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Abstract. Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear
term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpiński
gasket is proved. Our approach is based on variational methods and on some analytic and geometrical
properties of the Sierpiński fractal. The abstract results are illustrated by explicit examples.
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1. Introduction

In the last three decades of the 20th century it started to become clear that many phenomena in the real world
are best modeled by some exotic geometric structures with a nonsmooth appearance. The theory of fractals,
as Mandelbrot [21–23] has so forcefully argued, seeks to provide the mathematical framework for such powerful
development. Analysis of PDEs on fractal domains has shown an explosive development, due to numerous
applications to problems arising in various fields, including physics, chemistry and biology. In this paper we
study the following Dirichlet problem{

Δu(x) + a(x)u(x) = λg(x)f(u(x)) x ∈ V \ V0,
u|V0 = 0,

(Sf,g
a,λ)

where V stands for the Sierpiński gasket, V0 is its intrinsic boundary, Δ denotes the weak Laplacian on V and
λ is a positive real parameter. We assume that f : R → R is a continuous function and that the variable
potentials a, g : V → R satisfy the following conditions:

(h1) a ∈ L1(V, μ) and a ≤ 0 almost everywhere in V ;
(h2) g ∈ C(V ) with g ≤ 0 and such that the restriction of g to every open subset of V is not identically zero.
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Here μ denotes the restriction to V of normalized log N/log 2-dimensional Hausdorff measure on V , so that
μ(V ) = 1.

In our main result just requiring an oscillating behaviour of the non-linearity f either at zero or at infinity,
we prove that problem (Sf,g

a,λ) admits a sequence of pairwise distinct weak solutions; see Theorems 3.4 and 3.5
below.

The Sierpiński gasket has the origin in a paper by Sierpiński [29]. In a very simple manner, this fractal domain
can be described as a subset of the plane obtained from an equilateral triangle by removing the open middle
inscribed equilateral triangle of 1/4 of the area, removing the corresponding open triangle from each of the three
constituent triangles and continuing in this way. This fractal can also be obtained as the closure of the set of
vertices arising in this construction.

Over the years, the Sierpiński gasket showed both to be extremely useful in representing roughness in nature
and man’s works. This geometrical object is one of the most familiar examples of fractal domains and it gives
insight into the turbulence of fluids. According to Kigami [19], this notion was introduced by Mandelbrot [22]
in 1977 to design a class of mathematical objects which are not collections of smooth components. We refer to
Strichartz [30] for an elementary introduction to this subject and to Strichartz [32] for important applications
to differential equations on fractals.

The study of the Laplacian on fractals was originated in physics literature, where so-called spectral decimation
method was developed in Alexander [1] and Rammal et al. [26, 27]. The Laplacian on the Sierpiński gasket
was first constructed as the generator of a diffusion process by Kusuoka [20] and Goldstein [14]. Among the
contributions to the theory of nonlinear elliptic equations on fractals we mention [6, 10, 12, 15, 16, 31].

The main tools used in these papers to prove the existence of at least one nontrivial solution or of multiple
solutions for nonlinear elliptic equations with zero Dirichlet boundary conditions are certain mini-max results
(mountain pass theorems, saddle-point theorems), respectively, minimization procedures.

In this note, starting from the seminal paper by Falconer and Hu [12], we study the Dirichlet problem (Sf,g
a,λ)

through variational methods. In particular, in order to prove our multiplicity result we use the following critical
points theorem obtained by Bonanno and Molica Bisci in [3] that we recall here in a convenient form; see also
the variational principle of Ricceri, contained in [28].

Theorem 1.1 ([3], Thm. 2.1). Let X be a reflexive real Banach space, and Φ, Ψ : X → R be two Gâteaux
differentiable functionals such that Φ is strongly continuous, sequentially weakly lower semi-continuous and
coercive and Ψ is sequentially weakly upper semi-continuous. For every r > infX Φ, put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

(
supv∈Φ−1(]−∞,r[) Ψ(v)

)
− Ψ(u)

r − Φ(u)
,

and
γ := lim inf

r→+∞ ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then, one has

(a) If γ < +∞ then, for each λ ∈]0, 1/γ[, the following alternative holds:
either
(a1) Iλ := Φ − λΨ possesses a global minimum,
or
(a2) there is a sequence {vn} of critical points (local minima) of Iλ such that limn→∞ Φ(vn) = +∞;

(b) if δ < +∞ then, for each λ ∈]0, 1/δ[, the following alternative holds:
either
(b1) there is a global minimum of Φ which is a local minimum of Iλ,
or
(b2) there is a sequence {vn} of pairwise distinct critical points (local minima) of Iλ which weakly converges
to a global minimum of Φ, with limn→∞ Φ(vn) = infX Φ.
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The above theoretical result assures the existence of a sequence of pairwise distinct critical points for Gâteaux
differentiable functionals under assumptions that, when we consider the energy functional associated to (Sf,g

a,λ),
are satisfied assuming an appropriate oscillating behaviour on the potential of the nonlinearity either at infinity
or at the origin. In this order of ideas, very recently, Theorem 1.1 has been used to prove the existence of sequences
of solutions for different classes of elliptic problems with Dirichlet boundary condition; see, for example, Bonanno
and Molica Bisci in [4]; Bonanno et al. in [5] and D’Agùı and Molica Bisci [8].

In the cited papers, for technical reasons, a necessary condition applying our abstract result is the presence of
suitable classes of test functions. For instance, one admissible set of maps was introduced by Bonanno and Livrea
in [2] and successfully used in several works. It is worth noticing that the different test functions introduced here
are fundamental proving Theorems 3.4 and 3.5 since the usual cannot be used in elliptic problems on Sierpiński
gasket due to the particular geometry of the fractal set.

Moreover, we just mention that most results for classical Dirichlet problems on a bounded domain Ω ⊂ R
N

assume that the datum f is odd in order to apply some variant of the classical Lusternik-Schnirelmann theory.
Only a few papers deal with non-linearities having no symmetry properties; see, for instance, the papers of
Omari and Zanolin [24,25] and the recent work of Kristály and Moroşanu [17] for perturbed Dirichlet equations.
In analogy with the contributions obtained in [4, 5, 9] in our approach here we don’t require any symmetry
hypothesis.

Finally, we recall that Breckner et al. [7] proved the existence of infinitely many solutions of problem (Sf,g
a,λ)

under the key assumption, among others, that the non-linearity f is non-positive in a sequence of positive
intervals. We point out that our results are mutually independent compared to those achieved in the above
mentioned manuscript; see Remark 4.2.

This paper is organized as follows. In Section 2 we recall the geometrical construction of the Sierpiński
gasket and our variational framework. Successively, Section 3 is devoted to the main theorem and finally, in the
last section, we give two applications of the presented results. We cite the very recent monograph by Kristály
et al. [18] as general reference for the basic notions used here.

2. Abstract framework

Let N ≥ 2 be a natural number and let p1, . . . , pN ∈ R
N−1 be so that |pi −pj | = 1 for i �= j. Define, for every

i ∈ {1, . . . , N}, the map Si : R
N−1 → R

N−1 by

Si(x) =
1
2

x +
1
2

pi .

Let S := {S1, . . . , SN} and denote by G : P(RN−1) → P(RN−1) the map assigning to a subset A of R
N−1 the

set

G(A) =
N⋃

i=1

Si(A).

It is known that there is a unique non-empty compact subset V of R
N−1, called the attractor of the family S,

such that G(V ) = V ; see, Theorem 9.1 in Falconer [11].
The set V is called the Sierpiński gasket in R

N−1. It can be constructed inductively as follows:
Put V0 := {p1, . . . , pN}, Vm := G(Vm−1), for m ≥ 1, and V∗ :=

⋃
m≥0 Vm. Since pi = Si(pi) for i ∈ {1, . . . , N},

we have V0 ⊆ V1, hence G(V∗) = V∗. Taking into account that the maps Si, i ∈ {1, . . . , N}, are homeomorphisms,
we conclude that V∗ is a fixed point of G. On the other hand, denoting by C the convex hull of the set
{p1, . . . , pN}, we observe that Si(C) ⊆ C for i = 1, . . . , N . Thus Vm ⊆ C for every m ∈ N, so V∗ ⊆ C. It follows
that V∗ is non-empty and compact, hence V = V∗.

In the sequel V is considered to be endowed with the relative topology induced from the Euclidean topology
on R

N−1. The set V0 is called the intrinsic boundary of V . By Theorem 9.3 in Falconer [11], the Hausdorff
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(fractal) dimension d of V satisfies the equality

N∑
i=1

(
1
2

)d

= 1,

hence d = lnN/ln 2, and 0 < Hd(V ) < ∞, where Hd is the d-dimensional Hausdorff measure on R
N−1. We

point out that the Hausdorff dimension of a set is a more refined notion than the topological dimension. In
particular, the Hausdorff dimension is closely related to entropy. To see this, we consider the map T (z) = z2

defined on the circle. If ν is any ergodic T -invariant measure, then the Kolmogorov entropy of T is (up to a
constant depending on the base of the logarithm in the definition of entropy) the infimum of the Hausdorff
dimension of subsets of the circle that have full ν measure. In the other direction, if E is a closed subset of the
circle that is invariant under the map T , then E supports an invariant measure whose entropy is (again up to
that constant) the Hausdorff dimension of the set E.

Let μ be the normalized restriction of Hd to the subsets of V , so μ(V ) = 1. Finally, the following property
of μ will be useful in the sequel:

μ(B) > 0, for every non-empty open subset B of V. (2.1)

In other words, the support of μ coincides with V ; see, for instance, Breckner et al. [7].
Denote by C(V ) the space of real-valued continuous functions on V and by

C0(V ) := {u ∈ C(V ) | u|V0 = 0}.
The spaces C(V ) and C0(V ) are endowed with the usual supremum norm ‖ · ‖∞. For a function u : V → R and
for m ∈ N let

Wm(u) =
(

N + 2
N

)m ∑
x,y∈Vm

|x−y|=2−m

(u(x) − u(y))2. (2.2)

We have Wm(u) ≤ Wm+1(u) for every natural m, so we can put

W (u) = lim
m→∞Wm(u). (2.3)

Define now
H1

0 (V ) := {u ∈ C0(V ) | W (u) < ∞}.
It turns out that H1

0 (V ) is a dense linear subset of L2(V, μ) equipped with the ‖ · ‖2 norm. We now endow
H1

0 (V ) with the norm
‖u‖ =

√
W (u).

In fact, there is an inner product defining this norm: for u, v ∈ H1
0 (V ) and m ∈ N let

Wm(u, v) =
(

N + 2
N

)m ∑
x,y∈Vm

|x−y|=2−m

(u(x) − u(y))(v(x) − v(y)).

Put
W(u, v) = lim

m→∞Wm(u, v).

Then W(u, v) ∈ R and the space H1
0 (V ), equipped with the inner product W , which induces the norm ‖ · ‖,

becomes a real Hilbert space.
Moreover,

‖u‖∞ ≤ (2N + 3)‖u‖, for every u ∈ H1
0 (V ), (2.4)
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and the embedding
(H1

0 (V ), ‖ · ‖) ↪→ (C0(V ), ‖ · ‖∞) (2.5)

is compact. We refer to Fukushima and Shima [13] for further details.

Remark 2.1. As pointed out by Falconer and Hu [12], we observe that if a ∈ L1(V ) and a ≤ 0 in V then,
from (2.4), the norm

‖u‖∗ :=
(
W(u, u) −

∫
V

a(x)u2dμ

)1/2

,

is equivalent to
√

W (u) in H1
0 (V ).

We now state a useful property of the space H1
0 (V ) which shows, together with the facts that (H1

0 (V ), ‖ · ‖)
is a Hilbert space and H1

0 (V ) is dense in L2(V, μ), that W is a Dirichlet form on L2(V, μ).

Lemma 2.2. Let h : R → R be a Lipschitz mapping with Lipschitz constant L ≥ 0 and such that h(0) = 0.
Then, for every u ∈ H1

0 (V ), we have h ◦ u ∈ H1
0 (V ) and ‖h ◦ u‖ ≤ L‖u‖.

Proof. It is clear that h ◦ u ∈ C0(V ). For every m ∈ N we have, by (2.2) and the Lipschitz property of h, that

Wm(h ◦ u) ≤ L2Wm(u).

Hence W (h ◦ u) ≤ L2W (u), according to (2.3). Thus h ◦ u ∈ H1
0 (V ) and ‖h ◦ u‖ ≤ L‖u‖. �

Following Falconer and Hu [12] we can define in a standard way a linear self-adjoint operator Δ : Z → L2(V, μ),
where Z is a linear subset of H1

0 (V ) which is dense in L2(V, μ) (and dense also in (H1
0 (V ), ‖ · ‖)), such that

−W(u, v) =
∫

V

Δu · vdμ, for every (u, v) ∈ Z × H1
0 (V ).

The operator Δ is called the (weak) Laplacian on V .
Precisely, let H−1(V ) be the closure of L2(V, μ) with respect to the pre-norm

‖u‖−1 = sup
h∈H1

0 (V )
‖h‖=1

|〈u, h〉|,

where

〈v, h〉 =
∫

V

vhdμ,

v ∈ L2(V, μ) and h ∈ H1
0 (V ). Then H−1(V ) is a Hilbert space. Then the relation

−W(u, v) =< Δu, v >, ∀v ∈ H1
0 (V ),

uniquely defines a function Δu ∈ H−1(V ) for every u ∈ H1
0 (V ).

Finally, fix λ > 0. Given a : V → R, f : R → R and g : V → R be as in Introduction. We say that a function
u ∈ H1

0 (V ) is called a weak solution of (Sf,g
a,λ) if

W(u, v) −
∫

V

a(x)u(x)v(x)dμ + λ

∫
V

g(x)f(u(x))v(x)dμ = 0,

for every v ∈ H1
0 (V ).
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While we mainly work with the weak Laplacian, there is also a directly defined version. We say that Δs is
the standard Laplacian of u if Δsu : V → R is continuous and

lim
m→∞ sup

x∈V \V0

|(N + 2)m(Hmu)(x) − Δsu(x)| = 0,

where
(Hmu)(x) :=

∑
y∈Vm

|x−y|=2−m

(u(y) − u(x)),

for x ∈ Vm. We say that u ∈ C0(V ) is a strong solution of (Sf,g
a,λ) if Δsu exists and is continuous for all x ∈ V \V0,

and
Δu(x) + a(x)u(x) = λg(x)f(u(x)), ∀ x ∈ V \ V0.

The existence of the standard Laplacian of a function u ∈ H1
0 (V ) implies the existence of the weak Laplacian

Δ; see, for completeness, Falconer and Hu [12].

Remark 2.3. If a ∈ C(V ), f : R → R is continuous and g ∈ C(V ), then, using the regularity result Lemma 2.16
of Falconer and Hu [12], it follows that every weak solution of the problem (Sf,g

a,λ) is also a strong solution.

3. Main results

Define F : R → R by F (ξ) =
∫ ξ

0

f(t)dt, for every ξ ∈ R, and fix λ > 0. The functional I : H1
0 (V ) → R given

by

Iλ(u) =
1
2
‖u‖2 − 1

2

∫
V

a(x)u2(x)dμ + λ

∫
V

g(x)F (u(x))dμ, ∀ u ∈ H1
0 (V ), (3.1)

will turns out to be the the energy functional attached to problem (Sf,g
a,λ). To see this we first recall, for

completeness, a few basic notions.

Definition 3.1. Let (E, ‖ · ‖) be a real Banach space, E∗ its topological dual and T : E → R a functional. We
say that T is Fréchet differentiable at u ∈ E if there exists a continuous linear map T ′(u) : E → R, called the
Fréchet differential of T at u, such that

lim
v→0

|T (u + v) − T (u)− T ′(u)(v)|
‖v‖ = 0.

The functional T is Fréchet differentiable on E if T is Fréchet differentiable at every point u ∈ E. A point
u ∈ E is a critical point of T if T is Fréchet differentiable at u and if T ′(u) = 0. Moreover, if T ′ : E → E∗ is
continuous, then T is called a C1(E, R) functional.

Remark 3.2. Note that if the functional T : E → R has in u ∈ E a local extremum and if T is Fréchet
differentiable at u, then u is a critical point of T .

We have the following result contained in [12], Proposition 2.19, that we recall here in a convenient form.

Lemma 3.3. The functional Iλ : H1
0 (V ) → R defined by relation (3.1) is a C1(H1

0 (V ), R) functional. Moreover,

I ′λ(u)(v) = W(u, v) −
∫

V

a(x)u(x)v(x)dμ + λ

∫
V

g(x)f(u(x))v(x)dμ, ∀ v ∈ H1
0 (V )

for each point u ∈ H1
0 (V ). In particular, u ∈ H1

0 (V ) is a weak solution of problem (Sf,g
a,λ) if and only if u is a

critical point of Iλ.
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The aim of the paper is to prove the following result concerning the existence of infinitely many weak solutions
of the problem (Sf,g

a,λ).

Theorem 3.4. Let f : R → R be a non-negative continuous function. Assume that

lim inf
ξ→0+

F (ξ)
ξ2

< +∞ and lim sup
ξ→0+

F (ξ)
ξ2

= +∞. (h0)

Then, for every

λ ∈

⎤
⎥⎥⎦0,− 1

2(2N + 3)2
(∫

V

g(x)dμ

)
lim inf
ξ→0+

F (ξ)
ξ2

⎡
⎢⎢⎣ ,

there exists a sequence {vn} of pairwise distinct weak solutions of problem (Sf,g
a,λ) such that lim

n→∞ ‖vn‖ =

lim
n→∞ ‖vn‖∞ = 0.

Proof. Let us define the functionals Φ, Ψ : X → R by

Φ(u) =
1
2
‖u‖2 − 1

2

∫
V

a(x)u2(x)dμ and Ψ(u) = −
∫

V

g(x)F (u(x))dμ,

where X denotes the reflexive Banach space H1
0 (V ). Now, in order to achieve our goal, fix λ as in the conclusion.

Clearly, with the above notations, one has that Iλ = Φ−λΨ . Hence, we seek for weak solutions of problem (Sf,g
a,λ)

by applying part (b) of Theorem 1.1. First of all we observe that, from Lemma 3.3, the functional Iλ ∈ C1(X, R).
Moreover, Φ is obviously coercive and, by using Lemma 5.6 in Breckner et al. [7], the functionals Φ and Ψ are
weakly sequentially lower semi-continuous on X . Now, let {cn} be a real sequence such that limn→∞ cn = 0 and

lim
n→∞

F (cn)
c2
n

= lim inf
ξ→0+

F (ξ)
ξ2

·

Put rn =
c2
n

2(2N + 3)2
for every n ∈ N. Due to the compact embedding into C0(V ), from (2.4), we have

{v ∈ X | Φ(v) < rn} ⊆ {v ∈ X | ‖v‖∞ ≤ cn} .

Therefore

ϕ(rn) = inf
Φ(u)<rn

sup
Φ(v)<rn

∫
V

(−g(x))F (v(x))dμ +
∫

V

g(x)F (u(x))dμ

rn − Φ(u)

≤
sup

Φ(v)<rn

∫
V

(−g(x))F (v(x))dμ

rn
≤ −

(∫
V

g(x)dμ

) max
|ξ|≤cn

F (ξ)

rn

= −
(∫

V

g(x)dμ

)
F (cn)

rn
= −2(2N + 3)2

(∫
V

g(x)dμ

)
F (cn)

c2
n

·

Thus, since

lim inf
ξ→0+

F (ξ)
ξ2

< +∞,
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we deduce that

δ ≤ lim inf
n→∞ ϕ(rn) ≤ −2(2N + 3)2

(∫
V

g(x)dμ

)
lim inf
ξ→0+

F (ξ)
ξ2

< +∞.

At this point we will show that 0, that is the unique global minimum of Φ, is not a local minimum of the
functional Iλ. Hence, fix a function u ∈ X such that there is an element x0 ∈ V with u(x0) > 1. It follows that

D := {x ∈ V | u(x) > 1}

is a non-empty open (from the continuity of u) subset of V . Define h : R → R as follows

h(t) = |min{t, 1}|, for all t ∈ R.

Then h(0) = 0 and h is a Lipschitz function whose Lipschitz constant L is equal to 1. Hence, by using Lemma 2.2,
it follows that v := h ◦ u ∈ X . Moreover, v(x) = 1 for every x ∈ D, and 0 ≤ v(x) ≤ 1 for every x ∈ V . Bearing
in mind that

lim sup
ξ→0+

F (ξ)
ξ2

= +∞,

there exists a sequence {ξn} in ]0, ρ[ such that lim
n→∞ ξn = 0 and

lim
n→∞

F (ξn)
ξ2
n

= +∞. (3.2)

Consider the sequence of functions {ξnv} ⊂ X . Clearly ‖ξnv‖ → 0 and

Iλ(ξnv) =
ξ2
n

2
‖v‖2 − ξ2

n

2

∫
V

a(x)v2(x)dμ + λF (ξn)
∫

D

g(x)dμ + λ

∫
V \D

g(x)F (ξnv(x))dμ.

Taking into account that F is positive in ]0, +∞[, from hypothesis (h2), the above equation becomes

Iλ(ξnv) ≤ ξ2
n

2
‖v‖2 − ξ2

n

2

∫
V

a(x)v2(x)dμ + λF (ξn)
∫

D

g(x)dμ, ∀ n ∈ N.

Thus
Iλ(ξnv)

ξ2
n

≤ 1
2
‖v‖2 − 1

2

∫
V

a(x)v2(x)dμ + λ
F (ξn)

ξ2
n

∫
D

g(x)dμ,

for every n ∈ N.

Moreover, conditions (h2) and (2.1) imply that
∫

D

g(x)dμ < 0. Now, thanks to (3.2), the above computations

ensure that

lim
n→∞

Iλ(ξnv)
ξ2
n

= −∞.

Thus Iλ(ξnv) < 0 for every n sufficiently large. Since Iλ(0X) = Φ(0X)− λΨ(0X) = 0, this means that 0X is not
a local minimum of Iλ. Moreover, since Φ has 0X as unique global minimum, Theorem 1.1 ensures the existence
of a sequence {vn} of pairwise distinct critical points of the functional Iλ, such that

lim
n→∞

(
‖vn‖2 −

∫
V

a(x)v2
n(x)dμ

)
= 0.

Hence, one has that lim
n→∞ ‖vn‖ = 0. In particular, by (2.5), it follows that lim

n→∞ ‖vn‖∞ = 0. Then, the proof is
complete bearing in mind Lemma 3.3. �
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By the same method, applying part (a) instead of part (b) of Theorem 1.1, one can prove the following
analogous result in the case when the nonlinear term f : R → R has an oscillating behaviour at infinity. In this
setting one obtains a sequence {vn} of weak solutions to problem (Sf,g

a,λ) such that lim
n→∞ ‖vn‖ = +∞.

Theorem 3.5. Let f : R → R be a non-negative continuous function. Assume that

lim inf
ξ→+∞

F (ξ)
ξ2

< +∞ and lim sup
ξ→+∞

F (ξ)
ξ2

= +∞. (h∞)

Then, for every

λ ∈

⎤
⎥⎥⎦0,− 1

2(2N + 3)2
(∫

V

g(x)dμ

)
lim inf
ξ→+∞

F (ξ)
ξ2

⎡
⎢⎢⎣ ,

problem (Sf,g
a,λ) admits a sequence of weak solutions which is unbounded in H1

0 (V ).

Proof. The strategy of the proof is very similar to the previous one. Hence, in the sequel, we omit the details
and we use the notations adopted showing Theorem 3.4. Then, from hypothesis

lim inf
ξ→+∞

F (ξ)
ξ2

< +∞,

by direct computations, it follows that γ := lim inf
r→+∞ ϕ(r) < +∞. On the other hand by

lim sup
ξ→+∞

F (ξ)
ξ2

= +∞,

there exists a sequence {ηn} of positive constants such that lim
n→∞ ηn = +∞ and

lim
n→∞

F (ηn)
η2

n

= +∞. (3.3)

Now, consider the sequence of functions {ηnv} ⊂ X . Arguing as in Theorem 3.4, we obtain

lim
n→∞

Iλ(ηnv)
η2

n

= −∞.

Hence, the functional Iλ is unbounded from below. Then, part (a) of Theorem 1.1 ensures the existence of a
sequence {vn} of distinct critical points of Iλ such that

lim
n→∞

(
‖vn‖2 −

∫
V

a(x)v2
n(x)dμ

)
= +∞.

In conclusion, by Remark 2.1, it follows that lim
n→∞ ‖vn‖ = +∞. This completes the proof. �

Remark 3.6. If to the hypotheses of Theorem 3.4, respectively in Theorem 3.5, one adds the requirement that
a ∈ C(V ), then our results and Remark 2.3 yield the existence of a sequence of pairwise distinct strong solutions
of problem (Sf,g

a,λ) that either converges to zero or is unbounded in H1
0 (V ).
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Remark 3.7. We explicitly observe that, exploiting the proof of Theorem 3.4, one can see that our result also
holds for sign-changing functions f : R → R just requiring that

−∞ < lim inf
ξ→0+

F (ξ)
ξ2

, lim inf
ξ→0+

maxt∈[−ξ,ξ] F (t)
ξ2

< +∞ and lim sup
ξ→0+

F (ξ)
ξ2

= +∞,

instead of condition (h0). In this setting, for every

λ ∈

⎤
⎥⎥⎦0,− 1

2(2N + 3)2
(∫

V

g(x)dμ

)
lim inf
ξ→0+

maxt∈[−ξ,ξ] F (t)
ξ2

⎡
⎢⎢⎣ ,

there exists a sequence {vn} of pairwise distinct weak solutions of problem (Sf,g
a,λ) such that lim

n→∞ ‖vn‖ =

lim
n→∞ ‖vn‖∞ = 0.

An analogous conclusion can be achieved if the potential F has the same behaviour at infinity instead of at
zero obtaining, in this case, the existence of a sequence of weak solutions which is unbounded in H1

0 (V ). Indeed,
with the notations of Theorem 3.5, if

lim inf
ξ→+∞

maxt∈[−ξ,ξ] F (t)
ξ2

< +∞,

direct computations ensure that γ < +∞. On the other hand, consider the sequence of functions {ηnv} ⊂ H1
0 (V ).

Bearing in mind that lim inf
ξ→+∞

F (ξ)
ξ2

> −∞, there exist � > 0 and a real constant k such that

F (ξ) ≥ kξ2, for every ξ ∈]�, +∞[. (3.4)

Moreover, one has

Iλ(ηnv) =
η2

n

2
‖v‖2 − η2

n

2

∫
V

a(x)v2(x)dμ + λF (ηn)
∫

D

g(x)dμ + λ

∫
V \D

g(x)F (ηnv(x))dμ,

for every n ∈ N.
Hence

Iλ(ηnv) =
η2

n

2
‖v‖2 − η2

n

2

∫
V

a(x)v2(x)dμ + λF (ηn)
∫

D

g(x)dμ + λ

∫
G�∩(V \D)

g(x)F (ηnv(x))dμ

+λ

∫
G�∩(V \D)

g(x)F (ηnv(x))dμ,

where
G� := {x ∈ V : 0 ≤ ηnv(x) ≤ �} and G� := {x ∈ V : ηnv(x) > �}.

Now, by using the mean value theorem, it easy to see that∫
G�∩(V \D)

g(x)F (ηnv(x))dμ ≤ ‖g‖∞ max
t∈[0,�]

|f(t)|�. (3.5)

Then, inequalities (3.4) and (3.5) yield

Iλ(ηnv) ≤ η2
n

2
‖v‖2 − η2

n

2

∫
V

a(x)v2(x)dμ + λF (ηn)
∫

D

g(x)dμ + λ‖g‖∞ max
t∈[0,�]

|f(t)|�

+λkη2
n

∫
V \D

g(x)v2(x)dμ,

for every n ∈ N.
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Thus, condition (h2) and (2.1) imply that
∫

D

g(x)dμ < 0. Finally, from (3.3) and the above inequality, we

have that

lim
n→∞

Iλ(ηnv)
η2

n

= −∞.

Thus Iλ is unbounded from below. The proof is attained from part (a) of our theoretical result. In conclusion,
for every

λ ∈

⎤
⎥⎥⎦0,− 1

2(2N + 3)2
(∫

V

g(x)dμ

)
lim inf
ξ→+∞

maxt∈[−ξ,ξ] F (t)
ξ2

⎡
⎢⎢⎣ ,

there exists a sequence {vn} of weak solutions of problem (Sf,g
a,λ) which is unbounded in H1

0 (V ).

4. Examples

Following Omari and Zanolin in [25], we give a concrete example of positive continuous function q : R → R

such that its potential Q satisfies our growth conditions at zero. Precisely, let {sn}, {tn} and {δn} be real
sequences defined by

sn := 2−
n!
2 , tn := 2−2n!, δn := 2−(n!)2 .

Observe that, definitively, one has
sn+1 < tn < sn − δn.

Example 4.1. With the above notations, let q : R → R be a continuous nondecreasing function such that
q(t) = 0 in ] −∞, 0], q(t) > 0 for every t > 0 and

q(t) := 2−n!, ∀ t ∈ [sn+1, sn − δn],

for n sufficiently large. Define Q : R → R given by Q(ξ) =
∫ ξ

0

q(t)dt, for every ξ ∈ R. Then

Q(sn)
s2

n

≤ q(sn+1)sn + q(sn)δn

s2
n

→ 0,

and
Q(tn)

t2n
≥ q(sn+1)(tn − sn+1)

t2n
→ +∞.

Hence

lim inf
ξ→0+

Q(ξ)
ξ2

= 0, and lim sup
ξ→0+

Q(ξ)
ξ2

= +∞.

Thus, for every a, g : V → R satisfying the conditions (h1) and (h2) the following Dirichlet problem{
Δu(x) + a(x)u(x) = λg(x)q(u(x)) x ∈ V \ V0,
u|V0 = 0,

(Sq,g
a,λ)

for every λ > 0, admits a sequence {vn} of pairwise distinct weak solutions such that lim
n→∞ ‖vn‖ =

lim
n→∞ ‖vn‖∞ = 0.
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Remark 4.2. In [7] the authors proved the existence of infinitely many solutions for problem (Sf,g
a,1 ). Their

result is achieved under suitable assumptions on the behaviour of the potential F at zero and requiring that
there exist two real positive sequences {an} and {bn} with bn+1 < an < bn, lim

n→∞ bn = 0 and such that

f(t) ≤ 0 for every t ∈ [an, bn]. Clearly, the mentioned result cannot be applied to the cases in which the
nonlinearity is strictly positive in ]0, +∞[.

Finally, the next example deals with a sign-changing function h : R → R. The result is achieved taking into
account a more general condition of (h∞) in Theorem 3.5 as indicated in Remark 3.7.

Example 4.3. Set
a1 := 2, an+1 := (an)

3
2 ,

for every n ∈ N and S :=
⋃

n≥0]an+1 − 1, an+1 + 1[. Define the continuous function h : R → R as follows

h(t) :=

{
(an+1)3e

1
(t−(an+1−1))(t−(an+1+1)) +1 2(an+1−t)

(t−(an+1−1))2(t−(an+1+1))2 if t ∈ S

0 otherwise.

Then

H(ξ) =
∫ ξ

0

h(t)dt =
{

(an+1)3e
1

(ξ−(an+1−1))(ξ−(an+1+1)) +1 if ξ ∈ S
0 otherwise,

and H(an+1) = (an+1)3 for every n ∈ N. Hence, one has

lim sup
ξ→+∞

H(ξ)
ξ2

= +∞.

On the other hand, by choosing xn = an+1−1 for every n ∈ N, one has max
ξ∈[−xn,xn]

H(ξ) = (an)3 for every n ∈ N.

Moreover

lim
n→∞

maxξ∈[−xn,xn] H(ξ)
xn

2
= 1

and, by a direct computation, it follows that

lim inf
ξ→+∞

maxt∈[−ξ,ξ] H(t)
ξ2

= 1.

Hence,

0 ≤ lim inf
ξ→+∞

H(ξ)
ξ2

≤ lim inf
ξ→+∞

maxt∈[−ξ,ξ] H(t)
ξ2

= 1, lim sup
ξ→+∞

H(ξ)
ξ2

= +∞.

Taking into account Remark 3.7, for each parameter λ belonging to]
0,

1
2(2N + 3)2

[
,

the following problem {
Δu(x) + λh(u(x)) = u(x) x ∈ V \ V0,
u|V0 = 0,

(Sh
λ)

possesses an unbounded sequence of strong solutions.
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References
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Analysis and Applications 9 (2011) 235–248.
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[13] M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket. Potential Anal. 1 (1992) 1–35.
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