liniară definită prin $\varphi_f(x) = \langle f, x \rangle$. Când f parcurge E', obținem o familie $(\varphi_f)_{f \in E'}$ de aplicații de la E în \mathbb{R}.

Definiție. – Topologia slabă $\sigma(E, E')$ pe E este topologia cea mai puțin fină care face continue toate aplicațiile $(\varphi_f)_{f \in E'}$ (în sensul lui §III.1 cu $X = E, Y_i = \mathbb{R}$, pentru fiecare i și $I = E'$).

Propoziția III.3. – Topologia slabă $\sigma(E, E')$ este separată.

Demonstrație. – Fie $x_1, x_2 \in E$ cu $x_1 \neq x_2$. Căutăm să construim O_1 și O_2, mulțimi deschise pentru topologia slabă $\sigma(E, E')$ astfel încât $x_1 \in O_1, x_2 \in O_2$ și $O_1 \cap O_2 = \emptyset$. Conform teoremei Hahn-Banach (a doua formă geometrică), există un hiperplan închis care separă în sens strict multимile $\{x_1\}$ și $\{x_2\}$. Deci există $f \in E'$ și $\alpha \in \mathbb{R}$ astfel încât

$$\langle f, x_1 \rangle < \alpha < \langle f, x_2 \rangle.$$
Fie
\[O_1 = \{x \in E; \langle f, x \rangle < \alpha \} = \varphi_f^{-1}(\langle -\infty, \alpha \rangle) \]
\[O_2 = \{x \in E; \langle f, x \rangle > \alpha \} = \varphi_f^{-1}(\langle \alpha, +\infty \rangle). \]
Evident, \(O_1 \) și \(O_2 \) sunt deschise pentru \(\sigma(E, E') \) și verificăm \(x_1 \in O_1, x_2 \in O_2 \) și \(O_1 \cap O_2 = \emptyset. \)

Propoziția III.4. – Fie \(x_0 \in E; \) obținem o bază de vecinătăți a lui \(x_0 \) pentru topologia \(\sigma(E, E') \) considerând toate multimile de forma
\[V = \{x \in E; |\langle f_i, x - x_0 \rangle| < \varepsilon, \ \forall i \in I \}, \]
unde \(I \) este finită, \(f_i \in E' \) și \(\varepsilon > 0. \)

Demonstrație. – Este limpede că \(V = \bigcap_{i \in I} \varphi_{f_i}^{-1}(\langle a_i - \varepsilon, a_i + \varepsilon \rangle) \)
cu \(a_i = \langle f_i, x_0 \rangle \) este o mulțime deschisă pentru topologia \(\sigma(E, E') \) și conține \(x_0. \) Invers, fie \(U \) o vecinătate a lui \(x_0 \) pentru \(\sigma(E, E'). \) Se știe (cf. §III.1) că există o mulțime deschisă \(W \) care conține \(x_0, W \subset U, \) de forma \(W = \bigcap_{i \in \mathbb{N}} \varphi_{f_i}^{-1}(\omega_i), \) \(I \) finită, unde \(\omega_i \) este o vecinătate (în \(\mathbb{R} \)) a lui \(a_i = \langle f_i, x_0 \rangle. \) Deci există \(\varepsilon > 0 \) astfel încât \((a_i - \varepsilon, a_i + \varepsilon) \subset \omega_i \) pentru orice \(i \in I. \) Rezultă că \(x_0 \in V \subset W \subset U. \)

Notație. – Dacă un șir \((x_n) \) din \(E \) converge la \(x \) în topologia slabă \(\sigma(E, E'), \) vom scrie \(x_n \rightarrow x. \) Pentru a evita confuziile vom preciza adesea “\(x_n \rightarrow x \) slab în \(\sigma(E, E') \)” și acesta de asemenea \(\|x_n - x\| \rightarrow 0. \)

• Propoziția III.5. – Fie \((x_n) \) un șir în \(E. \) Atunci
 \((i) \) \(x_n \rightarrow x \) slab în \(\sigma(E, E') \) \(\iff \) \(|\langle f, x_n \rangle - \langle f, x \rangle, \ \forall f \in E'. \)
 \((ii) \) Dacă \(x_n \rightarrow x \) tare, atunci \(x_n \rightarrow x \) slab în \(\sigma(E, E'). \)
 \((iii) \) Dacă \(x_n \rightarrow x \) slab în \(\sigma(E, E'), \) atunci \(\|x_n\| \) este mărginită
 și \(\|x\| \leq \lim \inf \|x_n\|. \)
 \((iv) \) Dacă \(x_n \rightarrow x \) slab în \(\sigma(E, E') \) și dacă \(f_n \rightarrow f \) tare în \(E' \)
 (adică \(\|f_n - f\| \rightarrow 0), \) atunci \(\langle f_n, x_n \rangle \rightarrow \langle f, x \rangle. \)

Demonstrație.
 \((i) \) rezultă din propoziția III.1 și din definiția topologiei slabe \(\sigma(E, E'). \)
 \((ii) \) rezultă din \((i) \) deoarece \(|\langle f, x_n \rangle - \langle f, x \rangle| \leq \|f\| \|x_n - x\|. \)
(iii) Se aplică corolarul II.3 - care este o consecință a teoremei lui Banach-Steinhaus. Este deci suficient să verificăm că pentru orice \(f \in E' \) multimea \(\langle f, x_n \rangle \) este mărginită. Trecând la limită în inegalitatea

\[
|\langle f, x_n \rangle| \leq \| f \| \| x_n \|
\]

găsim

\[
|\langle f, x \rangle| \leq \| f \| \lim \inf \| x_n \|
\]

care implică (corolarul I.4)

\[
\| x \| = \text{Sup}_{\| f \| \leq 1} |\langle f, x \rangle| \leq \lim \inf \| x_n \|.
\]

(iv) rezultă din inegalitatea

\[
|\langle f_n, x_n \rangle - \langle f, x \rangle| \leq |\langle f_n - f, x_n \rangle| + |\langle f, x_n - x \rangle| \leq \| f_n - f \| \| x_n \| + |\langle f, x_n - x \rangle|.
\]

Pentru a încheia demonstrația folosim apoi (i) și (iii).

Propoziția III.6. – Fie \(E \) un spațiu finit dimensional. Atunci topologia slabă \(\sigma(E, E') \) și topologia uzuală coïncid. În particular, un şir \((x_n) \) converge slab dacă și numai dacă el converge tare.

Demonstrație. – Topologia slabă are întotdeauna mai puține multimi deschise decât topologia tare. Invers, trebuie să verificăm că un deschis în topologia tare este deschis și în topologia slabă. Fie \(x_0 \in E \) și fie \(U \) o vecinătate a lui \(x_0 \) în topologia tare. Trebuie să construim o vecinătate \(V \) a lui \(x_0 \) în topologia slabă \(\sigma(E, E') \) astfel încât \(V \subset U \). Cu alte cuvinte, trebuie să găsim \(f_1, f_2, \ldots, f_k \) în \(E' \) și \(\varepsilon > 0 \) astfel încât

\[
V = \{ x \in E; |\langle f_i, x - x_0 \rangle| < \varepsilon, \quad \forall i = 1, 2, \ldots, k \} \subset U.
\]

Fie \(r > 0 \) astfel încât \(B(x_0, r) \subset U \). Alegem o bază \(e_1, e_2, \ldots, e_n \) a lui \(E \) astfel încât \(\| e_i \| = 1 \), \(\forall i \). Orice \(x \in E \) admite o decompunere \(x = \sum_{i=1}^{n} x_i e_i \) și aplicațiile \(x \mapsto x_i \) sunt funcționale liniare și continue pe \(E \), notate cu \(f_i \). Avem

\[
\| x - x_0 \| \leq \sum_{i=1}^{n} |\langle f_i, x - x_0 \rangle| < n\varepsilon
\]
pentru orice \(x \in V \). Alegând \(\varepsilon = r/n \) obținem \(V \subset U \).

Remarca 2. – Multimile deschise (resp. închise) în topologia slabă \(\sigma(E, E') \) sunt de asemenea deschise (resp. închise) pentru topologia tare. Dacă \(E \) este infinit dimensional, topologia slabă \(\sigma(E, E') \) este strict mai puțin fină decât topologia tare, adică există multimi deschise (resp. închise) pentru topologia tare care nu sunt deschise (resp. închise) pentru topologia slabă. Iată două exemple:

Exemplul 1. – Sfera unitate \(S = \{x \in E; \|x\| = 1\} \), cu \(E \) infinit dimensional, nu este niciodată închisă pentru topologia slabă \(\sigma(E, E') \). Mai precis, arătăm că

\[
S^{\sigma(E, E')} = \{x \in E; \|x\| \leq 1\},
\]

unde \(S^{\sigma(E, E')} \) semnifică închiderea lui \(S \) în topologia slabă \(\sigma(E, E') \).

Fie \(x_0 \in E \) cu \(\|x_0\| < 1 \); verificăm că \(x_0 \in S^{\sigma(E, E')} \). Fie deci \(V \) o vecinătate a lui \(x_0 \) în \(\sigma(E, E') \). Trebuie să demonstrăm că \(V \cap S \neq \emptyset \). Putem presupune întotdeauna că \(V \) este de forma

\[
V = \{x \in E; |\langle f_i, x - x_0 \rangle| < \varepsilon, \quad \forall i = 1, 2, \ldots, k\}
\]

cu \(\varepsilon > 0 \) și \(f_1, f_2, \ldots, f_k \in E' \). Fixăm \(y_0 \in E, y_0 \neq 0 \) astfel încât

\[
\langle f_i, y_0 \rangle = 0 \quad \forall i = 1, 2, \ldots, k.
\]

[Un asemenea \(y_0 \) există; în caz contrar, aplicația \(\varphi : E \to \mathbb{R}^k \) definită prin

\[
\varphi(z) = (\langle f_i, z \rangle)_{1 \leq i \leq k}
\]

ar fi injectivă și \(\varphi \) ar fi un izomorfism de la \(E \) în \(\varphi(E) \) – de unde \(\dim E \leq k \). Funcția \(g(t) = \|x_0 + ty_0\| \) este continuă pe \([0, \infty)\) cu \(g(0) < 1 \) și \(\lim_{t \to +\infty} g(t) = +\infty \). Deci există \(t_0 > 0 \) astfel încât \(\|x_0 + t_0y_0\| = 1 \). Rezultă că \(x_0 + t_0y_0 \in V \cap S \).]

Am verificat așadar că

\[
S \subset B_E = \{x \in E; \|x\| \leq 1\} \subset S^{\sigma(E, E')} .
\]

Interpretarea geometrică a acestei construcții este următoarea. În dimensiune infinită orice vecinătate \(V \) a lui \(x_0 \) pentru topologia slabă \(\sigma(E, E') \) conține o dreaptă trecând prin \(x_0 \) – și chiar un "enorm" spațiu afin trecând prin \(x_0 \).
Deducem apoi (1) dacă știm că \(\{ x \in E ; \| x \| \leq 1 \} \) este închisă pentru topologia \(\sigma(E, E') \) – aceasta rezultă din teorema III.7.

Exemplul 2. – Multimile \(U = \{ x \in E ; \| x \| < 1 \} \), cu \(E \) infinit dimensional, nu este niciodată deschisă în \(\sigma(E, E') \). Mai precis, vom verifica faptul că interiorul lui \(U \) pentru \(\sigma(E, E') \) este vid. Într-adevăr, presupunem prin reducere la absurd, că \(U \) ar fi slab deschisă, deci complementara sa \(U^c = \{ x \in E ; \| x \| \geq 1 \} \) este slab închisă. Rezultă că \(S = B_E \cap U^c \) este, de asemenea, slab închisă; aceasta contrazice însă Exemplul 1.

Remarca 3. – Dacă \(E \) este infinit dimensional, atunci topologia slabă \(\sigma(E, E') \) nu este metrizabilă, adică nu există o metrică (deci și o normă) definită pe \(E \) care induce pe \(E \) topologia slabă \(\sigma(E, E') \); vezi [EX]. Totuși vom vedea că dacă \(E' \) este separabil, atunci se poate construi o metrică definită pe \(B_E \) care induce pe \(B_E \) aceeași topologie ca și topologia slabă \(\sigma(E, E') \); vezi teorema III.25'.

* Remarca 4. – Dacă \(E \) este infinit dimensional, există în general șiruri care converg slab dar care nu converg tare. De exemplu, dacă \(E' \) este separabil (cf. §III.6) sau dacă \(E \) este reflexiv (cf. §III.5) atunci se poate construi șirul \((x_n) \in E \) astfel încât \(\| x_n \| = 1 \) și \(x_n \to 0 \) slab în \(\sigma(E, E') \); vezi [EX]. Totuși există spații Banach infinit dimensionale în care orice șir slab convergent este convergent în topologia tare. De exemplu, \(E = l^1 \) are această proprietate “șocantă”; vezi [EX]. Totuși aceste spații sunt destul de rare și, oarecum, “patologice”. Bineînțeles, aceasta nu contrazice faptul că în dimensiune infinită topologia slabă și topologia tare sunt ștandarde distincte (cf. remarci 2). [Reamintim că două spații metrice care au aceleași șiruri convergente, au aceeași topologie. Totuși două spații topologice care au aceleași șiruri convergente nu au, în mod necesar, aceeași topologie.]

III.3 Topologii slabe, multimi convexe și operatori liniari

Orice mulțime închisă pentru topologia slabă \(\sigma(E, E') \) este închisă pentru topologia tare. Am văzut deja (remarca 2) că reciproca este falsă în
MULTIȚIMI CONVEXE

dimensiune infinită. Vom demostra totuși că pentru multimile convexe aceste două noțiuni coincid.

- Teorema III.7. – Fie \(C \) o submulțime convexă a lui \(E \). Atunci \(C \) este închisă în topologia slabă \(\sigma(E,E') \) dacă și numai dacă este închisă în topologia tare.

Demonstrație. – Presupunem că \(C \) este închisă în topologia tare și arătăm că \(C \) este închisă în topologia slabă. Vom verifica că \(C^c \) este deschisă în topologia slabă. Pentru aceasta, fie \(x_0 \notin C \). Conform teoremei lui Hahn–Banach, există un hiperplan închis care separă strict multimile \(\{x_0\} \) și \(C \). Deci există \(f \in E' \) și \(\alpha \in \mathbb{R} \) astfel încât

\[\langle f, x_0 \rangle < \alpha < \langle f, y \rangle \quad \forall y \in C. \]

Fie

\[V = \{x \in E; \langle f, x \rangle < \alpha\}; \]

deci \(x_0 \in V \), \(V \cap C = \emptyset \) (adică \(V \subset C^c \)) și \(V \) este deschisă în topologia slabă.

Remarca 5. – Demonstrăția precedentă arată că un convex închis coincide cu intersectia semispațiilor închise care îl conțin. Pe de altă parte, teorema III.7 arată că dacă un șir \((x_n) \) converge slab către \(x \), atunci există un subșir de combinații convexe ale lui \(x_n \) care converge tare către \(x \) (teorema lui Mazur); vezi [EX].

- Corolarul III.8. – Fie \(\varphi : E \to (-\infty, +\infty] \) o funcție convexă și i.s.c. (pentru topologia tare). Atunci \(\varphi \) este i.s.c. pentru topologia slabă \(\sigma(E,E') \). În particular, dacă \(x_n \rightharpoonup x \) pentru \(\sigma(E,E') \), atunci

\[\varphi(x) \leq \lim \inf \varphi(x_n). \]

Demonstrație. – Este suficient să verificăm că pentru orice \(\lambda \in \mathbb{R} \), mulțimea

\[A = \{x \in E; \varphi(x) \leq \lambda\} \]

este închisă pentru \(\sigma(E,E') \). Dar \(A \) este convexă (deoarece \(\varphi \) este convexă) și \(A \) este tare închisă (pentru că \(\varphi \) este i.s.c. pentru topologia tare). Conform teoremei III.7, mulțimea \(A \) este, de asemenea, închisă pentru \(\sigma(E,E') \).
Remarca 6. – În particular, regăsim că dacă \(x_n \to x \) pentru \(\sigma(E,E') \), atunci \(\|x\| \leq \lim \inf \|x_n\| \). Intr-adevăr, funcția \(\varphi(x) = \|x\| \) este convexă și continuă pentru topologia tare, deci \(\varphi \) este i.s.c. pentru topologia tare – și, în consecință, \(\varphi \) este i.s.c. pentru topologia slabă \(\sigma(E,E') \).

Teorema III.9. – Fie \(E \) și \(F \) două spații Banach. Fie \(T \) un operator liniar și continuu de la \(E \) în \(F \). Atunci \(T \) este continuu de la \(E \) înestrat cu topologia slabă \(\sigma(E,E') \) în \(F \) cu topologia slabă \(\sigma(F,F') \) și reciproc.

Demonstrație. – Conform propoziției III.2 este suficient să verificăm că pentru orice \(f \in F' \), aplicația \(x \mapsto \langle f,Tx \rangle \) este continuă de la \(E \) înestrat cu topologia slabă \(\sigma(E,E') \) în \(\mathbb{R} \). Dar aplicația \(x \mapsto \langle f,Tx \rangle \) este o funcțională liniară și continuă pe \(E \). Deci ea este continuă și pentru topologia slabă \(\sigma(E,E') \).

Reciproc, presupunem că \(T \) este liniară și continuă de la \(E \) în \(F \), ambele spații fiind înzestrate cu topologiile slabe. Atunci \(G(T) \) este închis în \(E \times F \) înestrat cu topologia \(\sigma(E,E') \times \sigma(F,F') \), care este aceeași cu \(\sigma(E \times F,(E \times F)') \). Rezultă că \(G(T) \) este tare închis. Folosind teorema graficului închis (teorema II.7), deducem că \(T \) este continuu de la \(E \) în \(F \), ambele spații fiind înzestrate cu topologia tare.

Remarca 7. – Ipoteza “\(T \) liniar” din teorema III.9 joacă un rol esențial în demonstrație. O aplicație neliniară continuă de la \(E \) cu topologia tare în \(F \) cu topologia tare nu este în general continuă de la \(\sigma(E,E') \) în \(\sigma(F,F') \); vezi [EX].

III.4 Topologia * slabă \(\sigma(E',E) \)

Fie \(E \) un spațiu Banach și \(E' \) dualul său (înestrat cu norma duală \(\|f\| = \sup_{\|x\| \leq 1} |\langle f,x \rangle| \)) și fie \(E'' \) bidualul său, adică dualul lui \(E' \), înestrat cu normă

\[
\|\xi\| = \sup_{\|f\| \leq 1} |\langle \xi,f \rangle|.
\]

Avem o injecție canonică \(J : E \to E'' \) definită astfel: pentru \(x \in E \) fixat, aplicația \(f \mapsto \langle f,x \rangle \) de la \(E' \) în \(\mathbb{R} \) este o funcțională liniară și
continuă pe E', adică un element al lui E'', notat Jx (2). Avem deci

$$\langle Jx, f \rangle_{E''} = \langle f, x \rangle_{E'} \quad \forall x \in E, \forall f \in E'.$$

Este evident că J este lineară și că J este o izometrie, adică $\|Jx\|_{E''} = \|x\|_E$, pentru orice $x \in E$; într-adevăr,

$$\|Jx\| = \text{Sup}_{\|f\| \leq 1} |\langle Jx, f \rangle| = \text{Sup}_{\|f\| \leq 1} |\langle f, x \rangle| = \|x\|$$

(conform corolarului I.4). Se poate întâmpla ca J să nu fie surjectiv (3); vezi un exemplu în [EX]. Cu ajutorul lui J se poate întotdeauna

identifica E cu un subspătiu al lui E''.

Pe spațiul E'' sunt deja definite două topologii:

- a) topologia tare (asociată normei lui E'),
- b) topologia slabă $\sigma(E', E'')$ (introdusă în §III.3).

Vom defini acum o **a treia** topologie pe E': topologia slabă \ast, pe care o notăm cu $\sigma(E', E)$ (4). Pentru fiecare $x \in E$ considerăm aplicația $\varphi_x : E' \to \mathbb{R}$ definită prin $f \mapsto \varphi_x(f) = \langle f, x \rangle$. Când x parcurge E obținem o familie de aplicații $(\varphi_x)_{x \in E}$ de la E' în \mathbb{R}.

Definiție. – **Topologia slabă \ast** notată cu $\sigma(E', E)$ este topologia cea mai puțin fină pe E' pentru care toate aplicațiile $(\varphi_x)_{x \in E}$ sunt continue.

Deoarece $E \subset E''$, este evident că topologia $\sigma(E', E)$ este mai puțin fină decât topologia $\sigma(E', E'')$. Altfel zis, topologia $\sigma(E', E)$ are mai puține mulțimi deschise (resp. închise) decât topologia $\sigma(E', E'')$ [care, la rândul său, are mai puțini deschiși (resp. închiși) decât topologia tare].

REMARCA 8. – Cititorul se va mira de această “încremenare” în a sărăci topologiile. Motivul este următorul: dacă o topologie are **mai puțini deschiși**, atunci ea are, din contră, **mai mulți compacți**. Vom vedea, de exemplu, că bila unitate a lui E' are proprietatea remarcabilă de a fi compactă pentru topologia slabă $\ast \sigma(E', E)$. Dar mulțimile compacte

\[\text{sup}_2\text{A nu se confunda cu aplicația de dualitate } F : E \to E', \text{ introdusă în remarca I.2, care este în general neliniară (mai puțin în cazul Hilbertian).}\]

\[\text{sup}_3\text{Dacă } J \text{ este surjectiv spunem că } E \text{ este reflexiv; vezi §III.5.}\]

\[\text{sup}_4\text{Terminologia slabă } \ast \text{ este o traducere a termenului englez weak } \ast; \text{ steaua reaminte că lucrăm pe dualul desemnat prin } E' \text{ în literatura americană.}\]
Propoziția III.10. – Topologia slabă $\star \sigma(E', E)$ este separată.

Demonstrație. – Fie $f_1, f_2 \in E'$ cu $f_1 \neq f_2$. Există deci $x \in E$ astfel încât $(f_1, x) \neq (f_2, x)$ (aici nu se folosește teorema Hahn-Banach, ci definiția lui $f_1 \neq f_2$). Pentru a fixa ideile, presupunem că $(f_1, x) < (f_2, x)$ și alegem α astfel încât

$$ (f_1, x) < \alpha < (f_2, x). $$

Fie

$$ O_1 = \{ f \in E'; (f, x) < \alpha \} = \varphi^{-1}_x((-\infty, \alpha)) $$

$$ O_2 = \{ f \in E'; (f, x) > \alpha \} = \varphi^{-1}_x((\alpha, +\infty)). $$

Multimile O_1 și O_2 sunt deschise în $\sigma(E', E)$ și verifică $f_1 \in O_1, f_2 \in O_2, O_1 \cap O_2 = \emptyset$.

Propoziția III.11. – Fie $f_0 \in E'$, o familie finită $\{x_1, x_2, \ldots, x_k\}$ în E și $\varepsilon > 0$. Atunci

$$ V = V(x_1, x_2, \ldots, x_k; \varepsilon) = \{ f \in E'; \|f - f_0, x_i\| < \varepsilon, \ \forall i = 1, 2, \ldots, k\} $$

este o vecinătate a lui f_0 pentru topologia $\sigma(E', E)$. Mai mult, se obține o bază de vecinătăți a lui f_0 pentru $\sigma(E', E)$ variind ε, k și elementele x_i din E.

Demonstrație. – Este aceeași ca demonstrația propoziției III.4.

Notație. – Dacă un șir (f_n) din E' converge la f în topologia slabă $\star \sigma(E', E)$, vom scrie $f_n \overset{\star}{\rightharpoonup} f$. Pentru a evita confuziile vom preciza adesea “$f_n \overset{\star}{\rightharpoonup} f$ în $\sigma(E', E)$”, “$f_n \rightharpoonup f$ în $\sigma(E', E''')$” și “$f_n \rightharpoonup f$ tare”.

- Propoziția III.12. – Fie (f_n) un șir în E'. Atunci

(i) $[f_n \overset{\star}{\rightharpoonup} f$ în $\sigma(E', E)] \Leftrightarrow [(f_n, x) \rightharpoonup (f, x), \ \forall x \in E].$

(ii) Dacă $f_n \rightharpoonup f$ tare, atunci $f_n \rightharpoonup f$ în $\sigma(E', E'')$.

Dacă $f_n \rightharpoonup f$ în $\sigma(E', E'')$, atunci $f_n \overset{\star}{\rightharpoonup} f$ în $\sigma(E', E)$.

(iii) Dacă $f_n \overset{\star}{\rightharpoonup} f$ în $\sigma(E', E)$, atunci $\|f_n\|$ este mărginită și $\|f\| \leq \lim \inf \|f_n\|$.
(iv) Dacă $f_n \overset{\star}{\rightarrow} f$ în $\sigma(E',E)$ și dacă $x_n \rightarrow x$ tare în E, atunci $\langle f_n, x_n \rangle \rightarrow \langle f, x \rangle$.

Demonstrație. – Se reia demonstrația propoziției III.5.

Remarca 9. – Presupunem că $f_n \overset{\star}{\rightarrow} f$ în $\sigma(E',E)$ (sau chiar că $f_n \rightarrow f$ în $\sigma(E',E'')$) și $x_n \rightarrow x$ în $\sigma(E,E')$. Atunci nu se poate deduce în general că $\langle f_n, x_n \rangle \rightarrow \langle f, x \rangle$ (încercați să construiți un exemplu într-un spațiu Hilbert).

Remarca 10. – Dacă E este un spațiu finit dimensional atunci cele trei topologii (tare, $\sigma(E',E'')$ și $\sigma(E',E)$) definite pe E' coincid. Intr-adevăr, injecția canonică $J : E \rightarrow E''$ este surjectivă (deoarece dim $E = $ dim E'') și, în consecință, $\sigma(E',E) = \sigma(E',E'')$.

* Propoziția III.13. – Fie $\varphi : E' \rightarrow \mathbb{R}$ o funcțională liniară și continuă pentru topologia $\sigma(E',E)$. Atunci există $x \in E$ astfel încât

$$\varphi(f) = \langle f, x \rangle \quad \forall f \in E'.$$

Demonstrația face apel la o lemă algebrică foarte utilă.

Lema III.2. – Fie X un spațiu vectorial și $\varphi, \varphi_1, \varphi_2, \ldots, \varphi_k$ $(k+1)$ funcționale liniare pe X astfel încât

$$(2) \quad [\varphi_i(v) = 0, \; \forall i = 1, 2, \ldots, k] \Rightarrow [\varphi(v) = 0].$$

Atunci există $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{R}$ astfel încât $\varphi = \sum_{i=1}^{k} \lambda_i \varphi_i$.

Demonstrația Lemei III.2. – Considerăm aplicația $F : X \rightarrow \mathbb{R}^{k+1}$ definită prin

$$F(u) = [\varphi(u), \varphi_1(u), \varphi_2(u), \ldots, \varphi_k(u)].$$

Rezultă din ipoteza (2) că $a = [1, 0, 0, \ldots, 0]$ nu apartine lui $R(F)$. Putem deci separa în sens strict multimițile $\{a\}$ și $R(F)$ printr-un hiperplan în \mathbb{R}^{k+1}, adică există $\lambda, \lambda_1, \lambda_2, \ldots, \lambda_k$ și α astfel încât

$$\lambda < \alpha < \lambda \varphi(u) + \sum_{i=1}^{k} \lambda_i \varphi_i(u) \quad \forall u \in X.$$

Rezultă că

$$\lambda \varphi(u) + \sum_{i=1}^{k} \lambda_i \varphi_i(u) = 0 \quad \forall u \in X.$$
și λ < 0 (de unde λ ≠ 0).

Demonstrația propoziției III.13. – Deoarece ϕ este continuă pentru σ(E′, E), există o vecinătate V a lui 0 pentru σ(E′, E) astfel încât

\[|ϕ(f)| < 1 \quad \forall f \in V. \]

Putem presupune că V este de forma

\[V = \{ f \in E'; |⟨f, x_i⟩| < ε, \quad ∀i = 1, 2, \ldots, k \}, \]

cu \(x_i \in E \) și ε > 0. În particular,

\[[⟨f, x_i⟩ = 0, \quad ∀i = 1, 2, \ldots, k] \Rightarrow [ϕ(f) = 0]. \]

Rezultă din lema III.2 că

\[ϕ(f) = \sum_{i=1}^{k} λ_i ⟨f, x_i⟩ = ⟨f, \sum_{i=1}^{k} λ_i x_i⟩ \quad ∀f \in E'. \]

* Corolarul III.14. – Presupunem că H este un hiperplan în E' care este închis în σ(E', E). Atunci H este de forma

\[H = \{ f \in E'; ⟨f, x⟩ = α \} \]

pentru un anumit \(x \in E, x \neq 0 \), și un anume α ∈ R.

Demonstrație. – Multimea H este de forma

\[H = \{ f \in E'; ϕ(f) = α \} \]

unde ϕ este o funcțională liniară pe E', ϕ ≠ 0. Fie \(f_0 \not\in H \) și fie V o vecinătate a lui \(f_0 \) pentru topologia σ(E', E) astfel încât \(V \subset H^c \). Putem presupune că

\[V = \{ f \in E'; |⟨f - f_0, x_i⟩| < ε, \quad ∀i = 1, 2, \ldots, k \}. \]

Deoarece V este convexă, avem următoarea alternativă:

fie

\[(3) \quad ϕ(f) < α \quad ∀f \in V \]
fie

\[(3')\] \[\varphi(f) > \alpha \quad \forall f \in V.\]

Din (3) deducem că

\[\varphi(g) < \alpha - \varphi(f_0) \quad \forall g \in W = V - f_0,\]

și cum \(-W = W\), obținem

\[(4)\] \[|\varphi(g)| \leq |\alpha - \varphi(f_0)| \quad \forall g \in W.\]

Ajungem la aceeași concluzie sub ipoteza (3'). Rezultă din (4) că \(\varphi\) este continuă în 0 pentru topologia \(\sigma(E', E)\) (deoarece \(W\) este o vecinătate a lui 0). Aplicând propoziția III.13 deducem că există \(x \in E\) astfel încât

\[\varphi(f) = \langle f, x \rangle \quad \forall f \in E'.\]

Remarca 11. – Presupunem că înjectia canonică \(J : E \rightarrow E''\) nu este surjectivă, adică \(E \neq E''\). Există chiar mulțimi convexe și închise pentru \(\sigma(E', E'')\) care nu sunt închise pentru \(\sigma(E', E)\). Atunci topologia \(\sigma(E', E)\) este strict mai puțin fină decât topologia \(\sigma(E', E'')\).

De exemplu, fie \(\xi \in E''\) cu \(\xi \notin J(E)\). Atunci mulțimea

\[H = \{f \in E'; \langle \xi, f \rangle = 0\}\]

este un hiperplan închis în \(\sigma(E', E'')\) dar nu este închis pentru \(\sigma(E', E)\) (vezi corolarul III.14). Reținem că există două tipuri de mulțimi convexe și închise în \(E'\):

a) mulțimi convexe care sunt tare închise [sau închise pentru \(\sigma(E', E'')\)] – ceea ce revine la același lucru, conform teoremei III.7].

b) mulțimi convexe și închise pentru \(\sigma(E', E)\).

• Teorema III.15 (Banach-Alaoglu-Bourbaki). – Mulțimea

\[B_{E'} = \{f \in E'; \|f\| \leq 1\}\]

este compactă pentru topologia \(\star \sigma(E', E)\).
Remarca 12. – Vom vedea în continuare (teorema VI.5) că bila unitate închisă a unui spațiu normat infinit dimensional nu este niciodată compactă pentru topologia tare. Vom înțelege atunci importanța fundamentală a topologiei $\sigma(E', E)$ și a teoremei III.15.

Demonstrație. – Considerăm spațiul produs $Y = R^E$; notăm elementele lui Y prin $\omega = (\omega_x)_{x \in E}$, cu $\omega_x \in R$. Spațiul Y este înzestrat cu topologia produs (vezi de exemplu Dixmier [1] sau L. Schwartz [2]), adică topologia cea mai puțin fină pe Y astfel încât toate aplicațiile $\omega \mapsto \omega_x$ (când x parcurge E) să fie continue. În cele ce urmează spațiul E' va fi înzestrat sistematic cu topologia slabă $\sigma(E', E)$. Considerăm aplicația $\Phi : E' \to Y$ definită prin $\Phi(f) = (\langle f, x \rangle)_{x \in E}$. Atunci Φ este continua de la E' în Y (observăm că pentru orice $x \in E$ fixat, aplicația $f \in E' \mapsto (\Phi(f))_x = \langle f, x \rangle$ este continua și aplicăm apoi propoziția III.2). Arătăm că Φ este un homeomorfism de la E' în $\Phi(E')$. Este evident că Φ este injectivă; să verificăm că Φ^{-1} este continua. Este suficient (conform propoziției III.2) să arătăm că pentru orice $x \in E$ fixat, aplicația $\omega \mapsto \langle \Phi^{-1}(\omega), x \rangle$ este continua pe $\Phi(E')$, ceea ce este evident deoarece $\langle \Phi^{-1}(\omega), x \rangle = \omega_x$. Pe de altă parte, este clar că $\Phi(B_{E'}) = K$, unde

$$K = \{ \omega \in Y; |\omega_x| \leq \|x\|, \omega_{x+y} = \omega_x + \omega_y, \omega_{\lambda x} = \lambda \omega_x, \forall \lambda \in R, \forall x, y \in E \}.$$

Pentru a completa demonstrația este suficient să arătăm că mulțimea K este un compact din Y. Scriem $K = K_1 \cap K_2$, unde

$$K_1 = \{ \omega \in Y; |\omega_x| \leq \|x\|, \forall x \in E \}$$

$$K_2 = \{ \omega \in Y; \omega_{x+y} = \omega_x + \omega_y, \omega_{\lambda x} = \lambda \omega_x, \forall \lambda \in R, \forall x, y \in E \}.$$

Mulțimea $K_1 = \prod_{x \in E} [-\|x\|, +\|x\|]$ este compactă (ca produs de intervale compacte – reamintim că un produs de spații compacte este compact, vezi Dixmier [1], L. Schwartz [2]). Pe de altă parte, K_2 este închisă; într-adevăr, pentru orice $\lambda \in R$, $x, y \in E$ fixați, mulțimile

$$A_{x,y} = \{ \omega \in Y; \omega_{x+y} - \omega_x - \omega_y = 0 \}$$

$$B_{\lambda, x} = \{ \omega \in Y; \omega_{\lambda x} - \lambda \omega_x = 0 \}$$
spații reflexive sunt inchise (deoarece aplicațiile \(\omega \mapsto \omega x + y - \omega x - \omega y \) și \(\omega \mapsto \omega \lambda x - \lambda \omega x \) sunt continue) și

\[
K_2 = \left(\bigcap_{x,y \in E} A_{x,y} \right) \cap \left(\bigcap_{x \in E} \bigcap_{\lambda \in \mathbb{R}} B_{\lambda x} \right).
\]

III.5 Spații reflexive

Definire. – Fie \(E \) un spațiu Banach și fie \(J : E \to E'' \) injecția canonică de la \(E \) în \(E'' \) (vezi §III.4). Spunem că \(E \) este reflexiv dacă \(J(E) = E'' \).

Dacă \(E \) este reflexiv, identificăm în mod implicit \(E \) și \(E'' \) (cu ajutorul izomorfismului \(J \)).

* Remarcă 13. – Este esențial să utilizăm \(J \) în definiția precedentă. Putem construi (vezi James [1]) un exemplu surprinzător de spațiu nereflexiv \(E \) pentru care există o izometrie surjectivă de la \(E \) pe \(E'' \).

Rezultatul următor oferă o caracterizare importantă a spațiilor reflexive.

- **Teorema III.16 (Kakutani).** – Fie \(E \) un spațiu Banach. Atunci \(E \) este reflexiv dacă și numai dacă

\[
B_E = \{ x \in E ; \| x \| \leq 1 \}
\]

este compactă în topologia \(\sigma(E, E') \).

Demonstrație. – Să presupunem mai întâi că \(E \) este reflexiv. Deci \(J(B_E) = B_E'' \). Pe de altă parte (teorema III.15), \(B_E'' \) este compactă în topologia \(\sigma(E'', E') \). Deci este suficient să verificăm că \(J^{-1} \) este continuă de la \(E'' \) înstrat cu topologia slabă \(\sigma(E'', E') \), cu valori în \(E \) cu topologia \(\sigma(E, E') \). Rămâne de demonstrat (cf. propoziție III.2) că pentru orice \(f \in E' \) fixat, aplicația \(\xi \mapsto \langle f, J^{-1}\xi \rangle \) este continuă pe \(E'' \) înstrat cu \(\sigma(E'', E') \). Dar \(\langle f, J^{-1}\xi \rangle = \langle \xi, f \rangle \) și aplicația \(\xi \mapsto \langle \xi, f \rangle \) este continuă pe \(E'' \) înstrat cu topologia \(\sigma(E'', E') \). Deci am arătat că \(B_E \) este compactă în \(\sigma(E, E') \).

Pentru a stabili reciprocă vom avea nevoie de următoarele două leme:

- **Lema III.3 (Helly).** – Fie \(E \) un spațiu Banach, \(f_1, f_2, \ldots, f_k \in E' \) și \(\gamma_1, \gamma_2, \ldots, \gamma_k \in \mathbb{R} \) fixate.
Proprietățile următoare sunt echivalente:

(i) \(\forall \varepsilon > 0 \exists x_\varepsilon \in E \) astfel încât \(\|x_\varepsilon\| \leq 1 \) și

\[|\langle f_i, x_\varepsilon \rangle - \gamma_i| < \varepsilon, \quad \forall i = 1, 2, \ldots, k, \]

(ii) \[\left| \sum_{i=1}^{k} \beta_i \gamma_i \right| \leq \left\| \sum_{i=1}^{k} \beta_i f_i \right\|, \quad \forall \beta_1, \beta_2, \ldots, \beta_k \in \mathbb{R}. \]

Demonstrație.

(i) \(\Rightarrow \) (ii). Fixăm \(\beta_1, \beta_2, \ldots, \beta_k \) în \(\mathbb{R} \) și fie \(S = \sum_{i=1}^{k} |\beta_i| \). Rezultă din (i) că

\[\left| \sum_{i=1}^{k} \beta_i \langle f_i, x_\varepsilon \rangle - \sum_{i=1}^{k} \beta_i \gamma_i \right| \leq \varepsilon S \]

și deci

\[\left| \sum_{i=1}^{k} \beta_i \gamma_i \right| \leq \left\| \sum_{i=1}^{k} \beta_i f_i \right\|, \quad \|x_\varepsilon\| + \varepsilon S \leq \left\| \sum_{i=1}^{k} \beta_i f_i \right\| + \varepsilon S, \quad \forall \varepsilon > 0, \]

de unde (ii).

(ii) \(\Rightarrow \) (i). Fie \(\vec{\gamma} = (\gamma_1, \gamma_2, \ldots, \gamma_k) \in \mathbb{R}^k \) și considerăm aplicația \(\vec{\varphi} : E \rightarrow \mathbb{R}^k \) definită prin

\[\vec{\varphi}(x) = (\langle f_1, x \rangle, \ldots, \langle f_k, x \rangle). \]

Proprietatea (i) afirmă că \(\vec{\gamma} \in \overline{\varphi(B_E)} \). Presupunem, prin reducere la absurd, că \(\vec{\gamma} \notin \overline{\varphi(B_E)} \). Deci mulțimile \(\{\vec{\gamma}\} \) și \(\overline{\varphi(B_E)} \) pot fi separate în sens strict în \(\mathbb{R}^k \), adică există \(\vec{\beta} = (\beta_1, \beta_2, \ldots, \beta_k) \in \mathbb{R}^k \) și \(\alpha \in \mathbb{R} \) astfel încât

\[\vec{\beta} \cdot \vec{\varphi}(x) < \alpha < \vec{\beta} \cdot \vec{\gamma} \quad \forall x \in B_E. \]

Rezultă că

\[\left| \langle \sum_{i=1}^{k} \beta_i f_i, x \rangle \right| < \alpha < \sum_{i=1}^{k} \beta_i \gamma_i \quad \forall x \in B_E \]

și deci

\[\left\| \sum_{i=1}^{k} \beta_i f_i \right\| \leq \sum_{i=1}^{k} \beta_i \gamma_i, \]

ceea ce contrazice (ii).
Lema III.4 (Goldstine). – Fie \(E \) un spațiu Banach. Atunci \(J(B_E) \) este densă în \(B_{E''} \) pentru topologia \(\sigma(E'',E') \).

Demonstrație. – Fie \(\xi \in B_{E''} \) și \(V \) o vecinătate a lui \(\xi \) pentru topologia \(\sigma(E'',E') \). Trebuie să arătăm că \(V \cap J(B_E) \neq \emptyset \). Putem presupune că \(V \) este de forma
\[
V = \{ \eta \in E''; |\langle \eta - \xi, f_i \rangle| < \varepsilon, \quad \forall i = 1, 2, \ldots, k \}.
\]
Căutăm să găsim \(x \in B_E \) astfel încât
\[
|\langle f_i, x \rangle - \langle \xi, f_i \rangle| < \varepsilon, \quad \forall i = 1, 2, \ldots, k.
\]
Fie \(\gamma_i = \langle \xi, f_i \rangle \) și observăm că \(\forall \beta_1, \beta_2, \ldots, \beta_k \in \mathbb{R} \) avem
\[
\left| \sum_{i=1}^{k} \beta_i \gamma_i \right| = \left| \langle \xi, \sum_{i=1}^{k} \beta_i f_i \rangle \right| \leq \left\| \sum_{i=1}^{k} \beta_i f_i \right\| (\text{deoarece } \|\xi\| \leq 1).
\]
Conform lemei III.3, există \(x_\varepsilon \in B_E \) astfel încât
\[
|\langle f_i, x_\varepsilon \rangle - \gamma_i| < \varepsilon, \quad \forall i = 1, 2, \ldots, k,
\]
adică \(J(x_\varepsilon) \in J(B_E) \cap V \).

Remarca 14. – Observăm că \(J(B_E) \) este închisă în \(B_{E''} \) pentru topologia tare (se utilizează faptul că \(B_E \) este complet și că \(J \) este o izometrie). Deci, în general, \(J(B_E) \) nu este dens în \(B_{E''} \) pentru topologia tare – cu excepția cazului în care \(E \) este reflexiv, atunci când \(J(B_E) = B_{E''} \).

Remarca 15. – Vom găsi în [EX] o demonstrație directă a lemei III.4, bazată pe o aplicare a teoremei lui Hahn-Banach în \(E'' \).

Remarca 16. – Bineînțeles, spațiile de dimensiune finită sunt reflexive.

Sfârșitul demonstrației teoremei III.16. – Presupunem acum că \(B_E \) este compactă pentru topologia \(\sigma(E,E') \).

Observăm mai întâi că injecția canonice \(J : E \to E'' \) este întotdeauna continuă pentru topologiile tari și deci (teorema III.9), \(J \) este de asemenea continuă pentru topologiile slabe \(\sigma(E,E') \to \sigma(E'',E') \). Deci \(J(B_E) \) este compactă pentru topologia \(\sigma(E'',E') \). Dar \(J(B_E) \) este densă în \(B_{E''} \) pentru topologia \(\sigma(E'',E') \) (lema III.4). Rezultă că \(J(B_E) = B_{E''} \) și deci \(J(E) = E'' \).
Indicăm acum câteva proprietăți elementare ale spațiilor reflexive.

Demonstrație. – Observăm mai întâi că pe M sunt definite două topologii slabe:

(a) Topologia induză de $\sigma(M,M')$.
(b) Urma pe M a topologiei $\sigma(E,E')$.

Se verifică cu ușurință (“jucând” cu restricții și prelungiri ale formelor liniare) că aceste două topologii coincid.

Conform teoremei III.16, trebuie demonstrat că B_M este compactă în topologia $\sigma(M,M')$. Dar B_E este compactă pentru topologia $\sigma(E,E')$ și M este închisă în topologia $\sigma(E,E')$ (teorema III.7). Deci B_M este compactă pentru topologia $\sigma(E,E')$ și, în consecință, pentru topologia $\sigma(M,M')$.

Corolarul III.18. – Un spațiu Banach E este reflexiv dacă și numai dacă E' este reflexiv.

Demonstrație. – E reflexiv $\Rightarrow E'$ reflexiv. Știm deja (teorema III.15) că $B_{E'}$ este compactă pentru $\sigma(E',E)$. Pe de altă parte avem $\sigma(E',E) = \sigma(E',E'')$, pentru că E este reflexiv. Deci $B_{E'}$ este compactă pentru $\sigma(E',E'')$, adică E' este reflexiv (teorema III.16).

E' reflexiv $\Rightarrow E$ reflexiv. Din etapa precedentă știm că E'' este reflexiv. Deoarece $J(E)$ este un subspațiu închis al lui E'', rezultă că $J(E)$ este reflexiv. Deci E este reflexiv. (5)

- Corolarul III.19. – Fie E un spațiu Banach reflexiv. Fie $K \subset E$ o submulțime convexă, închisă și mărginită. Atunci K este compactă pentru topologia $\sigma(E,E')$.

Demonstrație. – K este închisă pentru topologia $\sigma(E,E')$ (teorema III.7). Pe de altă parte, există o constantă m astfel încât $K \subset mB_E$ și mB_E este compactă pentru topologia $\sigma(E,E')$ (teorema III.16).

5Este evident că dacă E și F sunt spații Banach și T este o izometrie surjectivă de la E în F, atunci E este reflexiv dacă și numai dacă F este reflexiv. Acest rezultat nu este în contradicție cu remarca 13!
Corolarul III.20. – Fie E un spațiu Banach reflexiv, $A \subset E$ o mulțime convexă, închisă, nevidă și $\varphi : A \to (-\infty, +\infty]$ convexă, i.s.c., $\varphi \not\equiv +\infty$ și astfel încât

$$\lim_{\|x\| \to \infty} \varphi(x) = +\infty \quad \text{(nici o presupunere dacă } A \text{ este mărginită).} \quad (5)$$

Atunci φ își atinge minimul pe A, adică există $x_0 \in A$ astfel încât $\varphi(x_0) = \text{Min}_A \varphi$. \[\text{Demonstrație.} \quad \text{Fixăm } a \in A \text{ astfel încât } \varphi(a) < +\infty. \text{ Conside} \text{răm mulțimea}

$$\tilde{A} = \{x \in A; \varphi(x) \leq \varphi(a)\}.$$

\tilde{A} este închisă, convexă, mărginită (cf. (5)) și deci compactă pentru topologia $\sigma(E, E')$. Pe de altă parte, φ este i.s.c. pentru topologia $\sigma(E, E')$ (corolarul III.8). Rezultă că φ își atinge minimul pe A, adică există $x_0 \in \tilde{A}$ astfel încât $\varphi(x_0) \leq \varphi(x) \forall x \in \tilde{A}$.

Dacă $x \in A \setminus \tilde{A}$ avem $\varphi(x_0) \leq \varphi(a) < \varphi(x)$; deci $\varphi(x_0) \leq \varphi(x) \forall x \in A$.

Remarca 17. – Corolarul III.20 explică rolul esențial jucat de spațiile reflexive și funcțiile convexe în calculul variational, controlul optimal, etc.

Teorema III.21. – Fie E și F două spații Banach reflexive. Fie $A : D(A) \subset E \to F$ un operator liniar, nemărginit și dens definit. Atunci $D(A^*)$ este dens în F'.

Aceasta permite să definim $A^{**} : D(A^{**}) \subset E'' \to F''$ și să considerăm A^{**} ca pe un operator nemărginit de la E în F. Atunci $A^{**} = A$.

Demonstrație.
D(A*) este dens în F'. Fie φ o funcțională liniară și continuă pe F', nulă pe $D(A')$. Incercăm să demonstrăm (corolarul I.8) că $\varphi \equiv 0$. Deoarece F este reflexiv, putem presupune că $\varphi \in F$ ș i că

$$\langle w, \varphi \rangle = 0 \quad \forall w \in D(A^*).$$

Dacă $\varphi \neq 0$, atunci $[0, \varphi] \notin G(A)$ în $E \times F$. Deci putem separa în sens strict mulțimile $[0, \varphi]$ și $G(A)$ printr-un hiperplan închis în $E \times F'$; adică există $[f, v] \in E' \times F'$ și $\alpha \in \mathbb{R}$ astfel încât

$$\langle f, u \rangle + \langle v, Au \rangle < \alpha < \langle v, \varphi \rangle \quad \forall u \in D(A).$$

In particular, rezultă că

$$\langle f, u \rangle + \langle v, Au \rangle = 0 \quad \forall u \in D(A)$$

și

$$\langle v, \varphi \rangle \neq 0.$$

Deci $v \in D(A^*)$ și obținem o contradicție alegerând $w = v$ în (6).

2) $A'' = A$.

Reamintim (vezi §II.6) relațiile

$$J[G(A^*)] = G(A)^\perp$$

și

$$J[G(A'')] = G(A^*)^\perp.$$

De aici rezultă că

$$G(A'') = G(A)^{\perp \perp} = G(A)$$
deoarece A este închis.

III.6 Spații separabile

Definiție. Un spațiu metric E se numește **separabil** dacă există o submulțime $D \subset E$ numărabilă și densă.

Propoziția III.22. Fie E un spațiu metric separabil și fie $F \subset E$ o submulțime a lui E. Atunci F este separabil.
Demonstrație. Fie \((u_n)\) un șir dens în \(E\). Fie \((r_m)\) un șir de numere reale positive astfel încât \(r_m \to 0\). Alegem în mod arbitrar \(a_{m,n} \in B(u_n, r_m) \cap F\), dacă această mulțime este nevidă. Este evident că șirul \((a_{m,n})\) constituie o mulțime numărabilă și densă în \(F\).

Teorema III.23. Fie \(E\) un spațiu Banach astfel încât \(E'\) este separabil. Atunci \(E\) este separabil.

Remarcă 18. Reciprocă nu este adevărată. Există spații Banach separate \(E\) astfel încât \(E'\) nu este separabil; de exemplu, \(E = L^1(\Omega)\) (vezi capitolul IV).

Demonstrație. Fie \((f_n)_{n \geq 1}\) o familie numărabilă și densă în \(E'\). Deoarece
\[
\|f_n\| = \sup_{\|x\| \leq 1} \langle f_n, x \rangle,
\]
există \(x_n \in E\) astfel încât
\[
\|x_n\| = 1 \text{ și } \langle f_n, x_n \rangle \geq \frac{1}{2} \|f_n\|.
\]
Notăm cu \(L_0\) spațiul vectorial peste \(\mathbb{Q}\) generat de \((x_n)_{n \geq 1}\); adică \(L_0\) este mulțimea combinațiilor liniare finite cu coeficienți în \(\mathbb{Q}\) de elemente din familia \((x_n)_{n \geq 1}\). Observăm că \(L_0\) este numărabilă. Într-adevăr, pentru orice \(n\), fie \(\Lambda_n\) spațiul vectorial peste \(\mathbb{Q}\) generat de \([x_1, x_2, \ldots, x_n]\). Atunci \(\Lambda_n\) este în corespondență bijectivă cu o submulțime a lui \(\mathbb{Q}^n\) și \(L_0 = \bigcup_{n \geq 1} \Lambda_n\).

Fie \(L\) spațiul vectorial peste \(\mathbb{R}\) generat de \((x_n)_{n \geq 1}\). Este evident că \(L_0\) este o submulțime densă a lui \(L\). Verificăm că \(L\) este densă în \(E\) (de unde va rezulta că \(L_0\) este densă în \(E\) și deci că \(E\) este separabil). Fie \(f \in E'\) astfel încât \(\langle f, x \rangle = 0\) pentru orice \(x \in L\); să arătăm (corolarul I.8) că \(f = 0\). Fiind dat \(\varepsilon > 0\), există \(N\) astfel încât \(\|f - f_N\| < \varepsilon\). Avem
\[
\frac{1}{2} \|f_N\| \leq \langle f_N, x_N \rangle = \langle f_N - f, x_N \rangle + \langle f, x_n \rangle \leq \varepsilon
\]
(deoarece \(\langle f, x_N \rangle = 0\)). Rezultă că \(\|f\| \leq \|f - f_N\| + \|f_N\| < 3\varepsilon\). Deci \(f = 0\).

Corolarul III.24. Fie \(E\) un spațiu Banach. Atunci
\[
[E \text{ reflexiv și separabil}] \iff [E' \text{ reflexiv și separabil}].
\]
Demonstrație. – Știm deja (corolarul III.18 și teorema III.23) că $$[E' \text{ reflexiv și separabil}] \implies [E \text{ reflexiv și separabil}].$$

Invers, dacă E este reflexiv și separabil, atunci $E'' = J(E)$ este reflexiv și separabil; deci E' este reflexiv și separabil.

Proprietățile de separabilitate sunt strâns legate de metrizabilitatea topologiilor slabe.

Teorema III.25. – Fie E un spațiu Banach separabil. Atunci $B_{E'}$ este metrizabilă pentru topologia $\sigma(E', E)$ (\(^6\)).

Reciproc, dacă $B_{E'}$ este metrizabilă pentru $\sigma(E', E)$, atunci E este separabil.

Remarca 19. – Spațiul întreg E' nu este niciodată metrizabil pentru $\sigma(E', E)$, cu excepția cazului finit dimensional (vezi [EX]).

Demonstrație. – Fie $(x_n)_{n \geq 1}$ o submulțime numărabilă densă în B_E (se ia D numărabilă și densă în E și se consideră $D \cap B_E$). Pentru $f, g \in B_{E'}$ se definește

$$d(f, g) = \sum_{n=1}^{\infty} \frac{1}{2^n} |\langle f - g, x_n \rangle|.$$

Este evident că d este o metrică. Arătăm că topologia asociată lui d coincide pe $B_{E'}$ cu $\sigma(E', E)$.

(a) Fie $f_0 \in B_{E'}$ și fie V o vecinătate a lui f_0 pentru $\sigma(E', E)$. Arătăm că există $r > 0$ astfel încât

$$U = \{ f \in B_{E'}; d(f, f_0) < r \} \subset V.$$

Putem presupune că V este de forma

$$V = \{ f \in B_{E'}; |\langle f - f_0, y_i \rangle| < \varepsilon, \ \forall i = 1, 2, \ldots, k \}$$

cu $\varepsilon > 0$ și $y_1, y_2, \ldots, y_k \in E$. Fără a restrângă generalitatea putem presupune că $\|y_i\| \leq 1$ pentru orice $i = 1, 2, \ldots, k$. Deoarece șirul $(x_n)_{n \geq 1}$ este dens în B_E, pentru fiecare i, există un întreg n_i astfel încât $\|y_i - \(^{\text{Adică există o metrică definită pe } B_{E'} \text{ astfel încât topologia asociată coincide pe } B_{E'} \text{ cu } \sigma(E', E).\]
$x_n \| < \frac{\varepsilon}{4}$.

Fixăm $r > 0$ astfel încât $2^n r < \frac{\varepsilon}{2}$ pentru orice $i = 1, 2, \ldots, k$; arătăm că $U \subset V$. Intr-adevăr, dacă $d(f, f_0) < r$, atunci

$$\frac{1}{2^n} |\langle f - f_0, x_n \rangle| < r, \quad \forall i = 1, 2, \ldots, k$$

și deci

$$|\langle f - f_0, y_i \rangle| = |\langle f - f_0, y_i - x_n \rangle + \langle f - f_0, x_n \rangle| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}, \quad \forall i = 1, \ldots, k.$$

Rezultă că $f \in V$.

(b) Fie $f_0 \in B_{E'}$. Fixăm $r > 0$ și arătăm că există o vecinătate V a lui f_0 pentru $\sigma(E', E)$ în $B_{E'}$ astfel încât

$$V \subset U = \{ f \in B_{E'}; d(f, f_0) < r \}.$$

Vom lua V de forma

$$V = \{ f \in B_{E'}; |\langle f - f_0, x \rangle| < \varepsilon, \quad \forall i = 1, 2, \ldots \}.$$

Vom determina acum ε și k astfel încât $V \subset U$. Dacă $f \in V$ atunci

$$d(f, f_0) = \sum_{n=1}^{k} \frac{1}{2^n} |\langle f - f_0, x_n \rangle| + \sum_{n=k+1}^{\infty} \frac{1}{2^n} |\langle f - f_0, x_n \rangle| <$$

$$< \varepsilon + 2 \sum_{n=k+1}^{\infty} \frac{1}{2^n} = \varepsilon + \frac{1}{2^{k-1}}.$$

Alegem așadar $\varepsilon = \frac{r}{2}$ și k suficient de mare astfel încât $\frac{1}{2^{k-1}} < \frac{r}{2}$.

⋆ Reciproc, presupunem că $B_{E'}$ este metrizabilă pentru $\sigma(E', E)$ și arătăm că E este separabil. Fie

$$U_n = \{ f \in B_{E'}; d(f, 0) < 1/n \}$$

și fie V_n o vecinătate a lui 0 în $\sigma(E', E)$ astfel încât $V_n \subset U_n$. Putem presupune că V_n este de forma

$$V_n = \{ f \in B_{E'}; |\langle f, x \rangle| < \varepsilon_n, \quad \forall x \in \Phi_n \}.$$
unde $\varepsilon_n > 0$ și Φ_n este o submulțime finită a lui E. Observăm că $D = \bigcup_{n=1}^{\infty} \Phi_n$ este numărabilă. Pe de altă parte,

$$\bigcap_{n=1}^{\infty} V_n = \{0\} \text{ și deci } ((f, x) = 0 \ \forall x \in D) \Rightarrow (f = 0).$$

Rezultă că spațiul vectorial generat de D este dens în E, de unde rezultă că E este separabil.

Avem următorul rezultat “simetric”.

• Corolarul III.26. – Fie E un spațiu Banach separabil și (f_n) un șir mărginit în E'. Atunci există un subșir (f_{n_k}) care converge în topologia $\sigma(E', E)$.

DEMONSTRĂȚIE. – Pentru a fixa ideile, presupunem că $\|f_n\| \leq 1$ pentru orice n. Multimea $B_{E'}$ este compactă și metrizabilă pentru topologia $\sigma(E', E)$ (teoremele III.15 și III.25). De aici rezultă concluzia.

• Teorema III.27. – Fie E un spațiu Banach reflexiv și (x_n) un șir mărginit în E. Atunci există un subșir (x_{n_k}) care converge în topologia $\sigma(E, E')$.

DEMONSTRĂȚIE. – Fie M_0 spațiul vectorial generat de (x_n) și $M = \overline{M_0}$. Evident, M este separabil (vezi demonstrația teoremei III.23). În plus, M este reflexiv (conform propoziției III.17). Rezultă că B_M este compactă și metrizabilă pentru topologia $\sigma(M, M')$. Intr-adevăr, M' este separabil (corolarul III.24) și, prin urmare, $B_{M''} = B_M$ este metrizabilă pentru $\sigma(M', M') = \sigma(M, M')$, conform teoremei III.25. Se poate extrage deci un subșir (x_{n_k}) care este convergent pentru topologia $\sigma(M, M')$. Deducem că (x_{n_k}) converge și pentru topologia $\sigma(E, E')$ (prin restricția la M a funcționalelor liniare și continue pe E).
Remarcă 20. – Reciproc ă teoremei III.27 este adevărată. Mai precis, avem

* Teorema III.28 (Eberlein-Șmulian). – Fie E un spațiu Banach cu proprietatea că din orice șir mărginit se poate extrage un subșir convergent pentru topologia $\sigma(E, E')$. Atunci E este reflexiv.

Demonstrația este delicată; vezi de exemplu Holmes [1], Yosida [1], Dunford-Schwartz [1], Diestel [2] sau [EX]. Pentru a preciza interesul teoremei III.28 reamintim că:

i) un spațiu topologic (general) în care orice șir conține un subșir convergent nu este, în mod necesar, compact.

ii) într-un spațiu topologic compact pot exista șiruri care nu au nici un subșir convergent.

iii) într-un spațiu metric

(compact) \iff (orice șir are un subșir convergent).

Există efectiv exemple de spații Banach E și de șiruri mărginite (f_n) în E' care nu au nici un subșir convergent pentru topologia $\sigma(E', E)$; vezi [EX]. Bineînțeles, un asemenea spațiu E nu este nici reflexiv, nici separabil; în acest caz, multimea $B_{E'}$ înzestrată cu topologia $\sigma(E', E)$ este un compact care nu este metrizabil.

III.7 Spații uniform convexe

Definiție. – Un spațiu Banach E se numește uniform convex dacă $\forall \varepsilon > 0, \exists \delta > 0$ astfel încât

$$(x, y \in E, \|x\| \leq 1, \|y\| \leq 1 \text{ și } \|x - y\| > \varepsilon) \Rightarrow \left(\left\|\frac{x + y}{2}\right\| < 1 - \delta\right).$$

Observăm că această definiție face să intervină o proprietate geometrică a bilee unitate (care trebuie să fie “foarte rotundă”) și că ea nu este stabilită prin trecerea la o normă echivalentă.

Exemplul 1. – Fie $E = \mathbb{R}^2$. Norma $\|x\|_2 = (|x_1|^2 + |x_2|^2)^{1/2}$ este uniform convexă, în timp ce norma $\|x\|_1 = |x_1| + |x_2|$ nu este uniform
Exemplul 2. – Vom vedea în continuare (cf. capitoilelor IV și V) că spațiile Hilbert sunt uniform convexe, precum și spațiile L^p, pentru $1 < p < \infty$. Din contră, spațiile $L^1(\Omega)$, $L^\infty(\Omega)$ și $C(K)$ (K compact) nu sunt uniform convexe.

• Teorema III.29 (Milman–Pettis). – Orice spațiu Banach uniform convex este reflexiv.

Remarca 21. – Este surprinzător că o proprietate de natură geometrică (uniform convexitatea) antrenează o proprietate de natură topologică (reflexivitatea). Uniform convexitatea este adesea un instrument comod pentru a demonstra că un spațiu este reflexiv [dar această metodă nu funcționează întotdeauna: există spații reflexive care nu au nici o normă echivalentă uniform convexă].

Demonstrație. – Fie $\xi \in E''$ cu $\|\xi\| = 1$. Trebuie să arătăm că $\xi \in J(B_E)$. Cum $J(B_E)$ este închisă în E'' pentru topologia tare, este suficient să demonstrăm că

\[\forall \varepsilon > 0 \ \exists x \in B_E \text{ astfel încât } \|\xi - J(x)\| \leq \varepsilon. \]

Fie deci $\varepsilon > 0$ și fie $\delta > 0$ corespunzător definiției uniform convexității. Alegem $f \in E'$ astfel încât $\|f\| = 1$ și

\[\langle \xi, f \rangle > 1 - \frac{\delta}{2} \]

(acest lucru este posibil deoarece $\|\xi\| = 1$). Fie

\[V = \left\{ \eta \in E''; \ |\langle \eta - \xi, f \rangle| < \frac{\delta}{2} \right\}. \]

Deci V este o vecinătate a lui ξ în topologia $\sigma(E'', E')$. Conform lemei III.4, $V \cap J(B_E) \neq \emptyset$. Fixăm $x \in B_E$ astfel încât $J(x) \in V$.

\[\text{Cu titlu de exercițiu, faceți raționamentul cu } \varepsilon \text{ și } \delta! \]
Aratăm că \(\xi \in J(x) + \varepsilon B_{E''} \) – ceea ce va încheia demonstrația. Raționăm prin absurd și presupunem că \(\xi \in (J(x) + \varepsilon B_{E''})^c = W \). Observăm că \(W \) este o vecinătate a lui \(\xi \) în topologia \(\sigma(E'',E') \) (pentru că \(B_{E''} \) este închisă în \(\sigma(E'',E') \)). Aplicând din nou lema III.4 avem \((V \cap W) \cap J(B_E) \neq \emptyset\), adică există \(y \in B_E \) astfel incât \(J(y) \in V \cap W \). Observând că \(J(x), J(y) \in V \), avem

\[|\langle f, x \rangle - \langle \xi, f \rangle| < \delta \]

și

\[|\langle f, y \rangle - \langle \xi, f \rangle| < \delta/2. \]

Prin adunarea acestor inegalități obținem

\[2\langle \xi, f \rangle < \langle f, x + y \rangle + \delta \leq \|x + y\| + \delta. \]

Folosind acum (7) obținem

\[\left\| \frac{x + y}{2} \right\| \geq 1 - \delta. \]

In consecință (din uniform convexitate), \(\|x - y\| \leq \varepsilon \); acest lucru este absurd căci \(J(y) \in W \) (adică \(\|x - y\| > \varepsilon \)).

Încheiem cu o proprietate utilă a spațiilor uniform convexe.

Propoziție III.30. – Fie \(E \) un spațiu Banach uniform convex. Fie \((x_n)\) un șir în \(E \) astfel încât \(x_n \rightharpoonup x \) pentru topologia slabă \(\sigma(E,E') \) și

\[\limsup \|x_n\| \leq \|x\|. \]

Atunci \(x_n \rightharpoonup x \) în topologia tare.

Demonstrație. – Putem presupune că \(x \neq 0 \) (dacă nu, concluzia este evidentă). Fie

\[\lambda_n = \max (\|x_n\|, \|x\|), \quad y_n = \lambda_n^{-1}x_n \quad \text{și} \quad y = \|x\|^{-1}x, \]

adică \(\lambda_n \to \|x\| \) și \(y_n \rightharpoonup y \) slab în \(\sigma(E,E') \). Rezultă că

\[\|y\| \leq \liminf \left\| \frac{y_n + y}{2} \right\|. \]

(cf. propoziției III.5, (iii)).

Pe de altă parte, \(\|y\| = 1, \|y_n\| \leq 1 \), deci \(\left\| \frac{y_n + y}{2} \right\| \to 1 \). Deducem din uniform convexitate că \(\|y_n - y\| \to 0 \) și deci \(x_n \rightharpoonup x \) în topologia tare.
III.8 Comentarii asupra capitolului III

1) Topologiile $\sigma(E, E')$, $\sigma(E', E'')$, și $\sigma(E', E)$ sunt topologii local convexe separate. În consecință, ele se bucură de proprietățile generale ale spațiilor local convexe. Printre altele, teoremele lui Hahn-Banach (formele geometrice), teorema lui Krein-Milman, etc... rămân valabile; vezi Bourbaki [1] și [EX].

2) Alte rezultate privind topologiile slabe merită a fi menționate. De exemplu,

* Teorema III.31 (Banach–Dieudonné–Krein–Śmulian). – Fie E un spațiu Banach și fie $C \subset E'$ convexă. Presupunem că pentru orice întreg n mulțimea $C \cap (nB_E)$ este închisă pentru topologia $\sigma(E', E)$. Atunci C este închisă pentru topologia $\sigma(E', E)$.

Cititorul interesat poate găsi demonstrația în Bourbaki [1], Larsen [1], Holmes [1], Dunford–Schwartz [1], Schaefer [1] și ca exercițiu în [EX]. Referințele citate conțin și numeroase alte proprietăți legate de teorema Eberlein-Śmulian.

3) Teoria spațiilor vectoriale în dualitate, care generalizează dualitatea (E, E'), a cunoscut orele sale de glorie în perioada 1940-1950. Spunem că două spații vectoriale X și Y sunt în dualitate dacă există o formă biliniară \langle , \rangle pe $X \times Y$ care separă punctele (adică $\forall x \neq 0 \exists y$ astfel incât $\langle x, y \rangle \neq 0$ și $\forall y \neq 0 \exists x$ astfel incât $\langle x, y \rangle \neq 0$). Se pot defini pe X (resp. pe Y) mai multe topologii local convexe. Printre cele mai întâlnite vom reține, în afara topologiei slabe $\sigma(X, Y)$, topologia lui Mackey $\tau(X, Y)$, topologia tare $\beta(X, Y)$, etc. Aceste topologii joacă un rol interesant atunci când se lucrează cu spații care nu sunt normate, de exemplu spațiile care interven în teoria distribuțiilor. Legat de spațiile vectoriale în dualitate se pot consulta lucrările Bourbaki [1], Schaefer [1], Köthe [1], Treves [1], Kelley-Namioka [1], Edwards [1].

4) Proprietățile de separabilitate, de reflexivitate și de uniform convexitate sunt strâns legate și de proprietățile de diferențiabilitate ale funcției $x \mapsto \|x\|$ (vezi Diestel [1], Beauzamy [1] și [EX]). Existența unei norme echivalente care posedă bune proprietăți geometrice este

*Aceste spații se numesc super-reflexive, vezi Diestel [1] și Beauzamy [1]
Capitolul IV

SPAȚIILE L^p

În cele ce urmează, Ω va fi un deschis din \mathbb{R}^N înzestrat cu măsura Lebesgue dx. Presupunem că cititorul este familiarizat cu noțiunile de funcție integrabilă, funcție măsurabilă și multime neglijabilă; vezi de exemplu Marle [1], Malliavin [1], Neveu [1], Rudin [2], Guichardet [1], Dieudonné [2], Kolmogorov-Fomin [1], Chae [1], Hewitt-Stromberg [1], Wheeden-Zygmund [1] etc. Notăm cu $L^1(\Omega)$ spațiul funcțiilor integrabile pe Ω cu valori în \mathbb{R}. Fie

$$\|f\|_{L^1} = \int_{\Omega} |f(x)| \, dx.$$

Când nu va exista ambiguitate vom scrie L^1 în loc de $L^1(\Omega)$ și $\int f$ în loc de $\int_{\Omega} f(x) \, dx$. De obicei identificăm două funcții din L^1 care coincid a.p.t. = aproape peste tot (= cu excepția unei multimi neglijabile).

Reamintim acum următoarele rezultate.

IV.1 Câteva rezultate de integrare care trebuie neapărat cunoscute

- Teorema IV.1 (Teorema de convergență monotonă a lui Beppo Levi). Fie (f_n) un sir crescător de funcții din L^1 astfel încât $\sup_n \int f_n < \infty$.

Atunci $f_n(x)$ converge a.p.t. pe Ω către o limită finită notată $f(x)$; în plus, $f \in L^1$ și $\|f_n - f\|_{L^1} \to 0$.

87
• Teorema IV.2 (Teorema convergenței dominate a lui Lebesgue). – Fie \((f_n)\) un șir de funcții din \(L^1\). Presupunem că

 a) \(f_n(x) \to f(x)\) a.p.t. în \(\Omega\),
 b) există o funcție \(g \in L^1\) astfel încât pentru orice \(n\), \(|f_n(x)| \leq g(x)\) a.p.t. în \(\Omega\) \((1)\).

 Atunci \(f \in L^1\) și \(\|f_n - f\|_{L^1} \to 0\).

Lema IV.1. (Lema lui Fatou). – Fie \((f_n)\) un șir de funcții din \(L^1\) astfel încât

 (1) pentru orice \(n\), \(f_n \geq 0\) a.p.t.

 (2) \(\sup_n \int f_n < \infty\).

Pentru fiecare \(x \in \Omega\) punem \(f(x) = \liminf_{n \to \infty} f_n(x)\).

Atunci \(f \in L^1\) și

 \[
 \int f \leq \liminf_{n \to \infty} \int f_n.
 \]

Notație. – Notăm cu \(C_c(\mathbb{R}^N)\) spațiul funcțiilor continue pe \(\Omega\) cu suport compact, adică

 \[
 C_c(\Omega) = \{f \in C(\Omega); f(x) = 0 \quad \forall x \in \Omega \setminus K, \text{ unde } K \subset \Omega \text{ este compactă}\}.
 \]

Teorema IV.3 (Teorema de densitate). – Spațiul \(C_c(\Omega)\) este dens în \(L^1(\Omega)\); adică

 \[
 \forall f \in L^1(\Omega) \quad \forall \varepsilon > 0 \quad \exists f_1 \in C_c(\Omega) \text{ astfel încât } \|f - f_1\|_{L^1} \leq \varepsilon.
 \]

Fie \(\Omega_1 \subset \mathbb{R}^{N_1}\), \(\Omega_2 \subset \mathbb{R}^{N_2}\), mulțimi deschise și fie \(F : \Omega_1 \times \Omega_2 \to \mathbb{R}\) o funcție măsurabilă.

Teorema IV.4 (Tonelli). – Presupunem că

 \[
 \int_{\Omega_2} |F(x, y)| \, dy < \infty \quad \text{pentru a.p.t. } x \in \Omega_1
 \]

și că

 \[
 \int_{\Omega_1} dx \int_{\Omega_2} |F(x, y)| \, dy < \infty.
 \]

\(^1\)Spinem că \(g\) este un **majorant integrabil** al funcțiilor \((f_n)\).
Atunci $F \in L^1(\Omega_1 \times \Omega_2)$.

Teorema IV.5 (Fubini). – Presupunem că $F \in L^1(\Omega_1 \times \Omega_2)$.

Atunci, pentru a.p.t. $x \in \Omega_1$, $F(x,y) \in L^1_y(\Omega_2)$ și $\int_{\Omega_2} F(x,y) dy \in L^1_x(\Omega_1)$.

Analog, pentru a.p.t. $y \in \Omega_2$, $F(x,y) \in L^1_x(\Omega_1)$ și $\int_{\Omega_1} F(x,y) dx \in L^1_y(\Omega_2)$.

În plus, avem

$$\int_{\Omega_1} dx \int_{\Omega_2} F(x,y) dy = \int_{\Omega_2} dy \int_{\Omega_1} F(x,y) dx = \int_{\Omega_1} \int_{\Omega_2} F(x,y) dx dy.$$

IV.2 Definiția și proprietățile elementare ale spațiilor L^p

Definiție. – Fie $p \in \mathbb{R}$ cu $1 \leq p < \infty$; definim

$$L^p(\Omega) = \{f : \Omega \to \mathbb{R}; f \text{ este măsurabilă și } |f|^p \in L^1(\Omega)\}.$$

Notăm

$$\|f\|_{L^p} = \left[\int_{\Omega} |f(x)|^p dx\right]^{1/p}.$$

Vom verifica ulterior că $\|\|$ este o normă.

Definiție. – Notăm

$$L^\infty(\Omega) = \{f : \Omega \to \mathbb{R}; f \text{ este măsurabilă și } \exists C \text{ astfel încât } |f(x)| \leq C \text{ a.p.t. în } \Omega\}.$$

Fie

$$\|f\|_{L^\infty} = \|f\|_\infty = \text{Inf} \{C; |f(x)| \leq C \text{ a.p.t. în } \Omega\}.$$

Vom verifica ulterior că $\|\|$ este o normă.

Remarca 1. – Dacă $f \in L^\infty$ atunci

$$|f(x)| \leq \|f\|_\infty \text{ a.p.t. în } \Omega.$$
Intr-adevăr, există un sir C_n astfel încât $C_n \rightarrow \|f\|_{\infty}$ și pentru orice n, $|f(x)| \leq C_n$ a.p.t. în Ω. Deci $|f(x)| \leq C_n$ pentru orice $x \in \Omega \setminus E_n$, cu $|E_n| = 0$. Fie $E = \bigcup_{n=1}^{\infty} E_n$, deci $|E| = 0$ și $|f(x)| \leq \|f\|_{\infty}$, pentru orice $x \in \Omega \setminus E$.

Notă. – Fie $1 \leq p \leq \infty$; notăm cu p' exponentul conjugat al lui p, adică

\[
\frac{1}{p} + \frac{1}{p'} = 1.
\]

Teorema IV.6 (Inegalitatea lui Hölder). – Fie $f \in L^p$ și $g \in L^{p'}$ cu $1 \leq p \leq \infty$. Atunci $fg \in L^1$ și

\[
\int |fg| \leq \|f\|_{L^p} \|g\|_{L^{p'}}.
\]

Demonstrație. – Concluzia este evidentă dacă $p = 1$ sau $p = \infty$. Fie $1 < p < \infty$. Reamintim **inegalitatea lui Young** (2)

\[
ab \leq \frac{1}{p} a^p + \frac{1}{p'} b^{p'} \quad \forall a \geq 0, \quad \forall b \geq 0;
\]

demonstrația inegalității (4) este evidentă: funcția “log” fiind concavă pe $(0, \infty)$, avem

\[
\log \left(\frac{1}{p} a^p + \frac{1}{p'} b^{p'} \right) \geq \frac{1}{p} \log a^p + \frac{1}{p'} \log b^{p'} = \log(ab).
\]

Deci

\[
|f(x)g(x)| \leq \frac{1}{p} |f(x)|^p + \frac{1}{p'} |g(x)|^{p'} \quad \text{a.p.t. } x \in \Omega.
\]

Rezultă că $fg \in L^1$ și

\[
\int |fg| \leq \frac{1}{p} \|f\|_{L^p}^p + \frac{1}{p'} \|g\|_{L^{p'}}^{p'}.
\]

Inlocuind f cu λf ($\lambda > 0$) în (5) avem

\[
\int |fg| \leq \frac{\lambda^{p-1}}{p} \|f\|_{L^p}^p + \frac{1}{\lambda p'} \|g\|_{L^{p'}}^{p'}.
\]

\[\text{Vom utiliza uneori această inegalitate sub forma } ab \leq \varepsilon a^p + C_\varepsilon b^{p'} \quad \text{cu } C_\varepsilon = \varepsilon^{-1/(p-1)}.\]
Alegem \(\lambda = \|f\|_{L^p}^{-1} \|g\|_{L^{p'}}^{p'/p} \) (care minimizează membrul drept din (6)). Obținem astfel (3).

Remarca 2. – Reținem următoarea consecință foarte utilă a inegalității lui Hölder: fie \(f_1, f_2, \ldots, f_k \) funcții astfel încât

\[
f_i \in L^p, \ 1 \leq i \leq k \text{ cu } \frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} + \ldots + \frac{1}{p_k} \leq 1,
\]
atunci \(f = f_1 f_2 \ldots f_k \) aparține lui \(L^p \) și

\[
\|f\|_{L^p} \leq \|f_1\|_{L^{p_1}} \|f_2\|_{L^{p_2}} \ldots \|f_k\|_{L^{p_k}}.
\]

In particular, dacă \(f \in L^p \cap L^q \) cu \(1 \leq p \leq q \leq \infty \), atunci \(f \in L^r \) pentru orice \(r \) cu \(p \leq r \leq q \) și are loc inegalitate de interpolare

\[
\|f\|_{L^r} \leq \|f\|_{L^p} \|f\|_{L^q}^{1-\alpha} \text{ unde } \frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}, \quad (0 \leq \alpha \leq 1);
\]
(vezi [EX]).

Teorema IV.7. – \(L^p \) este un spațiu vectorial și \(\| \cdot \|_{L^p} \) este o normă, pentru orice \(1 \leq p \leq \infty \).

Demonstrație. – Cazurile \(p = 1 \) și \(p = \infty \) sunt evidente (se utilizează remarca 1). Presupunem că \(1 < p < \infty \) și fie \(f, g \in L^p \). Avem

\[
|f(x) + g(x)|^p \leq (|f(x)| + |g(x)|)^p \leq 2^p(|f(x)|^p + |g(x)|^p).
\]

In consecință, \(f + g \in L^p \). Pe de altă parte,

\[
\|f + g\|_{L^p}^p = \int |f + g|^{p-1}|f + g| \leq \int |f + g|^{p-1}|f| + \int |f + g|^{p-1}|g|.
\]
Dar \(|f + g|^{p-1} \in L^{p'} \) și, conform inegalității lui Hölder,

\[
\|f + g\|_{L^p}^p \leq \|f\|_{L^p}^{p-1}(\|f\|_{L^p} + \|g\|_{L^p}),
\]
adică

\[
\|f + g\|_{L^p} \leq \|f\|_{L^p} + \|g\|_{L^p}.
\]

• Teorema IV.8 (Fischer-Riesz). – \(L^p \) este un spațiu Banach pentru orice \(1 \leq p \leq \infty \).
Demonstrație.
1) Presupunem mai întâi că $p = \infty$. Fie (f_n) un șir Cauchy în L^∞. Fiind dat un întreg $k \geq 1$, există un întreg N_k astfel încât $\|f_m - f_n\|_\infty \leq \frac{1}{k}$ pentru $m,n \geq N_k$. Deci există E_k neglijabilă astfel încât

$$|f_m(x) - f_n(x)| \leq \frac{1}{k} \quad \forall x \in \Omega \setminus E_k, \quad \forall m,n \geq N_k.$$

Fie $E = \bigcup_k E_k$ (E este neglijabilă). Atunci pentru orice $x \in \Omega \setminus E$, șirul $f_n(x)$ este Cauchy în \mathbb{R}. Fie $f_n(x) \to f(x)$ pentru $x \in \Omega \setminus E$. Trecând la limită în (7) când $m \to \infty$ obținem

$$|f(x) - f_n(x)| \leq \frac{1}{k} \quad \text{pentru orice } x \in \Omega \setminus E, \quad \forall n \geq N_k.$$

Deci $f \in L^\infty$ și $\|f - f_n\|_\infty \leq \frac{1}{k} \quad \forall n \geq N_k$. Prin urmare, $f_n \to f$ în L^∞.

2) Presupunem acum că $1 \leq p < \infty$. Fie (f_n) un șir Cauchy în L^p. Este suficient că arătăm că (f_n) conține un subșir convergent în L^p.

Extragem un subșir (f_{n_k}) astfel încât

$$\|f_{n_{k+1}} - f_{n_k}\|_{L^p} \leq \frac{1}{2^k} \quad \forall k \geq 1.$$

[se procedează astfel: există n_1 astfel încât $\|f_m - f_n\|_{L^p} \leq \frac{1}{2} \quad \forall m,n \geq n_1$; alegem apoi $n_2 \geq n_1$ astfel încât $\|f_m - f_n\|_{L^p} \leq \frac{1}{2^2} \quad \forall m,n \geq n_2$ etc...] Vom demonstra că f_{n_k} converge în L^p. Pentru a simplifica notațiile vom scrie f_k în loc de f_{n_k}. Deci

$$\|f_{k+1} - f_k\|_{L^p} \leq \frac{1}{2^k} \quad \forall k \geq 1.$$

Punând

$$g_n(x) = \sum_{k=1}^{n} |f_{k+1}(x) - f_k(x)|,$$

avem

$$\|g_n\|_{L^p} \leq 1.$$

Deducem din teorema convergenței monotone că $g_n(x)$ tinde la o limită finită $g(x)$, a.p.t. în Ω, cu $g \in L^p$. Pe de altă parte, pentru orice $m \geq n \geq 2$,

$$|f_m(x) - f_n(x)| \leq |f_m(x) - f_{m-1}(x)| + \ldots + |f_{n+1}(x) - f_n(x)| \leq g(x) - g_{n-1}(x).$$

\[\Box\]
Rezultă că, a.p.t. în Ω, $f_n(x)$ este un șir Cauchy și converge la o limită finită $f(x)$. Avem, a.p.t. în Ω,

$$|f(x) - f_n(x)| \leq g(x) \text{ pentru } n \geq 2$$

și, în particular, $f \in L^p$. În final obținem $\|f_n - f\|_{L^p} \to 0$, deoarece $|f_n(x) - f(x)|^p \to 0$ a.p.t. și $|f_n - f|^p \leq g^p \in L^1$. Concluzionăm folosind teorema convergenței dominate a lui Lebesgue.

Teorema IV.9. – Fie (f_n) un șir în L^p și fie $f \in L^p$ astfel încât $\|f_n - f\|_{L^p} \to 0$.

Atunci există un subșir (f_{n_k}) și o funcție $h \in L^p$ astfel încât

a) $f_{n_k}(x) \to f(x)$ a.p.t. în Ω,

b) $|f_{n_k}(x)| \leq h(x) \text{ } \forall k, \text{ a.p.t. în } \Omega$.

Demonstrație. – Concluzia este evidentă dacă $p = \infty$. Presupunem deci că $1 \leq p < \infty$. Deoarece (f_n) este un șir Cauchy putem relua demonstrația teoremei IV.8 pentru a extrage un subșir (f_{n_k}) care verifică (8). Continuând ca în demonstrația teoremei IV.8, deducem că $f_{n_k}(x)$ converge a.p.t. către o limită notată cu $f^*(x)$ (3). În plus, conform (9),

$$|f^*(x) - f_{n_k}(x)| \leq g(x) \text{ } \forall k, \text{ a.p.t. în } \Omega \text{ cu } g \in L^p.$$

Rezultă că $f^* \in L^p$ și că $f_k \to f^*$ în L^p (conform teoremei lui Lebesgue). În consecință, $f = f^*$ a.p.t. și deducem a). Pentru a deduce b), e suficient să alegem $h = f^* + g$.

IV.3 Reflexivitate. Separabilitate. Dualul lui L^p

Vom distinge studiul următoarelor trei cazuri:

(A) $1 < p < \infty$

(B) $p = 1$

(C) $p = \infty$

\footnote{A priori trebuie să distingem f și f^*: știm că $f_n \to f$ în L^p și că $f_{n_k}(x) \to f^*(x)$ a.p.t. în Ω.}
REFLEXIVITATE ŞI SEPARABILITATE

- Teorema IV.10. – L^p is reflexiv pentru orice $1 < p < \infty$.

Demonstrația se compune din trei etape:

Prima etapă (Prima inegalitate a lui Clarkson). – Fie $2 \leq p < \infty$. Avem

\[\frac{2}{p} \left(\|f\|_{L^p}^p + \|g\|_{L^p}^p\right) \quad \forall f, g \in L^p. \]

Demonstrație. – Bineînțeles, este suficient să arătăm că

\[\frac{a+b}{2}^p + \frac{a-b}{2}^p \leq \frac{1}{2}(|a|^p + |b|^p) \quad \forall a, b \in \mathbb{R}. \]

Avem

\[\alpha^p + \beta^p \leq (\alpha^2 + \beta^2)^{p/2} \quad \forall \alpha, \beta \geq 0 \]

(prin omogenitate, reducem studiul la $\beta = 1$ și observăm că funcția $(x^2 + 1)^{p/2} - x^p - 1$ este crescătoare pe $[0, \infty]$). Alegând $\alpha = \frac{|a+b|}{2}$ și $\beta = \frac{|a-b|}{2}$ obținem

\[\frac{a+b}{2}^p + \frac{a-b}{2}^p \leq \left(\frac{a+b}{2}^2 + \frac{a-b}{2}^2\right)^{p/2} = \]

\[= \left(\frac{a^2 + b^2}{2}\right)^{p/2} \leq \frac{1}{2}(|a|^p + |b|^p). \]

[ultima inegalitate rezultă din convexitatea funcției $x \mapsto |x|^{p/2}$ pentru $p \geq 2$].

Etapa a doua: L^p este uniform convex, și deci reflexiv pentru $2 \leq p < \infty$.

Într-adevăr, fie $\varepsilon > 0$ și $f, g \in L^p$ cu $\|f\|_{L^p} \leq 1$, $\|g\|_{L^p} \leq 1$ și $\|f - g\|_{L^p} > \varepsilon$. Din (10) deducem că

\[\left\|\frac{f + g}{2}\right\|_{L^p}^p < 1 - \left(\frac{\varepsilon}{2}\right)^p < 1 - \delta, \]
REFLEXIVITATEȘI SEPARABILITATE

\[\delta = 1 - \left[1 - \left(\frac{\varepsilon}{2} \right)^p \right]^{1/p} > 0. \]

In consecință, \(L^p \) este uniform convex și deci reflexiv, conform teoremei III.29.

Etapa a treia: \(L^p \) este reflexiv pentru \(1 < p \leq 2 \).

Demonstrație. – Fie \(1 < p \leq 2 \). Considerăm operatorul \(T : L^p \to (L^{p'})' \) definit după cum urmează:

Fie \(u \in L^p \) fixat; aplicația \(f \in L^{p'} \mapsto \int uf \) este o funcțională liniară și continuă pe \(L^{p'} \) și deci definește un element \(Tu \in (L^{p'})' \) astfel încât

\[\langle Tu, f \rangle = \int uf \ \forall f \in L^{p'}. \]

Conform inegalității lui Hölder avem

\[|\langle Tu, f \rangle| \leq \|u\|_{L^p} \|f\|_{L^{p'}} \ \forall f \in L^{p'}, \]

și deci

\[|\langle Tu, f \rangle| \leq \|u\|_{L^p} \|f\|_{L^{p'}} \ \forall f \in L^{p'} \]

și deci

\[(11) \quad \|Tu\|_{(L^{p'})'} \leq \|u\|_{L^p}. \]

Pe de altă parte, fie

\[f_0(x) = |u(x)|^{p-2}u(x) \quad (f_0(x) = 0 \text{ dacă } u(x) = 0). \]

Avem \(f_0 \in L^{p'} \), \(\|f_0\|_{L^{p'}} = \|u\|_{L^p}^{-1} \) și \(\langle Tu, f_0 \rangle = \|u\|_{L^p}^p \). Deci

\[(12) \quad \|Tu\|_{(L^{p'})'} \geq \frac{\langle Tu, f_0 \rangle}{\|f_0\|} = \|u\|_{L^p}. \]

Comparând (11) și (12) obținem \(\|Tu\|_{(L^{p'})'} = \|u\|_{L^p} \). Rezultă că \(T \) este o izometrie de la \(L^p \) într-un subspațiu închis (deoarece \(L^p \) este complet) al lui \((L^{p'})' \). Dar \(L^{p'} \) este reflexiv (etapa a doua) și deci (corolarul III.18), spațiul \((L^{p'})' \) este reflexiv. Conform propoziției III.17, rezultă că \(T(L^p) \) este reflexiv și aceeași proprietate o are și \(L^p \).

Remarca 3. – Arătăm că \(L^p \) este **uniform convex** dacă \(1 < p \leq 2 \). Utilizăm în acest scop a doua inegalitate a lui Clarkson, valabilă pentru \(1 < p \leq 2 \):

\[\left\| \frac{f + g}{2} \right\|_{L^p}^p + \left\| \frac{f - g}{2} \right\|_{L^p}^p \leq \left(\frac{1}{2} \|f\|_{L^p}^p + \frac{1}{2} \|g\|_{L^p}^p \right)^{1/(p-1)}. \]
Această inegalitate este mult mai dificil de stabilire decât prima inegalitate a lui Clarkson; vezi de exemplu [EX] sau Hewitt-Stromberg [1]. Pentru o abordare diferită, vezi Diestel [1], Morawetz [1] și [EX].

- Teorema IV.11 (Teorema de reprezentare a lui Riesz). – Fie \(1 < p < \infty \) și \(\phi \in (L^p)' \). Atunci există și este unic \(u \in L^{p'} \) astfel încât

\[
\langle \phi, f \rangle = \int uf \quad \forall f \in L^p.
\]

In plus,

\[
\|u\|_{L^{p'}} = \|\phi\|_{(L^p)'}.
\]

- Remarca 4. – Teorema IV.11 este foarte importantă. Ea exprimă faptul că orice funcțională liniară și continuă pe \(L^p \) cu \(1 < p < \infty \) poate fi reprezentată cu ajutorul unei funcții din \(L^{p'} \). Aplicația \(\phi \mapsto u \) este un operator liniar, izometric și surjectiv, care permite să se identifice dualul lui \(L^p \) cu \(L^{p'} \). In cele ce urmează vom face în mod sistematic identificarea

\[
(L^p)' = L^{p'}.
\]

Demonstrație. – Definim operatorul \(T : L^{p'} \to (L^p)' \) prin

\[
\langle Tu, f \rangle = \int uf \quad \forall u \in L^{p'}, \forall f \in L^p.
\]

Avem

\[
\|Tu\|_{(L^p)'} = \|u\|_{L^{p'}} \quad \forall u \in L^{p'}
\]

(se procedează ca în demonstrația teoremei IV.10, etapa a treia). Trebuie să demonstrăm că \(T \) este surjectiv. Intr-adevăr, fie \(E = T(L^{p'}) \). Deoarece \(E \) este un subspațiu închis, este suficient să arătăm că \(E \) este dens în \((L^p)' \). Fie \(h \in (L^p)'' \) \(\ni L^p \), deoarece \(L^p \) este reflexiv] astfel încât \(\langle h, Tu \rangle = 0 \), \(\forall u \in L^{p'} \); verificăm că \(h = 0 \). Avem

\[
\int uh = \langle Tu, h \rangle = 0 \quad \forall u \in L^{p'}.
\]

Alegând \(u = |h|^{p-2}h \) deducem că \(h = 0 \).

Teorema IV.12 (Densitate). – Spațiul \(C_c(\Omega) \) este dens în \(L^p(\Omega) \) pentru orice \(1 \leq p < \infty \).
Incepem cu o definitie si o lemă.

Definitie. - Fie $1 \leq p \leq \infty$; spunem că o functie $f : \Omega \rightarrow \mathbb{R}$ apartine lui $L^p_{loc}(\Omega)$ dacă $f1_K \in L^p(\Omega)$ pentru orice compact $K \subset \Omega$.

Lema IV.2. - Fie $f \in L^1_{loc}(\Omega)$ astfel incat
\begin{equation}
\int \! f_1 u = 0 \quad \forall u \in C_c(\Omega).
\end{equation}

Atunci $f = 0$ a.p.t. in Ω.

Demonстраția lemei IV.2. - Procedam în două etape:

1) Presupunem că avem, în plus, $f \in L^1(\Omega)$ și $|\Omega| < \infty$ (4).

Fiind dat $\varepsilon > 0$, există $f_1 \in C_c(\Omega)$ astfel incât $\|f - f_1\|_{L^1} < \varepsilon$. Din (13) obținem
\begin{equation}
\left| \int f_1 u \right| \leq \varepsilon \|u\|_{L^\infty} \quad \forall u \in C_c(\Omega).
\end{equation}

Fie
\[K_1 = \{x \in \Omega; \ f_1(x) \geq \varepsilon\} \]
\[K_2 = \{x \in \Omega; \ f_1(x) \leq -\varepsilon\} . \]

Deoarece K_1 și K_2 sunt multimi compacte și disjuncte, se poate construi cu teorema lui Tietze-Urysohn (vezi Dieudonné [1], L. Schwartz [2] sau Yosida [1]) o funcție $u_0 \in C_c(\Omega)$ astfel încât $\int_{\Omega} |f_0(x)| = +1$ dacă $x \in K_1$, $u_0(x) = -1$ dacă $x \in K_2$ și $|u_0(x)| \leq 1$ pentru orice $x \in \Omega$. Fie $K = K_1 \cup K_2$. Atunci
\[\int_{\Omega} f_1 u_0 = \int_{\Omega \setminus K} f_1 u_0 + \int_{K} f_1 u_0 \]
și deci, conform (14),
\[\int_{K} |f_1| = \int_{K} f_1 u_0 \leq \varepsilon + \int_{\Omega \setminus K} |f_1 u_0| \leq \varepsilon + \int_{\Omega \setminus K} |f_1| . \]

În consecință,
\[\int_{\Omega} |f_1| = \int_{K} |f_1| + \int_{\Omega \setminus K} |f_1| \leq \varepsilon + 2 \int_{\Omega \setminus K} |f_1| \leq \varepsilon + 2\varepsilon |\Omega| , \]

\[\text{4Fiind dat\u0103 } A \subset \Omega \text{ m\u0103surabil\u0103, not\u0103m cu } |A| \text{ m\u0103sur\u0103 lui } A; \ |A| \text{ poate fi, eventual, infinit\u0103.} \]
deoarece
\[|f_1| \leq \varepsilon \quad \text{pe } \Omega \setminus K.\]

Deci
\[\|f\|_{L^1} \leq \|f - f_1\|_{L^1} + \|f_1\|_{L^1} \leq 2\varepsilon + 2\varepsilon|\Omega|.\]

Această inegalitate fiind verificată pentru orice \(\varepsilon > 0\) rezultă că \(f = 0\) a.p.t. în \(\Omega\).

2) Considerăm acum cazul general. Scriem \(\Omega = \bigcup_n \Omega_n\) cu \(\Omega_n\) deschise și mărginite, \(\overline{\Omega}_n \subset \Omega\). [Se poate lua de exemplu \(\Omega_n = \{x \in \Omega; \text{dist}(x,\Omega^c) > 1/n\}\). Aplicând situația precedentă pentru \(\Omega_n\) și \(f|_{\Omega_n}\), deducem că \(f = 0\) a.p.t. în \(\Omega_n\) și obținem apoi \(f = 0\) a.p.t. în \(\Omega\).

Demonstrația teoremei IV.12. – Știm deja că \(C_c(\Omega)\) este dens în \(L^1(\Omega)\). Presupunem acum că \(1 < p < \infty\). Pentru a demonstra că \(C_c(\Omega)\) este dens în \(L^p(\Omega)\) este suficient să verificăm că dacă \(h \in L^p(\Omega)\) satisfacă \(\int h u = 0\) pentru orice \(u \in C_c(\Omega)\), atunci \(h = 0\). Dar \(h \in L^1_{\text{loc}}(\Omega)\) pentru că \(\int |h 1_K| \leq \|h\|_{L^p}|K|^{1/p} < \infty\) și deci putem aplica lema IV.2 pentru a deduce că \(h = 0\) a.p.t.

Teorema IV.13. – \(L^p(\Omega)\) este separabil pentru \(1 \leq p < \infty\).

Demonstrație. – Fie \((R_i)_{i \in I}\) o familie numărabilă de mulțimi \(R\) de forma \(R = \prod_{k=1}^N (a_k, b_k)\) cu \(a_k, b_k \in \mathbb{Q}\) și \(R \subset \mathbb{Q}\).

Fie \(E\) spațiul vectorial peste \(\mathbb{Q}\) generat de funcțiile \(1_{R_i}\), adică combinațiile liniere finite cu coeficienți raționali de funcții \(1_{R_i}\). Rezultă că \(E\) este numărabilă. Să arătăm că \(E\) este densă în \(L^p(\Omega)\). Intr-adevăr, fiind dat \(f \in L^p(\Omega)\) și \(\varepsilon > 0\), există \(f_1 \in C_c(\Omega)\) astfel încât \(\|f - f_1\|_{L^p} \leq \varepsilon\) (teorema IV.12). Fie \(\Omega'\) un deschis mărginit astfel încât \(\text{Supp } f_1 \subset \Omega' \subset \Omega\). Intrucât \(f_1 \in C_c(\Omega')\), există \(f_2 \in E\) astfel încât \(\text{Supp } f_2 \subset \Omega'\) și \(|f_1(x) - f_2(x)| \leq \frac{\varepsilon}{|\Omega'|^{1/p}}\) a.p.t. în \(\Omega'\) (se începe prin a acoperi \(f_1\) cu un număr finit de mulțimi pavate \(R_i\) pe care oscilația lui \(f_1\) este inferioară lui \(\frac{\varepsilon}{|\Omega'|^{1/p}}\)). Rezultă că \(\|f_2 - f_1\|_{L^p} \leq \varepsilon\) și deci \(\|f - f_2\| < 2\varepsilon\).

Remarcă 5. – Pentru a demonstra teorema IV.13 am fi putut face apel și la faptul că dacă \(K\) este un spațiu metric compact atunci \(C(K)\) este separabil (vezi de exemplu Dieudonné [1] (7.4.4)).
REFLEXIVITATE ŞI SEPARABILITATE

B. Studiul lui L^1.

- Teorema IV.14. – Fie $\phi \in (L^1)'$. Atunci există în mod unic $u \in L^\infty$ astfel încât

$$\langle \phi, f \rangle = \int uf \quad \forall f \in L^1.$$

In plus

$$\|u\|_{L^\infty} = \|\phi\|_{(L^1)'}.$$

- Remarca 6. – Teorema IV.14 afirmă că orice funcţională liniară şi continuă pe L^1 poate fi reprezentată cu ajutorul unei funcţii din L^∞. Aplicaţia $\phi \mapsto u$ este o izometrie surjectivă care permite să identificăm $(L^1)'$ şi L^∞. In continuare vom face în mod sistematic identificarea:

$$(L^1)' = L^\infty.$$

Demonstraţie. – Începem prin a demonstra existenţa lui u. Fixăm o funcţie $\theta \in L^2(\Omega)$ astfel încât pentru orice compact $K \subset \Omega$, $\theta(x) \geq \varepsilon_K > 0$ a.p.t. pe K. [Este evident că o asemenea funcţie există: luăm $\theta(x) = \alpha_n$ pentru $x \in \Omega$, $n \leq |x| < n + 1$ şi ajustăm constantele α_n astfel încât $\theta \in L^2(\Omega)$] Aplicaţia $f \in L^2(\Omega) \mapsto \langle \phi, \theta f \rangle$ este o funcţională liniară şi continuă pe $L^2(\Omega)$. Conform teoremei IV.11 (aplicată cu $p = 2$) există o funcţie $v \in L^2(\Omega)$ astfel încât

$$\langle \phi, \theta f \rangle = \int vf \quad \forall f \in L^2(\Omega).$$

Fie $u(x) = v(x)/\theta(x)$. Evident, u este bine definită deoarece $\theta > 0$ pe Ω şi u este măsurabilă. Arătăm că $u \in L^\infty$ şi că $\|u\|_{L^\infty} \leq \|\phi\|_{(L^1)'}$. Conform (15) avem

$$\left| \int vf \right| \leq \|\phi\|_{(L^1)'}\|\theta f\|_{L^1} \quad \forall f \in L^2.$$

Fixăm $C > \|\phi\|_{(L^1)'}$. Arătăm că mulţimea

$$A = \{x \in \Omega; |u(x)| > C\}$$
este neglijabilă (va rezulta că $u \in L^\infty$ și că $\|u\|_{L^\infty} \leq \|\phi\|_{(L^1)'})$. Raționăm prin reducere la absurd. Dacă A nu este neglijabilă, există $\tilde{A} \subset A$ măsurabilă astfel încât

$$ f(x) = \begin{cases}
+1 & \text{dacă } x \in \tilde{A}, u(x) > 0 \\
-1 & \text{dacă } x \in \tilde{A}, u(x) < 0 \\
0 & \text{dacă } x \in \omega \setminus \tilde{A}.
\end{cases} $$

Rezultă că $\int_{\tilde{A}} |u| \theta \leq \|\phi\|_{(L^1)'} \int_{\tilde{A}} \theta$, ceea ce este absurd deoarece $\int_{\tilde{A}} \theta > 0$.

Rezultă că

$$ \langle \phi, \theta f \rangle = \int u \theta f \quad \forall f \in L^2. $$

Recapitulăm: am construit $u \in L^\infty(\Omega)$ astfel încât $\|u\|_{L^\infty} \leq \|\phi\|_{(L^1)'}$ și

$$ \langle \phi, g \rangle = \int u g \quad \forall g \in C_c(\Omega). $$

Intr-adevăr, dacă $g \in C_c(\Omega)$, atunci $f = \frac{g}{\theta} \in L^2$ (pentru că $\theta \geq \varepsilon > 0$ pe Supp g) și putem înlocui f în (17). Deoarece $C_c(\Omega)$ este dens în L^1 deducem din (18) că

$$ \langle \phi, g \rangle = \int u g \quad \forall g \in L^1. $$

In sfârșit, avem

$$ |\langle \phi, g \rangle| \leq \int |u g| \leq \|u\|_{L^\infty} \|g\|_{L^1} \quad \forall g \in L^1 $$

și deci $\|\phi\|_{(L^1)'} \leq \|u\|_{L^\infty}$. In consecință, $\|\phi\|_{(L^1)'} = \|u\|_{L^\infty}$. Unicitatea lui u este o consecință imediată a lemei IV.2.

- **Remarcă 7.** - Spațiul $L^1(\Omega)$ nu este reflexiv. Intr-adevăr, să presupunem (pentru a fixa ideile) că $0 \in \Omega$. Să considerăm şirul $f_n = \alpha_n 1_{B(\frac{1}{n})}$ cu n suficient de mare astfel încât $B \left(0, \frac{1}{n}\right) \subset \Omega$ și $\alpha_n = \left|B \left(0, \frac{1}{n}\right)\right|^{-1}$, ceea ce implică $\|f_n\|_{L^1} = 1$. Dacă L^1 ar fi reflexiv
ar exista un subșir \((f_{n_k})\) și \(f \in L^1\) astfel încât \(f_{n_k} \rightharpoonup f\) pentru topologia slabă \(\sigma(L^1, L^\infty)\). Deci

\[
\int f_{n_k} \phi \to \int f \phi \quad \forall \phi \in L^\infty.
\]

Dacă \(\phi \in C_c(\Omega \setminus \{0\})\) atunci \(\int f_{n_k} \phi = 0\) pentru \(k\) suficient de mare. Din (19) rezultă că

\[
\int f \phi = 0 \quad \forall \phi \in C_c(\Omega \setminus \{0\}).
\]

Aplicând lema IV.2 în deschisul \(\Omega \setminus \{0\}\) funcției \(f\) (restrânsă la \(\Omega \setminus \{0\}\)) obținem că \(f = 0\) a.p.t. pe \(\Omega \setminus \{0\}\). Deci \(f = 0\) a.p.t. în \(\Omega\). Dacă luăm \(\phi \equiv 1\) în (19), rezultă că \(\int f = 1\), ceea ce este absurd.

C. Studiul lui \(L^\infty\).

Am văzut (teorema IV.14) că \(L^\infty = (L^1)'\). De aceea, spațiul \(L^\infty\) se bucură de câteva proprietăți remarcabile. Printre altele, avem

- (i) Bila unitate închisă \(B_{L^\infty}\) este compactă pentru topologia \(\star\) slabă \(\sigma(L^\infty, L^1)\) (cf. teoremei III.15).
- (ii) Dacă \((f_n)\) este un șir mărginit în \(L^\infty(\Omega)\), se poate extrage un subșir \((f_{n_k})\) și \(f \in L^\infty(\Omega)\) astfel încât \(f_{n_k} \rightharpoonup f\) pentru topologia \(\star\) \(\sigma(L^\infty, L^1)\) (teoremele III.25 și IV.13).

Cu toate acestea, \(L^\infty(\Omega)\) nu este reflexiv (în caz contrar, \(L^1\) ar fi reflexiv, conform corolarului III.18 și știm deja că \(L^1\) nu este reflexiv).

Dualul lui \(L^\infty\) conține \(L^1\) (deoarece \(L^\infty = (L^1)'\)), dar \((L^\infty)'\) este strict mai mare decât \(L^1\). Cu alte cuvinte, există funcționale liniare și continue \(\phi\) pe \(L^\infty\) care nu sunt de tipul

\[
\langle \phi, f \rangle = \int u f \quad \forall f \in L^\infty \text{ și pentru un anumit } u \in L^1.
\]

Să construim un exemplu “concret” de asemenea funcțională. Presupunem că \(0 \in \Omega\) și fie \(\phi_0 : C_c(\Omega) \to \mathbb{R}\) definită prin

\[
\phi_0(f) = f(0) \text{ pentru } f \in C_c(\Omega).
\]

Evident, \(\phi_0\) este o funcțională liniară și continuă pe \(C_c(\Omega)\) pentru norma \(\|\|_\infty\). Conform teoremei lui Hahn-Banach, putem prelungi \(\phi_0\) la o funcțională liniară și continuă \(\phi\) pe \(L^\infty(\Omega)\). Avem

\[
\langle \phi, f \rangle = f(0) \quad \forall f \in C_c(\Omega).
\]
Reflexivitate și separabilitate

Aratăm că \textbf{nu există} \(u \in L^1 \) astfel încât
\[
\langle \phi, f \rangle = \int uf \quad \forall f \in L^\infty.
\]
Presupunem prin reducere la absurd că o asemenea funcție \(u \) există. Deci
\[
\int uf = 0 \quad \forall f \in C_c(\Omega \setminus \{0\}).
\]
Aplicând lema IV.2 (pe \(\Omega \setminus \{0\} \)) obținem că \(u = 0 \) a.p.t. în \(\Omega \). Deci
\[
\langle \phi, f \rangle = 0 \quad \forall f \in L^\infty,
\]
ceea ce contrazice (20).

* \textbf{Remarca 8.} – Dacă dualul lui \(L^\infty \) nu coincide cu \(L^1 \) putem totuși să ne întrebăm cu ce “seamănă” \((L^\infty)' \)? În acest sens considerăm \(L^\infty(\Omega; \mathbb{C}) \) ca o \(C^* \) algebră comutativă (vezi de exemplu Rudin [1]). Conform teoremei lui Gelfand, \(L^\infty(\Omega; \mathbb{C}) \) este izomorfă și izometrică cu \(C(K; \mathbb{C}) \) (unde \(K \) este un spațiu topologic compact, mai precis spectrul algebrei \(L^\infty \)). Deci \((L^\infty(\Omega; \mathbb{C}))' \) se identifică cu spațiul măsurilor (Radon) pe \(K \) (cu valori în \(\mathbb{C} \)) și \(L^\infty(\Omega; \mathbb{R})' \) se identifică cu spațiul măsurilor (Radon) pe \(K \) cu valori în \(\mathbb{R} \). Pentru mai multe detalii, vezi Rudin [1] și Yosida [1] (p. 118).

\textbf{Remarca 9.} – Spațiul \(L^\infty \) \textbf{nu este separabil}. Pentru a stabili acest lucru este comod să utilizăm

\textbf{Lema IV.3.} – Fie \(E \) un spațiu Banach. Presupunem că există o familie \((O_i)_{i \in I} \) astfel încât
\begin{enumerate}[(i)]
\item pentru orice \(i \in I \), \(O_i \) este o submulțime deschisă și nevidă lui \(E \),
\item \(O_i \cap O_j = \emptyset \) dacă \(i \neq j \),
\item I nu este numărabilă.
\end{enumerate}
Atunci \(E \) \textbf{nu este separabil}.

\textbf{Demonstrația lemei IV.3.} – Raționăm prin absurd și presupunem că \(E \) este separabil. Fie \((u_n)_{n \in \mathbb{N}} \) un șir dens în \(E \). Pentru orice \(i \in I \), \(O_i \cap (u_n)_{n \in \mathbb{N}} \neq \emptyset \) și alegem \(n(i) \) astfel încât \(u_{n(i)} \in O_i \). Aplicația \(i \mapsto n(i) \) este injectivă; într-adevăr, dacă \(n(i) = n(j) \), atunci \(u_{n(i)} = u_{n(j)} \in O_i \cap O_j \) și deci \(i = j \). Deci \(I \) este numărabilă, ceea ce contrazice (iii).
CONVOLUȚIE ȘI REGULARIZARE

Arătăm în cele ce urmează că \(L^\infty \) nu este separabil. Pentru orice \(a \in \Omega \), fixăm \(r_a < \text{dist} \,(a, \Omega^c) \); fie \(u_a = 1_{B(a,r_a)} \) și
\[
O_a = \{ f \in L^\infty; \| f - u_a \|_\infty < 1/2 \}.
\]
Verificăm cu ușurință că familia \((O_a)_{a \in \Omega}\) satisface \((i)\), \((ii)\) și \((iii)\).

Tabloul următor sintetizează principalele proprietăți ale spațiilor \(L^p \) întâlnite în §IV.3.

<table>
<thead>
<tr>
<th>(L^p) cu (1 < p < \infty)</th>
<th>Reflexiv</th>
<th>Separabil</th>
<th>Spătiul dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L^1)</td>
<td>DA</td>
<td>DA</td>
<td>(L^p')</td>
</tr>
<tr>
<td>(L^\infty)</td>
<td>NU</td>
<td>NU</td>
<td>Conține strict (L^1)</td>
</tr>
</tbody>
</table>

IV.4 Convoluție și regularizare

In acest paragraf, cu excepția propoziției IV.17 și a corolarului IV.23 vom lua \(\Omega = \mathbb{R}^N \).

- **Teoarea IV.15.** – Fie \(f \in L^1(\mathbb{R}^N) \) și \(g \in L^p(\mathbb{R}^N) \) cu \(1 \leq p \leq \infty \). Atunci, pentru a.p.t. \(x \in \mathbb{R}^N \) funcția \(y \mapsto f(x - y)g(y) \) este integrabilă pe \(\mathbb{R}^N \).

Definim
\[
(f \ast g)(x) = \int_{\mathbb{R}^N} f(x - y)g(y) \, dy.
\]

Atunci \(f \ast g \in L^p(\mathbb{R}^N) \) și
\[
\| f \ast g \|_{L^p} \leq \| f \|_{L^1} \| g \|_{L^p}.
\]

DEMONSTRAȚIE. – Concluzia este evidentă dacă \(p = \infty \). Presupunem mai întâi că \(p = 1 \) și definim
\[
F(x,y) = f(x - y)g(y).
\]

Pentru a.p.t. \(y \in \mathbb{R}^N \) avem
\[
\int_{\mathbb{R}^N} |F(x,y)| \, dx = |g(y)| \int_{\mathbb{R}^N} |f(x - y)| \, dx = |g(y)| \| f \|_{L^1} < \infty
\]
și
\[\int_{\mathbb{R}^N} dy \int_{\mathbb{R}^N} |F(x, y)| \, dx = \|f\|_{L^1} \|g\|_{L^1} < \infty. \]

Aplicând teorema lui Tonelli (teorema IV.4) obținem \(F \in L^1(\mathbb{R}^N \times \mathbb{R}^N) \).

Conform teoremei lui Fubini (teorema IV.5) avem
\[\int_{\mathbb{R}^N} |F(x, y)| \, dy < \infty \text{ a.p.t. } x \in \mathbb{R}^N \]
și
\[\int_{\mathbb{R}^N} dx \int_{\mathbb{R}^N} |F(x, y)| \, dy \leq \|f\|_{L^1} \|g\|_{L^1}. \]

Acest rezultat corespunde exact concluziei teoremei IV.15.

Presupunem acum că \(1 < p < \infty \). Conform cazului precedent, știm că pentru a.p.t. \(x \in \mathbb{R}^N \) fixat, funcția \(y \mapsto |f(x-y)| \, |g(y)|^p \) este integrabilă pe \(\mathbb{R}^N \); adică
\[|f(x-y)|^{1/p} |g(y)| \in L^p_y(\mathbb{R}^N). \]
Deoarece \(|f(x,y)|^{1/p'} \in L^{p'}_y(\mathbb{R}^N) \), deducem din inegalitatea lui Hölder că
\[|f(x-y)||g(y)| = |f(x-y)|^{1/p'} |f(x-y)|^{1/p} |g(y)| \in L^1_y(\mathbb{R}^N) \]
și
\[\int_{\mathbb{R}^N} |f(x-y)||g(y)| \, dy \leq \|f\|_{1/p'}^{1/p} \left(\int_{\mathbb{R}^N} |f(x-y)| \, |g(y)|^p \, dy \right)^{1/p}, \]
adică
\[|(f \ast g)(x)|^{p} \leq \|f\|_{1/p'}^{p/p'} (|f| \ast |g|^p)(x). \]

Aplicând rezultatul din cazul \(p = 1 \) obținem \(f \ast g \in L^p(\mathbb{R}^N) \) și
\[\|f \ast g\|_{L^p} \leq \|f\|_{1/p'} \|f\|_{L^1} \|g\|_{L^p}, \]
adică
\[\|f \ast g\|_{L^p} \leq \|f\|_{L^1} \|g\|_{L^p}. \]

Notăție. – Fiind dată o funcție \(f \), definim \(\hat{f}(x) = f(-x) \).

Propoziția IV.16. – Fie \(f \in L^1(\mathbb{R}^N) \), \(g \in L^p(\mathbb{R}^N) \) și \(h \in L^{p'}(\mathbb{R}^N) \). Atunci
\[\int_{\mathbb{R}^N} (f \ast g)h = \int_{\mathbb{R}^N} g(\hat{f} \ast h). \]
Demonstrație. – Funcția $F(x, y) = f(x - y)g(y)h(x)$ apartine lui $L^1(\mathbb{R}^N \times \mathbb{R}^N)$ deoarece

$$\int |h(x)|dx \int |f(x - y)| |g(y)| dy < \infty$$

conform teoremei IV.15 și inegalității lui Hölder. Deci

$$f(f \ast g)(x)h(x) dx = \int dx \int F(x, y) dy = \int dy \int F(x, y) dx$$

$$= \int g(y)(\tilde{f} \ast h)(y) dy.$$

Suport și convoluție.

Notiunea de suport al unei funcții continue f este bine cunoscută: este complementara celui mai mare deschis pe care f se anulează (sau, în mod echivalent, este aderentă mulțimii $\{x; f(x) \neq 0\}$). Când lucrăm cu funcții măsurabile trebuie să fim mai prudenți – deoarece aceste funcții sunt definite aproape pe tot – și definiția precedentă nu mai este convenabilă (ne putem convinge de acest lucru considerând 1_Q). Definția convenabilă este următoarea:

Propoziția IV.17 și definiția suportului. – Fie $\Omega \subset \mathbb{R}^N$ o mulțime deschisă și $f : \Omega \to \mathbb{R}$. Considerăm familia tuturor mulțimilor deschise $(\omega_i)_{i \in I}$, $\omega_i \subset \mathbb{R}^N$ astfel încât pentru orice $i \in I$, $f = 0$ a.p.t. în ω_i. Fie $\omega = \bigcup_{i \in I} \omega_i$.

Atunci $f = 0$ a.p.t. în ω.

Prin definiție, $\text{Supp} f = \Omega \setminus \omega$.

Remarca 10.

a) Dacă $f_1 = f_2$ a.p.t. în Ω atunci $\text{Supp} f_1 = \text{Supp} f_2$. Deci putem vorbi de suportul unei funcții $f \in L^p$ (fără a preciza care reprezintă se alege din clasa de echivalentă).

b) Dacă f este continuă pe Ω se verifică fără dificultate că această definiție coincide cu definiția uzuală.

Demonstrație. – Nu este clar că $f = 0$ a.p.t. în ω deoarece familia I nu este numărabilă. Totuși putem reduce problema la cazul numărabil prin procesul următor. Fie (K_n) un șir de mulțimi compacte astfel încât $\omega = \bigcup_n K_n$

$$\left[\text{se poate lua } K_n = \left\{ x \in \omega; \text{dist}(x, \mathbb{R}^N \setminus \omega) \geq \frac{1}{n} \text{ și } |x| \leq n \right\}\right].$$
Apoi, pentru orice n, K_n poate fi acoperită cu un număr finit de multimi $ω_i$: $K_n \subset \bigcup_{i \in I_n} ω_i$ cu $I_n \subset I$ finită. Punând $J = \bigcup_n I_n$ (J este numărabilă) avem $ω = \bigcup_{i \in J} ω_i$. Deoarece $f = 0$ a.p.t. în $ω_i$, rezultă că $f = 0$ a.p.t. în $ω$.

- Propoziția IV.18. – Fie $f \in L^1(\mathbb{R}^N)$ și $g \in L^p(\mathbb{R}^N)$. Atunci
 \[
 \text{Supp}(f * g) \subset \text{Supp} f + \text{Supp} g
 \]

Demonstrație. – Fie $x \in \mathbb{R}^N$ astfel încât funcția $y \mapsto f(x − y)g(y)$ este integrabilă (vezi teorema IV.15). Avem
 \[
 (f * g)(x) = \int f(x − y)g(y) \, dy = \int_{(x−\text{Supp} f)\cap\text{Supp} g} f(x − y)g(y) \, dy.
 \]
Dacă $x \not\in \text{Supp} f + \text{Supp} g$, atunci $(x−\text{Supp} f)\cap\text{Supp} g = \emptyset$ și $(f * g)(x) = 0$. Deci
 \[
 (f * g)(x) = 0 \text{ a.p.t. pe } (\text{Supp} f + \text{Supp} g)^c.
 \]
In particular,
 \[
 (f * g)(x) = 0 \text{ a.p.t. pe } \text{Int}[(\text{Supp} f + \text{Supp} g)^c]
 \]
și, în consecință,
 \[
 \text{Supp} (f * g) \subset \text{Supp} f + \text{Supp} g.
 \]

- Remarca 11. – Dacă f și g au suportul compact, atunci $f * g$ are, de asemenea, suportul compact. Totuși $f * g$ nu are, în mod necesar, suportul compact dacă doar una dintre funcțiile f și g are suportul compact.

Propoziția IV.19. – Fie $f \in C_c(\mathbb{R}^N)$ și $g \in L^1(\mathbb{R}^N)$. Atunci
 \[
 (f * g) \in C(\mathbb{R}^N).
 \]

Demonstrație. – Observăm mai întâi că pentru orice $x \in \mathbb{R}^N$ funcția $y \mapsto f(x − y)g(y)$ este integrabilă pe \mathbb{R}^N și deci $(f * g)(x)$ are sens pentru orice $x \in \mathbb{R}^N$.

Fie \(x_n \to x \) și
\[
F_n(y) = f(x_n - y)g(y) \\
F(y) = f(x - y)g(y).
\]
Rezultă că \(F_n(y) \to F(y) \) a.p.t. în \(\mathbb{R}^N \). Pe de altă parte, fie \(K \) un compact fixat astfel încât \((x_n - \text{Supp } f) \subset K \), pentru orice \(n \). Deci \(f(x_n - y) = 0 \) pentru \(y \notin K \). Rezultă că \(|F_n(y)| \leq \|f\|_{L^\infty}1_K(y) \), care este un majorant integrabil. Aplicând teorema lui Lebesgue obținem
\[
(f \ast g)(x_n) = \int F_n(y) \, dy \to \int F(y) \, dy = (f \ast g)(x).
\]

Notății. Fie \(\Omega \subset \mathbb{R}^N \) o mulțime deschisă. \(C^k(\Omega) \) reprezintă spațiul funcțiilor care sunt de \(k \) ori continuu diferențiabile pe \(\Omega \).

\[
C^\infty(\Omega) = \bigcap_k C^k(\Omega) \\
C^k_c(\Omega) = C^k(\Omega) \cap C^\infty_c(\Omega) \\
C^\infty_c(\Omega) = C^\infty(\Omega) \cap C^\infty_c(\Omega)
\]
(unii autori folosesc notăția \(D(\Omega) \) sau \(C^\infty_0(\Omega) \) în loc de \(C^\infty_c(\Omega) \)).

- **Propoziția IV.20.** – Fie \(f \in C^k_c(\mathbb{R}^N) \) și \(g \in L^1_{\text{loc}}(\mathbb{R}^N) \) (\(k \) număr întreg). Atunci

\[
f \ast g \in C^k(\mathbb{R}^N) \quad \text{și} \quad D^\alpha(f \ast g) = (D^\alpha f) \ast g \quad (5).
\]

În particular, dacă \(f \in C^\infty_c(\mathbb{R}^N) \) și \(g \in L^1_{\text{loc}}(\mathbb{R}^N) \), atunci \(f \ast g \in C^\infty(\mathbb{R}^N) \).

Demonstrație. – Prin inducție reducem imediat problema la cazul \(k = 1 \).

\[^5\]D^\alpha \text{ reprezintă oricare dintre derivatele partiale}

\[
D^\alpha f = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial x_2^{\alpha_2}} \cdots \frac{\partial^{\alpha_N}}{\partial x_N^{\alpha_N}} f,
\]
unde \(|\alpha| = \alpha_1 + \alpha_2 + \ldots + \alpha_N \leq k \).
CONVOLUȚIE ȘI REGULARIZARE

Fie \(x \in \mathbb{R}^N \) fixat; arătăm că \(f \ast g \) este diferențiabilă în \(x \) și că
\[
\nabla(f \ast g)(x) = (\nabla f) \ast g(x) \quad (0).
\]

Fie \(h \in \mathbb{R}^N \) cu \(|h| < 1\) (cu tendința de a lua \(h \to 0 \)). Pentru orice \(y \in \mathbb{R}^N \) avem
\[
|f(x + h - y) - f(x - y) - h \cdot \nabla f(x - y)| = \left| \int_0^1 [h \cdot \nabla f(x + sh - y) - h \cdot \nabla f(x - y)] \, ds \right| \leq |h| \varepsilon(|h|)
\]
cu \(\varepsilon(|h|) \to 0 \) când \(|h| \to 0 \) (deoarece \(\nabla f \) este uniform continuă pe \(\mathbb{R}^N \)).

Fie \(K \) un compact în \(\mathbb{R}^N \) suficient de larg astfel încât \(x + B(0, 1) \setminus \text{Supp } f \subset K \). Avem
\[
f(x + h - y) - f(x - y) - h \cdot \nabla f(x - y) = 0 \quad \forall y \notin K, \quad \forall h \in B(0, 1)
\]
și deci
\[
|f(x + h - y) - f(x - y) - h \cdot \nabla f(x - y)| \leq |h| \varepsilon(|h|)1_K(y) \forall y \in \mathbb{R}^N,
\]
\(\forall h \in B(0, 1) \).

Deci
\[
|(f \ast g)(x + h) - (f \ast g)(x) - h \cdot (\nabla f \ast g)(x)| \leq |h| \varepsilon(|h|) \int_K |g(y)| \, dy.
\]
Rezultă că \(f \ast g \) este diferențiabilă în \(x \) și \(\nabla(f \ast g)(x) = (\nabla f) \ast g(x) \).

Șiruri regularizante

Definiție. – Se numește șir regularizant (mollifiers în engleză) orice șir de funcții \((\rho_n)_{n \geq 1}\) definite pe \(\mathbb{R}^N \) astfel încât
\[
\rho_n \in C_c^\infty(\mathbb{R}^N), \quad \text{Supp } \rho_n \subset B(0, 1/n), \quad \int \rho_n = 1, \quad \rho_n \geq 0 \text{ în } \mathbb{R}^N.
\]

In cele ce urmează vom utiliza în mod sistematic notatia \((\rho_n)\) pentru a desemna un șir regularizant.

\[\hat{\nabla}f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_N} \right).\]
Remarcăm că există șiruri regularizante. Intr-adevăr, este suficient să fixăm o funcție \(\rho \in C_c^\infty(\mathbb{R}^N) \) astfel încât Supp \(\rho \subset B(0,1) \), \(\rho \geq 0 \) în \(\mathbb{R}^N \) și \(\int \rho > 0 \); se poate considera, de exemplu, funcția

\[
\rho(x) = \begin{cases}
 e^{\frac{1}{|x|^2-1}} & \text{dacă } |x| < 1 \\
 0 & \text{dacă } |x| \geq 1.
\end{cases}
\]

Definim apoi \(\rho_n(x) = C_n^N \rho(nx) \) cu \(C = \left(\int \rho \right)^{-1} \).

Propoziția IV.21. – Fie \(f \in C(\mathbb{R}^N) \). Atunci \(\rho_n \ast f \to f \) uniform pe orice compact din \(\mathbb{R}^N \).

Demonstrație. – Fie \(K \subset \mathbb{R}^N \) un compact fixat. Pentru orice \(\varepsilon > 0 \) există \(\delta > 0 \) (depinzând de \(K \) și \(\varepsilon \)) astfel încât

\[|f(x - y) - f(x)| < \varepsilon \quad \forall x \in K, \quad \forall y \in B(0,\delta). \]

Avem

\[
(\rho_n \ast f)(x) - f(x) = \int [f(x - y) - f(x)] \rho_n(y) \, dy
\]

\[= \int_{B(0,1/n)} [f(x - y) - f(x)] \rho_n(y) \, dy. \]

Pentru \(n > 1/\delta \) și \(x \in K \) obținem

\[|(\rho_n \ast f)(x) - f(x)| \leq \varepsilon \int \rho_n = \varepsilon. \]

Teorema IV.22. – Fie \(f \in L^p(\mathbb{R}^N) \) cu \(1 \leq p < \infty \). Atunci \((\rho_n \ast f) \to f \) în \(L^p(\mathbb{R}^N) \).

Demonstrație. – Fie \(\varepsilon > 0 \) și \(f_1 \in C_c(\mathbb{R}^N) \) astfel încât \(\|f - f_1\|_{L^p} < \varepsilon \) (vezi teorema IV.12). Conform propoziției IV.21 avem \(\rho_n \ast f_1 \to f_1 \) uniform pe orice compact din \(\mathbb{R}^N \). Pe de altă parte (vezi propoziția IV.18)

\[\text{Supp} (\rho_n \ast f_1) \subset B(0,1/n) + \text{Supp} f_1 \subset B(0,1) + \text{Supp} f_1 \subset K, \]

unde \(K \) este un compact fixat. Deducem de aici că

\[\| (\rho_n \ast f_1) - f_1 \|_{L^p} \to 0 \quad \text{dacă } n \to \infty. \]
IN final, scriem

\[(\rho_n * f) - f = [\rho_n * (f - f_1)] + [(\rho_n * f_1) - f_1] + [f_1 - f]\]

și deci

\[\| (\rho_n * f) - f \|_{L^p} \leq 2 \| f - f_1 \|_{L^p} + \| (\rho_n * f_1) - f_1 \|_{L^p}\]

(conform teoremei IV.15).

Deducem că

\[\limsup_{n \to \infty} \| (\rho_n * f) - f \|_{L^p} \leq 2 \varepsilon \quad \forall \varepsilon > 0\]

și deci

\[\lim_{n \to \infty} \| (\rho_n * f) - f \|_{L^p} = 0.\]

- Corolarul IV.23. – Fie \(\Omega \subset \mathbb{R}^N \) o mulțime deschisă.
 Atunci \(C_c^\infty(\Omega) \) este dens în \(L^p(\Omega) \) pentru orice \(1 \leq p < \infty \).

DEMONSTRAȚIE. (7) – Fie \(f \in L^p(\Omega) \), \(\varepsilon > 0 \) și \(f_1 \in C_c(\Omega) \) astfel încât

\[\| f - f_1 \|_{L^p(\Omega)} < \varepsilon.\]

Definim funcția

\[\tilde{f}_1(x) = \begin{cases}
 f_1(x) & \text{dacă } x \in \Omega \\
 0 & \text{dacă } x \in \mathbb{R}^N \setminus \Omega.
\end{cases} \]

Deci \(\tilde{f}_1 \in L^p(\mathbb{R}^N) \) și (teorema IV.22) \(\| \rho_n * \tilde{f}_1 - \tilde{f}_1 \|_{L^p(\mathbb{R}^N)} \to 0 \). Pe de altă parte

\[\text{Supp} (\rho_n * \tilde{f}_1) \subset B \left(0, \frac{1}{n}\right) + \text{Supp} f_1 \subset \Omega\]

pentru \(n \) suficient de mare. Fie \(u_n = (\rho_n * \tilde{f}_1)|_\Omega \). Deci, pentru \(n \) suficient de mare, \(u_n \in C_c(\Omega) \) și, în plus, \(\| u_n - f_1 \|_{L^p(\Omega)} \to 0 \). Deci, pentru \(n \) suficient de mare, \(\| u_n - f \|_{L^p(\Omega)} < 2\varepsilon. \)

\[\text{Tehnica de regularizare prin convoluție a fost introdusă de Leray și Friedrichs.}\]
IV.5 Criteriu de compacitate tare în L^p

Este important să putem recunoaște când o familie de funcții $L^p(\Omega)$ este relativ compactă în $L^p(\Omega)$ pentru topologia tare. Să reamintim mai întâi teorema lui Ascoli, care răspunde la această întrebare în $C(K)$, unde K este un spațiu metric compact.

- **Teorema IV.24 (Ascoli).** – Fie K un spațiu metric compact și \mathcal{H} o submulțime mărginită în $C(K)$. Presupunem că \mathcal{H} este uniform echicontinuă, adică
 \begin{equation}
 \forall \varepsilon > 0 \exists \delta > 0 \text{ astfel încât } d(x_1, x_2) < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon \quad \forall f \in \mathcal{H}.
 \end{equation}

Atunci \mathcal{H} este relativ compactă în $C(K)$.

Pentru demonstrația teoremei lui Ascoli vezi Dixmier [1], Choquet [1], Dieudonné [1], Yosida [1].

Teorema următoare (și corolarul său) reprezintă “versiuni L^p” ale teoremei lui Ascoli.

Notații.
1) Fie $(\tau_h f)(x) = f(x + h)$ (translația lui f cu h).
2) Fie $\Omega \subset \mathbb{R}^N$ o mulțime deschisă; spunem că un deschis ω este **tare inclus** în Ω și scriem $\omega \subset \subset \Omega$ dacă $\overline{\omega} \subset \Omega$ (8) și dacă $\overline{\omega}$ este compactă.

- **Teorema IV.25 (M. Riesz-Fréchet-Kolmogorov).** – Fie $\Omega \subset \mathbb{R}^N$ o mulțime deschisă și $\omega \subset \Omega$. Fie \mathcal{F} o submulțime mărginită în $L^p(\mathbb{R}^N)$ cu $1 \leq p < \infty$. Presupunem că
 \begin{equation}
 \forall \varepsilon > 0 \exists \delta > 0 \text{ astfel încât }
 \end{equation}

\begin{equation}
\|\tau_h f - f\|_{L^p(\omega)} < \varepsilon \quad \forall f \in \mathcal{F} \quad \forall h \in \mathbb{R}^N \text{ cu } |h| < \delta.
\end{equation}

Atunci $\mathcal{F}_{|\omega}$ este relativ compactă în $L^p(\omega)$. (9)

8$\overline{\omega}$ semnifică închiderea lui ω în \mathbb{R}^N.
9Observăm că dacă $x \in \omega$ și $|h| < \delta < \text{dist}(\omega, \Omega^c)$ atunci $x + h \in \Omega$ și $f(x + h)$ are sens. Ipoteza (22) reprezintă o condiție de echicontinuitate “integrală” apropiată lui (21).
CRITERIU DE COMPACITATE

Demonstrație. – Putem presupune întotdeauna că Ω este mărginit. Pentru $f \in \mathcal{F}$ definim

$$\mathcal{f}(x) = \begin{cases} f(x) & \text{dacă } x \in \Omega \\ 0 & \text{dacă } x \in \mathbb{R}^N \setminus \Omega. \end{cases}$$

Multimea

$$\mathcal{F} = \{ \mathcal{f}; f \in \mathcal{F} \}$$

este mărginită în $L^p(\mathbb{R}^N)$ și în $L^1(\mathbb{R}^N)$. Distingem următoarele trei etape în demonstrație:

a) Avem

$$\| (\rho_n * \mathcal{f}) - \mathcal{f} \|_{L^p(\omega)} \leq \varepsilon \quad \forall f \in \mathcal{F}, \quad \forall n > 1/\delta.$$

Intr-adevăr, avem

$$| (\rho_n * \mathcal{f}) (x) - \mathcal{f}(x) | \leq \int_{\mathbb{R}^N} | \mathcal{f}(x - y) - \mathcal{f}(x) | \rho(y) dy$$

$$\leq \left[\int_{\mathbb{R}^N} | \mathcal{f}(x - y) - \mathcal{f}(x) |^p \rho(y) dy \right]^{1/p}.$$

Deci

$$| (\rho_n * \mathcal{f}) (x) - \mathcal{f}(x) |^p \leq \int_{B(0, \frac{1}{n})} | \mathcal{f}(x - y) - \mathcal{f}(x) |^p \rho(y) dy.$$

Rezultă că

$$\int_\omega |(\rho_n * \mathcal{f}) (x) - \mathcal{f}(x) |^p dx \leq \int_{B(0, 1/n)} \rho(y) dy \int_\omega | \mathcal{f}(x - y) - \mathcal{f}(x) |^p dx \leq \varepsilon^p$$

dacă $1/n < \delta$ (conform (22)).

b) Familia $\mathcal{H} = (\rho_n * \mathcal{F})_{\| \mathcal{F} \|$ verifică, pentru orice n, ipotezele teoremei lui Ascoli. Intr-adevăr, observăm mai întâi că

$$\| \rho_n * \mathcal{f} \|_{L^\infty(\mathbb{R}^N)} \leq \| \rho_n \|_{L^\infty} \| \mathcal{f} \|_{L^1} \leq C_n \quad \forall \mathcal{f} \in \mathcal{F}.$$

Pe de altă parte, pentru orice $x_1, x_2 \in \mathbb{R}^N$ și orice $\mathcal{f} \in \mathcal{F}$, (10)

$$| (\rho_n * \mathcal{f})(x_1) - (\rho_n * \mathcal{f})(x_2) | \leq |x_1 - x_2| \| \rho_n \|_{Lip} \| \mathcal{f} \|_{L^1} \leq C_n |x_1 - x_2|.$$

$\hspace{10} \| \rho_n \|_{Lip} = \sup_{z_1 \neq z_2} \frac{| \rho_n(z_1) - \rho_n(z_2) |}{|z_1 - z_2|}$
CRITERIU DE COMPACTATE

Rezultă că \(\mathcal{H} \) este relativ compactă în \(C(\overline{\Omega}) \) și deci în \(L^p(\omega) \).

c) Concluzia demonstrației. Fiind dat \(\varepsilon > 0 \), fixăm \(n > \frac{1}{\varepsilon} \) astfel încât
\[
\| (\rho_n * f) - f \|_{L^p(\omega)} < \varepsilon \quad \forall f \in \mathcal{F}.
\]
Deoarece \(\mathcal{H} \) este relativ compactă în \(L^p(\omega) \), putem acoperi \(\mathcal{H} \) cu un număr finit de bile de rază \(\varepsilon \) (în \(L^p(\omega) \)). Bilele corespunzătoare de rază \(2\varepsilon \) acoperă atunci \(\mathcal{F}_\omega \). În consecință, \(\mathcal{F}_\omega \) este relativ compactă în \(L^p(\omega) \).

Corolarul IV.26. – Fie \(\Omega \subset \mathbb{R}^N \) o mulțime deschisă și \(\mathcal{F} \) o submulțime mărginită în \(L^p(\Omega) \) cu \(1 \leq p < \infty \).

Presupunem că \(\forall \varepsilon > 0 \), \(\forall \omega \subset \subset \Omega \), \(\exists 0 < \delta < \text{dist}(\omega, \Omega^c) \) astfel încât
\[
\| f \|_{L^p(\Omega \setminus \omega)} < \varepsilon \quad \forall f \in \mathcal{F}.
\]
Atunci \(\mathcal{F} \) este relativ compactă în \(L^p(\Omega) \).

Demonstratie. – Fiind dat \(\varepsilon > 0 \) fixăm \(\omega \subset \subset \Omega \) astfel încât
\[
\| f \|_{L^p(\Omega \setminus \omega)} < \varepsilon \quad \forall f \in \mathcal{F}.
\]
Conform teoremei IV.25, \(\mathcal{F}_\omega \) este relativ compactă în \(L^p(\omega) \). Deci putem acoperi \(\mathcal{F}_\omega \) printr-un număr finit de bile de rază \(\varepsilon \) în \(L^p(\omega) \). Fie
\[
\mathcal{F}_\omega \subset \bigcup_{i=1}^{k} B(g_i, \varepsilon) \quad \text{cu } g_i \in L^p(\omega).
\]
Fie
\[
\bar{g}_i(x) = \begin{cases} g_i(x) & x \in \Omega \\ 0 & x \in \Omega \setminus \omega \end{cases}
\]
(aceste bile sunt subînțelese în \(L^p(\omega) \)). Se verifică cu ușurință că \(\mathcal{F} \subset \bigcup_{i=1}^{k} B(\bar{g}_i, 2\varepsilon) \) (aceste bile sunt subînțelese în \(L^p(\Omega) \)).

Remarca 12. – Reciproca corolarului IV.26 este adevărată (vezi [EX]).
Remarca 13. – Fie \(\mathcal{F} \) o submulțime mărginită în \(L^p(\mathbb{R}^N) \) cu \(1 \leq p < \infty \) verificând

\[\forall \varepsilon > 0 \ \exists \delta > 0 \text{ astfel încât } \| \tau_h f - f \|_{L^p(\mathbb{R}^N)} < \varepsilon \ \forall |h| < \delta, \ \forall f \in \mathcal{F}. \]

In general nu putem afirma că \(\mathcal{F} \) este relativ compactă în \(L^p(\mathbb{R}^N) \); putem afirma doar că \(\mathcal{F}_\omega \) este relativ compactă în \(L^p(\omega) \) pentru orice \(\omega \) deschisă și mărginită în \(\mathbb{R}^N \) (vezi un exemplu în [EX]).

Incheiem cu o altă aplicație simplă (dar utilă) a teoremei IV.25.

Corolarul IV.27. – Fie \(G \in L^1(\mathbb{R}^N) \) o funcție fixată și

\[\mathcal{F} = G * \mathcal{B}, \]

unde \(\mathcal{B} \) este o mulțime mărginită în \(L^p(\mathbb{R}^N) \) cu \(1 \leq p < \infty \). Atunci \(\mathcal{F}_\omega \) este relativ compactă în \(L^p(\omega) \) pentru orice mulțime deschisă și mărginită \(\omega \) în \(\mathbb{R}^N \).

Demonstrație. – Este evident că \(\mathcal{F} \) este mărginită în \(L^p(\mathbb{R}^N) \). Pe de altă parte, dacă \(f = G * u \) cu \(u \in \mathcal{B} \), atunci

\[\| \tau_h f - f \|_{L^p(\mathbb{R}^N)} = \| (\tau_h G - G) * u \|_{L^p(\mathbb{R}^N)} \leq C \| \tau_h G - G \|_{L^1(\mathbb{R}^N)}. \]

Incheiem demonstrația folosind

Lema IV.4. – Fie \(G \in L^q(\mathbb{R}^N) \) cu \(1 \leq q < \infty \). Atunci

\[\lim_{h \to 0} \| \tau_h G - G \|_{L^q(\mathbb{R}^N)} = 0. \]

Demonstrație. – Fie \(\varepsilon > 0 \) și \(G_1 \in C_c(\mathbb{R}^N) \) astfel încât \(\| G - G_1 \|_{L^q(\mathbb{R}^N)} < \varepsilon \).

Avem

\[\| \tau_h G - G \|_{L^q} \leq \| \tau_h G - \tau_h G_1 \|_{L^q} + \| \tau_h G_1 - G_1 \|_{L^q} + \| G_1 - G \|_{L^q} \]

\[\leq 2\varepsilon + \| \tau_h G_1 - G_1 \|_{L^q}. \]

Pe de altă parte, este evident că \(\lim_{h \to 0} \| \tau_h G_1 - G_1 \|_{L^q} = 0 \) și deci

\[\limsup_{h \to 0} \| \tau_h G - G \|_{L^q} \leq 2\varepsilon. \]
IV.6 Comentarii asupra capitolului IV

1) Am reamintit în §IV.1 câteva principii de bază ale teoriei Integrării. Printre rezultatele utile pe care nu le-am menționat cităm, între altele

* Teorema IV.28 (Egorov). – Presupunem că $|\Omega| < \infty$. Fie (f_n) un șir de funcții măsurabile de la Ω în \mathbb{R} astfel încât

$$f_n(x) \to f(x) \text{ a.p.t. în } \Omega \ (\text{cu } |f(x)| < \infty \text{ a.p.t.}).$$

Atunci $\forall \varepsilon > 0 \ \exists A \subset \Omega$ măsurabilă astfel încât $|\Omega \setminus A| < \varepsilon$ și $f_n \to f$ uniform pe A.

Pentru demonstrație, vezi Hewitt-Stromberg [1], Wheeden-Zygmund [1], Yosida [1], Marle [1], A.Friedman [3], Malliavin [1], Chae [1], Dieudonné [2].

2) Spațiul măsurilor pe Ω. Multimi slab compacte în L^1.

Am văzut că mulțimile mărginite în $L^p(\Omega)$ sunt relativ compacte pentru topologia $\sigma(L^p, L^p')$ dacă $1 < p \leq \infty$. Din contră, $L^1(\Omega)$ nu este reflexiv și putem demonstra chiar că $L^1(\Omega)$ nu este un spațiu dual. Rezultă că mulțimile mărginite din $L^1(\Omega)$ nu au nici o proprietate de compactitate relativ la o topologie slabă. Pentru “a remedia acest inconvenient” putem scufunda $L^1(\Omega)$ într-un spațiu mai mare: spațiul $M(\Omega)$ al măsurilor Radon pe Ω.

Pentru aceasta considerăm spațiul $E = C_c(\Omega)$ înzestrat cu norma $\|u\| = \sup_{x \in \Omega}|u(x)|$. Notăm dualul său E' prin $M(\Omega)$. Vom identifica $L^1(\Omega)$ cu un subspațiu al lui $M(\Omega)$. Cu acest scop introducem aplicația $T : L^1(\Omega) \to M(\Omega)$ definită astfel: fiind dat $f \in L^1(\Omega)$, aplicația $u \in C_c(\Omega) \mapsto \int f u$ este o funcțională liniară și continuă pe $C_c(\Omega)$, notată Tf. Deci

$$\langle Tf, u \rangle_{E', E} = \int f u.$$

Verificăm cu ușurință că T este un operator liniar și continuu de la $L^1(\Omega)$ în $M(\Omega)$ și că

$$\|Tf\|_{M(\Omega)} = \sup \left\{ \int f u; \ u \in C_c(\Omega), \|u\| \leq 1 \right\} = \|f\|_{L^1(\Omega)} \ (\text{vezi } [EX]);$$

altfel spus, T este o izometrie de la $L^1(\Omega)$ în $M(\Omega)$. De aceea putem identifica $L^1(\Omega)$ cu un subspațiu al lui $M(\Omega)$. Multimile mărginite din $L^1(\Omega)$
sunt relativ compacte în $M(\Omega)$ pentru topologia slabă $\star \sigma(M,C_c)$. De asemenea, observăm că dacă (f_n) este un șir mărginit în $L^1(\Omega)$ atunci există un subșir (f_{n_k}) care este convergent către o măsură μ pentru topologia $\sigma(M,C_c)$, adică
$$\int f_{n_k} u \to \langle \mu,u \rangle \quad \forall u \in C_c(\Omega).$$
Semnalăm acum următoarea întrebare delicată: Care sunt mulțimile din $L^1(\Omega)$ care sunt relativ compacte pentru topologia $\sigma(L^1,L^\infty)$?

Răspunsul la această întrebare este furnizat de

\star Teorema IV.29 (Dunford-Pettis). – Fie $\Omega \subset \mathbb{R}^N$ o mulțime deschisă și mărginită (pentru a simplifica). Fie $\mathcal{F} \subset L^1(\Omega)$ o submulțime mărginită.

Atunci \mathcal{F} este relativ compactă pentru topologia $\sigma(L^1,L^\infty)$ dacă și numai dacă

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \text{astfel încât} \quad \int_A |f| < \varepsilon \quad \forall A \subset \Omega, \quad |A| < \delta, \quad \forall f \in \mathcal{F}.$$

Pentru demonstrație, vezi Dunford-Schwartz [1], Beuzamy [1], Neveu [1], Dellacherie-Meyer [1] (capitolul I) sau [EX].

3) Functii cu valori vectoriale

Fie Ω un deschis în \mathbb{R}^N și E un spațiu Banach. Definim $L^p(\Omega;E)$ ca fiind spațiul funcțiilor definite pe Ω cu valori în E, măsurabile într-un sens care trebuie precizat, astfel încât $\int_\Omega \|f(x)\|^p \, dx < \infty$ (cu modificarea uzuală dacă $p = \infty$). Majoritatea proprietăților întâlnite în §IV.2 și §IV.3 rămân valabile, sub ipoteze convenabile asupra lui E (E separabil sau E reflexiv). De exemplu, dacă E este reflexiv și $1 < p < \infty$, atunci $L^p(\Omega;E)$ este reflexiv și dualul său se identifică cu $L^q(\Omega;E')$ (vezi Edwards [1], L.Schwartz [5] și Marle [1] dacă E este un spațiu Hilbert). Aceste spații joacă un rol important în teoria ecuațiilor de evoluție (Ω este atunci un interval în \mathbb{R}).

4) Teoria interpolării

Cităm un rezultat frapant, care este punctul de plecare în această teorie.

Teorema IV.29 (M. Riesz-Thorin, Marcinkiewicz). – Fie $\Omega \subset \mathbb{R}^N$ o mulțime deschisă și mărginită (pentru a simplifica). Fie
$T : L^1(\Omega) \to L^1(\Omega)$ un operator liniar și continuu. Presupunem că $T : L^\infty(\Omega) \to L^\infty(\Omega)$.

Atunci $T : L^p(\Omega) \to L^p(\Omega)$ pentru orice $1 < p < \infty$.

Pentru demonstrație vezi de exemplu Dunford-Schwartz [1], Stein-Weiss [1], Bergh-Löfström [1], Reed-Simon [1] (volumul 2) și [EX]. Teoria interpolării a fost dezvoltată de Lions, Peetre, Calderon, Stein și alții. Ea constituie un instrument foarte util în Analiză și, în particular, în teoria ecuațiilor cu derivate parțiale, vezi de exemplu Lions-Magenes [1].

5) Inegalitatea lui Young

* Teorema IV.30 (Young). – Fie $f \in L^p(\mathbb{R}^N)$ și $g \in L^q(\mathbb{R}^N)$ cu $1 \leq p \leq \infty$, $1 \leq q \leq \infty$ și $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1 \geq 0$.

Atunci $f \ast g \in L^r(\mathbb{R}^N)$ și $\|f \ast g\|_{L^r} \leq \|f\|_{L^p} \|g\|_{L^q}$.

Pentru o demonstrație vezi de exemplu [EX].

6) Noțiunea de convoluție – generalizată la distribuții (vezi L. Schwartz [1]) – joacă un rol fundamental în teoria ecuațiilor cu derivate parțiale liniare. Aceasta provine, între altele, din faptul că putem exprima soluția unei ecuații $P(D)u = f$ (unde $P(D)$ este un operator diferențial cu coeficienți constanți) sub forma $u = E \ast f$, unde E este soluția fundamentală a lui $P(D)$ (teorema lui Malgrange-Ehrenpreis); vezi comentariul 2b) din capitolul I.
Capitolul V

SPĂŢII HILBERT

V.1 Definiţii. Proprietăţi elementare. Proiecţia pe o mulţime convexă închisă

Definiţie. Fie H un spaţiu vectorial. Un produs scalar (u, v) este o formă biliniară pe $H \times H$ cu valori în \mathbb{R}, simetrică, pozitiv definită [adică $(u, u) \geq 0 \ \forall u \in H$ şi $(u, u) > 0$ dacă $u \neq 0$].

Reamintim că un produs scalar satisface inegalitatea lui Cauchy-Schwarz

$$|(u, v)| \leq (u, u)^{1/2}(v, v)^{1/2} \quad \forall u, v \in H.$$

[Este uneori util să reţinem că demonstraţia inegalităţii lui Cauchy-Schwarz nu face apel la presupunerea $(u, u) > 0$ dacă $u \neq 0$.]

Reamintim de asemenea că $|u| = (u, u)^{1/2}$ este o normă (1). [Intr-adevăr avem $|u + v|^2 = |u|^2 + 2(u, v)|v|^2 \leq |u|^2 + 2|u||v| + |v|^2$].

Reamintim în sfârşit “identitatea paralelogramului”:

$$\frac{(a + b)^2}{2} + \frac{(a - b)^2}{2} = \frac{1}{2}(|a|^2 + |b|^2) \quad \forall a, b \in H.$$

Definiţie. – Un spaţiu Hilbert este un spaţiu vectorial H inzestrat cu un produs scalar astfel încât H este complet în norma $| |$.

In ceea ce urmează H va desemna întotdeauna un spaţiu Hilbert.

Exemplu fundamental: $L^2(\Omega)$ inzestrat cu produsul scalar

$$(u, v) = \int_{\Omega} u(x)v(x) \, dx$$

Vom nota adeseori $| |$ (în loc de $\| \|)$ norma asociată unui produs scalar.
este un spațiu Hilbert. Spațiul Sobolev H^1 studiat în Capitolele VIII și IX este un alt exemplu de spațiu Hilbert “modelat” pe $L^2(\Omega)$.

- **Propoziția V.1.** – H este uniform convex și deci reflexiv.

 Demonstrație. – Fie $\varepsilon > 0$ și $u, v \in H$ astfel încât $|u| \leq 1, |v| \leq 1$ și $|u - v| > \varepsilon$. Având în vedere legea paralelogramului, obținem

 $$|\frac{u + v}{2}|^2 < 1 - \frac{\varepsilon^2}{4}$$

și de aceea

$$|\frac{u + v}{2}| < 1 - \delta$$

cu $\delta = 1 - \left(1 - \frac{\varepsilon^2}{4}\right)^{1/2} > 0$.

- **Teorema V.2 (Proiecția pe o mulțime convexă închisă).** – Fie $K \subset H$ o mulțime convexă, închisă și nevidă. Atunci, pentru orice $f \in H$ există un element unic $u \in K$ astfel încât

\[
|f - u| = \min_{v \in K} |f - v| = \text{dist } (f, K).
\]

În plus, u este caracterizat de proprietatea:

\[
(3) \quad u \in K \quad \text{și} \quad (f - u, v - u) \leq 0 \quad \forall v \in K.
\]

Notație. Elementul u de mai sus este numit proiecția lui f pe K și este notat prin $u = P_K f$.

Demonstrație. –

a) **Existența.** – Vom prezenta două demonstrații diferite:

1) Funcția $\varphi(v) = |f - v|$ este convexă, continuă și $\lim_{|v| \to \infty} \varphi(v) = +\infty$. Urmează, din corolarul III.20, că φ își atinge minimul pe K deoarece H este reflexiv.

2) A doua demonstrație nu se bazează pe teoria spațiilor reflexive. Fie (v_n) un șir minimizant pentru (2), adică $v_n \in K$ și

$$d_n = |f - v_n| \to d = \inf_{v \in K} |f - v|.$$
Afirmăm că \((v_n)\) este un sir Cauchy. Intr-adevăr, legea paralelogramului aplicată cu \(a = f - v_n\) și \(b = f - v_m\) conduce la
\[
\left| f - \frac{v_n + v_m}{2} \right|^2 + \left| \frac{v_n - v_m}{2} \right|^2 = \frac{1}{2} (d_n^2 + d_m^2).
\]
Dar
\[
\frac{v_n + v_m}{2} \in K \text{ și de aceea } \left| f - \frac{v_n + v_m}{2} \right| \geq d.
\]
Urmează că
\[
\left| \frac{v_n - v_m}{2} \right|^2 \leq \frac{1}{2} (d_n^2 + d_m^2) - d^2 \text{ și } \lim_{m,n \to \infty} |v_n - v_m| = 0.
\]
Astfel sirul \((v_n)\) converge la o anumită limită \(u \in K\) cu \(d = |f - u|\).

b) Echivalența dintre (2) și (3).
Presupunem că \(u \in K\) satisfac (2) și fie \(w \in K\). Avem
\[
v = (1-t)u + tw \in K \quad \forall t \in (0,1]
\]
și astfel
\[
|f - u| \leq |f - [(1-t)u + tw]| = |(f - u) - t(w - u)|.
\]
De aceea
\[
|f - u|^2 \leq |f - u|^2 - 2t(f - u, w - u) + t^2 |w - u|^2.
\]
care implică \(2(f - u, w - u) \leq t|w - u|^2 \quad \forall t \in (0,1]\). Când \(t \to 0\) obținem (3).

Reciproc, presupunem că \(u\) satisfac (3). Atunci avem
\[
|u - f|^2 - |v - f|^2 = 2(f - u, v - u) - |u - v|^2 \leq 0 \quad \forall v \in K;
\]
care implică (2).

c) Unicitatea.
Presupunem că \(u_1\) și \(u_2\) satisfac (3). Avem
\[
(f - u_1, v - u_1) \leq 0 \quad \forall v \in K
\]
\[
(f - u_2, v - u_2) \leq 0 \quad \forall v \in K.
\]
Alegând \(v = u_2\) în (4) și \(v = u_1\) în (5) și adunând inegalitățile corespunzătoare găsim \(|u_1 - u_2|^2 \leq 0 \quad (2)\).
Propoziția V.3. – Fie $K \subset H$ o mulțime convexă, închisă și nevidă. Atunci P_K nu mărește distanța, adică

$$|P_K f_1 - P_K f_2| \leq |f_1 - f_2| \quad \forall f_1, f_2 \in H.$$

Demonstrație. Definim $u_1 = P_K f_1$ și $u_2 = P_K f_2$. Avem

$$(f_1 - u_1, v - u_1) \leq 0 \quad \forall v \in K$$

$$(f_2 - u_2, v - u_2) \leq 0 \quad \forall v \in K.$$

Alegând $v = u_2$ în (7) și $v = u_1$ în (5) și adunând inegalitățile core-spunzătoare găsim

$$|u_1 - u_2|^2 \leq (f_1 - f_2, u_1 - u_2).$$

Urmează că $|u_1 - u_2| \leq |f_1 - f_2|$.

Corolarul V.4. – Presupunem că $M \subset H$ este un subspațiu liniar închis. Fie $f \in H$. Atunci $u = P_M f$ este caracterizat de

$$u \in M \quad \text{și} \quad (f - u, v) = 0 \quad \forall v \in M.$$

Mai mult, P_M este un operator liniar.

Demonstrație. Din (3) avem

$$(f - u, v - u) \leq 0 \quad \forall v \in M$$

și astfel

$$(f - u, tv - u) \leq 0 \quad \forall v \in M, \quad \forall t \in \mathbb{R}.$$

Urmează că (8) este valabilă.

Reciproc, dacă u satisface (8) avem

$$(f - u, v - u) = 0 \quad \forall v \in M.$$

Este evident că P_M este liniar.
V.2 Dualul unui spațiu Hilbert

- Teorema V.5 (Teorema de reprezentare a lui Riesz-Fréchet).
 - Fiind dată \(\varphi \in H' \) există și este unic \(f \in H \) astfel încât
 \[
 \langle \varphi, u \rangle = \langle f, u \rangle \quad \forall u \in H.
 \]
 Mai mult,
 \[
 |f| = \|\varphi\|_{H'}.
 \]

Demonstrație. Incă o dată vom expune două demonstrații:

1) Prima dintre ele este aproape identică cu demonstrația teoremei IV.11. Considerăm aplicația \(T : H \to H' \) definită după cum urmează: pentru orice \(f \in H \) dat, aplicația \(u \mapsto \langle f, u \rangle \) este o funcțională liniară și continuă pe \(H \). Aceasta definește un element din \(H' \) pe care îl notăm \(Tf \) astfel încât
 \[
 \langle Tf, u \rangle = \langle f, u \rangle \quad \forall u \in H.
 \]
 Este limpede că \(\|Tf\|_{H'} = |f| \). Astfel \(T \) este o izometrie liniară de la \(H \) la \(T(H) \) — un subspațiu închis al lui \(H' \). Pentru a concluziona este suficient să arătăm că \(T(H) \) este dens în \(H' \). Presupunem că \(h \) este o funcțională liniară și continuă pe \(H' \) care se anulează pe \(T(H) \). Deoarece \(H \) este reflexiv, \(h \) aparține lui \(H \) și satisface \(\langle Tf, h \rangle = 0 \quad \forall f \in H \). Urmează că \((f, h) = 0 \quad \forall f \in H \) și de aceea \(h = 0 \).

2) Demonstrația a doua conține o explicație mult mai directă care evită orice utilizare a reflexivității. Fie \(M = \varphi^{-1}(\{0\}) \) — astfel încât \(M \) este un subspațiu închis al lui \(H \). Putem presupune întotdeauna că \(M \neq H \) (altfel \(\varphi \equiv 0 \) și concluzia teoremei V.5 este evidentă — luând \(f = 0 \)). Afirmăm că există un anume element \(g \in H \) astfel încât
 \[
 |g| = 1 \quad \text{și} \quad \langle g, v \rangle = 0 \quad \forall v \in M \quad (\text{și, de aceea, } g \notin M).
 \]
 Intr-adevăr, fie \(g_0 \in H \) cu \(g_0 \notin M \). Fie \(g_1 = P_M g_0 \). Atunci
 \[
 g = \frac{g_0 - g_1}{|g_0 - g_1|}
 \]
satisface proprietățile cerute.
DUALUL UNUI SPAȚIU HILBERT

Pentru orice \(u \in H \) dat, definim

\[
v = u - \lambda g\ \text{cu}\ \lambda = \frac{\langle \varphi, u \rangle}{\langle \varphi, g \rangle}
\]

Subliniem că \(v \) este bine definit deoarece \(\langle \varphi, g \rangle \neq 0 \) și, mai mult, \(v \in M \) deoarece \(\langle \varphi, v \rangle = 0 \). Urmează că \((g, v) = 0 \), adică

\[
\langle \varphi, u \rangle = \langle \varphi, g \rangle (g, u) \quad \forall u \in H
\]

care încheie demonstrația cu \(f = \langle \varphi, g \rangle g \).

• Remarca 1. – \(H \) și \(H' \): a identificat sau a nu identificat? –

Tripletul \(V \subset H \subset V' \).

Teorema V.5 afirmă că există o izometrie canonică de la \(H \) la \(H' \). De aceea este “legitim” să identificăm \(H \) și \(H' \). Vom face adeseori acest lucru dar nu întotdeauna. Aici este o situație tipică – care se întâlnește în multe aplicații – unde ar trebui să fim atenți cu identificările. Presupunem că \(H \) este un spațiu Hilbert cu produsul scalar \((\cdot, \cdot) \) și norma corespunzătoare \(| | \). Presupunem că \(V \subset H \) este un subspațiu liniar care este dens în \(H \). Presupunem că \(V \) are normă \(|| \cdot \|| \) și că \(V \) este un spațiu Banach cu normă \(|| \cdot || \). Presupunem că injecția canonică \(V \subset H \) este continuă, adică

\[
|v| \leq C\|v\| \quad \forall v \in V.
\]

Identificăm \(H' \) și \(H \). Putem în acest caz să scufundăm \(H \) în \(V' \) conform procedeului următor: fiind dat \(f \in H \), aplicația \(v \in V \mapsto (f, v) \) este o funcțională liniară și continuă pe \(H \) și deci și pe \(V \); notăm \(Tf \in V' \).

Deci

\[
\langle Tf, v \rangle_{V', V} = (f, v) \quad \forall f \in H, \ \forall v \in V.
\]

Este ușor de observat că \(T \) are următoarele proprietăți:

(i) \(\|T\varphi\|_{V'} \leq C|\varphi|_{H'} \quad \forall \varphi \in H' \),

(ii) \(T \) este injectiv,

(iii) \(R(T) \) este dens în \(V \) \(^3\).

\(^3\)Totuși, \(T \) nu este surjectiv, în general.
Cu ajutorul lui T scufundăm H în V' și avem

$$(9) \quad V \subset H = H' \subset V',$$

unde toate injectiile sunt continue și dense. Se spune că H este spațiul "pivot".

Presupunem acum că V, în loc să fie un spațiu Banach general, este un spațiu Hilbert cu propriul său produs scalar (\cdot, \cdot) asociat normei $\| \cdot \|$. Am putea, desigur, să identificăm V' și V cu ajutorul lui (\cdot, \cdot). Totuși (9) devine absurd. Aceasta arată că nu se pot face simultan cele două identificări: va trebui făcută o alegere. De obicei se preferă identificarea $H' = H$, cu (9) drept consecință, și nu se identifică V' cu V. Asupra acestui subiect recomandăm cititorului să mediteze asupra exemplului următor:

$$H = \ell^2 = \left\{ u = (u_n)_{n \geq 1}; \quad \sum_{n=1}^{\infty} u_n^2 < \infty \right\}$$

înestrat cu produsul scalar $(u, v) = \sum_{n=1}^{\infty} u_n v_n$.

$$V = \left\{ u = (u_n)_{n \geq 1}; \quad \sum_{n=1}^{\infty} n^2 u_n^2 < \infty \right\}$$

înestrat cu produsul scalar $(\langle u, v \rangle) = \sum_{n=1}^{\infty} n^2 u_n v_n$.

Remarca 2. – Folosind izomorfismul Riesz-Fréchet (și a doua demonstrație a teoremei V.5) am putea stabili direct că H este reflexiv fără a trece prin teoria spațiilor uniform convexe.

Remarca 3. – Dacă facem identificarea $H' = H$, atunci ortogonalul M^\perp al unui subspațiu $M \subset H$ este considerat ca un subspațiu al lui H și

$$M^\perp = \{ u \in H; \langle u, v \rangle = 0 \quad \forall v \in M \}.$$

Intr-un spațiu Hilbert orice subspațiu închis admite un suplement topologic (vezi capitolul II.4). Intr-adevăr, este clar (conform corolarului V.4) că dacă M este un subspațiu închis atunci

$$M \cap M^\perp = \{0\} \quad \text{și} \quad M + M^\perp = H.$$
Teorema lui Stampacchia

V.3 Teoremele lui Stampacchia și Lax-Milgram

Definiție. – O formă biliniară $a(u, v) : H \times H \rightarrow \mathbb{R}$ se spune a fi

(i) continuă dacă există o constantă C astfel încât

$$|a(u, v)| \leq C|u||v| \quad \forall u, v \in H.$$

(ii) coercivă dacă există o constantă $\alpha > 0$ astfel încât

$$a(v, v) \geq \alpha |v|^2 \quad \forall v \in H.$$

Teorema V.6 (Stampacchia). – Presupunem că $a(u, v)$ este o formă biliniară continuă și coercivă pe H. Fie $K \subset H$ o submulțime nevidă, închisă și convexă. Atunci, pentru orice $\varphi \in H'$ dat, există un element unic $u \in K$ astfel încât

$$a(u, v - u) \geq \langle \varphi, v - u \rangle \quad \forall v \in K.$$

Mai mult, dacă a este simetric, atunci u este caracterizat de proprietatea:

$$u \in K \ \text{și} \ \frac{1}{2} a(u, u) - \langle \varphi, u \rangle = \operatorname{Min}_{v \in K} \left\{ \frac{1}{2} a(v, v) - \langle \varphi, v \rangle \right\}.$$

Demonstrația teoremei V.6 se bazează pe următorul rezultat clasic:

- Teorema V.7 (Teorema de punct fix a lui Banach – metoda aproximărilor succesive a lui Picard). – Fie X un spațiu metric complet și $S : X \rightarrow X$ o contractie strictă, adică

$$d(Sv_1, Sv_2) \leq k d(v_1, v_2) \quad \forall v_1, v_2 \in X \ \text{cu} \ k < 1.$$

Atunci S are un punct fix unic, $u = Su$.

(vezi pentru demonstrație Choquet [1] sau L. Schwartz [2]).

Demonstrația teoremei V.6. – Din teorema de reprezentare a lui Riesz-Frêchet (teorema V.5) cunoaștem că există un element unic $f \in H$ astfel încât

$$\langle \varphi, v \rangle = (f, v) \quad \forall v \in H.$$
Pe de altă parte, dacă fixăm $u \in H$, aplicația $v \mapsto a(u, v)$ este o funcțională liniară și continuă pe H. Utilizând încă o dată teorema de reprezentare a lui Riesz-Fréchet găsim un anumit element unic în H, notat cu Au, astfel încât $a(u, v) = (Au, v)$ $\forall v \in H$. Evident A este un operator liniar de la H la H satisfăcând

\begin{align}
|Au| & \leq C|u| \quad \forall u \in H \\
(Au, u) & \geq \alpha|u|^2 \quad \forall u \in H.
\end{align}

Problema (10) se reduce la a găsi un anume $u \in K$ astfel încât

\begin{equation}
(Au, v - u) \geq (f, v - u) \quad \forall v \in K.
\end{equation}

Fie $\rho > 0$ o constantă (care va fi determinată mai târziu). Punctăm că problema (14) este echivalentă cu

\begin{equation}
(\rho f - \rho Au + u - u, v - u) \leq 0 \quad \forall v \in K
\end{equation}

adică

$$u = P_K(\rho f - \rho Au + u).$$

Pentru orice $v \in K$, punem $Sv = P_K(\rho f - \rho Av + v)$. Afirmăm că dacă $\rho > 0$ este ales convenabil atunci S este o contractie strictă. Intr-adevăr, deoarece P_K nu mărește distanța (vezi propoziția V.3) avem

$$|Sv_1 - Sv_2| \leq |(v_1 - v_2) - \rho(\bar{v}_1 - \bar{v}_2)|$$

și astfel

$$|Sv_1 - Sv_2|^2 = |v_1 - v_2|^2 - 2\rho(\bar{v}_1 - \bar{v}_2, v_1 - v_2) + \rho^2|\bar{v}_1 - \bar{v}_2|^2$$

$$\leq |v_1 - v_2|^2(1 - 2\rho \alpha + \rho^2 C^2).$$

Alegând $\rho > 0$ în așa fel încât $k^2 = 1 - 2\rho \alpha + \rho^2 C^2 < 1$ (se ia $0 < \rho < 2\alpha/C^2$) găsim că S are un punct fix unic (4).

Presupunem acum că forma $a(u, v)$ este și simetrică. Atunci $a(u, v)$ definește un nou produs scalar pe H; norma corespunzătoare $a(u, u)^{1/2}$

\footnote{Dacă trebuie să calculăm punctul fix printr-o metodă iterativă, este profitabil să alegem $\rho = \alpha/C^2$ pentru a minimiza k și pentru a accelera convergența iteratiilor lui S.}
este echivalentă cu norma originală $|u|$. Urmează că H este, de asemenea, un spațiu Hilbert pentru acest nou produs scalar. Utilizând teorema lui Riesz-Fréchet putem acum reprezenta funcționala φ prin intermediul noului produs scalar, adică există un element unic $g \in H$ astfel încât

$$\langle \varphi, v \rangle = a(g, v) \quad \forall v \in H.$$

Problema (10) înseamnă a găsi un anume $u \in K$ astfel încât :

$$a(g - u, v - u) \leq 0 \quad \forall v \in K.$$

Soluția lui (16) este un prieten vechi: u este pur și simplu proiecția pe K a lui g pentru noul produs scalar a. Cunoaștem, de asemenea, (din teorema V.2) că u este unicul element din K în care este atins

$$\text{Min}_{v \in K} a(g - v, g - v)^{1/2}.$$

Aceasta înseamnă a minimiza pe K funcția:

$$v \mapsto a(g - v, g - v) = a(v, v) - 2a(g, v) + a(g, g) = a(v, v) - 2\langle \varphi, v \rangle + a(g, g),$$

sau, echivalent, funcția

$$v \mapsto \frac{1}{2} a(v, v) - \langle \varphi, v \rangle.$$

REMARCA 4. – Este ușor de verificat că dacă $a(u, v)$ este o formă biliniară cu proprietatea

$$a(v, v) \geq 0 \quad \forall v \in H$$

atunci funcția $v \mapsto a(v, v)$ este convexă.

• Corolarul V.8 (Lax-Milgram). – Presupunem că $a(u, v)$ este o formă biliniară, continuă și coercivă pe H. Atunci, pentru orice $\varphi \in H'$ dat, există un element unic $u \in H$ astfel încât

$$a(u, v) = \langle \varphi, v \rangle \quad \forall v \in H.$$
Mai mult, dacă a este simetrică, atunci u este caracterizat de proprietatea

$$u \in H \quad \text{și} \quad \frac{1}{2} a(u, u) - \langle \varphi, u \rangle = \operatorname{Min}_{v \in H} \left\{ \frac{1}{2} a(v, v) - \langle \varphi, v \rangle \right\}.$$ \hspace{1cm} (18)$$

Demonstrație. Folosit i teorema V.6 cu $K = H$ și procedați ca în demonstrația corolarului V.4.

Remarca 5. – Teorema lui Lax-Milgram este un instrument simplu și eficient pentru rezolvarea ecuațiilor cu derivate parțiale eliptice lineare (vezi Capitolele VIII și IX). Este interesant de subliniat conexiunea dintre ecuația (17) și problema de minimizare (18). Când astfel de probleme apar în mecanică sau fizică adeseori au o interpretare naturală: principiul acțiunii minime, minimizarea energiei, etc. În limbajul calculului variațional se spune că (17) este **ecuația lui Euler** asociată problemei de minimizare (18). În acest sens notăm că ecuația (17) apare atunci când scriem “$F'(u) = 0$”, unde F este funcția $F(v) = \frac{1}{2} a(v, v) - \langle \varphi, v \rangle$.

Remarca 6. – Există un argument direct și elementar ce demonstrează că (17) are o soluție unică. Într-adevăr, aceasta echivalează cu a arăta că:

$$\forall f \in H \quad \exists u \in H \quad \text{unic astfel încât} \quad Au = f,$$

adică A este bijectiv de la H la H. Aceasta este o consecință trivială a următoarelor fapte:

(a) A este **injunctiv** (deoarece A este coerciv),

(b) $R(A)$ este **închis** deoarece $\alpha |v| \leq |Av| \quad \forall v \in H$ (o consecință a coercivității),

(c) $R(A)$ este **dens**; într-adevăr, presupunem că $v \in H$ satisface

$$(Au, v) = 0 \quad \forall u \in H$$

atunci $v = 0$.

V.4 Sume Hilbertiene. Bază Hilbertiană

Definiție. – Fie $(E_n)_{n \geq 1}$ un șir de subspații închise ale lui H. Se spune că H este **suma Hilbertiană** a lui E_n și se scrie $H = \oplus_n E_n$ dacă:
(a) Spațiile E_n sunt reciproc ortogonale, adică

$$(u, v) = 0 \quad \forall u \in E_n, \quad \forall v \in E_m, \quad m \neq n$$

(b) Spațiul vectorial generat de E_n este dens în H \(^5\)

- Teorema V.9. – Presupunem că H este suma Hilbert a lui $(E_n)_{n \geq 1}$. Fiind dat $u \in H$, definim $u_n = P_{E_n}u$.

Atunci

(a) $u = \sum_{n=1}^{\infty} u_n$, adică $u = \lim_{k \to \infty} \sum_{n=1}^{k} u_n$

(b) $\sum_{n=1}^{\infty} |u_n|^2 = |u|^2$ (identitatea lui Bessel-Parseval).

Reciproc, fiind dat un șir (u_n) în H astfel încât $u_n \in E_n \quad \forall n$ și $\sum_{n=1}^{\infty} |u_n|^2 < \infty$, atunci seria $\sum_{n} u_n$ este convergentă și $u = \sum_{n=1}^{\infty} u_n$ verifică $u_n = P_{E_n}u$.

Demonstrație. – Fie $S_k = \sum_{n=1}^{k} P_{E_n}$; S_k este un operator liniar și continuu de la H în H. Pentru $u \in H$ avem

\[(19) \quad |S_k u|^2 = \sum_{n=1}^{k} |u_n|^2.\]

Pe de altă parte (corolarul V.4) avem

$$(u, u_n) = |u_n|^2$$

și, prin adunare,

$$(u, S_k u) = |S_k u|^2.$$

Deci

\[(20) \quad |S_k u| \leq |u| \quad \forall u \in H.\]

Fie F spațiul vectorial generat de (E_n). Fie $\varepsilon > 0$ și $\bar{u} \in F$ astfel încât $|u - \bar{u}| \leq \varepsilon$. Pentru k suficient de mare avem $S_k\bar{u} = \bar{u}$. Pe de altă parte (conform (20)) avem

$$|S_k u - S_k \bar{u}| \leq |u - \bar{u}|.$$

\(^5\)Spațiul liniar generat de E_n este înțeles a fi în sens algebric, adică combinațiile liniare finite de elemente aparținând spațiilor (E_n).
Prin urmare \(|S_k u - u| \leq 2|u - \bar{u}| \leq 2\varepsilon \) pentru \(k \) suficient de mare, adică \(\lim_{k \to \infty} S_k u = u \).

Din (19) deducem atunci (b).

Remarcă 7. – In general \(\sum_{n=1}^{\infty} |u_n| = \infty \) și deci seria \(\sum u_n \) nu este normal (absolut) convergentă.

Definiție. – Se numește bază Hilbertiană (sau simplu bază, dacă nu există pericol de confuzie) un sir \((e_n) \) de elemente din \(H \) astfel încât

(i) \(|e_n| = 1 \) \(\forall n \) și \((e_m, e_n) = 0 \) \(\forall m \neq n \).

(ii) Spațiul linear generat de \(e_n \) este dens în \(H \).

Din teorema V.9 rezultă că dacă \((e_n) \) este o bază Hilbertiană atunci orice \(u \in H \) se scrie

\[
u = \sum_{n=1}^{\infty} (u, e_n)e_n \quad \text{cu} \quad |u|^2 = \sum_{n=1}^{\infty} |(u, e_n)|^2.
\]

Reciproc, fiind dat un sir \((\alpha_n) \in \ell^2 \), atunci seria \(\sum_{n=1}^{\infty} \alpha_n e_n \) converge către un element notat \(u \) și avem

\[
(u, e_n) = \alpha_n \quad \text{și} \quad |u|^2 = \sum_{n=1}^{\infty} \alpha_n^2.
\]

Teorema V.10. – Orice spațiu Hilbert separatil are o bază Hilbertiană.

Demonstrație. – Fie \((v_n) \) o submulțime numărabilă densă a lui \(H \). Notăm cu \(F_k \) spațiul linear generat de \([v_1, v_2, \ldots, v_k]\). Șirul \((F_k) \) este un șir monoton crescător de spații finit dimensionale astfel încât \(\bigcup_{k=1}^{\infty} F_k \) este dens în \(H \). Alegem orice vector unitate \(e_1 \) din \(F_1 \). Dacă \(F_2 \neq F_1 \) există un anume vector \(e_2 \) în \(F_2 \) astfel încât \(\{e_1, e_2\} \) este o bază ortonormală a lui \(F_2 \). Repetând aceeași construcție se obține o bază Hilbertiană a lui \(H \).

Remarcă 8. – Dacă \(H \) nu este separatil, se poate stabili (folosind lema lui Zorn) existența unei baze Hilbertiene nenumărabile \((e_i)_{i \in I}\).

\(^6\)A nu se confunda cu o bază algebrică adică o familie \((e_i)\) din \(H \) cu proprietatea că orice element din \(H \) se scrie în mod unic ca o combinație finită de elemente \(e_i \).
Teorema V.9 rămâne valabilă dacă se înlocuiesc seriile convergente cu familii sumabile (vezi Choquet [1] sau L. Scawartz [2]).

REMARCA 9. – Teorema V.10 arată că toate spațiile Hilbert separabile sunt izomorfe și izometrice cu spațiul ℓ^2. În pofida acestui rezultat (aparent spectaculos!) este totuși foarte important să considerăm alte spații Hilbert ca de pildă $L^2(\Omega)$ (sau spațiul Sobolev $H^1(\Omega)$).

REMARCA 10. – Vom vedea în capitolul VI cum se construiește o bază Hilbertiană formată din vectorii proprii ai unui operator autoadjunct compact. În $L^2(\Omega)$ se utilizează foarte des baze speciale formate din funcții proprii ale unui operator diferențial (cf. §VIII.6 și §IX.8). De exemplu, în $L^2(0, \pi)$ baza formată din funcțiile

$$\left(\sqrt{2}\pi \sin nx\right)_{n \geq 1} \text{ sau } \left(\sqrt{2}\pi \cos nx\right)_{n \geq 0}$$

are aplicații în dezvoltările în serie Fourier și Analiza armonică; vezi de exemplu Katznelson [1]. În ceea ce privește bazele asociate funcțiilor Bessel, Legendre, Hermite, Laguerre, Tchebichev, Jacobi, etc. cititorul poate consulta Courant–Hilbert [1], volumul 1.

V.5 Comentarii asupra capitolului V

1) Caracterizarea spațiilor Hilbert.

Este uneori util de cunoscut când o normă $\| \|$ dată pe un spațiu vectorial E este o normă Hilbertiană, adică când există un produs scalar $(,)$ pe E astfel încât

$$\|u\| = (u, u)^{1/2} \quad \forall u \in E.$$

Sunt cunoscute diverse criterii:

(a) Teorema V.11 (Fréchet-Von Neumann-Jordan). – Presupunem că norma $\| \|$ satisfacă legea paralelogramului (1).

Atunci $\| \|$ este o normă Hilbertiană.

Pentru demonstrație vezi Yosida [1] sau [EX].

(b) Teorema V.12 (Kakutani [1]). – Presupunem că E este un spațiu normat cu dim $E \geq 3$. Presupunem că fiecare subspațiu F
de dimensiune 2 are un operator de proiecție de normă 1 (adică există un operator de proiecție liniar și mărginit $P : E \to F$ astfel încât $Pu = u$ pentru orice $u \in F$ și $\|P\| \leq 1$). Atunci $\|\|$ este o normă Hilbertiană (7).

(c) Teorema V.13 (de Figueiredo-Karlovitz [1]). – Fie E un spațiu normat de dimensiune $\dim E \geq 3$. Fie $T = \begin{cases} u & \text{dacă } \|u\| \leq 1, \\ u/\|u\| & \text{dacă } \|u\| > 1. \end{cases}$

Presupunem că

$$\|Tu - Tv\| \leq \|u - v\| \quad \forall u, v \in E.$$ Atunci $\|\|$ este o normă Hilbertiană (8).

In final reamintim un rezultat care deja a fost menționat (remarca II.8):

(d) Teorema V.14 (Lindenstrauss-Tzafriri [1]). – Presupunem că E este un spațiu Banach astfel încât fiecare subspațiu închis are un suplement topologic. Atunci E este Hilbertizabil, adică există o normă Hilbertiană echivalentă (9).

2) Inegalități variatționale

Teorema lui Stampacchia este punctul de plecare al teoriei inegalităților variaționale (vezi Kinderlehrer-Stampacchia [1]), care are numeroase aplicații în mecanică și în fizică (vezi Duvaut-Lions [1]), în control optimal (vezi Lions [2]), în controlul stocastic (vezi Bensoussan-Lions [1]), etc.

7Atragem atenția supra faptului că orice subspațiu de dimensiune 1 are întotdeauna un operator de proiecție de normă 1 (conform teoremei Hahn-Banach).

8Se poate arăta că într-un spațiu normat arbitrar T satisface

$$\|Tu - Tv\| \leq 2 \|u - v\| \quad \forall u, v \in E$$

și că, în general, constanta 2 nu poate fi îmbunătățită.

9Este echivalent cu a spune că fiecare subspațiu închis are un operator de proiecție continuu P. Punctăm că aici – în contrast cu teorema V.12 – nu presupunem că $\|P\| \leq 1$.

3) Ecuatii neliniare asociate operatorilor monotoni

Teoremele lui Stampacchia si Lax-Milgram se extind la unele clase de operatori **neliniari**. Mentionam de exemplu:

Teorema 5.15 (Minty-Browder). Fie E un spațiu Banach reflexiv. Fie $A : E \rightarrow E'$ o aplicație neliniară continuă astfel încât

$$\langle Av_1 - Av_2, v_1 - v_2 \rangle > 0 \quad \forall v_1, v_2 \in E, \quad v_1 \neq v_2$$

și

$$\lim_{\|v\| \to \infty} \frac{\langle Av, v \rangle}{\|v\|} = \infty.$$

Atunci, pentru orice $f \in E'$ există o soluție unică $u \in E$ a ecuației $Au = f$.

*** 4) Baze în spații Banach

Notiunea de bază se extinde la spațiile Banach. Un șir $(e_n)_{n \geq 1}$ se spune că este o **bază Schauder** în spațiul Banach E dacă pentru fiecare $u \in E$ există un șir unic $(\alpha_n)_{n \geq 1}$ în \mathbb{R} astfel încât $u = \sum_{n=1}^{\infty} \alpha_n e_n$. Astfel de baze joacă un rol important în geometria spațiilor Banach (vezi Lindenstrauss-Tzafriri [2]). Toate spațiile Banach (separabile) clasice utilizate în Analiză au o bază Schauder (vezi I. Singer [1]). Acest fapt l-a condus pe Banach la supoziția că fiecare spațiu Banach separabil are o bază Schauder. După puține decenii de încercări nereuşite un contrăexemplu a fost descoperit de către Enflo [1]. Se pot construi chiar subspații închise ale lui ℓ^p (cu $1 < p < \infty$, $p \neq 2$) fără o bază Schauder (vezi Lindenstrauss-Tzafriri [2]). Recent Szankowski a găsit un exemplu mult mai surprinzător: $\mathcal{L}(H)$ (cu norma sa uzuală) nu are bază Schauder dacă H este un spațiu Hilbert separabil infinit dimensional. În Capitolul VI vom vedea că o problemă înrudită pentru operatori compacti are, de asemenea, un răspuns negativ.
Capitolul VI

OPERATORI COMPACTI.
DECOMPUNEREA SPECTRALĂ A OPERATORILOR AUTOADJUNCȚI COMPACTI

VI.1 Definiții. Proprietăți elementare. Adjunct

Fie E și F două spații Banach.

Definiție. – Un operator $T \in \mathcal{L}(E,F)$ se numește compact dacă $T(B_E)$ este relativ compact în F pentru topologia tare. Notăm cu $\mathcal{K}(E, F)$ mulțimea operatorilor compacti și punem $\mathcal{K}(E) = \mathcal{K}(E, E)$.

Teorema VI.1. – Mulțimea $\mathcal{K}(E, F)$ este un subspațiu vectorial închis al lui $\mathcal{L}(E, F)$ (pentru topologia asociată normei $\| \cdot \|_{\mathcal{L}(E,F)}$).

Demonstrație. – Este evident că suma a doi operatori compacți este un operator compact. Presupunând că $(T_n) \in \mathcal{K}(E, F)$, $T \in \mathcal{L}(E, F)$ și $\|T_n - T\|_{\mathcal{L}(E,F)} \to 0$, să arătăm că T este compact. Deoarece F este complet, e suficient să verificăm că pentru orice $\varepsilon > 0$, $T(B_E)$ poate fi acoperită cu un număr finit de bile $B(f_i, \varepsilon)$ în F. Fixăm n astfel încât $\|T_n - T\|_{\mathcal{L}(E,F)} < \frac{\varepsilon}{2}$. Deoarece $T_n(B_E)$ este relativ compact, $T_n(B_E) \subset \bigcup_{i \in I} B\left(f_i, \frac{\varepsilon}{2}\right)$, cu I finită. Deci $T(B_E) \subset \bigcup_{i \in I} B(f_i, \varepsilon)$.

Definiție. – Un operator $T \in \mathcal{L}(E, F)$ se numește de rang finit dacă $R(T)$ este finit dimensional.

Este evident că un operator continuu de rang finit este compact.
Corolarul VI.2. – Fie \((T_n)\) un șir de operatori continui de rang finit și fie \(T \in \mathcal{L}(E, F)\) astfel încât \(\|T_n - T\|_{\mathcal{L}(E, F)} \to 0\). Atunci \(T \in \mathcal{K}(E, F)\).

* Remarca 1. – Celebraqtă “problemă a aproximării” (Banach, Grothendieck) privește reciprocă corolarului VI.2. Fiind dat un operator compact, există un șir \((T_n)\) de operatori de rang finit astfel încât \(\|T_n - T\|_{\mathcal{L}(E, F)} \to 0\)?

În general, răspunsul este negativ (Enflo [1]) – chiar pentru anumite subsapăii închise ale lui \(\ell^p\) \((1 < p < \infty, p \neq 2)\); vezi de exemplu Lindenstrauss-Tzafriri [2]. Totuși răspunsul este afirmativ în numeroase cazuri; de exemplu, dacă \(F\) este un spațiu Hilbert. Intr-adevăr, fie \(K = \overline{T(B_E)}\). Fiind dat \(\varepsilon > 0\), putem acoperi \(K\) cu un număr finit de bile de rază \(\varepsilon\), să zicem \(K \subset \bigcup_{i \in I} B(f_i, \varepsilon)\), \(I\) finită. Fie \(G\) spațiul vectorial generat de \(f_i\) și \(T_\varepsilon = P_G \circ T\) \((T_\varepsilon\) este de rang finit). Afirăm că \(\|T_\varepsilon - T\|_{\mathcal{L}(E, F)} < 2\varepsilon\). Intr-adevăr, pentru orice \(x \in B_E\) există \(i_0 \in I\) astfel încât

\[\|T_\varepsilon x - f_{i_0}\| < \varepsilon.\]

Deci

\[\|P_G \circ T x - P_G f_{i_0}\| < \varepsilon\]

adică

\[\|P_G \circ T x - f_{i_0}\| < \varepsilon.\]

Combinând (1) și (2) obținem

\[\|P_G \circ T x - T x\| < 2\varepsilon \quad \forall x \in B_E,\]

adică

\[\|T_\varepsilon - T\|_{\mathcal{L}(E, F)} < 2\varepsilon.\]

[Se demonstrează cu ușurință că dacă \(F\) are o bază Schauder, atunci răspunsul rămâne afirmativ.]

Semnalăm o tehnică foarte utilă în analiza neliniară – care permite aproximarea unui operator continuu (liniar sau neliniar) prin aplicații neliniare de rang finit.
Fie X un spațiu topologic, F un spațiu Banach și fie $T : X \to F$ o aplicație continuă astfel încât $T(X)$ este relativ compactă în F. Atunci pentru orice $\varepsilon > 0$ există o aplicație continuă $T_\varepsilon : X \to F$ de rang finit astfel încât

$$(3) \quad \|T_\varepsilon(x) - T(x)\| < \varepsilon \quad \forall x \in X.$$

Într-adevăr, mulțimea $K = T(X)$ fiind compactă, putem acoperi K cu un număr finit de bine, $K \subseteq \bigcup_{i \in I} B(f_i, \frac{\varepsilon}{2})$, cu I finită. Fie

$$T_\varepsilon(x) = \frac{\sum_{i \in I} q_i(x) f_i}{\sum_{i \in I} q_i(x)} \quad \text{cu} \quad q_i(x) = \text{Max} \{\varepsilon - \|Tx - f_i\|, 0\};$$

evident, T_ε satisfacă (3).

Această metodă permite, între altele, să fie stabilită teorema de punct fix a lui Schauder pornind de la teorema de punct fix a lui Brouwer; vezi [EX]. Recent această tehnică a fost utilizată cu succes – și de manieră surprinzătoare! – de către Lomonosov pentru a demonstra existența subspațiilor invariente relativ la anumiti operatori liniari, vezi Akhiezer-Glazman [1].

Propoziția VI.3. – Fie E, F și G trei spații Banach. Dacă $T \in L(E, F)$ și $S \in K(F, G)$ [resp. $T \in K(E, F')$ și $S \in L(F, G)$], atunci $S \circ T \in K(E, G)$.

Demonstrația este evidentă.

Teorema VI.4 (Schauder). – Dacă $T \in K(E, F)$, atunci $T^* \in K(F', E')$, și reciproc.

Demonstrație. – Arătăm că $T^*(B_{F'})$ este relativ compactă în E'. Fie (v_n) un șir în $B_{F'}$. Arătăm că $(T^*(v_n))$ conține un subșir convergent. Fie $K = \overline{T(B_E)}$ (spațiu metric compact) și fie $\mathcal{H} \subset C(K)$ definit prin

$$\mathcal{H} = \{\varphi_n : x \in K \mapsto \langle v_n, x \rangle; n = 1, 2, \ldots\}.$$

Ipotezele teoremei lui Ascoli (teorema IV.24) sunt satisfăcute, deci putem extrage un subșir φ_{n_k} care converge uniform în $C(K)$ la o funcție continuă $\varphi \in C(K)$. În particular,

$$\sup_{u \in B_E} |\langle v_{n_k}, Tu \rangle - \varphi(Tu)| \to 0 \quad \text{dacă} \quad k \to \infty.$$
Deci
\[\sup_{u \in B_E} |\langle v_n, Tu \rangle - \langle v_{n'}, Tu \rangle| \to 0 \quad \text{dacă } k, \ell \to \infty, \]
adică \[T^*v_n - T^*v_{n'} \|_{E'} \to 0 \quad \text{dacă } k, \ell \to \infty. \] În consecință, \(T^*v_n \) converge în \(E' \).

Reciproc, presupunem că \(T^* \in K(F', E') \). Știm deja, din prima parte, că \(T^{**} \in K(E'', F'') \). În particular, \(T^{**}(B_E) \) este relativ compact în \(F'' \). Dar \(T(B_E) = T^{**}(B_E) \) și \(F \) este închis în \(F'' \). Deci \(T(B_E) \) este relativ compactă în \(F \).

Remarca 2. – Fie \(E \) și \(F \) două spații Banach și fie \(T \in K(E, F) \). Dacă \((u_n) \) converge slab la \(u \) în \(E \), atunci \((Tu_n) \) converge tare la \(Tu \); vezi [EX]. Reciproca este, de asemenea, adevărată, dacă \(E \) este reflexiv; vezi [EX].

VI.2 Teoria Riesz-Fredholm

Începem cu câteva rezultate preliminare.

Lema VI.1 (Lema lui Riesz). – Fie \(E \) un spațiu vectorial normat și fie \(M \subset E \) un subspațiu vectorial închis astfel încât \(M \neq E \). Atunci
\[\forall \varepsilon > 0 \ \exists u \in E \text{ astfel încât } \|u\| = 1 \text{ și dist } (u, M) \geq 1 - \varepsilon. \]

Demonstrație. – Fie \(v \in E \) cu \(v \notin M \). Deoarece \(M \) este închis, \(d = \text{dist}(v, M) > 0 \). Alegem \(m_0 \in M \) astfel încât
\[d \leq \|v - m_0\| \leq \frac{d}{1 - \varepsilon}. \]
Atunci
\[u = \frac{v - m_0}{\|v - m_0\|} \]
satisfacă proprietățile cerute. Într-adevăr, pentru orice \(m \in M \), avem
\[\|u - m\| = \left\| \frac{v - m_0}{\|v - m_0\|} - m \right\| \geq \frac{d}{\|v - m_0\|} \geq 1 - \varepsilon \]
deoarece $m_0 + \|v - m_0\| m \in M$.

REMARCA 3. – Dacă M este finit dimensional (sau, mai general, dacă M este reflexiv) putem alege $\varepsilon = 0$ în lema VI.1; acest rezultat nu este valabil în general (vezi [EX]).

• Teorema VI.5 (Riesz). – Fie E un spațiul vectorial normat astfel încât B_E este compactă.
Atunci E este finit dimensional.

DEMONSTRĂȚIE. – Presupunem, prin reducere la absurd, că E este infinit dimensional. Atunci există un şir (E_n) de subspatii finit dimensionale astfel încât $E_{n-1} \subset E_n$, $E_{n-1} \neq E_n$. Conform lemei VI.1, se poate construi un şir (u_n) cu $u_n \in E_n$ astfel încât $\|u_n\| = 1$ şi $\text{dist}(u_n, E_{n-1}) \geq 1/2$. În particular, $\|u_n - u_m\| \geq 1/2$ pentru $m < n$. Deci (u_n) nu are nici un subşir convergent, ceea ce contrazice ipoteza că “B_E este compactă”.

• Teorema VI.6 (Alternativa lui Fredholm). – Fie $T \in \mathcal{K}(E)$.
Atunci

a) $N(I - T)$ este finit dimensional,
b) $R(I - T)$ este închis, şi, mai precis, $R(I - T) = N(I - T^*)^\perp$,
c) $N(I - T) = \{0\} \iff R(I - T) = E$
d) $\dim N(I - T) = \dim N(I - T^*)$.

REMARCA 4. – Alternativa lui Fredholm este legată de rezolvarea ecuației $u - Tu = f$. Acest rezultat afirmă că:

fie pentru orice $f \in E$ ecuația $u - Tu = f$ are soluție unică,
fie ecuația omogenă $u - Tu = 0$ admite n soluții liniar independente și, în acest caz, ecuația neomogenă $u - Tu = f$ are soluție dacă și numai dacă f verifică n condiții de ortogonalitate, adică $f \in N(I - T^*)^\perp$.

REMARCA 5. – Proprietatea c) este familiară în dimensiune finită. Dacă dim $E < \infty$, atunci un operator liniar de la E în el însuși este injectiv dacă și numai dacă el este surjectiv. Totuși în dimensiuni infinită un operator mărginit poate fi injectiv fără a fi surjectiv și reciproc; de exemplu operatorul “shift” la dreapta (sau la stânga) (1) în ℓ^2. Conclusia c) exprimă deci o proprietate remarcabilă a operatorilor de forma $I - T$ cu $T \in \mathcal{K}(E)$.

\(^{1}\)Vezi Remarca 6 de mai jos.
TEORIA RIESZ-FREDHOLM

DEMONSTRĂTIE.

a) Fie $E_1 = N(I - T)$. Atunci $B_{E_1} \subset T(B_E)$ și deci B_{E_1} este compactă. Conform teoremei VI.5, E_1 este finit dimensional.

b) Fie $f_n = u_n - Tu_n \to f$. Trebuie demonstrat că $f \in R(I - T)$. Fie $d_n = \text{dist} (u_n, N(I - T))$. Deoarece $N(I - T)$ este finit dimensional, există $v_n \in N(I - T)$ astfel încât $d_n = \|u_n - v_n\|$. Avem

$$f_n = (u_n - v_n) - T(u_n - v_n).$$

Arătăm că $\|u_n - v_n\|$ rămâne mărginit. Raționăm prin absurd și presupunem că există un subșir astfel încât $\|u_{n_k} - v_{n_k}\| \to \infty$. Punând $w_n = (u_n - v_n)/\|u_n - v_n\|$, am avea, cf. (4), $w_{n_k} - Tw_{n_k} \to 0$. Trecând la un alt subșir (notat tot cu w_{n_k}, pentru a simplifica), putem presupune că $Tw_{n_k} \to z$. Deci $w_{n_k} \to z$ și $z \in N(I - T)$. Pe de altă parte,

$$\text{dist} (w_n, N(I - T)) = \frac{\text{dist} (u_n, N(I - T))}{\|u_n - v_n\|} = 1$$

(deoarece $v_n \in N(I - T)$). Prin trecere la limită obținem dist $(z, N(I - T)) = 1$, ceea ce este absurd. Deci $\|u_n - v_n\|$ rămâne mărginit și cum T este un operator compact, putem extrage un subșir astfel încât $T(u_{n_k} - v_{n_k}) \to \ell$.

Din (4) rezultă că $u_{n_k} - v_{n_k} \to f + \ell$. Punând $g = f + \ell$, avem $g - Tg = f$, adică $f \in R(I - T)$. Am arătat așadar că operatorul $(I - T)$ are imaginea închisă. Putem aplica deci teorema II.18 și deducem că

$$R(I - T) = N(I - T^*)^\perp, \quad R(I - T^*) = N(I - T)^\perp.$$

c) Arătăm mai întâi implicația \Rightarrow. Presupunem, prin reducere la absurd, că

$$E_1 = R(I - T) \neq E.$$

E_1 este un spațiu Banach și $T(E_1) \subset E_1$. Deci $T|_{E_1} \in K(E_1)$ și $E_2 = (I - T)(E_1)$ este un subspațiu închis al lui E_1. In plus, $E_2 \neq E_1$ (deoarece $(I - T)$ este injectiv). Fie $E_n = (I - T)^n(E)$. Obținem astfel un șir strict descrescător de subspații închise. Conform lemei lui Riesz, există un șir (u_n) astfel încât $u_n \in E_n$, $\|u_n\| = 1$ și dist $(u_n, E_{n+1}) \geq 1/2$. Avem

$$Tu_n - Tu_m = -(u_n - Tu_n) + (u_m - Tu_m) + (u_n - u_m).$$
Observăm că dacă \(n > m \), atunci \(E_{n+1} \subset E_n \subset E_{m+1} \subset E_m \) și deci
\[
-(u_n - Tu_n) + (u_m - Tu_m) + u_n \in E_{m+1}.
\]
Rezultă că \(\|Tu_n - Tu_m\| \geq \text{dist}(u_m, E_{m+1}) \geq 1/2 \), ceea ce este absurd deoarece \(T \) este compact. Deci \(R(I - T) = E \).

Reciproc, presupunem că \(R(I - T) = E \). Din corolarul II.17, \(N(I - T^*) = R(I - T) = \{0\} \). Deoarece \(T^* \in K(E') \), putem aplica situația precedentă pentru a deduce că \(R(I - T^*) = E' \). Aplicând din nou corolarul II.17, deducem că \(N(I - T) = R(I - T^*) = \{0\} \).

d) Fie \(d = \dim N(I - T) \) și \(d^* = \dim N(I - T^*) \). Arătăm mai întâi că \(d^* \leq d \). Prin absurd, presupunem că \(d < d^* \). Cum \(N(I - T) \) este de dimensiune finită, el admite un suplement topologic în \(E \) (vezi §II.4, exemplul 1); deci există un proiectoar continuu \(P \) de la \(E \) în \(N(I - T) \).

Pe de altă parte, \(R(I - T) = N(I - T^*) = \{0\} \) are codimensiune finită \(d^* \) și deci \(R(I - T) \) admite (în \(E \)) un suplement topologic, notat \(F \), de dimensiune \(d^* \) (vezi §II.4, exemplul 2). Deoarece \(d < d^* \), există o aplicație lineară \(\Lambda : N(I - T) \to F \) care este injectivă și nu este surjectivă. Fie \(S = T + \Lambda \circ P \). Atunci \(S \in K(E) \) deoarece \(\Lambda \circ P \) are rang finit.

Arătăm că \(N(I - S) = \{0\} \). Într-adevăr, dacă
\[
0 = u - Su = (u - Tu) - (\Lambda \circ Pu),
\]
atunci
\[
u - Tu = 0 \quad \text{și} \quad \Lambda \circ Pu = 0,
\]
adică \(u \in N(I - T) \) și \(\Lambda u = 0 \). Deci \(u = 0 \).

Aplicând c) operatorului \(S \) obținem că \(R(I - S) = E \). Acest lucru este absurd deoarece există \(f \in F \) cu \(f \notin R(\Lambda) \) și deci ecuația \(u - Su = f \) nu are soluție.

Am demonstrat așadar că \(d^* \leq d \). Aplicând acest rezultat lui \(T^* \) obținem
\[
\dim N(I - T^{**}) \leq \dim N(I - T^*) \leq \dim N(I - T).
\]
Dar \(N(I - T^{**}) \supset N(I - T) \) și deci \(d = d^* \).
VI.3 Spectrul unui operator compact

Definiții. – Fie \(T \in \mathcal{L}(E) \).

Multimea rezolvantă \(\rho(T) \) se definește prin
\[
\rho(T) = \{ \lambda \in \mathbb{R}; (T - \lambda I) \text{ este bijectiv de la } E \text{ în } E \}.
\]

Spectrul \(\sigma(T) \) este complementara multimii rezolvante, adică \(\sigma(T) = \mathbb{R} \setminus \rho(T) \). Un număr \(\lambda \) se numește \textit{valoare proprie} a lui \(T \) – și se notează \(\lambda \in EV(T) \) – dacă
\[
N(T - \lambda I) \neq 0;
\]
\(N(T - \lambda I) \) se numește \textit{spațiu propriu} asociat lui \(\lambda \).

Este important că dacă \(\lambda \in \rho(T) \) atunci \((T - \lambda I)^{-1} \in \mathcal{L}(E) \) (vezi corolarul II.6).

Remarca 6. – Este evident că \(EV(T) \subset \sigma(T) \). În general, incluziunea este strictă: \(^2\) este posibil să existe \(\lambda \) astfel încât
\[
N(T - \lambda I) = \{0\} \text{ și } R(T - \lambda I) \neq E
\]
(un asemenea \(\lambda \) aparține spectrului dar nu este valoare proprie). De exemplu, considerăm în \(E = \ell^2 \) operatorul “

Propoziția VI.7. – Spectrul \(\sigma(T) \) este o multime compactă și
\[
\sigma(T) \subset [-\|T\|, +\|T\|].
\]

Demonstrație. – Fie \(\lambda \in \mathbb{R} \) astfel încât \(|\lambda| > \|T\| \). Vom arăta că \(T - \lambda I \) este bijectiv, ceea ce implică \(\sigma(T) \subset [-\|T\|, +\|T\|] \). Fiind dat \(f \in E \), ecuația \(Tu - \lambda u = f \) admit soluție unică deoarece ea se scrie sub forma \(u = \lambda^{-1}(Tu - f) \) și se poate aplica teorema de punct fix a lui Banach.

Arătăm acum că \(\rho(T) \) este deschisă. Fie \(\lambda_0 \in \rho(T) \). Fie \(\lambda \in \mathbb{R} \) (apropiat de \(\lambda_0 \)) și \(f \in E \). Incercăm să rezolvăm ecuația
\[
(5) \quad Tu - \lambda u = f,
\]
\(^2\)Bineînțeles, cu excepția cazului în care \(E \) este finit dimensional, atunci când \(EV(T) = \sigma(T) \).
SPECTRUL UNUI OPERATOR COMPACT

142
care poate fi scrisă sub forma

$$Tu - \lambda_0 u = f + (\lambda - \lambda_0)u,$$

adică

(6) $$u = (T - \lambda_0 I)^{-1}[f + (\lambda - \lambda_0)u].$$

Aplicând din nou teorema de punct fix a lui Banach deducem că (6) are soluție unică și

$$|\lambda - \lambda_0||(T - \lambda_0 I)^{-1}| < 1.$$

• Teorema VI.8. – Fie $$T \in \mathcal{K}(E)$$ cu $$\dim E = \infty$$. Atunci avem
 a) $$0 \in \sigma(T),$$
 b) $$\sigma(T) \setminus \{0\} = EV(T) \setminus \{0\},$$
 c) una dintre situațiile următoare:
 - fie $$\sigma(T) = \{0\},$$
 - fie $$\sigma(T) \setminus \{0\}$$ este o mulțime finită,
 - fie $$\sigma(T) \setminus \{0\}$$ este un șir care tinde la 0.

Demonstrație.
 a) Presupunem prin reducere la absurd că $$0 \notin \sigma(T)$$. Atunci $$T$$ este bijectiv și $$I = T \circ T^{-1}$$ este compact. Deci $$B_E$$ este compactă și $$\dim E < \infty$$ (cf. teoremei VI.5), contradicție.
 b) Fie $$\lambda \in \sigma(T), \lambda \neq 0$$. Vom arăta că $$\lambda$$ este valoare proprie. Raționăm prin absurd și presupunem că $$N(T - \lambda I) = \{0\}$$. Atunci, conform teoremei VI.6 c), știm că $$R(T - \lambda I) = E$$ și deci $$\lambda \in \rho(T)$$, ceea ce este absurd.

Pentru a continua demonstrația vom avea nevoie de

Lema VI.2. – Fie $$T \in \mathcal{K}(E)$$ și $$(\lambda_n)_{n \geq 1}$$ un șir de numere reale distincte astfel încât

$$\lambda_n \to \lambda$$

și

$$\lambda_n \in \sigma(T) \setminus \{0\} \quad \forall n.$$

Atunci $$\lambda = 0$$.

Altfel zis, toate punctele din $$\sigma(T) \setminus \{0\}$$ sunt izolate.
DEMONSTRAȚIE. − Știm că \(\lambda_n \in EV(T) \); fie \(e_n \neq 0 \) astfel încât \((T - \lambda_n I)e_n = 0 \). Fie \(E_n \) spațiul vectorial generat de \([e_1, e_2, \ldots, e_n]\). Arătăm că \(E_n \subset E_{n+1} \), \(E_n \neq E_{n+1} \), pentru orice \(n \). Este suficient să arătăm că, pentru orice \(n \), vectorii \(e_1, e_2, \ldots, e_n \) sunt liniar independenți. Raționăm prin inducție în raport cu \(n \) și presupunem că \(e_{n+1} = \sum_{i=1}^{n} \alpha_i e_i \).

Atunci
\[
Te_{n+1} = \sum_{i=1}^{n} \alpha_i \lambda_i e_i = \sum_{i=1}^{n} \alpha_i \lambda_{n+1} e_i .
\]

Rezultă că \(\alpha_i (\lambda_i - \lambda_{n+1}) = 0 \) pentru orice \(i = 1, 2, \ldots, n \) și deci \(\alpha_i = 0 \) pentru \(i = 1, 2, \ldots, n \), contradictie. Rezultă că \(E_n \subset E_{n+1} \), \(E_n \neq E_{n+1} \), pentru orice \(n \).

Pe de altă parte, este evident că \((T - \lambda_n I)E_n \subset E_{n-1} \). Aplicând lema lui Riesz construim un șir \((u_n)_{n \geq 1}\) astfel încât \(u_n \in E_n \), \(\|u_n\| = 1 \) și \(\text{dist} (u_n, E_{n-1}) \geq 1/2 \) pentru orice \(n \geq 2 \). Pentru orice \(2 \leq m < n \) avem
\[
E_{m-1} \subset E_m \subset E_{n-1} \subset E_n .
\]

Avem
\[
\left\| \frac{T u_n}{\lambda_n} - \frac{T u_m}{\lambda_m} \right\| = \left\| \frac{(T u_n - \lambda_n u_n)}{\lambda_n} - \frac{(T u_m - \lambda_m u_m)}{\lambda_m} + u_n - u_m \right\| \geq \text{dist} (u_n, E_{n-1}) \geq \frac{1}{2} .
\]

Dacă \(\lambda_n \to \lambda \) și \(\lambda \neq 0 \) ajungem la o contradictie deoarece \((T u_n)\) conține un subșir convergent.

DEMONSTRAȚIA TEOREMEI VI.8. c). − Pentru orice întreg \(n \geq 1 \) mulțimea
\[
\sigma(T) \cap \left\{ \lambda \in \mathbb{R}; |\lambda| \geq \frac{1}{n} \right\}
\]
este vidă sau finită (dacă ar conține o infinitate de puncte distincte, ar avea și un punct de acumulare – deoarece \(\sigma(T) \) este compact – și aceasta ar contrazice lema VI.2). Așadar, dacă \(\sigma(T) \setminus \{0\} \) conține o infinitate de puncte distincte, le putem aranja să formeze un șir care tinde către 0.

REMARCA 7. − Fiind dat un șir \((\alpha_n)\) care tinde la 0, putem construi un operator \(T \) astfel încât \(\sigma(T) = (\alpha_n) \cup \{0\} \). Este suficient să considerăm în \(E = \ell^2 \) operatorul de multiplicare \(T \) definit prin \(Tu = (\alpha_1 u_1, \alpha_2 u_2, \ldots) \).

SPECTRUL UNUI OPERATOR COMPACT 143
α₂u₂, ..., αₙuₙ, ...), unde \(u = (u₁, u₂, ..., uₙ, ...) \). Observăm că \(T \) este compact deoarece \(T \) este limita unui șir de operatori de rang finit. Mai precis, fie \(Tₙu = (α₁u₁, α₂u₂, ..., αₙuₙ, 0, 0, ...) \). Atunci \(||Tₙ - T|| \to 0 \).

În acest exemplu vedem de asemenea că 0 poate sau nu să aparțină lui \(EV(T) \). In plus, dacă \(0 \in EV(T) \), este posibil ca spațiul propriu asociat, \(N(T) \), să fie infinit dimensional.

VI.4 Descompunerea spectrală a operatorilor autoadjuncti compacti

Presupunem în cele ce urmează că \(E = H \) este un spațiu Hilbert și că \(T \in \mathcal{L}(H) \). Identificând \(H' \) și \(H \), putem presupune că \(T^* \in \mathcal{L}(H) \).

Definiție. Spunem că un operator \(T \in \mathcal{L}(H) \) este **autoadjunct** dacă \(T^* = T \), adică

\[
(Tu, v) = (u, Tv) \quad \forall u, v \in H.
\]

Propoziția VI.9. Fie \(T \in \mathcal{L}(H) \) un operator autoadjunct. Definim

\[
m = \inf_{u \in H} \frac{(Tu, u)}{|u|^2} \text{ și } M = \sup_{u \in H} \frac{(Tu, u)}{|u|^2}.
\]

Atunci \(\sigma(T) \subset [m, M] \), \(m \in \sigma(T) \) și \(M \in \sigma(T) \).

Demonstrație. Fie \(\lambda > M \); demonstrăm că \(\lambda \in \rho(T) \). Avem

\[
(Tu, u) \leq M|u|^2 \quad \forall u \in H,
\]
și deci

\[
(\lambda u - Tu, u) \geq (\lambda - M)|u|^2 = \alpha|u|^2 \quad \forall u \in H, \text{ cu } \alpha > 0.
\]

Aplicând teorema lui Lax-Milgram deducem că \(\lambda I - T \) este bijectiv.

Arătăm acum că \(M \in \sigma(T) \). Forma \(a(u, v) = (Mu - Tu, v) \) este biliniară, simetrică și

\[
a(v, v) \geq 0 \quad \forall v \in H.
\]

Aplicând inegalitatea lui Cauchy-Schwarz obținem

\[
|a(u, v)| \leq a(u, u)^{1/2}a(v, v)^{1/2} \quad \forall u, v \in H,
\]
adică

\[|(Mu - Tu, v)| \leq (Mu - Tu, u)^{1/2}(Mv - Tv, v)^{1/2} \quad \forall u, v \in H. \]

De aici rezultă, în particular, că

\[(7) \quad |Mu - Tu| \leq C(Mu - Tu, u)^{1/2} \quad \forall u \in H. \]

Fie \((u_n)\) un șir astfel încât \(|u_n| = 1\) și \((Tu_n, u_n) \to M\). Din (7) deducem că \(|Mu_n - Tu_n| \to 0\) și deci \(M \in \sigma(T)\) (căci dacă \(M \in \rho(T)\), atunci \(u_n = (M I - T)^{-1}(Mu_n - Tu_n) \to 0\), ceea ce este imposibil).

Proprietățile lui \(m\) se obțin înlocuind \(T\) cu \(-T\).

Corolarul VI.10. – Fie \(T \in \mathcal{L}(H)\) un operator autoadjunct astfel încât \(\sigma(T) = \{0\}\). Atunci \(T = 0\).

Demonstrație. – Din propoziția VI.9 deducem că

\[(Tu, u) = 0 \quad \forall u \in H. \]

Rezultă că

\[2(Tu, v) = (T(u + v), u + v) - (Tu, u) - (Tv, v) = 0 \quad \forall u, v \in H. \]

Deci \(T = 0\).

Rezultatul următor este **fundamental**. El arată că un operator autoadjunct compact este **diagonalizabil** într-o bază convenabil aleasă.

• Teorema VI.11. – Fie \(H\) un spațiu Hilbert separat și \(T\) un operator autoadjunct compact.

Atunci \(H\) admite o bază Hilbertiană formată din vectori proprii ai lui \(T\).

Demonstrație. – Fie \((\lambda_n)_{n \geq 1}\) șirul vectorilor proprii distincti ai lui \(T\), cu excepția lui 0; notăm \(\lambda_0 = 0\).

Fie \(E_0 = N(T)\) și \(E_n = N(T - \lambda_n I)\). Reamintim că

\[0 \leq \dim E_0 \leq \infty \text{ și că } 0 < \dim E_n < \infty. \]

Aratăm mai întâi că \(H\) este suma Hilbertiană a spațiilor \(E_n, n = 0, 1, 2, \ldots\):
(i) Spațiile \((E_n)_{n \geq 0}\) sunt două câte două ortogonale. Intr-adevăr, dacă \(u \in E_m\) și \(v \in E_n\) cu \(m \neq n\), atunci
\[Tu = \lambda_m u \quad \text{și} \quad Tv = \lambda_n v \]
și
\[(Tu, v) = \lambda_m (u, v) = (u, Tv) = \lambda_n (u, v). \]
Deci
\[(u, v) = 0. \]

(ii) Fie \(F\) spațiul vectorial generat de \((E_n)_{n \geq 0}\). Verificăm că \(F\) este dens în \(H\).

Este evident că \(T(F) \subset F\). Rezultă că \(T(F^\perp) \subset F^\perp\). Intr-adevăr, dacă \(u \in F^\perp\) și \(v \in F\) atunci \((Tu, v) = (u, Tv) = 0\). Fie \(T_0\) operatorul \(T\) restricționat la \(F^\perp\). Atunci \(T_0\) este un operator autoadjunct compact. Pe de altă parte, \(\sigma(T_0) = \{0\}\). Intr-adevăr, dacă
\[\lambda \in \sigma(T_0) \setminus \{0\}, \quad \text{atunci} \quad \lambda \in EV(T_0), \]
decit există \(u \in F^\perp\), \(u \neq 0\), astfel încât \(T_0u = \lambda u\). Prin urmare, \(\lambda\) este una dintre valorile proprii ale lui \(T\), să zicem \(\lambda = \lambda_n\) și \(u \in E_n \cap F^\perp\). Deci \(u = 0\), contradicție.

Rezultă din corolarul VI.10 că \(T_0 = 0\). Rezultă că
\[F^\perp \subset N(T) \subset F \quad \text{și} \quad F^\perp = \{0\}. \]
Deci \(F\) este dens în \(H\).

În final, alegem în fiecare spațiul \((E_n)_{n \geq 0}\) câte o bază Hilbertiană. Reuniunea acestor baze este o bază Hilbertiană a lui \(H\) formată din vectori proprii ai lui \(T\).

REMARCA 8. – Fie \(T\) un operator autoadjunct compact. Din cele de mai sus rezultă că putem scrie orice \(u \in H\) sub forma
\[u = \sum_{n=0}^{\infty} u_n \quad \text{cu} \quad u_n \in E_n. \]
Atunci \(Tu = \sum_{n=1}^{\infty} \lambda_n u_n\). Fie
\[T_k u = \sum_{n=1}^{k} \lambda_n u_n. \]
Evident, T_k este un operator de rang finit și

$$\|T_k - T\| \leq \text{Sup}_{n \geq k+1} |\lambda_n| \to 0 \quad \text{dacă} \quad k \to \infty.$$

Regăsim astfel faptul că T este limita unui șir (T_k) de operatori de rang finit. Reamintim că într-un spațiu Hilbert orice operator compact – nu necesar autoadjunct – este limita unui șir de operatori de rang finit (vezi remarca 1).

VI.5 Comentarii asupra capitolului VI

⋆ 1) Operatori Fredholm.

Teorema VI.6 este un prim pas către teoria operatorilor Fredholm. Fie E și F două spații Banach. Spunem că un operator $A \in \mathcal{L}(E,F)$ este un operator Fredholm (3) – vom scrie $A \in \text{Fred}(E,F)$ – dacă

(i) $N(A)$ este finit dimensional.

(ii) $R(A)$ este închis și de codimensiune finită (4).

Indexul lui A se definește prin

$$\text{Ind} A = \dim N(A) - \text{codim} R(A).$$

De exemplu, $A = I - T$ cu $T \in \mathcal{K}(E)$ este un operator Fredholm de index 0 (vezi teorema VI.6).

Proprietățile principale ale operatorilor Fredholm sunt următoarele:

a) Multimea $\text{Fred}(E, F)$ este deschisă în $\mathcal{L}(E,F)$ și aplicația $A \mapsto \text{Ind} A$ este continuă; deci ea este constantă pe fiecare componentă conexă a lui $\text{Fred}(E,F)$.

b) Orice operator $A \in \text{Fred}(E,F)$ este inversabil modulo operatorii de rang finit, adică există un operator $B \in \mathcal{L}(F,E)$ astfel încât

$$(A \circ B - I_F) \text{ și } (B \circ A - I_E)$$ sunt operatori de rang finit.

Reciproc, fie $A \in \mathcal{L}(E,F)$ și presupunem că există $B \in \mathcal{L}(F,E)$ astfel încât

$$A \circ B - I_F \in \mathcal{K}(F) \text{ și } B \circ A - I_E \in \mathcal{K}(E).$$

3Spunem de asemenea că A este un operator cu indice.

4Se arată că dacă $A \in \mathcal{L}(E,F)$ este astfel încât $N(A)$ are dimensiune finită și $R(A)$ are codimensiune finită (adică $R(A)$ admite un suplement algebric de dimensiune finită) atunci $R(A)$ este închis; vezi [EX].
Atunci $A \in \text{Fred}(E, F)$.

c) Dacă $A \in \text{Fred}(E, F)$ și $T \in \mathcal{K}(E, F)$ atunci $A + T \in \text{Fred}(E, F)$ și $\text{Ind}(A + T) = \text{Ind} A$.

d) Dacă $A \in \text{Fred}(E, F)$ și $F \in \text{Fred}(F, G)$ atunci $B \circ A \in \text{Fred}(E, G)$ și $\text{Ind}(B \circ A) = \text{Ind} A + \text{Ind} B$.

În legătură cu aceste probleme vezi Kato [1], Schechter [1], Lang [1] sau [EX].

* 2) Operatori Hilbert-Schmidt

Fie H un spațiu Hilbert separabil. Un operator $T \in \mathcal{L}(H)$ se numește **operator Hilbert-Schmidt** dacă există o bază Hilbertiană (e_n) a lui H astfel încât $\|T\|_{HS}^2 = \sum |T e_n|^2 < \infty$. Se poate verifica faptul că această definiție este independentă de alegerea bazei și că $\| \|_{HS}$ este o normă. În plus, T este compact. Operatorii Hilbert-Schmidt constituie un subspațiu important al lui $\mathcal{K}(H)$ – în particular din cauza rezultatului următor.

Teorema VI.12. – Fie $H = L^2(\Omega)$ și $K(x, y) \in L^2(\Omega \times \Omega)$. Atunci operatorul

$$ u \mapsto (Ku)(x) = \int_{\Omega} K(x, y)u(y) \, dy $$

este un operator Hilbert-Schmidt.

Reciproc, orice operator Hilbert-Schmidt pe $L^2(\Omega)$ se reprezintă în mod unic cu ajutorul unei funcții $K(x, y) \in L^2(\Omega \times \Omega)$.

Asupra acestei chestiuni, vezi Balakrishnan [1], Dunford-Schwartz [1], Volumul 2, L. Schwartz [3] sau [EX].

3) Multiplicitatea valorilor proprii

Fie $T \in \mathcal{K}(E)$ și $\lambda \in \sigma(T) \setminus \{0\}$. Se arată că șirul $N((T - \lambda I)^k)$, $k = 1, 2, \ldots$ este strict cresător până la un anumit rang finit p, după care el devine stabil (vezi Dieudonné [1], Kreyszig [1] sau [EX]). Se spune că p este ordinul lui λ. Dimensiunea lui $N(T - \lambda I)$ se numește **multiplicitate geometrică** a lui λ, iar dimensiunea lui $N((T - \lambda I)^p)$ se numește **multiplicitate algebrică** a lui λ; ele coincid dacă E este un spațiu Hilbert și T este autoadjunct (vezi [EX]).

4) Analiză spectrală
Fie \(H \) un spațiu Hilbert. Fie \(T \) un operator autoadjunct (sau, mai general, normal adică \(T^*T = TT^* \)) necompact și chiar, eventual nemoșinidit. Descompunerea spectrală este o tehnică care generalizează descompunerea spectrală din §VI.4. Ea permite, între altele, să se definească un calcul functional, adică să se dea un sens lui \(f(T) \) pentru orice funcție continuă \(f \). Analiza spectrală este un subiect foarte vast, care are numeroase aplicații și ramificații. Pentru o expunere elementară vezi Rudin [1], Kreyszig [1], Friedman [3], Yosida [1], Huet [1]. Pentru o prezentare mai completă vezi Reed-Simon [1], Kato [1], Dunford-Schwartz [1], volumul 2, Akhiezer-Glazman [1], Taylor-Lay [1] și Schechter [2].

5) Principiul Min-Max

6) Teorema lui Krein-Rutman

Următorul rezultat are aplicații interesante în studiul spectral al operatorilor eliptici de ordinul al doilea (vezi capitolul IX).

\[\text{Teorema VI.13 (Krein-Rutman).} \]

Fie \(E \) un spațiu Banach și \(C \) un con convex cu vârful în 0 (adică \(\lambda x + \mu y \in C, \forall \lambda \geq 0, \mu \geq 0, x \in C, y \in C \)). Presupunem că \(C \) este închis, \(\text{Int } C \neq \emptyset \) și \(C \cap (-C) = \{0\} \). Fie \(T \in \mathcal{K}(E) \) astfel încât \(T(C \setminus \{0\}) \subset \text{Int } C \). Atunci există \(u \in \text{Int } C \) și \(\lambda > 0 \) astfel încât \(Tu = \lambda u \); mai mult, \(\lambda \) este unica valoare proprie asociată unui vector proprie al lui \(T \) în \(C \) (adică \(Tv = \mu v \) cu \(v \in C \) și \(v \neq 0 \) implică \(\mu = \lambda \)). In sfârșit,

\[\lambda = \text{Max}\{||\mu||; \mu \in \sigma(T)\} \]

și multiplicitatea (geometrică și algebrică) a lui \(\lambda \) este egală cu 1.

Vezi Schaefer [1] și [EX].
Capitolul VII

TEOREMA LUI HILLE-YOSIDA

VII.1 Definiția și proprietățile elementare ale operatorilor maximal monotoni

Pretutindeni în acest capitol, H notează un spațiu Hilbert.

Definiție. – Un operator liniar nemărginit $A : D(A) \subset H \to H$ se spune că este monoton (1) dacă satisface

\[(Av, v) \geq 0 \quad \forall v \in D(A).\]

Acesta este numit maximal monoton dacă, în plus, $R(I + A) = H$, adică

\[\forall f \in H \quad \exists u \in D(A) \quad \text{astfel încât} \quad u + Au = f.\]

Propoziția VII.1. – Fie A un operator maximal monoton. Atunci

a) $D(A)$ este dens în H.

b) A este un operator închis.

c) Pentru orice $\lambda > 0$, $(I + \lambda A)$ este bijectiv de la $D(A)$ la H, $(I + \lambda A)^{-1}$ este un operator mărginit și $\|(I + \lambda A)^{-1}\|_{\mathcal{L}(H)} \leq 1$.

Demonstrație.

a) Fie $f \in H$ astfel încât $(f, v) = 0$, $\forall v \in D(A)$. Afirmăm că $f = 0$. Intr-adevăr, există un anume $v_0 \in D(A)$ astfel încât $v_0 + Av_0 = f$. Avem

\[0 = (f, v_0) = |v_0|^2 + (Av_0, v_0) \geq |v_0|^2.\]

(1)Unii autori spun că A este acretiv sau că $-A$ este disipativ.
Astfel \(v_0 = 0 \) și de aici \(f = 0 \).

b) Întâi observăm că pentru orice \(f \in H \) există \(u \in D(A) \) unic astfel încât \(u + Au = f \). Intr-adevăr, dacă \(\bar{u} \) este o altă soluție avem

\[
u - \bar{u} + A(u - \bar{u}) = 0.
\]

Luând produsul scalar cu \((u - \bar{u})\) și utilizând monotonia lui \(A \) vedem că \(u - \bar{u} = 0 \). Apoi, subliniem că \(|u| \leq |f|\) deoarece \(|u|^2 + (Au, u) = (f, u) \geq |u|^2\). De aceea aplicația \(f \mapsto u \), notată prin \((I + A)^{-1}\), este un operator liniar mărginit de la \(H \) în el însuși și \(\|(I + A)^{-1}\|_{\mathcal{L}(H)} \leq 1 \). Demonstrăm acum că \(A \) este un operator închis. Fie \((u_n) \) un sir din \(D(A) \) astfel încât \(u_n \rightarrow u \) și \(Au_n \rightarrow f \). Trebuie să verificăm că \(u \in D(A) \) și \(Au = f \). Insă,

\[
u_n + Au_n \rightarrow u + f \text{ și } \text{astfel } u_n = (I + A)^{-1}(u_n + Au_n) \rightarrow (I + A)^{-1}(u + f).
\]

De aici \(u = (I + A)^{-1}(u + f) \), adică \(u \in D(A) \) și \(u + Au = u + f \).

c) Vom arăta că dacă \(R(I + \lambda_0 A) = H \) pentru un anume \(\lambda_0 > 0 \) atunci \(R(I + \lambda A) = H \) pentru orice \(\lambda > \lambda_0/2 \). Punctăm întâi – ca în partea b) – că pentru orice \(f \in H \) există un unic \(u \in D(A) \) astfel încât \(u + \lambda_0 Au = f \). Mai mult, aplicația \(f \mapsto u \), notată prin \((I + \lambda_0 A)^{-1}\), este un operator liniar, mărginit cu \(\|(I + \lambda_0 A)^{-1}\|_{\mathcal{L}(H)} \leq 1 \). încercăm să rezolvăm ecuația

\[
(1) \quad u + \lambda Au = f \quad \text{cu } \lambda > 0.
\]

Ecuatia (1) poate fi scrisă astfel

\[
u + \lambda_0 Au = \frac{\lambda_0}{\lambda} f + \left(1 - \frac{\lambda_0}{\lambda}\right) u
\]

ori în forma

\[
(2) \quad u = (I + \lambda_0 A)^{-1} \left[\frac{\lambda_0}{\lambda} f + \left(1 - \frac{\lambda_0}{\lambda}\right) u\right].
\]

Dacă \(1 - \frac{\lambda_0}{\lambda} < 1 \), adică \(\lambda > \lambda_0/2 \), putem aplica Principiul Contractiei (Teorema V.7) și deduce că (2) are o soluție.
OPERATORI MAXIMAL MONOTONI

Concluzia lui c) urmează ușor prin inducție: deoarece $I + A$ este surjectiv, $I + \lambda A$ este surjectiv pentru orice $\lambda > 1/2$, și astfel pentru orice $\lambda > 1/4$, etc.

REMARK 1. – Dacă A este maximal monoton atunci λA este, de asemenea, maximal monoton pentru orice $\lambda > 0$. Totuși, dacă A și B sunt operatori maximal monotoni, atunci $A + B$, definit pe $D(A) \cap D(B)$, nu este necesar să fie maximal monoton (vezi [EX]).

DEFINIȚII. – Fie A un operator maximal monoton. Pentru orice $\lambda > 0$ definim

\[J_\lambda = (I + \lambda A)^{-1} \quad \text{și} \quad A_\lambda = \frac{1}{\lambda} (I - J_\lambda). \]

J_λ este numită rezolvanta lui A și A_λ este regularizata Yosida a lui A. Reținem că $\|J_\lambda\|_{L(H)} \leq 1$.

Propoziția VII.2. – Fie A un operator maximal monoton. Atunci

\begin{align*}
\text{a1)} & \quad A_\lambda v = A(J_\lambda v) \quad \forall v \in H \quad \text{și} \quad \forall \lambda > 0, \\
\text{a2)} & \quad A_\lambda v = J_\lambda (Av) \quad \forall v \in D(A) \quad \text{și} \quad \forall \lambda > 0, \\
\text{b)} & \quad |A_\lambda v| \leq |Av| \quad \forall v \in D(A) \quad \text{și} \quad \forall \lambda > 0, \\
\text{c)} & \quad \lim_{\lambda \to 0} J_\lambda v = v \quad \forall v \in H, \\
\text{d)} & \quad \lim_{\lambda \to 0} A_\lambda v = Av \quad \forall v \in D(A), \\
\text{e)} & \quad (A_\lambda v, v) \geq 0 \quad \forall v \in H \quad \text{și} \quad \forall \lambda > 0, \\
\text{f)} & \quad |A_\lambda v| \leq (1/\lambda)|v| \quad \forall v \in H \quad \text{și} \quad \forall \lambda > 0.
\end{align*}

DEMONSTRĂRI. –

\text{a1)} poate fi scrisă ca $v = (J_\lambda v) + \lambda A(J_\lambda v)$ – care este tocmai definiția lui $J_\lambda v$.

\text{a2)} Din \text{a1)} avem

\[A_\lambda v + A(v - J_\lambda v) = Av, \]

adică

\[A_\lambda v + \lambda A(A_\lambda v) = Av \]
OPERATORI MAXIMAL MONOTONI

153

care înseamnă că \(A_\lambda v = (I + \lambda A)^{-1}Av \).

b) Urmează ușor din a2).

c) Presupunem întâi că \(v \in D(A) \). Atunci

\[
|v - J_\lambda v| = \lambda |A_\lambda v| \leq \lambda |Av| \text{ din b)}
\]

și astfel \(\lim_{\lambda \to 0} J_\lambda v = v \).

Presupunem acum că \(v \) este un element general din \(H \). Pentru orice \(\varepsilon > 0 \) dat, există un anume \(v_1 \in D(A) \) astfel încât \(|v - v_1| \leq \varepsilon \) (deoarece \(D(A) \) este dens în \(H \) din propoziția VII.1). Avem

\[
|J_\lambda v - v| \leq |J_\lambda v - J_\lambda v_1| + |J_\lambda v_1 - v_1| + |v_1 - v| \\
\leq 2|v - v_1| + |J_\lambda v_1 - v_1| \leq 2\varepsilon + |J_\lambda v_1 - v_1|.
\]

Astfel

\[
\limsup_{\lambda \to 0} |J_\lambda v - v| \leq 2\varepsilon, \quad \forall \varepsilon > 0
\]

și deci

\[
\lim_{\lambda \to 0} |J_\lambda v - v| = 0.
\]

d) Este o consecință a lui a2) și c).

e) Avem

\[
(A_\lambda v, v) = (A_\lambda v, v - J_\lambda v) + (A_\lambda v, J_\lambda v) = \lambda |A_\lambda v|^2 + (A(J_\lambda v), J_\lambda v)
\]

și astfel

\[
(3) \quad (A_\lambda v, v) \geq \lambda |A_\lambda v|^2.
\]

f) Este o consecință a lui (3) și a inegalității lui Cauchy-Schwarz.

REMARCA 2. – Propoziția VII.2 implică că \((A_\lambda)_{\lambda > 0} \) este o familie de operatori mărginiți care “aproximează” operatorul nemărginit \(A \) când \(\lambda \to 0 \). Această aproximăție va fi utilizată foarte des. Desigur, în general, \(\|A_\lambda\|_{\mathcal{L}(H)} \) “explodează” când \(\lambda \to 0 \).
VII.2 Soluția problemei de evoluție

\[\begin{cases}
\frac{du}{dt} + Au = 0 \quad \text{pe } [0, +\infty) \\
u(0) = u_0.
\end{cases} \]

Existența și unicitate.

Începem cu un rezultat clasic:

- Teorema VII.3 (Cauchy, Lipschitz, Picard). - Fie \(E \) un spațiu Banach și \(F : E \to E \) o aplicație Lipschitziană, adică există o constantă \(L \) astfel încât

\[||Fu - Fv|| \leq L||u - v|| \quad \forall u, v \in E. \]

Atunci, pentru orice \(u_0 \in E \) dat există o soluție unică \(u \in C^1([0, +\infty); E) \) a problemei:

\[\begin{cases}
\frac{du}{dt}(t) = Fu(t) \quad \text{pe } [0, +\infty) \\
u(0) = u_0
\end{cases} \]

(\(u_0 \) este numită data inițială).

Demonstrație. –

Existența. A rezolva (4) echivalează cu a găsi un anume \(u \in C([0, +\infty); E) \) satisfacând ecuația integrală

\[u(t) = u_0 + \int_0^t F(u(s)) \, ds. \]

Pentru \(k > 0 \) dat – ce va fi fixat mai târziu – definim

\[X = \left\{ u \in C([0, +\infty); E); \quad \text{Sup}_{t \geq 0} e^{-kt}||u(t)|| < \infty \right\}. \]

Este ușor de verificat că \(X \) este un spațiu Banach în raport cu norma

\[||u||_X = \text{Sup}_{t \geq 0} e^{-kt}||u(t)||. \]

Pentru orice \(u \in X \), funcția \(\Phi u \) definită de

\[(\Phi u)(t) = u_0 + \int_0^t F(u(s)) \, ds \]
aparține, de asemenea, lui X. Mai mult, avem

$$
\|\Phi u - \Phi v\|_X \leq \frac{L}{k} \|u - v\|_X \quad \forall u, v \in X.
$$

Luând arbitrar $k > L$ găsim că Φ are un punct fix (unic) u în X, care este o soluție a lui (5).

Unicitatea. Fie u și v două soluții ale lui (4) și definim

$$
\varphi(t) = \|u(t) - \bar{u}(t)\|.
$$

Din (5) deducem că

$$
\varphi(t) \leq L \int_0^t \varphi(s) \, ds \quad \forall t \geq 0
$$

și, în consecință, $\varphi \equiv 0$.

Teorema precedentă este extrem de utilă în studiul ecuațiilor diferențiale ordonate. Totuși este de puțin folos în studiul ecuațiilor cu derivate parțiale. Următorul nostru rezultat este un instrument foarte puternic în rezolvarea ecuațiilor cu derivate parțiale de evoluție – vezi capitolul X.

• Teorema VII.4 (Hille-Yosida). – Fie A un operator maximal monoton. Atunci, pentru orice $u_0 \in D(A)$ dat, există o funcție unică (2)

$$
u \in C^1([0, +\infty); H) \cap C([0, +\infty); D(A))
$$

satisfăcând

$$
\begin{cases}
\frac{du}{dt} + Au = 0 & \text{pe } [0, +\infty) \\
u(0) = u_0 & \text{(data inițială)}.
\end{cases}
$$

Mai mult

$$
|u(t)| \leq |u_0| \quad \text{și} \quad \left| \frac{du}{dt} (t) \right| = |Au(t)| \leq |Au_0| \quad \forall t \geq 0.
$$

\[2\] Spatul $D(A)$ este înzestrat cu norma grafului $|v| + |Av|$ sau cu norma Hilbert echivalentă $(|v|^2 + |Av|^2)^{1/2}$.
Remarca 3. – Avantajul principal al teoremei VII.4 constă în faptul că reducem studiul unei “probleme de evoluție” la studiul unei “ecuații stăționare” $u + \lambda Au = f$ (presupunând a ști deja că A este monoton – ceea ce este ușor de verificat în practică).

Demonstrație. – Aceasta este împărțită în 6 etape.

Etapa 1: Unicitatea. – Fie u și π două soluții ale lui (6). Avem
\[
\left(\frac{d}{dt} (u - \pi), (u - \pi) \right) = -(A(u - \pi), u - \pi) \leq 0.
\]
Dar (3)
\[
\frac{1}{2} \frac{d}{dt} |u(t) - \pi(t)|^2 = \left(\frac{d}{dt} (u(t) - \pi(t)), u(t) - \pi(t) \right).
\]
Astfel, funcția $t \mapsto |u(t) - \pi(t)|$ este monoton descrescătoare pe $[0, +\infty)$. Din $|u(0) - \pi(0)| = 0$ urmează că
\[
|u(t) - \pi(t)| = 0 \quad \forall t \geq 0.
\]

Idea principală pentru demonstrarea existenței este de a înlocui în (6) operatorul A prin A_{λ}, a aplica teorema VII.3 problemei aproximante și apoi de a trece la limită când $\lambda \to 0$ utilizând diverse estimări care sunt independente de λ. Deci, fie u_{λ} soluția problemei

\[
\begin{cases}
\frac{du_{\lambda}}{dt} + A_{\lambda} u_{\lambda} = 0 \quad \text{pe } [0, +\infty) \\
u_{\lambda}(0) = u_0 \in D(A).
\end{cases}
\]

Etapa 2: – Avem estimarea
\[
\left| \frac{du_{\lambda}}{dt} (t) \right| = |A_{\lambda} u_{\lambda}(t)| \leq |Au_0| \quad \forall t \geq 0, \quad \forall \lambda > 0.
\]
Această inegalitate este o consecință imediată a următorului rezultat.

\[3\text{Rețineți că dacă } \varphi \in C^1([0, +\infty); H), \text{ atunci } |\varphi|^2 \in C^1([0, +\infty); \mathbb{R}) \text{ și } \frac{d}{dt} |\varphi|^2 = 2 \left(\frac{d}{dt} \varphi, \varphi \right). \]
Lema VII.1. – Fie \(w \in C^1([0, +\infty); H) \) o funcție satisfăcând

\[
\frac{dw}{dt} + A_\lambda w = 0 \quad \text{pe } [0, +\infty).
\]

Atunci funcțiile \(t \mapsto |w(t)| \) și \(t \mapsto \left| \frac{dw}{dt}(t) \right| = |A_\lambda w(t)| \) sunt monoton descrescătoare pe \([0, +\infty)\).

Demonstratie. – Avem

\[
\left(\frac{dw}{dt}, w \right) + (A_\lambda w, w) = 0.
\]

Din propoziția VII.2 e) știm că \((A_\lambda w, w) \geq 0\) și, de aceea, \(\frac{1}{2} \frac{d}{dt} |w|^2 \leq 0 \), astfel încât \(|w(t)|\) este monoton descrescătoare. Pe de altă parte, deoarece \(A_\lambda \) este un operator linear mărginit, deducem (prin inducție) din (10) că \(w \in C^\infty([0, +\infty); H) \) și, de asemenea, că

\[
\frac{d}{dt} \left(\frac{dw}{dt} \right) + A_\lambda \left(\frac{dw}{dt} \right) = 0.
\]

Se aplică deci rezultatul precedent lui \(\frac{dw}{dt} \).

Etapa 3: – Vom demonstra aici că, pentru orice \(t \geq 0 \), \(u_\lambda(t) \) converge, când \(\lambda \to 0 \), la o anumită limită notată prin \(u(t) \). Mai mult, convergența este uniformă pe orice interval mărginit \([0, T]\).

Pentru orice \(\lambda, \mu > 0 \) avem

\[
\frac{du_\lambda}{dt} - \frac{du_\mu}{dt} + A_\lambda u_\lambda - A_\mu u_\mu = 0
\]

și astfel

\[
\frac{1}{2} \frac{d}{dt} |u_\lambda(t) - u_\mu(t)|^2 + (A_\lambda u_\lambda(t) - A_\mu u_\mu(t), u_\lambda(t) - u_\mu(t)) = 0.
\]
Renunțând la t pentru simplitate, scriem

$$
\begin{align*}
(A_\lambda u_\lambda - A_\mu u_\mu, u_\lambda - u_\mu) & = (A_\lambda u_\lambda - A_\mu u_\mu, u_\lambda - J_\lambda u_\lambda + J_\mu u_\lambda - J_\mu u_\mu - u_\mu) \\
& = (A_\lambda u_\lambda - A_\mu u_\mu, \lambda A_\lambda u_\lambda - \mu A_\mu u_\mu) + \\
& + (A(J_\lambda u_\lambda - J_\mu u_\mu), J_\lambda u_\lambda - J_\mu u_\mu) \\
& \geq (A_\lambda u_\lambda - A_\mu u_\mu, \lambda A_\lambda u_\lambda - \mu A_\mu u_\mu).
\end{align*}
$$

Din (8), (10) și (11) urmează că

$$
\frac{1}{2} \frac{d}{dt} |u_\lambda - u_\mu|^2 \leq 2(\lambda + \mu)|Au_0|^2.
$$

Integrând această inegalitate, obținem

$$
|u_\lambda(t) - u_\mu(t)|^2 \leq 4(\lambda + \mu)t|Au_0|^2
$$

adică

$$
|u_\lambda(t) - u_\mu(t)| \leq 2\sqrt{(\lambda + \mu)t}|Au_0|.
$$

Urmează că, pentru orice $t \geq 0$ fixat, $\langle u_\lambda(t) \rangle$ este un șir Cauchy când $\lambda \to 0$ și de aceea converge la o limită notată $u(t)$. Trecând la limită în (12) cu $\mu \to 0$ avem

$$
|u_\lambda(t) - u(t)| \leq 2\sqrt{\lambda t}|Au_0|.
$$

Aștept, convergența este uniformă în t pe orice interval mărginit $[0, T]$ și deci $u \in C([0, +\infty); H)$.

Etapa 4: – Presupunând, în plus, că $u_0 \in D(A^2)$, adică $u_0 \in D(A)$ și $Au_0 \in D(A)$, demonstrăm aici că $\frac{du_\lambda}{dt}(t)$ converge, când $\lambda \to 0$, la o anumită limită și că această convergență este uniformă pe fiecare interval mărginit $[0, T]$.

Definim $v_\lambda = \frac{du_\lambda}{dt}$, așa încât $\frac{dv_\lambda}{dt} + A_\lambda v_\lambda = 0$. Urmând același raționament ca în Etapa 3 vedem că

$$
\frac{1}{2} \frac{d}{dt} |v_\lambda - v_\mu|^2 \leq (|A_\lambda v_\lambda| + |A_\mu v_\mu|)(\lambda|A_\lambda v_\lambda| + \mu|A_\mu v_\mu|).
$$
Din lema VII.1 avem

\[(14) \quad |A_\lambda v_\lambda(t)| \leq |A_\lambda v_\lambda(0)| = |A_\lambda A_\lambda u_0|\]

și, în mod similar,

\[(15) \quad |A_\mu v_\mu(t)| \leq |A_\mu v_\mu(0)| = |A_\mu A_\mu u_0|.\]

În final, deoarece \(A u_0 \in D(A)\), obținem

\[A_\lambda A_\lambda u_0 = J_\lambda A J_\lambda A u_0 = J_\lambda J_\lambda A A u_0 = J_\lambda^2 A^2 u_0\]

și astfel

\[(16) \quad |A_\lambda A_\lambda u_0| \leq |A^2 u_0|, \quad |A_\mu A_\mu u_0| \leq |A^2 u_0|.\]

Combinând (13), (14), (15) și (16) suntem conduși la

\[\frac{1}{2} \frac{d}{dt} |v_\lambda - v_\mu|^2 \leq 2(\lambda + \mu)|A^2 u_0|^2.\]

Concluzionăm, ca în Etapa 3, că \(v_\lambda(t) = \frac{du_\lambda}{dt}(t)\) converge, când \(\lambda \to 0\), la o anumită limită, convergența fiind uniformă pe fiecare interval mărginit \([0, T]\).

Etapa 5: – Presupunând că \(u_0 \in D(A^2)\) arătăm aici că \(u\) este o soluție a lui (6).

Din cele de mai sus știm că, pentru orice \(T < \infty\):

\[
\begin{cases}
 u_\lambda(t) \to u(t), \quad \text{când } \lambda \to 0, \quad \text{uniform pe } [0, T] \\
 \frac{du_\lambda}{dt}(t) \text{ converge, când } \lambda \to 0, \quad \text{uniform pe } [0, T].
\end{cases}
\]

Urmează ușor că \(u \in C^1([0, +\infty); H)\) și că \(\frac{du_\lambda}{dt}(t) \to \frac{du}{dt}(t)\), când \(\lambda \to 0\), uniform pe \([0, T]\). Rescriem (7) astfel

\[(17) \quad \frac{du_\lambda}{dt}(t) + A(J_\lambda u_\lambda(t)) = 0.\]

Subliniem că \(J_\lambda u_\lambda(t) \to u(t)\) când \(\lambda \to 0\) deoarece

\[
|J_\lambda u_\lambda(t) - u(t)| \leq |J_\lambda u_\lambda(t) - J_\lambda u(t)| + |J_\lambda u(t) - u(t)| \\
\leq |u_\lambda(t) - u(t)| + |J_\lambda u(t) - u(t)| \to 0.
\]
Aplicând faptul că A are graficul închis, deducem din (17) că $u(t) \in D(A)$ pentru toate $t \geq 0$ și că

$$\frac{du}{dt}(t) + Au(t) = 0.$$

În final, deoarece $u \in C^1([0, +\infty); H)$, funcția $t \mapsto Au(t)$ este continuă de la $[0, +\infty)$ la H și, de aceea, $u \in C([0, +\infty); D(A))$. Astfel am obținut o soluție a lui (6) satisfăcând în plus

$$|u(t)| \leq |u_0|, \quad \forall t \geq 0 \quad \text{și} \quad \left|\frac{du}{dt}(t)\right| = |Au(t)| \leq |Au_0|, \quad \forall t \geq 0.$$

Etapa 6: – Incheiem aici demonstrația teoremei.

Vom utiliza următoarea:

Lema VII.2. – Fie $u_0 \in D(A)$. Atunci $\forall \varepsilon > 0 \exists \overline{u}_0 \in D(A^2)$ astfel incât $|u_0 - \overline{u}_0| < \varepsilon$ și $|Au_0 - A\overline{u}_0| < \varepsilon$. Cu alte cuvinte $D(A^2)$ este dens în $D(A)$ (pentru norma grafului).

Demonstrația lemei VII.2. – Definim $\overline{u}_0 = J_\lambda u_0$ pentru $\lambda > 0$ potrivit, ce va fi fixat mai încolo. Avem

$$\overline{u}_0 \in D(A) \quad \text{și} \quad \overline{u}_0 + \lambda A\overline{u}_0 = u_0.$$

De aceea, $A\overline{u}_0 \in D(A)$; adică $\overline{u}_0 \in D(A^2)$. Pe de altă parte, din propoziția VII.2, știm că

$$\lim_{\lambda \to 0} |J_\lambda u_0 - u_0| = 0, \quad \lim_{\lambda \to 0} |J_\lambda Au_0 - Au_0| = 0$$

și că $A\overline{u}_0 = J_\lambda Au_0 = AJ_\lambda u_0$. Concluzia dorită urmează prin alegerea lui $\lambda > 0$ suficient de mic.

Ne întoarcem acum la demonstrația teoremei VII.4. Pentru $u_0 \in D(A)$ dat, construim (utilizând lema VII.2) un șir (u_{0n}) în $D(A^2)$ astfel incât $u_{0n} \to u_0$ și $Au_{0n} \to Au_0$. Din Etapa 5 cunoaștem că există o soluție u_n a problemei

$$(18) \quad \begin{cases} \frac{du_n}{dt} + Au_n = 0 \quad \text{pe} \quad [0, +\infty), \\ u_n(0) = u_{0n}. \end{cases}$$
Pentru orice $t \geq 0$, avem
\[|u_n(t) - u_m(t)| \leq |u_{0n} - u_{0m}| \rightarrow_{m,n \to \infty} 0, \]
\[\left| \frac{du_n}{dt}(t) - \frac{du_m}{dt}(t) \right| \leq |Au_{0n} - Au_{0m}| \rightarrow_{m,n \to \infty} 0. \]
De aceea
\[u_n(t) \rightarrow u(t) \quad \text{uniform pe } [0, +\infty) \]
\[\frac{du_n}{dt}(t) \rightarrow \frac{du}{dt}(t) \quad \text{uniform pe } [0, +\infty) \]
cu $u \in C^1([0, +\infty); H)$. Trecând la limită în (19) – utilizând faptul că A este un operator închis – observăm că $u(t) \in D(A)$ și u satisface (6). Din (6) deducem că $u \in C([0, +\infty); D(A))$.

Remarca 4. – Fie u_λ soluția lui (7):

a) **Presupunem că** $u_0 \in D(A)$. Știm (din Etapa 3) că, atunci când $\lambda \to 0$, $u_\lambda(t)$ converge, pentru orice $t \geq 0$, la o anumită limită $u(t)$. Se poate demonstra direct (vezi [EX]) că $u \in C^1([0, +\infty); H) \cap C([0, +\infty); D(A))$ și că satisface (6).

b) **Presupunem doar că** $u_0 \in H$. Se poate încă demonstra că, atunci când $\lambda \to 0$, $u_\lambda(t)$ converge pentru orice $t \geq 0$, la o anumită limită, notată cu $u(t)$ (vezi [EX]). Dar se poate întâmpina cea acestă limită $u(t) \notin D(A) \ \forall t > 0$ și ca $u(t)$ să nu fie diferențiabilă nicăieri pe $(0, +\infty)$ (vezi [EX]). Din această cauză $u(t)$ nu este o soluție “clasică” a lui (6). De fapt, pentru un astfel de u_0, problema (6) nu are soluție clasică. Cu toate acestea putem privi pe $u(t)$ ca o soluție “generalizată” a lui (6).

Vom vedea în § VII.4 ce se întâmplă când A este autoadjunct: în acest caz $u(t)$ este o soluție “clasică” a lui (6) pentru orice $u_0 \in H$ – chiar dacă $u_0 \notin D(A)$.

⋆ **Remarca 5 (Semigrupuri de contractie).** – Pentru orice $t \geq 0$ considerăm aplicația liniară $u_0 \in D(A) \mapsto u(t) \in D(A)$ unde $u(t)$ este soluția lui (6) dată de teorema VII.4. Deoarece $|u(t)| \leq |u_0|$ și $D(A)$ este dens în H putem extinde această aplicație prin continuitate la un operator mărginit de la H în el însuși, notat prin $S_A(t)$ (4). Este ușor de verificat că $S_A(t)$ satisfacă următoarele proprietăți:

\[\text{Ori se poate utiliza remarca 4 pentru a defini direct } S_A(t) \text{ pe } H \text{ ca fiind aplicația } u_0 \in H \mapsto u(t) \in H. \]
REGULARITATE

(a) Pentru orice \(t \geq 0 \), \(S_A(t) \in \mathcal{L}(H) \) și \(\|S_A(t)\|_{\mathcal{L}(H)} \leq 1 \)

(b) \[
\begin{align*}
S_A(t_1 + t_2) &= S_A(t_1) \circ S_A(t_2) \quad \forall t_1, t_2 \geq 0, \\
S_A(0) &= I.
\end{align*}
\]

(c) \(\lim_{t \to 0} |S_A(t)u_0 - u_0| = 0 \quad \forall u_0 \in H. \)

O astfel de familie de operatori \{\(S(t) \)\}_{t \geq 0} (de la \(H \) în el însuși) depinzând de un parametru \(t \geq 0 \) și satisfăcând (a), (b), (c) se va numi \textit{semigrup continuu de contractări}.

Un rezultat remarcabil datorat lui Hille și Yosida afirmă, invers, că fiind dat un semigrup continuu de contractări \(S(t) \) pe \(H \) există un operator maximal monoton unic \(A \) astfel încât \(S(t) = S_A(t) \quad \forall t \geq 0 \). Aceasta stabilește o \textit{corespondență bijectivă între operatorii maximal monotoni și semigrupurile continue de contractări}. (Pentru demonstrație vezi [EX] și referințele citate în comentariile asupra capitolului VII).

- Remarca 6. – Fie \(A \) un operator maximal monoton și \(\lambda \in \mathbb{R} \). Problema
\[
\begin{align*}
\frac{du}{dt} + Au + \lambda u &= 0 \quad \text{pe } [0, +\infty), \\
u(0) &= u_0
\end{align*}
\]
se reduce la problema (6) utilizând următoarea schemă simplă. Definim \(v(t) = e^{\lambda t} u(t) \), așa încât \(v \) satisfacă
\[
\begin{align*}
\frac{dv}{dt} + Av &= 0 \quad \text{pe } [0, +\infty), \\
v(0) &= u_0.
\end{align*}
\]

VII.3 Regularitate

Vom arăta aici că soluția \(u \) a lui (6) obținută în teorema VII.4 este \textit{mai netedă} (5) decât în acest moment \(C^1([0, +\infty); H) \cap C([0, +\infty); D(A)) \)

\(^5\)Reamintim că teorema VII.4 afirmă doar că \(u \in C^1([0, \infty); H) \).
cu condiția să impunem ipoteze suplimentare asupra datei inițiale u_0. În acest scop definim prin inducție spațiul

$$D(A^k) = \{v \in D(A^{k-1}); Av \in D(A^{k-1})\}$$

unde k este un întreg arbitrar, $k \geq 2$. Este ușor de văzut că $D(A^k)$ este un spațiu Hilbert pentru produsul scalar

$$(u, v)_{D(A^k)} = \sum_{j=0}^{k} (A^j u, A^j v);$$

norma corespunzătoare este

$$|u|_{D(A^k)} = \left(\sum_{j=0}^{k} |A^j u|^2 \right)^{1/2}.$$

Teorema VII.5. – Presupunem că $u_0 \in D(A^k)$ pentru un anume întreg $k \geq 2$. Atunci soluția u a problemei (6) obținută în teorema VII.4 satisfacă

$$u \in C^{k-j}([0, +\infty); D(A^j)) \quad \forall j = 0, 1, \ldots, k.$$

Demonstrație. – Presupunem întâi $k = 2$. Considerăm spațiul Hilbert $H_1 = D(A)$ înzestrat cu produsul scalar $(u, v)_{D(A)}$. Este ușor de verificat că operatorul $A_1 : D(A_1) \subset H_1 \to H_1$ definit de

$$\begin{cases}
D(A_1) = D(A^2) \\
A_1u = Au \quad \text{pentru } u \in D(A_1)
\end{cases}$$

este maximal monoton în H_1. Aplicând teorema VII.4 operatorului A_1 în spațiul H_1 vedem că există o funcție

$$u \in C^1([0, +\infty); H_1) \cap C([0, +\infty); D(A_1))$$

astfel încât

$$\begin{cases}
\frac{du}{dt} + A_1 u = 0 \quad \text{pe } [0, +\infty), \\
u(0) = u_0.
\end{cases}$$
REGULARITATE

In particular, u satisface (6); din unicitate, acest u este soluția lui (6). Rămâne doar de verificat că $u \in C^2([0, +\infty); H)$. Deoarece

$$A \in \mathcal{L}(H_1, H) \quad \text{și} \quad u \in C([0, +\infty); H_1)$$

urmează că $Au \in C^1([0, +\infty); H)$ și

$$\frac{d}{dt}(Au) = A\left(\frac{du}{dt}\right).$$

Aplicând (6) vedem că $\frac{du}{dt} \in C^1([0, +\infty); H)$, adică $u \in C^2([0, +\infty); H)$ și

$$\frac{d}{dt} \left(\frac{du}{dt}\right) + A\left(\frac{du}{dt}\right) = 0 \quad \text{pe } [0, +\infty).$$

Revenim acum la cazul general $k \geq 3$. Procedăm prin inducție după k: presupunem că rezultatul se menține până la ordinul $(k - 1)$ și fie $u_0 \in D(A^k)$. Din analiza precedentă cunoaștem că soluția u a lui (6) apartine lui $C^2([0, +\infty); H) \cap C^1([0, +\infty); D(A))$ și că u satisface (20). Luând

$$v = \frac{du}{dt}$$

avem:

$$v \in C^1([0, +\infty); H) \cap C([0, +\infty); D(A)),
\begin{cases}
\frac{dv}{dt} + Av = 0 \quad \text{pe } [0, +\infty) \\
v(0) = -Au_0.
\end{cases}$$

Cu alte cuvinte, v este soluția lui (6) corespunzătoare datei inițiale $v_0 = -Au_0$. Deoarece $v_0 \in D(A^{k-1})$ știm, din ipoteza de inducție, că

$$v \in C^{k-1-j}([0, +\infty); D(A^j)) \quad \forall j = 0, 1, \ldots, k - 1,$$

adică

$$u \in C^{k-j}([0, +\infty); D(A^j)) \quad \forall j = 0, 1, \ldots, k - 1.$$

Rămâne doar de verificat că

$$u \in C([0, +\infty); D(A^k)).$$
Aplicând (21) cu $j = k - 1$, vedem că

$$(23) \quad \frac{du}{dt} \in C([0, +\infty); D(A^{k-1})).$$

Din (23) și ecuația (6) urmează că

$$Au \in C([0, +\infty); D(A^{k-1})), $$

adică (22).

VII.4 Cazul autoadjunct

Fie $A : D(A) \subset H \rightarrow H$ un operator liniar, nemărginit cu $\overline{D(A)} = H$. Identificând H' cu H îl putem privi pe A^* ca un operator liniar, nemărginit pe H.

Definiție. – Se spune că:

- A este **simetric** dacă

 $$(Au, v) = (u, Av) \quad \forall u, v \in D(A),$$

- A este **autoadjunct** dacă $D(A^*) = D(A)$ și

 $$A^* = A.$$

Remarca 7. – Pentru operatorii mărgiiniți noțiunile de operatori simetici și autoadjuncți coincid. Totuși, dacă A este nemărginit există o diferență subtilă între operatorii simetici și cei autoadjuncți. Este limpede că orice operator autoadjunct este simetric. Reciprocă nu este adevărată: un operator A este simetric dacă și numai dacă $A \subset A^*$, adică $D(A) \subset D(A^*)$ și $A^* = A$ pe $D(A)$. Se poate întâmpla ca A să fie simetric și $A \neq A^*$ (vezi [EX]). Următorul nostru rezultat arată că dacă A este **maximal monoton**, atunci

$$(A \text{ este simetric}) \iff (A \text{ este autoadjunct}).$$

Propoziția VII.6. – Fie A un operator simetric, maximal monoton. Atunci A este autoadjunct.
Demonstrație. – Fie $J_1 = (I + A)^{-1}$. Vom demonstra întâi că J_1 este autoadjunct. Deoarece $J_1 \in \mathcal{L}(H)$ este suficient să verificăm că

\begin{equation}
(J_1 u, v) = (u, J_1 v) \ \forall u, v \in H.
\end{equation}

Definim $u_1 = J_1 u$ și $v_1 = J_1 v$, așa încât

\begin{align*}
&u_1 + Au_1 = u, \\
&v_1 + Av_1 = v.
\end{align*}

Deoarece, din presupunere, $(u_1, Av_1) = (Au_1, v_1)$ urmează că $(u_1, v) = (u, v_1)$, adică (24).

Fie $u \in D(A^*)$ și definim $f = u + A^* u$. Avem

\begin{equation}
(f, v) = (u, v + Av) \ \forall v \in D(A),
\end{equation}

adică

\begin{equation}
(f, J_1 w) = (u, w) \ \forall w \in H.
\end{equation}

Astfel $u = J_1 f$ și, de aceea, $u \in D(A)$. Aceasta probează că $D(A^*) = D(A)$ și de aici A este autoadjunct.

Remarca 8. – Trebuie avut grijă că dacă A este un operator monoton (chiar un operator monoton simetric) atunci A^* nu este, în mod necesar, monoton; vezi [EX]. Totuși se poate demonstra (vezi [EX]) că următoarele proprietăți sunt echivalente:

- A este maximal monoton
- A^* este maximal monoton
- A este închis, $D(A)$ este dens, A și A^* sunt monotonii.

• Teorema VII.7. – Fie A un operator maximal monoton și autoadjunct. Atunci, pentru orice $u_0 \in H$ \(^6\) există o funcție unică

$$u \in C([0, +\infty); H) \cap C^1((0, +\infty); H) \cap C((0, +\infty); D(A))$$

\(^6\)Accentuăm diferența dintre teorema VII.4 și VII.7. Aici $u_0 \in H$ (în locul lui $u_0 \in D(A)$); concluzia este aceea că există o soluție netedă a lui (6) departe de $t = 0$. Totuși este posibil ca $\frac{du}{dt}(t)$ să “explodeze” când $t \to 0$.
astfel încât
\[
\begin{cases}
\frac{du}{dt} + Au = 0 & \text{pe } (0, +\infty), \\
u(0) = u_0.
\end{cases}
\]
Mai mult, avem
\[|u(t)| \leq |u_0| \quad \text{și} \quad \left| \frac{du}{dt}(t) \right| = |Au(t)| \leq \frac{1}{t}|u_0| \quad \forall t > 0,
\]
\[(25) \quad u \in C^k((0, +\infty); D(A^\ell)) \quad \forall k, \ell \text{ întregi}.\]

Demonstrație.

Unicitatea. Fie \(u\) și \(\bar{u}\) două soluții. Din monotonia lui \(A\) vedem că \(\varphi(t) = |u(t) - \bar{u}(t)|^2\) este monoton descrescătoare pe \((0, +\infty)\). Pe de altă parte \(\varphi\) este continuă pe \([0, +\infty)\) și \(\varphi(0) = 0\). De aceea, \(\varphi \equiv 0\).

Existența. Demonstrația este divizată în două etape.

Etapa 1. – Presupunem întâi că \(u_0 \in D(A^2)\) și fie \(u\) soluția lui (6) dată de teorema VII.4. Afirmăm că
\[(26) \quad \left| \frac{du}{dt}(t) \right| \leq \frac{1}{t}|u_0| \quad \forall t > 0.
\]
La fel ca în demonstrația propoziției VII.6 avem
\[J^*_\lambda = J_\lambda \quad \text{și} \quad A^*_\lambda = A_\lambda \quad \forall \lambda > 0.
\]
Ne întoarcem la problema aproximantă introdusă în demonstrația teoremei VII.4:
\[(27) \quad \begin{cases}
\frac{du_\lambda}{dt} + A_\lambda u_\lambda = 0 & \text{pe } [0, +\infty), \\
u_\lambda(0) = u_0.
\end{cases}
\]
Luând produsul scalar a lui (27) cu \(u_\lambda\) și integrând pe \([0, T]\) găsim
\[(28) \quad \frac{1}{2}|u_\lambda(T)|^2 + \int_0^T (A_\lambda u_\lambda, u_\lambda) dt = \frac{1}{2}|u_0|^2.
\]
Luând produsul scalar a lui (27) cu \(t\frac{du_\lambda}{dt}\) și integrând pe \([0, T]\) obținem
\[(29) \quad \int_0^T \left| \frac{du_\lambda}{dt}(t) \right|^2 t \, dt + \int_0^T \left(A_\lambda u_\lambda(t), \frac{du_\lambda}{dt}(t) \right) t \, dt = 0.
\]
Dar
\[
\frac{d}{dt} (A_\lambda u_\lambda, u_\lambda) = \left(A_\lambda \frac{du_\lambda}{dt}, u_\lambda \right) + \left(A_\lambda u_\lambda, \frac{du_\lambda}{dt} \right) = 2 \left(A_\lambda u_\lambda, \frac{du_\lambda}{dt} \right).
\]
deoarece \(A_\lambda^* = A_\lambda \).

Integrând prin părți avem
\[
\int_0^T \left(A_\lambda u_\lambda(t), \frac{du_\lambda}{dt}(t) \right) t dt = \frac{1}{2} \int_0^T \frac{d}{dt} \left[(A_\lambda u_\lambda, u_\lambda) \right] t dt = \frac{1}{2} \int_0^T (A_\lambda u_\lambda, u_\lambda) dt.
\]

Pe de altă parte, deoarece funcția \(t \mapsto \left| \frac{du_\lambda}{dt}(t) \right| \) este monoton descrescătoare (din lema VII.1), avem
\[
\int_0^T \left| \frac{du_\lambda}{dt}(t) \right|^2 t dt \geq \left| \frac{du_\lambda}{dt}(T) \right|^2 T T^2 \frac{1}{2}.
\]

Combinând (28), (29), (30) și (31) obținem
\[
\frac{1}{2} |u_\lambda(T)|^2 + T(A_\lambda u_\lambda(T), u_\lambda(T)) + T^2 \left| \frac{du_\lambda}{dt}(T) \right|^2 \leq \frac{1}{2} |u_0|^2;
\]
Urmează, în particular, că
\[
\left| \frac{du_\lambda}{dt}(T) \right| \leq \frac{1}{T} |u_0| \quad \forall T > 0.
\]

În final, trecem la limită în (32) când \(\lambda \to 0 \). Aceasta completează demonstrația lui (26) deoarece \(\frac{du_\lambda}{dt} \to \frac{du}{dt} \) (vezi Etapa 5 din demonstrația teoremei VII.4).

Etapa 2. Presupunem acum că \(u_0 \in H \). Fie \((u_{0n}) \) un şir din \(D(A^2) \) astfel încât \(u_{0n} \to u_0 \) (reamintim că \(D(A^2) \) este dens în \(D(A) \) și că \(D(A) \) este dens în \(H \); astfel \(D(A^2) \) este dens în \(H \)). Fie \(u_n \) soluția lui
\[
\left\{ \begin{array}{l}
\frac{du_n}{dt} + Au_n = 0 \quad \text{pe } [0, +\infty), \\
u_n(0) = u_{0n}.
\end{array} \right.
\]
Știm (din teorema VII.4) că
\[|u_n(t) - u_m(t)| \leq |u_0 - u_0| \quad \forall m, n, \quad \forall t \geq 0 \]
și (din Etapa 1) că
\[\left| \frac{d u_n}{d t}(t) - \frac{d u_m}{d t}(t) \right| \leq \frac{1}{t} |u_0 - u_0| \quad \forall m, n, \quad \forall t > 0. \]
Urmează că \(u_n(t) \) converge uniform pe \([0, +\infty)\) la o anumită limită \(u(t) \) și că \(\frac{d u_n}{d t}(t) \) converge la \(\frac{d u}{d t}(t) \) uniform pe fiecare interval \([\delta, +\infty), \delta > 0\). Funcția limită \(u \) satisface
\[u \in C([0, +\infty); H) \cap C^1((0, +\infty); H), \]
\[u(t) \in D(A) \quad \forall t > 0 \quad \text{și} \quad \frac{d u}{d t}(t) + Au(t) = 0 \quad \forall t > 0 \]
(se utilizează faptul că \(A \) este închis).
Revenim acum la demonstrația lui (25). – Vom arăta prin inducție după \(k \geq 2 \) că
\[u \in C^{k-j}((0, +\infty); D(A^j)) \quad \forall j = 0, 1, \ldots, k. \]
Presupunem că (33) este valabilă până la ordinul \(k - 1 \). În particular avem
\[u \in C((0, +\infty); D(A^{k-1})). \]
Pentru a arăta (33) este suficient (în virtutea teoremei VII.5) să verificăm că
\[u \in C((0, +\infty), D(A^k)). \]
Considerăm spațiul Hilbert \(\tilde{H} = D(A^{k-1}) \) și operatorul \(\tilde{A} : D(\tilde{A}) \subset \tilde{H} \rightarrow \tilde{H} \) definit de
\[\begin{cases} D(\tilde{A}) = D(A^k) \\tilde{A} = A. \end{cases} \]
Este ușor de văzut că A este maximal monoton și simetric în \tilde{H}; de aceea, acesta este autoadjunct. Aplicând prima asertiune a teoremei VII.7 în spațiul \tilde{H} operatorului A obținem o soluție unică v a problemei

\[
\begin{cases}
\frac{dv}{dt} + Av = 0 & \text{pe } (0, +\infty) \\
v(0) = v_0
\end{cases}
\]

pentru orice $v_0 \in \tilde{H}$ dat. Mai mult

\[v \in C([0, +\infty); \tilde{H}) \cap C^1((0, +\infty); \tilde{H}) \cap C((0, +\infty); D(\tilde{A})).\]

Alegând $v_0 = u(\varepsilon)$ ($\varepsilon > 0$) – știm deja din (34) că $v_0 \in \tilde{H}$ – conchidem că $u \in C((\varepsilon, +\infty); D(A^k))$ și aceasta completează demonstrația lui (35).

VII.5 Comentarii asupra capitolului VII

1) **Teorema lui Hille-Yosida în spații Banach.**

Teorema lui Hille-Yosida se extinde la spații Banach. Afirmația precisă este următoarea. Fie E un spațiu Banach și $A : D(A) \subset E \to E$ un operator liniar nemărginit. Se spune că A este m-acretiv dacă $\overline{D(A)} = E$ și pentru orice $\lambda > 0$, $I + \lambda A$ este bijectiv de la $D(A)$ la E cu $\| (I + \lambda A)^{-1} \|_{L(E)} \leq 1$.

Teorema VII.8 (Hille-Yosida). – Fie A m-acretiv în E. Atunci pentru orice $u_0 \in D(A)$ dat, există o funcție unică

\[u \in C^1([0, +\infty); E) \cap C([0, +\infty); D(A))\]

astfel încât

\[
\begin{cases}
\frac{du}{dt} + Au = 0 & \text{pe } [0, +\infty) \\
u(0) = u_0
\end{cases}
\]

In plus, avem

\[\| u(t) \| \leq \| u_0 \| \quad \text{și} \quad \left\| \frac{du}{dt} (t) \right\| = \| Au(t) \| \leq \| Au_0 \| \quad \forall t \geq 0.\]
Aplicația $u_0 \mapsto u(t)$ extinsă prin continuitate la întregul E este notată prin $S_A(t)$. $S_A(t)$ este un semigrup continuu de contracții pe E. Reciproc, pentru orice semigrup continuu de contracții $S(t)$, există un operator m-acretiv unic A astfel încât $S(t) = S_A(t) \ \forall t \geq 0$.

Pentru demonstrație, a se vedea J. Goldstein [1], Yosida [1], Schechter [1], Reed-Simon [1], Volumul 2, Tanabe [1], Pazy [1], Dunford-Schwartz [1], Volumul 1, Friedman [2], Davies [1], Balakrishnan [1] și [EX]. Aceste referințe oferă vaste progrese asupra teoriei semigrupurilor.

2) Formula exponentzială.

Există numeroase tehnici iterative pentru rezolvarea lui (37). Vom menționa o metodă de bază:

Teorema VII.9. – Presupunem că A este m-acretiv. Atunci pentru orice $u_0 \in D(A)$ soluția u a lui (38) este dată de “formula exponentzială”

$$u(t) = \lim_{n \to \infty} \left[\left(I + \frac{t}{n}A \right)^{-1} \right]^n u_0.$$

Pentru demonstrație a se vedea Yosida [1] și Pazy [1].

În limba cuvântul Numerice, formula (38) corespunde schemei de discretizare a timpului implicit pentru (37) (vezi Raviart-Thomas [1]). Mai precis, se împarte intervalul $[0, t]$ în n intervale de lungime egală $\Delta t = t/n$ și se rezolvă inductiv ecuațiile

$$\frac{u_{j+1} - u_j}{\Delta t} + Au_{j+1} = 0; \ j = 0, 1, \ldots, n - 1,$$

pornind cu u_0. Cu alte cuvinte u_n este dat de

$$u_n = (I + \Delta t A)^{-n} u_0 = \left(I + \frac{t}{n} A \right)^{-n} u_0.$$

Când $n \to \infty$ (adică $\Delta t \to 0$) este “intuitiv” că u_n converge către $u(t)$.

3) Teorema VII.7 este un prim pas către teoria semigrupurilor analitice. Asupra acestui subiect a se vedea Yosida [1], Kato [1], Reed-Simon [1], Volumul [2], Friedman [2], Pazy [1] și Tanabe [1].
4) Ecuatii neomogene. Ecuatii neliniare.
Consideram problema
\[\begin{cases} \frac{d u}{d t}(t) + A u(t) = f(t) & \text{pe } [0, T] \\ u(0) = u_0. \end{cases} \]

Urmatorul rezultat este valabil

Teorema VII.10. – Presupunem că \(A \) este \(m \)-acretiv. Atunci pentru orice \(u_0 \in D(A) \) și orice \(f \in C^1([0, T]; E) \) există o soluție unică \(u \) a lui (39) cu
\[u \in C^1([0, T]; E) \cap C([0, T]; D(A)). \]

In plus, soluția \(u \) este dată de formula
\[u(t) = S_A(t)u_0 + \int_0^t S_A(t - s)f(s) \, ds \]
(unde \(S_A(t) \) este semigrupul introdus in 1).

Punctăm că dacă se presupune doar \(f \in L^1(0, T; E) \), formula (40) încă are sens și oferă o soluție generalizată a lui (39). Asupra acestor probleme vezi Kato [1], Pazy [1], Martin [1], Tanabe [1].

În aplicațiile din fizică se întâlnesc multe ecuatii “semiliniare” de forma
\[\frac{d u}{d t} + A u = F(u) \]
unde \(F \) este o aplicație neliniară de la \(X \) la \(X \). Asupra acestor chestiuni vezi Martin [1], Brezis [2] și comentariile asupra capitolului X.

Menționăm, de asemenea, că majoritatea rezultatelor din capitolului VII admit versiuni neliniare, adică \(A : D(A) \subset E \rightarrow E \) este un operator neliniar; vezi Brezis [1], Barbu [1], Bénilan-Crandall-Pazy [1].
Capitolul VIII

SPAȚII SOBOLEV ȘI FORMULAREA VARIĂȚIONALĂ A PROBLEMELOR LA LIMITĂ ÎN DIMENSIUNE UNU

VIII.1 Motivația

Considerăm problema următoare. Fiind dat $f \in C([a,b])$ să se găsească o funcție $u(x)$ care verifică

\[\begin{cases}
-u'' + u = f & \text{în } [a,b], \\
u(a) = u(b) = 0.
\end{cases} \]

O soluție clasică – sau soluție tare – a problemei (1) este o funcție de clasă C^2 pe $[a,b]$ verificând (1) în sens uzual. Bineînțeles, (1) poate fi rezolvată explicit printr-un calcul foarte simplu, dar vom ignora acest aspect pentru a ilustra metoda pe acest exemplu elementar.

Inmulțind (1) cu $\phi \in C^1([a,b])$ și integrând prin părți obținem

\[\int_a^b u' \phi' + \int_a^b u \phi = \int_a^b f \phi \quad \forall \phi \in C^1([a,b]), \quad \phi(a) = \phi(b) = 0. \]

Observăm că (2) are sens dacă $u \in C^1([a,b])$ (în timp ce (1) presupune că u este de două ori derivabilă); de fapt ar fi suficient să avem $u, u' \in L^1(a,b)$ unde u' are un sens care încă nu este precizat. Să spunem (pentru moment) că o funcție u de clasă C^1 care verifică (2) este o soluție slabă a lui (1).

Programul următor descrie liniile mari ale tratării variaționale din teoria ecuațiilor cu derivate parțiale:
Pasul A. – Se precizează noțiunea de soluție slabă; aceasta face să intervină spațiile Sobolev care sunt instrumentul de bază.

Pasul B. – Stabilim existența și unicitatea soluției slabe prin metoda variatională, via teorema lui Lax-Milgram.

Pasul C. – Arată că soluția slabă este de clasă C^2 (de exemplu): acesta este un rezultat de regularitate.

Pasul D. – Reîntoarcerea la soluțiile clasice. Se arată că o soluție slabă de clasă C^2 este o soluție clasică.

Pasul D este foarte simplu. Intr-adevăr, să presupunem că $u \in C^2([a,b])$, $u(a) = u(b) = 0$ și că u satisface (2). Integrând (2) prin părți obținem

$$\int_a^b (-u'' + u - f) \varphi = 0 \quad \forall \varphi \in C^1([a,b]), \quad \varphi(a) = \varphi(b) = 0$$

și deci

$$\int_a^b (-u'' + u - f) \varphi = 0 \quad \forall \varphi \in C^1_c((a,b)).$$

Dar $C^1_c((a,b))$ este dens în $L^2(a,b)$ (vezi corolarul IV.23) și deci $-u'' + u = f$ a.p.t. în (a,b) (deci peste tot în $[a,b]$ deoarece $u \in C^2([a,b])$.)

VIII.2 Spațiu Sobolev $W^{1,p}(I)$

Fie $I = (a,b)$ un interval mărginit sau nemărginit și fie $p \in \mathbb{R}$ cu $1 \leq p \leq \infty$.

Definiție. – Spațiul Sobolev $W^{1,p}(I)$ (1) se definește prin

$$W^{1,p}(I) = \{u \in L^p(I); \exists g \in L^p(I) \text{ astfel încât } \int_I u \varphi' = -\int_I g \varphi \quad \forall \varphi \in C^1_c(I)\}.$$

Punem

$$H^1(I) = W^{1,2}(I).$$

1Dacă nu există pericol de confuzie vom scrie $W^{1,p}$ în loc de $W^{1,p}(I)$.

Pentru $u \in W^{1,p}(I)$ vom nota $u' = g$. (2)

Remarca 1. – În definitia lui $W^{1,p}$ spunem că φ este o **funcție test**. Putem utiliza $C_c^\infty(I)$ sau $C^1_c(I)$ ca mulțimi de funcții test deoarece dacă $\varphi \in C^1_c(I)$, atunci $\rho_n \ast \varphi \in C_c^\infty(I)$ pentru n suficient de mare și $\rho_n \ast \varphi \to \varphi$ în C^1 (vezi §IV.4; desigur, se poate defini produsul de convoluție $\rho_n \ast \varphi$ se începe prin a prelungi φ cu 0 în afara lui I).

Remarca 2. – Este evident că dacă $u \in C^1(I) \cap L^p(I)$ și dacă $u' \in L^p(I)$ (aici u' este derivata uzuală a lui u) atunci $u \in W^{1,p}(I)$. In plus, derivata uzuală a lui u coincide cu derivata lui u în sens $W^{1,p}$. În particular, dacă I este mărginit, atunci $C^1(\bar{I}) \subset W^{1,p}(I)$ pentru orice $1 \leq p \leq \infty$.

Exemple. – Fie $I = (-1, +1)$. Verificăm cu titlu de exercițiu că:

(i) Funcția $u(x) = |x|$ apartine lui $W^{1,p}(I)$ pentru orice $1 \leq p \leq \infty$ și $u' = g$ unde

$$g(x) = \begin{cases} +1 & \text{dacă } 0 < x < 1 \\ -1 & \text{dacă } -1 < x < 0 \end{cases}$$

Mai general, o funcție continuă pe \bar{I} care este de clasă C^1 pe porțiuni pe \bar{I} apartine lui $W^{1,p}(I)$ pentru orice $1 \leq p \leq \infty$.

(ii) Funcția g de mai sus nu apartine lui $W^{1,p}(I)$ pentru orice $1 \leq p \leq \infty$.

⋆ Remarca 3. – Pentru a defini $W^{1,p}$ putem folosi și limbajul teoriei distribuțiilor (vezi L. Schwartz [1]). Orice funcție $u \in L^p(I)$ admite o derivată în sensul distribuțiilor, care este un element al uriașului spațiul $\mathcal{D}'(I)$. Spunem că $u \in W^{1,p}$ dacă această derivată distribuție coincide, în spațiul $\mathcal{D}'(I)$, cu o funcție din L^p.

Dacă $I = \mathbb{R}$ și $p = 2$, se pot defini spațiile Sobolev folosind și transformata Fourier; vezi de exemplu Lions-Magenes [1], Malliavin [1]. Nu vom utiliza însă acest punct de vedere în cele ce urmează.

Notatii. – Spațiul $W^{1,p}$ este înzestrat cu norma

$$\|u\|_{W^{1,p}} = \|u\|_{L^p} + \|u'\|_{L^p}$$

2Remarcă: aceasta are sens: g este unică conform lemei IV.2.
SPATІUL SOBOLEV $W^{1,p}(I)$

(sau uneori, dacă $1 < p < \infty$, cu norma echivalentă $(\|u\|_{L^p}^p + \|u'\|_{L^p}^p)^{1/p}$).

Spațiu H^1 este înzestrat cu produsul scalar

$$(u,v)_{H^1} = (u,v)_{L^2} + (u',v')_{L^2} = \int_a^b (uv + u'v');$$

norma asociată

$$\|u\|_{H^1} = (\|u\|_{L^2}^2 + \|u'\|_{L^2}^2)^{1/2}$$

este echivalentă cu norma din $W^{1,2}$.

Propoziția VIII.1. – Spațiu $W^{1,p}$ este un spațiu Banach pentru $1 \leq p \leq \infty$. Spațiu $W^{1,p}$ este reflexiv (3) pentru $1 < p < \infty$ și separabil pentru $1 \leq p < \infty$. Spațiu H^1 este un spațiu Hilbert separabil.

Demonstrație. –

a) Fie (u_n) un șir Cauchy în $W^{1,p}$; atunci (u_n) și (u'_n) sunt șiruri Cauchy în L^p. Rezultă că $u_n \rightarrow u$ în L^p și $u'_n \rightarrow g$ în L^p. Avem

$$\int_I u_n \varphi' = - \int_I u'_n \varphi \quad \forall \varphi \in C^1_c(I)$$

și, prin trecere la limită,

$$\int_I u \varphi' = - \int_I g \varphi \quad \forall \varphi \in C^1_c(I).$$

Deci $u \in W^{1,p}$, $u' = g$ și $\|u_n - u\|_{W^{1,p}} \rightarrow 0$.

b) $W^{1,p}$ este reflexiv pentru $1 < p < \infty$.

Intr-adevăr, spațiu produs $E = L^p(I) \times L^p(I)$ este reflexiv. Operatorul $T : W^{1,p} \rightarrow E$ definit prin $Tu = [u,u']$ este o izometrie de la $W^{1,p}$ în E; deci $T(W^{1,p})$ este un subspațiu închis al lui E. Rezultă că $T(W^{1,p})$ este reflexiv (vezi propoziția III.17). În consecință, $W^{1,p}$ este, de asemenea, reflexiv.

c) $W^{1,p}$ este separabil pentru $1 \leq p < \infty$.

Intr-adevăr, spațiu produs $E = L^p(I) \times L^p(I)$ este separabil. Deci $T(W^{1,p})$ este, de asemenea, separabil (vezi propoziția III.22). În consecință, $W^{1,p}$ este separabil.

Această proprietate este un avantaj considerabil al spațiilor $W^{1,p}$. În problemele de calcul variațional se utilizează de preferință $W^{1,p}$ în locul lui C^1, care nu este reflexiv (vezi corolarul III.20).
Reținem din demonstrația precedentă aspectul următor: fie \((u_n)\) un șir în \(W^{1,p}\) astfel încât \(u_n \to u\) în \(L^p\) și \((u'_n)\) converge către o anumită limită în \(L^p\), atunci \(u \in W^{1,p}\) și \(\|u_n - u\|_{W^{1,p}} \to 0\). De fapt, dacă \(1 < p \leq \infty\) este suficient să știm că \(u_n \to u\) în \(L^p\) și \(\|u'_n\|_{L^p}\) este mărginit pentru a deduce că \(u \in W^{1,p}\) (vezi [EX]).

Functiile din \(W^{1,p}\) sunt “în mare” primitive ale functiilor din \(L^p\). Mai precis, avem

Teorema VIII.2. – Fie \(u \in W^{1,p}(I)\); atunci există o funcție \(\tilde{u} \in C(\overline{I})\) astfel încât

\[
\tilde{u} = u \quad \text{a.p.t. în} \ I
\]

și

\[
\tilde{u}(x) - \tilde{u}(y) = \int_y^x u'(t) \, dt \quad \forall x, y \in \overline{I}.
\]

Remarcă 5. – Precizăm forța teoremei VIII.2. Observăm mai întâi că dacă o funcție \(u \in W^{1,p}\), atunci orice funcție \(v\) astfel încât \(v = u\) a.p.t. în \(I\) aparține de asemenea lui \(W^{1,p}\). Teorema VIII.2 afirmă că orice funcție \(u \in W^{1,p}\) admite un unic reprezentant continuu, adică există o funcție continuă care aparține clasei de echivalentă a lui \(u\) pentru relația \(u \sim v\) dacă \(v = u\) a.p.t. Când va fi necesar (4) vom înlocui în mod sistematic \(u\) prin reprezentantul său continuu; pentru a nu îngreuna notățile vom nota tot cu \(u\) reprezentantul său continuu. Remarcăm, de asemenea, că proprietatea “\(u\) admite un reprezentant continuu” nu este aceeași cu “\(u\) este continuă a.p.t.”.

Remarcă 6. – Este evident că dacă \(u \in W^{1,p}\) și \(u' \in C(\overline{I})\) atunci \(u \in C^1(\overline{I})\); mai precis, \(\tilde{u} \in C^1(\overline{I})\), dar, așa cum s-a menționat mai sus, nu vom face distincție între \(u\) și \(\tilde{u}\).

În demonstrația teoremei VIII.2 vom utiliza

Lema VIII.1. – Fie \(f \in L^1_{\text{loc}}(I)\) astfel încât

\[
\int_I f \varphi' = 0 \quad \forall \varphi \in C^1_c(I).
\]

\[\text{De exemplu, pentru a da un sens lui } u(x), \forall x \in \overline{I}.\]
Atunci există o constantă C astfel încât $f = C$ a.p.t. în I.

Demonstrație. – Fixăm o funcție $\psi \in C_c(I)$ astfel încât $\int_I \psi = 1$. Pentru orice $w \in C_c(I)$ există $\varphi \in C^1_c(I)$ astfel încât

$$\varphi' = w - \left(\int_I w \right) \psi.$$

Într-adevăr, funcția $h = w - \left(\int_I w \right) \psi$ este continuă, are suportul compact inclus în I și $\int_I h = 0$. Deci h admite o primitivă (unică) cu suport compact. Din (3) deducem că

$$\int_I f \left[w - \left(\int_I w \right) \psi \right] = 0 \quad \forall w \in C_c(I)$$

adică

$$\int_I \left[f - \left(\int f \psi \right) \right] w = 0 \quad \forall w \in C_c(I)$$

și deci (lema IV.2), $f - \left(\int f \psi \right) = 0$ a.p.t. în I, adică $f = C$ a.p.t. în I, cu $C = \int_I f \psi$.

Lema VIII.2. – Fie $g \in L^1_{loc}(I)$; pentru y_0 fixat în I, fie

$$v(x) = \int_{y_0}^x g(t) \, dt, \quad x \in I.$$

Atunci $v \in C(I)$ și

$$\int_I v \varphi' = - \int_I g \varphi \quad \forall \varphi \in C^1_c(I).$$

Demonstrație. – Avem

$$\int_I v \varphi' = \int_I \left[\int_{y_0}^x g(t) \, dt \right] \varphi'(x) \, dx$$

$$= - \int_a^b dx \int_{y_0}^x g(t) \varphi'(x) \, dt + \int_{y_0}^b dx \int_x^b g(t) \varphi'(x) \, dt.$$

Aplicând teorema lui Fubini, deducem că

$$\int_I v \varphi' = - \int_a^{y_0} g(t) dt \int_a^t \varphi'(x) \, dx + \int_{y_0}^b g(t) dt \int_t^b \varphi'(x) \, dx$$

$$= - \int_I g(t) \varphi(t) \, dt.$$
Demonstrația teoremei VIII.2. – Fixăm $y_0 \in I$ și punem $\bar{u}(x) = \int_{y_0}^x u'(t) \, dt$. Conform lemei VIII.2 avem

$$\int_I \bar{u} \varphi' = - \int_I u' \varphi \quad \forall \varphi \in C^1_c(I).$$

Deci $\int_I (u - \bar{u}) \varphi' = 0 \quad \forall \varphi \in C^1_c(I)$. Rezultă din lema VIII.1 că $u - \bar{u} = C$ a.p.t. în I. Funcția $\tilde{u}(x) = \bar{u}(x) + C$ are proprietățile cerute.

Remarca 7. – Lema VIII.2 arată că primitiva v a unei funcții $g \in L^p$ aparține lui $W^{1,p}$ dacă știm că $v \in L^p$ – ceea ce se întâmplă întotdeauna dacă I este mărginit.

Propoziția VIII.3. – Fie $u \in L^p(I)$ cu $1 < p \leq \infty$. Următoarele proprietăți sunt echivalente:

(i) $u \in W^{1,p}(I)$.
(ii) Există o constantă C astfel încât

$$\left| \int_I u \varphi' \right| \leq C \| \varphi \|_{L^p(I)} \quad \forall \varphi \in C^1_c(I).$$

(iii) Există o constantă C astfel încât pentru orice mulțime deschisă $\omega \subset I$ și pentru orice $h \in \mathbb{R}$ cu $|h| < \text{dist} (\omega, I^c)$ avem

$$\| \tau_h u - u \|_{L^p(\omega)} \leq C |h|. $$

In plus, putem lua $C = \| u' \|_{L^p(I)}$ în (ii) și (iii).

Demonstrație. –

(i) \Rightarrow (ii) Evident.
(ii) \Rightarrow (i). Funcționala liniară

$$\varphi \in C^1_c(I) \mapsto \int_I u \varphi'$$

este definită pe un subspatiu dens al lui L^p și este continuă în norma L^p'. Deci ea se prelungeste la o funcțională liniară și continuă F pe L^p' (se aplică teorema lui Hahn-Banach). Conform teoremei de reprezentare a lui Riesz (teoremele IV.11 și IV.14) există $g \in L^p$ astfel încât

$$\langle F, \varphi \rangle = \int_I g \varphi \quad \forall \varphi \in L^p'. $$
In particular
\[\int_I u \varphi' = \int_I g \varphi \quad \forall \varphi \in C_0^1 \]
și deci \(u \in W^{1,p}(I) \).

(i) \(\Rightarrow \) (iii). Conform teoremei VIII.2, pentru orice \(x \in \omega \) avem
\[u(x + h) - u(x) = \int_x^{x+h} u'(t) \, dt = h \int_0^1 u'(x + sh) \, ds. \]
Deci
\[|u(x + h) - u(x)| \leq |h| \int_0^1 |u'(x + sh)| \, ds. \]
Concluzia este evidentă dacă \(p = \infty \). Să presupunem deci că \(1 < p < \infty \). Aplicând inegalitatea lui Hölder avem
\[|u(x + h) - u(x)|^p \leq |h|^p \int_0^1 |u'(x + sh)|^p \, ds. \]
Prin urmăre
\[\int_\omega |u(x + h) - u(x)|^p \, dx \leq |h|^p \int_\omega \int_0^1 |u'(x + sh)|^p \, ds \, dx. \]
\[= |h|^p \int_0^1 ds \int_\omega |u'(x + sh)|^p \, dx. \]
Pentru orice \(0 < s < 1 \) avem
\[\int_\omega |u'(x + sh)|^p \, dx = \int_{\omega + sh} |u'(y)|^p \, dy \leq \int_I |u'(y)|^p \, dy. \]
De aici rezultă (iii).

(iii) \(\Rightarrow \) (ii). Fie \(\varphi \in C^1_c(I) \); alegem \(\omega \subset \subset I \) astfel încât \(\text{Supp} \varphi \subset \omega \). Pentru \(h \) real ales astfel încât \(|h| < \text{dist} (\omega, I^c) \) avem
\[\int_I |u(x + h) - u(x)| \varphi(x) \, dx = \int_I u(x) |\varphi(x - h) - \varphi(x)| \, dx. \]
Utilizând inegalitatea lui Hölder și (iii) obținem
\[\left| \int_I [u(x + h) - u(x)] \varphi(x) \, dx \right| \leq C|h| \|\varphi\|_{L^p}. \]
Trecând la limită cu \(h \to 0 \) deducem de aici că
\[\left| \int_I u \varphi' \right| \leq C \|\varphi\|_{L^p} \quad \forall \varphi \in C_0^1. \]
SPĂȚIUL SOBOLEV $W^{1,p}(I)$

* Remarca 8. – Dacă $p = 1$, implicațiile următoare rămân adevărate:

$$(i) \Rightarrow (ii) \Leftrightarrow (iii).$$

Să presupunem în continuare că I este mărginit. Funcțiile satisfăcând (i), adică funcțiile din $W^{1,1}(I)$ sunt funcțiile absolut continue. Ele sunt, de asemenea, caracterizate de următoarea proprietate:

(AC)

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ a.i. pentru orice şir finit de intervale disjuncte} \quad (a_k, b_k) \subset I \text{ a.i.} \quad \sum |b_k - a_k| < \delta, \text{ avem } \sum |f(b_k) - f(a_k)| < \varepsilon.$$

In același timp, funcțiile ce verifică (ii) [sau (iii)] cu $p = 1$ sunt funcțiile cu variație mărginită; aceste funcții pot fi caracterizate în diverse feluri:

– sunt diferențe de două funcții crescătoare mărginite (eventual discontinue) pe I,
– sunt funcțiile u ce verifică proprietatea:

(VB)

$$\exists \text{ o constantă } C \text{ astfel încât}$$

$$\sum_{i=0}^{k-1} |u(t_{i+1}) - u(t_i)| \leq C \text{ pentru orice şir } t_0 < t_1 < \ldots < t_k \text{ din } I,$$

– sunt funcțiile $u \in L^1(I)$ a căror derivată în sensul distribuțiilor este o măsură mărginită.

Corolarul VIII.4. – O funcție u din $L^\infty(I)$ aparține lui $W^{1,\infty}(I)$ dacă și numai dacă există o constantă C astfel încât

$$|u(x) - u(y)| \leq C|x - y| \text{ a.p.t. } x, y \in I.$$

DEMONSTRATIE. – Se aplică propoziția VIII.3 $[(i) \Leftrightarrow (iii)]$ cu $p = \infty$.

Anumite operații fundamentale din Analiză au un sens numai pentru funcții definite pe întreaga axă reală \mathbb{R} (de exemplu convoluția, transformata Fourier, etc.). Este deci util să putem prelungi o funcție
$u \in W^{1,p}(I)$ la o funcție $\bar{u} \in W^{1,p}(\mathbb{R})$ (5). Rezultatul următor răspunde la această problemă.

Teorema VIII.5. (Operatorul de prelungire). Fie $1 \leq p \leq \infty$. Există un operator de prelungire $P : W^{1,p}(I) \to W^{1,p}(\mathbb{R})$ liniar și continuu astfel încât

(i) $Pu|_I = u \quad \forall u \in W^{1,p}(I),$
(ii) $\|Pu\|_{L^p(\mathbb{R})} \leq C\|u\|_{L^p(I)} \quad \forall u \in W^{1,p}(I),$
(iii) $\|Pu\|_{W^{1,p}(\mathbb{R})} \leq C\|u\|_{W^{1,p}(I)} \quad \forall u \in W^{1,p}(I),$

(unde C depinde doar de $|I| \leq \infty$). (6)

Demonstrație. Începem cu cazul $I = (0, \infty)$ și arătăm că prelungirea prin reflexie

$$(Pu)(x) = u^*(x) = \begin{cases} u(x) & \text{dacă } x \geq 0 \\ u(-x) & \text{dacă } x < 0 \end{cases}$$

răspunde cerințelor.

Observăm mai întâi că

$$\|u^*\|_{L^p(\mathbb{R})} \leq 2\|u\|_{L^p(I)}.$$

Fie

$$v(x) = \begin{cases} u'(x) & \text{dacă } x > 0 \\ -u'(-x) & \text{dacă } x < 0. \end{cases}$$

Verificăm cu ușurință că $v \in L^p(\mathbb{R})$ și

$$u^*(x) - u^*(0) = \int_0^x v(t) \, dt \quad \forall x \in \mathbb{R}.$$

Rezultă că $u^* \in W^{1,p}(\mathbb{R})$ (vezi remarca 7) și $\|u^*\|_{W^{1,p}(\mathbb{R})} \leq 2\|u\|_{W^{1,p}(I)}$.

Considerăm acum cazul unui interval mărginit I; fără a micșora generalitatea putem presupune că $I = (0, 1)$. Fixăm o funcție $\eta \in C^1(\mathbb{R})$, $0 \leq \eta \leq 1$, astfel încât

5Dacă prelungim u cu 0 în afara lui I funcția astfel obținută nu aparține în general lui $W^{1,p}(\mathbb{R})$ (vezi §VIII.3)

6Putem lua $C = 4$ în (ii) și $C = 4(1 + \frac{1}{|I|})$ în (iii).
Fiind dată o funcție f definită pe $(0, 1)$, fie
\[\tilde{f}(x) = \begin{cases} f(x) & \text{dacă } 0 < x < 1 \\ 0 & \text{dacă } x \geq 1. \end{cases} \]

Vom avea nevoie de următorul rezultat.

Lema VIII.3. - Fie $u \in W^{1,p}(I)$. Atunci
\[\eta \tilde{u} \in W^{1,p}(0, \infty) \text{ și } (\eta \tilde{u})' = \eta' \tilde{u} + \eta \tilde{u}'. \]

Demonstrație. - Fie $\varphi \in C^1_c(0, \infty)$; atunci
\[
\int_0^\infty \eta \tilde{u} \varphi' = \int_0^1 \eta u \varphi' = \int_0^1 u ((\eta \varphi)' - \eta' \varphi) = \\
= -\int_0^1 u' \eta \varphi - \int_0^1 u \eta' \varphi \text{ deoarece } \eta \varphi \in C^1_c(0, 1) \\
= -\int_0^\infty (\tilde{u}' \eta + \tilde{u} \eta') \varphi.
\]

Sfârșitul demonstrației teoremei VIII.5. - Fiind dat $u \in W^{1,p}(I)$, scriem
\[u = \eta u + (1 - \eta)u. \]

Functia ηu se prelungește mai întâi la $(0, \infty)$ prin $\eta \tilde{u}$ (conform lemei VIII.3) și apoi la \mathbb{R} prin reflexie. În acest fel obținem o funcție $v_1 \in W^{1,p}(\mathbb{R})$ care prelungește ηu și astfel încât
\[\|v_1\|_{L^p(\mathbb{R})} \leq 2\|u\|_{L^p(I)}, \quad \|v_1\|_{W^{1,p}(\mathbb{R})} \leq C\|u\|_{W^{1,p}(I)} \]
(unde C depinde de $\|\eta'\|_{L^\infty}$).

Procedăm analog cu funcția $(1 - \eta)u$, adică prelungeîm mai întâi $(1 - \eta)u$ la $(-\infty, 1)$ prin 0 pe $(-\infty, 0]$ și apoi o prelunegire la \mathbb{R} prin reflexie (în raport cu punctul 1). În acest mod obținem o funcție $v_2 \in W^{1,p}(\mathbb{R})$ care prelungește $(1 - \eta)u$ și care satisfacce
\[\|v_2\|_{L^p(\mathbb{R})} \leq 2\|u\|_{L^p(I)}, \quad \|v_2\|_{W^{1,p}(\mathbb{R})} \leq C\|u\|_{W^{1,p}(I)}. \]
Atunci $Pu = v_1 + v_2$ satisface condițiile din teoremă.

Anumite proprietăți ale funcțiilor de clasă C^1 rămân adevărate pentru funcțiile din $W^{1,p}$ (vezi de exemplu corolarele VIII.9 și VIII.10). Este foarte comod să stabilim aceste proprietăți “prin densitate” cu ajutorul rezultatului următor.

- Teorema VIII.6 (Densitate). – Fie $u \in W^{1,p}(I)$ cu $1 \leq p < \infty$. Atunci există un sir (u_n) în $C^\infty_c(R)$ astfel încât $u_n \rightarrow u$ în $W^{1,p}(I)$.

Demonstrație. – Putem presupune întotdeauna că $I = R$; în caz contrar, prelungim u la o funcție din $W^{1,p}(R)$ folosind teorema VIII.5. Folosim apoi o tehnică importantă de convoluție (care oferă funcții C^∞) și de troncataură (care oferă funcții cu suport compact).

a) Convoluția

Vom folosi

Lema VIII.4. – Fie $\rho \in L^1(R)$ și $v \in W^{1,p}(R)$ cu $1 \leq p \leq \infty$. Atunci $\rho * v \in W^{1,p}(R)$ și $(\rho * v)' = \rho * v'$.

Demonstrație. – Presupunem mai întâi că ρ are suportul compact. Știm că $\rho * v \in L^p(R)$. Fie $\varphi \in C^1_c(R)$. Conform propozițiilor IV.16 și IV.20 avem

$$\int_R (\rho * v) \varphi' = \int_R v(\hat{\rho} * \varphi') = \int_R v(\hat{\rho} * \varphi)' = - \int_R v'(\hat{\rho} * \varphi) = - \int_R (\rho * v') \varphi.$$

De aici rezultă că

$$\rho * v \in W^{1,p}(R) \quad \text{și} \quad (\rho * v)' = \rho * v'.$$

Dacă ρ nu are suportul compact introducem un sir (ρ_n) din $C_c(R)$ astfel încât $\rho_n \rightarrow \rho$ în $L^1(R)$. Din cele de mai sus rezultă că

$$\rho_n * v \in W^{1,p}(R) \quad \text{și} \quad (\rho_n * v)' = \rho_n * v'.$$

Dar $\rho_n * v \rightarrow \rho * v$ în $L^p(R)$ și $\rho_n * v' \rightarrow \rho * v'$ în $L^p(R)$ (vezi teorema IV.22). Folosim remarca 4 și obținem

$$\rho * v \in W^{1,p}(R) \quad \text{și} \quad (\rho * v)' = \rho * v'.$$

b) Troncatura
Fixăm o funcție $ζ ∈ C^∞_c(\mathbb{R})$ astfel încât $0 ≤ ζ ≤ 1$ și
$$ζ(x) = \begin{cases} 1 & \text{dacă } |x| < 1 \\ 0 & \text{dacă } |x| ≥ 2. \end{cases}$$

Definim șirul
$$(4) \quad ζ_n(x) = ζ(x/n) \quad \text{for } n = 1, 2, \ldots.$$

Rezultă cu ușurință, folosind teorema convergenței dominate, că dacă o funcție $f ∈ L^p(\mathbb{R})$ cu $1 ≤ p < ∞$ atunci $ζ_n f → f$ în $L^p(\mathbb{R})$.

c) Concluzia

Ale-lem un șir regularizant $(ρ_n)$. Arătăm că șirul $u_n = ζ_n(ρ_n * u)$ converge la u în $W^{1,p}(\mathbb{R})$. Mai întâi avem $\|u_n - u\|_{L^p} → 0$. Intr-adevăr, scriem
$$u_n - u = ζ_n[(ρ_n * u) - u] + [ζ_n u - u]$$
și deci
$$\|u_n - u\|_{L^p} \leq \|ρ_n * u - u\|_{L^p} + \|ζ_n u - u\|_{L^p} → 0.$$

Apoi, conform lemei VIII.4, avem
$$u'_n = ζ'_n(ρ_n * u) + ζ_n(ρ_n * u').$$

Prin urmare
$$\|u'_n - u'\|_{L^p} \leq ζ'_n(ρ_n * u)\|_{L^p} + ζ_n(ρ_n * u') - u'\|_{L^p}$$
$$\leq C_n \|u\|_{L^p} + \|ρ_n * u' - u'\|_{L^p} + \|ζ_n u' - u'\|_{L^p} → 0,$$
unde $C = \|ζ\|_{L^∞}$.

Remarca 9. – În general nu se poate alege în teorema VIII.6 un șir (u_n) din $C^∞_c(I)$ (vezi §VIII.3). Altfel spus, $C^∞_c(I)$ nu este dens în $W^{1,p}(I)$ (mai puțin dacă $I = \mathbb{R}$).

• Teorema VIII.7. – Există o constantă C (depinzând doar de $|I| ≤ ∞$) astfel încât

$$(5) \quad \|u\|_{L^∞(I)} \leq C\|u\|_{W^{1,p}(I)} \quad \forall u ∈ W^{1,p}(I), \quad \forall 1 ≤ p ≤ ∞.$$
Cu alte cuvinte, $W^{1,p}(I) \subset L^\infty(I)$ cu injecție continuă, pentru orice $1 \leq p \leq \infty$.

In plus, dacă I este mărginit atunci

(6) \hspace{1cm} \text{injecția } W^{1,p}(I) \subset C(\bar{I}) \text{ este compactă } \forall p : 1 < p \leq \infty,

(7) \hspace{1cm} \text{injecția } W^{1,1}(I) \subset L^q(I) \text{ este compactă } \forall q : 1 \leq q < \infty.

Demonstrație. – Începem prin a stabili (5) pentru $I = \mathbb{R}$; cazul general se deduce folosind teorema de prelungire (teorema VIII.5). Fie $v \in C^1_c(\mathbb{R})$; dacă $1 \leq p < \infty$ definim $G(s) = |s|^{p-1}s$. Funcția $w = G(v)$ aparține lui $C^1_c(\mathbb{R})$ și

$$w' = G'(v)v' = p|v|^{p-1}v'.$$

Deci pentru $x \in \mathbb{R}$ avem

$$G(v(x)) = \int_{-\infty}^{x} p|v(t)|^{p-1}v'(t) \, dt$$

și, folosind inegalitatea lui Hölder, obținem

$$|v(x)|^p \leq p \|v\|_{L^p}^{p-1} \|v'\|_{L^p}. $$

De aici deducem, folosind inegalitatea lui Young (vezi §IV.2), că

(8) \hspace{1cm} \|v\|_{L^\infty} \leq C\|v\|_{W^{1,p}} \quad \forall v \in C^1_c(\mathbb{R})

unde C este o constantă universală (independentă de p). (7)

Raționăm acum prin densitate. Fie $u \in W^{1,p}(\mathbb{R})$; există un șir $(u_n) \subset C^1_c(\mathbb{R})$ astfel încât $u_n \to u$ în $W^{1,p}(\mathbb{R})$ (teorema VIII.6). Aplicând (8) deducem că (u_n) este un șir Cauchy în $L^\infty(\mathbb{R})$. Deci $u_n \to u$ în $L^\infty(\mathbb{R})$ și obținem (5).

Demonstrația lui (6). – Fie \mathcal{F} bila unitate în $W^{1,p}(I)$ cu $1 < p \leq \infty$. Pentru $u \in \mathcal{F}$ avem

$$|u(x) - u(y)| = \left| \int_y^x u'(t) \, dt \right| \leq \|u'\|_{L^p} |x - y|^1/p' \leq |x - y|^{1/p'} \quad \forall x, y \in I.$$

Observăm că $p^{1/p} \leq e^{1/e}$, $\forall p \geq 1$.

SPATIUL SOBOLEV $W^{1,p}(I)$

186
Rezultă atunci din teorema lui Ascoli că \mathcal{F} este relativ compactă în $C(\bar{I})$.

Demonstrația lui (7). – Fie \mathcal{F} bila unitate în $W^{1,1}(I)$. Arătăm că \mathcal{F} este relativ compactă în $L^q(I)$ (pentru orice $1 \leq q < \infty$) aplicând corolarul IV.26. Verificăm condiția (IV.23). Fie $\omega \subset I$, $u \in \mathcal{F}$ și $|h| < \text{dist}(\omega, \bar{I})$. Conform propoziției VIII.3 (iii) avem

$$\|\tau_h u - u\|_{L^1(\omega)} \leq |h| \|u'\|_{L^1(I)} \leq |h|.$$

Deci

$$\int_\omega |u(x+h) - u(x)|^q \, dx \leq (2 \|u\|_{L^\infty(I)})^{q-1} \int_\omega |u(x+h) - u(x)| \, dx \leq C|h|.$$

Prin urmare

$$\left(\int_\omega |u(x+h) - u(x)|^q \, dx\right)^{1/q} \leq C^{1/q}|h|^{1/q} < \varepsilon \quad \text{dacă} \quad |h| < \delta.$$

Să verificăm acum (IV.24). Pentru $u \in \mathcal{F}$ avem

$$\|u\|_{L^q(I\setminus\omega)} \leq \|u\|_{L^\infty(I)}|I\setminus\omega|^{1/q} \leq C|I\setminus\omega|^{1/q} < \varepsilon$$

dacă $|I\setminus\omega|$ este suficient de mic; alegem ω astfel încât acest lucru să fie verificat.

Remarca 10. – Injecția $W^{1,1}(I) \subset C(\bar{I})$ este continuă dar niciodată nu este compactă, chiar dacă I este un interval mărginit; încercați să vă convingeți sau vezi [EX]. Totuși, dacă (u_n) este un șir mărginit în $W^{1,1}(I)$ (cu I mărginit sau nemărginit) există un subșir (u_{n_k}) astfel încât $u_{n_k}(x)$ converge pentru orice $x \in I$ (aceasta este teorema lui Helly; vezi [EX]). Dacă I este nemărginit și $1 < p \leq \infty$, atunci injecția $W^{1,p}(I) \subset L^\infty(I)$ este continuă, dar nu este niciodată compactă; încercați să vă convingeți sau vezi [EX]. Totuși, dacă (u_n) este mărginit în $W^{1,p}(I)$ cu $1 < p \leq \infty$, există un subșir (u_{n_k}) și $u \in W^{1,p}(I)$ astfel încât $u_{n_k} \rightarrow u$ în $L^\infty(J)$ pentru orice J mărginit, $J \subset I$ (vezi [EX]).

Remarca 11. – Fie I un interval mărginit și $1 \leq q \leq \infty$. Folosind (5) se arată cu ușurință că norma

$$\|\|u\|\| = \|u'\|_{L^p} + \|u\|_{L^q}$$
este echivalentă cu norma lui $W^{1,p}(I)$ (vezi [EX]).

Remarca 12. – Fie I un interval nemărginit. Dacă $u \in W^{1,p}(I)$, atunci $u \in L^q(I)$ pentru orice $q \in [p, \infty]$ deoarece

$$\int_I |u|^q \leq \|u\|_{L^\infty(I)}^q \|u\|_{L^p(I)}^q.$$

Dar în general $u \not\in L^q(I)$ pentru $q \in [1, p)$ (vezi [EX]).

Corolarul VIII.8. – Presupunem că I este un interval nemărginit și $u \in W^{1,p}(I)$ cu $1 \leq p < \infty$. Atunci avem

$$\lim_{|x| \to \infty} u(x) = 0. \quad (9)$$

Demonstrație. – Conform teoremei VIII.6 există un sir (u_n) în $C_c^1(\mathbb{R})$ astfel încât $u_n|_I \to u$ în $W^{1,p}(I)$. Deducem din (5) că $\|u_n - u\|_{L^\infty(I)} \to 0$, de unde (9). Intr-adevăr, fiind dat $\varepsilon > 0$ alegem n suficient de mare astfel încât $\|u_n - u\|_{L^\infty(I)} < \varepsilon$. Pentru $|x|$ suficient de mare, $u_n(x) = 0$ (deoarece $u_n \in C_c^1(\mathbb{R})$) și deci $|u(x)| < \varepsilon$.

• **Corolarul VIII.9 (Derivarea unui produs).** – Fie $u, v \in W^{1,p}(I)$ cu $1 \leq p \leq \infty$. Atunci $uv \in W^{1,p}(I)$ (8) și

$$uv' = u'v + uv. \quad (10)$$

În plus, are loc formula de integrare prin părți

$$\int_x^y u'v = u(x)v(x) - u(y)v(y) - \int_y^x uv' \quad \forall x, y \in \overline{I}. \quad (11)$$

Demonstrație. – Observăm mai întâi că $u \in L^\infty$ (teorema VIII.7) și deci $uv \in L^p$. Incepem cu cazul $1 \leq p < \infty$. Fie (u_n) și (v_n) în $C_c^1(\mathbb{R})$ astfel încât $u_n|_I \to u$ și $v_n|_I \to v$ în $W^{1,p}(I)$. Atunci $u_n|_I \to u$ și $v_n|_I \to v$ în $L^\infty(I)$ (teorema VIII.7). Rezultă că $u_n|_I v_n|_I \to uv$ în $L^\infty(I)$ și deci în $L^p(I)$. Avem

$$(u_nv_n)' = u'_n v_n + u_nv_n' \to u'v + uv' \text{ în } L^p(I).$$

Observăm că acest rezultat contrastează cu proprietățile funcțiilor din L^p: în general dacă $u, v \in L^p$, produsul uv nu aparține lui L^p. Spunem că $W^{1,p}(I)$ este o algebră Banach.
Rezultă că $uv \in W^{1,p}(I)$ și $(uv)' = u'v + uv'$. Integrând (10) obținem (11).

Presupunem acum că $u, v \in W^{1,\infty}(I)$. Deci $uv \in L^\infty(I)$ și $u'v + uv' \in L^\infty(I)$. Rămâne de verificat că

$$\int_I uv \varphi' = -\int_I (u'v + uv') \varphi \quad \forall \varphi \in C^1_c(I).$$

Pentru aceasta, fixăm un interval deschis și mărginit $J \subset I$ astfel încât $\text{Supp} \varphi \subset J$. Deci $u, v \in W^{1,p}(J)$ pentru orice $1 \leq p < \infty$, și, din cele de mai sus, știm că

$$\int_J uv \varphi' = -\int_J (u'v + uv') \varphi,$$

adică

$$\int_I uv \varphi' = -\int_I (u'v + uv') \varphi.$$

Corolarul VIII.10 (Derivarea unei compuneri de funcții). - Fie $G \in C^1(R)$ astfel încât $G(0) = 0$. Fie $u \in W^{1,p}(I)$. Atunci $G \circ u \in W^{1,p}(I)$ și $(G \circ u)' = (G' \circ u)u'$.

Demonstrație. - Fie $M = \|u\|_{L^\infty}$. Deoarece $G(0) = 0$ există o constantă C astfel încât $|G(s)| \leq C|s|$ pentru orice $s \in [-M, +M]$. Rezultă că $G \circ u \in L^p(I)$ întrucât $|G \circ u| \leq C|u|$. În mod similar, $(G' \circ u)u' \in L^p(I)$. Rămâne de verificat că

$$\int_I (G \circ u) \varphi' = -\int_I (G' \circ u)u' \varphi \quad \forall \varphi \in C^1_c(I).$$

Presupunem mai întâi că $1 \leq p < \infty$. Atunci există un şir (u_n) în $C^\infty_c(R)$ astfel încât $u_{n,I} \rightarrow u$ în $W^{1,p}(I)$ și în $L^\infty(I)$. Deci $G \circ u_{n,I} \rightarrow G \circ u$ în $L^\infty(I)$ și $(G' \circ u_n)u'_{n,I} \rightarrow (G' \circ u)u'$ în $L^p(I)$. Dar

$$\int_I (G \circ u_n) \varphi' = -\int_I (G' \circ u_n)u_n' \varphi \quad \forall \varphi \in C^1_c(I).$$

De aici deducem (12). Pentru cazul $p = \infty$ procedăm ca în demonstrația corolarului VIII.9.

\[\text{Această restricție este înutilă dacă } I \text{ este mărginit [sau dacă } I \text{ este nemărginit și } p = \infty]. \text{ Ea este esențială dacă } I \text{ este nemărginit și } 1 \leq p < \infty.\]
Definiție. – Fiind dat un întreg $m \geq 2$ și un număr real $1 \leq p \leq \infty$ definim prin inducție spațiile

$$W^{m,p}(I) = \{ u \in W^{m-1,p}(I); \ u' \in W^{m-1,p}(I) \}.$$

Fie

$$H^m(I) = W^{m,2}(I).$$

Este ușor de verificat că $u \in W^{m,p}(I)$ dacă și numai dacă există m funcții $g_1, g_2, \ldots, g_m \in L^p(I)$ astfel încât

$$\int_I u \ D^j \varphi = (-1)^j \int_I g_j \varphi \quad \forall \varphi \in C_c^\infty(I), \ \forall j = 1, 2, \ldots, m$$

unde $D^j \varphi$ reprezintă a j-a derivată a lui φ. Dacă $u \in W^{m,p}(I)$ putem considera deci derivatele succesive ale lui $u : u' = g_1$, $(u')' = g_2$, , până la ordinul m. Acestea sunt note cu Du, D^2u, \ldots, D^mu. Spațiul $W^{m,p}(I)$ este înzestrat cu norma

$$\|u\|_{W^{m,p}} = \|u\|_{L^p} + \sum_{\alpha=1}^{m} \|D^\alpha u\|_{L^p}$$

iar spațiul $H^m(I)$ este înzestrat cu produsul scalar

$$(u, v)_{H^m} = (u, v)_{L^2} + \sum_{\alpha=1}^{m} (D^\alpha u, D^\alpha v)_{L^2} = \int_I uv + \sum_{\alpha=1}^{m} \int_I D^\alpha u \ D^\alpha v.$$

Se poate arăta că norma $\| \|_{W^{m,p}}$ este echivalentă cu norma

$$\|||u||\| = \|u\|_{L^p} + \|D^m u\|_{L^p}.$$

Mai precis, se stabilește că dacă $1 \leq j \leq m - 1$, atunci $\forall \varepsilon > 0 \exists C$ (depinzând de ε și de $|I| \leq \infty$) astfel încât

$$\|D^j u\|_{L^p} \leq \varepsilon \|D^m u\|_{L^p} + C\|u\|_{L^p} \quad \forall u \in W^{m,p}(I)$$

(vezi [EX]).

Cititorul poate extinde la spațiile $W^{m,p}$ toate proprietățile demon-strate pentru $W^{1,p}$; de exemplu, dacă I este mărginit, $W^{m,p}(I) \subset C^{m-1}(\bar{I})$ cu înjeție continuă, (resp. înjeție compactă pentru $1 < p \leq \infty$).
VIII.3 Spațiu $W^{1,p}_0(I)$

Definiție. – Fiind dat $1 \leq p < \infty$, notăm cu $W^{1,p}_0(I)$ închiderea lui $C^1_c(I)$ în $W^{1,p}(I)$. Notăm $H^1_0(I) = W^{1,2}_0(I)$ \(^{10}\).

Spațiu $W^{1,p}_0(I)$ este înzestrat cu norma indusă de $W^{1,p}(I)$; spațiu H^1_0 este înzestrat cu produsul scalar din H^1.

Spațiu $W^{1,p}_0$ este un spațiu Banach separabil; el este reflexiv pentru $1 < p < \infty$. Spațiu H^1_0 este un spațiu Hilbert separatabil.

Remarca 13. – Dacă $I = \mathbb{R}$ știm că $C^1_c(\mathbb{R})$ este dens în $W^{1,p}(\mathbb{R})$ (vezi teorema VIII.6) și deci $W^{1,p}_0(\mathbb{R}) = W^{1,p}(\mathbb{R})$.

Remarca 14. – Folosind un șir regularizant (ρ_n) se verifică cu ușurință că

(i) $C^\infty_c(I)$ este dens în $W^{1,p}_0(I)$.
(ii) dacă $u \in W^{1,p}(I) \cap C_c(I)$ atunci $u \in W^{1,p}_0(I)$.

Rezultatul următor oferă o caracterizare esențială a funcțiilor din $W^{1,p}_0(I)$:

• Teorema VIII.11. – Fie $u \in W^{1,p}(I)$. Atunci $u \in W^{1,p}_0(I)$ dacă și numai dacă $u = 0$ pe ∂I.

Remarca 15. – Teorema VIII.11 explică rolul important jucat de spațiu $W^{1,p}_0(I)$. Intr-adevăr, ecuațiile diferențiale (sau cu derivate parțiale) sunt adesea cuplate cu conditiile la limită, adică valoarea lui u este prescrisă pe ∂I.

Demonstrație. – Dacă $u \in W^{1,p}_0(I)$, există un șir (u_n) în $C^1_c(I)$ astfel încât $u_n \rightharpoonup u$ în $W^{1,p}(I)$. Deci $u_n \rightharpoonup u$ uniform pe I și, în consecință, $u = 0$ pe ∂I.

Reciproc, fie $u \in W^{1,p}(I)$ astfel încât $u = 0$ pe ∂I. Fixăm o funcție $G \in C^1(\mathbb{R})$ astfel încât

$$G(t) = \begin{cases}
0 & \text{dacă } |t| \leq 1 \\
t & \text{dacă } |t| \geq 2
\end{cases}$$

\(^{10}\)Când nu există pericol de confuzie vom scrie $W^{1,p}_0$ și H^1_0 în loc de $W^{1,p}_0(I)$ și $H^1_0(I)$.

și \[|G(t)| \leq |t| \quad \forall t \in \mathbb{R}. \]

Fie \(u_n = (1/n)G(nu) \), deci \(u_n \in W^{1,p}(I) \) (corolarul VIII.10). Pe de altă parte,

\[\text{Supp } u_n \subset \left\{ x \in I; \ |u(x)| \geq \frac{1}{n} \right\} \]

și deci \(\text{Supp } u_n \) este un compact inclus în \(I \) (se utilizează faptul că \(u = 0 \) pe \(\partial I \) și \(u(x) \to 0 \) dacă \(|x| \to \infty, x \in I \)). Prin urmare, \(u_n \in W^{1,p}(I) \) (vezi remarcă 14). În sfârșit, se verifică cu teorema convergenței dominate că \(u_n \to u \) în \(W^{1,p}(I) \). Deci \(u \in W^{1,p}(I) \).

Remarca 16. – Indicăm alte două caracterizări ale funcțiilor din \(W^{1,p} \) (vezi [EX]):

\begin{itemize}
 \item (i) Fie \(1 < p < \infty \) și \(u \in L^p(I) \). Definim

\[\tilde{u}(x) = \begin{cases}
 u(x) & \text{dacă } x \in I \\
 0 & \text{dacă } x \in \mathbb{R} \setminus I.
\end{cases} \]

Atunci \(u \in W^{1,p}(I) \) dacă și numai dacă \(\tilde{u} \in W^{1,p}(\mathbb{R}) \).

\item (ii) Fie \(1 < p < \infty \) și \(u \in L^p(I) \). Atunci \(u \in W^{1,p}(I) \) dacă și numai dacă există o constantă \(C \) astfel încât

\[\left| \int_I u \varphi \right| \leq C\|\varphi\|_{L^p(I)} \quad \forall \varphi \in C^1_c(\mathbb{R}). \]

\end{itemize}

• Propoziția VIII.12 (Inegalitatea lui Poincaré). – Presupunem că \(I \) este mărginit. Atunci există o constantă \(C \) (depinzând de \(|I| < \infty \)) astfel încât

\[\|u\|_{W^{1,p}(I)} \leq C\|u'\|_{L^p(I)} \quad \forall u \in W^{1,p}(I). \] \hspace{1cm} (13)

Cu alte cuvinte, pe \(W^{1,p}_0 \) cantitatea \(\|u'\|_{L^p(I)} \) este o normă echivalentă cu norma din \(W^{1,p} \).

Demonstrație. – Pentru \(u \in W^{1,p}_0(I) \) avem

\[|u(x)| = |u(x) - u(a)| = \left| \int_a^x u'(t) dt \right| \leq \|u'\|_{L^1}. \]
Deci \(\|u\|_{L^\infty(I)} \leq \|u'\|_{L^1(I)} \) și (13) rezultă folosind inegalitatea lui Hölder.

Remarca 17. – Dacă \(I \) este mărginit, expresia \((u', v')_{L^2} = \int u'v'\) definește un produs scalar pe \(H^1_0 \) iar norma asociată – adică \(\|u'\|_{L^2} \) – este echivalentă cu norma din \(H^1 \).

Remarca 18. – Fiind dat \(I \) un întreg \(m \geq 2 \) și un număr real \(1 \leq p < \infty \), spațiul \(W^{m,p}_0(I) \) se definește ca fiind închiderea lui \(C^m_c(I) \) în \(W^{m,p}(I) \). Se arată că

\[W^{m,p}_0(I) = \{ u \in W^{m,p}(I); u = Du = \ldots = D^{m-1}u = 0 \text{ pe } \partial I \}. \]

Este esențial de a face distincția între

\[W^{2,p}_0(I) = \{ u \in W^{2,p}(I); u = Du = 0 \text{ pe } \partial I \} \]

și

\[W^{2,p}(I) \cap W^{1,p}_0(I) = \{ u \in W^{2,p}(I); u = 0 \text{ pe } \partial I \}. \]

* Dualul lui \(W^{1,p}_0 \)

Notăție. – Spațiul dual al lui \(W^{1,p}_0(I) \) \((1 \leq p < \infty) \) se notează cu \(W^{-1,p'}_0(I) \) iar spațiul dual al lui \(H^1_0(I) \) se notează cu \(H^{-1}(I) \).

Folosind remarca 1 din capitolul V, putem identifica \(L^2 \) și dualul său, dar nu putem identifica \(H^1_0 \) și dualul său. Avem incluziunile

\[H^1_0 \subset L^2 \subset H^{-1}, \]

cu injecții continue și dense.

Dacă \(I \) este mărginit, avem

\[W^{1,p}_0 \subset L^2 \subset W^{-1,p'} \text{ pentru orice } 1 \leq p < \infty, \]

cu injecții continue și dense.

Dacă \(I \) este nemărginit, avem doar

\[W^{1,p}_0 \subset L^2 \subset W^{-1,p'} \text{ pentru orice } 1 \leq p \leq 2 \]

cu injecții continue și dense (vezi remarca 12).

Elementele din \(W^{-1,p'} \) pot fi reprezentate cu ajutorul funcțiilor din \(L^p \); mai precis, avem
Propoziția VIII.13. – Fie $F \in W^{-1,p'}(I)$. Atunci există $f_0, f_1 \in L^p(I)$ astfel încât
\[
\langle F, v \rangle = \int_I f_0 v + \int_I f_1 v' \quad \forall v \in W^{1,p}_0(I)
\]
și
\[
\|F\|_{W^{-1,p'}} = \text{Max}\{\|f_0\|_{L^p'}, \|f_1\|_{L^p'}\}.
\]
Dacă I este mărginit putem lua $f_0 = 0$.

Demonstrație. – Considerăm spațiul produs $E = L^p(I) \times L^p(I)$ înzestrat cu norma
\[
\|h\| = \|h_0\|_{L^p} + \|h_1\|_{L^p} \quad \text{unde} \ h = [h_0, h_1].
\]
Aplicația $T : u \in W^{1,p}_0(I) \mapsto [u, u'] \in E$ este o izometrie de la $W^{1,p}_0(I)$ în E. Fie $G = T(W^{1,p}_0(I))$ înzestrat cu norma indusă de E și $S = T^{-1} : G \rightarrow W^{1,p}_0(I)$. Aplicația $h \in G \mapsto \langle F, Sh \rangle$ este o funcțională liniară și continuă pe G. Conform teoremei lui Hahn-Banach, putem prelungi G la o funcțională liniară și continuă Φ definită pe E cu $\|\Phi\|_{E'} = \|F\|_{W^{-1,p'}}$. Folosind teorema de reprezentare a lui Riesz, există $f_0, f_1 \in L^p(I)$ astfel încât
\[
\langle \Phi, h \rangle = \int_I f_0 h_0 + \int_I f_1 h_1 \quad \forall h = [h_0, h_1] \in E.
\]
Este ușor de verificat că $\|\Phi\|_{E'} = \text{Max}\{\|f_0\|_{L^p'}, \|f_1\|_{L^p'}\}$.

Dacă I este mărginit, spațiul $W^{1,p}_0(I)$ poate fi înzestrat cu norma $\|u'\|_{L^p}$ (vezi propoziția VIII.12). Repetăm raționamentul precedent cu $E = L^p(I)$ și $T : u \in W^{1,p}_0 \mapsto u' \in L^p$.

Remarca 19. – Funcțiile f_0 și f_1 nu sunt unice.

Remarca 20. – De obicei elementul $F \in W^{-1,p'}(I)$ se identifică cu distribuția $f_0 - f_1'$ (prin definiție, distribuția $f_0 - f_1'$ este funcțională liniară $v \mapsto \int_I f_0 v + \int_I f_1 v'$ pe $C_c^\infty(I)$).

Remarca 21. – Concluzia propoziției VIII.13 rămâne valabilă pentru funcționale liniare și continue pe $W^{1,p}$.

VIII.4 Câteva exemple de probleme la limită

Considerăm problema

\begin{equation}
\begin{cases}
-u'' + u = f & \text{în } I = (0,1) \\
u(0) = u(1) = 0
\end{cases}
\end{equation}

unde f este o funcție dată (de exemplu în $C(\bar{I})$ sau, mai general, în $L^2(I)$). Condiția la limită $u(0) = u(1) = 0$ se numește condiție Dirichlet (omogenă).

Definiție. – O soluție clasică a problemei (14) este o funcție $u \in C^2(\bar{I})$ care verifică (14) (în sens uzual). O soluție slabă a lui (14) este o funcție $u \in H^1_0(I)$ care satisface

\begin{equation}
\int_I u'v' + \int_I uv = \int_I f v \quad \forall v \in H^1_0(I).
\end{equation}

Să “punem în mișcare” programul descris în §VIII.1.

Pasul B. – Existața și unicitatea soluției slabe:

• Propoziția VIII.14. – Pentru orice $f \in L^2(I)$, există și este unic $u \in H^1_0(I)$ soluție a lui (15). In plus u se obține prin

\[
\text{Min}_{v \in H^1_0} \left\{ \frac{1}{2} \int_I (v'^2 + v^2) - \int_I f v \right\};
\]

aceasta este principiul lui Dirichlet.

Demonstrație. – Aplicăm teorema lui Lax-Milgram (sau teorema de reprezentare Riesz-Fréchet) în spațiul Hilbert $H = H^1_0(I)$ cu forma bilinară

\[a(u, v) = \int_I u'v' + \int_I uv = (u, v)_{H^1};\]

și cu funcționala liniară $\varphi : v \mapsto \int_I f v.$
PROBLEME LA LIMITĂ

Remarca 22. – Fiind dat $F \in H^{-1}$ știm din teorema lui Riesz-Frēchet că există $u \in H^1_0(I)$ astfel încât

$$(u,v)_{H^1} = \langle F, v \rangle_{H^{-1},H^1_0} \quad \forall v \in H^1_0.$$

Operatorul $F \mapsto u$ este izomorfismul Riesz-Frēchet de la H^{-1} în H^1_0. Putem considera că u este soluția generalizată a ecuației $-u'' + u = F$.

Pașii C și D. – Regularitatea soluției slabe și reîntoarcerea la soluția clasică

Observăm mai întâi că dacă $f \in L^2$ și $u \in H^1_0$ este o soluție slabă a lui (14), atunci $u \in H^2$. Intr-adevăr, avem

$$\int u'v' = \int (f - u)v \quad \forall v \in C^1_c(I)$$

și deci $u' \in H^1$ (din definirea lui H^1_0 și deoarece $f - u \in L^2$). Dacă, în plus, $f \in C(\bar{I})$, atunci soluția slabă u aparține lui $C^2(\bar{I})$. Intr-adevăr, $(u')' \in C(\bar{I})$ și deci $u' \in C^1(\bar{I})$ (vezi remarca 6). Trecerea de la o soluție slabă $u \in C^2(\bar{I})$ la o soluție clasică se face ca în §VIII.1.

Remarca 23. – Dacă $f \in H^k(I)$, cu $k \geq 1$, se verifică cu ușurință (prin inducție) că soluția u a lui (15) aparține lui $H^{k+2}(I)$.

Metoda descrisă mai sus este extrem de flexibilă și se adaptează la o multitudine de probleme. Indicăm câteva exemple întâlnite mai frecvent. In fiecare problemă este esențial să se precizeze spațiul funcțional în care se lucrează.

Exemplul 1. (Condiție Dirichlet neomogenă). – Fie problema

$$(16) \quad \left\{ \begin{array}{l}
-u'' + u = f \quad \text{în } I = (0,1), \\
\quad \quad u(0) = \alpha, u(1) = \beta,
\end{array} \right.$$

cu $\alpha, \beta \in \mathbb{R}$ date și f o funcție dată.

- Propoziția VIII.15. – Fiind date $\alpha, \beta \in \mathbb{R}$ și $f \in L^2(I)$, există o unică funcție $u \in H^2(I)$ care satisfacțe (16). In plus, u se obține prin

$$\operatorname{Min}_{v \in H^1_0(I)} \left\{ \frac{1}{2} \int_I (v^2 + v'^2) - \int_I fv \right\}.$$
Dacă, în plus, \(f \in C(\bar{I}) \) atunci \(u \in C^2(\bar{I}) \).

Demonstrație. – Indicăm două abordări diferite.

Metoda 1. – Fixăm o funcție netedă \(u_0 \) astfel încât \(u_0(0) = \alpha \) și \(u_0(1) = \beta \). Introducem ca necunoscută \(\tilde{u} = u - u_0 \). Atunci \(\tilde{u} \) satisface

\[
\begin{aligned}
-\tilde{u}'' + \tilde{u} &= f + u_0'' - u_0 \\
\tilde{u}(0) &= \tilde{u}(1) = 0.
\end{aligned}
\]

Am redus așadar problema la cazul precedent pentru \(\tilde{u} \).

Metoda 2. – În spațiul \(H^1(I) \) definim mulțimea convexă și închisă

\[
K = \{ v \in H^1(I); \ v(0) = \alpha \ și \ v(1) = \beta \}.
\]

Dacă \(u \) este o soluție clasică a lui (16) avem

\[
\int_I u'(v - u)' + \int_I u(v - u) = \int_I f(v - u) \quad \forall v \in K.
\]

Deci, în particular,

\[
\int_I u'(v - u)' + \int_I u(v - u) \geq \int_I f(v - u) \quad \forall v \in K.
\]

Folosim acum teorema lui Stampacchia (teorema V.6): există o unică funcție \(u \in K \) care satisface (17); în plus, \(u \) se obține prin

\[
\text{Min}_{v \in K} \left\{ \frac{1}{2} \int_I (v'^2 + v^2) - \int_I fv \right\}.
\]

Pentru a “regăsi” o soluție clasică alegem în (17) \(v = u \pm w \) cu \(w \in H^1_0 \) și obținem

\[
\int_I u'w' + \int_I uw = \int_I fw \quad \forall w \in H^1_0.
\]

Aceasta implică \(u \in H^2(I) \) etc.

Exemplul 2. (Problema Sturm-Liouville). – Fie problema

\[
\begin{aligned}
-(pu')' + qu &= f \quad \text{în } I = (0, 1), \\
u(0) &= u(1) = 0,
\end{aligned}
\]

\footnote{Alegem, de exemplu, \(u_0 \) funcție afină.}
unde \(p \in C^1(\bar{I}) \), \(q \in C(\bar{I}) \) și \(f \in L^2(I) \) sunt funcții date, cu
\[
p(x) \geq \alpha > 0 \quad \forall x \in \bar{I}.
\]
Dacă \(u \) este soluție clasică a lui (18) atunci
\[
\int_I pu'v' + \int_I quv = \int_I fv \quad \forall v \in H^1_0(I).
\]
Folosim \(H^1_0(I) \) ca spațiu funcțional și
\[
a(u, v) = \int_I pu'v' + \int_I quv
\]
ca formă biliniară, continuă și simetrică. Dacă \(q \geq 0 \) pe \(I \) această formă este coercivă, conform inegalității lui Poincaré (propoziția VIII.12). Deci (teorema lui Lax-Milgram), există și este unic \(u \in H^1_0 \) astfel încât
\[
a(u, v) = \int_I fv \quad \forall v \in H^1_0(I).
\]
In plus, \(u \) se obține prin
\[
\min_{v \in H^1_0(I)} \left\{ \frac{1}{2} \int_I (pv'^2 + qv^2) - \int_I fv \right\}.
\]
Este evident că \(pu' \in H^1 \); deci \(u' = (1/p)(pu') \in H^1 \), adică \(u \in H^2 \). In sfârșit, dacă \(f \in C(\bar{I}) \), atunci \(pu' \in C^1(\bar{I}) \) și \(u' \in C^1(\bar{I}) \). Deci \(u \in C^2(\bar{I}) \) și \(u \) este soluție clasică a lui (18).

Considerăm acum problema mai generală
\[
(19) \quad \begin{cases}
-(pu')' + ru' + qu = f & \text{în } I = (0, 1) \\
u(0) = u(1) = 0.
\end{cases}
\]
Ipotezele asupra lui \(p, q \) și \(f \) sunt aceleași ca mai sus și \(r \in C(\bar{I}) \). Dacă \(u \) este o soluție clasică a lui (19) atunci
\[
\int_I pu'v' + \int_I ru'v + \int_I quv = \int_I fv \quad \forall v \in H^1_0.
\]
Folosim \(H^1_0(I) \) ca spațiu funcțional și
\[
a(u, v) = \int_I pu'v' + \int_I ru'v + \int_I quv
\]
ca formă biliniară și continuă. Această formă nu este simetrică. În anumite cazuri ea este coercivă: de exemplu, dacă \(q \geq 1 \) și \(r^2 \leq \alpha \) sau dacă \(q \geq 1 \) și \(r \in C^1(\bar{I}) \) cu \(|r'| \leq 2 \) – aici folosim faptul că
\[
\int_I r'v' = -\frac{1}{2} \int_I r'v^2 \quad \forall v \in H^1_0.
\]
Putem aplica în acest caz teorema lui Lax-Milgram dar nu există o problemă de minimizare asociată. Indicăm un artificiu care permite să revenim la o formă biliniară simetrică. Introducem o primitivă \(R(p) \) și fie \(\zeta = e^{-R} \). După înmulțirea cu \(\zeta \) ecuația (19) devine
\[
-\zeta pu'' - \zeta p' u' + \zeta ru' + \zeta qu = \zeta f
\]
sau (deoarece \(\zeta' p + \zeta r = 0 \)):
\[
-(\zeta pu')' + \zeta qu = \zeta f.
\]
Definim pe \(H^1_0(I) \) forma biliniară, continuă și simetrică
\[
a(u,v) = \int_I \zeta pu'v' + \int_I \zeta quv.
\]
Dacă \(q \geq 0 \), această formă este coercivă. Deci există \(u \in H^1_0(I) \) astfel încât
\[
a(u,v) = \int_I \zeta f v \quad \forall v \in H^1_0.
\]
In plus, \(u \) se obține prin
\[
\text{Min}_{v \in H^1_0(I)} \left\{ \frac{1}{2} \int_I (\zeta pu'^2 + \zeta qu^2) - \int_I \zeta f v \right\}.
\]
Se verifică ușor că \(u \in H^2(I) \) iar dacă \(f \in C(\bar{I}) \) atunci \(u \in C^2(\bar{I}) \) este soluție clasică a lui (19).

Exemplul 3. (Condiție Neumann omogenă). – Considerăm problema

\[
(20) \quad \begin{cases}
-u'' + u = f & \text{în } I = (0,1), \\
u'(0) = u'(1) = 0.
\end{cases}
\]
Propoziția VIII.16. – Pentru orice \(f \in L^2(I) \) există o unică funcție \(u \in H^2(I) \) care verifică (20) \(^{12}\). In plus \(u \) se obține prin

\[
\text{Min}_{v \in H^1(I)} \left\{ \frac{1}{2} \int_I (v'^2 + v^2) - \int_I f v \right\}.
\]

Dacă, în plus, \(f \in C(\bar{I}) \) atunci \(u \in C^2(\bar{I}) \).

Demonstrație. – Dacă \(u \) este o soluție clasică a lui (20) atunci

\[
\int_I u'v' + \int_I uv = \int_I fv \quad \forall v \in H^1(I).
\]

Este deci convenabil să lucrăm în spațiul Hilbert \(H^1(I) \) și nu în \(H^1_0(I) \) ca mai sus (insistăm că \(u(0) \) și \(u(1) \) sunt a priori necunoscute). Aplicăm teorema lui Lax-Milgram cu forma biliniară \(a(u, v) = \int_I u'v' + \int_I uv \) și cu funcționala liniară \(\varphi : v \mapsto \int_I fv \). In acest fel obținem o soluție unică \(u \in H^1(I) \) a lui (21). Deducem mai întâi din (21) că \(u \in H^2(I) \) și apoi că

\[
\int_I (-u'' + u - f)v + u'(1)v(1) - u'(0)v(0) = 0 \quad \forall v \in H^1(I).
\]

În (22) începem prin a alege \(v \in H^1_0(I) \) și obținem \(-u'' + u = f\) a.p.t. Revenind apoi la (22) găsim

\[
u'(1)v(1) - u'(0)v(0) = 0 \quad \forall v \in H^1(I).
\]

Deoarece \(v(0) \) și \(v(1) \) sunt arbitrare, deducem că \(u'(0) = u'(1) = 0 \).

Exemplul 4. (Condiție Neumann neomogenă). – Fie problema

\[
\begin{cases}
-u'' + u = f \quad \text{în } I = (0, 1), \\
u'(0) = \alpha, \ u'(1) = \beta
\end{cases}
\]

cu \(\alpha, \beta \in \mathbb{R} \) date și \(f \) o funcție dată.

\(^{12}\)Observăm că \(u \in H^2(I) \Rightarrow u \in C^1(\bar{I}) \) și deci condiția \(u'(0) = u'(1) = 0 \) are sens. Ea nu ar avea sens dacă am și doar că \(u \in H^1 \).
Propoziția VIII.16’. – Pentru orice \(f \in L^2(I) \) și orice \(\alpha, \beta \in \mathbb{R} \) există o unică funcție \(u \in H^2(I) \) care verifică (23). În plus, \(u \) se obține prin

\[
\min_{v \in H^1(I)} \left\{ \frac{1}{2} \int_I (u'^2 + v^2) - \int_I f v + \alpha v(0) - \beta v(1) \right\}.
\]

Demonstrație. – Dacă \(u \) este o soluție clasică a lui (23) atunci

\[
\int_I u'v' + \int_I uv = \int_I fv - \alpha v(0) + \beta v(1) \quad \forall v \in H^1(I).
\]

Este convenabil să folosim \(H^1(I) \) ca spațiu funcțional și să aplicăm teorema lui Lax-Milgram cu forma biliniară \(a(u, v) = \int_I u'v' + \int_I uv \) și funcționala liniară

\[\varphi : v \mapsto \int_I fv - \alpha v(0) + \beta v(1).\]

Această funcțională liniară este continuă (conform teoremei VIII.7). Procedăm apoi ca în exemplul 3 pentru a arăta că \(u'(0) = \alpha, u'(1) = \beta \).

Exemplul 5. (Condiții la limită mixte). – Considerăm problema

\[
\begin{cases}
-u'' + u = f & \text{în } I = (0, 1), \\
u(0) = 0, u'(1) = 0.
\end{cases}
\]

Dacă \(u \) este o soluție clasică a lui (25) atunci

\[
\int_I u'v' + \int_I uv = \int_I fv \quad \forall v \in H^1(I) \text{ cu } v(0) = 0.
\]

Este convenabil să lucrăm în spațiul Hilbert

\[H = \{ v \in H^1(I); v(0) = 0 \}.\]

Continuarea programului este lăsată cititorului.

Exemplul 6. (A “treia” condiție la limită). – Considerăm problema

\[
\begin{cases}
-u'' + u = f & \text{în } I = (0, 1), \\
u'(0) - ku(0) = 0, u(1) = 0.
\end{cases}
\]
unde \(k \in \mathbb{R} \) este dată (13). Dacă \(u \) este o soluție clasică a lui (27) atunci
\[
\int_I u'v' + \int_I uv + ku(0)v(0) = \int_I f v \quad \forall v \in H^1(I) \text{ cu } v(1) = 0.
\]
Este convenabil să aplicăm teorema lui Lax-Milgram în spațiul Hilbert
\[
H = \{ v \in H^1(I); v(1) = 0 \}
\]
cu forma biliniară, continuă, simetrică
\[
a(u, v) = \int_I u'v' + \int_I uv + ku(0)v(0).
\]
Această formă este coercivă dacă \(k \geq 0 \) (14).

Exemplul 7. (Condiții la limită periodice). – Fie problema
\[
\begin{cases}
-u'' + u = f & \text{în } I = (0,1), \\
u(0) = u(1), u'(0) = u'(1).
\end{cases}
\]
Dacă \(u \) este soluție clasică a lui (28) avem
\[
\int_I u'v' + \int_I uv = \int_I f v \quad \forall v \in H^1(I) \quad \text{cu } v(0) = v(1).
\]
Este convenabil așadar să aplicăm teorema lui Lax-Milgram în spațiul Hilbert
\[
H = \{ v \in H^1(I); v(0) = v(1) \}
\]
cu forma biliniară \(a(u, v) = \int_I u'v' + \int_I uv \). Dacă \(f \in L^2(I) \) obținem o soluție \(u \in H^2(I) \) a lui (28). Dacă, în plus, \(f \in C(\bar{I}) \) atunci această soluție este clasică.

\[\text{Mai general, putem considera condiția pe frontieră}\]
\[
\alpha_0 u'(0) + \beta_0 u(0) = 0, \quad \alpha_1 u'(1) + \beta_1 u(1) = 0.
\]

\[\text{Dacă } k < 0 \text{ cu } |k| \text{ suficient de mic forma } a(u, v) \text{ continuă să fie coercivă. Din contră, un calcul explicit arată că există o valoare negativă a lui } k \text{ și funcții } f \text{ pentru care (27) nu are soluții (vezi [EX]).}\]
Exemplul 8. (Probleme la limita pe \(\mathbb{R} \)). – Fie problema

\[
\begin{cases}
-u'' + u = f \quad \text{in } \mathbb{R} \\
u(x) \to 0 \quad \text{daca } |x| \to \infty,
\end{cases}
\]

cu \(f \in L^2(\mathbb{R}) \).

O \textbf{soluție clasică} a lui (30) este o funcție \(u \in C^2(\mathbb{R}) \) verificând (30) în sens ușual. O \textbf{soluție slabă} a lui (30) este o funcție \(u \in H^1(\mathbb{R}) \) care satisface

\[
\int_{\mathbb{R}} u'v' + \int_{\mathbb{R}} uv = \int_{\mathbb{R}} f v \quad \forall v \in H^1(\mathbb{R}).
\]

Aratăm mai întâi că dacă \(u \) este o soluție clasică a lui (30) atunci \(u \) este o soluție slabă a lui (30). Într-adevăr, să verificăm pentru început că \(u \in H^1(\mathbb{R}) \). Alegem un șir regularizant \((\zeta_n) \) ca în demonstrația teoremei VIII.6 (formula (4)). Inmulțind (30) cu \(\zeta_n u \) și integrând prin părți obținem

\[
\int_{\mathbb{R}} u'(\zeta_n' u') + \int_{\mathbb{R}} \zeta_n u^2 = \int_{\mathbb{R}} \zeta_n f u.
\]

De aici deducem că

\[
\int_{\mathbb{R}} \zeta_n (u'^2 + u^2) = \int_{\mathbb{R}} \zeta_n f u + \frac{1}{2} \int_{\mathbb{R}} \zeta_n'' u^2.
\]

Dar

\[
\frac{1}{2} \int_{\mathbb{R}} \zeta_n'' u^2 \leq \frac{C}{n^2} \int_{n<|x|<2n} u^2 \quad \text{cu } C = \| \zeta_n'' \|_{L^\infty(\mathbb{R})}
\]

și \(\frac{1}{n^2} \int_{n<|x|<2n} u^2 \to 0 \) dacă \(n \to \infty \) deoarece \(u(x) \to 0 \) dacă \(|x| \to \infty \).

Rezultă că \(u \in H^1(\mathbb{R}) \) (observăm că \(\int_{\mathbb{R}} \zeta_n f u \leq \frac{1}{2} \int_{\mathbb{R}} \zeta_n u^2 + \frac{1}{2} \int_{\mathbb{R}} \zeta_n f^2 \) și se trece la limită în (32) cu \(n \to \infty \)). În sfârșit, dacă \(u \) este o soluție clasică a lui (30) atunci

\[
\int_{\mathbb{R}} u'v' + \int_{\mathbb{R}} uv = \int_{\mathbb{R}} f v \quad \forall v \in C^1_c(\mathbb{R})
\]

și, prin densitate, \(\forall v \in H^1(\mathbb{R}) \); deci \(u \) este soluție slabă a lui (30).

Pentru a obține existența și unicitatea soluției slabe este suficient să aplicăm teorema lui Lax-Milgram în spațiul Hilbert \(H^1(\mathbb{R}) \). Se verifică
ușor că soluția slabă u aparține lui $H^2(\mathbb{R})$ și, în plus, dacă $f \in C(\mathbb{R})$ atunci $u \in C^2(\mathbb{R})$.

Concluzie: fiind dat $f \in L^2(\mathbb{R}) \cap C(\mathbb{R})$, există o unică soluție clasică a problemei (30) (care, în plus, aparține lui $H^2(\mathbb{R})$).

Remarca 24. – Problema

\[
\begin{cases}
-u'' = f & \text{în } \mathbb{R} \\
u(x) \to 0 & \text{dacă } |x| \to \infty
\end{cases}
\]

nu poate fi abordată cu tehnică precedentă deoarece forma biliniară $a(u,v) = \int_{\mathbb{R}} u'v'$ nu este coercivă în $H^1(\mathbb{R})$.

Remarca 25. – Cu aceeași metodă de mai sus se poate rezolva problema

\[
\begin{cases}
-u'' + u = f & \text{în } I = (0, \infty) \\
u(0) = 0 & \text{și } u(x) \to 0 \text{ dacă } |x| \to \infty.
\end{cases}
\]

cu $f \in L^2(0, +\infty)$ funcție dată.

VIII.5 Principiul de maxim

Fie $I = (0, 1)$. Avem

- **Teorema VIII.17.** – Fie $f \in L^2(I)$ și fie $u \in H^2(I)$ soluția problemei Dirichlet

\[
\begin{align*}
-u'' + u &= f & \text{în } I \\
u(0) &= \alpha, \ u(1) = \beta.
\end{align*}
\]

Atunci avem (15)

\[
\text{Min}\{\alpha, \beta, \inf_I f\} \leq u(x) \leq \text{Max}\{\alpha, \beta, \sup_I f\} \quad \forall x \in I.
\]

\[15\] Sup f și Inf f reprezintă respectiv Sup ess al lui f (eventual $= +\infty$) și Inf ess al lui f (eventual $= -\infty$). Reamintim că Sup ess $f = \inf\{C; f(x) \leq C \text{ a.p.t.}\}$ și Inf ess $f = -\sup \text{ ess } (-f)$.

Demonstrație. – (Metoda troncăturilor a lui Stampacchia). Avem

\[(35) \quad \int_I u'v' + \int_I uv = \int_I f v \quad \forall v \in H^1_0(I). \]

Fixăm \(G \in C^1(\mathbb{R}) \) astfel încât

(i) \(G \) este strict crescătoare pe \((0, +\infty)\),

(ii) \(G(t) = 0 \) pentru \(t \in (-\infty, 0] \).

Fie \(K = \text{Max}\{\alpha, \beta, \text{Sup } f\} \) și presupunem \(K < \infty \). Vom arăta că \(u \leq K \) a.p.t. în \(I \). Fie \(v = G(u - K) \); știm că \(v \in H^1(I) \) și chiar \(v \in H^1_0(I) \) deoarece

\[u(0) - K = \alpha - K \leq 0 \quad \text{și} \quad u(1) - K = \beta - K \leq 0. \]

Înlocuind \(v \) în (35) obținem

\[\int_I u'^2G'(u - K) + \int_I uG(u - K) = \int_I fG(u - K), \]

adică

\[\int_I u'^2G'(u - K) + \int_I (u - K)G(u - K) = \int_I (f - K)G(u - K). \]

Dar \((f - K) \leq 0 \) și \(G(u - K) \geq 0 \), de unde rezultă că

\[\int_I (u - K)G(u - K) \leq 0 \]

și deoarece \(tG(t) \geq 0 \quad \forall t \in \mathbb{R} \), inegalitatea precedentă implică \((u - K)G(u - K) = 0 \) a.p.t. În consecință, \(u \leq K \) a.p.t. Incheiem demonstrația lui (34) schimbând \(u \) cu \(-u\).

Remarcă 26. – Dacă \(f \in C(\bar{I}) \), atunci \(u \in C^2(\bar{I}) \) și se poate stabili (34) cu o metodă diferită. Fie \(x_0 \in \bar{I} \) punctul în care \(u \) iși atinge maximul pe \(\bar{I} \). Dacă \(x_0 = 0 \) sau dacă \(x_0 = 1 \) concluzia este evidentă. În caz contrar, \(0 < x_0 < 1 \) și atunci \(u'(x_0) = 0, u''(x_0) \leq 0 \). Din (33) rezultă că

\[u(x_0) = f(x_0) + u''(x_0) \leq f(x_0) \leq K \]

și deci \(u \leq K \) pe \(I \). Această metodă are avantajul de a se extinde la probleme Sturm-Liouville generale.

Deducem câteva consecințe imediate ale teoremei VIII.17:
Corolarul VIII.18. – Fie \(u \) o soluție a lui (33).

(i) Dacă \(u \geq 0 \) pe \(\partial I \) și dacă \(f \geq 0 \) în \(I \), atunci \(u \geq 0 \) în \(I \).

(ii) Dacă \(u = 0 \) pe \(\partial I \) și dacă \(f \in L^\infty(I) \), atunci \(\|u\|_{L^\infty(I)} \leq \|f\|_{L^\infty(I)} \).

(iii) Dacă \(f = 0 \) în \(I \), atunci \(\|u\|_{L^\infty(I)} \leq \|u\|_{L^\infty(\partial I)} \).

Avem un rezultat comparabil pentru condiția Neumann:

Propoziția VIII.19. – Fie \(f \in L^2(I) \) și fie \(u \in H^2(I) \) soluția problemei

\[
\begin{cases}
-u'' + u = f \quad \text{în } I, \\
u'(0) = u'(1) = 0.
\end{cases}
\]

Atunci

(36) \(\inf_I f \leq u(x) \leq \sup_I f \quad \forall x \in \bar{I} \).

DEMONSTRĂRIE. – Avem

(37) \(\int_I u'v' + \int_I uv = \int_I fv \quad \forall v \in H^1(I) \).

Inlocuim \(v = G(u - K) \) în (37), unde \(K = \sup_I f \). Procedăm apoi ca în demonstrația teoremei VIII.17.

REMARCA 27. – Dacă \(f \in C(\bar{I}) \), atunci \(u \in C^2(\bar{I}) \) și putem stabili (36) ca în remarka 26. Observăm că dacă \(u \) își atinge maximul pe \(\partial I \), să zicem în \(0 \), atunci \(u''(0) \leq 0 \) (se prelungește \(u \) prin reflexie la stânga lui \(0 \)).

REMARCA 28. – Presupunem că \(I = \mathbb{R} \). Fie \(f \in L^2(\mathbb{R}) \) și fie \(u \in H^2(\mathbb{R}) \) soluția problemei

\[-u'' + u = f \quad \text{în } \mathbb{R}.

Atunci

(36) \(\inf_\mathbb{R} f \leq u(x) \leq \sup_\mathbb{R} f \quad \forall x \in \mathbb{R} \).

(vezi [EX]).
VIII.6 Funcțiile proprii și descompunere spectrală

Fie $I = (0, 1)$. Avem

- Teorema VIII.20. Fie $p \in C^1(I)$ cu $p \geq \alpha > 0$ în I și $q \in C(I)$. Atunci există un șir $(\lambda_n)_{n \geq 1}$ de numere reale și o bază Hilbertiană $(e_n)_{n \geq 1}$ a lui $L^2(I)$ astfel încât $e_n \in C^2(I)$ și

$$
\begin{align*}
-(pe'_n)' + qe_n &= \lambda_ne_n \quad \text{în } I \\
e_n(0) = e_n(1) &= 0.
\end{align*}
$$

(38)

In plus, $\lambda_n \to +\infty$ dacă $n \to +\infty$.

Spunem că (λ_n) sunt valori proprii ale operatorului diferențial $Au = -(pu')' + qu$ cu condiții Dirichlet și că (e_n) sunt funcțiile proprii asociate.

Demonstrație. Putem presupune $q \geq 0$, dacă nu, alegem o constantă C astfel încât $q + C \geq 0$, ceea ce revine la a înlocui λ_n cu $\lambda_n + C$ în ecuația (38). Pentru orice $f \in L^2(I)$ există și este unic $u \in H^2(I) \cap H^1_0(I)$ care verifică

$$
\begin{align*}
-(pu')' + qu &= f \quad \text{în } I, \\
u(0) &= u(1) = 0.
\end{align*}
$$

(39)

Notăm cu T operatorul $f \mapsto u$ considerat ca operator de la $L^2(I)$ în $L^2(I)$ (16).

Verificăm că T este autoadjunct și compact. Avem, conform (39),

$$
\int_I pu'^2 + \int_I qu^2 = \int_I fu
$$

și deci $\alpha\|u'\|_{L^2}^2 \leq \|f\|_{L^2}\|u\|_{L^2}$. Rezultă că $\|u\|_{H^1} \leq C\|f\|_{L^2}$, unde C este o constantă care depinde doar de α. Prin urmare

$$
\|Tf\|_{H^1} \leq C\|f\|_{L^2} \quad \forall f \in L^2(I).
$$

16Am putea, de asemenea, privi T ca pe un operator de la H^1_0 în H^1_0 (vezi §IX.8).
Cum injecția de la $H^1(I)$ în $L^2(I)$ este compactă (deoarece I este mărghinit) deducem că T este un operator compact de la $L^2(I)$ în $L^2(I)$. Arătăm acum că T este autoadjunct, adică

$$\int_I (Tf)g = \int_I f(Tg) \quad \forall f, g \in L^2(I).$$

Într-adevăr, punând $u = Tf$ și $v = Tg$, avem

(40) $$-(pu')' + qu = f$$

și

(41) $$-(pv')' + qv = g.$$

Inmulțind (40) cu v și (41) cu u și integrând, obținem

$$\int_I pu'v' + \int_I quv = \int_I fv = \int_I gu.$$

Să notăm în final că

(42) $$\int_I (Tf)f = \int_I uf = \int_I pu'^2 + qu^2 \geq 0 \quad \forall f \in L^2(I)$$

și, pe de altă parte, că $N(T) = \{0\}$ deoarece $Tf = 0$ implică $u = 0$ și deci $f = 0$.

Conform teoremei VI.11, $L^2(I)$ admite o bază Hilbertiană $(e_n)_{n \geq 1}$ formată din vectori proprii ai lui T asociat valorilor proprii $(\mu_n)_{n \geq 1}$. Avem $\mu_n > 0$ (într-adevăr, $\mu_n \geq 0$ conform (42) și $\mu_n \neq 0$ deoarece $N(T) = \{0\}$). Mai știm că $\mu_n \to 0$.

Scriind $Te_n = \mu_n e_n$ obținem

$$-(pe_n')' + qe_n = \lambda_n e_n \quad \text{unde} \quad \lambda_n = \frac{1}{\mu_n}$$

In sfârșit, observăm că $e_n \in C^2(\bar{I})$ deoarece $f = \lambda_n e_n \in C(\bar{I})$ (de fapt, $e_n \in C^\infty(\bar{I})$ dacă $p, q \in C^\infty(\bar{I})$).

Exemplu. – Dacă $p \equiv 1$ și $q \equiv 0$ obținem

$$e_n(x) = \sqrt{2} \sin(n\pi x) \quad \text{și} \quad \lambda_n = n^2\pi^2, \ n = 1, 2, \ldots.$$

Remarca 29. – Pentru același operator diferențial, valorile proprii și funcțiile proprii depind de condițiile la limită. Cu titlu
de exerciți, se pot determina valorile proprii ale operatorului \(Au = -u'' \) cu condițiile la limită din exemplele 3, 5, 6 și 7.

REMARKA 30. – Ipoteza că \(I \) este mărginit a intervenit în mod esențial pentru a stabili **compactitatea** operatorului \(T \). Dacă \(I \) este nemărginit concluzia teoremei VIII.20 este în general falsă (17); întâlnim atunci fenomenul foarte interesant al **spectrului continuu**, vezi Reed-Simon [1]. Cu titlu de exerciți se pot determina valorile proprii și spectrul operatorului \(T : f \mapsto u \) unde \(u \in H^2(\mathbb{R}) \) este soluție a ecuației \(-u'' + u = f \) în \(\mathbb{R} \) (\(T \) este un operator mărginit și autoadjunct de la \(L^2(\mathbb{R}) \) în \(L^2(\mathbb{R}) \), dar el nu este compact); vezi [EX].

VIII.7 Comentarii asupra capitolului VIII

1) **Câteva inegalități**

Semnalăm câteva inegalități foarte utile legate de normele Sobolev.

A) Inegalitatea lui Poincaré-Wirtinger

Fie \(I \) un interval dat. Fiind dat \(u \in L^1(I) \), punem \(\bar{u} = \frac{1}{|I|} \int_I u \) (aceasta este media lui \(u \) pe \(I \)). Avem

\[
\|u - \bar{u}\|_{L^\infty} \leq \|u'\|_{L^1} \quad \forall u \in W^{1,1}(I)
\]

(vezi [EX]).

B) Inegalitatea lui Hardy

Fie \(I = (0,1) \) și \(u \in W^{1,p}_0(I) \) cu \(1 < p < \infty \). Atunci \(\frac{u(x)}{x(1-x)} \in L^p(I) \) și, în plus,

\[
\left\| \frac{u(x)}{x(1-x)} \right\|_{L^p} \leq C_{L^p}\|u'\|_{L^p} \quad \forall u \in W^{1,p}_0(I)
\]

(vezi [EX]).

C) Inegalitățile de interpolare Gagliardo-Nirenberg

Fie \(I \) un interval mărginit și \(1 \leq r \leq \infty, 1 \leq q \leq p \leq \infty \). Atunci există o constantă \(C \) astfel încât

\[
\|u\|_{L^p} \leq C\|u\|_{L^q}^{1-r} \|u\|_{W^{1,r}}^r \quad \forall u \in W^{1,r}(I)
\]

(43)

\(^{17}\)În anumite circumstanțe concluzia teoremei VIII.20 rămâne adevărată (vezi [EX]).
unde \(0 \leq a \leq 1\) este definit prin
\[a = \frac{1}{q} - \frac{1}{r} + 1 = \frac{1}{q} - \frac{1}{p}; \text{ vezi [EX].} \]

Din inegalitatea (43) deducem în particular că dacă \(p < \infty\) (sau dacă \(p = \infty\) dar \(r > 1\)), atunci

\[
\forall \varepsilon > 0 \exists C_\varepsilon \text{ astfel încât } \|u\|_{L^p} \leq \varepsilon \|u\|_{W^{1,r}} + C_\varepsilon \|u\|_{L^q} \quad \forall u \in W^{1,r}(I). \tag{44}
\]

(Putem stabili (44) și printr-o “
metodă de compacitate”; vezi [EX]).

Inegalități mai generale se pot găsi în Nirenberg [1] (vezi, de asemenea, Friedman [2] sau [EX]). Notăm, între altele inegalitatea

\[
\|u'\|_{L^p} \leq C\|u\|_{W^{1,r}}^{1/2}\|u\|_{L^r}^{1/2} \quad \forall u \in W^{2,r}(I)
\]

unde \(p\) este media armonică a lui \(q\) și \(r\), adică \(p = \frac{1}{2} \left(\frac{1}{q} + \frac{1}{r}\right)\).

2) Operatori Hilbert-Schmidt

Fie \(I\) un interval mărginit. Se arată că operatorul \(T : f \mapsto u\) care asociază fiecărui \(f\) din \(L^2(I)\) unica soluție \(u\) a problemei

\[
\begin{cases}
-(pu')' + qu = f \in I = (0,1) \\
u(0) = u(1) = 0
\end{cases}
\]

(cu \(p \geq \alpha > 0\) și \(q \geq 0\)) este un operator Hilbert-Schmidt de la \(L^2(I)\) în \(L^2(I)\); vezi [EX].

3) Proprietăți spectrale

Se cunosc numeroase proprietăți spectrale ale operatorului Sturm-Liouville \(Au = -(pu')' + qu\) cu condiție Dirichlet pe \(I\). Printre altele, știm că:

A) fiecare valoare proprie are multiplicitatea 1: de aceea spunem că fiecare valoare proprie este simplă.

B) dacă aranjăm valorile proprii \((\lambda_n)\) într-un șir crescător, atunci funcția proprie \(e_n(x)\) corespunzătoare lui \(\lambda_n\) posedă exact \((n - 1)\) rădăcini în \((0,1)\); în particular, prima funcție proprie \(e_1(x)\) are semn constant pe \((0,1)\).
C) câtul \(\frac{\lambda_n}{n^2} \) converge când \(n \to \infty \) la o limită pozitivă.

Referitor la aceste probleme se pot consulta lucrările Weinberger [1], Protter-Weinberger [1], Coddington-Levinson [1], Hartman [1] și Agmon [1].
Capitolul IX

SPAȚII SOBOLEV ȘI FORMULAREA VARIAȚIONALĂ A PROBLEMElor LA LIMITĂ ELIPTICE ÎN DIMENSIUNE N

IX.1 Definiția și proprietățile elementare ale spațiilor Sobolev $W^{1,p}(\Omega)$

Fie $\Omega \subset \mathbb{R}^N$ un deschis și fie $p \in \mathbb{R}$ cu $1 \leq p \leq \infty$.

Definitie. – Spațiul Sobolev $W^{1,p}(\Omega)$ se definește prin (1)

$$ W^{1,p}(\Omega) = \left\{ u \in L^p(\Omega) \mid \exists g_1, g_2, \ldots, g_N \in L^p(\Omega) \text{ astfel încât} \right. $$

$$ \left. \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} = - \int_{\Omega} g_i \varphi \quad \forall \varphi \in C^\infty_c(\Omega), \quad \forall i = 1, 2, \ldots, N \right\}. $$

Fie

$$ H^1(\Omega) = W^{1,2}(\Omega). $$

Pentru $u \in W^{1,p}(\Omega)$ definim $\frac{\partial u}{\partial x_i} = g_i$ (2) și scriem

$$ \nabla u = \text{grad } u = \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \ldots, \frac{\partial u}{\partial x_N} \right). $$

1Când nu există pericol de confuzie vom scrie $W^{1,p}$ în loc de $W^{1,p}(\Omega)$.
2Această definiție are sens: g_i este unic conform lemei IV.2.
Spatiul $W^{1,p}(Ω)$ este inzestrat cu norma

$$\|u\|_{W^{1,p}} = \|u\|_{L^p} + \sum_{i=1}^{N} \left\| \frac{\partial u}{\partial x_i} \right\|_{L^p}$$

sau uneori cu norma echivalentă

$$\left(\|u\|_{L^p}^p + \sum_{i=1}^{N} \left\| \frac{\partial u}{\partial x_i} \right\|_{L^p}^p \right)^{1/p}$$
(dacă $1 \leq p < \infty$).

Spatiul $H^1(Ω)$ este inzestrat cu produsul scalar

$$\langle u, v \rangle_{H^1} = \langle u, v \rangle_{L^2} + \sum_{i=1}^{N} \left(\frac{\partial u}{\partial x_i}, \frac{\partial v}{\partial x_i} \right)_{L^2} = \int_{Ω} uv + \sum_{i=1}^{N} \int_{Ω} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i}$$

cu norma asociată

$$\|u\|_{H^1} = \left(\|u\|_{L^2}^2 + \sum_{i=1}^{N} \left\| \frac{\partial u}{\partial x_i} \right\|_{L^2}^2 \right)^{1/2},$$

care este echivalentă cu norma din $W^{1,2}$.

- **Propoziția IX.1.** - Spatiul $W^{1,p}(Ω)$ este un spațiu Banach pentru $1 \leq p \leq \infty$; $W^{1,p}(Ω)$ este reflexiv pentru $1 < p < \infty$ și este separabil pentru $1 \leq p < \infty$.

Spatiul $W^1(Ω)$ este un spațiu Hilbert separabil.

Demonstrație. - Se adaptează demonstrația propoziției VIII.1 (folosind operatorul $Tu = [u, \nabla u]$).

Remarca 1. - În definiția lui $W^{1,p}$ se poate utiliza ca spațiu de funcții test fie $C^\infty_c(Ω)$ fie $C^1_c(Ω)$ (pentru a demonstra acest lucru se folosește un şir regularizant (ρ_n)).

Remarca 2. - Este clar că dacă $u \in C^1(Ω) \cap L^p(Ω)$ și $\frac{\partial u}{\partial x_i} \in L^p(Ω)$ pentru orice $i = 1, 2, \ldots, N$ (aici $\frac{\partial u}{\partial x_i}$ semnifică derivata parțială uzuală a lui u), atunci $u \in W^{1,p}(Ω)$. În plus, derivatele parțiale în sens uzual coincid cu derivatele parțiale în sens $W^{1,p}$. În particular, dacă $Ω$ este mărginii, atunci $C^1(Ω) \subset W^{1,p}(Ω)$ pentru orice $1 \leq p \leq \infty$. Reciproc, se demonstrează că dacă $u \in W^{1,p}(Ω) \cap C(Ω)$ cu $1 \leq p \leq \infty$ și dacă
\[\frac{\partial u}{\partial x_i} \in C(\Omega) \text{ pentru orice } i = 1, 2, \ldots, N \text{ (aici } \frac{\partial u}{\partial x_i} \text{ reprezintă derivata parțială în sens } W^{1,p}) \text{, atunci } u \in C^1(\Omega) \text{ (vezi [EX]).} \]

* **Remarca 3.** – Fie \(u \in L^1_{loc}(\Omega); \text{ teoria distribuțiilor permite să se dea un sens expresiei } \frac{\partial u}{\partial x_i} \text{ (} \frac{\partial u}{\partial x_i} \text{ este un element al “uriasului” spațiu al distribuțiilor } D'(\Omega), \text{ spațiu care conține în particular } L^1_{loc}(\Omega)) \text{. Utilizând limbașul distribuțiilor putem spune că } W^{1,p}(\Omega) \text{ este multimea funcțiilor } u \in L^p(\Omega) \text{ astfel încât toate derivatele parțiale } \frac{\partial u}{\partial x_i}, 1 \leq i \leq N \text{ (în sensul distribuțiilor) aparțin lui } L^p(\Omega). \]

Dacă \(\Omega = \mathbb{R}^N \) și \(p = 2 \) se pot defini spațiile Sobolev folosind și transformata Fourier; vezi de exemplu Lions-Magenes [1], Goulaouic [1] sau Malliavin [1]. Nu vom folosi acest punct de vedere în cele ce urmează.

Remarca 4. – Este convenabil de reținut următoarele aspecte:

a) Fie \((u_n) \) un șir din \(W^{1,p}(\Omega) \) astfel încât \(u_n \to u \) în \(L^p \) și \((\nabla u_n) \) converge către o anumită limită în \((L^p)^N \). Atunci \(u \in W^{1,p}(\Omega) \) și \(\|u_n - u\|_{W^{1,p}} \to 0 \).

Dacă \(1 < p \leq \infty \) este suficient să știm că \(u_n \to u \) în \(L^p \) și \((\nabla u_n) \) este mărginit în \((L^p)^N \) pentru a deduce că \(u \in W^{1,p}(\Omega) \).

b) Fiiind dată o funcție \(f \) definită pe \(\Omega \) notăm cu \(\tilde{f} \) prelungirea sa cu \(0 \) în afara lui \(\Omega \), adică

\[
\tilde{f}(x) = \begin{cases}
 f(x) & \text{dacă } x \in \Omega \\
 0 & \text{dacă } x \in \mathbb{R}^N \setminus \Omega.
\end{cases}
\]

Fie \(u \in W^{1,p}(\Omega) \) și \(\alpha \in C^1_c(\Omega) \). Atunci (3)

\[
\overline{\alpha u} \in W^{1,p}(\mathbb{R}^N) \text{ și } \frac{\partial}{\partial x_i}(\overline{\alpha u}) = \alpha \frac{\partial u}{\partial x_i} + \frac{\partial \alpha}{\partial x_i} u.
\]

Intr-adevăr, fie \(\varphi \in C^1_c(\mathbb{R}^N) \); avem

\[
\int_{\mathbb{R}^N} \overline{\alpha u} \frac{\partial \varphi}{\partial x_i} = \int_{\Omega} \alpha u \frac{\partial \varphi}{\partial x_i} = \int_{\Omega} u \left[\frac{\partial}{\partial x_i}(\alpha \varphi) - \frac{\partial \alpha}{\partial x_i} \varphi \right] = -\int_{\Omega} \left(\frac{\partial u}{\partial x_i} \alpha \varphi + u \frac{\partial \alpha}{\partial x_i} \varphi \right) = -\int_{\mathbb{R}^N} \left(\alpha \frac{\partial u}{\partial x_i} + \frac{\partial \alpha}{\partial x_i} u \right) \varphi.
\]

\[3\text{Atenție, în general } \tilde{u} \notin W^{1,p}(\mathbb{R}^N) \text{ (de ce?).} \]
Aceeași concluzie rămâne valabilă dacă, în loc să presupunem că \(\alpha \in C^1_c(\Omega) \), luăm \(\alpha \in C^1(R^N) \cap L^\infty(R^N) \) cu \(\nabla \alpha \in (L^\infty(R^N))^N \) și \(\text{Supp } \alpha \subset R^N \setminus (\partial \Omega) \).

Iată un prim rezultat de densitate; vom stabili ulterior (corolarul IX.8) un rezultat mai precis cu ipoteze suplimentare asupra lui \(\Omega \).

Teorema IX.2 (Friedrichs). Fie \(u \in W^{1,p}(\Omega) \) cu \(1 \leq p < \infty \). Atunci există un șir \((u_n) \) în \(C^\infty_c(R^N) \) astfel încât
\[
 u_n|\Omega \to u \quad \text{în } L^p(\Omega)
\]
și
\[
 \nabla u_n|\omega \to \nabla u|\omega \quad \text{în } (L^p(\omega))^N \quad \text{pentru orice } \omega \subset \subset \Omega.
\]

(Reamintim că notatia \(\omega \subset \subset \Omega \) semnifică faptul că \(\omega \) este un deschis astfel încât \(\overline{\omega} \subset \Omega \) și \(\overline{\omega} \) este compactă).

In demonstrație vom utiliza

Lema IX.1. Fie \(\rho \in L^1(R^N) \) și \(v \in W^{1,p}(R^N) \) cu \(1 \leq p \leq \infty \). Atunci
\[
 \rho \ast v \in W^{1,p}(R^N) \quad \text{și} \quad \frac{\partial}{\partial x_i}(\rho \ast v) = \rho \ast \frac{\partial v}{\partial x_i} \quad \forall i = 1, 2, \ldots, N.
\]

DEMONSTRĂTIA LEMEI IX.1. Se adaptează demonstrația lemei VIII.4.

DEMONSTRĂTIA TEOREMEI IX.2. Notăm
\[
 \bar{u}(x) = \begin{cases}
 u(x) & \text{dacă } x \in \Omega \\
 0 & \text{dacă } x \in R^N \setminus \Omega
\end{cases}
\]
și punem \(v_n = \rho_n \ast \bar{u} \) (unde \(\rho_n \) este un șir regularizant). Știm (vezi §IV.4) că \(v_n \in C^\infty(R^N) \) și \(v_n \to \bar{u} \) în \(L^p(R^N) \). Arătăm că \(\nabla v_n|\omega \to \nabla u|\omega \) în \((L^p(\omega))^N \) pentru orice \(\omega \subset \subset \Omega \). Intr-adevăr, fiind dat \(\omega \subset \subset \Omega \), fixăm o funcție \(\alpha \in C^1_c(\Omega) \), \(0 \leq \alpha \leq 1 \), astfel încât \(\alpha = 1 \) într-o vecinătate a lui \(\omega \) (o asemenea funcție există; vezi de exemplu [EX]). Observăm că pentru \(n \) suficient de mare avem
\[
 \rho_n \ast (\bar{u} \bar{u}) = \rho_n \ast \bar{u} \quad \text{în } \omega.
\]
Intr-adevăr

\[\text{Supp} \left(\rho_n \ast \overline{u} - \rho_n \ast \tilde{u} \right) = \text{Supp} \left[\rho_n \ast (1 - \bar{\alpha}) \tilde{u} \right] \]

\[\subset \text{Supp} \rho_n + \text{Supp} (1 - \bar{\alpha}) \tilde{u} \subset B \left(0, \frac{1}{n} \right) + \text{Supp} (1 - \bar{\alpha}) \subset \omega^c \]

pentru \(n \) suficient de mare. De aici rezultă (3).

Din lema IX.1 și remarca 4b) avem

\[\frac{\partial}{\partial x_i} (\rho_n \ast \alpha u) = \rho_n \ast \left(\alpha \frac{\partial u}{\partial x_i} + \frac{\partial \alpha}{\partial x_i} u \right). \]

Rezultă că

\[\frac{\partial}{\partial x_i} (\rho_n \ast \overline{u}) \rightarrow \alpha \frac{\partial u}{\partial x_i} + \frac{\partial \alpha}{\partial x_i} u \text{ în } L^p(\mathbb{R}^N). \]

In particular

\[\frac{\partial}{\partial x_i} (\rho_n \ast \overline{u}) \rightarrow \frac{\partial u}{\partial x_i} \text{ în } L^p(\omega) \]

și, conform (3),

\[\frac{\partial}{\partial x_i} (\rho_n \ast \tilde{u}) \rightarrow \frac{\partial u}{\partial x_i} \text{ în } L^p(\omega). \]

În final, se realizează o “troncătură” a șirului \((v_n)\) ca în demonstrația teoremei VIII.6. Mai precis, punem \(u_n = \zeta_n v_n \) (1). Se verifică cu ușurință că șirul \((u_n)\) are proprietățile dorite, adică \(u_n \in C^\infty_c(\mathbb{R}^N) \), \(u_n \rightarrow u \) în \(L^p(\Omega) \) și \(\nabla u_n \rightarrow \nabla u \) în \((L^p(\omega))^N \) pentru orice \(\omega \subset \subset \Omega \).

* REMARCA 5. – Se demonstrează (teorema Meyers-Serrin) că dacă \(u \in W^{1,p}(\Omega) \) cu \(1 \leq p < \infty \), atunci există un șir \((u_n)\) din \(C^\infty(\Omega) \cap W^{1,p}(\Omega) \) astfel încât \(u_n \rightarrow u \) în \(W^{1,p}(\Omega) \); demonstrația acestui rezultat este destul de delicată (vezi, de exemplu, Adams[1] sau Friedman [2]). \(^4 \)

\(^4\)De acum încolo vom nota sistematically prin \((\zeta_n)\) un șir de troncătură, adică se fixează o funcție \(\zeta \in C^\infty_c(\mathbb{R}^N) \) cu \(0 \leq \zeta \leq 1 \) și

\[\zeta(x) = \begin{cases}
1 & \text{dacă } |x| \leq 1 \\
0 & \text{dacă } |x| \geq 2
\end{cases} \]

și punem \(\zeta_n(x) = \zeta \left(\frac{x}{n} \right), \ n = 1, 2, \ldots \)
general, dacă Ω este un deschis arbitrar și dacă \(u \in W^{1,p}(\Omega) \) atunci nu se poate construi un șir \((u_n) \) astfel încât \(u_n|_{\Omega} \to u \) în \(W^{1,p}(\Omega) \) (vezi [EX]). A se compara teorema lui Meyers-Serrin (valabilă pentru un deschis arbitrar \(\Omega \)) cu corolarul IX.8 (care presupune că \(\Omega \) este neted).

Iată o caracterizare simplă a funcțiilor din \(W^{1,p} \):

Propoziția IX.3. – Fie \(u \in L^p(\Omega) \) cu \(1 < p \leq \infty \). Proprietățile următoare sunt echivalente:

\begin{itemize}
 \item[(i)] \(u \in W^{1,p}(\Omega) \),
 \item[(ii)] există o constantă \(C \) astfel încât
 \[
 \left| \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} \right| \leq C \| \varphi \|_{L^p(\Omega)} \quad \forall \varphi \in C^\infty_c(\Omega), \quad \forall i = 1, 2, \ldots, N,
 \]
 \item[(iii)] există o constantă \(C \) astfel încât pentru orice \(\omega \subset \subset \Omega \) și orice \(h \in \mathbb{R}^N \) cu \(|h| < \text{dist} (\omega, \partial \Omega) \) avem
 \[
 \| \tau_h u - u \|_{L^p(\omega)} \leq C|h|.
 \]
\end{itemize}

(In plus, se poate lua \(C = \| \nabla u \|_{L^p(\Omega)} \) în (ii) și (iii).)

\(\star \) **Remarca 6.** – Dacă \(p = 1 \) implicațiile următoare rămân valabile:

\((i) \Rightarrow (ii) \iff (iii) \).

Funcțiile care satisfac (ii) sau (iii) cu \(p = 1 \) se numesc **funcții cu variație mărginită** (în limbajul teoriei distribuțiilor, este vorba de funcții din \(L^1 \) ale căror derivate de ordinul întâi în sensul distribuțiilor sunt măsuri mărginite). Acest spațiu joacă un rol mai important decât spațiul \(W^{1,1} \); întâlnim funcții cu variație mărginită (sau de aceeași natură) în teoria **suprafețelor minimale** (vezi de exemplu e.g. Giusti [1] și lucrările citate ale lui DeGiori, Miranda etc.), în probleme de **plasticitate** (funcții cu deformație mărginită, vezi Temam-Strang [2] și lucrarea citată a lui Suquet), în ecuațiile **cvasilineare de ordinul întâi** care admit **soluții discontinue** sau **unde de șoc** (vezi, de exemplu, Volpert [1]).

\(\star \) **Remarca 7.** – Rezultă din teorema IV.25 și din propoziția IX.3 că dacă \(\mathcal{F} \) reprezintă bila unitate din \(W^{1,p}(\Omega) \) cu \(1 \leq p \leq \infty \) (\(\Omega \) deschis
arbitrar), atunci \mathcal{F}_{ω} este relativ compactă în $L^p(\omega)$ pentru orice $\omega \subset \subset \Omega$. Vom vedea ulterior (teorema IX.16 că dacă Ω este mărginit și neted, atunci \mathcal{F} este relativ compactă în $L^p(\Omega)$; această concluzie poate fi falsă dacă Ω este nemărginit sau dacă Ω nu este neted). Rezultă că dacă (u_n) este un șir mărginit în $W^{1,p}(\Omega)$ cu $1 \leq p \leq \infty$ și Ω este un deschis arbitră, atunci se poate extrage un subșir (u_{n_k}) astfel încât $u_{n_k}(x)$ converge a.p.t. în Ω (vezi [EX]).

Demonstrație. –

(i) \Rightarrow (ii). Evident.

(ii) \Rightarrow (i). Se procedează ca în demonstrația propoziției VIII.3.

(i) \Rightarrow (iii). Incepem prin a presupune că $u \in C_c^\infty(\mathbb{R}^N)$. Fie $h \in \mathbb{R}^N$ și definim

$$v(t) = u(x + th), \quad t \in \mathbb{R}.$$

Atunci $v'(t) = h \cdot \nabla u(x + th)$ și deci

$$u(x + h) - u(x) = v(1) - v(0) = \int_0^1 v'(t) \, dt = \int_0^1 h \cdot \nabla u(x + th) \, dt.$$

Prin urmare

$$|\tau_h u(x) - u(x)|^p \leq |h|^p \int_0^1 |\nabla u(x + th)|^p \, dt$$

și

$$\int_\omega |\tau_h u(x) - u(x)|^p \, dx \leq |h|^p \int_\omega dx \int_0^1 |\nabla u(x + th)|^p \, dt$$

$$= |h|^p \int_0^1 dt \int_\omega |\nabla u(x + th)|^p \, dx$$

$$= |h|^p \int_0^1 dt \int_{\omega + th} |\nabla u(y)|^p \, dy.$$

Fixând $|h| < \text{dist} (\omega, \Omega^c)$, există un deschis $\omega' \subset \subset \Omega$ astfel încât $\omega + th \subset \omega'$ pentru orice $t \in [0, 1]$ și deci

(4)

$$||\tau_h u - u||_{L^p(\omega)}^p \leq |h|^p \int_{\omega'} |\nabla u|^p.$$

Presupunem acum că $u \in W^{1,p}(\Omega)$ cu $1 \leq p < \infty$. Fie (u_n) în $C_c^\infty(\mathbb{R}^N)$ astfel încât $u_n \rightarrow u$ în $L^p(\Omega)$ și $\nabla u_n \rightarrow \nabla u$ în $(L^p(\omega))^N$, $\forall \omega \subset \subset \Omega$. Aplicăm inegalitatea (4) lui (u_n) și, prin trecere la limită, obținem (iii).
Dacă $p = \infty$, aplicăm cele de mai sus (pentru $p < \infty$) și apoi facem $p \to \infty$.

(iii) \Rightarrow (ii). Fie $\varphi \in C_c^\infty(\Omega)$. Considerăm un deschis ω astfel încât $\text{Supp}\varphi \subset \omega \subset \subset \Omega$. Fie $h \in \mathbb{R}^N$ cu $|h| < \text{dist}(\omega, \partial \Omega)$. Din (iii) rezultă că

$$\left| \int_\Omega (\tau_h u - u) \varphi \right| \leq C|h| \|\varphi\|_{L^p'(\Omega)}.$$

Pe de altă parte, din

$$\int_\Omega (u(x + h) - u(x)) \varphi(x) \, dx = \int_\Omega u(y)(\varphi(y - h) - \varphi(y)) \, dy$$

rezultă că

$$\left| \int_\Omega u(y) \frac{(\varphi(y - h) - \varphi(y))}{|h|} \, dy \right| \leq C\|\varphi\|_{L^p'(\Omega)}.$$

Alegând $h = te_i$, $t \in \mathbb{R}$, și trecând la limită când $t \to 0$ obținem (ii).

* Remarca 8. – Propoziția IX.3 ((i) \Rightarrow (iii)) arată că dacă $u \in W^{1,\infty}(\Omega)$ și Ω este un deschis convex, atunci

(5) $|u(x) - u(y)| \leq \|\nabla u\|_{L^\infty(\Omega)} \text{dist}_\Omega(x,y)$ a.p.t. $x,y \in \Omega$

unde $\text{dist}_\Omega(x,y)$ reprezintă distanța geodezică între x și y în Ω; rezultă de aici că u admite un reprezentant continuu care verifică (5) pentru orice $x,y \in \Omega$. Deducem că dacă $u \in W^{1,p}(\Omega)$ cu $1 \leq p \leq \infty$, Ω este un deschis oarecare și $\nabla u = 0$ a.p.t. în Ω, atunci u este constantă pe fiecare componentă conexă a lui Ω.

Observăm în sfârșit că dacă $u \in W^{1,\infty}(\Omega)$, unde Ω este un deschis convex, atunci

$$|u(x) - u(y)| \leq \|\nabla u\|_{L^\infty} |x - y| \quad \forall x,y \in \Omega.$$

Propoziția IX.4 (Derivarea unui produs). – Fie $u, v \in W^{1,p}(\Omega) \cap L^\infty(\Omega)$ cu $1 \leq p \leq \infty$. Atunci $uv \in W^{1,p}(\Omega) \cap L^\infty(\Omega)$ și

$$\frac{\partial}{\partial x_i}(uv) = \frac{\partial u}{\partial x_i}v + u \frac{\partial v}{\partial x_i}, \quad i = 1, 2, \ldots N.$$

Demonstrație. – Putem întotdeauna să ne situăm în cazul $1 \leq p < \infty$ (vezi demonstrația corolarului VIII.9).
Conform teoremei IX.2 există şirurile \((u_n), (v_n)\) în \(C_c^\infty(\mathbb{R}^N)\) astfel încât
\[
 u_n \to u, \quad v_n \to v \quad \text{în} \quad L^p(\Omega) \quad \text{și a.p.t. în} \quad \Omega,
\]
\[
 \nabla u_n \to \nabla u, \quad \nabla v_n \to \nabla v \quad \text{în} \quad (L^p(\omega))^N \quad \text{pentru orice} \quad \omega \subset \subset \Omega.
\]
Reluând demonstrația teoremei IX.2 observăm cu ușurință că avem, în plus,
\[
 \|u_n\|_{L^\infty(\mathbb{R}^N)} \leq \|u\|_{L^\infty(\Omega)} \quad \text{și} \quad \|v_n\|_{L^\infty(\mathbb{R}^N)} \leq \|v\|_{L^\infty(\Omega)}.
\]
Pe de altă parte,
\[
 \int_\Omega u_n v_n \frac{\partial \varphi}{\partial x_i} = - \int_\Omega \left(\frac{\partial u_n}{\partial x_i} v_n + u_n \frac{\partial v_n}{\partial x_i} \right) \varphi \quad \forall \varphi \in C^1_c(\Omega).
\]
Trecând la limită, folosind teorema convergenței dominate, avem
\[
 \int_\Omega uv \frac{\partial \varphi}{\partial x_i} = - \int_\Omega \left(\frac{\partial u}{\partial x_i} v + u \frac{\partial v}{\partial x_i} \right) \varphi \quad \forall \varphi \in C^1_c(\Omega).
\]

Propoziția IX.5 (Derivarea unei compuneri de funcții). – Fie \(G \in C^1(\mathbb{R})\) astfel încât \(G(0) = 0\) și \(|G'(s)| \leq M \quad \forall s \in \mathbb{R}\). Fie \(u \in W^{1,p}(\Omega)\) cu \(1 \leq p \leq \infty\), atunci
\[
 G \circ u \in W^{1,p}(\Omega) \quad \text{și} \quad \frac{\partial}{\partial x_i}(G \circ u) = (G' \circ u) \frac{\partial u}{\partial x_i}, \quad i = 1, 2, \ldots, N.
\]

Demonstrație. – Avem \(|G(s)| \leq M|s| \quad \forall s \in \mathbb{R}\) și deci \(|G \circ u| \leq M|u|\); prin urmare \(G \circ u \in L^p(\Omega)\) și, de asemenea, \((G' \circ u) \frac{\partial u}{\partial x_i} \in L^p(\Omega)\). Rămâne de verificat că
\[
 (6) \quad \int_\Omega (G \circ u) \frac{\partial \varphi}{\partial x_i} = - \int_\Omega (G' \circ u) \frac{\partial u}{\partial x_i} \varphi \quad \forall \varphi \in C^1_c(\Omega).
\]
Dacă \(1 \leq p < \infty\), alegem un șir \((u_n)\) în \(C_c^\infty(\mathbb{R}^N)\) astfel încât \(u_n \to u\) în \(L^p(\Omega)\) și a.p.t. în \(\Omega\), \(\nabla u_n \to \nabla u\) în \((L^p(\omega))^N\), \(\forall \omega \subset \subset \Omega\) (teorema IX.2). Avem
\[
 \int_\Omega (G \circ u_n) \frac{\partial \varphi}{\partial x_i} = - \int_\Omega (G' \circ u_n) \frac{\partial u_n}{\partial x_i} \varphi \quad \forall \varphi \in C^1_c(\Omega).
\]
Dar \(G \circ u_n \to G \circ u \) în \(L^p(\Omega) \) și \((G' \circ u_n) \frac{\partial u_n}{\partial x_i} \to (G' \circ u) \frac{\partial u}{\partial x_i} \) în \(L^p(\omega) \), \(\forall \omega \subset \subset \Omega \) (prin convergență dominată). De aici rezultă (6).

Dacă \(p = \infty \), fixăm un deschis \(\Omega' \) astfel încât \(\text{Supp} \varphi \subset \subset \Omega' \subset \subset \Omega \). Atunci \(u \in W^{1,p}(\Omega') \) \(\forall \omega < \infty \) și (6) rezultă din cele de mai sus.

Propoziția IX.6 (Formula de schimbare de variabilă). – Fie \(\Omega \) și \(\Omega' \) două multimi deschise în \(\mathbb{R}^N \) și \(H : \Omega' \to \Omega \) o aplicație bijectivă, \(x = H(y) \), astfel încât

\[H \in C^1(\Omega'), \quad H^{-1} \in C^1(\Omega), \quad \text{Jac} H \in L^\infty(\Omega'), \quad \text{Jac} H^{-1} \in L^\infty(\Omega) \, (5). \]

Fie \(u \in W^{1,p}(\Omega) \) cu \(1 \leq p \leq \infty \), atunci \(u \circ H \in W^{1,p}(\Omega') \) și

\[\frac{\partial}{\partial y_j} (u \circ H)(y) = \sum_i \frac{\partial u}{\partial x_i} (H(y)) \frac{\partial H_i}{\partial y_j} (y) \quad \forall j = 1, 2, \ldots, N. \]

Demonstrație. – Dacă \(1 \leq p < \infty \), alegem un sir \((u_n) \) în \(C^\infty_c(\mathbb{R}^N) \) astfel încât \(u_n \to u \) în \(L^p(\Omega) \) și \(\nabla u_n \to \nabla u \) în \((L^p(\omega))^N, \forall \omega \subset \subset \Omega \). Deci \(u_n \circ H \to u \circ H \) în \(L^p(\Omega') \) și

\[\left(\frac{\partial u_n}{\partial x_i} \circ H \right) \frac{\partial H_i}{\partial y_j} \to \left(\frac{\partial u}{\partial x_i} \circ H \right) \frac{\partial H_i}{\partial y_j} \text{ în } L^p(\omega') \quad \forall \omega' \subset \subset \Omega'. \]

Fiind dată \(\psi \in C^1(\Omega') \) avem

\[\int_{\Omega'} (u_n \circ H) \frac{\partial \psi}{\partial y_j} \, dy = - \int_{\Omega'} \sum_i \left(\frac{\partial u_n}{\partial x_i} \circ H \right) \frac{\partial H_i}{\partial y_j} \psi \, dy. \]

Prin trecere la limită obținem rezultatul dorit.

Dacă \(p = \infty \), se procedează ca la sfârșitul demonstrației propoziției IX.5.

Spații \(W^{m,p}(\Omega) \)

Fie \(m \geq 2 \) un întreg și \(p \) un număr real cu \(1 \leq p \leq \infty \). Definim prin recurență

\[W^{m,p}(\Omega) = \left\{ u \in W^{m-1,p}(\Omega) ; \frac{\partial u}{\partial x_i} \in W^{m-1,p}(\Omega) \quad \forall i = 1, 2, \ldots, N \right\}. \]

\(^5\text{Jac} H \) semnifică matricea Jacobiană \(\frac{\partial H_i}{\partial y_j} \); deci este vorba de o funcție din \((L^\infty(\Omega'))^{N \times N}\).
Alternativ, aceste spații pot fi introduse prin (6)

\[W^{m,p}(\Omega) = \left\{ u \in L^p(\Omega) \mid \forall \alpha \text{ cu } |\alpha| \leq m, \exists g_\alpha \in L^p(\Omega) \text{ astfel încât } \int_\Omega u D^\alpha \varphi = (-1)^{|\alpha|} \int_\Omega g_\alpha \varphi \quad \forall \varphi \in C_\infty(\Omega) \right\} \]

Notăm \(D^\alpha u = g_\alpha \).

Spațiul \(W^{m,p}(\Omega) \) înzestrat cu norma

\[\|u\|_{W^{m,p}} = \sum_{0 \leq |\alpha| \leq m} \|D^\alpha u\|_{L^p} \]

este un spațiu Banach.

Punem \(H^m(\Omega) = W^{m,2}(\Omega) \); \(H^m(\Omega) \) înzestrat cu produsul scalar

\[(u, v)_{H^m} = \sum_{0 \leq |\alpha| \leq m} (D^\alpha u, D^\alpha v)_{L^2} \]

este un spațiu Hilbert.

* Remarca 9. – Se demonstrează că dacă \(\Omega \) este “suficient de neted” cu \(\Gamma = \partial \Omega \) mărginită, atunci norma lui \(W^{m,p}(\Omega) \) este echivalentă cu norma

\[\|u\|_{L^p} + \sum_{|\alpha|=m} \|D^\alpha u\|_{L^p}. \]

Mai precis, se arată că pentru orice multi-indice \(\alpha \) cu \(0 < |\alpha| < m \) și pentru orice \(\varepsilon > 0 \) există o constantă \(C \) (depinzând de \(\Omega, \varepsilon, \alpha \)) astfel încât

\[\|D^\alpha u\|_{L^p} \leq \varepsilon \sum_{|\beta|=m} \|D^\beta u\|_{L^p} + C\|u\|_{L^p} \quad \forall u \in W^{m,p}(\Omega) \]

(vezi Adams [1] sau [EX]).

\footnote{Un multi-indice \(\alpha \) este un șir \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_N) \) cu \(\alpha_i \geq 0 \) număr întreg; punem

\[|\alpha| = \sum_{i=1}^N \alpha_i \quad \text{și} \quad D^\alpha \varphi = \frac{\partial^{\alpha_1+\alpha_2+\ldots+\alpha_N}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \ldots \partial x_N^{\alpha_N}} \varphi. \]
IX.2 Operatori de prelungire

Este adesea comod să stabilim proprietăți ale funcțiilor din $W^{1,p}(\Omega)$ începând cu cazul $\Omega = \mathbb{R}^N$ (vezi de exemplu rezultatele din §IX.3). Este deci util să stim să prelungim o funcție $u \in W^{1,p}(\Omega)$ la o funcție $\tilde{u} \in W^{1,p}(\mathbb{R}^N)$. Acest lucru nu este totdeauna posibil. Totuși dacă deschisul Ω este “neted” putem construi o asemenea prelungire. Incepem prin a preciza noțiunea de deschis neted.

Notăție. – Fiind dat $x \in \mathbb{R}^N$ scriem

$$x = (x', x_N)$$

cu $x' \in \mathbb{R}^{N-1}$, $x' = (x_1, x_2, \ldots, x_{N-1})$

și punem

$$|x'| = \left(\sum_{i=1}^{N-1} x_i^2 \right)^{1/2}.$$

Notăm

- $\mathbb{R}_+^N = \{x = (x', x_N); x_N > 0\}$,
- $Q = \{x = (x', x_N); |x'| < 1 \text{ și } |x_N| < 1\}$,
- $Q_+ = Q \cap \mathbb{R}_+^N$,
- $Q_0 = \{x = (x', 0); |x'| < 1\}$.

Definiție. – Spunem că un deschis Ω este de clasa C^1 dacă pentru orice $x \in \partial \Omega = \Gamma$ există o vecinătate U a lui x în \mathbb{R}^N și o aplicație bijectivă $H : Q \to U$ astfel încât

$$H \in C^1(\bar{Q}), H^{-1} \in C^1(\bar{U}), H(Q_+) = U \cap Q \text{ și } H(Q_0) = U \cap \Gamma.$$

H se numește o harta locală.

Teorema IX.7. – Presupunem că Ω este de clasa C^1 cu Γ mărginită (sau $\Omega = \mathbb{R}^N_+$). Atunci există un operator de prelungire $P : W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^N)$ astfel încât, pentru orice $u \in W^{1,p}(\Omega)$,

$$(i) \quad Pu_{|\Omega} = u,$$

$$(ii) \quad \|Pu\|_{L^p(\mathbb{R}^N)} \leq C\|u\|_{L^p(\Omega)},$$

$$(iii) \quad \|Pu\|_{W^{1,p}(\mathbb{R}^N)} \leq C\|u\|_{W^{1,p}(\Omega)},$$

$$(iv) \quad \|Pu\|_{W^{1,p}(\mathbb{R}^N)} \leq C\|u\|_{W^{1,p}(\Omega)}.$$
unde C depinde doar de Ω.

Începem prin a demonstra o lemă simplă, dar fundamentală, privind prelungirea prin reflexie.

Lema IX.2. – Fiind dată $u \in W^{1,p}(Q_+)$ cu $1 \leq p \leq \infty$ definim funcția u^* ca fiind prelungirea prin reflexie pe Q după cum urmează

$$ u^*(x',x_N) = \begin{cases} u(x',x_N) & \text{dacă } x_N > 0, \\ u(x',-x_N) & \text{dacă } x_N < 0. \end{cases} $$

Atunci $u^* \in W^{1,p}(Q)$ și

$$ \|u^*\|_{L^p(Q)} \leq 2\|u\|_{L^p(Q_+)}, \quad \|u^*\|_{W^{1,p}(Q)} \leq 2\|u\|_{W^{1,p}(Q_+)}.$$

Demonstratia. – Verificăm că

(7) $$ \frac{\partial u^*}{\partial x_i} = \left(\frac{\partial u}{\partial x_i} \right)^* \quad \text{pentru } 1 \leq i \leq N - 1 $$

și

(8) $$ \frac{\partial u^*}{\partial x_N} = \left(\frac{\partial u}{\partial x_N} \right)^\square, $$

unde $\left(\frac{\partial u}{\partial x_i} \right)^*$ reprezintă prelungirea prin a reflexie a lui $\frac{\partial u}{\partial x_i}$ și unde punem, pentru f definită pe Q_+,

$$ f^\square(x',x_N) = \begin{cases} f(x',x_N) & \text{dacă } x_N > 0, \\ -f(x',x_N) & \text{dacă } x_N < 0. \end{cases} $$

Vom folosi șirul de funcții (η_k) în $C(\mathbb{R})$ definit prin

$$ \eta_k(t) = \eta(kt), \quad t \in \mathbb{R}, \quad k = 1,2,\ldots $$

unde η este o funcție fixată, $\eta \in C(\mathbb{R})$, astfel încât

$$ \eta(t) = \begin{cases} 0 & \text{dacă } t < \frac{1}{2}, \\ 1 & \text{dacă } t > 1. \end{cases} $$
Pentru a demonstra (7), fie \(\varphi \in C^1_c(Q) \). Pentru \(1 \leq i \leq N-1 \), avem
\[
(9) \quad \int_Q u^* \frac{\partial \varphi}{\partial x_i} = \int_{Q_+} u \frac{\partial \psi}{\partial x_i}
\]
unde
\[
\psi(x', x_N) = \varphi(x', x_N) + \varphi(x', -x_N).
\]
Funcția \(\psi \) nu apartine în general lui \(C^1_c(Q_+) \) și deci nu poate fi utilizată ca funcție test, dar pe de altă parte,
\[
\eta_k(x_N) \psi(x', x_N) \in C^1_c(Q_+)
\]
și deci
\[
\int_{Q_+} u \frac{\partial}{\partial x_i} (\eta_k \psi) = -\int_{Q_+} \frac{\partial u}{\partial x_i} \eta_k \psi.
\]
Deoarece \(\frac{\partial}{\partial x_i} (\eta_k \psi) = \eta_k \frac{\partial \psi}{\partial x_i} \), avem
\[
(10) \quad \int_{Q_+} u \eta_k \frac{\partial \psi}{\partial x_i} = -\int_{Q_+} \frac{\partial u}{\partial x_i} \eta_k \psi.
\]
Trecând la limită în (10) cu \(k \to \infty \) (prin convergență dominată) obținem
\[
(11) \quad \int_{Q_+} u \frac{\partial \psi}{\partial x_i} = -\int_{Q_+} \frac{\partial u}{\partial x_i} \psi.
\]
Combinând (9) și (11) avem
\[
\int_Q u^* \frac{\partial \varphi}{\partial x_i} = -\int_{Q_+} \frac{\partial u}{\partial x_i} \psi = -\int_Q \left(\frac{\partial u}{\partial x_i} \right)^* \varphi,
\]
de unde rezultă (7).

Pentru a demonstra (8), fie \(\varphi \in C^1_c(Q) \). Avem
\[
(12) \quad \int_Q u^* \frac{\partial \varphi}{\partial x_N} = \int_{Q_+} u \frac{\partial \chi}{\partial x_N}
\]
unde \(\chi(x', x_N) = \varphi(x', x_N) - \varphi(x', -x_N) \). Observăm că \(\chi(x', 0) = 0 \) și deci există o constantă \(M \) astfel încât \(|\chi(x', x_N)| \leq M|x_N| \) în \(Q \).
Deoarece \(\eta_k \chi \in C^1_c(Q_+) \) avem
\[
(13) \quad \int_{Q_+} u \frac{\partial \chi}{\partial x_N} (\eta_k \chi) = -\int_{Q_+} \frac{\partial u}{\partial x_N} \eta_k \chi.
\]
Dar

\[\frac{\partial}{\partial x_N}(\eta_k \chi) = \eta_k \frac{\partial \chi}{\partial x_N} + k \eta'(k x_N) \chi. \]

Arătăm că

\[\int_{Q^+} u k \eta'(k x_N) \chi \to 0 \quad \text{dacă } k \to \infty. \]

Intr-adevăr, avem

\[\left| \int_Q u k \eta'(k x_N) \chi \right| \leq k MC \int_{0 < x_N < 1/k} |u| |x_N| \, dx \leq MC \int_{0 < x_N < 1/k} |u| \, dx \]

cu \(C = \text{Sup}_{t \in [0,1]} |\eta'(t)| \), de unde rezultă (15).

Din (13), (14) și (15) deducem că

\[\int_{Q^+} u \frac{\partial \chi}{\partial x_N} = - \int_{Q^+} \frac{\partial u}{\partial x_N} \chi. \]

În final, avem

\[\int_{Q^+} \frac{\partial u}{\partial x_N} \chi = \int_Q \left(\frac{\partial u}{\partial x_N} \right)^\nabla \varphi. \]

Combinând (12) și (16) obținem (8).

Concluzia lemei IX.2 rămâne valabilă dacă înlocuim \(Q^+ \) cu \(R^+_N \) (demonstrația este neschimbată) – ceea ce stabilește teorema IX.7 pentru \(\Omega = R^+_N \).

⋆ Remarca 10. – Lema IX.2 oferă o construcție foarte simplă a operatorilor de prelungire pentru anumiți deschiși \(\Omega \) care nu sunt de clasă \(C^1 \). Coinciderăm, de exemplu,

\[\Omega = \{ x \in \mathbb{R}^2; \ 0 < x_1 < 1, \ 0 < x_2 < 1 \}. \]

Fie \(u \in W^{1,p}(\Omega) \). După patru reflexii succesive obținem o prelungire \(\tilde{u} \in W^{1,p}(\tilde{\Omega}) \) a lui \(u \) în

\[\tilde{\Omega} = \{ x \in \mathbb{R}^2; \ -1 < x_1 < 3, \ -1 < x_2 < 3 \}. \]
Fixăm apoi o funcție $\psi \in C^1_{c}(\tilde{\Omega})$ astfel încât $\psi = 1$ în Ω. Notăm cu Pu funcția ψ prelungită la \mathbb{R}^2 cu 0 în afara lui $\tilde{\Omega}$. Se arată cu ușurință că operatorul $P : W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^2)$ satisface (i), (ii) și (iii).

Vom utiliza în cele ce urmează

Lema IX.3 (Partiția unității). – Fie Γ un compact din \mathbb{R}^N și U_1, U_2, \ldots, U_k multimi deschise astfel încât $\Gamma \subset \bigcup_{i=1}^k U_i$.

Atunci există funcțiile $\theta_0, \theta_1, \theta_2, \ldots, \theta_k \in C^\infty(\mathbb{R}^N)$ astfel încât

(i) $0 \leq \theta_i \leq 1$ pentru $i = 0, 1, 2, \ldots, k$ și $\sum_{i=0}^k \theta_i = 1$ în \mathbb{R}^N;

(ii) \[\begin{cases} \text{Supp} \theta_i \text{ este compact} & \text{și Supp} \theta_i \subset U_i \text{ pentru } i = 1, 2, \ldots, k \\ \text{Supp} \theta_0 \subset \mathbb{R}^N \setminus \Gamma. \end{cases} \]

Dacă Ω este o multime deschisă și mărginită și $\Gamma = \partial \Omega$, atunci $\theta_0|\Omega \in C^\infty_c(\Omega)$.

Demonstrație. – Vei [EX]. Această lema este clasică; se pot găsi enunțuri asemănătoare în Agmon [1], Adams [1], Folland [1], L. Schwartz [1], Malliavin [1].

Demonstrația teoremei IX.7. – “Rectificăm” $\Gamma = \partial \Omega$ prin hărți locale și introducem o partiție a unității (7). Mai precis, deoarece Γ este compactă și de clasă C^1, există multimile deschise $(U_i)_{1 \leq i \leq k}$ în \mathbb{R}^N astfel încât $\Gamma \subset \bigcup_{i=1}^k U_i$ și aplicațiile bijective $H_i : Q \to U_i$ astfel încât $H_i \in C^1(Q)$, $H_i^{-1} \in C^1(U_i)$, $H_i(Q_+ \cap \Omega) = U_i \cap \Omega$ și $H_i(Q_0) = U_i \cap \Gamma$.

Considerăm funcțiile $\theta_0, \theta_1, \theta_2, \ldots, \theta_k$ introduse în lema IX.3. Fiind dat $u \in W^{1,p}(\Omega)$, scriem $u = \sum_{i=0}^k \theta_i u = \sum_{i=0}^k u_i$ unde $u_i = \theta_i u$.

În continuare vom utiliza frecvent această tehnică pentru a trece de la un rezultat demonstrat pe \mathbb{R}^N_+ (sau Q_+) la aceeași concluzie pentru un deschis neted Ω.
Prelungim acum fiecare dintre funcțiile \(u_i \) la \(\mathbb{R}^N \) distingând \(u_0 \) și \((u_i)_{1 \leq i \leq k} \).

\textbf{a) Prelungirea lui} \(u_0 \). – Definim prelungirea lui \(u_0 \) la \(\mathbb{R}^N \) prin

\[
\bar{u}_0(x) = \begin{cases}
 u_0(x) & \text{dacă } x \in \Omega, \\
 0 & \text{dacă } x \in \mathbb{R}^N \setminus \Omega.
\end{cases}
\]

Reamintim că \(\theta_0 \in C^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N) \) și \(\nabla \theta_0 \in L^\infty(\mathbb{R}^N) \) deoarece \(\nabla \theta_0 = -\sum_{i=1}^k \nabla \theta_i \) este cu suport compact și \(\text{Supp} \theta_0 \subset \mathbb{R}^N \setminus \Gamma \). Rezultă (din remarca 4b) că

\[
\bar{u}_0 \in W^{1,p}(\mathbb{R}^N) \text{ și } \frac{\partial}{\partial x_i} \bar{u}_0 = \theta_0 \frac{\partial \theta}{\partial x_i} + \frac{\partial \theta_0}{\partial x_i} \bar{u}.
\]

Deci

\[
\| \bar{u}_0 \|_{W^{1,p}(\mathbb{R}^N)} \leq C \| u \|_{W^{1,p}(\Omega)}.
\]

\textbf{b) Prelungirea lui} \(u_i, \ 1 \leq i \leq k \). – Considerăm restricția lui \(u \) la \(U_i \cap \Omega \) și “transportăm” această funcție pe \(Q_+ \) cu ajutorul lui \(H_i \). Mai precis, fie \(v_i(y) = u(H_i(y)) \) pentru \(y \in Q_+ \). Știm (propoziția IX.6) că \(v_i \in W^{1,p}(Q_+) \). Definim apoi pe \(Q \) prelungirea prin reflexie a lui \(v_i \) (lema IX.2), fie aceasta \(v_i^* \). Știm că \(v_i^* \in W^{1,p}(Q) \). Apoi “retransportăm” \(v_i^* \) pe \(U_i \) folosind \(H_i^{-1} \), fie acesta \(w_i \):

\[
w_i(x) = v_i^*[H_i^{-1}(x)] \quad \text{pentru } x \in U_i.
\]

Atunci \(w_i \in W^{1,p}(U_i), \ w_i = u \ în \ U_i \cap \Omega \ și

\[
\| w_i \|_{W^{1,p}(U_i)} \leq C \| u \|_{W^{1,p}(U_i \cap \Omega)}.
\]

In final, punem pentru \(x \in \mathbb{R}^N \)

\[
\hat{u}_i(x) = \begin{cases}
 \theta_i(x)w_i(x) & \text{dacă } x \in U_i, \\
 0 & \text{dacă } x \in \mathbb{R}^N \setminus U_i,
\end{cases}
\]

astfel că \(\hat{u}_i \in W^{1,p}(\mathbb{R}^N) \) (remarca 4b)), \(\hat{u}_i = u_i \ în \ \Omega \ și

\[
\| \hat{u}_i \|_{W^{1,p}(\mathbb{R}^N)} \leq C \| u \|_{W^{1,p}(U_i \cap \Omega)}.
\]
c) Concluzii. – Operatorul \(Pu = \bar{u}_0 + \sum_{i=1}^{k} \hat{u}_i \) are toate proprietățile cerute.

- Corolarul IX.8 (Densitate). – Presupunem că \(\Omega \) este de clasă \(C^1 \) și fie \(u \in W^{1,p}(\Omega) \) cu \(1 \leq p < \infty \). Atunci există un șir \((u_n)\) în \(C_c^\infty(\mathbb{R}^N) \) astfel încât \(u_n|_{\Omega} \to u \) în \(W^{1,p}(\Omega) \). Cu alte cuvinte, restricțiile la \(\Omega \) ale funcțiilor din \(C_c^\infty(\mathbb{R}^N) \) formează un subspațiu dens al lui \(W^{1,p}(\Omega) \).

Demonstrație. – Presupunem mai întâi că \(\Gamma \) este mărginită. Atunci există un operator de prelungire \(P \) (teorema IX.7). Șirul \(\zeta_n(\rho_n \ast Pu) \) converge la \(Pu \) în \(W^{1,p}(\mathbb{R}^N) \) și deci răspunde cerințelor teoremei. Dacă \(\Gamma \) este nemărginită, începem prin a considera șirul \(\zeta_n u \). Fiind dat \(\varepsilon > 0 \), fixăm \(n_0 \) astfel încât \(\| \zeta_{n_0} u - u \|_{W^{1,p}} < \varepsilon \). Astfel putem construi o prelungire \(v \in W^{1,p}(\mathbb{R}^N) \) a lui \(\zeta_{n_0} u \) (deoarece singurul lucru care intervine este intersectia lui \(\Gamma \) cu o bilă largă). Fabricăm apoi \(w \in C_c^\infty(\mathbb{R}^N) \) astfel încât \(\| w - v \|_{W^{1,p}(\mathbb{R}^N)} < \varepsilon \).

IX.3 Inegalitățile lui Sobolev

În capitolul VIII am văzut că dacă \(\Omega \) este de dimensiune 1, atunci \(W^{1,p}(\Omega) \subset L^\infty(\Omega) \) cu înjecție continuă, pentru orice \(1 \leq p \leq \infty \). În dimensiune \(N \geq 2 \) această inclusiune rămâne valabilă doar dacă \(p > N \); pentru \(p \leq N \) putem construi funcții în \(W^{1,p} \) care nu aparțin lui \(L^\infty \) (vezi remarca 17 și [EX]). Totuși un rezultat important, datorat în mod esențial lui Sobolev, afirmă că dacă \(1 \leq p < N \) atunci \(W^{1,p}(\Omega) \subset L^{p^*}(\Omega) \) cu înjecție continuă, pentru un anumit \(p^* \in (p, +\infty) \).

Începem prin a considera

A) Cazul \(\Omega = \mathbb{R}^N \).

- Teorema IX.9 (Sobolev, Gagliardo, Nirenberg). – Fie \(1 \leq p < N \). Atunci

\[
W^{1,p}(\mathbb{R}^N) \subset L^{p^*}(\mathbb{R}^N) \quad \text{unde } p^* \text{ este dat de } \frac{1}{p^*} = \frac{1}{p} - \frac{1}{N},
\]

\(\forall n_0 \) este un șir regularizant și \((\zeta_n)\) este un șir de troncatură ca în demonstrația teoremei IX.2.
și există o constantă $C = C(p, N)$ (*ș) astfel încât
\[(17) \quad \|u\|_{L^p} \leq C\|
abla u\|_{L^p} \quad \forall u \in W^{1,p}(\mathbb{R}^N).\]

Remarca 11. – Valoarea lui p^* se poate obține printr-un argument foarte simplu de omogenitate (de reținut că argumentele prin omogenitate dau uneori informații interesante cu minimum de efort). Într-adevăr, dacă există constantele C și q $(1 \leq q \leq \infty)$ astfel încât
\[(18) \quad \|u\|_{L^q} \leq C\|
abla u\|_{L^p} \quad \forall u \in W^{1,p}(\mathbb{R}^N),\]
atunci, în mod necesar, $q = p^*$. Pentru a vedea acest lucru alegem în (18) $u_\lambda(x) = u(\lambda x)$ $(\lambda > 0)$ în loc de u. Rezultă că
\[\|u\|_{L^q} \leq C\lambda^{(1 + \frac{N}{q} - \frac{N}{p})}\|
abla u\|_{L^p} \quad \forall \lambda > 0,\]
ceea ce implică $q = p^*$.

În demonstrația teoremei IX.9 folosim

Lema IX.4. – Fie $N \geq 2$ și $f_1, f_2, \ldots, f_N \in L^{N-1}(\mathbb{R}^{N-1})$. Pentru $x \in \mathbb{R}^N$ și $1 \leq i \leq N$ fie
\[\hat{x}_i = (x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_N) \in \mathbb{R}^{N-1}.\]
Atunci funcția
\[f(x) = f_1(\hat{x}_1)f_2(\hat{x}_2)\ldots f_N(\hat{x}_N), \quad x \in \mathbb{R}^N\]
apărține lui $L^1(\mathbb{R}^N)$ și
\[\|f\|_{L^1(\mathbb{R}^N)} \leq \prod_{i=1}^N \|f_i\|_{L^{N-1}(\mathbb{R}^{N-1})}.\]

Demonstrație. – Cazul $N = 2$ este trivial. Considerăm cazul $N = 3$. Avem
\[
\int_{\mathbb{R}} |f(x)| \, dx_3 = |f_3(x_1, x_2)| \int_{\mathbb{R}} |f_1(x_2, x_3)||f_2(x_1, x_3)| \, dx_3 \\
\leq |f_3(x_1, x_2)| \left(\int_{\mathbb{R}} |f_1(x_2, x_3)|^2 \, dx_3 \right)^{1/2} \left(\int_{\mathbb{R}} |f_2(x_1, x_3)|^2 \, dx_3 \right)^{1/2}.
\]

Putem lua $C(p, N) = (N - 1)p/(N - p)$ dar această constantă nu este optimă; cea mai bună constantă este cunoscută (și complicată), vezi Th. Aubin [1], Talenti [1] și Lieb [1].
INEGALITĂȚILE LUI SOBOLEV

(prin Cauchy-Schwarz). Aplicând din nou inegalitatea lui Cauchy-Schwarz avem

$$\int_{\mathbb{R}^3} |f(x)| \, dx \leq \|f_3\|_{L^2(\mathbb{R}^2)} \|f_1\|_{L^2(\mathbb{R}^2)} \|f_2\|_{L^2(\mathbb{R}^2)}.$$

Cazul general se obține prin inducție; admitem rezultatul pentru N și îl deducem pentru $N + 1$. **Fixăm** $x_{N+1} \in \mathbb{R}$; conform inegalității lui Hölder avem

$$\int_{\mathbb{R}^N} |f(x)| \, dx_1 dx_2 \ldots dx_N \leq \|f_{N+1}\|_{L^N(\mathbb{R}^N)} \left[\int |f_1 f_2 \ldots f_N|^{N'} \, dx_1 dx_2 \ldots dx_N \right]^{1/N'}$$

(cu $N' = N/(N - 1)$). Aplicând ipoteza de inducție funcțiilor $|f_1|^{N'}, |f_2|^{N'}, \ldots, |f_N|^{N'}$ obținem

$$\int_{\mathbb{R}^N} |f_1|^{N'} \ldots |f_N|^{N'} \, dx_1 \ldots dx_N \leq \prod_{i=1}^N \|f_i\|_{L^N(\mathbb{R}^{N-1})}^{N'}.$$

De aici rezultă că

$$\int_{\mathbb{R}^N} |f(x)| \, dx_1 \ldots dx_N \leq \|f_{N+1}\|_{L^N(\mathbb{R}^N)} \prod_{i=1}^N \|f_i\|_{L^N(\mathbb{R}^{N-1})}.$$

Facem acum să **variezăm** x_{N+1}. Fiecare dintre funcțiile $x_{N+1} \mapsto \|f_i\|_{L^N(\mathbb{R}^{N-1})}$ aparține lui $L^N(\mathbb{R})$, $1 \leq i \leq N$. In consecință, produsul $\prod_{i=1}^N \|f_i\|_{L^N(\mathbb{R}^{N-1})}$ aparține lui $L^1(\mathbb{R})$ (vezi remarca 2 ce urmează inegalității lui Hölder în capitolul IV) și

$$\int_{\mathbb{R}^{N+1}} |f(x)| \, dx_1 dx_2 \ldots dx_N dx_{N+1} \leq \prod_{i=1}^{N+1} \|f_i\|_{L^N(\mathbb{R}^N)}.$$

DEMONSTRĂTIA TEOREMEI IX.9. – Începem cu cazul $p = 1$ și $u \in C^1_c(\mathbb{R}^N)$. Avem

$$|u(x_1, x_2, \ldots, x_N)| = \left| \int_{-\infty}^{x_1} \frac{\partial u}{\partial x_1}(t, x_L, \ldots, x_N) \, dt \right| \leq \int_{-\infty}^{+\infty} \left| \frac{\partial u}{\partial x_1}(t, x_2, \ldots, x_N) \right| \, dt.$$
și, în mod similar, pentru orice $1 \leq i \leq N$,

$$
|u(x_1, x_2, \ldots, x_N)| \leq \int_{-\infty}^{+\infty} \left| \frac{\partial u}{\partial x_i}(x_1, x_2, \ldots, x_{i-1}, t, x_{i+1}, \ldots x_N) \right| dt \quad \text{def} \quad f_i(\tilde{x}_i).
$$

Deci

$$
|u(x)|^N \leq \prod_{i=1}^{N} f_i(\tilde{x}_i).
$$

Din lema IX.4 deducem că

$$
\int_{\mathbb{R}^N} |u(x)|^{N/(N-1)} dx \leq \prod_{i=1}^{N} \|f_i\|_{L^1(\mathbb{R}^{N-1})}^{1/(N-1)} = \prod_{i=1}^{N} \left\| \frac{\partial u}{\partial x_i} \right\|_{L^1(\mathbb{R}^N)}^{1/(N-1)}.
$$

In consecință

(19) \quad \|u\|_{L^{N/(N-1)}(\mathbb{R}^N)} \leq \prod_{i=1}^{N} \left\| \frac{\partial u}{\partial x_i} \right\|_{L^1(\mathbb{R}^N)}^{1/N}.

Fie $t \geq 1$; aplicăm (19) lui $|u|^{t-1}u$ în loc de u. Obținem

(20) \quad \|u\|_{L^{tN/(N-1)}(\mathbb{R}^N)} \leq t \prod_{i=1}^{N} \left\| \frac{\partial u}{\partial x_i} \right\|_{L^1}^{1/N} \leq t \|u\|_{L^{p(t-1)}}^{t-1} \prod_{i=1}^{N} \left\| \frac{\partial u}{\partial x_i} \right\|_{L^p}^{1/N}.

Acum alegem t astfel încât $tN/(N-1) = p'(t-1)$, deci $t = (N-1)p^*/N$ ($t \geq 1$ deoarece $1 \leq p < N$). Obținem

$$
\|u\|_{p^*} \leq t \prod_{i=1}^{N} \left\| \frac{\partial u}{\partial x_i} \right\|_{L^p}^{1/N}.
$$

Deci

$$
\|u\|_{L^{p^*}} \leq C\|\nabla u\|_{L^p} \quad \forall u \in C^1_c(\mathbb{R}^N).
$$

Fie acum $u \in W^{1,p}(\mathbb{R}^N)$ și (u_n) un șir din $C^1_c(\mathbb{R}^N)$ astfel încât $u_n \to u$ în $W^{1,p}(\mathbb{R}^N)$. Putem presupune (trecând eventual la un subșir) că $u_n \to u$ a.p.t. Avem, pentru orice n

$$
\|u_n\|_{L^{p^*}} \leq C\|\nabla u_n\|_{L^p}.
$$
Aplicați lema lui Fatou \(^{10}\) obținem
\[u \in L^{p^*} \text{ și } \|u\|_{p^*} \leq C \|\nabla u\|_{L^p}. \]

- Corolarul IX.10. – Fie \(1 \leq p < N\). Atunci
\[W^{1,p}(\mathbb{R}^N) \subset L^q(\mathbb{R}^N) \quad \forall q \in [p, p^*] \]
cu injecții continue.

Demonstrație. – Fiind dat \(q \in [p, p^*]\) scriem
\[
\frac{1}{q} = \frac{\alpha}{p} + \frac{1 - \alpha}{p^*} \quad \text{cu } \alpha \in [0, 1].
\]
Știm (vezi remarca IV.2) că
\[
\|u\|_{L^q} \leq \|u\|_{L^p}^{1 - \alpha} \|u\|_{L^{p^*}}^{\alpha} \leq \|u\|_{L^p} + \|u\|_{L^{p^*}}
\]
(din inegalitatea lui Young). Folosind teorema IX.9 obținem
\[
\|u\|_{L^q} \leq C \|u\|_{W^{1,p}} \quad \forall u \in W^{1,p}(\mathbb{R}^N).
\]

- Corolarul IX.11 (Cazul limită \(p = N\)). – Avem
\[W^{1,p}(\mathbb{R}^N) \subset L^q(\mathbb{R}^N) \quad \forall q \in [N, +\infty) \]
cu injecție continuă.

Demonstrație. – Presupunem că \(u \in C^1_c(\mathbb{R}^N)\); aplicând (20) cu \(p = N\) găsim
\[
\|u\|_{L^{tN/(N-1)}} \leq t \|u\|_{L^t}^{t-1} \|u\|_{L^{(t-1)N/(N-1)}} \|\nabla u\|_{L^N} \quad \forall t \geq 1
\]
și, conform inegalității lui Young, obținem
\[
\|u\|_{L^{tN/(N-1)}} \leq C (\|u\|_{L^{t-1}} + \|\nabla u\|_{L^N}) \quad \forall t \geq 1.
\]
In (21) alegem \(t = N\); rezultă că
\[
\|u\|_{L^{N^2/(N-1)}} \leq C \|u\|_{W^{1,N}}
\]
\(^{10}\)Se poate obține aceeași concluzie remarcaând că şirul \((u_n)\) este un şir Cauchy în \(L^{p^*}\).
și, prin inegalitatea de interpolare (remarca IV.2) avem

\(\|u\|_{L^q} \leq C \|u\|_{W^{1,N}} \)

pentru orice \(N \leq q \leq \frac{N^2}{N-1} \).

Reiterând acest argument cu \(t = N + 1, t = N + 2, \text{ etc.} \), obținem

\(\|u\|_{L^q} \leq C \|u\|_{W^{1,N}} \quad \forall u \in C^1_c(\mathbb{R}^N) \)

pentru orice \(q \in [N, +\infty) \), cu o constantă \(C \) care depinde de \(q \) și \(N \) \(^{11} \).

Inegalitatea (23) se extinde prin densitate la \(W^{1,N} \).

- **Teorema IX.12 (Morrey).** – Fie \(p > N \). Atunci

\(W^{1,p}(\mathbb{R}^N) \subset L^\infty(\mathbb{R}^N) \)

cu injecții continue.

In plus, pentru orice \(u \in W^{1,p}(\mathbb{R}^N) \), avem

\(|u(x) - u(y)| \leq C |x - y|^{\alpha} \|\nabla u\|_{L^p} \quad \text{a.p.t.} \ x, y \in \mathbb{R}^N \)

unde \(\alpha = 1 - \frac{N}{p} \) și \(C \) este o constantă (care depinde doar de \(p \) și \(N \)).

Remarca 12. – Inegalitatea (25) implică existența unei funcții \(\tilde{u} \in C(\mathbb{R}^N) \) astfel încât \(u = \tilde{u} \) a.p.t. în \(\mathbb{R}^N \). [Într-adevăr, fie \(A \subset \mathbb{R}^N \) o mulțime neglijabilă astfel încât (25) are loc pentru orice \(x, y \in \mathbb{R}^N \setminus A \); deoarece \(\mathbb{R}^N \setminus A \) este densă în \(\mathbb{R}^N \), funcția \(u_{|\mathbb{R}^N\setminus A} \) admite o (unică) prelungire continuă la \(\mathbb{R}^N \). Cu alte cuvinte, orice funcție \(u \in W^{1,p}(\mathbb{R}^N) \) cu \(p > N \) admite un reprezentant continuu. În continuare vom înlocui în mod sistematic \(u \) prin reprezentantul său continuu când acest lucru va fi util.

Demonstrație. – Inceput prin a stabili (25) pentru \(u \in C^1_c(\mathbb{R}^N) \). Fie \(Q \) un cub deschis care conține 0, ale cărui laturi – de lungime \(r \) – sunt paralele cu axele de coordonate. Pentru \(x \in Q \) avem

\[u(x) - u(0) = \int_0^1 \frac{d}{dt} u(tx) \, dt \]

\(^{11}\text{și care “explodează” dacă } q \to +\infty.\)
și deci

\[(26) \quad |u(x) - u(0)| \leq \int_0^1 \sum_{i=1}^N |x_i| |\frac{\partial u}{\partial x_i}(tx)| \, dt \leq r \sum_{i=1}^N \int_0^1 |\frac{\partial u}{\partial x_i}(tx)| \, dt.\]

Fie

\[\bar{u} = \frac{1}{|Q|} \int_Q u(x) \, dx = \text{(media lui } u \text{ pe } Q).\]

Integrând (26) pe Q obținem

\[|\bar{u} - u(0)| \leq \frac{r}{|Q|} \int_Q \sum_{i=1}^N \int_0^1 |\frac{\partial u}{\partial x_i}(tx)| \, dt \]

\[= \frac{1}{r^{N-1}} \int_0^1 dt \int_Q \sum_{i=1}^N |\frac{\partial u}{\partial x_i}(tx)| \, dx \]

\[= \frac{1}{r^{N-1}} \int_0^1 dt \int_Q \sum_{i=1}^N |\frac{\partial u}{\partial x_i}(y)| \, dy \frac{t^N}{t^N}.\]

Dar, conform inegalității lui Hölder, avem

\[\int_{tQ} |\frac{\partial u}{\partial x_i}(y)| \, dy \leq \left(\int_Q \left|\frac{\partial u}{\partial x_i}\right|^p \right)^{1/p} |tQ|^{1/p'}\]

(deoarece \(tQ \subset Q\) pentru \(t \in (0, 1)\)). Deducem de aici că

\[|\bar{u} - u(0)| \leq \frac{1}{r^{N-1}} \left\|\nabla u\right\|_{L^p(Q)} r^{N/p'} \int_0^1 \frac{t^{N/p'}}{t^N} \, dt = \frac{r^{1-(N/p)}}{1 - (N/p)} \left\|\nabla u\right\|_{L^p(Q)}.\]

Prin translație, această inegalitate rămâne valabilă pentru orice cub \(Q\) de latură \(r\) ale cărui muchii sunt paralele cu axele de coordonate. Deci

\[(27) \quad |\bar{u} - u(x)| \leq \frac{r^{1-(N/p)}}{1 - (N/p)} \left\|\nabla u\right\|_{L^p(Q)} \quad \forall x \in Q.\]

Prin adunare (și din inegalitatea triumghiului) obținem

\[(28) \quad |u(x) - u(y)| \leq \frac{2r^{1-(N/p)}}{1 - (N/p)} \left\|\nabla u\right\|_{L^p(Q)} \quad \forall x, y \in Q.\]

Pentru două puncte oarecare \(x, y \in \mathbb{R}^N\) există un cub \(Q\) cu latură \(r = 2|x - y|\) conținând \(x\) și \(y\). Deducem de aici (25) pentru \(u \in C^1_c(\mathbb{R}^N)\).
Pentru cazul general \(u \in W^{1,p}(\mathbb{R}^N) \) folosim un şir \((u_n)\) din \(C^1_c(\mathbb{R}^N) \) astfel încât \(u_n \rightharpoonup u \) în \(W^{1,p}(\mathbb{R}^N) \) şi \(u_n \rightarrow u \) a.p.t.

Să arătăm acum (24). Fie \(u \in C^1_c(\mathbb{R}^N) \), \(x \in \mathbb{R}^N \), și \(Q \) un cub de latură \(r = 1 \) care conține \(x \). Din (27) avem

\[
|u(x)| \leq |\bar{u}| + C \|
abla u\|_{L^p(Q)} \leq C \|u\|_{W^{1,p}(Q)} \leq C \|u\|_{W^{1,p}(\mathbb{R}^N)}
\]

unde \(C \) depinde doar de \(p \) și \(N \). Deci

\[
\|u\|_{L^\infty(\mathbb{R}^N)} \leq C \|u\|_{W^{1,p}(\mathbb{R}^N)} \quad \forall u \in C^1_c(\mathbb{R}^N).
\]

Dacă \(u \in W^{1,p}(\mathbb{R}^N) \) folosim un şir \((u_n)\) din \(C^1_c(\mathbb{R}^N) \) astfel încât \(u_n \rightharpoonup u \) în \(W^{1,p}(\mathbb{R}^N) \) şi a.p.t.

Remarca 13. – Din (24) deducem că dacă \(u \in W^{1,p}(\mathbb{R}^N) \) cu \(N < p < \infty \), atunci

\[
\lim_{|x| \to \infty} u(x) = 0.
\]

Într-adevăr, există un şir \((u_n)\) în \(C^1_c(\mathbb{R}^N) \) astfel încât \(u_n \rightharpoonup u \) în \(W^{1,p}(\mathbb{R}^N) \). Conform (24), \(u \) este de asemenea limita uniformă în \(\mathbb{R}^N \) a funcțiilor \(u_n \).

- **Corolarul IX.13.** – Fie \(m \geq 1 \) un întreg și \(p \in [1, +\infty) \). Avem

\[
\text{dacă } \frac{1}{p} - \frac{m}{N} > 0 \text{ atunci } W^{m,p}(\mathbb{R}^N) \subset L^q(\mathbb{R}^N), \text{ unde } \frac{1}{q} = \frac{1}{p} - \frac{m}{N},
\]

\[
\text{dacă } \frac{1}{p} - \frac{m}{N} = 0 \text{ atunci } W^{m,p}(\mathbb{R}^N) \subset L^q(\mathbb{R}^N) \land q \in [p, +\infty),
\]

\[
\text{dacă } \frac{1}{p} - \frac{m}{N} < 0 \text{ atunci } W^{m,p}(\mathbb{R}^N) \subset L^\infty(\mathbb{R}^N),
\]

cu injecții continue.

În plus, dacă \(m - (N/p) > 0 \) nu este număr întreg, fie

\[
k = \left[m - \frac{N}{p} \right] \text{ și } \theta = m - \frac{N}{p} - k \quad (0 < \theta < 1).
\]

Avem, pentru orice \(u \in W^{m,p}(\mathbb{R}^N) \),

\[
\|D^\alpha u\|_{L^\infty(\mathbb{R}^N)} \leq C \|u\|_{W^{m,p}(\mathbb{R}^N)} \quad \forall \alpha \text{ cu } |\alpha| \leq k.
\]
și (12)\[|D^{\alpha}u(x) - D^{\alpha}u(y)| \leq C\|u\|_{W^{m,p}(\mathbb{R}^N)}|x - y|^\theta \text{ a.p.t. } x, y \in \mathbb{R}^N, \]
\forall \alpha, |\alpha| = k.

In particular \(W^{m,p}(\mathbb{R}^N) \subset C^k(\mathbb{R}^N) \) (13).

Demonstrație. – Toate aceste rezultate se obțin prin aplicarea reiterată a teoremei IX.9, a corolarului IX.11 și a teoremei IX.12.

⋆ Remarca 13. – Cazul \(p = 1 \) și \(m = N \) este destul de special: avem \(W^{N,1}(\mathbb{R}^N) \subset L^\infty \). Intr-adevăr, fie \(u \in C^\infty_c(\mathbb{R}^N) \); avem
\[u(x_1, x_2, \ldots, x_N) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \cdots \int_{-\infty}^{x_N} \frac{\partial^N u}{\partial x_1 \partial x_2 \cdots \partial x_N}(t_1, t_2, \ldots, t_N) dt_1 dt_2 \cdots dt_N \]
și deci
\[(29) \quad \|u\|_{L^\infty} \leq C\|u\|_{W^{N,1}} \quad \forall u \in C^\infty_c(\mathbb{R}^N). \]

Dacă \(u \in W^{N,1} \) se procedează prin densitate.

Considerăm acum

B. Cazul \(\Omega \subset \mathbb{R}^N \). – Presupunem că, fie \(\Omega \) este un deschis de clasă \(C^1 \) cu \(\Gamma \) mărginită, fie \(\Omega = \mathbb{R}^N_+ \).

• Corolarul IX.14. – Fie \(1 \leq p \leq \infty \). Avem

|dacă \(1 \leq p < N \), atunci \(W^{1,p}(\Omega) \subset L^{p^*}(\Omega) \) unde \(\frac{1}{p^*} = \frac{1}{p} - \frac{1}{N} \),
|dacă \(p = N \), atunci \(W^{1,p}(\Omega) \subset L^q(\Omega) \) \(\forall q \in [p, +\infty) \),
|dacă \(p > N \), atunci \(W^{1,p}(\Omega) \subset L^\infty(\Omega) \)

și toate aceste injecții sunt continue.

12 De aici rezultă că \(|D^{\alpha}u(x) - D^{\alpha}u(y)| \leq C\|u\|_{W^{m,p}(\mathbb{R}^N)}|x - y|^\theta \forall x, y \in \mathbb{R}^N \) și \(\forall \alpha \) cu \(|\alpha| < k \).
13 Modulo un reprezentant continuu.
In plus, dacă \(p > N \) avem pentru orice \(u \in W^{1,p}(\Omega) \),

\[
|u(x) - u(y)| \leq C\|u\|_{W^{1,p}}|x - y|^\alpha \text{ a.p.t. } x, y \in \Omega,
\]
cu \(\alpha = 1 - \frac{N}{p} \) și \(C \) depinde doar de \(\Omega, p \) și \(N \). În particular, \(W^{1,p}(\Omega) \subset C(\overline{\Omega}) \) \(^\text{14}\).

DEMONSTRĂȚIE. – Considerăm operatorul de prelungire

\[
P : W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^N)
\]
(vezi teorema IX.7) și aplicăm apoi teorema IX.9, corolarul IX.11 și teorema IX.12.

- Corolarul IX.15. – Concluzia corolarului IX.13 rămâne adevărată dacă \(\mathbb{R}^N \) este înlocuit cu \(\Omega \) \(^\text{15}\).

DEMONSTRĂȚIE. – Prin aplicarea reiterată a corolarului IX.14 \(^\text{16}\).

- Teorema IX.16 (Rellich-Kondrachov). – Presupunem că \(\Omega \) este mărginit și de clasă \(C^1 \). Atunci avem:

\[
dacă \ p < N, atunci W^{1,p}(\Omega) \subset L^q(\Omega) \ \forall q \in [1, p^*) \ unde \ \frac{1}{p^*} = \frac{1}{p} - \frac{1}{N}
\]

dacă \(p = N \), atunci \(W^{1,p}(\Omega) \subset L^q(\Omega) \ \forall q \in [1, +\infty) \),

dacă \(p > N \), atunci \(W^{1,p}(\Omega) \subset C(\overline{\Omega}) \),
cu injecții compacte \(^\text{17}\).

DEMONSTRĂȚIE. – Cazul \(p > N \) rezultă din corolarul IX.14 și din teorema lui Ascoli. Cazul \(p = N \) se reduce la cazul \(p < N \).

\(^{14}\)Modulo un reprezentant continuu.
\(^{15}\)Precizăm că dacă \(m - \frac{N}{p} > 0 \) nu este un întreg, atunci

\[
W^{m,p}(\Omega) \subset C^k(\overline{\Omega}) \ \text{unde} \ k = \left\lfloor m - \frac{N}{p} \right\rfloor
\]
și \(C^k(\overline{\Omega}) = \{ u \in C^k(\Omega); D^\alpha u \text{ admite o prelungire continuă pe } \overline{\Omega} \text{ pentru orice } \alpha \text{ cu } |\alpha| \leq k \} \)

\(^{16}\)S-ar putea aplica direct corolarul IX.13, dar aceasta ar necesita o ipoteză suplimentară: ar trebui ca \(\Omega \) să fie de clasă \(C^m \) pentru a construi un operator de prelungire \(P : W^{m,p}(\Omega) \to W^{m,p}(\mathbb{R}^N) \).

\(^{17}\)In particular, \(W^{1,p}(\Omega) \subset L^p(\Omega) \) cu injecție compactă, pentru orice \(p \).
Presupunem deci că \(p < N \). Aplicăm corolarul IX.26 cu \(\mathcal{F} \) fiind bila unitățe în \(W^{1,p}(\Omega) \).

Verificarea lui (IV.23). Intrucât \(q \geq 1 \) putem scrie

\[
\frac{1}{q} = \frac{\alpha}{1} + \frac{1 - \alpha}{p^{*}} \quad \text{cu} \quad \alpha \in (0, 1].
\]

Fie \(\omega \subset \subset \Omega \), \(u \in \mathcal{F} \) și \(|h| < \text{dist}(\omega, \Omega^c) \). Conform inegalității de interpolare (remarca IV.2) avem

\[
\|\tau_{h}u - u\|_{L_p(\omega)} \leq \|\tau_{h}u - u\|_{L^{1}_r(\omega)}^{\alpha} \|\tau_{h}u - u\|_{L^{p^{*}}(\omega)}^{1 - \alpha}.
\]

Dar, conform propoziției IX.3 avem \(\|\tau_{h}u - u\|_{L^{1}_r(\omega)} \leq |h|\|\nabla u\|_{L^{1}(\Omega)} \). Prin urmare

\[
\|\tau_{h}u - u\|_{L_q(\omega)} \leq (|h|\|\nabla u\|_{L^{1}(\Omega)})^{\alpha}(2\|u\|_{L^{p^{*}}(\Omega)})^{1 - \alpha} \leq C|h|^{\alpha}
\]

(se aplică inegalitatea lui Hölder și corolarul IX.14). Deducem că \(\|\tau_{h}u - u\|_{L_q(\omega)} < \varepsilon \) pentru \(|h| \) suficient de mic.

Verificarea lui (IV.24). Fie \(u \in \mathcal{F} \). Conform inegalității lui Hölder avem

\[
\|u\|_{L_q(\Omega \setminus \omega)} \leq \|u\|_{L^{p^{*}}(\Omega \setminus \omega)} |\Omega \setminus \omega|^{1 - \frac{1}{p^{*}}} < \varepsilon
\]

pentru \(\omega \) ales în mod convenabil (18).

Remarca 15. Teorema IX.16 este “aproape optimală” în sensul următor:

(i) Dacă \(\Omega \) nu este mărginit, injectia \(W^{1,p}(\Omega) \subset L^{p}(\Omega) \) nu este compactă, în general (19).

(ii) Injectia \(W^{1,p}(\Omega) \subset L^{p^{*}}(\Omega) \) nu este niciodată compactă chiar dacă \(\Omega \) este mărginit și neted (vezi [EX]).

Remarca 16. Fie \(\Omega \) un deschis mărginit de clasă \(C^1 \). Atunci norma

\[
|||u||| = \|\nabla u\|_{L_p} + \|u\|_{L_q}
\]

18 De exemplu \(\omega = \{x \in \Omega; \text{dist}(x, \Gamma) > \delta\} \) și \(\delta > 0 \) suficient de mic (se aplică teorema convergenței dominate sau teorema convergenței monotone).

19 Același lucru pentru anumiți deschiși de măsură finită cu frontieră netedă (vezi Adams [1], p. 167).
este echivalentă cu norma $W^{1,p}$ dacă:

1 $\leq q \leq p^*$, în cazul $1 \leq p < N$,
2 $1 \leq q < \infty$, în cazul $p = N$,
3 $1 \leq q \leq \infty$, în cazul $p > N$

(vezi [EX]).

⋆ Remarca 17 (cazul limită $p = N$). – Fie Ω un deschis mărginit de clasă C^1 și $u \in W^{1,N}(\Omega)$. Atunci, în general, $u \notin L^\infty(\Omega)$. De exemplu, dacă

$$\Omega = \{ x \in \mathbb{R}^N; \ |x| < 1/2 \}$$

funcția

$$u(x) = \left(\log \frac{1}{|x|} \right)^\alpha \text{ cu } 0 < \alpha < 1 - \frac{1}{N}$$

apartine lui $W^{1,N}(\Omega)$ (vezi [EX]), dar ea nu este mărginită din cauza singularității în $x = 0$. Cu toate acestea, are loc inegalitatea lui Trudinger:

$$\int_{\Omega} e^{u|u|^{(N-1)}} < \infty \ \forall u \in W^{1,N}(\Omega)$$

(vezi Adams [1] sau Gilbarg- Trudinger [1]).

IX.4 Spațiu $W^{1,p}_0(\Omega)$

Definire. – Fie $1 \leq p < \infty$; $W^{1,p}_0(\Omega)$ desemnează închiderea lui $C^1_c(\Omega)$ în $W^{1,p}(\Omega)$. Notăm (20)

$$H^1_0(\Omega) = W^{1,2}_0(\Omega).$$

Spațiu $W^{1,p}_0$ înzestrat cu norma indusă de $W^{1,p}$ este un spațiu Banach separabil; el este reflexiv dacă $1 < p < \infty$. H^1_0 este un spațiu Hilbert pentru produsul scalar din H^1.

⋆ Remarca 18. – Deoarece $C^1_c(\mathbb{R}^N)$ este dens în $W^{1,p}(\mathbb{R}^N)$, avem

$$W^{1,p}_0(\mathbb{R}^N) = W^{1,p}(\mathbb{R}^N).$$
SPATIUL $W_0^{1,p}(\Omega)$

In contrast, dacă $\Omega \subset \mathbb{R}^N$ atunci, în general, $W_0^{1,p}(\Omega) \neq W^{1,p}(\Omega)$. Totuși dacă $\mathbb{R}^N \setminus \Omega$ este “suficient de subțire” și $p < N$, atunci $W_0^{1,p}(\Omega) = W^{1,p}(\Omega)$. De exemplu, dacă $\Omega = \mathbb{R}^N \setminus \{0\}$ și $N \geq 2$ se arată că $H_0^1(\Omega) = H^1(\Omega)$ (vezi [EX]).

REMARCA 19. – Se verifică cu ușurință – cu ajutorul unui șir regu-
larizant (ρ_n) – că $C_c^\infty(\Omega)$ este dens în $W_0^{1,p}(\Omega)$. Cu alte cuvinte, putem utiliza $C_c^\infty(\Omega)$ în loc de $C_c^1(\Omega)$ în definiția lui $W_0^{1,p}(\Omega)$.

Functiile din $W_0^{1,p}(\Omega)$ sunt “în mare” funcțiile din $W^{1,p}(\Omega)$ care “se anulează pe $\Gamma = \partial \Omega$”. Este delicat să se dea un sens precis acestei afirmații deoarece o funcție $u \in W^{1,p}(\Omega)$ este definită doar a.p.t. (dar Γ este neglijabilă!) și u nu are reprezentant continuu. Totuși caracterizările următoare sugerează că avem într-adevăr “de-a face” cu funcții care sunt “nule pe Γ”. Incepem cu

Lema IX.5. – Fie $u \in W^{1,p}(\Omega)$ cu $1 \leq p < \infty$ și presupunem că $\text{Supp } u$ este un compact inclus în Ω. Atunci $u \in W_0^{1,p}(\Omega)$.

DEMONSTRĂRIE. – Fixăm un deschis ω astfel încât $\text{Supp } u \subset \omega \subset\subset \Omega$ și alegem $\alpha \in C_c^1(\omega)$ astfel încât $\alpha = 1$ pe $\text{Supp } u$; deci $\alpha u = u$. Pe de altă parte (teorema IX.2) există un șir (u_n) în $C_c^\infty(\mathbb{R}^N)$ astfel încât $u_n \to u$ în $L^p(\Omega)$ și $\nabla u_n \to \nabla u$ în $(L^p(\omega))^N$. Rezultă că $\alpha u_n \to \alpha u$ în $W^{1,p}(\Omega)$. Deci $\alpha u \in W_0^{1,p}(\Omega)$, adică $u \in W_0^{1,p}(\Omega)$.

Teorema IX.17. – Presupunem că Ω este de clasă C^1. Fie

$u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$ cu $1 \leq p < \infty$.

Atunci următoarele proprietăți sunt echivalente:

(i) $u = 0$ pe Γ.
(ii) $u \in W_0^{1,p}(\Omega)$.

DEMONSTRĂRIE. – (i) \Rightarrow (ii). Presupunem mai întâi că $\text{Supp } u$ este

21Totuși dacă $u \in W_0^{1,p}(\Omega)$ putem da un sens lui $u|_{\Gamma}$ (când Ω este neted) și putem arăta că $u|_{\Gamma} \in L^p(\Gamma)$. Pentru aceasta trebuie să facem apel la teoria de urmă (vezi comentariile din acest capitol).

22Dacă $p > N$, atunci $u \in W^{1,p}(\Omega) \Rightarrow u \in C(\overline{\Omega})$ (vezi corolarul IX.14).
mărginit. Fixăm o funcție \(G \in C^1(\mathbb{R}) \) astfel încât
\[
|G(t)| \leq |t| \quad \forall t \in \mathbb{R} \quad \text{și} \quad G(t) = \begin{cases}
0 & \text{dacă } |t| \leq 1, \\
t & \text{dacă } |t| \geq 2.
\end{cases}
\]
Atunci \(u_n = (1/n)G(nu) \) aparține lui \(W^{1,p} \) (propoziția IX.5). Este ușor de verificat (cu ajutorul teoremei de convergență dominată) că \(u_n \rightarrow u \) în \(W^{1,p} \). Pe de altă parte,
\[
\text{Supp } u_n \subset \left\{ x \in \Omega; \ |u(x)| \geq \frac{1}{n} \right\}
\]
și deci \(\text{Supp } u_n \) este un compact conținut în \(\Omega \). Conform lemei IX.5, \(u_n \in W^{1,p}_0 \) și deci \(u \in W^{1,p}_0 \). În cazul general în care \(\text{Supp } u \) nu este mărginit, considerăm șirul \(\zeta_n u \) de funcții “troncate” ale lui \(u \) (\(\zeta_n \) ca în demonstrația teoremei IX.2). Din cazul de mai sus rezultă că \(\zeta_n u \in W^{1,p}_0 \) și deci \(\zeta_n u \rightarrow u \) în \(W^{1,p} \), de unde obținem \(u \in W^{1,p} \).

(ii) \(\Rightarrow \) (i). Folosind hărți locale reducem problema la situația următoare. Fie \(u \in W^{1,p}_0(Q_+ \cap C(Q_+)) \); să se arate că \(u = 0 \) în \(Q_0 \).
Fie \((u_n) \) un şir în \(C^1_c(Q_+) \) astfel încât \(u_n \rightarrow u \) în \(W^{1,p}(Q_+) \).

Pentru orice \((x',x_N) \in Q_+ \) avem
\[
|u_n(x',x_N)| \leq \int_0^{x_N} \left| \frac{\partial u_n}{\partial x_N}(x',t) \right| dt,
\]
și deci, pentru \(0 < \varepsilon < 1 \),
\[
\frac{1}{\varepsilon} \int_{|x'|<1} \int_0^\varepsilon |u_n(x',x_N)| \, dx' \, dx_N \leq \int_{|x'|<1} \int_0^\varepsilon \left| \frac{\partial u_n}{\partial x_N}(x',t) \right| \, dx' \, dt.
\]
Prin trecere la limită când \(n \rightarrow \infty \) (\(\varepsilon > 0 \) fixat) obținem
\[
\frac{1}{\varepsilon} \int_{|x'|<1} \int_0^\varepsilon |u(x',x_N)| \, dx' \, dx_N \leq \int_{|x'|<1} \int_0^\varepsilon \left| \frac{\partial u_n}{\partial x_N}(x',t) \right| \, dx' \, dt.
\]
In sfârșit, dacă \(\varepsilon \rightarrow 0 \), găsim
\[
\int_{|x'|<1} |u(x',0)| \, dx' = 0
\]
(deoarece \(u \in C(\Omega^+) \) și \(\frac{\partial u}{\partial x_N} \in L^1(Q_+) \)). Deci \(u = 0 \) în \(Q_0 \).

Remarca 19. – În demonstrația lui (i) \(\Rightarrow \) (ii) nu am utilizat netezimea lui \(\Omega \). Din contră, reciprocă (ii) \(\Rightarrow \) (i) cere o ipoteză de regularitate asupra lui \(\Omega \) (considerăm de exemplu \(\Omega = \mathbb{R}^N \setminus \{0\} \) cu \(N \geq 2 \) și \(p \leq N \); vezi [EX]).

Iată o altă caracterizare a funcțiilor din \(W_{0}^{1,p} \):

Propoziția IX.18. – Presupunem că \(\Omega \) este de clasă \(C^1 \). Fie \(u \in L^p(\Omega) \) cu \(1 < p < \infty \).

Proprietățile următoare sunt echivalente:

(i) \(u \in W_{0}^{1,p}(\Omega) \).

(ii) Există o constantă \(C \) astfel încât

\[
\left| \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} \right| \leq C \| \varphi \|_{L^p(\Omega)} \quad \forall \varphi \in C^1_c(\mathbb{R}^N), \quad \forall i = 1, 2, \ldots, N.
\]

(iii) Funcția

\[
\bar{u}(x) = \begin{cases} u(x) & \text{dacă } x \in \Omega \\ 0 & \text{dacă } x \in \mathbb{R}^N \setminus \Omega \end{cases}
\]

apartine lui \(W^{1,p}(\mathbb{R}^N) \) și, în acest caz, \(\frac{\partial \bar{u}}{\partial x_i} = \frac{\partial u}{\partial x_i} \).

Demonstratie. – (i) \(\Rightarrow \) (ii). Fie \((u_n) \) un șir în \(C^1_c(\Omega) \) astfel încât \(u_n \to u \) în \(W^{1,p} \). Pentru \(\varphi \in C^1_c(\mathbb{R}^N) \) avem

\[
\left| \int_{\Omega} u_n \frac{\partial \varphi}{\partial x_i} \right| = \left| \int_{\Omega} \frac{\partial u_n}{\partial x_i} \varphi \right| \leq \left\| \frac{\partial u_n}{\partial x_i} \right\|_{L^p} \| \varphi \|_{L^{p'}}.
\]

Prin trecere la limită obținem (ii).

(ii) \(\Rightarrow \) (iii). Fie \(\varphi \in C^1_c(\mathbb{R}^N) \); avem

\[
\left| \int_{\Omega} \bar{u} \frac{\partial \varphi}{\partial x_i} \right| = \left| \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} \right| \leq C \| \varphi \|_{L^{p'}(\Omega)} \leq C \| \varphi \|_{L^{p'}(\mathbb{R}^N)}.
\]

Deci \(\bar{u} \in W^{1,p}(\mathbb{R}^N) \) (conform propoziției IX.3).
\((iii) \Rightarrow (i) \). Putem presupune că \(\Omega \) este mărginit (dacă nu, considerăm șirul troncat \((\zeta_n u) \) al lui \(u \)). Prin hârți locale și partitia unității reducem problema la următoarea situație. Fie \(u \in L^p(Q) \); presupunem că funcția

\[
\bar{u}(x) = \begin{cases}
 u(x) & \text{dacă } x \in Q, \ x_N > 0 \\
 0 & \text{dacă } x \in Q, \ x_N < 0
\end{cases}
\]

aparte lui \(W^{1,p}(Q) \); să se arate că

\[
\alpha u \in W^{1,p}_0(Q) \ \forall \alpha \in C^1_c(Q).
\]

Fie \((\rho_n)\) un şir regularizant astfel încât

\[
\text{Supp } \rho_n \subset \left\{ x \in \mathbb{R}^N; \ \frac{1}{2n} < x_N < \frac{1}{n} \right\};
\]

putem alege de exemplu

\[
\rho_n(x) = n^N \rho(nx) \text{ și } \text{Supp } \rho \subset \left\{ x \in \mathbb{R}^N; \ \frac{1}{2} < x_N < 1 \right\}.
\]

Deci \(\rho_n \ast (\alpha \bar{u}) \to \alpha \bar{u} \) în \(W^{1,p}(\mathbb{R}^N) \) (observăm că funcția \(\alpha \bar{u} \) prelungită cu 0 în afara lui \(Q \) apartine lui \(W^{1,p}(\mathbb{R}^N) \)). Pe de altă parte

\[
\text{Supp } (\rho_n \ast \alpha \bar{u}) \subset \text{Supp } \rho_n + \text{Supp } (\alpha \bar{u}) \subset Q_+
\]

pentru \(n \) suficient de mare. Rezultă că

\[
\rho_n \ast (\alpha \bar{u}) \in C^1_c(Q_+)
\]

și deci \(\alpha u \in W^{1,p}_0(Q_+) \).

Remarca 21. – Demostrația corolarului IX.14 face apel la un operator de prelungire și acest fapt a necesitat ipoteza că \(\Omega \) este neted. Dacă înlocuim \(W^{1,p}(\Omega) \) cu \(W^{1,p}_0(\Omega) \) dispunem de prelungirea canonică cu 0 în afara lui \(\Omega \), care este valabilă pentru un deschis \textit{oarecare} \(\Omega \) (notăm că, în demonstrația propoziției IX.18, implicația \((i) \Rightarrow (iii) \) nu necesită altă ipoteză de netezime asupra lui \(\Omega \)). Deci, în particular, corolarul IX.14 este adevărat pentru \(W^{1,p}_0(\Omega) \) cu \(\Omega \) deschis arbitrary. In mod similar, concluzia teoremei IX.16 este adevărată pentru \(W^{1,p}_0(\Omega) \) cu \(\Omega \) deschis
SPATIUL $W_0^{1,p}(\Omega)$

mărginit oarecare. Deducem de asemenea din teorema IX.9 că dacă Ω este un deschis oarecare și $1 \leq p < N$ atunci

$$
\|u\|_{L^{p'}(\Omega)} \leq C(p,N)\|\nabla u\|_{L^p(\Omega)} \quad \forall u \in W_0^{1,p}(\Omega).
$$

- Corolarul IX.19 (Inegalitatea lui Poincaré). – Presupunem că Ω este un deschis mărginit. Atunci există o constantă C (depinzând de Ω și p) astfel încât

$$
\|u\|_{L^p(\Omega)} \leq C\|\nabla u\|_{L^p(\Omega)} \quad \forall u \in W_0^{1,p}(\Omega) \quad (1 \leq p < \infty).
$$

In particular, expresia $\|\nabla u\|_{L^p(\Omega)}$ este o normă pe $W_0^{1,p}(\Omega)$ care este echivalentă cu norma $\|u\|_{W^{1,p}}$ pe $H_0^1(\Omega)$ expresia $\int_\Omega \nabla u \cdot \nabla v$ este un produs scalar care induce norma $\|\nabla u\|_{L^2}$ echivalentă cu norma $\|u\|_{H^1}$.

REMARCĂ 22. – Inegalitatea lui Poincaré rămâne valabilă dacă Ω are măsură finită sau dacă Ω este mărginit într-o singură direcție (vezi [EX]).

REMARCĂ 23. – Pentru m întreg ≥ 1 și $1 \leq p < \infty$ definim $W_0^{m,p}(\Omega)$ care fiind închiderea lui $C_0^m(\Omega)$ în $W^{m,p}(\Omega)$. “In mare”, o funcție u aparține lui $W_0^{m,p}(\Omega)$ dacă $u \in W^{m,p}(\Omega)$ și $D^\alpha u = 0$ pe Γ pentru orice multi-indice α astfel încât $|\alpha| \leq m - 1$. Este important să distingem între $W_0^{m,p}(\Omega)$ și $W^{m,p}(\Omega) \cap W_0^{1,p}(\Omega)$ pentru $m \geq 2$.

Dualul lui $W_0^{1,p}(\Omega)$

Notație. – Notăm cu $W^{-1,p'}(\Omega)$ dualul lui $W_0^{1,p}(\Omega)$, $1 \leq p < \infty$ și prin $H^{-1}(\Omega)$ dualul lui $H_0^1(\Omega)$.

Identificăm $L^2(\Omega)$ și dualul său, dar nu identificăm $H_0^1(\Omega)$ cu dualul său. Avem următoarea schemă

$$
H_0^1(\Omega) \subset L^2(\Omega) \subset H^{-1}(\Omega)
$$

cu injecții continue și dense.

Dacă Ω este mărginit atunci

$$
W_0^{1,p}(\Omega) \subset L^2(\Omega) \subset W^{-1,p'}(\Omega) \quad \text{dacă} \quad \frac{2N}{N+2} \leq p < \infty
$$
PROBLEME LA LIMITĂ

cu injecții continue și dense.
Dacă Ω este nemărginit avem

\[W_0^{1,p}(Ω) \subset L^2(Ω) \subset W^{-1,p'}(Ω) \quad \text{dacă} \quad \frac{2N}{N+2} \leq p \leq 2. \]

Putem caracteriza elementele din \(W^{-1,p'} \) prin

Propoziția IX.20. – Fie \(F \in W^{-1,p'}(Ω) \). Atunci există \(f_0, f_1, f_2, \ldots, f_N \in L^{p'}(Ω) \) astfel încât

\[\langle F, v \rangle = \int f_0 v + \sum_{i=1}^{N} \int f_i \frac{\partial v}{\partial x_i} \quad \forall v \in W_0^{1,p'}(Ω) \]

și

\[\| F \| = \text{Max}_{0 \leq i \leq N} \| f_i \|_{L^{p'}}. \]

Dacă Ω este mărginit, putem lua \(f_0 = 0 \).

DEMONSTRĂȚIE. – Se adaptează demonstrația propoziției VIII.13.

IX.5 Formularea variatională a câtorva probleme la limită eliptice

Vom aborda în cele ce urmează rezolvarea câtorva ecuații cu derivate parțiale (\(^{23} \)) eliptice de ordinul al doilea.

Exemplul 1. (Problema Dirichlet omogenă). Fie Ω ⊂ \(\mathbb{R}^N \) o mulțime deschisă și mărginită. Căutăm o funcție \(u : \overline{Ω} \rightarrow \mathbb{R} \) care verifică

\[\begin{array}{ll}
-\Delta u + u = f & \text{în } \Omega \\
u = 0 & \text{pe } \Gamma = \partial Ω
\end{array} \]

(31)

unde

\[\Delta u = \sum_{i=1}^{N} \frac{\partial^2 u}{\partial x_i^2} = \text{Laplacianul lui } u, \]

și \(f \) este o funcție dată pe Ω. **Condiția pe frontieră** \(u = 0 \) pe \(\Gamma \) se numește **condiție Dirichlet** (omogenă).

\(^{23}\)Pe scurt EDP (=PDE în engleză).
Definiții. – O soluție clasică a lui (31) este o funcție \(u \in C^2(\Omega) \) care verifică (31). O soluție slabă a lui (31) este o funcție \(u \in H^1_0(\Omega) \) care verifică
\[
\int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} uv = \int_{\Omega} fv \quad \forall v \in H^1_0(\Omega).
\]
unde \(\nabla u \cdot \nabla v = \sum_{i=1}^{N} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} \).

Să punem în aplicare programul descris în capitolul VIII.

Etapa A. Orice soluție clasică este o soluție slabă. – Într-adevăr, \(u \in H^1(\Omega) \cap C(\Omega) \) și \(u = 0 \) pe \(\Gamma \), deci \(u \in H^1_0(\Omega) \) conform teoremei IX.17 (vezi și remarca 20). Pe de altă parte, dacă \(v \in C^1_c(\Omega) \) avem
\[
\int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} uv = \int_{\Omega} fv
\]
și, prin densitate, această egalitate rămâne valabilă pentru orice \(v \in H^1_0(\Omega) \).

Etapa B. Existența și unicitatea soluției slabe.

• Teorema IX.21 (Dirichlet, Riemann, Hilbert). – Pentru orice \(f \in L^2(\Omega) \) există și este unică o soluție slabă \(u \in H^1_0(\Omega) \) a problemei (31). In plus, \(u \) se obține prin
\[
\text{Min}_{v \in H^1_0(\Omega)} \left\{ \frac{1}{2} \int_{\Omega} (|\nabla v|^2 + |v|^2) - \int_{\Omega} fv \right\}.
\]
Acesta este principiul lui Dirichlet.

Demonstrație. – Aplicăm teorema lui Lax-Milgram în spațiul Hilbert \(H = H^1_0(\Omega) \) cu forma biliniară
\[
a(u, v) = \int_{\Omega} (\nabla u \cdot \nabla v + uv)
\]
și funcționala liniară \(\varphi : v \mapsto \int_{\Omega} fv \).

Etapa C. Regularitatea soluției slabe. – Această problemă este delicată; o vom aborda în §IX.6.

Etapa D. Reîntoarcerea la soluția clasică. – Să admitem că soluția slabă \(u \in H^1_0(\Omega) \) a lui (31) apartine spațiului \(C^2(\Omega) \) și că \(\Omega \) este
de clasă C^1. Atunci $u = 0$ pe Γ (din teorema IX.17). Pe de altă parte avem
$$\int_{\Omega} (-\Delta u + u)v = \int_{\Omega} fv \quad \forall v \in C^1_c(\Omega)$$
și deci $-\Delta u + u = f$ a.p.t. în Ω deoarece $C^1_c(\Omega)$ este dens în $L^2(\Omega)$. De fapt, avem $-\Delta u + u = f$ peste tot în Ω deoarece $u \in C^2(\Omega)$; deci u este o soluție clasică.

Vom descrie în continuare alte câteva exemple. Insistăm asupra faptului că este absolut fundamental să precizăm foarte clar spațiul funcțional pe care se caută soluția slabă.

Exemplul 2. (Problema lui Dirichlet neomogenă). Fie $\Omega \subset \mathbb{R}^N$ un deschis mărginit. Căutăm o funcție $u : \bar{\Omega} \rightarrow \mathbb{R}$ care verifică

\begin{equation}
\left\{ \begin{array}{ll}
-\Delta u + u = f & \text{în } \Omega \\
u = g & \text{pe } \Gamma
\end{array} \right.
\end{equation}

unde f este dată pe Ω și g este o funcție dată definită pe Γ.

Presupunem că există o funcție $\tilde{g} \in H^1(\Omega) \cap C(\bar{\Omega})$ astfel încât $\tilde{g} = g$ pe Γ (24) și introducem mulțimea

$$K = \{ v \in H^1(\Omega); \ v - \tilde{g} \in H^1_0(\Omega) \}.$$

Din teorema IX.17 rezultă că mulțimea K nu depinde de alegerea lui \tilde{g} și depinde doar de g; K este un convex închis nevid în $H^1(\Omega)$.

Definiții. O soluție clasică a lui (33) este o funcție $u \in C^2(\bar{\Omega})$ care verifică (33). O soluție slabă a lui (33) este o funcție $u \in K$ care verifică

\begin{equation}
\int_{\Omega} (\nabla u \cdot \nabla v + uv) = \int_{\Omega} fv \quad \forall v \in H^1_0(\Omega).
\end{equation}

Este evident că orice soluție clasică este soluție slabă.

- **Propoziția IX.22.** – Pentru orice $f \in L^2(\Omega)$ există și este unic $u \in K$, soluție slabă a lui (33). In plus, u se obține prin

$$\min_{v \in K} \left\{ \frac{1}{2} \int_{\Omega} (|\nabla v|^2 + v^2) - \int_{\Omega} fv \right\}.$$

24Această ipoteză este verificată, de exemplu, dacă Ω este de clasă C^1 și $g \in C^1(\Gamma)$. Dacă Ω este suficient de neted nu este necesar să presupunem că $\tilde{g} \in C(\bar{\Omega})$. Aplicând teoria de urmă (vezi comentariile de la sfârșitul acestui capitol), este suficient să știm că $\tilde{g} \in H^1(\Omega)$, adică $g \in H^{1/2}(\Gamma)$.
Demonstrație. – Observăm mai întâi că $u \in K$ este soluție slabă a lui (33) dacă și numai dacă avem

$$
\int_{\Omega} \nabla u \cdot (\nabla v - \nabla u) + \int_{\Omega} u(v - u) \geq \int_{\Omega} f(v - u) \quad \forall v \in K.
$$

Într-adevăr, dacă u este o soluție slabă a lui (33) este evident că

$$
\int_{\Omega} \nabla u \cdot (\nabla v - \nabla u) + \int_{\Omega} u(v - u) = \int_{\Omega} f(v - u) \quad \forall v \in K.
$$

Reciproc, dacă $u \in K$ verifică (35), alegem $v = u \pm w$ în (35) cu $w \in H^1_0(\Omega)$ și obținem (34). Putem aplica acum teorema lui Stampacchia (teorema V.6) în $H = H^1(\Omega)$. Studiul regularității și reîntoarcerea la soluția clasică se efectuează ca în exemplul 1.

Exemplul 3. (Ecuații eliptice de ordinul al doilea). Fie $\Omega \subset \mathbb{R}^N$ o mulțime deschisă și mărginită. Fie funcțiile $a_{ij}(x) \in C^1(\Omega)$, $1 \leq i, j \leq N$ care satisfac condiția de elipticitate

$$
\sum_{i,j=1}^{N} a_{ij}(x) \xi_i \xi_j \geq \alpha |\xi|^2, \quad \forall x \in \Omega, \quad \forall \xi \in \mathbb{R}^N \text{ cu } \alpha > 0.
$$

Considerăm de asemenea o funcție $a_0 \in C(\Omega)$. Căutăm o funcție $u : \overline{\Omega} \to \mathbb{R}$ care verifică

$$
\begin{cases}
- \sum_{i,j=1}^{N} \frac{\partial}{\partial x_j} \left(a_{ij} \frac{\partial u}{\partial x_i} \right) + a_0 u = f & \text{în } \Omega, \\
u = 0 & \text{pe } \Gamma.
\end{cases}
$$

O soluție clasică a lui (37) este o funcție $u \in C^2(\Omega)$ care verifică (37). O soluție slabă a lui (37) este o funcție $u \in H^1_0(\Omega)$ care satisface

$$
\int_{\Omega} \sum_{i,j=1}^{N} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} + \int_{\Omega} a_0 uv = \int_{\Omega} fv \quad \forall v \in H^1_0(\Omega).
$$

Este evident că orice soluție clasică este soluție slabă. Pe de altă parte, dacă $a_0(x) \geq 0$ în Ω atunci pentru orice $f \in L^2(\Omega)$ există o unică soluție
PROBLEME LA LIMITĂ

slabă \(u \in H^1_0 \); într-adevăr, se aplică teorema lui Lax-Milgram în spațiul \(H = H^1_0 \) cu forma biliniară și continuă

\[
a(u,v) = \int_\Omega \sum_{i,j=1}^N a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} + \int_\Omega a_0 u v.
\]

Coercivitatea lui \(a(\ , \) \) rezultă din ipoteza de elipticitate și din inegalitatea lui Poincaré. Dacă, în plus, matricea \((a_{ij}) \) este simetrică, atunci forma \(a(\ , \) \) este simetrică și \(u \) se obține prin

\[
\text{Min}_{v \in H^1_0} \left\{ \frac{1}{2} \int_\Omega \left(\sum_{i,j} a_{ij} \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} + a_0 v^2 \right) - \int_\Omega f v \right\}.
\]

Considerăm acum următoarea problemă mai generală: să se găsească o funcție \(u : \Omega \to \mathbb{R} \) care verifică

\[
\begin{cases}
 - \sum_{i,j} \frac{\partial}{\partial x_j} (a_{ij} \frac{\partial u}{\partial x_i}) + \sum_i a_i \frac{\partial u}{\partial x_i} + a_0 u = f & \quad \text{în } \Omega, \\
 u = 0 & \quad \text{pe } \Gamma
\end{cases}
\]

unde \(a_i(x) \) sunt funcții date în \(C(\Omega) \). O soluție slabă a lui (39) este o funcție \(u \in H^1_0 \) astfel încât

\[
\int_\Omega \sum_{i,j} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} + \int_\Omega \sum_i a_i \frac{\partial u}{\partial x_i} v + \int_\Omega a_0 u v = \int_\Omega f v \quad \forall v \in H^1_0.
\]

Introducem pe \(H^1_0(\Omega) \) forma biliniară și continuă asociată

\[
a(u,v) = \int_\Omega \sum_{i,j} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} + \int_\Omega \sum_i a_i \frac{\partial u}{\partial x_i} v + \int_\Omega a_0 uv.
\]

În general această formă nu este simetrică \((25)\); în anumite cazuri ea este coercivă: atunci se demonstrează existența și unicitatea soluției slabă via teorema lui Lax-Milgram. În toate cazurile avem

Teorema IX.23. – Dacă \(f = 0 \), atunci mulțimea soluțiilor \(u \in H^1_0(\Omega) \) ale lui (40) este un spațiu vectorial de dimensiune finită,

\(^{25}\text{În dimensiune } N \text{ nu se cunoaște un artificiu care să permită, ca în dimensiune 1, să reducem problema la cazul simetric.}\)
să zicem d. In plus, există un subspațiu vectorial $F \subset L^2(\Omega)$ de dimensiune d astfel încât (26)

$$[(40) \text{ are o soluție}] \iff \left[\int_{\Omega} fv = 0 \quad \forall v \in F \right].$$

Remarca IX.24. – Presupunem că ecuația omogenă asociată lui (40), adică pentru $f = 0$, admite $u = 0$ ca soluție unică. Atunci, pentru orice $f \in L^2$, există $u \in H^1_0$ soluție unică a lui (40) (27). În particular, dacă $a_0 \geq 0$ în Ω se demonstrează – printr-o metode de tip ”principiu de maxim” – că $(f = 0) \Rightarrow (u = 0)$. Deducem așadar, sub singura ipoteză $a_0 \geq 0$ în Ω că pentru orice $f \in L^2$ există $u \in H^1_0$ soluție unică a lui (40); vezi Gilbarg-Trudinger [1] și [EX].

Demonstrație. – Fixăm $\lambda > 0$ suficient de mare astfel încât forma biliniară

$$a(u, v) + \lambda \int_{\Omega} uv$$

să fie coercivă pe H^1_0. Pentru orice $f \in L^2$ există și este unic $u \in H^1_0$ astfel încât

$$a(u, \varphi) + \lambda \int_{\Omega} u \varphi = \int_{\Omega} f \varphi \quad \forall \varphi \in H^1_0.$$

Fie $u = Tf$; deci $T : L^2 \to L^2$ este un operator liniar compact (deoarece Ω este mărginit, injecția $H^1_0 \subset L^2$ este compactă; vezi teorema IX.16 și remarca 21). Ecuatia (40) este echivalentă cu

$$u = T(f + \lambda u).$$

Introducem $v = f + \lambda u$ ca nouă necunoscută și (42) devine

$$v - \lambda Tv = f.$$

Concluzia rezultă prin aplicarea Alternativei lui Fredholm.

26 Altfel spus, [(40) are o soluție] $\iff f$ satisface d conțidii de ortogonalitate.

27 Observăm legătura strânsă dintre existența și unicitatea soluțiilor unei ecuații eliptice. Această legătură remarcabilă este o consecință a Alternativei lui Fredholm (teorema VI.6).
Exemplul 4. (Problema Neumann omogenă). – Fie $\Omega \subset \mathbb{R}^N$ o mulțime deschisă, mărginită, de clasă C^1. Căutăm o funcție $u : \overline{\Omega} \to \mathbb{R}$ care verifică

$$
\begin{cases}
-\Delta u + u = f & \text{în } \Omega \\
\frac{\partial u}{\partial n} = 0 & \text{pe } \Gamma
\end{cases}
$$

unde f este o funcție dată pe Ω; $\frac{\partial u}{\partial n}$ reprezintă derivata normală exterioară a lui u, adică $\frac{\partial u}{\partial n} = \nabla u \cdot \vec{n}$ unde \vec{n} este versorul normalei exterioare la Γ. Condiția pe frontieră $\frac{\partial u}{\partial n} = 0$ pe Γ se numește condiție Neumann (omogenă).

Definiții. – O soluție clasică a lui (44) este o funcție $u \in C^2(\Omega)$ care satisfacă (44). O soluție slabă a lui (44) este o funcție $u \in H^1(\Omega)$ care verifică

$$
\int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} uv = \int_{\Omega} fv \quad \forall v \in H^1(\Omega).
$$

Etapa A. Orice soluție clasică este soluție slabă. – Reamintim mai întâi că, în virtutea formulei lui Green avem

$$
\int_{\Omega} (\Delta u)v = \int_{\Gamma} \frac{\partial u}{\partial n} v\ d\sigma - \int_{\Omega} \nabla u \cdot \nabla v \quad \forall u \in C^2(\overline{\Omega}), \quad \forall v \in C^1(\Omega)
$$

unde $d\sigma$ este măsura de suprafață pe Γ. Dacă u este o soluție clasică a lui (44), atunci $u \in H^1(\Omega)$ și avem

$$
\int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} uv = \int_{\Omega} fv \quad \forall v \in C^1(\overline{\Omega}).
$$

Deducem prin densitate (corolarul IX.8) că

$$
\int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} uv = \int_{\Omega} fv \quad \forall v \in H^1(\Omega).
$$

Etapa B. Existența și unicitatea soluției slabă.

• Propoziția IX.24. – Pentru orice $f \in L^2(\Omega)$, există o unică soluție slabă $u \in H^1(\Omega)$ a lui (44). În plus, u se obține prin

$$
\min_{v \in H^1(\Omega)} \left\{ \frac{1}{2} \int_{\Omega} (|\nabla v|^2 + v^2) - \int_{\Omega} fv \right\}.
$$
Probleme la limită

Demonstrație. – Se aplică teorema lui Lax-Milgram în $H = H^1(\Omega)$.

Etapa C. Regularitatea soluției slabe; vezi §IX.6.

Etapa D. Revenirea la soluția clasică. – Dacă $u \in C^2(\Omega)$ este o soluție slabă a lui (44), avem, conform (46),

$$
(47) \quad \int_\Omega (-\Delta u + u)v + \int_\Gamma \frac{\partial u}{\partial n}v \, d\sigma = \int_\Omega fv \quad \forall v \in C^1(\overline{\Omega}).
$$

În (47) alegem mai întâi $v \in C^1_c(\Omega)$ și obținem

$$
-\Delta u + u = f \quad \text{în } \Omega.
$$

Revenim apoi la (47) cu $v \in C^1(\overline{\Omega})$; obținem

$$
\int_\Gamma \frac{\partial u}{\partial n}v \, d\sigma = 0 \quad \forall v \in C^1(\overline{\Omega})
$$

și deci $\frac{\partial u}{\partial n} = 0$ pe Γ.

Exemplul 5. (Domenii nemărginite). – În cazul în care Ω este un deschis nemărginit în \mathbb{R}^N se impune – în plus față de condițiile la limită uzuale pe $\Gamma = \partial \Omega$ – o condiție la limită la infinit, de exemplu $u(x) \to 0$ dacă $|x| \to \infty$. Aceasta se “traduce” la nivelul soluției slabe (28) prin condiția $u \in H^1$. Existața și unicitatea soluției slabe sunt ușor de demonstrat:

Exemple: a) $\Omega = \mathbb{R}^N$; pentru orice $f \in L^2(\mathbb{R}^N)$ ecuația

$$
-\Delta u + u = f \quad \text{în } \mathbb{R}^N
$$

admite o unică soluție slabă în sensul următor:

$$
u \in H^1(\mathbb{R}^N) \quad \text{și} \quad \int_{\mathbb{R}^N} \nabla u \nabla v + \int_{\mathbb{R}^N} uv = \int_{\mathbb{R}^N} fv \quad \forall v \in H^1(\mathbb{R}^N).
$$

b) $\Omega = \mathbb{R}^N_+$; pentru orice $f \in L^2(\mathbb{R}^N_+)$ problema

$$
\begin{cases}
-\Delta u + u = f & \text{în } \mathbb{R}^N_+ \\
u(x',0) = 0 & \text{pentru } x' \in \mathbb{R}^{N-1}
\end{cases}
$$

28Bineînțeles, trebuie mai întâi demonstrat că dacă u este o soluție clasică astfel încât $u(x) \to 0$ dacă $|x| \to \infty$, atunci în mod necesar $u \in H^1$; vezi un exemplu în [EX].
admite o unică soluție slabă în sensul următor:

\[u \in H^1_0(\Omega) \quad \text{și} \quad \int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} uv = \int_{\Omega} f v \quad \forall v \in H^1_0(\Omega) \]

c) \(\Omega = \mathbb{R}^N_+ \); pentru orice \(f \in L^2(\mathbb{R}^N_+) \) problema

\[\begin{cases}
-\Delta u + u = f \quad \text{în} \quad \mathbb{R}^N_+ \\
\frac{\partial u}{\partial x_N}(x',0) = 0 \quad \text{pentru} \quad x' \in \mathbb{R}^{n-1}
\end{cases} \]

admite o unică soluție slabă în sensul următor:

\[u \in H^1(\Omega) \quad \text{și} \quad \int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} uv = \int_{\Omega} f v \quad \forall v \in H^1(\Omega). \]

IX.6 Regularitatea soluțiilor slabe

Definiție. – Spunem că un deschis \(\Omega \) este de clasa \(C^m \), \(m \geq 1 \) un întreg, dacă pentru orice \(x \in \Gamma \) există o vecinătate \(U \) a lui \(x \) în \(\mathbb{R}^N \) și o aplicație bijectivă \(H : Q \rightarrow U \) astfel încât

\[H \in C^m(\overline{Q}), \quad H^{-1} \in C^m(\overline{U}), \quad H(Q_+) = U \cap \Omega, \quad H(Q_0) = U \cap \Gamma. \]

Spunem că \(\Omega \) este de clasa \(C^\infty \) dacă \(\Omega \) este de clasa \(C^m \) pentru orice \(m \).

Principalele rezultate de regularitate sunt următoarele:

• Teorema IX.25 (Regularitatea pentru problema Dirichlet). – Fie \(\Omega \) un deschis de clasa \(C^2 \) cu \(\Gamma \) mărginită [sau \(\Omega = \mathbb{R}^N_+ \)]. Fie \(f \in L^2(\Omega) \) și \(u \in H^1_0(\Omega) \) care verifică

\[(48) \quad \int_{\Omega} \nabla u \cdot \nabla \varphi + \int_{\Omega} w \varphi = \int_{\Omega} f \varphi \quad \forall \varphi \in H^1_0(\Omega) \]

Atunci \(u \in H^2(\Omega) \) și \(\|u\|_{H^2} \leq C\|f\|_{L^2} \) unde \(C \) este o constantă care depinde doar de \(\Omega \). In plus, dacă \(\Omega \) este de clasa \(C^{m+2} \) și \(f \in H^m(\Omega) \), atunci

\[u \in H^{m+2}(\Omega) \quad \text{cu} \quad \|u\|_{H^{m+2}} \leq C\|f\|_{H^m}. \]

In particular, dacă \(f \in H^m(\Omega) \) cu \(m > N/2 \), atunci \(u \in C^2(\overline{\Omega}) \).
REGULARITATEA SOLUȚIILOR SLABE

In sfârșit, dacă \(\Omega \) este de clasă \(C^\infty \) și dacă \(f \in C^\infty(\overline{\Omega}) \), atunci \(u \in C^\infty(\overline{\Omega}) \).

Teorema IX.26 (Regularitatea pentru problema Neumann).

– Cu aceleasi ipoteze ca în teorema IX.25 se obțin aceleasi concluzii pentru soluția problemei Neumann, adică pentru \(u \in H^1(\Omega) \) astfel încât

\[
\int_{\Omega} \nabla u \cdot \nabla \varphi + \int_{\Omega} u \varphi = \int_{\Omega} f \varphi \quad \forall \varphi \in H^1(\Omega).
\]

Remarcă 25. – Se obțin aceleasi concluzii pentru soluția problemei Dirichlet (sau Neumann) asociată unui operator eliptic de ordinul al doilea general adică, dacă \(u \in H^1_0(\Omega) \) verifică

\[
\int_{\Omega} \sum_{i,j} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j} = \int_{\Omega} f \varphi \quad \forall \varphi \in H^1_0(\Omega)
\]

atunci \(f \in L^2(\Omega) \) și \(a_{ij} \in C(\overline{\Omega}) \Rightarrow u \in H^2(\Omega) \)

și, pentru \(m \geq 1 \), (29)

\[
f \in H^m(\Omega) \quad \text{și} \quad a_{ij} \in C^{m+1}(\overline{\Omega}) \Rightarrow u \in H^{m+2}(\Omega).
\]

Vom demonstra doar teorema IX.25; demonstrația teoremei IX.26 este cu totul analogă (vezi [EX]). Idea principală a demonstrației este următoarea. Se stabilește mai întâi teorema IX.25 pentru \(\Omega = \mathbb{R}^N \) și apoi pentru \(\Omega = \mathbb{R}^N_+ \). In cazul general al unui deschis oarecare \(\Omega \) se procedează în două etape:

1) Regularitate în interior, adică în orice deschis \(\omega \subset \subset \Omega \) (ne inspirăm din cazul \(\Omega = \mathbb{R}^N \)).

2) Regularitate în vecinătatea frontierei (ne inspirăm – după trecerea la hârți locale – din cazul \(\Omega = \mathbb{R}^N_+ \)).

\[\text{29} \text{Dacă } \Omega \text{ este nemărginit, trebuie să presupunem în plus că}\]

\[D^\alpha a_{ij} \in L^\infty(\Omega) \quad \forall \alpha, |\alpha| \leq 1 \text{ (resp. } |\alpha| \leq m + 1).\]
REGULARITATEA SOLUȚIILOR SLABE

Recomandăm cititorului să înțelegă bine cazurile \(\Omega = \mathbb{R}^N \) și \(\Omega = \mathbb{R}_+^N \) înainte de a aborda cazul general.

Planul acestui paragraf este următorul:
A. Cazul \(\Omega = \mathbb{R}^N \).
B. Cazul \(\Omega = \mathbb{R}_+^N \).
C. Cazul general:
 C1. Estimări în interior.
 C2. Estimări în vecinătatea frontierei.

Ingredientul esențial în demonstrație este metoda translațiilor \(^{(30)}\) datorată lui L. Nirenberg.

A. Cazul \(\Omega = \mathbb{R}^N \).

Notație. – Fiind dat \(h \in \mathbb{R}^N \), \(h \neq 0 \), punem

\[
D_h u = \frac{1}{|h|}(\tau_h u - u), \quad \text{adică} \quad D_h u(x) = \frac{u(x-h) - u(x)}{|h|}.
\]

În (48) luăm \(\varphi = D_{-h}(D_h u) \), ceea ce este posibil deoarece \(\varphi \in H^1(\mathbb{R}^N) \) (căci \(u \in H^1(\mathbb{R}^N) \)); obținem

\[
\int |\nabla D_h u|^2 + \int |D_h u|^2 = \int f D_{-h}(D_h u)
\]

și deci

\[
(50) \quad \|D_h u\|_{H^1}^2 \leq \|f\|_{L^2} \|D_{-h}(D_h u)\|_{L^2}.
\]

Pe de altă parte avem

\[
(51) \quad \|D_{-h} v\|_{L^2(\mathbb{R}^N)} \leq \|\nabla v\|_{L^2(\mathbb{R}^N)} \quad \forall v \in H^1.
\]

Într-adevăr, reamintim (propoziția IX.3) că

\[
\|D_{-h} v\|_{L^2(\omega)} \leq \|\nabla v\|_{L^2(\mathbb{R}^N)} \quad \forall \omega \subset \subset \mathbb{R}^N, \quad \forall h;
\]

de unde rezultă (51). Combinând (50) și (51) obținem

\[
\|D_h u\|_{H^1}^2 \leq \|f\|_{L^2} \|D_h u\|_{L^2}
\]

\(^{(30)}\)Numită și tehnica căturilor diferențiale.
și deci

\((52) \)

\[\| D_h u \|_{H^1} \leq \| f \|_{L^2} \]

In particular

\[\left\| D_h \frac{\partial u}{\partial x_i} \right\|_{L^2} \leq \| f \|_{L^2} \quad \forall i = 1, 2, \ldots, N \]

și deci \(\frac{\partial u}{\partial x_i} \in H^1 \) (conform propoziției IX.3); de aici obținem \(u \in H^2 \).

Aratăm acum că \(f \in H^1 \Rightarrow u \in H^3 \). Notăm cu \(Du \) una dintre derivatele \(\frac{\partial u}{\partial x_i} \), \(1 \leq i \leq N \). Știm deja că \(Du \in H^1 \). Trebuie să aratăm că \(Du \in H^2 \). Pentru aceasta e suficient să verificăm că

\((53) \)

\[\int \nabla(Du) \cdot \nabla \varphi + \int (Du) \varphi = \int (Df) \varphi \quad \forall \varphi \in H^1 \]

(se aplică apoi etapa precedentă care implică \(Du \in H^2 \), deci \(u \in H^3 \)).

Fie așadar \(\varphi \in C^\infty_c(\mathbb{R}^N) \). În (48) putem înlocui \(\varphi \) cu \(D\varphi \). Obținem

\[\int \nabla u \cdot \nabla(D\varphi) + \int uD\varphi = \int fD\varphi \]

și deci

\[\int \nabla(Du) \cdot \nabla \varphi + \int (Du) \varphi = \int (Df) \varphi \quad \forall \varphi \in C^\infty_c(\mathbb{R}^N). \]

Aceasta implică (53) deoarece \(C^\infty_c(\mathbb{R}^N) \) este dens în \(H^1(\mathbb{R}^N) \) (corolarul IX.8).

Pentru a arăta că \(f \in H^m \Rightarrow u \in H^{m+2} \) este suficient să raționăm prin inducție în raport cu \(m \) și să aplicăm (53).

B. Cazul \(\Omega = \mathbb{R}^N_+ \)

Utilizăm din nou translații, dar doar în direcțiile tangențiale, adică alegem \(h \in \mathbb{R}^{N-1} \times \{0\} \); spunem că \(h \) este paralel cu frontieră și notăm aceasta cu \(h \parallel \Gamma \). Este esențial de observat că

\[u \in H^1_{0}(\Omega) \Rightarrow \tau_h u \in H^1_0(\Omega) \text{ dacă } h \parallel \Gamma. \]

Cu alte cuvinte, \(H^1_0(\Omega) \) este invariat la translații tangențiale. Alegem \(h \parallel \Gamma \) și luăm \(\varphi = D_{-h}(D_h u) \) în (48); obținem

\[\int |\nabla(D_h u)|^2 + \int |D_h u|^2 = \int D_{-h}(D_h u), \]
adică
\[(54) \quad \|D_hu\|^2_{H^1} \leq \|f\|_{L^2} \|D_{-h}(D_hu)\|_{L^2}.
\]

Folosim acum

Lema IX.6. – Avem
\[
\|D_hv\|_{L^2(\Omega)} \leq \|\nabla v\|_{L^2(\Omega)} \quad \forall v \in H^1(\Omega), \quad \forall h \parallel \Gamma.
\]

Demonstrație. – Presupunem mai întâi că \(v \in C^1_c(\mathbb{R}^N)\) și urmăăm demonstrația propoziției IX.3 (observăm că dacă \(h\parallel \Gamma\) atunci \(\Omega + th = \Omega\) pentru orice \(0 < t < 1\)). Pentru \(v \in H^1(\Omega)\) se rătionează prin densitate. Combinând (54) și lema IX.6 obținem
\[(55) \quad \|D_hu\|_{H^1} \leq \|f\|_{L^2} \quad \forall h \parallel \Gamma.
\]

Fie \(1 \leq j \leq N, 1 \leq k \leq N - 1, h = |h|e_k\) și \(\varphi \in C^\infty_{\varepsilon}(\Omega)\). Avem
\[
\int D_h\left(\frac{\partial u}{\partial x_j}\right)\varphi = -\int uD_{-h}\left(\frac{\partial \varphi}{\partial x_j}\right)
\]
și, conform (55),
\[
\left|\int uD_{-h}\left(\frac{\partial \varphi}{\partial x_j}\right)\right| \leq \|f\|_{L^2} \|\varphi\|_{L^2}.
\]
Trecând la limită cu \(h \to 0\) obținem
\[(56) \quad \left|\int u\frac{\partial^2 \varphi}{\partial x_j \partial x_k}\right| \leq \|f\|_{L^2} \|\varphi\|_{L^2} \quad \forall 1 \leq j \leq N, 1 \leq k \leq N - 1.
\]
Arătăm în sfârșit că
\[(57) \quad \left|\int u\frac{\partial^2 \varphi}{\partial x_N^2}\right| \leq \|f\|_{L^2} \|\varphi\|_{L^2} \quad \forall \varphi \in C^\infty_{\varepsilon}(\Omega).
\]
Pentru aceasta **revenim la ecuația (48); aceasta implică inegalitatea**
\[
\left|\int u\frac{\partial^2 \varphi}{\partial x_N^2}\right| \leq \sum_{i=1}^{N-1} \left|\int u\frac{\partial^2 \varphi}{\partial x_i^2}\right| + \left|\int (f - u)\varphi\right| \leq C\|f\|_{L^2} \|\varphi\|_{L^2},
\]
conform (56). Combinând (56) și (57) găsim
\[
\left| \int u \frac{\partial^2 \varphi}{\partial x_j \partial x_k} \right| \leq C \|f\|_{L^2} \|\varphi\|_{L^2} \quad \forall \varphi \in C^\infty_c(\Omega), \quad \forall 1 \leq j, k \leq N.
\]
In consecință, \(u \in H^2(\Omega) \) (de notat că există \(f_{jk} \in L^2(\Omega) \) astfel încât
\[
\int u \frac{\partial^2 \varphi}{\partial x_j \partial x_k} = \int f_{jk} \varphi \quad \forall \varphi \in C^\infty_c(\Omega)
\]
conform teoremei lui Hahn-Banach și teoremei de reprezentare Riesz-Fréchet).

In sfârșit, arăm că \(f \in H^m(\Omega) \Rightarrow u \in H^{m+2}(\Omega) \). Notăm cu \(Du \) una dintre derivatele tangențiale \(Du = \frac{\partial u}{\partial x_j}, 1 \leq j \leq N - 1 \). Stabilim lema următoare și raționăm apoi prin inducție în raport cu \(m \) (31).

Lema IX.7. – Fie \(u \in H^2(\Omega) \cap H^1_0(\Omega) \) verificând (48). Atunci \(Du \in H^1_0(\Omega) \) și
\[
(58) \quad \int \nabla(Du) \cdot \nabla \varphi + \int (Du) \varphi = \int (Df) \varphi \quad \forall \varphi \in H^1_0(\Omega).
\]

Demonstrație. – Singurul punct delicaț constă în a demonstra că \(Du \in H^1_0(\Omega) \) [într-adâvăr alegem \(\varphi \in C^\infty_c(\Omega) \) și înlocuim \(\varphi \) cu \(D\varphi \) în (48); de aici deducem (58) prin densitate]. Fie \(h = |h|e_j, 1 \leq j \leq N - 1 \); atunci \(D_h u \in H^1_0(\Omega) \) (deoarece \(H^1_0 \) este invariant la translații tangențiale). Conform lemei IX.6 avem
\[
\|D_h u\|_{H^1} \leq \|u\|_{H^2}.
\]
Deci există un \(h_n \to 0 \) astfel încât \(D_h u \) converge slab la \(g \) în \(H^1_0 \) (deoarece \(H^1_0 \) este spațiu Hilbert). In particular, \(D_h u \to g \) slab în \(L^2 \). Pentru \(\varphi \in C^\infty_c(\Omega) \) avem
\[
\int (D_h u) \varphi = - \int u D_{-h} \varphi
\]
și, prin trecere la limită când \(h_n \to 0 \), obținem
\[
\int g \varphi = - \int u \frac{\partial \varphi}{\partial x_j} \quad \forall \varphi \in C^\infty_c(\Omega).
\]
\[\text{31}\] Pentru a estima derivatele normale, trebuie să revenim încă o dată la ecuația (48).
Deci \(\frac{\partial u}{\partial x_j} = g \in H^1_0(\Omega) \).

C. Cazul general.

Demonstrăm că \(f \in L^2(\Omega) \Rightarrow u \in H^2(\Omega) \) (32). Pentru a simplifica, presupunem că \(\Omega \) este mărginit; folosim o partitură a unității și scriem
\[
u = \sum_{i=0}^{k} \theta_i u \text{ ca în demonstrația teoremei IX.7.}
\]

C.1. Estimările în interior.

Este vorba de a demonstra că \(\theta_0 u \in H^2(\Omega) \). Deoarece \(\theta_0 \Omega \in C^\infty(\Omega) \), funcția \(\theta_0 u \) prelungită cu 0 în afara lui \(\Omega \) aparține lui \(H^1(\mathbb{R}^N) \) (vezi remarca 4b)). Se verifică cu ușurință că \(\theta_0 u \) este o soluție slabă pe \(\mathbb{R}^N \) a ecuației
\[-\Delta (\theta_0 u) + \theta_0 u = \theta_0 f - 2\nabla \theta_0 \cdot \nabla u - (\Delta \theta_0) u = g\]

cu \(g \in L^2(\mathbb{R}^N) \). Din cazul A deducem că \(\theta_0 u \in H^2(\mathbb{R}^N) \) cu
\[
\|\theta_0 u\|_{H^2} \leq C(\|f\|_{L^2} + \|u\|_{H^1}) \leq C\|f\|_{L^2}
\]
deoarece \(\|u\|_{H^1} \leq \|f\|_{L^2} \) (conform (48)).

C.2. Estimările în vecinătatea frontierei

Este vorba de a demonstra că \(\theta_i u \in H^2(\Omega) \) pentru \(1 \leq i \leq k \). Reamintim că \(\theta_i \in C^\infty_c(U_i) \) și că există o bijecție \(H : Q \to U \) astfel încât
\[
H \in C^2(\overline{Q}), \quad J = H^{-1} \in C^2(U_i), \quad H(Q_+) = \Omega \cap U_i, \quad H(Q_0) = \Gamma \cap U_i.
\]
Scris \(x = H(y) \) și \(y = H^{-1}(x) = J(x) \).

Se verifică cu ușurință că \(v = \theta_i u \in H^1_0(\Omega \cap U_i) \) și că \(v \) este soluție slabă pe \(\Omega \cap U_i \) a ecuației
\[-\Delta v = \theta_i f - \theta_i u - 2\nabla \theta_i \cdot \nabla u - (\Delta \theta_i) u = g\]

cu \(g \in L^2(\Omega \cap U_i) \) și \(\|g\|_{L^2} \leq C\|f\|_{L^2} \). Mai precis avem
\[
\int_{\Omega \cap U_i} \nabla v \cdot \nabla \varphi \, dx = \int_{\Omega \cap U_i} g \varphi \, dx \quad \forall \varphi \in H^1_0(\Omega \cap U_i).
\]

\(^{32}\)Pentru a demonstra că \(f \in H^m(\Omega) \Rightarrow u \in H^{m+2}(\Omega) \) se raționează prin inducție în raport cu \(m \) ca în cazurile A și B.
Regularitatea soluțiilor slabe

Transportăm $v_{|\Omega \cap U_i}$ pe Q_+. Fie

$$w(y) = v(H(y)) \quad \text{pentru} \quad y \in Q_+,$$

adică

$$w(Jx) = v(x) \quad \text{pentru} \quad x \in \Omega \cap U_i.$$

Lema următoare – care este fundamentală – arată că ecuația (59) se transportă pe Q_+ într-o ecuație eliptică de ordinul al doilea \(^{33}\).

Lema IX.8. – Cu notațiile de mai sus, avem $w \in H^1_0(Q_+)$ și

$$\sum_{k,\ell=1}^{N} \int_{Q_+} a_{k\ell} \frac{\partial w}{\partial y_k} \frac{\partial \psi}{\partial y_\ell} \, dy = \int_{Q_+} \tilde{g} \psi \, dy \quad \forall \psi \in H^1_0(Q_+),$$

unde $\tilde{g} = (g \circ H)|\text{Jac } H| \in L^2(Q_+)$ și funcțiile $a_{k\ell} \in C^1(\bar{Q}_+)$ satisfac condiția de elipticitate (36).

Demonstrație. – Fie $\psi \in H^1_0(Q_+)$ și punem $\varphi(x) = \psi(Jx)$ pentru $x \in \Omega \cap U_i$. Atunci $\varphi \in H^1_0(\Omega \cap U_i)$ și

$$\frac{\partial \varphi}{\partial x_j} = \sum_k \frac{\partial w}{\partial y_k} \frac{\partial J_k}{\partial x_j}, \quad \frac{\partial \varphi}{\partial x_j} = \sum_\ell \frac{\partial \psi}{\partial y_\ell} \frac{\partial J_\ell}{\partial x_j}.$$

Deci

$$\int_{\Omega \cap U_i} \Delta v \cdot \Delta \varphi \, dx = \int_{\Omega \cap U_i} \sum_{j,k,\ell} \frac{\partial J_k}{\partial x_j} \frac{\partial J_\ell}{\partial x_j} \frac{\partial w}{\partial y_k} \frac{\partial \psi}{\partial y_\ell} \, dx$$

$$= \int_{Q_+} \sum_{j,k,\ell} \frac{\partial J_k}{\partial x_j} \frac{\partial J_\ell}{\partial x_j} \frac{\partial w}{\partial y_k} \frac{\partial \psi}{\partial y_\ell} |\text{Jac } H| \, dy$$

conform formulelor uzuale de schimbare de variabilă pentru integrale. In consecință,

$$\int_{\Omega \cap U_i} \nabla v \cdot \nabla \varphi \, dx = \sum_{k,\ell} a_{k\ell} \frac{\partial w}{\partial y_k} \frac{\partial \psi}{\partial y_\ell} \, dy$$

cu

$$a_{k\ell} = \sum_j \frac{\partial J_k}{\partial x_j} \frac{\partial J_\ell}{\partial x_j} |\text{Jac } H|.$$

\(^{33}\) Mai generală este condiția de elipticitate care rămâne stabilă printr-o schimbare de variabilă.
Observăm că \(a_{k\ell} \in C^1(\overline{Q}_+^+) \) și condiția de elipticitate este satisfăcută deoarece pentru orice \(\xi \in \mathbb{R}^N \), avem

\[
\sum_{k,\ell} a_{k\ell} \xi_k \xi_\ell = |\text{Jac} H| \sum_j \left| \sum_k \frac{\partial J_k}{\partial x_j} \xi_k \right|^2 \geq \alpha |\xi|^2
\]

cu \(\alpha > 0 \) deoarece matricile jacobiene \(\text{Jac} H \) și \(\text{Jac} J \) nu sunt singulare.

Pe de altă parte avem

\[
\int_{\Omega \cap U_i} g \varphi \, dx = \int_{Q_+} (g \circ H) \psi |\text{Jac} H| \, dy.
\]

Combinând (59), (61) și (62) obținem (60), ceea ce încheie demonstrația lemei IX.8.

Arătăm acum că \(w \in H^2(Q_+) \) și că \(\|w\|_{H^2} \leq C\|\tilde{g}\|_{L^2} \) (34); aceasta va implica, prin revenirea la \(\Omega \cap U_i \) că \(\theta_i u \) aparține lui \(H^2(\Omega \cap U_i) \) și deci, în fapt, lui \(H^2(\Omega) \) cu \(\|\theta_i u\|_{H^2} \leq C\|f\|_{L^2} \).

Că în cazul \(B (\Omega = \mathbb{R}^N) \) folosim translații tangențiale. In (60) alegem \(\psi = D_{-h}(D_h w) \) cu \(h \parallel Q_0 \) și \(|h| \) suficient de mic pentru ca \(\psi \in H^1_0(Q_+) \) (35). Astfel obținem

\[
\sum_{k,\ell} \int_{Q_+} D_h \left(a_{k\ell} \frac{\partial w}{\partial y_k}\right) \frac{\partial}{\partial y_\ell} (D_h w) = \int_{Q_+} \tilde{g} D_{-h}(D_h w).
\]

Dar

\[
\int_{Q_+} \tilde{g} D_{-h}(D_h w) \leq \|\tilde{g}\|_{L^2} \|D_{-h}(D_h w)\|_{L^2} \leq \|\tilde{g}\|_{L^2} \|\nabla D_h w\|_{L^2}
\]

(lemma IX.6).

Pe de altă parte, scriem

\[
D_h \left(a_{k\ell} \frac{\partial w}{\partial y_k}\right)(y) = a_{k\ell}(y + h) \frac{\partial}{\partial y_k} D_h w(y) + (D_h a_{k\ell}(y)) \frac{\partial w}{\partial y_k}(y),
\]

și, ca o consecință,

\[
\sum_{k,\ell} \int_{Q_+} D_h \left(a_{k\ell} \frac{\partial w}{\partial y_k}\right) \frac{\partial}{\partial y_\ell} (D_h w) \geq \alpha \|\nabla (D_h w)\|_{L^2}^2 - C\|w\|_{H^1} \|\nabla D_h w\|_{L^2}.
\]

\[\text{În continuare notăm cu \(C \) diverse constante care depind doar de \(a_{kl} \).}\]

\[\text{Reamintim că \(\text{Supp } w \subset \{(x',x_N); |x'| < 1 - \delta \text{ și } 0 \leq x_N < 1 - \delta\} \) cu \(\delta > 0 \).}\]
Combinând (64) și (65) obținem

\[(66) \quad \|\nabla D_hw\|_{L^2} \leq C(\|w\|_{H^1} + \|\tilde{g}\|_{L^2}) \leq C\|\tilde{g}\|_{L^2}\]

(observăm că din (60) și din inegalitatea lui Poincaré avem \(\|w\|_{H^1} \leq C\|\tilde{g}\|_{L^2}\)).

Deducem din (66) – ca în cazul \(B\) – că

\[(67) \quad \left|\int_{Q_+} \frac{\partial w}{\partial y_N} \frac{\partial \psi}{\partial y_N} \right| \leq C\|\tilde{g}\|_{L^2} \|\psi\|_{L^2} \quad \forall \psi \in C^1_c(Q_+), \quad \forall (k, \ell) \neq (N, N).\]

Pentru a conchide că \(w \in H^2(Q_+)\) (și \(\|w\|_{H^2} \leq C\|\tilde{g}\|_{L^2}\)) rămâne să arătăm că

\[(68) \quad \left|\int_{Q_+} \frac{\partial w}{\partial y_N} \frac{\partial \psi}{\partial y_N} \right| \leq C\|\tilde{g}\|_{L^2} \|\psi\|_{L^2} \quad \forall \psi \in C^1_c(Q_+).\]

Pentru aceasta \textbf{revenim la ecuația (60)} unde înlocuim \(\psi\) cu \((1/a_{NN})\psi\) \((\psi \in C^1_c(Q_+));\) acest lucru este posibil deoarece \(a_{NN} \in C^1(\tilde{Q}_+)\) și \(a_{NN} \geq \alpha > 0\). Rezultă că

\[
\int_{Q_+} a_{NN} \frac{\partial w}{\partial y_N} \frac{\partial}{\partial y_N} \left(\frac{\psi}{a_{NN}} \right) = \\
= \int_{Q_+} \frac{\tilde{g}}{a_{NN}} \psi - \sum_{(k, \ell) \neq (N, N)} \int_{Q_+} a_{kk} \frac{\partial w}{\partial y_k} \frac{\partial}{\partial y_\ell} \left(\frac{\psi}{a_{NN}} \right),
\]

adică

\[(69) \quad \left\{ \begin{array}{l}
\int_{Q_+} \frac{\partial w}{\partial y_N} \frac{\partial \psi}{\partial y_N} = \int_{Q_+} \frac{1}{a_{NN}} \frac{\partial a_{NN}}{\partial y_N} \frac{\partial w}{\partial y_N} \psi + \int_{Q_+} \frac{\tilde{g}}{a_{NN}} \psi \\
\quad + \sum_{(k, \ell) \neq (N, N)} \int_{Q_+} \frac{\partial w}{\partial y_k} \frac{\partial}{\partial y_\ell} \frac{a_{NN}}{\psi} \\
\quad - \sum_{(k, \ell) \neq (N, N)} \int_{Q_+} \frac{\partial w}{\partial y_k} \frac{\partial}{\partial y_\ell} \left(\frac{a_{kk}}{a_{NN}} \psi \right).
\end{array} \right\}
\]

Combinând (67) (36) și (69) obținem

\[
\left|\int_{Q_+} \frac{\partial w}{\partial y_N} \frac{\partial \psi}{\partial y_N} \right| \leq C(\|w\|_{H^1} + \|\tilde{g}\|_{L^2}) \|\psi\|_{L^2} \quad \forall \psi \in C^1_c(Q_+),
\]

\[\text{36} \frac{\partial a_{kk}}{a_{NN}} \psi \text{ în loc de } \psi.\]
Remarca 26. – Fie Ω un deschis oarecare și u ∈ H¹(Ω) astfel încât
\[\int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} f \varphi \quad \forall \varphi \in C^\infty_c(\Omega). \]
Presupunem că f ∈ Hᵐ(Ω). Atunci θu ∈ Hᵐ⁺²(Ω) pentru orice θ ∈ C¹(Ω); spune că u ∈ Hᵐ⁺²(Ω) [pentru a demonstra acest lucru e suficient să reluăm estimările a priori din cazul C₁ și să războiam prin inducție în raport cu m]. In particular, dacă f ∈ C∞(Ω) atunci u ∈ C∞(Ω) (37).

Aceeași concluzie rămâne valabilă pentru o soluție foarte slabă, adică o funcție u ∈ L²(Ω) astfel încât
\[-\int_{\Omega} u \Delta \varphi = \int_{\Omega} f \varphi \quad \forall \varphi \in C^\infty_c(\Omega) \]
(demonstrația este puțin mai delicată; vezi de exemplu Agmon [1].)
Însistăm asupra caracterului local al teoremelor de regularitate. Fie f ∈ L²(Ω) și fie u ∈ H¹₀(Ω) unica soluție a problemei
\[\int_{\Omega} \nabla u \cdot \nabla \varphi + \int_{\Omega} u \varphi = \int_{\Omega} f \varphi \quad \forall \varphi \in H¹₀(\Omega). \]
Fixăm ω ⊂⊂ Ω; atunci u|ω depinde de valorile lui f pe întregul Ω – și nu doar de valorile lui f pe ω (38). Din contră, regularitatea lui u|ω depinde doar de regularitatea lui f|ω; de exemplu f ∈ C∞(ω) ⇒ u ∈ C∞(ω) chiar dacă f este foarte neregulată în afara lui ω. [Spunem că Δ este hipoeliptic].

Remarca 27. – Rezultatele de regularitate sunt, dintr-un anumit punct de vedere, puțin surprinzătoare. Și în general, u ∉ C(Ω) (chiar dacă Ω este de clasă C∞) deoarece condiția pe frontieră nu a fost prescrisă.

37Dar, în general, u ∉ C(Ω) (chiar dacă Ω este de clasă C∞) deoarece condiția pe frontieră nu a fost prescrisă.
38De exemplu, dacă f ≥ 0 în Ω, f ≡ 0 și f = 0 în ω avem totuși întotdeauna u > 0 în ω (vezi principiul tare de maxim în comentariile cu privire la acest capitol).
IX.7 Principiul de maxim

Principiul de maxim este un instrument foarte util ce admite mai multe formulări. Expunem aici unele forme simple.

Fie Ω o submulțime deschisă oarecare a lui \mathbb{R}^N.

- Teorema IX.27 (Principiul de maxim pentru problema Dirichlet). – Presupunem că (30)
\[
f \in L^2(\Omega) \quad \text{și} \quad u \in H^1(\Omega) \cap C(\overline{\Omega})
\]
satisfac
\[
\int_{\Omega} \nabla u \cdot \nabla \varphi + \int_{\Omega} u \varphi = \int_{\Omega} f \varphi \quad \forall \varphi \in H^1_0(\Omega).
\]

Atunci, pentru orice $x \in \Omega$,
\[
\text{Min}\{\text{Inf}_{\Gamma} u, \text{Inf}_{\Omega} f\} \leq u(x) \leq \text{Max}\{\text{Sup}_{\Gamma} u, \text{Sup}_{\Omega} f\}.
\]

Aici și în ceea ce urmează, Sup = Sup ess și Inf = Inf ess.]

Demonstrație. – Utilizăm metoda troncaturilor a lui Stampacchia. Fixăm o funcție $G \in C^1(\mathbb{R})$ astfel încât
\[
(i) \quad |G'(s)| \leq M \quad \forall s \in \mathbb{R},
(ii) \quad G \text{ este strict cresătoare pe } (0, +\infty),
(iii) \quad G(s) = 0 \quad \forall s \leq 0.
\]
Definim
\[
K = \text{Max}\{\text{Sup}_{\Gamma} u, \text{Sup}_{\Omega} f\}
\]
și presupunem $K < \infty$ (altfel nu am avea nimic de demonstrat). Fie $v = G(u - K)$.

Vom distinge două cazuri:

a) Cazul $|\Omega| < \infty$.

Atunci $v \in H^1(\Omega)$ (din propoziția IX.5 aplicată funcției $t \mapsto G(t - K) - G(-K)$). Pe de altă parte, $v \in H^1_0(\Omega)$ deoarece $v \in C(\overline{\Omega})$ și $v = 0$

\[30\text{Dacă } \Omega \text{ este de clasă } C^1 \text{ se poate elimina presupunerea } u \in C(\overline{\Omega}) \text{ apelând la teoria de urmă care dă un sens lui } u_{|\Gamma} \text{ (a se vedea comentariile de la sfârșitul acestui capitol); de asemenea, dacă } u \in H^1_0(\Omega) \text{ presupunerea } u \in C(\overline{\Omega}) \text{ poate fi eliminată.}
pe Γ (vezi teorema IX.17). Introducem acest v în (70) și procedăm ca în demonstrația teoremei VIII.17.

b) Cazul \(|\Omega| = \infty\).

Avem atunci \(K \geq 0\) (deoarece \(f(x) \leq K\) a.p.t. în \(\Omega\) și \(f \in L^2(\Omega)\) implică \(K \geq 0\)). Fixăm \(K' > K\). Din propoziția IX.5 aplicată funcției \(t \mapsto G(t - K')\) vedem că \(v = G(u - K') \in H^1(\Omega)\). Mai mult, \(v \in C(\Omega)\) și \(v = 0\) pe \(\Gamma\); astfel \(v \in H^1_0(\Omega)\). Introducând acest \(v\) în (70) avem

\[
\int_\Omega |\nabla u|^2 G'(u - K') + \int_\Omega uG(u - K') = \int_\Omega fG(u - K').
\]

Pe de altă parte, \(G(u - K') \in L^1(\Omega)\) deoarece \((40)\)
\[
0 \leq G(u - K') \leq M|u|
\]
și, pe mulțimea \([u \geq K'] = \{x \in \Omega; u(x) \geq K'\}\) avem

\[
K'\int_{[u \geq K']} |u| \leq \int_\Omega u^2 < \infty.
\]
Deducem din (71) că

\[
\int_\Omega (u - K')G(u - K') \leq \int_\Omega (f - K')G(u - K') \leq 0.
\]
Urmează că \(u \leq K'\) a.p.t. în \(\Omega\) și astfel \(u \leq K\) a.p.t. în \(\Omega\) (deoarece \(K' > K\) este arbitrar.)

- Corolarul IX.28. – Luăm \(f \in L^2(\Omega)\) și \(u \in H^1(\Omega) \cap C(\Omega)\) \((41)\) să satisfacă (70). Avem

\[
(u \geq 0 \text{ pe } \Gamma \text{ și } f \geq 0 \text{ în } \Omega) \Rightarrow (u \geq 0 \text{ în } \Omega),
\]
\[
\|u\|_{L^\infty(\Omega)} \leq \text{Max} \{\|u\|_{L^\infty(\Gamma)}, \|f\|_{L^\infty(\Omega)}\}.
\]
In particular,

\[
\text{dacă } f = 0 \text{ în } \Omega \text{ atunci } \|u\|_{L^\infty(\Omega)} \leq \|u\|_{L^\infty(\Gamma)}
\]

\({}^{40}\text{Deoarece } G(u - K') - G(-K') \leq M|u| \text{ și } G(-K') = 0 \text{ atunci când } -K' < 0.\)
\({}^{41}\text{Ca mai înainte, presupunerea } u \in C(\Omega) \text{ poate fi eliminată în unele cazuri.}\)
dacă \(u = 0 \) pe \(\Gamma \) atunci \(\| u \|_{L^\infty(\Omega)} \leq \| f \|_{L^\infty(\Omega)} \).

Remarca 28. – Dacă \(\Omega \) este mărginit și \(u \) este o soluție clasică a ecuației
\[-\Delta u + u = f \quad \text{în} \quad \Omega \]
se poate da o altă demonstrație a teoremei IX.27. Intr-adevăr, fie \(x_0 \in \Gamma \), atunci \(u(x_0) = \text{Max}_{\Omega} u \).

i) Dacă \(x_0 \in \Gamma \), atunci \(u(x_0) \leq \text{Sup}_\Gamma u \).

ii) Dacă \(x_0 \in \Omega \), atunci \(\nabla u(x_0) = 0 \) și \(\frac{\partial^2 u}{\partial x_i^2}(x_0) \), pentru orice \(1 \leq i \leq N \), aşa incât \(\Delta u(x_0) \leq 0 \). Din aceasta, utilizând ecuația (76) avem \(u(x_0) = f(x_0) + \Delta u(x_0) \leq f(x_0) \).

Această metodă are avantajul că se aplică la ecuațiile eliptice de ordinul al doilea generale:
\[-\sum_{i,j=1}^{N} \frac{\partial}{\partial x_j} \left(a_{ij} \frac{\partial u}{\partial x_i} \right) + \sum_{i=1}^{N} a_i \frac{\partial u}{\partial x_i} + u = f \quad \text{în} \quad \Omega. \]
Punctăm că dacă \(x_0 \in \Omega \), atunci
\[\sum_{i,j=1}^{N} a_{ij}(x_0) \frac{\partial^2 u}{\partial x_i \partial x_j}(x_0) \leq 0; \]
Intr-adevăr, printr-o schimbare de coordonate (depinzând de \(x_0 \)) se poate reduce la cazul când matricea \(a_{ij}(x_0) \) este diagonală. Concluzia teoremei IX.27 rămâne adevarată pentru soluțiile slabe ale lui (77), dar demonstrația este mai delicată; a se vedea Gilbarg-Trudinger [1].

• Propoziția IX.29. – Presupunem că funcțiile \(a_{ij} \in L^\infty(\Omega) \) satisfac condiția de elipticitate (36) și că \(a_i, a_0 \in L^\infty(\Omega) \) cu \(a_0 \geq 0 \) în \(\Omega \). Fie \(f \in L^2(\Omega) \) și \(u \in H^1(\Omega) \cap C(\overline{\Omega}) \) (42) astfel incât
\[\int_{\Omega} \sum_{i,j} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j} + \int_{\Omega} \sum_{i} a_i \frac{\partial u}{\partial x_i} \varphi + \int_{\Omega} a_0 u \varphi = \int_{\Omega} f \varphi \quad \forall \varphi \in H^1_0(\Omega). \]

42Ca mai înainte, presupunerea \(u \in C(\overline{\Omega}) \) poate fi eliminată în unele cazuri.
Atunci

(79) \((u \geq 0 \text{ pe } \Gamma \text{ și } f \geq 0 \text{ în } \Omega) \Rightarrow (u \geq 0 \text{ în } \Omega)\).

Presupunem că \(a_0 \equiv 0\) și că \(\Omega\) este mărginit. Atunci

(80) \((f \geq 0 \text{ în } \Omega) \Rightarrow (u \geq \inf_{\Gamma} u \text{ în } \Omega)\)

și

(81) \((f = 0 \text{ în } \Omega) \Rightarrow (\inf_{\Gamma} \leq u \leq \sup_{\Gamma} u \text{ în } \Omega)\).

Demonstrație. – Demonstrăm acest rezultat în cazul \(a_i \equiv 0, 1 \leq i \leq N\); cazul general este mai delicat (a se vedea Gilbarg-Trudinger, Teorema 8.1). A stabili (79) este același lucru cu a arăta că

(79') \((u \leq 0 \text{ pe } \Gamma \text{ și } f \leq 0 \text{ pe } \Omega) \Rightarrow (u \leq 0 \text{ în } \Omega)\).

Alegem \(\varphi = G(u)\) în (78) cu \(G\) ca în demonstrația teoremei IX.27; obținem astfel

\[\int_{\Omega} \sum_{i,j} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} G'(u) \leq 0\]

și deci

\[\int_{\Omega} |\nabla u|^2 G'(u) \leq 0.\]

Definim \(H(t) = \int_0^t [G'(s)]^{1/2} ds;\) așa încât

\[H(u) \in H^1_0(\Omega) \text{ și } |\nabla H(u)| = |\nabla u|^2 G'(u) = 0.\]

Urmează că \(H(u) = 0 \text{ în } \Omega \) și de aici \(u \leq 0 \text{ în } \Omega\).

Demonstrăm acum (80) în forma următoare

(80') \((f \leq 0 \text{ în } \Omega) \Rightarrow (u \leq \sup_{\Gamma} u \text{ în } \Omega)\).

Definim \(K = \sup_{\Gamma} u\); atunci \((u - K)\) satisfacă (78) deoarece \(a_0 \equiv 0\) și \((u - K) \in H^1(\Omega)\) pentru că \(\Omega\) este mărginit. Aplicând (79') obținem \(u - K \leq 0 \text{ în } \Omega\), adică (80'). În final, (81) urmează din (80) și (80').

\(^{43}\)Subliniem că dacă \(f \in W^{1,p}_{0} (\Omega)\) cu \(1 \leq p < \infty\) și \(\nabla f = 0 \text{ în } \Omega\), atunci \(f = 0 \text{ în } \Omega\). Într-adevăr, fie \(f\) prelungirea lui \(f\) cu 0 în afara lui \(\Omega\); atunci \(f \in W^{1,p}(\mathbb{R}^N)\) și \(\nabla f = \nabla f = 0\) (vezi propoziția IX.18). Ca o consecință \(f\) este constantă (vezi remarca 8) și deoarece \(f \in L^p(\mathbb{R}^N), f \equiv 0\).
Propoziția IX.30. (Principiul de maxim pentru problema Neumann). – Fie \(f \in L^2(\Omega) \) și \(u \in H^1(\Omega) \) astfel încât

\[
\int_{\Omega} \nabla u \nabla \varphi + \int_{\Omega} w \varphi = \int_{\Omega} f \varphi \quad \forall \varphi \in H^1(\Omega).
\]

Atunci avem, pentru a.p.t. \(x \in \Omega \),

\[
\text{Inf}_\Omega f \leq u(x) \leq \text{Sup}_\Omega f.
\]

Demonstrație. – Aceasta este similară cu aceea a teoremei IX.27.

IX.8 Funcțiile proprii și descompunere spectrală

În această secțiune presupunem că \(\Omega \) este o mulțime deschisă mărginită.

• Teorema IX.31. – Există o bază Hilbertiană \((e_n)_{n \geq 1} \) a lui \(L^2(\Omega) \) și un șir \((\lambda_n)_{n \geq 1} \) de numere reale cu \(\lambda_n > 0 \) \(\forall n \) și \(\lambda_n \to +\infty \) astfel încât

\[
e_n \in H^1_0(\Omega) \cap C^\infty(\Omega),
\]

\[
-\Delta e_n = \lambda_n e_n \text{ în } \Omega.
\]

Spunem că \((\lambda_n) \) sunt valorile proprii ale lui \(-\Delta \) (cu condiția Dirichlet pe frontieră) și că \((e_n) \) sunt funcțiile proprii asociate.

Demonstrație. – Pentru \(f \in L^2(\Omega) \) dat, notăm \(u = Tf \) unica soluție \(u \in H^1_0(\Omega) \) a problemei

\[
\int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} f \varphi \quad \forall \varphi \in H^1_0(\Omega).
\]

Consideră \(T \) ca un operator de la \(L^2(\Omega) \) în \(L^2(\Omega) \). \(T \) este un operator compact autoadjunct (repetați demonstrația teoremei VIII.20 și utilizați faptul că \(H^1_0(\Omega) \subset L^2(\Omega) \) cu injecția compactă). Pe de altă parte, \(N(T) = \{0\} \) și \((Tf, f)_{L^2} \geq 0 \) \(\forall f \in L^2 \). Concluzionăm (aplicând teorema VI.11) că \(L^2 \) admite o bază Hilbertiană \((e_n) \) formată din funcți}
proprii ale lui T asociate valorilor proprii (μ_n) cu $\mu_n > 0$ și $\mu_n \to 0$. Astfel avem $e_n \in H_0^1(\Omega)$ și
\[\int_{\Omega} \nabla e_n \cdot \nabla \varphi = \frac{1}{\mu_n} \int_{\Omega} e_n \varphi \quad \forall \varphi \in H_0^1(\Omega). \]
Cu alte cuvinte, e_n este o soluție slabă a lui (83) cu $\lambda_n = 1/\mu_n$. Din rezultatele de regularitate ale lui §IX.6 (a se vedea remarca 26) știm că $e_n \in H^1(\Omega)$ pentru orice $\omega \subset \subset \Omega$. Urmează că $e_n \in H^4(\omega)$ pentru orice $\omega \subset \subset \Omega$, etc. Astfel $e_n \in \cap_{m \geq 1} H^m(\omega)$ pentru orice $\omega \subset \subset \Omega$. In consecință, $e_n \in C^\infty(\Omega)$ pentru orice $\omega \subset \subset \Omega$, adică $e_n \in C^\infty(\Omega)$.

Remarca 29. – În ipotezele teoremei IX.31 șirul $(e_n/\sqrt{\lambda_n})$ este o bază Hilbertiană a lui $H_0^1(\Omega)$ înzestrat cu produsul scalar $\int_{\Omega} \nabla u \cdot \nabla v$ [respectiv $(e_n/\sqrt{\lambda_n} + 1)$ este o bază Hilbertiană a lui $H_0^1(\Omega)$ înzestrat cu produsul scalar $\int_{\Omega} (\nabla u \cdot \nabla v + uv)$]. Într-adevăr, este limpede că șirul $(e_n/\sqrt{\lambda_n})$ este ortonormal în $H_0^1(\Omega)$ (a se utiliza (83)). Rămâne de verificat că spațiul vectorial generat de (e_n) este dens în $H_0^1(\Omega)$. Deci, fie $f \in H_0^1(\Omega)$ astfel încât $(f,e_n)_{H_0^1} = 0 \ \forall n$. Trebuie să demonstrăm că $f = 0$. Din (83) avem $\lambda_n \int_{\Omega} e_n f = 0 \ \forall n$ și în consecință $f = 0$ (deoarece (e_n) este o bază Hilbertiană a lui $L^2(\Omega)$).

Remarca 30. – În ipotezele teoremei IX.31 se poate demonstra că $e_n \in L^\infty(\Omega)$ (vezi [EX]). Pe de altă parte, dacă Ω este de clasă C^∞ atunci $e_n \in C^\infty(\Omega)$; acest rezultat urmează ușor din teorema IX.25.

Remarca 31. – Presupunem că funcțiile $a_{ij} \in L^\infty(\Omega)$ satisfacon condiția de elipticitate (36) și fie $a_0 \in L^\infty(\Omega)$. Atunci există o bază Hilbertiană (e_n) a lui $L^2(\Omega)$ și un șir (λ_n) de numere reale cu $\lambda_n \to +\infty$ astfel încât $e_n \in H_0^1(\Omega)$ și
\[\int_{\Omega} \sum_{i,j} a_{ij} \frac{\partial e_n}{\partial x_i} \frac{\partial \varphi}{\partial x_j} + \int_{\Omega} a_0 e_n \varphi = \lambda_n \int_{\Omega} e_n \varphi \quad \forall \varphi \in H_0^1(\Omega). \]

IX.9 Comentarii asupra capitolului IX

Acest capitol este o *introducere* în teoria spațiilor Sobolev și a ecuațiilor eliptice. Cititorul care doresc să aprofundeze acest subiect larg poate

1) In capitolul IX am presupus adeseori că Ω este de clasă C^1; această presupunere exclude de exemplu domeniile cu “colțuri”. În diverse situații se poate slăbi această ipoteză și înlocui prin condiții mai degrabă “exotice”: Ω este de clasă C^1 pe porțiuni, Ω este Lipschitzian, Ω are proprietatea conului, Ω are proprietatea segmentului etc.; a se vedea, de exemplu, Adams [1], Agmon [1], Nečas [1].

2) Teorema IX.7 (existentă unui operator de prelungire) se extinde la spațiile $W^{m,p}(Ω)$ (Ω de clasă C^m) cu ajutorul unei generalizări adecvate a tehnicii de prelungire prin reflexie; a se vedea Adams [1], Agmon [1], Nečas [1].

3) Aici sunt câteva inegalități foarte utile pentru normele Sobolev:

- **A)** Inegalitatea lui Poincaré-Wirtinger. — Fie Ω o mulțime deschisă conexă de clasă C^1 și fie $1 \leq p \leq \infty$. Atunci există o constantă C astfel încât

 \[\| u - \bar{u} \|_{L^p} \leq c \| \nabla u \|_{L^p} \quad \forall u \in W^{1,p}(Ω), \quad \text{unde} \quad \bar{u} = \frac{1}{|Ω|} \int_{Ω} u. \]

Din aceasta se deduce, datorită inegalității lui Sobolev, că dacă $p < N$,

\[\| u - \bar{u} \|_{L^p} \leq c \| \nabla u \|_{L^p} \quad \forall u \in W^{1,p}(Ω). \]

Vezi, de exemplu [EX].

- **B)** Inegalitatea lui Hardy. — Fie Ω o mulțime deschisă, mărginită de clasă C^1 și fie $1 < p < \infty$. Fie $d(x) = \text{dist}(x, Γ)$. Există o constantă C astfel încât

 \[\left\| \frac{u}{d} \right\|_{L^p} \leq C \| \nabla u \|_{L^p} \quad \forall u \in W^{1,p}_0(Ω). \]

Reciproc,

\[(u \in W^{1,p}(Ω) \quad \text{și} \quad (u/d) \in L^p(Ω)) \Rightarrow (u \in W^{1,p}_0(Ω)). \]

Pentru a fixa ideile, fie $\Omega \subset \mathbb{R}^N$ o mulțime deschisă mărginită regulată.

Exemplul 1. – Fie $u \in L^p(\Omega) \cap W^{2,r}(\Omega)$ cu $1 \leq p \leq \infty$ și $1 \leq r \leq \infty$. Atunci $u \in W^{1,q}(\Omega)$ unde q este media armonică a lui p și r, adică $\frac{1}{q} = \frac{1}{2} \left(\frac{1}{p} + \frac{1}{r} \right)$, și

$$||Du||_{L^q} \leq C ||u||_{W^{2,r}}^{1/2} ||u||_{L^p}^{1/2}.$$

Cazuri particulare:

a) $p = \infty$ și, de aceea, $q = 2r$. Avem

$$||Du||_{L^{2r}} \leq C ||u||_{W^{2,r}}^{1/2} ||u||_{L^\infty}^{1/2}.$$

Această inegalitate poate fi utilizată, printre altele pentru a arăta că $W^{2,r} \cap L^\infty$ este o algebră, altfel spus

$u, v \in W^{2,r} \cap L^\infty \Rightarrow uv \in W^{2,r} \cap L^\infty$

[această proprietate rămâne adevărată pentru $W^{m,r} \cap L^\infty$ cu m întreg, $m \geq 2$].

b) $p = q = r$. Avem

$$||Du||_{L^r} \leq C ||u||_{W^{2,r}}^{1/2} ||u||_{L^r}^{1/2}.$$

De aici se poate deduce, in particular, că

$$||Du||_{L^p} \leq \varepsilon ||D^2u||_{L^p} + C_\varepsilon ||u||_{L^p} \quad \forall \varepsilon > 0.$$

Exemplul 2. – Fie $1 \leq q \leq p < \infty$. Atunci

$$||u||_{L^p} \leq C ||u||_{L^q}^{1-a} ||u||_{W^{1,N}}^a \quad \forall u \in W^{1,N}(\Omega), \quad \text{unde} \quad a = 1 - \frac{q}{p}.$$
Subliniem cazul particular care este frecvent utilizat

\[N = 2, p = 4, \quad q = 2 \] și \[a = \frac{1}{2}, \]

altfel spus

\[\|u\|_{L^4} \leq C\|u\|_{L^2}^{1/2}\|u\|_{H^1}^{1/2} \quad \forall u \in H^1(\Omega). \]

Remarcăm, în această relație, că am utilizat de asemenea inegalitatea de interpolare uzuală (remarcă 2 din capitolul IV)

\[\|u\|_{L^p} \leq \|u\|_{L^q}^{1-a}\|u\|_{L^\infty}^a \quad \text{cu} \quad a = 1 - \frac{q}{p} \]

dar aceasta nu implică (85) deoarece \(W^{1,N} \) nu este conținut în \(L^\infty \).

Exemplul 3. – Fie \(1 \leq q \leq p \leq \infty \) și \(r > N \). Atunci

\[\|u\|_{L^p} \leq C\|u\|_{L^q}^{1-a}\|u\|_{W^{1,r}}^a \quad \forall u \in W^{1,r}(\Omega) \]

unde \(a = (1/q - 1/p) / (1/q + 1/N - 1/r) \).

• 4) Următoarea proprietate este unaori utilă. Fie \(u \in W^{1,p}(\Omega) \) cu \(1 \leq p \leq \infty \) și \(\Omega \) orice mulțime deschisă. Atunci \(\nabla u = 0 \) a.p.t. pe mulțimea \(\{x \in \Omega; \quad u(x) = k\} \) unde \(k \) este orice constantă; vezi Stampacchia [1] sau [EX].

• 5) Funcțiile din \(W^{1,p}(\Omega) \) sunt diferențiabile în sensul uzual a.p.t. în \(\Omega \) când \(p > N \). Mai precis, fie \(u \in W^{1,p}(\Omega) \) cu \(p > N \). Atunci există o mulțime \(A \subset \Omega \) de măsură zero astfel încât

\[
\lim_{h \to 0} \frac{u(x + h) - u(x) - h \cdot \nabla u(x)}{|h|} = 0 \quad \forall x \in \Omega \setminus A.
\]

Această proprietate nu este valabilă când \(u \in W^{1,p}(\Omega) \) și \(p \leq N \) (\(N > 1 \)). Asupra acestei chestiuni a se consulta Stein [1] (capitolul 8).

6) **Spații Sobolev fracționare.** Se poate defini o familie de spații intermediare între \(L^p(\Omega) \) și \(W^{1,p}(\Omega) \). Mai precis dacă \(0 < s < 1 \) (\(s \in \mathbb{R} \)) și \(1 \leq p < \infty \) definim

\[
W^{s,p}(\Omega) = \left\{ u \in L^p(\Omega); \quad \frac{|u(x) - u(y)|}{|x - y|^{s+(N/p)}} \in L^p(\Omega \times \Omega) \right\},
\]
înestrat cu norma naturală. Definim $H^s(\Omega) = W^{s,2}(\Omega)$. Pentru studii asupra acestor spații, vezi Adams [1], Lions-Magenes [2], Malliavin [1]. Spațiile $W^{s,p}(\Omega)$ pot fi, de asemenea, definite ca spații de interpolare între $W^{1,p}$ și L^p, și, de asemenea, utilizând transformata Fourier dacă $p = 2$ și $\Omega = \mathbb{R}^N$.

În fine, definim $W^{s,p}(\Omega)$ pentru $s > 1$ real, diferit de un întreg, după cum urmează. Scriem $s = m + \sigma$ cu m = partea întreagă a lui s, și definim

$$W^{s,p}(\Omega) = \{ u \in W^{m,p}(\Omega); D^\alpha u \in W^{\sigma,p}(\Omega) \ \forall \alpha \text{ cu } |\alpha| = m \}.$$

Cu ajutorul hărților locale se poate, de asemenea, define $W^{s,p}(\Gamma)$ unde Γ este o varietate netedă (de exemplu frontieră unei mulțimi deschise regulate). Aceste spații joacă un rol important în teoria de urmă (vezi comentariul 7).

• 7) Teoria de urmă. – Fie $1 \leq p < \infty$. Începem cu o lemă fundamentală:

Lema IX.9. – Fie $\Omega = \mathbb{R}^N_+$. Există o constantă C astfel încât

$$\left(\int_{\mathbb{R}^{N-1}} |u(x',0)|^p \, dx' \right)^{1/p} \leq C \|u\|_{W^{1,p}(\Omega)} \ \forall u \in C^1_c(\mathbb{R}^N).$$

Demonstrație. – Fie $G(t) = |t|^{p-1}t$ și $u \in C^1_c(\mathbb{R}^N)$. Avem

$$G(u(x',0)) = -\int_{0}^{+\infty} \frac{\partial}{\partial x_N} G(u(x',x_N)) \, dx_N = -\int_{0}^{+\infty} G'(u(x',x_N)) \frac{\partial u}{\partial x_N}(x',x_N) \, dx_N.$$

De aceea

$$|u(x',0)|^p \leq p \int_{0}^{\infty} |u(x',x_N)|^{p-1} \left| \frac{\partial u}{\partial x_N}(x',x_N) \right| \, dx_N \leq C \left[\int_{0}^{\infty} |u(x',x_N)|^p \, dx_N + \int_{0}^{\infty} \left| \frac{\partial u}{\partial x_N}(x',x_N) \right|^p \, dx_N \right]$$

și concluzia urmează prin integrarea în $x' \in \mathbb{R}^{N-1}$.

Se poate deduce din Lema IX.9 că aplicația $u \mapsto u|_{\Gamma}$ cu $\Gamma = \partial \Omega = \mathbb{R}^{N-1} \times \{0\}$ definită de la $C^1_c(\mathbb{R}^N)$ în $L^p(\Gamma)$, se extinde, prin densitate, la
un operator liniar mărginit al lui $W^{1,p}(\Omega)$ în $L^p(\Gamma)$. Acest operator este, prin definiție, urma lui u pe Γ; aceasta este, de asemenea, notată u_{Γ}.

Remarcăm că există o diferență fundamentală între $L^p(\mathbb{R}^N_+)$ și $W^{1,p}(\mathbb{R}^N_+)$; funcțiile din $L^p(\mathbb{R}^N_+)$ nu au o urmă pe Γ. Se poate ușor imagina—utilizând hărți locale—cum se definește urma pe $\Gamma = \partial \Omega$, pentru o funcție $u \in W^{1,p}(\Omega)$ când Ω este o multime deschisă netedă din \mathbb{R}^N (de exemplu, Ω de clasă C^1 cu Γ mărginită). În acest caz $u_{\Gamma} \in L^p(\Gamma)$ (pentru mașura de suprafață $d\sigma$). Cele mai importante proprietăți ale urmei sunt următoarele:

i) Dacă $u \in W^{1,p}(\Omega)$, atunci, de fapt $u_{\Gamma} \in W^{1-(1/p),p}(\Gamma)$ și
\[\|u_{\Gamma}\|_{W^{1-(1/p),p}(\Gamma)} \leq C\|u\|_{W^{1,p}(\Omega)} \quad \forall u \in W^{1,p}(\Omega). \]

Mai mult, operatorul urmă $u \mapsto u_{\Gamma}$ este surjectiv de la $W^{1,p}(\Omega)$ la $W^{1-(1/p),p}(\Gamma)$.

ii) Nucleul operatorului urmă este $W^{1,p}_0(\Omega)$, adică
\[W^{1,p}_0(\Omega) = \{ u \in W^{1,p}(\Omega) | u_{\Gamma} = 0 \}. \]

iii) Avem formula lui Green:
\[\int_{\Omega} \frac{\partial u}{\partial x_i} v = - \int_{\Omega} u \frac{\partial v}{\partial x_i} + \int_{\Gamma} uv(\vec{n} \cdot \vec{e}_i) d\sigma \quad \forall u, v \in H^1(\Omega) \]
unde \vec{n} este versorul normalei exterioare la Γ. Punctăm că integrala de suprafață are un înțeles deoarece $u, v \in L^2(\Gamma)$.

În același mod putem vorbi de $\frac{\partial u}{\partial n}$ pentru o funcție $u \in W^{2,p}(\Omega)$:
\[\frac{\partial u}{\partial n} = (\nabla u)_{\Gamma} \cdot \vec{n}, \quad \text{care are un sens deoarece} \quad (\nabla u)_{\Gamma} \in L^p(\Gamma)^N, \]
și $\frac{\partial u}{\partial n} \in L^p(\Gamma)$ (de fapt $\frac{\partial u}{\partial n} \in W^{1-(1/p),p}(\Gamma)$). De asemenea, formula lui Green este valabilă
\[- \int_{\Omega} \Delta u v = \int_{\Omega} \nabla u \cdot \nabla v - \int_{\Gamma} \frac{\partial u}{\partial n} v d\sigma \quad \forall u, v \in H^2(\Omega). \]

iv) Operatorul $u \mapsto \left\{ u_{\Gamma}, \frac{\partial u}{\partial n} \right\}$ este mărginit, liniar și surjectiv de la $W^{2,p}(\Omega)$ în spațiul $W^{2-(1/p),p}(\Gamma) \times W^{1-(1/p),p}(\Gamma)$. Asupra acestor
chestiuni, vezi Lions-Magenes [1] pentru cazul \(p = 2 \) (și referințele citate acolo pentru \(p \neq 2 \)).

8) Operatori de ordinul \(2m \) și sisteme eliptice. – Rezultatele de existență și regularitate demonstrate în capitolul IX se extind la operatori eliptici de ordinul \(2m \) și la sisteme eliptice \((44) \). Unul din ingredientele esențiale este \textit{inegalitatea lui Gårding}. Asupra acestor probleme, vezi Agmon [1], Nečas [1], Lions-Magenes [1], Agmon-Douglis–Nirenberg [1]. Operatorii de ordin \(2m \) și unele sisteme joacă un rol important în mecanică și fizică. Semnalăm, în particular, \textit{operatorul biarmonic} \(\Delta^2 \) (teoria plăcilor), \textit{sistemul de elasticitate} și \textit{sistemul lui Stokes} (mecanica fluidelor); vezi de exemplu Ciarlet [1], Duvant-Lions [1], Temam [1], Nečas-Hlaváček [1], Gurtin [1].

\[(87) \]

\[-\Delta u + u = f \quad \text{în } \Omega. \]

Mai mult, dacă \(\Omega \) este de clasă \(C^{m+2} \) și \(f \in W^{m,p}(\Omega) \) \((m \geq 1 \text{ un întreg}) \), atunci

\[u \in W^{m+2,p}(\Omega) \quad \text{și} \quad \|u\|_{W^{m+2,p}} \leq C\|f\|_{W^{m,p}}. \]

Există un rezultat analog dacă \((87) \) este înlocuită de o ecuație eliptică de ordinul doi cu coeficienți netezii. Demonstrarea teoremei IX.32 este considerabil mai complicată decât în cazul \(p = 2 \) (teorema IX.25). Aceasta utilizează în mod esențial două ingrediente:

a) O formulă pentru o \textit{reprezentare explicită} a lui \(u \) utilizând soluția fundamentală. De exemplu dacă \(\Omega = \mathbb{R}^3 \), atunci soluția lui \((87) \) este dată de \(u = G*f \) unde \(G(x) = \frac{c}{|x|}e^{-|x|} \) (vezi [EX]). Așa încât, formal,

\[\frac{\partial^2 u}{\partial x_i \partial x_j} = \frac{\partial^2 G}{\partial x_i \partial x_j} * f; \quad \text{"din nefericire"} \quad \frac{\partial^2 G}{\partial x_i \partial x_j} \text{ nu aparține lui } L^1(\mathbb{R}^3), \quad (45) \]

\[44 \text{Dar nu și principiul de maxim, în afara de cazurile foarte speciale.} \]

\[45 \text{Dar foarte aproape!} \]
COMENTARIU

din cauza singularității în \(x = 0 \), și nu se pot aplica estimările elementare asupra produselor de convoluție (ca de exemplu teorema 4.15).

b) Pentru a depăși această dificultate se utilizează teoria integralelor singulare din \(L^p \) datorată lui Calderon-Zygmund (vezi de exemplu Stein [1], Bers-John-Schechter [1] și Gilbarg-Trudinger [1]). Atenție: concluzia teoremei IX.32 este falsă pentru \(p = 1 \) și \(p = \infty \).

Un alt rezultat de regularitate fundamental, în cadrul de lucru al spațiilor Hölder (46) este următorul:

- Teorema IX.33 (Schauder). — Presupunem că \(\Omega \) este mărginit și de clasă \(C^{2,\alpha} \) cu \(0 < \alpha < 1 \). Atunci pentru orice \(f \in C^{0,\alpha}(\overline{\Omega}) \) există o soluție unică \(u \in C^{2,\alpha}(\overline{\Omega}) \) a problemei

\[
\begin{align*}
-\Delta u + u &= f \quad \text{în } \Omega, \\
u &= 0 \quad \text{pe } \Gamma.
\end{align*}
\]

Mai mult, dacă \(\Omega \) este de clasă \(C^{m+2,\alpha}(m \geq 1 \text{ un întreg}) \) și \(f \in C^{m,\alpha}(\overline{\Omega}) \), atunci

\[
u \in C^{m+2,\alpha}(\overline{\Omega}) \text{ cu } \|u\|_{C^{m+2,\alpha}} \leq C\|f\|_{C^{m,\alpha}}.
\]

Un rezultat analog se menține dacă (88) este satisfăcută de un operator eliptic de ordinul doi cu coeficienți netei. Demostrația teoremei IX.33 se bazează—precum aceea a teoremei IX.32—pe o reprezentare explicită a lui \(u \) și pe teoria integralelor singulare din spațiile \(C^{0,\alpha} \) datorată lui Hölder, Korn, Lichtenstein, Giraud. Asupra acestui subiect, a se vedea Agmon-Douglis-Nirenberg [1], Bers-John-Schechter [1], Gilbarg-Trudinger [1] și, de asemenea, abordarea elementară dezvoltată recent de A. Brandt [1] (bazată numai pe principiul de maximum).

Fie \(\Omega \) o mulțime deschisă, regulată, mărginită și \(f \in C(\overline{\Omega}) \). Din teorema IX.32 există \(u \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \) (pentru orice \(1 < p < \infty \)).

Reamintim că

\[
C^{0,\alpha}(\overline{\Omega}) = \left\{ u \in C(\Omega); \sup_{x,y \in \Omega, x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} < \infty \right\}
\]

și \(C^{m,\alpha}(\overline{\Omega}) = \{ u \in C(\overline{\Omega}); D^\beta u \in C^{0,\alpha}(\overline{\Omega}) \ \forall \beta \text{ cu } |\beta| = m \}. \)

46Reamintim că
care este soluția unică a lui (87). În particular, \(u \in C^{1,\alpha} (\Omega) \) pentru orice \(0 < \alpha < 1 \) (din teorema lui Morrey (teorema IX.12)). În general, \(u \) nu aparține lui \(C^2 \), nici chiar lui \(W^{2,\infty} \). Aceasta explică de ce adeseori evităm să lucrăm în spații \(L^1 (\Omega), L^\infty (\Omega) \) și \(C (\Omega) \), spații în care nu avem rezultate de regularitate optimale.

Teoremele IX.32 și IX.33 se extind la operatori eliptici de ordinul 2 și la sisteme eliptice; vezi Agmon-Douglis-Nirenberg [1]. Punctăm, în final, într-o direcție diferită, că ecuațiile eliptice de ordinul doi cu coeficienți discontinui reprezintă o temă larg studiată. Cităm, de exemplu, următorul rezultat:

- **Teorema IX.34 (De Giorgi, Stampacchia).** Fie \(\Omega \subset \mathbb{R}^N \) o mulțime deschisă, regulată, mărginită. Presupunem că funcțiile \(a_{ij} \in L^\infty (\Omega) \) satisfac condiția de elipticitate (36). Fie \(f \in L^2 (\Omega) \cap L^p (\Omega) \) cu \(p > N/2 \) și \(u \in H_0^1 (\Omega) \) astfel încât
 \[
 \int_\Omega \sum_{i,j} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j} = \int_\Omega f \varphi \quad \forall \varphi \in H_0^1 (\Omega).
 \]

Atunci \(u \in C^{0,\alpha} (\Omega) \) pentru un anumit \(0 < \alpha < 1 \) (care depinde de \(\Omega, a_{ij} \) și \(p \)).

Asupra acestor chestiuni, a se vedea Stampacchia [1], Gilbarg-Trudinger [1] și Ladyzhenskaya-Uraltseva [1].

10) Unele inconveniente ale metodei variatâionale și cum să le evităm!

Metoda variatâională permite să stabilim foarte ușor existența unei soluții slabe. Nu este întotdeauna aplicabilă, dar aceasta poate fi completată. Indicăm două exemple. Fie \(\Omega \subset \mathbb{R}^N \) o mulțime deschisă regulată și mărginită.

- **a) Metoda de dualitate** (sau transpoziție). Fie \(f \in L^1 (\Omega) \)—sau chiar \(f \) o măsură (Radon) pe \(\Omega \)—și căutăm o soluție a problemei
 \[
 \begin{aligned}
 -\Delta u + u &= f &\text{în } \Omega \\
 u &= 0 \quad &\text{pe } \Gamma.
 \end{aligned}
 \]

De îndată ce \(N > 1 \) funcționala liniară \(\varphi \mapsto \int_\Omega f \varphi \) nu este definită pentru orice \(\varphi \in H_0^1 (\Omega) \) și ca o consecință metoda variatâională este
Ineficacă. Pe de altă parte, se poate utiliza următoarea tehnică. Notăm cu $T : L^2(\Omega) \to L^2(\Omega)$ operatorul $f \mapsto u$ (unde u este soluția lui (89), care există pentru $f \in L^2(\Omega)$). Știm că T este autoadjuunct. Pe de altă parte (teorema IX.32) $T : L^p(\Omega) \to W^{2,p}(\Omega)$ pentru $2 \leq p < \infty$ și datorită teoremelor lui Sobolev și Morrey, $T : L^p(\Omega) \to C_0(\overline{\Omega})$ dacă $p > N/2$. **Din dualitate** deducem că

$$T^* : M(\Omega) = C_0(\overline{\Omega})' \to L^p(\Omega) \quad \text{dacă } p > N/2.$$

Deoarece T este autoadjuunct în L^2, T^* este o prelungire a lui T; de aceea se poate considera $u = T^*f$ ca o soluție generalizată a lui (89). De fapt, dacă $f \in L^1(\Omega)$, atunci $u = T^*f \in L^2(\Omega)$ pentru orice $q < N/(N-2)$; u este unică soluție (foarte) slabă a lui (89) în următorul sens:

$$-\int_\Omega u\Delta \varphi + \int_\Omega u\varphi = \int_\Omega f\varphi \quad \forall \varphi \in C^2(\overline{\Omega}), \varphi = 0 \quad \text{pe } \Gamma.$$

În același spirit, se poate studia (89) pentru f dat în $H^{-m}(\Omega)$; a se vedea Lions-Magenes [1].

b) Metoda de densitate. Fie $g \in C(\Gamma)$ și căutăm o soluție a problemei

\begin{equation}
\begin{cases}
-\Delta u + u = 0 & \text{în } \Omega \\
u = g & \text{pe } \Gamma.
\end{cases}
\end{equation}

În general, dacă $g \in C(\Gamma)$, nu există o funcție $\tilde{g} \in H^1(\Omega)$ astfel încât $\tilde{g}|_\Gamma = g$ (vezi comentariul 7 și punctăm că $C(\Gamma)$ nu este conținut în $H^{1/2}(\Gamma)$). Astfel nu este posibil să căutăm o soluție a lui (90) în $H^1(\Omega)$: **metoda variatională este ineficientă.** Cu toate acestea avem

- **Teorema IX.35.** – Exista o soluție unică $u \in C(\overline{\Omega}) \cap C^\infty(\Omega)$ a lui (90).

Demonstrație. – Fixăm $\tilde{g} \in C_c(\mathbb{R}^N)$ astfel încât $\tilde{g}|_\Gamma = g$; \tilde{g} există din teorema lui Tietze-Urysohn (vezi Dieudonné [1], L. Schwartz [2], Dugundji [1], Munkres [1]). Fie (\tilde{g}_n) un șir în $C^\infty_c(\mathbb{R}^N)$ astfel încât $\tilde{g}_n \to g$ uniform în \mathbb{R}^N. Definim $g_n = \tilde{g}_n|_\Gamma$. Aplicînd metoda variatională și rezultatele de regularitate vedem că există $u_n \in C^2(\overline{\Omega})$ o soluție clasică...
a problemei
\[\begin{cases}
-\Delta u_n + u_n = 0 \quad \text{în } \Omega, \\
u_n = g_n \quad \text{pe } \Gamma.
\end{cases} \]

Din principiul de maxim (corolarul IX.28) avem
\[\|u_m - u_n\|_{L^\infty(\Omega)} \leq \|g_m - g_n\|_{L^\infty(\Gamma)}. \]

În consecință, \((u_n)\) este un șir Cauchy în \(C(\overline{\Omega})\) și \(u_n \to u\) în \(C(\overline{\Omega})\). Este limpede că avem
\[\int_{\Omega} u(-\Delta \phi + \phi) = 0 \quad \forall \phi \in C^\infty_c(\Omega), \]
și, de aceea, \(u \in C^\infty(\Omega)\) (a se vedea remarcă 26). Astfel \(u \in C(\overline{\Omega}) \cap C^\infty(\Omega)\) satisface (90). Unicitatea soluției lui (90) urmează din principiul de maxim (vezi remarcă 28).

Remarca 32. – Este esențial ca în teorema IX.35 să presupunem că \(\Omega\) este suficient de neted. Când \(\Omega\) are o frontieră “patologică” ne lovim de chestiuni ale teoriei potențialului (puncte regulate, criteriul lui Wiener etc.).

O altă abordare pentru a rezolva (90) este **metoda lui Perron**, care este clasică în **teoria potențialului**. Definim
\[u(x) = \text{Sup} \{v(x); v \in C(\overline{\Omega}) \cap C^2(\Omega), -\Delta v + v \leq 0 \text{ în } \Omega \quad \text{și} \quad v \leq g \text{ pe } \Gamma}\].

Se poate *demonstra* că \(u\) satisface (90).

O funcție \(v\) astfel încât \(-\Delta v + v \leq 0\) în \(\Omega\) este numită *subarmonică*; dacă, mai mult, \(v \leq g\) pe \(\Gamma\) atunci spunem că \(v\) este o *subsoluție* a lui (90).

11) **Principiul tare de maxim.** – Putem întări concluzia propoziției IX.29 când \(u\) este o **soluție clasică**. Mai precis, fie \(\Omega\) o mulțime deschisă, regulată, mărginită, conexă. Fie \(a_{ij} \in C^1(\overline{\Omega})\) satisfăcând condiția de elipticitate (36), \(a_i, a_0 \in C(\Omega)\) cu \(a_0 \geq 0\) în \(\Omega\). Avem:

Teorema IX.36 (Hopf). – Fie \(u \in C(\overline{\Omega}) \cap C^2(\Omega)\) satisfăcând
\[-\sum_{i,j} \frac{\partial}{\partial x_j} \left(a_{ij} \frac{\partial u}{\partial x_i} \right) + \sum_i a_i \frac{\partial u}{\partial x_i} + a_0 u = f \quad \text{în } \Omega. \]
Presupunem că $f \geq 0$ în Ω. Dacă există $x_0 \in \Omega$ astfel încât $u(x_0) = \min_{\Omega} u$ și dacă $u(x_0) \leq 0$, (47) atunci u este constantă pe Ω (și, mai mult, $f = 0$ pe Ω).

Corolarul IX.37. – Fie $u \in C(\Omega) \cap C^2(\Omega)$ satisfăcând (91) cu $f \geq 0$ în Ω. Presupunem că $u \geq 0$ pe Γ. Atunci fie

\begin{align*}
&i) \quad u > 0 \text{ în } \Omega, \\
&ii) \quad u \equiv 0 \text{ în } \Omega.
\end{align*}

Pentru alte rezultate legate de principiul de maxim (inegalitatea lui Harnack etc.) vezi Stampacchia [1], Gilbarg- Trudinger [1], Protter-Weinberger [1], Sperb [1].

12) Operatorii lui Laplace-Beltrami. – Operatorii eliptici definiți pe varietăți Riemanniene (cu sau fără bord) și, în particular, operatorul lui Laplace-Beltrami joacă un rol important în geometria diferențială și fizică; vezi de exemplu Choquet-De Witt-Dillard [1].

13) Proprietăți spectrale. – Valorile proprii și funcțiile proprii ale operatorilor eliptici de ordinul doi se bucură de un număr de proprietăți remarcabile. Cităm aici unele dintre ele. Fie $\Omega \subset \mathbb{R}^N$ o mulțime deschisă regulată, mărginită, conexă. Fie $a_{ij} \in C^1(\Omega)$ satisfăcând condiția de elipticitate (36) și $a_0 \in C(\Omega)$. Fie A operatorul

$$Au = -\sum_{i,j} \frac{\partial}{\partial x_j} \left(a_{ij} \frac{\partial u}{\partial x_i} \right) + a_0 u$$

cu condiții omogene de tip Dirichlet ($u = 0$ pe Γ). Notăm cu (λ_n) șirul de valori proprii ale lui A aranjate în ordine crescătoare, cu $\lambda_n \to +\infty$ când $n \to \infty$. Atunci prima valoare proprie λ_1 are multiplicitatea 1 (se spune că λ_1 este o valoare proprie simplă) (48) și putem alege funcția proprie asociată e_1 ca să avem $e_1 > 0$ în Ω; vezi teorema lui Krein- Rutman în comentariile asupra capitolului VI. Pe de altă parte se poate arăta că $\lambda_n \sim cn^{2/N}$ când $n \to \infty$ cu $c > 0$; vezi Agmon [1].

\footnote{Ipoteza $u(x_0) \leq 0$ nu este necesară dacă $a_0 = 0$.}

\footnote{În dimensiune $N \geq 2$ celelalte valori proprii pot avea multiplicitatea > 1.}
Relațiile care există între proprietățile geometrice (49) ale lui Ω și spectrul lui A sunt subiect de cercetare intensivă, vezi Kac [1], Marcel Berger [1], Osserman [1], I.M. Singer [1]. Obiectivul este acela de a “recupera” cantitatea maximă de informație despre Ω numai din cunoașterea spectrului \((\lambda_n)\).

O problemă deschisă frapant de simplă este următoarea. Fie \(\Omega_1\) și \(\Omega_2\) două domenii mărginite din \(\mathbb{R}^2\); presupunem că valorile proprii ale operatorului \(-\Delta\) (cu condiții la limită de tip Dirichlet) sunt aceleași pentru \(\Omega_1\) și \(\Omega_2\). Sunt \(\Omega_1\) și \(\Omega_2\) izometrice? Această problemă a fost poreclită: “Se poate afla forma unei tobe?” (50) Se știe că răspunsul este pozitiv dacă \(\Omega_1\) este un disc.

O altă chestiune importantă este următoarea. Considerează operatorul \(Au = -\Delta u + a_0 u\) (+ condiții la limită). Ce proprietăți ale lui \(a_0\) pot fi “recuperate” din cunoașterea spectrului lui \(A\)?

14) Probleme eliptice degenerate. – Considerează probleme de forma

\[
\begin{cases}
- \sum_{i,j} \frac{\partial}{\partial x_j} \left(a_{ij} \frac{\partial u}{\partial x_i} \right) + \sum_i a_i \frac{\partial u}{\partial x_i} + a_0 u = f & \text{în } \Omega \\
+\text{condiții la limită pe } \Gamma \text{ sau pe o parte a lui } \Gamma,
\end{cases}
\]

unde funcțiile \(a_{ij}\) nu satisface condiția de elipticitate (36) ci numai (36') \(\sum_{i,j} a_{ij}(x)\xi_i\xi_j \geq 0 \quad \forall x \in \Omega, \quad \forall \xi \in \mathbb{R}^N\).

Asupra acestui subiect văzut, consultați de exemplu lucrările lui Kohn-Nirenberg [1], Baouendi-Goulaouic [1], Oleinik-Radkevitch [1].

15) Probleme eliptice neliniare. – Există un domeniu uriaș de cercetare motivat de nenumăratele probleme din geometrie, mecanică, fizică, control optimal, teoria probabilităților, etc.. Acesta a avut o anumită dezvoltare spectaculoasă începând cu lucrările lui Leray și Schauder de la începutul anilor 1930. Distingem unele categorii:

\[49\] În particular când \(\Omega\) este o varietate Riemanniană fără bord și \(A\) este operatorul lui Laplace-Beltrami.

\[50\] Deoarece armonicele membranei atașate frontierei \(\Gamma\) sunt funcțiile \(e_n(x) \sin \sqrt{\lambda_n} t\) unde \((\lambda_n, e_n)\) sunt valorile proprii și funcțiile proprii ale lui \(-\Delta\) cu condiții Dirichlet pe frontieră.
a) **Probleme semiliniare.** Sunt incluse, de exemplu, probleme de forma:

\[
\begin{aligned}
-Δu &= f(x, u) \quad \text{în } Ω, \\
u &= 0 \quad \text{pe } Γ,
\end{aligned}
\]

unde \(f(x, u) \) este o funcție dată.

Această categorie include, printre altele, **probleme de bifurcație** unde se studiază structura mulțimii soluțiilor \((λ, u)\) pentru problema

\[
\begin{aligned}
-Δu &= f_λ(x, u) \quad \text{în } Ω, \\
u &= 0 \quad \text{pe } Γ,
\end{aligned}
\]

cu \(λ \) un parametru variabil.

b) **Probleme cvasiliniare.** Considerăm probleme de forma

\[
\begin{aligned}
-\sum_{i,j} \frac{∂}{∂x_j} \left(a_{ij}(x, u, ∇u) \frac{∂u}{∂x_i} \right) &= f(x, u, ∇u) \quad \text{în } Ω \\
u &= 0 \quad \text{pe } Γ.
\end{aligned}
\]

unde funcțiile \(a_{ij}(x, u, p) \) sunt eliptice, dar posibil degenerate; avem de exemplu

\[
\sum_{i,j} a_{ij}(x, u, p)ξ_iξ_j ≥ α(u, p)|ξ|^2 \quad \forall x ∈ Ω \quad \forall ξ ∈ R^N,
\]

cu \(α(u, p) > 0 \quad ∀u ∈ R, \quad ∀p ∈ R^N \), dar \(α(u, p) \) nu este uniform mărginit inferior de o constantă \(α > 0 \). De exemplu, **ecuația suprafețelor minimale** intră în această categorie cu \(a_{ij} = δ_{ij}(1 + |∇u|^2)^{-1/2} \).

Mai general, se consideră probleme eliptice de forma

\[
F(x, u, Du, D^2u) = 0
\]

unde matricea \(\frac{∂F}{∂q_{ij}}(x, u, p, q) \) este eliptică (posibil degenerată). De exemplu **ecuația Monge-Ampère** intră în această categorie.

c) **Probleme de frontieră liberă.** Este vorba de a rezolva o ecuație eliptică liniară pe o mulțime deschisă \(Ω \) care nu este dată
a priori. Faptul că Ω este necunoscut este adeseori “compensat” prin a avea două condiții pe frontieră Γ; de exemplu Dirichlet și Neumann. Problema constă în a găsi simultan o mulțime deschisă Ω și o funcție u astfel încât ...

a) Există un număr de tehnici utilizate pentru problemele (92) sau (92'):
 - **Metode de monotenie**, a se vedea Browder [1] și Lions [3].
 - **Metode topologice** (teorema de punct fix a lui Schauder, teoria gradului topologic Leray-Schauder etc.); vezi J.T. Schwartz [1], M. Krasnoselskii [1] și L. Nirenberg [2], [3].
 - **Metode variaciaionale** (tehnici Min-max în teoria punctului critic, teoria Morse etc.); vezi Rabinowitz [1], [2], Melvyn Berger [1], M. Krasnoselskii [1], L. Nirenberg [3].

b) A rezolva probleme de tipul (93) poate implica tehnici complicate de estimări; (51) vezi lucrările lui De Giorgi, Bombieri, Miranda, Giusti, Ladyzhenskaya-Ural'tseva, Serrin etc. descrise în Serrin [1], Bombieri [1] și Gilbarg-Trudinger [1]. Progrese importante asupra ecuațiilor complet neliniare și asupra ecuației Monge-Ampère au fost făcute recent; vezi Yau [1].

c) Privind problemele de frontieră liberă multe rezultate noi au apărut în ultimii ani, în principal în conexiune cu teoria *inegalităților variaționale*; a se vedea Kindelherer-Stampacchia [1], Baiocchi-Capelo [1] (și lucrările “școlii din Pavia” citate în această lucrare), Free Boundary Problems [1], [2].

51 Este, de exemplu, cazul ecuației suprafeței minimale.
Capitolul X

PROBLEME DE EVOLUȚIE: ECUAȚIA CĂLDURII ȘI ECUAȚIA UNDELOR

X.1 Ecuatia căldurii: existență, unicitate și regularitate

Notării. Fie $\Omega \subset \mathbb{R}^N$ o mulțime deschisă cu frontieră Γ. Notăm
$$Q = \Omega \times (0, +\infty)$$
$$\Sigma = \Gamma \times (0, +\infty);$$
Σ este numită frontieră laterală a cilindrului Q.

Fie următoarea problemă: să se găsească o funcție $u(x,t) : \bar{\Omega} \times [0, +\infty) \to \mathbb{R}$ astfel încât

(1) \[\frac{\partial u}{\partial t} - \Delta u = 0 \quad \text{în } Q, \]
(2) \[u = 0 \quad \text{pe } \Sigma, \]
(3) \[u(x,0) = u_0(x) \quad \text{în } \Omega, \]

unde $\Delta = \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$ denotă Laplacianul în variabila spațială x, t este variabila de timp și $u_0(x)$ este o funcție dată numită data inițială (sau Cauchy).

Ecuatia (1) este numită ecuația căldurii deoarece aceasta modelează distribuția temperaturii u în domeniul Ω la momentul de timp t. Ecuatia
căldurii și variantele ei apar în multe fenomene de difuzie (1) (vezi comentariile de la sfârșitul acestui capitol). Ecuatia căldurii este cel mai simplu exemplu de ecuație parabolică (2).

Ecuatia (2) este condiția la limită de tip Dirichlet; aceasta ar putea fi înlocuită de condiția Neumann

\[
(2') \quad \frac{\partial u}{\partial n} = 0 \quad \text{pe } \Sigma
\]

(\(n \) este versorul normalei exterioare pe \(\Gamma \)) sau de oricare din condițiile la limită întâlnite în capitolele VIII și IX. Condiția (2) corespunde presupunerii că frontiera \(\Gamma \) este ținută la temperatura zero; condiția (2′) corespunde presupunerii că fluxul căldurii de-a lungul lui \(\Gamma \) este zero.

Vom rezolva problema (1), (2), (3) privind \(u(x,t) \) ca o funcție definită pe \([0, +\infty)\) cu valori într-un spațiu \(H \), unde \(H \) este un spațiu de funcții depinzând doar de \(x \): de exemplu \(H = L^2(\Omega) \), sau \(H = H^1_0(\Omega) \), etc. Cand vrem doar \(u(t) \), vom înțelege că \(u(t) \) este un element al lui \(H \), și anume funcția \(x \mapsto u(x,t) \). Acest punct de vedere ne permite să rezolvăm foarte ușor problema (1), (2), (3) combinând teorema lui Hille-Yosida cu rezultatele capitolelor VIII și IX.

Pentru a simplifica lucrurile, vom presupune pe întreg capitolul X că \(\Omega \) este de clasă \(C^\infty \) cu frontiera \(\Gamma \) mărginită (dar această presupunere ar putea fi considerabil slăbită dacă am fi interesați doar de soluții “slabe”).

- Teorema X.1. – Presupunem că \(u_0 \in L^2(\Omega) \). Atunci există o funcție unică \(u(x,t) \) satisfăcând (1), (2), (3) și

\[
(4) \quad u \in C([0, \infty); L^2(\Omega)) \cap C((0, \infty); H^2(\Omega) \cap H^1_0(\Omega)),
\]

\[
(5) \quad u \in C^1((0, \infty); L^2(\Omega)).
\]

În plus

\[
u \in C^\infty(\bar{\Omega} \times (\varepsilon, \infty)) \quad \forall \varepsilon > 0.
\]

1 Propagarea căldurii este doar un exemplu printre multe altele.

ECUAȚIA CĂLDURII

In sfârșit, $u \in L^2(0, \infty; H^1_0(\Omega))$ și (3)

$$
(6) \quad \frac{1}{2} |u(T)|^2_{L^2(\Omega)} + \int_0^T |\nabla u(t)|^2_{L^2(\Omega)}\, dt = \frac{1}{2} |u_0|^2_{L^2(\Omega)} \quad \forall T > 0.
$$

Demonstratie. – Vom aplica teoria Hille-Yosida în $H = L^2(\Omega)$ (dar sunt posibile alte alegeri, a se vedea demonstrația teoremei X.2). Considerăm operatorul nemărginit $A : D(A) \subset H \to H$ definit de

$$
\begin{cases}
D(A) = H^2(\Omega) \cap H^1_0(\Omega) \\
Au = -\Delta u.
\end{cases}
$$

Este important să punctăm că condiția la limită (2) a fost inclusă în definiția domeniului lui A. Afirmăm că A este un operator maximal monoton, autoadjunct. Am putea atunci aplica teorema VI.7 pentru a deduce existența unei soluții unice pentru (1), (2), (3) satisfăcând (4) și (5).

i) A este monoton. Pentru fiecare $u \in D(A)$ avem

$$(Au, u)_{L^2} = \int_\Omega (-\Delta u) u = \int_\Omega |\nabla u|^2 \geq 0.$$

ii) A este maximal monoton. Trebuie să verificăm că $R(I + A) = H = L^2$. Dar deja se știe (vezi teorema IX.25) că pentru fiecare $f \in L^2$ există o soluție unică $u \in H^2 \cap H^1_0$ a ecuației $u - \Delta u = f$.

iii) A este autoadjunct. Având în vedere propoziția VII.6 este suficient să verificăm că A este simetric. Pentru fiecare $u, v \in D(A)$ avem

$$(Au, v)_{L^2} = \int (-\Delta u) v = \int \nabla u \cdot \nabla v$$

și

$$(u, Av)_{L^2} = \int u(-\Delta v) = \int \nabla u \cdot \nabla v$$

Așa cum a fost explicat mai înainte notățiile sunt următoarele:

$$
|u(T)|^2_{L^2(\Omega)} = \int_\Omega |u(x, T)|^2\, dx \quad \text{și} \quad |\nabla u(t)|^2_{L^2(\Omega)} = \sum_{i=1}^N \int_\Omega \left| \frac{\partial u}{\partial x_i}(x, t) \right|^2\, dx.
$$
așa încât \((Au, v) = (u, Av)\).

Apoi, din teorema IX.25 urmează că \(D(A^\ell) \subset H^{2\ell}(\Omega)\), pentru fiecare întreg \(\ell\), cu injecția continuă. Mai precis

\[
D(A^\ell) = \{u \in H^{2\ell}(\Omega); u = \Delta u = \ldots = \Delta^{\ell-1} u = 0 \text{ pe } \Gamma\}.
\]

Cunoaștem, din teorema VII.7, că soluția \(u\) a problemei (1), (2), (3) satisface

\[
u \in C^k((0, \infty); D(A^\ell)) \forall k, \forall \ell
\]
și de aceea

\[
u \in C^k((0, \infty); H^{2\ell}(\Omega)) \forall k, \forall \ell.
\]
Urmează (datorită corolarului IX.15) că

\[
u \in C^k((0, \infty); C^k(\bar{\Omega})) \forall k.
\]

Ne întoarcem acum la demonstrația lui (6). Vom multiplica formal ecuația (1) prin \(u\) și apoi integra pe \(\Omega \times (0, T)\). Totuși trebuie să fim atenți deoarece \(u(t)\) este diferențialabilă pe \((0, \infty)\) dar nu pe \([0, \infty)\). Considerăm funcția \(\varphi(t) = \frac{1}{2}|u(t)|^2_{L^2(\Omega)}\). Aceasta este de clasă \(C^1\) pe \((0, \infty)\) (din (5)) și, pentru \(t > 0\),

\[
\varphi'(t) = \left(u(t), \frac{du}{dt}(t)\right)_{L^2} = (u, \Delta u)_{L^2} = -\int_{\Omega} |\nabla u|^2.
\]
De aceea, pentru \(0 < \varepsilon < T < \infty\), obținem

\[
\varphi(T) - \varphi(\varepsilon) = \int_{\varepsilon}^{T} \varphi'(t) \, dt = -\int_{\varepsilon}^{T} |\nabla u(t)|^2_{L^2} \, dt.
\]
In final luăm \(\varepsilon \to 0\). Din \(\varphi(\varepsilon) \to \frac{1}{2}|u_0|^2_{L^2(\Omega)}\) deducem (6).

Dacă impunem ipoteze suplimentare asupra lui \(u_0\) soluția \(u\) devine mai netedă în vecinătatea lui \(t = 0\) (reamintim că teorema X.1 garantează că soluția \(u\) este netedă, adică \(u \in C^\infty(\bar{\Omega} \times (\varepsilon, \infty)) \forall \varepsilon > 0\)).

Teorema X.2. – a) Dacă \(u_0 \in H^1_0(\Omega)\) atunci soluția \(u\) a lui (1), (2), (3) satisface

\[
u \in C([0, \infty); H^1_0(\Omega)) \cap L^2(0, \infty; H^2(\Omega))
\]
și

\[\frac{\partial u}{\partial t} \in L^2(0, \infty; L^2(\Omega)). \]

In plus, avem

\[\int_0^T \left| \frac{\partial u}{\partial t}(t) \right|^2_{L^2(\Omega)} \, dt + \frac{1}{2} \| \nabla u(t) \|^2_{L^2(\Omega)} = \frac{1}{2} \| \nabla u_0 \|^2_{L^2(\Omega)}. \tag{7} \]

b) Dacă \(u_0 \in H^2(\Omega) \cap H^1_0(\Omega) \), atunci

\[u \in C([0, \infty); H^2(\Omega)) \cap L^2(0, \infty; H^3(\Omega)) \]

și

\[\frac{\partial u}{\partial t} \in L^2(0, \infty; H^1(\Omega)). \]

c) Dacă \(u_0 \in H^k(\Omega) \quad \forall k \) și satisface așa-zișele condiții de compatibilitate

\[u_0 = \Delta u_0 = \ldots = \Delta^j u_0 = \ldots = 0 \quad \text{pe } \Gamma \] \tag{8}

pentru orice întreg \(j \), atunci \(u \in C^\infty(\bar{\Omega} \times [0, \infty)) \).

Demonstrație. – a). Lucrăm în spațiul \(H_1 = H^1_0(\Omega) \) înzestrat cu produsul scalar

\[(u, v)_{H_1} = \int_\Omega \nabla u \cdot \nabla v + \int_\Omega uv. \]

In \(H_1 \) considerăm operatorul nemărginit \(A_1 : D(A_1) \subset H_1 \rightarrow H_1 \) definit de

\[\begin{cases}
D(A_1) = \{ u \in H^3(\Omega) \cap H^1_0(\Omega); \Delta u \in H^1_0(\Omega) \} \\
A_1 u = -\Delta u.
\end{cases} \]

Afirmăm că \(A_1 \) este maximal monoton și autoadjunct.

i) \(A_1 \) este monoton. Pentru fiecare \(u \in D(A_1) \) avem

\[(A_1 u, u)_{H_1} = \int \nabla(-\Delta u) \cdot \nabla u + \int (-\Delta u)u = \int |\Delta u|^2 + \int |\nabla u|^2 \geq 0. \]

ii) \(A_1 \) este maximal monoton. Cunoaștem (din teorema IX.25) că pentru fiecare \(f \in H^1(\Omega) \) soluția \(u \in H^1_0(\Omega) \) a problemei

\[\begin{cases}
u - \Delta u = f \quad \text{în } \Omega \\
u = 0 \quad \text{pe } \Gamma
\end{cases} \]
aparține lui $H^3(\Omega)$. Dacă, în plus, $f \in H^1_0(\Omega)$ atunci (din ecuație) $\Delta u \in H^1_0(\Omega)$ și deci $u \in D(A_1)$.

iii) A_1 este simetric. Pentru orice $u, v \in D(A_1)$ avem

$$ (A_1 u, v)_{H_1} = \int \nabla(-\Delta u) \cdot \nabla v + \int (-\Delta u)v $$

$$ = \int \Delta u \Delta v + \int \nabla u \cdot \nabla v = (u, A_1 v)_{H_1}. $$

Aplicând teorema VII.7 vedem că dacă $u_0 \in H^1_0(\Omega)$ atunci există o soluție u a lui (1), (2), (3) (care coincide cu aceea obținută în teorema X.1, datorită unicității) și astfel încât

$$ u \in C([0, \infty); H^1_0(\Omega)). $$

In final, definim $\varphi(t) = \frac{1}{2} |\nabla u(t)|^2_{L^2(\Omega)}$. Această funcție este C^∞ pe $(0, \infty)$ și

$$ \varphi'(t) = \left(\nabla u(t), \frac{du}{dt}(t) \right)_{L^2} = \left(-\Delta u(t), \frac{du}{dt}(t) \right)_{L^2} = -\left|\frac{du}{dt}(t)\right|_{L^2}^2. $$

Rezultă că, pentru $0 < \varepsilon < T < \infty$, avem

$$ \varphi(T) - \varphi(\varepsilon) + \int_{\varepsilon}^{T} \left|\frac{du}{dt}(t)\right|_{L^2}^2 dt = 0 $$

și obținem concluzia luând $\varepsilon \to 0$.

b). Fie spațiul Hilbert $H_2 = H^2(\Omega) \cap H^1_0(\Omega)$ înzestrat cu produsul scalar

$$ (u, v)_{H_2} = (\Delta u, \Delta v)_{L^2} + (u, v)_{L^2}. $$

În H_2 considerăm operatorul nemărginit $A_2 : D(A_2) \subset H_2 \to H_2$ definit de

$$ D(A_2) = \{ u \in H^4(\Omega); u \in H^1_0(\Omega) \text{ și } \Delta u \in H^1_0(\Omega) \}, $$

$$ A_2 u = -\Delta u. $$

Este ușor de arătat că A_2 este un operator autoadjunct, maximal monoton în H_2 (⁴). Am putea atunci aplica teorema VII.7 lui A_2 în H_2. In

Ma general dacă $A : D(A) \subset H \to H$ este un operator maximal monoton autoadjunct se poate considera spațiul Hilbert $\bar{H} = D(A)$ înzestrat cu produsul scalar $$(u, v)_{\bar{H}} = (Au, Av) + (u, v).$$ Atunci operatorul $\bar{A} : D(\bar{A}) \subset \bar{H} \to \bar{H}$ definit de $D(\bar{A}) = D(A^2)$ și $\bar{A} = A$ este un operator maximal monoton autoadjunct în \bar{H}. ⁴
final notăm \(\varphi(t) = \frac{1}{2} |\Delta u(t)|^2_{L^2} \). Această funcție este \(C^\infty \) pe \((0, \infty)\) și

\[
\varphi'(t) = \left(\Delta u(t), \frac{\Delta u}{dt}(t) \right)_{L^2} = (\Delta u(t), \Delta^2 u(t))_{L^2} = -|\nabla \Delta u(t)|^2_{L^2}.
\]

De aceea, pentru \(0 < \varepsilon < T < \infty \), avem

\[
\frac{1}{2} |\Delta u(T)|^2_{L^2} - \frac{1}{2} |\Delta u(\varepsilon)|^2_{L^2} + \int_\varepsilon^T |\nabla \Delta u(t)|^2_{L^2} dt = 0.
\]

La limită, când \(\varepsilon \to 0 \), observăm că \(u \in L^2(0, \infty; H^3(\Omega)) \) și (din (1)), \(\frac{du}{dt} \in L^2(0, \infty; H^1(\Omega)) \).

c) În spațiul \(H = L^2(\Omega) \), considerăm operatorul \(A : D(A) \subset H \to H \) definit de

\[
\begin{cases}
D(A) = H^2(\Omega) \cap H^1_0(\Omega), \\
Au = -\Delta u.
\end{cases}
\]

Aplicând teorema VII.5, cunoaștem că dacă \(u_0 \in D(A^k), \ k \geq 2 \), atunci

\[u \in C^{k-j}([0, \infty); D(A^j)) \quad \forall j = 0, 1, \ldots, k. \]

Ipoteza (8) spune precis că \(u_0 \in D(A^k) \) pentru fiecare întreg \(k \geq 1 \). De aceea avem

\[u \in C^{k-j}([0, \infty); D(A^j)) \quad \forall k \geq 1, \ \forall j = 0, 1, \ldots, k. \]

Urmează (la fel ca în demonstrația teoremei X.1) că \(u \in C^\infty(\bar{\Omega} \times [0, \infty)) \).

Remarca 1. – Teorema X.1 arată că ecuația căldurii are un **puternic efect regularizant asupra datei inițiale** \(u_0 \). Observăm că soluția \(u(x, t) \) este \(C^\infty \) în \(x \) pentru orice \(t > 0 \) chiar dacă data inițială este discontinuă. Acest efect implică, în particular, că ecuația căldurii este **ireversibilă**. In general nu se poate rezolva problema

\[
\begin{align*}
\frac{\partial u}{\partial t} - \Delta u &= 0 \quad \text{în } \Omega \times (0, T), \\
u &= 0 \quad \text{pe } \Gamma \times (0, T)
\end{align*}
\]

cu o dată “finală”

\[(11) \quad u(x,T) = u_T(x) \quad \text{în } \Omega.\]

Ar trebui în mod necesar să presupunem că

\[u_T \in C^\infty(\bar{\Omega}) \quad \text{și} \quad \Delta^j u_T = 0 \quad \text{pe } \Gamma \quad \forall j \geq 0.\]

Dar chiar și aceste ipoteze nu sunt suficiente pentru a garanta existența unei soluții retrograde a problemei (9), (10), (11). Această problemă nu trebuie confundată cu problema (9′), (10), (11) unde

\[(9') \quad \frac{\partial u}{\partial t} - \Delta u = 0 \quad \text{în } \Omega \times (0,T),\]

care are întotdeauna o soluție unică pentru orice dată \(u_T \in L^2(\Omega)\) (a se schimba \(t\) cu \(T - t\) și aplica teorema X.1).

Remarca 2. – Rezultatele precedente sunt, de asemenea, adevărate – cu unele mici modificări – dacă înlocuim condiția Dirichlet cu condiția Neumann (vezi [EX]).

Remarca 3. – Dacă \(\Omega\) este mărginit, problema (1), (2), (3) poate fi, de asemenea, rezolvată prin descompunerea lui \(L^2(\Omega)\) într-o bază Hilbertiană. În acest scop este foarte convenabil să alegem o bază \((e_i(x))_{i \geq 1}\) a lui \(L^2(\Omega)\) compusă din funcții proprii ale lui \(-\Delta\) (cu condiția Dirichlet omogenă), adică,

\[
\begin{cases}
-\Delta e_i = \lambda_i e_i & \text{în } \Omega \\
e_i = 0 & \text{pe } \Gamma
\end{cases}
\]

(a se vedea §IX.8). Vom căuta o soluție \(u\) a lui (1), (2), (3) în forma unei serii \((5)\)

\[(12) \quad u(x,t) = \sum_{i=1}^{\infty} a_i(t)e_i(x).\]

\(^{5}\)Din motive evidente această metodă este numită și metoda “separării variabilelor” (sau metoda lui Fourier).
Observăm imediat că funcțiile reale $a_i(t)$ trebuie să satisfacă

$$a'_i(t) + \lambda_i a_i(t) = 0$$

așa încât $a_i(t) = a_i(0)e^{-\lambda_i t}$. Constantele $a_i(0)$ sunt determinate de relația

(13) $$u_0(x) = \sum_{i=1}^{\infty} a_i(0)e_i(x).$$

Cu alte cuvinte, soluția u a lui (1), (2), (3) este dată de

(14) $$u(x,t) = \sum_{i=1}^{\infty} a_i(0)e^{-\lambda_i t}e_i(x)$$

unde constantele $a_i(0)$ sunt componentele lui u_0 în baza (e_i), adică $a_i(0) = \int_{\Omega} u_0(x)e_i(x) \, dx$.

Pentru studiul convergenței acestei serii (și, de asemenea, regularității lui u obținute în acest mod) facem trimitere la Raviart-Thomas [1] sau Weinberger [1]. Subliniem analogia dintre această metodă și tehnica standard utilizată în rezolvarea sistemului de ecuații diferențiale liniare

$$\frac{d\tilde{u}}{dt} + M\tilde{u} = 0$$

unde $\tilde{u}(t)$ ia valori într-un spațiu vectorial finit dimensional și M este o matrice simetrică. Desigur, diferența principală provine din faptul că problema (1), (2), (3) este asociată unui sistem infinit dimensional.

Remarca 4. – Relațiile de compatibilitate (8) arată, probabil, misterios dar de fapt ele sunt naturale. Acestea sunt **condiții necesare** pentru a avea o soluție u a lui (1), (2), (3) care să fie netedă în vecinătatea lui $t = 0$, adică, $u \in C^\infty(\Omega \times [0, \infty))$; (presupunerea $u_0 \in C^\infty(\Omega)$ cu $u_0 = 0$ pe $\partial\Omega$ nu garantează netezimea până la $t = 0$). Într-adevăr, să presupunem că $u \in C^\infty(\Omega \times [0, \infty))$ satisface (1), (2), (3). Atunci, este limpede că

$$u = \frac{\partial u}{\partial t} = \ldots = \frac{\partial^j u}{\partial t^j} = \ldots = 0 \quad \text{pe} \quad \Gamma \times (0, \infty), \quad \forall j$$

și, din continuitate, avem de asemenea

(15) $$\frac{\partial^j u}{\partial t^j} = 0 \quad \text{pe} \quad \Gamma \times [0, \infty), \quad \forall j.$$
PRINCIPIUL DE MAXIM

Pe de altă parte,

\[\frac{\partial^2 u}{\partial t^2} = \Delta \left(\frac{\partial u}{\partial t} \right) = \Delta^2 u \quad \text{în} \ Q \]

și, prin inducție,

\[\frac{\partial^j u}{\partial t^j} = \Delta^j u \quad \text{în} \ Q \quad \forall j. \]

Utilizând încă o dată continuitatea avem

\[(16) \quad \frac{\partial^j u}{\partial t^j} = \Delta^j u \quad \text{în} \ \bar{\Omega} \times [0, \infty). \]

Comparând (15) și (16) pe \(\Gamma \times \{0\} \) găsim (8).

Remarca 5. – Desigur că sunt multe variante ale rezultatelor de regularitate pentru \(u \) în apropierea lui \(t = 0 \) dacă facem presupuneri intermediare între ipotezele b) și c) ale teoremei X.2.

X.2 Principiul de maxim

Rezultatul principal este următorul:

Teorema X.3. – Presupunem că \(u_0 \in L^2(\Omega) \) și fie \(u \) o soluție a lui (1), (2), (3). Atunci, pentru toți \((x, t) \in Q \), avem

\[\text{Min} \{0, \text{Inf}_{\Omega} u_0\} \leq u(x, t) \leq \text{Max} \{0, \text{Sup}_{\Omega} u_0\}. \]

Demonstrație. – Ca în cazul eliptic vom utiliza metoda tronca- turilor a lui Stampacchia. Fie

\[K = \text{Max} \{0, \text{Sup}_{\Omega} u_0\} \]

și presupunem \(K < +\infty \). Fixăm o funcție \(G \) la fel ca în demonstrația teoremei IX.27 și notăm

\[H(s) = \int_0^s G(\sigma) \, d\sigma, \ s \in \mathbb{R}. \]

Este ușor de verificat că funcția \(\varphi \) definită prin

\[\varphi(t) = \int_{\Omega} H(u(x, t) - K) \, dx \]
are următoarele proprietăți:

\[(17) \quad \varphi \in C([0, \infty); \mathbb{R}), \quad \varphi(0) = 0; \quad \varphi \geq 0 \quad \text{în} \quad [0, \infty), \]

\[(18) \quad \varphi \in C^1((0, \infty); \mathbb{R})\]

și

\[
\varphi'(t) = \int_{\Omega} G(u(x, t) - K) \frac{\partial u}{\partial t}(x, t) \, dx = \int_{\Omega} G(u(x, t) - K) \Delta u(x, t) \, dx \\
= -\int_{\Omega} G'(u - K) |\nabla u|^2 \, dx \leq 0
\]

deoarece \(G(u(x, t) - K) \in H^1_0(\Omega)\) pentru orice \(t > 0\). Urmează că \(\varphi' \leq 0\) în \((0, \infty)\) deci \(\varphi \equiv 0\) și, de aceea, pentru orice \(t > 0\), \(u(x, t) \leq K\) a.p.t. în \(\Omega\).

Corolarul X.4. – Fie \(u_0 \in L^2(\Omega)\). Soluția \(u\) a lui (1), (2), (3) are următoarele proprietăți:

(i) Dacă \(u_0 \geq 0\) a.p.t. în \(\Omega\) atunci \(u \geq 0\) în \(Q\),

(ii) Dacă \(u_0 \in L^\infty(\Omega)\), atunci \(u \in L^\infty(Q)\) și

\[(19) \quad \|u\|_{L^\infty(Q)} \leq \|u_0\|_{L^\infty(\Omega)}.
\]

Corolarul X.5. – Fie \(u_0 \in C(\bar{\Omega}) \cap L^2(\Omega)\) cu \(u_0 = 0\) pe \(\Gamma\) (6). Atunci soluția \(u\) a lui (1), (2), (3) aparține lui \(C(\bar{Q})\).

Demonstrația corolarului X.5. – Fie \((u_{0n})\) un șir de funcții din \(C^\infty_c(\Omega)\) astfel încât \(u_{0n} \to u_0\) în \(L^\infty(\Omega)\) și în \(L^2(\Omega)\) (existența unui astfel de șir este ușor de stabilit; a se vedea [EX]). Din teorema X.2 soluția \(u_n\) a lui (1), (2), (3) corespunzând datei inițiale \(u_{0n}\) aparține lui \(C^\infty(\bar{Q})\). Pe de altă parte (teorema VII.7), se știe că

\[|u_n(t) - u(t)|_{L^2(\Omega)} \leq |u_{0n} - u_0|_{L^2(\Omega)} \quad \forall t \geq 0.
\]

Datorită lui (19) avem

\[\|u_n - u_m\|_{L^\infty(Q)} \leq \|u_{0n} - u_{0m}\|_{L^\infty(\Omega)}.
\]

\[\text{(6)} \text{Dacă } \Omega \text{ este nemârginit presupunem, de asemenea, că } u_0(x) \to 0 \text{ când } |x| \to \infty.
\]
De aceea, șirul \((u_n)\) converge la \(u\) uniform în \(\bar{Q}\) și deci \(u \in C(\bar{Q})\).

La fel ca în cazul eliptic, există o altă abordare a principiului de maxim. Pentru a simplifica lucrurile, vom presupune că \(\Omega\) este mărginit. Fie \(u(x,t)\) o funcție satisfăcând (7):

\begin{align}
(20) \quad u &\in C(\bar{\Omega} \times [0, T]) \quad \text{cu} \ T > 0, \\
(21) \quad u &\text{este de clasa } C^1 \text{ în } t \text{ și de clasa } C^2 \text{ în } x \text{ în } \Omega \times (0, T) \\
(22) \quad \frac{\partial u}{\partial t} - \Delta u &\leq 0 \text{ în } \Omega \times (0, T).
\end{align}

Teorema X.6. – Presupunem satisfăcute condițiile (20), (21) și (22). Atunci

\[\max_{\bar{\Omega} \times [0, T]} u = \max_P u\]

unde \(P = (\bar{\Omega} \times \{0\}) \cup (\Gamma \times [0, T])\) este numită “frontiera parabolică” a cilindrului \(\Omega \times (0, T)\).

Demonstrație. – Definim \(v(x,t) = u(x,t) + \varepsilon |x|^2\) cu \(\varepsilon > 0\) așa încât

\[\frac{\partial u}{\partial t} - \Delta v \leq -2\varepsilon N < 0 \text{ în } \Omega \times (0, T).\]

Afirmăm că

\[\max_{\bar{\Omega} \times [0, T]} v = \max_P v.\]

Presupunând contrariul, ar exista un punct \((x_0, t_0) \in \bar{\Omega} \times [0, T]\) astfel încât \((x_0, t_0) \notin P\) și

\[\max_{\Omega \times [0, T]} v = v(x_0, t_0).\]

Deoarece \(x_0 \in \Omega\) și \(0 < t_0 \leq T\) avem

\[(25) \quad \Delta v(x_0, t_0) \leq 0\]

și

\[(26) \quad \frac{\partial v}{\partial t}(x_0, t_0) \geq 0.\]

\(^7^\text{Subliniem că nu prescriem nici o condiție la limită sau dată inițială.}\)
(dacă $t_0 < T$ avem $\frac{\partial v}{\partial t}(x_0, t_0) = 0$ și dacă $t_0 = T$ avem $\frac{\partial v}{\partial t}(x_0, t_0) \geq 0$). Combinând (25) și (26) obținem $\left(\frac{\partial v}{\partial t} - \Delta v\right)(x_0, t_0) \geq 0$ – o contradicție cu (24). De aceea avem

$$\text{Max}_{\Omega \times [0,T]} v = \text{Max}_{\Omega \times [0,T]} p + \varepsilon C$$

unde $C = \text{Sup}_{x \in \Omega} |x|^2$. Deoarece $u \leq v$, concluzionăm că

$$\text{Max}_{\Omega \times [0,T]} u \leq \text{Max}_{\Omega \times [0,T]} p + \varepsilon C \quad \forall \varepsilon > 0.$$

Aceasta completează demonstrația lui (23).

X.3 Ecuatia undelor

Fie $\Omega \subset \mathbb{R}^N$ o mulțime deschisă cu frontiera Γ. Definim, ca mai înainte,

$$Q = \Omega \times (0, \infty) \quad și \quad \Sigma = \Gamma \times (0, \infty).$$

Fie următoarea problemă: să se găsească o funcție $u(x,t) : \bar{\Omega} \times [0, \infty) \rightarrow \mathbb{R}$ care să satisfacă

$$\begin{align*}
\frac{\partial^2 u}{\partial t^2} - \Delta u &= 0 \quad \text{în} \ Q, \\
u(x,0) &= u_0(x) \quad \text{în} \ \Omega, \\
\frac{\partial u}{\partial t}(x,0) &= v_0(x) \quad \text{în} \ \Omega,
\end{align*}$$

unde $\Delta = \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$ denotă Laplacianul în raport cu variabila spațială x, t este variabilă de timp și u_0, v_0 sunt funcții date.

Ecuatia (27) este numită **ecuația undelor**. Operatorul $\left(\frac{\partial^2}{\partial t^2} - \Delta\right)$ este uneori notat \Box și este numit d’Alembertian. Ecuatia undelor este un exemplu tipic de **ecuație hiperbolică**.

8Pentru siguranță ar trebui să lucrăm în $\Omega \times (0,T')$ cu $T' < T$ și apoi să luăm $T' \rightarrow T$.
ECUATIA UNDELOR

Dacă \(N = 1 \) și \(\Omega = (0,1) \), ecuația (27) modelează micile (9) vibrații ale unei coarde în absența oricărei forțe exterioare. Pentru orice \(t \geq 0 \), graficul funcției \(x \in \Omega \mapsto u(x,t) \) reprezintă configurația coardei la momentul de timp \(t \). Dacă \(N = 2 \) ecuația (27) modelează micile vibrații ale unei membrane elastice. Pentru fiecare \(t \geq 0 \), graficul funcției \(x \in \Omega \mapsto u(x,t) \) reprezintă configurația membranei la momentul de timp \(t \). Mai general, ecuația (27) modelează propagarea unei unde (acustice, electromagnetice, etc.) într-un anumit mediu elastic omogen \(\Omega \subset \mathbb{R}^N \).

Ecuația (28) este condiția la limită de tip Dirichlet; ea poate fi înlocuită de condiția Neumann sau de oricare din condițiile la limită întâlnite în capitolul VIII sau IX. Condiția \(u = 0 \) pe \(\Sigma \) are semnificația că coarda (sau membrana) este fixată pe \(\Gamma \) în timp ce condiția Neumann spune că coarda este liberă la capete.

Ecuațiile (29) și (30) reprezintă starea inițială a sistemului: configurația inițială (se mai spune și deplasarea inițială) este descrisă de \(u_0 \) iar viteză inițială este descrisă de \(v_0 \). Datele \((u_0, v_0)\) sunt uneori numite datele Cauchy.

Pentru a fixa ideile vom presupune pretutindeni în această secțiune că \(\Omega \) este de clasă \(C^\infty \) cu frontiera \(\Gamma \) mărginită.

- Teorema X.7 (Existență și unicitate). – Presupunem \(u_0 \in H^2(\Omega) \cap H^1_0(\Omega) \) și \(v_0 \in H^1_0(\Omega) \). Atunci există o unică soluție \(u \) a lui (27), (28), (29), (30) satisfăcând
\[
\begin{align*}
u & \in C([0,\infty); H^2(\Omega) \cap H^1_0(\Omega)) \cap C^1([0,\infty); H^1_0(\Omega)) \cap C^2([0,\infty); L^2(\Omega)).
\end{align*}
\]

In plus (10)
\[
\begin{align*}
|\frac{\partial u}{\partial t}(t)|^2_{L^2(\Omega)} + |\nabla u(t)|^2_{L^2(\Omega)} = |v_0|^2_{L^2(\Omega)} + |\nabla u_0|^2_{L^2(\Omega)} \quad \forall t \geq 0.
\end{align*}
\]
ECUAŢIA UNDELOR

Remarca 6. – Ecuatia (32) este o lege de conservare care afirmă că energia sistemului este invariantă în timp.

Inainte de a da demonstraţia teoremei X.7 vom menţiona un rezultat de regularitate.

Teorema X.8 (Regularitate). – Presupunem că datele iniţiale satisfac

\[u_0 \in H^k(\Omega), \ v_0 \in H^k(\Omega) \quad \forall k \]

și relaţiile de compatibilitate

\[u_0 = \Delta u_0 = \ldots = \Delta^j u_0 = \ldots = 0 \quad \text{pe } \Gamma \quad \forall j \geq 0 \text{ întreg} \]

\[v_0 = \Delta v_0 = \ldots = \Delta^j v_0 = \ldots = 0 \quad \text{pe } \Gamma \quad \forall j \geq 0 \text{ întreg}. \]

Atunci soluţia \(u \) a lui (27), (28), (29), (30) aparţine lui \(C^\infty(\bar{\Omega} \times [0, \infty)) \).

Demonstraţia teoremei X.7. – La fel ca în §X.1 considerăm \(u(x, t) \) ca o funcţie cu valori vectoriale definită pe \([0, \infty)\); mai precis, pentru fiecare \(t \geq 0, \ u(t) \) notează aplicaţia \(x \mapsto u(x, t) \). Scriem (27) în forma unui sistem de ecuaţii de ordinul întâi (11):

\[
\begin{cases}
\frac{\partial u}{\partial t} - v = 0 & \text{în } Q \\
\frac{\partial v}{\partial t} - \Delta u = 0 & \text{în } Q
\end{cases}
\]

și definim \(U = \begin{pmatrix} u \\ v \end{pmatrix} \) așa încât (33) devine

\[
\frac{dU}{dt} + AU = 0
\]

unde

\[
AU = \begin{pmatrix} 0 & -I \\ -\Delta & 0 \end{pmatrix} U = \begin{pmatrix} 0 & -I \\ -\Delta & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -v \\ -\Delta u \end{pmatrix}.
\]

\[^{11}\text{Aceasta este o metodă standard care consistă în a scrie o ecuație diferențială de ordinul } k \text{ ca un sistem de } k \text{ ecuații de ordinul întâi.} \]
ECUATIA UNDELOR

Aplicam acum teoria Hille-Yosida in spatiul $H = H^1_0(\Omega) \times L^2(\Omega)$ inzestrat cu produsul scalar

$$(U_1, U_2) = \int_\Omega \nabla u_1 \cdot \nabla u_2 \, dx + \int_\Omega u_1 u_2 \, dx + \int_\Omega v_1 v_2 \, dx$$

unde $U_1 = \begin{pmatrix} u_1 \\ v_1 \end{pmatrix}$ si $U_2 = \begin{pmatrix} u_2 \\ v_2 \end{pmatrix}$.

Consideram operatorul nemarginit $A : D(A) \subset H \to H$ definit de (35) cu

$$D(A) = (H^2(\Omega) \cap H^1_0(\Omega)) \times H^1_0(\Omega).$$

Subliniem că condiția la limită (28) a fost inclusă în definiția spațiului H. Condiția $v = \frac{\partial u}{\partial t} = 0$ pe Σ este o consecință directă a lui (28).

Afirmăm că $A + I$ este maximal monoton în H:

i) $A + I$ este monoton; într-adevăr dacă $U = \begin{pmatrix} u \\ v \end{pmatrix} \in D(A)$ avem

$$(AU, U)_H + |U|^2_H =$$

$$= - \int \nabla v \cdot \nabla u - \int uv + \int (-\Delta u)v + \int u^2 + \int |\nabla u|^2 + \int v^2$$

$$= - \int uv + \int u^2 + \int v^2 + \int |\nabla u|^2 \geq 0.$$

ii) $A + I$ este maximal monoton. Aceasta se reduce la a demonstra că $A + 2I$ este surjectiv. Fiind dat $F = \begin{pmatrix} f \\ g \end{pmatrix} \in H$ trebuie să rezolvăm ecuația $AU + 2U = F$, adică sistemul

$$(36) \begin{cases} -v + 2u = f & \text{în } \Omega \\ -\Delta u + 2v = g & \text{în } \Omega \end{cases}$$

cu

$$u \in H^2(\Omega) \cap H^1_0(\Omega) \text{ și } v \in H^1_0(\Omega).$$

Din (36) urmează că

$$(37) -\Delta u + 4u = 2f + g.$$
Ecuatia (37) are o unică soluție $u \in H^2(\Omega) \cap H_0^1(\Omega)$ (din teorema IX.25). Apoi găsim $v \in H_0^1(\Omega)$ luând pur și simplu $v = 2u - f$. Aceasta rezolvă (36).

Aplicând teorema lui Hille-Yosida (teorema VII.4) și remarca VII.6 observăm că există o unică soluție a problemei

$$(38) \quad \begin{cases} \frac{dU}{dt} + AU = 0 \quad \text{pe } [0, \infty), \\ U(0) = U_0. \end{cases}$$

cu

$$(39) \quad U \in C^1([0, \infty); \ H) \cap C([0, \infty); \ D(A))$$

deoarece $U_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} \in D(A)$. Din (39) deducem (31).

Pentru a demonstra (32) este suficient a multiplica (27) cu $\frac{\partial u}{\partial t}$ și integra pe Ω. Subliniem că

$$\int_\Omega \frac{\partial^2 u}{\partial t^2} \frac{\partial u}{\partial t} \, dx = \frac{1}{2} \frac{\partial}{\partial t} \int_\Omega \left| \frac{\partial u}{\partial t}(x, t) \right|^2 \, dx$$

și

$$\int_\Omega (-\Delta u) \frac{\partial u}{\partial t} \, dx = \int_\Omega \nabla u \frac{\partial}{\partial t} (\nabla u) \, dx = \frac{1}{2} \frac{\partial}{\partial t} \int_\Omega |\nabla u|^2 \, dx.$$

Remarca 7. – Când Ω este mărginit am putea utiliza pe $H_0^1(\Omega)$ produsul scalar $\int \nabla u_1 \cdot \nabla u_2$ (vezi corolarul IX.19) și pe $H = H_0^1(\Omega) \times L^2(\Omega)$ produsul scalar

$$(U_1, U_2) = \int_\Omega \nabla u_1 \cdot \nabla u_2 + \int_\Omega v_1 v_2 \quad \text{unde } U_1 = \begin{pmatrix} u_1 \\ v_1 \end{pmatrix} \quad \text{și } U_2 = \begin{pmatrix} u_2 \\ v_2 \end{pmatrix}.$$

Cu acest produs scalar avem

$$(AU, U) = - \int \nabla v \cdot \nabla u + \int (-\Delta u)v = 0 \quad \forall U = \begin{pmatrix} u \\ v \end{pmatrix} \in D(A).$$

Este ușor de verificat (vezi [EX]) că:

i) A și $-A$ sunt maximal monotonii,
Ecuatia undelor

ii) $A^* = -A$.

Ca o consecinta putem rezolva problema

$$\begin{align*}
\begin{cases}
\frac{dU}{dt} - AU = 0 & \text{pe } [0, +\infty), \\
U(0) = U_0
\end{cases}
\end{align*}$$

sau echivalent (12)

$$\begin{align*}
\begin{cases}
\frac{dU}{dt} + AU = 0 & \text{pe } (-\infty, 0], \\
U(0) = U_0
\end{cases}
\end{align*}$$

Relatia (32) poate fi scrisa

$$|U(t)|_H = |U_0|_H \quad \forall t \in \mathbb{R}.$$

Se spune ca familia $\{U(t)\}_{t \in \mathbb{R}}$, este un grup de izometrii pe H.

- Remarca 8. – Ecuatia undelor nu are nici un efect regularizant cu privire la datele inițiale, în contrast cu ecuația căldurii. Pentru a ne convinge de aceasta este suficient să considerăm cazul $\Omega = \mathbb{R}$. Astfel există o soluție explicită foarte simplă a problemei (27), (28), (29), (30), și anume

$$\begin{align*}
u(x,t) = \frac{1}{2}[u_0(x + t) + u_0(x - t)] + \frac{1}{2} \int_{x-t}^{x+t} v_0(s)ds.
\end{align*}$$

In particular, dacă $v_0 = 0$, avem

$$u(x,t) = \frac{1}{2}[u_0(x + t) + u_0(x - t)].$$

Este limpede că u nu este mai netedă decât u_0. Putem fi chiar mult mai preciși. Presupunem că $u_0 \in C^\infty(\mathbb{R}\setminus\{x_0\})$. Atunci $u(x,t)$ este C^∞ pe $\mathbb{R} \times \mathbb{R}$ exceptând dreptele $x + t = x_0$ și $x - t = x_0$. Ele sunt numite dreptele caracteristice trecând prin punctul $(x_0, 0)$. Se spune că singularitățile se propagă de-a lungul dreptelor caracteristice.

Cu alte cuvinte timpul este reversibil; din acest punct de vedere există o diferență fundamentală între ecuația undelor și ecuația căldurii (pentru care timpul nu este reversibil).
REMARCA 9. – Dacă \(\Omega \) este mărginit problema (27), (28), (29), (30) poate fi rezolvată prin descompunerea într-o bază Hilbertiană – așa cum s-a făcut pentru ecuația căldurii. Este foarte avantajos să lucrăm în baza \((e_i) \) a lui \(L^2(\Omega) \) compusă din funcțiile proprii ale lui \(-\Delta \) (cu condiția Dirichlet), adică \(-\Delta e_i = \lambda_i e_i \) în \(\Omega \), \(e_i = 0 \) pe \(\Gamma \); reamintim că \(\lambda_i > 0 \). Vom căuta o soluție a lui (27), (28), (29), (30) sub forma

\[
(41) \quad u(x, t) = \sum_i a_i(t)e_i(x).
\]

Observăm imediat că funcțiile reale \(a_i(t) \) trebuie să satisfacă

\[
a''_i(t) + \lambda_i a_i(t) = 0,
\]

astfel că

\[
a_i(t) = a_i(0) \cos(\sqrt{\lambda_i}t) + \frac{a'_i(0)}{\sqrt{\lambda_i}} \sin(\sqrt{\lambda_i}t).
\]

Constantele \(a_i(0) \) și \(a'_i(0) \) sunt determinate de relațiile

\[
u_0(x) = \sum_i a_i(0)e_i(x) \quad \text{și} \quad v_0(x) = \sum_i a'_i(0)e_i(x).
\]

Cu alte cuvinte \(a_i(0) \) și \(a'_i(0) \) sunt componente ale lui \(u_0 \) și \(v_0 \) în baza \((e_i) \). Pentru studiul convergenței seriilor (41) vezi Raviart-Thomas [1] sau Weinberger [1].

DEMONSTRĂINDA TEOREMEI X.8. – Vom utiliza aceleași notatii ca în demonstrația teoremei X.7. Este ușor de observat, prin inducție după \(k \), că

\[
D(A^k) = \left\{ \begin{pmatrix} u \\ v \end{pmatrix} \middle| \begin{array}{l} u \in H^{k+1}(\Omega) \text{ și } \Delta^j u = 0 \text{ pe } \Gamma \forall 0 \leq j \leq \left[\frac{k}{2} \right] \\ v \in H^k(\Omega) \text{ și } \Delta^j v = 0 \text{ pe } \Gamma \forall 0 \leq j \leq \left[\frac{k+1}{2} \right] - 1 \end{array} \right\}.
\]

In particular, \(D(A^k) \subset H^{k+1}(\Omega) \times H^k(\Omega) \) cu injecția continuă. Aplicând teorema VII.5 observăm că dacă \(U_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} \in D(A^k) \), atunci soluția \(U \) a lui (38) satisface

\[
U \in C^{k-j}([0, \infty); D(A^j)) \quad \forall j = 0, 1, \ldots k.
\]
COMENTARIU

Astfel $u \in C^{k-j}([0, \infty); H^{j+1}(\Omega)) \quad \forall j = 0, 1, \ldots, k$. Concluzionăm cu ajutorul corolarului IX.15 că sub presupunerile teoremei X.8 (adică $U_0 \in D(A^k) \quad \forall k$) avem $u \in C^k(\bar{\Omega} \times [0, \infty)) \quad \forall k$.

REMARCA 10. – Relațiile de compatibilitate introduse în teorema X.8 sunt necesare și suficiente pentru a avea o soluție $u \in C^\infty(\bar{\Omega} \times [0, \infty))$ a problemei (27), (28), (29), (30). Demonstrația este aceeași ca în remarca 4.

REMARCA 11. – Tehnicile prezentate în §X.3 pot fi folosite, de asemenea, pentru rezolvarea ecuației Klein-Gordon

$$(27') \quad \frac{\partial^2 u}{\partial t^2} - \Delta u + m^2 u = 0 \text{ în } \Omega, \quad m > 0.$$

Punctăm că $(27')$ nu poate fi redusă la (27) printr-o schimbare de necunoscută cum ar fi $v(x,t) = e^{\lambda t}u(x,t)$.

X.4 Comentarii asupra capitolului X

Comentarii asupra ecuației căldurii.

1) Teorema lui J.L. Lions.

Următorul rezultat ne permite să demonstrăm, într-un cadru foarte general, existența și unicitatea unei soluții slabe pentru problemele parabolice. Această teoremă poate fi privită ca fiind corespondenta de tip parabolic a teoremei lui Lax-Milgram. Fie H un spațiu Hilbert cu produsul scalar (\cdot, \cdot) și norma $|\cdot|$. Spațiul dual H' este identificat cu H. Fie V un alt spațiu Hilbert cu norma $||\cdot||$. Presupunem că $V \subset H$ cu injecție continuă și densă, astfel încât

$$V \subset H \subset V'.$$

(vezi remarca V.1).

Fie $T > 0$ fixat; pentru a.p.t. $t \in [0, T]$ se consideră o formă bilinară $a(t; u, v): V \times V \to \mathbb{R}$ care satisface următoarele proprietăți:

i) Pentru orice $u, v \in V$ funcția $t \mapsto a(t; u, v)$ este măsurabilă,
ii) $|a(t; u, v)| \leq M||u||||v||$ pentru a.p.t. $t \in [0, T], \forall u, v \in V$,
iii) $a(t; v, v) \geq \alpha||v||^2 - C|v|^2$ pentru a.p.t. $t \in [0, T], \forall v \in V$,.
unde $\alpha > 0$, M și C sunt constante.

Teorema X.9 (J.L. Lions). – Fiind date $f \in L^2(0, T; V')$ și $u_0 \in H$ există o funcție unică u care satisface

$$u \in L^2(0, T; V) \cap C([0, T]; H), \quad \frac{du}{dt} \in L^2(0, T; V')$$

$$(\frac{du}{dt}(t), v) + a(t; u(t), v) = (f(t), v) \quad \text{pentru a.p.t. } t \in (0, T), \quad \forall v \in V,$$

și

$$u(0) = u_0.$$

Pentru demonstrație vezi Lions-Magenes [1] sau [EX].

Aplicăție: $H = L^2(\Omega)$, $V = H^1_0(\Omega)$ și

$$a(t; u, v) = \sum_{i,j} \int_\Omega a_{ij}(x,t) \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} dx + \sum_i \int_\Omega a_i(x,t) \frac{\partial u}{\partial x_i} v dx + \int_\Omega a_0(x,t)uv dx$$

cu $a_{ij}, a_i, a_0 \in L^\infty(\Omega \times (0, T))$ și

$$\sum_{i,j} a_{ij}(x,t)\xi_i\xi_j \geq \alpha |\xi|^2 \quad \text{pentru a.p.t. } (x, t) \in \Omega \times (0, T),$$

$$\forall \xi \in \mathbb{R}^N, \ \alpha > 0.$$ (42)

In acest mod obținem o soluție slabă a problemei

(43)

$$\begin{cases}
\frac{\partial u}{\partial t} - \sum_{i,j} \frac{\partial}{\partial x_j} \left(a_{ij} \frac{\partial u}{\partial x_i} \right) + \sum_i a_i \frac{\partial u}{\partial x_i} + a_0u = f & \text{în } Q \times (0, T), \\
u = 0 & \text{pe } \Gamma \times (0, T), \\
u(x, 0) = u_0(x) & \text{în } \Omega.
\end{cases}$$

Sub presupuneri suplimentare asupra datelor, soluția lui (43) este mai netedă – a se vedea următoarele comentarii.

2) **Regularitatea** C^∞.

COMENTARIII
Presupunem aici că Ω este mărginit și de clasă C^∞. Fie $a_{ij}, a_i, a_0 \in C^\infty(\bar{\Omega} \times [0, T])$ satisfăcând (42).

Teorema X.10. – Presupunem că $u_0 \in L^2(\Omega)$ și $f \in C^\infty(\bar{\Omega} \times [0, T])$. Atunci soluția u a lui (43) aparține lui $C^\infty(\bar{\Omega} \times [\varepsilon, T])$ pentru orice $\varepsilon > 0$.

Dacă în plus $u_0 \in C^\infty(\bar{\Omega})$ și $\{f, u_0\}$ satisfac relațiile de compatibilitate corespunzătoare (13) pe $\Gamma \times \{0\}$, atunci $u \in C^\infty(\bar{\Omega} \times [0, T])$.

Pentru demonstrație vezi Lions-Magenes [1], Friedman [1], [2], Ladyzhenskaya-Solomnikov-Uralteva [1] și [EX]; aceasta este bazată pe estimări foarte similare cu acelea prezentate în capitolele VII și X.1.

Menționăm că există și o teorie abstractă care extinde pe cea a lui Hille-Yosida la probleme de forma $\frac{du}{dt}(t) + A(t)u(t) = f(t)$ unde, pentru fiecare $t \in [0, T]$, $A(t)$ este un operator maximal monoton. Această teorie a fost dezvoltată de Kato, Tanabe, Sobolevski și alții. Din punct de vedere tehnic este mai complicat de manipulat decât teoria lui Hille-Yosida; vezi Friedman [2], Tanabe [1] și Yosida [1].

3) Regularitatea L^p și $C^{0,\alpha}$.

Considerăm problema (14)

\[
\begin{aligned}
&\frac{\partial u}{\partial t} - \Delta u = f & \text{în } \Omega \times (0, T) \\
u = 0 & \text{pe } \Gamma \times (0, T) \\
u(x, 0) = u_0(x) & \text{în } \Omega.
\end{aligned}
\]

(44)

Presupunem, pentru simplitate, Ω mărginit și de clasă C^∞. Vom începe cu rezultatul simplu.

Teorema X.11 (Regularitatea L^2). – Fiind date $f \in L^2(\Omega \times (0, T))$ și $u_0 \in H^1_0(\Omega)$ există o unică soluție a lui (44) satisfăcând

\[u \in C([0, T]; H^1_0(\Omega)) \cap L^2(0, T; H^2(\Omega) \cap H^1_0(\Omega))\]

\(^{13}\)Nu vom transcrie explicit aceste relații; acestea sunt extenziile naturale ale lui (8) (a se vedea și remarcă 4).

\(^{14}\)Desigur, am putea, de asemenea, prescrie o condiție Dirichlet neomogenă $u(x, t) = g(x, t)$ pe $\Gamma \times (0, T)$ – dar pentru simplitate, vom trata doar cazul $g = 0$.

COMENTARII

306
şi
\[\frac{\partial u}{\partial t} \in L^2(0, T; L^2(\Omega)). \]

Demonstraţia este uşoară; a se vedea Lions-Magenes [1] sau [EX]. Mai general, în spaţiile \(L^p \), avem \(L^p \) \(1 < p < \infty \) şi \(u_0 = 0 \), (15) există o soluţie unică a lui (44) satisfăcând
\[u, \frac{\partial u}{\partial t}, \frac{\partial u}{\partial x_i}, \frac{\partial^2 u}{\partial x_i \partial x_j} \in L^p(\Omega \times (0, T)) \quad \forall i, j. \]

Teorema X.12 (Regularitatea \(L^p \)). – Fiind date \(f \in L^p(\Omega \times (0, T)) \) cu \(1 < p < \infty \) şi \(u_0 = 0 \), (15) există o soluţie unică a lui (44) satisfăcând
\[u, \frac{\partial u}{\partial t}, \frac{\partial u}{\partial x_i}, \frac{\partial^2 u}{\partial x_i \partial x_j} \in L^p(\Omega \times (0, T)) \quad \forall i, j. \]

Teorema X.13 (Regularitatea Hölder). – Fie \(0 < \alpha < 1 \). Presupunem că \(f \in C^{\alpha, \alpha/2}(\bar{\Omega} \times [0, T]) \) (16) şi \(u_0 \in C^{2+\alpha}(\bar{\Omega}) \) satisfac relaţiile naturale de compatibilitate:
\[u_0 = 0 \quad \text{pe } \Gamma \quad \text{şi} \quad -\Delta u_0 = f(x, 0) \quad \text{pe } \Gamma. \]

Atunci (44) are o soluţie unică \(u \) astfel încât
\[u, \frac{\partial u}{\partial t}, \frac{\partial u}{\partial x_i}, \frac{\partial^2 u}{\partial x_i \partial x_j} \in C^{\alpha, \alpha/2}(\bar{\Omega} \times [0, T]) \quad \forall i, j. \]

Demonstraţiile teoremelor X.12 şi X.13 sunt delicate – exceptând cazul \(p = 2 \) al teoremei X.12. Ca în cazul eliptic (vezi comentariile de la sfârşitul capitolului IX) ele se bazează pe:

i) O formulă explicită de reprezentare pentru \(u \) implicând soluţia fundamentală a lui \(\frac{\partial}{\partial t} - \Delta \). De exemplu dacă \(\Omega = \mathbb{R}^N \) şi \(f = 0 \) atunci
\[u(x, t) = \int_{\mathbb{R}^N} E(x - y, t)u_0(y)dy = E * u_0 \]
unde \(* \) se referă la convoluţia numai în variabila spaţială \(x \) şi \(E(x, t) = (4\pi t)^{-N/2}e^{-|x|^2/4t} \), vezi Folland [1].

\(^{15} \) Pentru a simplifica lucrurile.
\(^{16} \) Adică \(|f(x_1, t_1) - f(x_2, t_2)| \leq C(|x_1 - x_2|^2 + |t_1 - t_2|^{\alpha/2}) \quad \forall x_1, x_2, t_1, t_2. \)
ii) O tehnică a integralelor singulare; a se vedea Ladyzhenskaya-Solonnikov-Uraltseva [1] și Friedman [1]. Referitor la teorema X.12, vezi, de asemenea, Grisvard [1] (secțiunea 9) și Stroock-Varadhan [1]. Brandt [2] (vezi și Knerr [1]) are o demonstrație foarte simplă a regularității Hölder în interiorul lui $\Omega \times (0, T)$ (concluzie parțială a teoremei X.13).

Cu ipoteze suplimentare asupra diferențiabilității lui f se obține o regularitate suplimentară a lui u. „Filozofia” generală de reținut este următoarea: dacă u este soluția lui (44) cu $u_0 = 0$ atunci totul se petrece ca și când $\frac{\partial u}{\partial t}$ și Δu au aceeași regularitate ca și f.

În final, menționăm că concluziile teoremelor X.11, X.12 și X.13 rămân încă valabile dacă Δ este înlocuit de

$$\sum_{i,j} \frac{\partial}{\partial x_j} \left(a_{ij}(x,t) \frac{\partial u}{\partial x_i} \right) + \sum_i a_i(x,t) \frac{\partial u}{\partial x_i} + a_0(x,t)u$$

cu coeficienții netezi astfel încât

$$\sum a_{ij}(x,t)\xi_i\xi_j \geq \nu|\xi|^2 \quad \forall x, t, \quad \forall \xi \in \mathbb{R}^N, \nu > 0.$$

În cazul coeficienților netezi, adică $a_{ij} \in L^\infty(\Omega \times (0, T))$ satisfăcând (46), un rezultat dificil al lui Nash-Moser afirmă că există un anume $\alpha > 0$ astfel încât $u \in C^{\alpha,\alpha/2}((\bar{\Omega} \times [0, T]))$; vezi Ladyzhenskaya-Solonnikov-Uraltseva [1].

4) Exemple de ecuații parabolice.

Ecuțiile liniare și neliniare de tip parabolic (și sistemele) apar în multe domenii: mecanică, fizică, chimie, biologie, control optimal, probabilități, etc. Să menționăm câteva exemple:

i) Sistemul Navier-Stokes:

$$\begin{cases}
\frac{\partial u_i}{\partial t} - \Delta u_i + \sum_{j=1}^N u_j \frac{\partial u_i}{\partial x_j} = f_i + \frac{\partial p}{\partial x_i} & \text{în } \Omega \times (0, T), 1 \leq i \leq N, \\
\text{div } u = \sum_{i=1}^N \frac{\partial u_i}{\partial x_i} = 0 & \text{în } \Omega \times (0, T), \\
u = 0 & \text{pe } \Gamma \times (0, T), \\
u(x, 0) = u_0(x) & \text{în } \Omega,
\end{cases}$$

joacă un rol central în mecanica fluidelor, a se vedea Temam [1] și referințele citate.
ii) **Sistemele de reacție-difuzie.** Acestea sunt ecuații neliniare parabolice sau sisteme de forma

\[
\begin{align*}
\frac{\partial \tilde{u}}{\partial t} - M \Delta (\tilde{u}) &= f(\tilde{u}) \quad \text{în } \Omega \times (0,T) \\
+\text{Condiții la limită și date inițiale},
\end{align*}
\]

unde \(\tilde{u}(x,t) \) ia valori în \(\mathbb{R}^m \), \(M \) este o matrice (diagonală) \(m \times m \) și \(f \) este o aplicație neliniară de la \(\mathbb{R}^m \) în \(\mathbb{R}^m \). Aceste sisteme sunt utilizate pentru a modela fenomene care apar în domenii variate: chimie, biologie, neurofizioligie, epidemiologie, combustie, genetica populației etc.; vezi Fife [1] și numeroasele sale referințe.

iii) **Probleme de frontieră liberă.** De exemplu, problema Stefan descrie evoluția unui amestec de gheată și apă; vezi articolul detaliat al lui Magenes [1], Free Boundary Problems [1], [2], Moving Boundary Problems [1] (toate acestea cu multe referințe).

iv) Ecuatiile de difuzie joacă un rol central în teoria probabilităților (mișcarea browniană, procese Markov, procese de difuzie, ecuații diferențiale stochastice, etc.); vezi Stroock-Varadhan [1].

v) Multe alte exemple de ecuații parabolice neliniare sunt prezentate în D. Henry [1], Bénilan-Crandall-Pazy [1], H. Brezis [2].

vi) O utilizare interesantă a ecuației căldurii a fost făcută în conexiune cu teoria de index a lui Atiyah-Singer, a se vedea Gilkey [1].

5) Pentru rezultate suplimentare privind principiul de maxim pentru ecuațiile parabolice, vezi Friedman [1], Protter-Weinberger [1], Sperb [1]. De pildă, dacă \(u \) este soluția lui (1), (2), (3) cu \(u_0 \geq 0 \) și \(u_0 \) nu este identic zero, atunci \(u(x,t) > 0 \quad \forall x \in \Omega, \forall t > 0 \). Când \(\Omega = \mathbb{R}^N \) aceasta rezultă ușor din formula de reprezentare explicită (45).

Comentarii asupra ecuației undelor

6) **Soluții slabe ale ecuației undelor.**

Există un cadru general abstract pentru existența și unicitatea unei soluții slabe a ecuației undelor (cu membrul drept \(f \)). Fie \(V \) și \(H \) două spații Hilbert astfel încât \(V \subset H \subset V' \) (ca în comentariul 1). Fie \(T > 0 \). Pentru fiecare \(t \in [0,T] \) este dată o formă biliniară continuă și simetrică \(a(t; u,v) : V \times V \rightarrow \mathbb{R} \) astfel încât
i) funcția \(t \mapsto a(t; u, v) \) este de clasă \(C^1 \), \(\forall u, v \in V \)
ii) \(a(t; v, v) \geq \alpha \|v\|^2 - C\|v\|^2 \) \(\forall t \in [0, T], \forall v \in V, \alpha > 0. \)

Teorema X.14 (J.L. Lions). \(-\) Fiind date \(f \in L^2(0, T; H), u_0 \in V și v_0 \in H \) există o funcție unică \(u \) satisfăcând

\[
u \in C([0, T]; V), \quad \frac{du}{dt} \in C([0, T]; H), \quad \frac{d^2u}{dt^2} \in L^2(0, T; V^*),
\]

\[
\left(\frac{d^2u}{dt^2}(t), v \right) + a(t; u(t), v) = \langle f(t), v \rangle \spatium{pentru a.p.t.} t \in (0, T), \spatium{\forall v \in V},
\]

\[
u(0) = u_0 \spatium{și} \frac{du}{dt}(0) = v_0.
\]

Pentru demonstrație vezi Lions-Magenes [1].

Aplicație. \(-\) Fie \(H = L^2(\Omega), V = H^1_0(\Omega), a(t; u, v) = \int_\Omega \sum_{i,j} a_{ij}(x, t) \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} dx + \int_\Omega a_0(x, t) uv dx\) cu (42) indeplinită și

\[
a_{ij}, \frac{\partial a_{ij}}{\partial t}, a_0, \frac{\partial a_0}{\partial t} \in L^\infty(\Omega \times (0, T)), \quad a_{ij} = a_{ji} \spatium{∀i, j}.
\]

Se obține astfel o soluție slabă unică a problemei

\[
\begin{align*}
\frac{d^2u}{dt^2} - \sum_{i,j} \frac{\partial}{\partial x_j} \left(a_{ij} \frac{\partial u}{\partial x_i} \right) + a_0 u &= f \spatium{în} \Omega \times (0, T) \\
(28), (29), (30),
\end{align*}
\]

Subliniem că ipotezele asupra datelor inițiale \((u_0 \in H^1_0(\Omega) și v_0 \in L^2(\Omega)) sunt aici mai slabe decât acelea impuse în teorema X.7.

Sub ipoteze suplimentare asupra lui \(f, u_0 și v_0 \) (condiții de regularitate și compatibilitate) precum și asupra lui \(a_{ij}, a_0 \) se obține că \(u \) este mai netedă (vezi Lions-Magenes [1]).

7) Teoria \(L^p \) pentru ecuația undelor este delicată și încă puțin cunoscută.

8) **Principiul de maxim.**
Unele forme foarte speciale ale principiului de maxim rămân valabile pentru ecuația undelor; a se vedea, Protter-Weinberger [1]. De exemplu, fie u o soluție a lui (27), (28), (29), (30).

(i) Dacă $\Omega = \mathbb{R}$, $u_0 \geq 0$ și $v_0 \geq 0$, atunci $u \geq 0$.

(ii) Dacă $\Omega = \mathbb{R}^2$, $u_0 = 0$ și $v_0 \geq 0$, atunci $u \geq 0$.

Afirmatia (i) urmează din formula de reprezentare (40). O formulă similară, dar mult mai complicată este valabilă în \mathbb{R}^N; a se vedea Mizohata [1], Folland [1], Weinberger [1], Courant-Hilbert [1], Mikhlin [1] și [EX]. Aceasta implică (ii).

Totuși cititorul este avertizat asupra următoarelor (vezi [EX]):

(iii) Dacă $\Omega = (0, 1)$, $u_0 \geq 0$ și $v_0 = 0$, atunci în general nu se poate spune că $u \geq 0$.

(iv) Dacă $\Omega = \mathbb{R}^2$, $u_0 \geq 0$ și $v_0 = 0$, atunci în general nu se poate spune că $u \geq 0$.

Există o diferență esențială între ecuația căldurii și ecuația undelor:

a) Pentru ecuația căldurii, o mică perturbație a datei inițiale este imediat resimțită peste tot, adică $\forall x \in \Omega$, $\forall t > 0$. De exemplu, am văzut că dacă $u_0 \geq 0$ și $u_0 \neq 0$, atunci $u(x, t) > 0$ $\forall x \in \Omega$, $\forall t > 0$.

Altfel spus, căldura se propângeră cu viteză infinită (17).

b) Pentru ecuația undelor, situația este cu totul diferită. Să presupunem, de pildă, $\Omega = \mathbb{R}$. Formula implicită (40) arată că $u(\bar{x}, \bar{t})$ depinde doar de valorile lui u_0 și v_0 în intervalul $[\bar{x} - \bar{t}, \bar{x} + \bar{t}]$.

Se spune că intervalul $[\bar{x} - \bar{t}, \bar{x} + \bar{t}]$ de pe axa lui x este domeniul de dependență al punctului (\bar{x}, \bar{t}). Același lucru este valabil pentru $\Omega = \mathbb{R}^N$ ($N \geq 2$): $u(\bar{x}, \bar{t})$ depinde doar de valorile lui u_0 și v_0 în bila $\{x \in \mathbb{R}^N; |x - \bar{x}| \leq \bar{t}\}$. Această bilă din hiperplan $\mathbb{R}^N \times \{0\}$ este numită domeniul de dependență al punctului (\bar{x}, \bar{t}). Din punct de
vedere geometric, aceasta este intersectia conului

\[\{(x,t) \in \mathbb{R}^N \times \mathbb{R}; \ |x - \bar{x}| \leq \bar{t} - t \text{ și } t \leq \bar{t}\} \]

cu hiperplanul \(\mathbb{R}^N \times \{0\} \). Interpretarea fizica este ca undele se propagă cu o viteză cel mult egală cu 1 (18). Un semnal localizat în domeniul \(D \) la momentul de timp \(t = 0 \) (19) este resimțit în punctul \(x \in \mathbb{R}^N \) doar după timpul \(t \geq \text{dist} (x, D) \) (\(u(x,t) = 0 \) pentru \(t < \text{dist} (x, D) \)).

Dacă \(N > 1 \) este impar, de exemplu \(N = 3 \), există un efect chiar mai izbitor: \(u(\bar{x}, \bar{t}) \) depinde doar de valorile pe care le ia \(u_0 \) și \(v_0 \) (20) pe sfera \(\{x \in \mathbb{R}^N; |x - \bar{x}| = \bar{t}\} \). Acesta este Principiul lui Huygens. Din punct de vedere fizic, acesta spune că un semnal localizat în domeniul \(D \) la momentul de timp \(t = 0 \) este observat în punctul \(x \in \mathbb{R}^N \) doar pe durata de timp \([t_1, t_2]\) cu \(t_1 = \text{Inf}_{y \in D} d(x, y) \) și \(t_2 = \text{Sup}_{y \in D} d(x, y) \). După momentul de timp \(t_2 \) semnalul nu mai este resimțit în punctul \(x \).

Pe de altă parte, dacă dimensiunea \(N \) este pară (de exemplu \(N = 2 \)) semnalul persistă în \(x \) la orice moment de timp \(t > t_1 \) (21).

O aplicație în muzică. Un ascultător care se află în \(\mathbb{R}^3 \) la o distanță \(d \) de un instrument muzical (22) aude la momentul de timp \(t \) nota cântată la momentul de timp \(t - d \) și nimic altceva! (23)

Pentru mai multe detalii asupra Principiului lui Huygens cititorul poate consulta Courant-Hilbert [1], Folland [1], Garabedian [1], Mikhlin [1].

18Viteza 1 intră deoarece am normalizat ecuația undelor. Unii cititori ar putea prefera să lucreze cu ecuația \(\frac{\partial^2 u}{\partial t^2} - c^2 \Delta u = 0 \), pentru a oferi vitezei c un rol privilegiat.
19Adică, \(u_0 \) și \(v_0 \) au suporturile în \(D \).
20Și unele dintre derivatele lor.
21Efectul este amortizat cu timpul dar nu dispăr complet.
22De dimensiunea neglijabilă.
23În timp ce în \(\mathbb{R}^2 \) ar trebui sa audă o combinație ponderată a tuturor notelor cântate în intervalul de timp \([0, t - d]\).
BIBLIOGRAFIE

AKHIEZER N., GLAZMAN I.: [1], Theory of linear operators in Hilbert space, Pitman (1980).

AUBIN J. P.: [1], Mathematical methods of game and economic theory, North Holland (1979).

BEAUZAMY B.: [1], Introduction to Banach spaces and their geometry, North-Holland (1983).
Benilan Ph., Crandall M., Pazy A.: [1], Non-linear evolution equations governed by accretive operator (sub tipar).
Bourbaki N.: [1], Espaces vectoriels topologiques, (2 volume), Hermann (1967).
Brandt A.: [1], Interior estimates for second order elliptic differential (or finite-difference) equations via the maximum principle, Israel J. Math., 76 (1969), 95–121.
Brezis H.: [1], Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North Holland (1973).
Chae S. B.: [1], Lebesque Integration, Dekker (1980).

DAVIES E.: [1], *One parameter semigroups*, Acad. Press (1980).

DIXMIER J.: [1], *Topologie générale*, PUF (1980).

DUNFORD N., SCHWARTZ J. T.: [1], *Linear operators*, (3 volume), Interscience (1972).

Germain P.: [1], *Cours de Mécanique*, École Polytechnique (1982).

Gilkey P.: [1], *The index Theorem and the heat equation*, Publish or Perish (1974).

Goldstein J.: [1], *Semigroups of operators and applications*, Encycl. of Math. and its Applic., G.C. Rota, ed. Addison-Wesley (sub tipar).

Huet D.: [1], *Décomposition spectrale et opérateurs*, PUF (1976).

Karlin S.: [1], *Mathematical methods and theory in games, programming, and economics*, (2 volume), Addison-Wesley (1959).

[2], Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod (1968).

[3], Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier Villars (1969).

Lions J. L., Magenes E.: [1], Problèmes aux limites non homogènes, (3 volume), Dunod (1968).

Malliavin P.: [1], Intégration et Probabilités, Analyse de Fourier et Analyse spectrale, Masson (1982).

Pazy A.: [1], *Semigroups of linear operators and applications to partial differential equations*, Lecture Notes Univ. of Maryland (1974).

SCHWARTZ L.: [1], Théorie des distributions, Hermann (1973).

SPERB R.: [1], Maximum principles and their applications, Acad.

Wheeden R., Zygmund A.: [1], *Measure and Integral*, Dekker