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1 Introduction

In this paper, we are concerned with the qualitative analysis of weak solutions for a
large class of non-linear elliptic equations with Neumann boundary condition. The
main features of this paper are the following:

(i) the presence of a non-homogeneous differential operator and the treatment in a
suitable Orlicz–Sobolev function space;

(ii) the use of the Ricceri three-critical point theorem, which is a powerful analytic
tool for multiplicity results in non-linear problems with a variational structure.

Orlicz–Sobolev spaces have been used in the last decades to model various phe-
nomena. These function spaces play a significant role in many fields of mathematics,
such as approximation theory, partial differential equations, calculus of variations,
non-linear potential theory, the theory of quasi-conformal mappings, non-Newtonian
fluids, image processing, differential geometry, geometric function theory, and proba-
bility theory. These spaces consist of functions that have weak derivatives and satisfy
certain integrability conditions.

We refer to Chen, Levine and Rao [1], who proposed a framework for image
restoration based on a Laplace operator with variable exponent. A second major
application of non-homogeneous differential operators with variable exponent is the
modeling of some materials with inhomogeneities, for instance, electrorheological
(non-Newtonian) fluids (sometimes referred to as ‘smart fluids’), cf. [2–7]. Materi-
als requiring such more advanced theory have been studied experimentally since the
middle of the last century. The first major discovery in electrorheological fluids is
due to Willis Winslow in 1949. These fluids have the interesting property that their
viscosity depends on the electric field in the fluid. Winslow noticed that in such fluids
(for instance, lithium polymethacrylate) viscosity in an electrical field is inversely
proportional to the strength of the field. The field induces string-like formations in
the fluid, which are parallel to the field. They can raise the viscosity by as much as
five orders of magnitude. This phenomenon is known as the Winslow effect. For a
general account of the underlying physics we refer to Halsey [8] and Pfeiffer et al. [9].
An overview of Orlicz–Sobolev spaces is given in the monographs by Rao and Ren
[10] and Rădulescu and Repovš [6]. On the other hand, the study of differential equa-
tions and variational problems with non-linear boundary condition have been studied
recently in many papers, see [11–16].

The classical three-critical point theorem of Pucci and Serrin [17,18] asserts that if
f : X → R is of class C1 (X is a Banach space), satisfies the Palais–Smale condition,
and has two local minima, then f has a third critical point. The general variational
principle ofRicceri [19,20] extends thePucci–Serrin theoremandprovides alternatives
for the multiplicity of critical points of certain functionals depending on a parameter.
We refer to [21] for several applications of the Ricceri variational principles.

In this work, we are concerned with the following problem involving non-
homogeneous differential operators:{ −div

(
α(x, |∇u(x)|)∇u(x)

) + α
(
x, |u(x)|)u(x) = λ f

(
x, u(x)

)
for x ∈ �,

α
(
x, |∇u(x)|)∂u

∂ν
(x) = μg

(
γ

(
u(x)

))
for x ∈ ∂�,

(
N f,g

λ,μ

)
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where � is a bounded domain in R
N (N ≥ 3) with smooth boundary ∂�, ∂u

∂ν
is the

outer unit normal derivative, f : � ×R → R is a Carathéodory function, g : R → R

is a continuous function, λ is a positive parameter, μ is a non-negative parameter, and
the functions α(x, t) : �̄ × R → R and γ will be specified later.

In this paper, motivated by the above facts and the recent papers [22–26], we
establish some new sufficient conditions under which the problem (N f,g

λ,μ) possesses
three weak solutions in the Orlicz–Sobolev space. At first, we present two three solu-
tions existence results under algebraic conditions on f (see Theorems 3.1, 3.2). Next,
assuming that the growth of f is sublinear at infinity, we establish the existence of
three weak solutions for the problem (N f,g

λ,μ) (see Theorem 3.3).
This paper is organized as follows. In Sect. 2, some preliminaries and the abstract

Orlicz–Sobolev spaces setting are presented. In Sect. 3, we discuss the existence of
three weak solutions for the problem (N f,g

λ,μ). We also point out special cases of the
results, and we illustrate the results by presenting an example.

2 Functional Setting

We now state two critical point theorems which are the main tools for the proofs of
our results. The first results of this type have been obtained in [19]. In the first result,
the coercivity of the functional J − λI is required; in the second one, a suitable sign
hypothesis is assumed. Theorem 2.1 is a particular case of Theorem 1 of Ricceri [20],
while for Theorem 2.2, we refer to Bonanno and Candito [27, Corollary 3.1].

Theorem 2.1 Let X be a reflexive real Banach space; J : X → R be a sequentially
weakly lower semicontinuous, coercive, and continuously Gâteaux differentiable func-
tional whose Gâteaux derivative admits a continuous inverse on X∗, I : X → R be a
continuously Gâteaux differentiable functional whose Gâteaux derivative is compact,
such that

J (0) = I (0) = 0 .

Assume that there exist r > 0 and x̄ ∈ X, with r < J (x̄) such that

(i) supJ (x)≤r I (x) < r I (x̄)/J (x̄),
(ii) for each λ in

�r :=
] J (x̄)

I (x̄)
,

r

supJ (x)≤r I (x)

[
,

the functional J − λI is coercive.

Then, for each λ ∈ �r the functional J − λI has at least three distinct critical points
in X.

Theorem 2.2 Let X be a reflexive real Banach space; J : X → R be a convex,
coercive and continuously Gâteaux differentiable functional whose Gâteaux deriv-
ative admits a continuous inverse on X∗, I : X → R be a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact, such that
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inf
X

J = J (0) = I (0) = 0 .

Assume that there exist two positive constants r1, r2 > 0 and x̄ ∈ X, with 2r1 <

J (x̄) < r2
2 , such that

(j)
supJ (x)≤r1

I (x)

r1
< 2

3
I (x̄)
J (x̄) ,

(jj)
supJ (x)≤r2

I (x)

r2
< 1

3
I (x̄)
J (x̄) ,

(jjj) for each λ in

�∗
r1,r2 :=

]
3

2

J (x̄)

I (x̄)
,min

{
r1

supJ (x)≤r1 I (x)
,

r2
2 supJ (x)≤r2 I (x)

}[

and for every x1, x2 ∈ X, which are local minima for the functional J − λI , and
such that I (x1) ≥ 0 and I (x2) ≥ 0, one has inf t∈[0,1] I

(
t x1 + (1 − t)x2

) ≥ 0.

Then, for each λ ∈ �∗
r1,r2 the functional J − λI has at least three distinct critical

points which lie in J−1(] − ∞, r2[).

In order to study the problem (N f,g
λ,μ), let us introduce the functional spaces where it

will be discussed. We will give just a brief review of some basic concepts and facts of
the theory of Orlicz–Sobolev spaces, useful for what follows, for more details we refer
the readers to Adams [28], Diening [29], Musielak [30], Rao and Ren [10], Rădulescu
[5], Rădulescu and Repovš [6].

We now recall some facts on the theory of Orlicz–Sobolev spaces that will be used
in the present paper. Suppose that the function α(x, t) : �̄ × R → R is such that the
mapping ϕ(x, t) : �̄ × R → R, defined by

ϕ(x, t) =
{

α
(
x, |t |)t for t 	= 0,

0 for t = 0

satisfies the condition (ϕ) for all x ∈ �, ϕ(x, ·) : R → R is an odd, increasing
homeomorphism from R onto R, and


(x, t) =
∫ t

0
ϕ(x, s) ds, ∀x ∈ �, t ≥ 0

belongs to class 
 (see [30], p. 33), i.e., the function 
 satisfies the following condi-
tions:

(
1) for all x ∈ �, ϕ(x, ·) : [0,+∞) → R is a non-decreasing continuous function,
with 
(x, 0) = 0 and 
(x, t) > 0 whenever t > 0, limt→∞ 
(x, t) = ∞,

(
2) for every t ≥ 0, 
(·, t) : � → R is a measurable function.

Sinceϕ(x, ·) satisfies condition (ϕ), we deduce that
(x, ·) is convex and increasing
from R

+ to R+.
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For the function 
, we define the generalized Orlicz class,

K
(�) =
{
u : � → R, measurable;

∫
�


(x, |u(x)|) dx < ∞
}

and the generalized Orlicz space,

L
(�) =
{
u : � → R, measurable; lim

λ→0+

∫
�


(x, λ|u(x)|) dx = 0
}

.

The space L
(�) is a Banach space endowed with the Luxemburg norm

|u|
 = inf

{
μ > 0;

∫
�




(
x,

|u(x)|
μ

)
dx ≤ 1

}

or the equivalent norm (the Orlicz norm)

|u|(
) = sup

{∣∣∣∣
∫

�

uv dx

∣∣∣∣ ; v ∈ L
(�),

∫
�


(x, |v(x)|) dx ≤ 1

}
,

where 
 denotes the conjugate Young function of 
, that is,


(x, t) = sup
s>0

{
ts − 
(x, s); s ∈ R

}
, ∀ x ∈ �, t ≥ 0 .

Furthermore, for
 and
 conjugate Young functions, theHölder type inequality holds
true ∣∣∣∣

∫
�

uv dx

∣∣∣∣ ≤ B × |u|
 × |v|
, ∀ u ∈ L
(�), v ∈ L
(�) , (2.1)

where B is a positive constant (see [30], Theorem 13.13). In this paper we assume that
there exist two positive constants ϕ0 and ϕ0 such that

1 < ϕ0 ≤ tϕ(x, t)


(x, t)
≤ ϕ0 < ∞, ∀ x ∈ �, t ≥ 0 . (2.2)

The above relation implies that 
 satisfies the �2-condition, i.e.


(x, 2t) ≤ K × 
(x, t), ∀ x ∈ �, t ≥ 0 , (2.3)

where K is a positive constant (see [31, Proposition 2.3]). Relation (2.3) and Theorem
8.13 in [30] imply that L
(�) = K
(�). Furthermore, we assume that 
 satisfies
the following condition:

for each x ∈ �, the function [0,∞) � t → 
(x,
√
t) is convex . (2.4)
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1596 G. A. Afrouzi et al.

Relation (2.4) assures that L
(�) is an uniformly convex space and thus, a reflexive
space (see [31, Proposition 2.2]).

On the other hand, we point out that assuming that 
 and � belong to class 
 and

�(x, t) ≤ K1 × 
(x, K2 × t) + η(x), ∀ x ∈ �, t ≥ 0 , (2.5)

where η ∈ L1(�), η(x) ≥ 0 a.e. x ∈ � and K1, K2 are positive constants, then by
Theorem 8.5 in [30] there exists the continuous embedding L
(�) ⊂ L�(�). Next,
we define the generalized Orlicz–Sobolev space

W 1,
(�) =
{
u ∈ L
(�); ∂u

∂xi
∈ L
(�), i = 1, . . . , N

}
.

On W 1,
(�) we define the equivalent norms

‖u‖1,
 = | |∇u| |
 + |u|
,

‖u‖2,
 = max
{| |∇u| |
, |u|


}
,

‖u‖ = inf

{
μ > 0;

∫
�

[



(
x,

|u(x)|
μ

)
+ 


(
x,

|∇u(x)|
μ

)]
dx ≤ 1

}
.

More precisely, for every u ∈ W 1,
(�), we have

‖u‖ ≤ 2‖u‖2,
 ≤ 2‖u‖1,
 ≤ 4‖u‖ (2.6)

(see [31, Proposition2.4]). The generalized Orlicz–Sobolev space W 1,
(�) endowed
with one of the above norms is a reflexive Banach space.

In the following, we will use the norm ‖ · ‖ on E := W 1,
(�) and we suppose that
γ : E → L
(�) is the trace operator.

The following lemma is useful in the proof of our results.

Lemma 2.3 Let u ∈ E. Then

∫
�

(



(
x, |∇u(x)|

)
+ 


(
x, |u(x)|

))
dx ≥ ‖u‖ϕ0 if ‖u‖ > 1; (2.7)∫

�

(



(
x, |∇u(x)|

)
+ 


(
x, |u(x)|

))
dx ≥ ‖u‖ϕ0

if ‖u‖ < 1. (2.8)

For the proof of the previous result see, for instance, Lemma 2.3 of [32].
We point out that assuming that 
 and � belong to class 
, satisfying relation

(2.5) and infx∈� 
(x, 1) > 0, infx∈� �(x, 1) > 0 then there exists the continuous
embedding W 1,
(�) ↪→ W 1,�(�).

In this paper we study the problem (N f,g
λ,μ) in the particular case when 
 satisfies

M × |t |p(x) ≤ 
(x, t), ∀ x ∈ �, t ≥ 0 , (2.9)
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where p(x) ∈ C(�) with p− := infx∈� p(x) > N for all x ∈ �, and M > 0 is a
constant.

By the relation (2.9) we deduce that E is continuously embedded in W 1,p(x)(�)

(see relation (2.5) with �(x, t) = |t |p(x)).
Moreover, as pointed out in [33] and [34],W 1,p(x)(�) is continuously embedded in

W 1,p−
(�) and since p− > N , we deduce that W 1,p−

(�) is compactly embedded in
C0(�). Thus, E is compactly embedded in C0(�), and there exists a constant m > 0
such that

‖u‖∞ ≤ m ‖u‖, ∀ u ∈ E, (2.10)

where ‖u‖∞ := supx∈� |u(x)|.
Example 2.4 Define

ϕ(x, t) = p(x)
|t |p(x)−2t

log
(
1 + |t |) for t 	= 0, and ϕ(x, 0) = 0,

where p(x) ∈ C(�) satisfying N < p(x) < +∞ for all x ∈ �. Some simple
computations imply


(x, t) = |t |p(x)
log

(
1 + |t |) +

∫ |t |

0

s p(x)

(1 + s)(log
(
1 + s)

)2 ds,

and the relations (ϕ), (
1), and (
2) are verified. For each x ∈ � fixed, by Example
3 on p. 243 in [14], we have

p(x) − 1 ≤ tϕ(x, t)


(x, t)
≤ p(x), ∀ t ≥ 0 .

Thus, the relation (2.2) holds true with ϕ0 = p− − 1 and ϕ0 = p+ := supx∈� p(x).
Next, 
 satisfies the condition (2.9) since


(x, t) ≥ t p(x)−1, ∀ x ∈ �, t ≥ 0 .

Finally, we point out that trivial computations imply that
d2

(

(x,

√
t)

)
dt2

≥ 0 for all

x ∈ � and t ≥ 0. Thus, the relation (2.4) is satisfied.

We say that u ∈ E is a weak solution of the problem (N f,g
λ,μ) if∫

�

α
(
x, |∇u(x)|)∇u(x) × ∇v(x) dx +

∫
�

α
(
x, |u(x)|)u(x)v(x) dx

= λ

∫
�

f
(
x, u(x)

)
v(x) dx + μ

∫
∂�

g
(
γ

(
u(x)

))
γ

(
v(x)

)
dσ

for every v ∈ E .
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1598 G. A. Afrouzi et al.

3 Main Results

We recall that f : � × R → R is a Carathéodory function and F(x, t) :=∫ t
0 f (x, s) ds.
Fix d 	= 0 and c ≥ m [see relation (2.10)] such that

∫
�
max|t |≤c F(x, t) dx( c

m

)ϕ0
<

∫
�
F(x, d) dx∫

�

(x, |d|) dx .

Pick

λ ∈ �1 :=
]∫

�

(x, |d|) dx∫

�
F(x, d) dx

,

( c
m

)ϕ0∫
�
max|t |≤c F(x, t) dx

[
, (3.1)

and set

δ1 := min

{
cϕ0 − λmϕ0

∫
�
max|t |≤c F(x, t) dx

mϕ0a(∂�)max|t |≤c G(t)
,

∣∣∣∣
∫
�


(x, |d|) dx − λ
∫
�
F(x, d) dx

a(∂�)G(d)

∣∣∣∣
}

(3.2)

and

δ1 := min

⎧⎪⎪⎨
⎪⎪⎩δ1,

1

max

{
0, 2mϕ0a(∂�) lim sup|ξ |→+∞

G(ξ)
|ξ |ϕ0

}
⎫⎪⎪⎬
⎪⎪⎭ , (3.3)

where a(∂�) := ∫
∂�

dσ , and we read 1
0 = +∞ whenever this case occurs.

With the above notations we establish the following result.

Theorem 3.1 Suppose that there exist d 	= 0 and c ≥ m, with

∫
�


(x, |d|) dx >
( c

m

)ϕ0
,

such that

(A1)

∫
�
max|t |≤c F(x, t) dx( c

m

)ϕ0
<

∫
�
F(x, d) dx∫

�

(x, |d|) dx ;

(A2)

lim sup
|ξ |→+∞

supx∈� F(x, ξ)

|ξ |ϕ0 <

∫
�
max|t |≤c F(x, t) dx

2cϕ0 |�| .

Then, for every λ ∈ �1, where �1 is given by (3.1), and for every continuous function
g : R → R such that
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lim sup
|ξ |→+∞

G(ξ)

|ξ |ϕ0 < +∞,

there exists δ1 > 0 given by (3.3) such that, for each μ ∈ [0, δ1[, the problem (N f,g
λ,μ)

admits at least three weak solutions in E .

Proof Fix λ,μ and g as in the conclusion. Our aim is to apply Theorem 2.1. For each
u ∈ E , let the functionals J, I : E → R be defined by

J (u) :=
∫

�

(

(x, |∇u(x)|) + 
(x, |u(x)|)

)
dx,

I (u) :=
∫

�

F(x, u(x)) dx + μ

λ

∫
∂�

G(γ (u(x))) dσ,

and put

Tλ,μ(u) := J (u) − λI (u).

Similar arguments as those used in [31, Lemma 4.2] imply that J ∈ C1(E,R)with
the derivative given by

〈
J ′(u), v

〉 =
∫

�

α
(
x, |∇u(x)|)∇u(x) × ∇v(x) dx +

∫
�

α
(
x, |u(x)|)u(x) v(x) dx

for every v ∈ E . Also J is bounded from below. Moreover, I ∈ C1(E,R) and

〈
I ′(u), v

〉 =
∫

�

f
(
x, u(x)

)
v(x) dx + μ

λ

∫
∂�

g
(
γ

(
u(x)

))
γ

(
v(x)

)
dσ

for every v ∈ E .

So, with standard arguments, we deduce that the critical points of the functional
Tλ,μ are the weak solutions of problem (N f,g

λ,μ). We will verify (i) and (ii) of Theorem

2.1. Let w be the function defined by w(x) := d for all x ∈ � and put

r :=
( c

m

)ϕ0
.

Clearly, w ∈ E and from the condition
∫

�



(
x, |d|) dx >

( c
m

)ϕ0 , one has

J (w) =
∫

�



(
x, |d|) dx > r.

Also, we have

I (w) =
∫

�

F(x, d) dx + μ

λ
a(∂�)G(d).
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1600 G. A. Afrouzi et al.

By Lemma 2.3 and the fact max
{
r1/ϕ0 , r1/ϕ

0} = r1/ϕ0 , we deduce

{
u ∈ E : J (u) < r

} ⊆
{
u ∈ E : ‖u‖ < r1/ϕ0

}
=

{
u ∈ E : ‖u‖ <

c

m

}
.

Moreover, due to (2.10), we have

|u(x)| ≤ ‖u‖∞ ≤ m‖u‖ ≤ c, ∀x ∈ �.

Hence, {
u ∈ E : ‖u‖ <

c

m

}
⊆ {

u ∈ E : ‖u‖∞ ≤ c
}
.

Therefore,

sup
u∈J−1

(
]−∞,r [

) I (u)

r
≤

(m
c

)ϕ0
∫

�

max|t |≤c
F(x, t) dx + μ

λ

(m
c

)ϕ0
a(∂�)max|t |≤c

G(t).

If max|t |≤c G(t) = 0, it is clear that we get

supu∈J−1(]−∞,r [) I (u)

r
<

1

λ
, (3.4)

while, if max|t |≤c G(t) > 0, it turns out to be true bearing in mind that

μ <
cϕ0 − λmϕ0

∫
�
max|t |≤c F(x, t) dx

mϕ0a(∂�)max|t |≤c G(t)
.

On the other hand, taking into account that

0 < J (w) =
∫

�


(x, |d|) dx,

we have

I (w)

J (w)
=

∫
�

F(x, d) dx + μ

λ
a(∂�)G(d)∫

�


(x, |d|) dx

=

∫
�

F(x, d) dx∫
�



(
x, |d|) dx + μ

λ

a(∂�)G(d)∫
�



(
x, |d|) dx .

Hence, if G(d) ≥ 0, one has
I (w)

J (w)
>

1

λ
, (3.5)
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while, if G(d) < 0, it holds since

μ <

∫
�



(
x, |d|) dx − λ

∫
�
F(x, d) dx

a(∂�)G(d)
.

Therefore, from (3.4) and (3.5), condition (i) of Theorem 2.1 is fulfilled. Now, to prove
the coercivity of the functional Tλ,μ, first, we assume that

lim sup
|ξ |→+∞

supx∈� F(x, ξ)

|ξ |ϕ0 > 0.

So, we can fix ε > 0 satisfying

lim sup
|ξ |→+∞

supx∈� F(x, ξ)

|ξ |ϕ0 < ε <

∫
�
max|t |≤c F(x, t) dx

2cϕ0 |�| ,

from (A2) there exists a positive constant hε such that

F(x, ξ) ≤ ε|ξ |ϕ0 + hε ∀x ∈ �, ∀ξ ∈ R .

Taking into account (2.10) and since

λ <

(
c
m

)ϕ0

∫
�
max|t |≤c F(x, t) dx

,

it follows that

λ

∫
�

F
(
x, u(x)

)
dx ≤ λε

∫
�

(
u(x)

)ϕ0 dx + λhε|�|

<

(
c
m

)ϕ0

∫
�
max|t |≤c F(x, t) dx

(
ε

∫
�

(
u(x)

)ϕ0dx + hε|�|
)

≤
(

c
m

)ϕ0 |�|∫
�
max|t |≤c F(x, t) dx

(
εmϕ0‖u‖ϕ0 + hε

)
(3.6)

for all u ∈ E . Moreover, since μ < δ one has

lim sup
|ξ |→+∞

G(ξ)

|ξ |ϕ0 <
1

2μmϕ0a(∂�)
,

then, there is a positive constant hμ such that

G(ξ) ≤ 1

2μmϕ0a(∂�)
|ξ |ϕ0 + hμ
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for each ξ ∈ R. Thus, taking again (2.10) into account, it follows that

∫
∂�

G
(
γ

(
u(x)

))
dσ ≤ 1

2μmϕ0a(∂�)

∫
∂�

(
u(x)

)ϕ0 dσ + hμa(∂�)

≤ 1

2μ
‖u‖ϕ0 + hμa(∂�)

(3.7)

for all u ∈ E . Finally, if ‖u‖ ≥ 1, putting together (3.6) and (3.7) we have

Tλ,μ(u) = J (u) − λI (u)

≥ ‖u‖ϕ0 −
(

c
m

)ϕ0 |�|∫
�
max|t |≤c F(x, t) dx

(
εmϕ0‖u‖ϕ0 + hε

) − 1

2
‖u‖ϕ0 − μhμa(∂�)

=
(
1

2
− mϕ0 |�|∫

�
max|t |≤c F(x, t) dx

ε

)
‖u‖ϕ0 −

(
c
m

)ϕ0 |�|hε∫
�
max|t |≤c F(x, t) dx

− μhμa(∂�).

On the other hand, if

lim sup
|ξ |→+∞

supx∈� F(x, ξ)

|ξ |ϕ0 ≤ 0,

there exists hε > 0 such that F(x, ξ) ≤ hε for each ξ ∈ R and x ∈ �, and arguing as
before we obtain

Tλ,μ(u) ≥ 1

2
‖u‖ϕ0 −

(
c
m

)ϕ0 |�|hε∫
�
max|t |≤c F(x, t) dx

− μhμa(∂�).

Both cases lead to the coercivity of Tλ,μ and condition (ii) of Theorem 2.1 is verified.
Since, from (3.4) and (3.5),

λ ∈ �1 ⊆
] J (w)

I (w)
,

r

supJ (u)≤r I (u)

[
,

Theorem 2.1 ensures the existence of at least three-critical points for the functional
Tλ,μ in E , which are the weak solutions of the problem (N f,g

λ,μ). This completes the
proof. ��

Now, we state a variant of Theorem 3.1 in which no asymptotic condition on g is
requested; on the other, the functions f and g are supposed to be non-negative.

Fixing d 	= 0 and c1, c2 > 0 such that

3

2

∫
�



(
x, |d|) dx∫

�
F(x, d) dx

< min

{ ( c1
m

)ϕ0∫
�
F(x, c1) dx

,

( c2
m

)ϕ0

2
∫
�
F(x, c2) dx

}
,
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and picking

λ ∈ �2 :=
]
3

2

∫
�


(x, |d|) dx∫
�
F(x, d) dx

,min

{ ( c1
m

)ϕ0∫
�
F(x, c1) dx

,

( c2
m

)ϕ0

2
∫
�
F(x, c2) dx

}[
, (3.8)

put

δ2 := min

⎧⎪⎨
⎪⎩

(
c1
m

)ϕ0 − λ
∫
�
F(x, c1) dx

a(∂�)G(c1)
,

(
c2
m

)ϕ0 − 2λ
∫
�
F(x, c2) dx

2a(∂�)G(c2)

⎫⎪⎬
⎪⎭ . (3.9)

With the above notations we have the following multiplicity result.

Theorem 3.2 Suppose that there exist d 	= 0 and two constants c1, c2 with
min{c1, c2} ≥ m and

2
(c1
m

)ϕ0
<

∫
�



(
x, |d|) dx <

1

2

(c2
m

)ϕ0
,

such that

(B1) f (x, ξ) ≥ 0 for all (x, ξ) ∈ � × R;
(B2)

max

{∫
�
F(x, c1) dx( c1

m

)ϕ0
,
2

∫
�
F(x, c2) dx( c2
m

)ϕ0

}
<

2

3

∫
�
F(x, d) dx∫

�

(x, |d|) dx ,

Then, for every λ ∈ �2 is given by (3.8), and for every non-negative continuous
function g : R → R, there exists δ2 > 0 given by (3.9) such that, for eachμ ∈ [0, δ2[,
the problem (N f,g

λ,μ) admits at least three distinct weak solutions ui , i = 1, 2, 3, such
that

0 ≤ ui (x) ≤ c2, ∀x ∈ �, i = 1, 2, 3.

Proof Fix λ,μ, and g as in the conclusion and take E, J, I , and Tλ,μ as in the proof
of Theorem 3.1. We observe that the regularity assumptions of Theorem 2.2 on J and
I are satisfied. Then, our aim is to verify (j) and (jj).

Put w(x) := d for all x ∈ �, r1 := ( c1
m

)ϕ0 and r2 := ( c2
m

)ϕ0 . Therefore, by using
the conditions

2
(c1
m

)ϕ0
<

∫
�


(x, |d|) dx <
1

2

(c2
m

)ϕ0
,

one has 2r1 < J (w) < r2
2 . Since μ < δ2 and G(d) ≥ 0, one has
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1

r1
sup

J (u)<r1
I (u) = 1

r1
sup

J (u)<r1

[∫
�

F
(
x, u(x)

)
dx + μ

λ

∫
∂�

G
(
γ

(
u(x)

))
dσ

]

≤

∫
�

F(x, c1) dx + μ

λ
a(∂�)G(c1)( c1

m

)ϕ0

<
1

λ
<

2

3

∫
�

F(x, d) dx + μ

λ
a(∂�)G(d)∫

�


(x, |d|) dx

≤ 2

3

I (w)

J (w)
,

and

2

r2
sup

J (u)<r2
I (u) = 2

r2
sup

J (u)<r2

[∫
�

F
(
x, u(x)

)
dx + μ

λ

∫
∂�

G
(
γ

(
u(x)

))
dσ,

]

≤
2

∫
�

F(x, c2) dx + 2μ

λ
a(∂�)G(c2)( c2

m

)ϕ0

<
1

λ
<

2

3

∫
�

F(x, d) dx + μ

λ
a(∂�)G(d)∫

�


(x, |d|) dx

≤ 2

3

I (w)

J (w)
.

Therefore, conditions (j) and (jj) of Theorem 2.2 are satisfied. Finally, we verify that
Tλ,μ satisfies the assumption (jjj) of Theorem 2.2. Let u1 and u2 be two local minima
for Tλ,μ. Then, u1 and u2 are critical points for Tλ,μ, and so, they are weak solutions

for the problem (N f,g
λ,μ). We claim that the weak solutions obtained are non-negative.

Indeed, let v0 ∈ E be one (non-trivial) weak solution of the problem (N f,g
λ,μ). Arguing

by contradiction, if we assume that v0 is negative at a point of � the set

�− := {
x ∈ � : v0(x) < 0

}
,

is non-empty and open. Moreover, let us consider v�
0 := min{v0, 0}, one has v�

0 ∈ E .

So, taking into account that v0 is a weak solution and by choosing v = v�
0, from our

sign assumptions on the data, we have

∫
�−

α
(
x, |∇v0(x)|

)|∇v0(x)|2 dx +
∫

�−
α

(
x, |v0(x)|

)|v0(x)|2 dx
= λ

∫
�−

f
(
x, v0(x)

)
v0(x) dx + μ

∫
∂�

g
(
γ

(
v0(x)

))
γ

(
v0(x)

)
dσ ≤ 0.
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Therefore,∫
�−

α
(
x, |∇v0(x)|

)|∇v0(x)|2 dx +
∫

�−
α

(
x, |v0(x)|

)|v0(x)|2 dx = 0,

which means∫
�−

ϕ
(
x, |∇v0(x)|

)|∇v0(x)| dx +
∫

�−
ϕ

(
x, |v0(x)|

)|v0(x)| dx = 0.

Now, from the previous relation and bearing in mind that tϕ(x, t) ≥ 
(x, t) for every
x ∈ � and t ≥ 0, we find that∫

�−



(
x, |∇v0(x)|

)
dx +

∫
�−



(
x, |v0(x)|

)
dx = 0.

Hence, by Lemma (2.3) we observe that ‖v0‖W 1,
(�−) = 0 which is absurd. Then, we
obtain u1(x) ≥ 0 and u2(x) ≥ 0 for all x ∈ �. So, one has I

(
su1 + (1 − s)u2

) ≥ 0
for all s ∈ [0, 1]. Therefore, also (jjj) holds. From Theorem 2.2 the functional J − λI
has at least three distinct critical points which are weak solutions of (N f,g

λ,μ). This
completes the proof. ��

Now, we state a variant of Theorem 3.1 in which the growth of f (x, ·) is (ϕ0 − 1)-
sublinear at infinity. Fixing d ′ 	= 0 and c′ < m such that

∫
�
max|t |≤c′ F(x, t) dx(

c′
m

)ϕ0 <

∫
�
F(x, d ′) dx∫

�

(x, |d ′|) dx

and picking

λ ∈ �3 :=

⎤
⎥⎥⎦

∫
�



(
x, |d ′|) dx∫

�
F(x, d ′) dx

,

(
c′
m

)ϕ0

∫
�
max|t |≤c′ F(x, t) dx

⎡
⎢⎢⎣ , (3.10)

put

δ3 :=min

{
c′ϕ0 −λmϕ0 ∫

�
max|t |≤c′ F(x, t) dx

mϕ0a(∂�)max|t |≤c′ G(t)
,

∫
�



(
x, |d ′|) dx−λ

∫
�
F(x, d ′) dx

a(∂�)G(d ′)

}

(3.11)

and

δ3 := min

⎧⎪⎪⎨
⎪⎪⎩δ3,

1

max

{
0, 2mϕ0a(∂�) lim sup|ξ |→+∞

G(ξ)
|ξ |ϕ0

}
⎫⎪⎪⎬
⎪⎪⎭ , (3.12)
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where a(∂�) := ∫
∂�

dσ , and we read 1
0 = +∞ whenever this case occurs.

Theorem 3.3 Suppose that there exist d ′ 	= 0 and c′ < m, with

∫
�



(
x, |d ′|) dx >

( c′

m

)ϕ0

,

such that

(C1) ∫
�
max|t |≤c′ F(x, t) dx(

c′
m

)ϕ0 <

∫
�
F(x, d ′) dx∫

�

(x, |d ′|) dx ;

(C2) There exist c0 > 0 and 0 < s < ϕ0 − 1 such that | f (x, t)| ≤ c0(1 + |t |s) for
every (x, t) ∈ � × R.

Then, for every λ ∈ �3,where�3 is given by (3.10), and for every continuous function
g : R → R such that

lim sup
|ξ |→+∞

G(ξ)

|ξ |ϕ0 < +∞,

there exists δ3 > 0 given by (3.12) such that, for each μ ∈ [0, δ3[, the problem (N f,g
λ,μ)

possesses at least three weak solutions in E .

Proof Our aim is to apply again Theorem 2.1 to (N f,g
λ,μ). Fix λ,μ, and g as in the

conclusion and take E, J, I and w as in the proof of Theorem 3.1. We observe that

the regularity assumptions of Theorem 2.1 on J and I are satisfied. Put r ′ := ( c′
m

)ϕ0

and Tλ,μ(u) = J (u)−λI (u). By the same argument as given in the proof of Theorem
3.1, we can show the condition (i) of Theorem 2.1 is fulfilled. Now, we prove for every
λ > 0 and μ ≥ 0, the functional Tλ,μ is coercive. Indeed, by Lemma 2.3 we deduce
that for any u ∈ E with ‖u‖ > 1 we have J (u) ≥ ‖u‖ϕ0 . Hence J is coercive. On the
other hand, by (C2), one has that there exists a positive constant θ such that∫

�

F(x, u(x))d dx ≤ θ(‖u‖∞ + ‖u‖s+1∞ ), ∀u ∈ E .

Since E is compactly embedded into C0(�), there exists θ1 > 0 such that∫
�

F
(
x, u(x)

)
dx ≥ θ1(‖u‖ + ‖u‖s+1) (3.13)

for every u ∈ E . On the other hand, arguing as in the proof of Theorem 3.1, there
exists a positive constant hμ such that

∫
∂�

G
(
γ

(
u(x)

))
dσ ≤ 1

2μ
‖u‖ϕ0 + hμa(∂�) (3.14)
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for each u ∈ E . Taking (3.13) and (3.14) into account and since J (u) ≥ ‖u‖ϕ0 for
any u ∈ E with ‖u‖ > 1, we obtain

Tλ,μ(u) ≥ 1

2
‖u‖ϕ0 − λθ1(‖u‖ + ‖u‖s+1) − μhμa(∂�)

for any u ∈ E with ‖u‖ > 1. Since 1 < s + 1 < ϕ0 it follows that

lim‖u‖→+∞ Tλ,μ(u) = +∞

for every λ > 0 and μ ≥ 0. Hence, Tλ,μ is a coercive functional. Then, also condition
(ii) holds. Since all the assumptions of Theorem 2.1 are satisfied, for each λ ∈ �3
is given by (3.10) there exists δ3 given by (3.12) such that, for each μ ∈ [0, δ3[ the
functional Tλ,μ has at least three distinct critical points in E , which are the weak

solutions of the problem (N f,g
λ,μ). The proof is complete. ��

A particular case of Theorem (3.3) is established in the following result.

Theorem 3.4 Let b : � → R be a bounded measurable and positive function and
f : R → R be a continuous and non-negative function. Set F(ξ) := ∫ ξ

0 f (t) dt.
Further, suppose that there exist d ′′ 	= 0 and c′′ < m, with

∫
�


(x, |d ′′|) dx >
(c′′

m

)ϕ0

,

such that

(D1)

F(c′′)(
c′′
m

)ϕ0 <
F(d ′′)∫

�



(
x, |d ′′|) dx ;

(D2) There exist c0 > 0 and 0 < s < ϕ0 −1 such that | f (t)| ≤ c0(1+|t |s) for every
t ∈ R.

Then, for every λ belonging to

⎤
⎥⎥⎦

∫
�


(x, |d ′′|) dx
‖b‖L1(�)F(d ′′)

,

(
c′′
m

)ϕ0

‖b‖L1(�)F(c′′)

⎡
⎢⎢⎣ ,

and for every continuous function g : R → R such that

lim sup
|ξ |→+∞

G(ξ)

|ξ |ϕ0 < +∞,
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there exists δ4 > 0 defined by

δ4 := min

⎧⎪⎪⎨
⎪⎪⎩δ4,

1

max

{
0, 2mϕ0a(∂�) lim sup|ξ |→+∞

G(ξ)
|ξ |ϕ0

}
⎫⎪⎪⎬
⎪⎪⎭ ,

where

δ4 := min

⎧⎨
⎩c′′ϕ0 − λmϕ0‖b‖L1(�)F(c′′)

mϕ0a(∂�)max|t |≤c′′ G(t)
,

∣∣∣∣∣
∫
�



(
x, |d ′′|) dx − λ‖b‖L1(�)F(d ′′)

a(∂�)G(d ′′)

∣∣∣∣∣
⎫⎬
⎭ ,

for each μ ∈ [0, δ4[, the problem{ −div
(
α(x, |∇u(x)|)∇u(x)

) + α
(
x, |u(x)|)u(x) = λb(x) f

(
u(x)

)
for x ∈ �,

α(x, |∇u(x)|) ∂u

∂ν
(x) = μg

(
γ

(
u(x)

))
for x ∈ ∂�

(
Nbf,g

λ,μ

)

possesses at least three weak solutions in E .

Remark 3.5 The same conclusion of Theorem 3.4 holds under the assumption that b :
� → R is a bounded measurable function with ess inf x∈� b(x) ≥ 0 and

∫
�
b(x) dx >

0.

A direct consequence of the previous result reads as follows.

Corollary 3.6 Let b : � → R be a bounded measurable and positive function.
Moreover, let f : R → R be a non-negative (not identically zero) and continuous
function such that

lim
t→0+

f (t)

tϕ0−1
= 0. (l0)

Further, assume that condition (C2) holds. Then, for each

λ >
1

‖b‖L1(�)

inf
ρ∈S

∫
�


(x, |ρ|) dx
F(ρ)

,

where S := {ρ > 0 : F(ρ) > 0}, the following problem{ −div
(
α(x, |∇u(x)|)∇u(x)

) + α(x, |u(x)|)u(x) = λb(x) f (u(x)) for x ∈ �,
∂u

∂ν
(x) = 0 for x ∈ ∂�

(
Nbf

λ

)

possesses at least three weak solutions in E .

Proof Fix

λ >
1

‖b‖L1(�)

inf
ρ∈S

∫
�


(x, |ρ|) dx
F(ρ)

.
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Then there exists ρ such that F(ρ) > 0 and

λ >
1

‖b‖L1(�)

∫
�


(x, |ρ|) dx
F(ρ)

.

By using condition (l0) one has

lim
ξ→0+

F(ξ)

|ξ |ϕ0 = 0.

Therefore, we can find a positive constant c such that

c < mmin

⎧⎨
⎩1,

( ∫
�


(x, |ρ|) dx
)1/ϕ0

⎫⎬
⎭ ,

and

F(c)

cϕ0 <
1

mϕ0 min

{
F(ρ)∫

�

(x, |ρ|) dx ,

1

λ‖b‖L1(�)

}
.

Hence,

λ ∈

⎤
⎥⎥⎦

∫
�


(x, |ρ|) dx
‖b‖L1(�)F(ρ)

,

(
c
m

)ϕ0

‖b‖L1(�)F(c)

⎡
⎢⎢⎣ .

All the hypotheses of Theorem 3.4 are satisfied, and the problem Nbf
λ admits at least

three distinct weak solutions. The proof is complete. ��
Example 3.7 Let � be a non-empty bounded open subset of the Euclidean space RN

(N ≥ 3) with smooth boundary ∂�. Define f : R → R as follows:

f (t) =

⎧⎪⎨
⎪⎩
0 if t < 0,

tϕ
0

if 0 ≤ t ≤ 1,

t s if t > 1,

where s ∈]0, ϕ0 − 1[. Further, let b : � → R be a bounded measurable and positive
function. From Corollary 3.6, for each parameter

λ >
1

‖b‖L1(�)

inf
ρ>0

∫
�


(x, |ρ|) dx
F(ρ)

,
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⎧⎪⎪⎨
⎪⎪⎩

−div

(
p(x)

|∇u|p(x)−2∇u

log(1 + |∇u|)

)
+ p(x)

|u|p(x)−2u

log(1 + |u|) = λb(x) f (u(x)) for x ∈ �,

∂u

∂ν
(x) = 0 for x ∈ ∂�

admits at least three non-negative weak solutions.
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34. Kováčik, O., Rákosník, J.: On spaces L p(x)(�) and Wm,p(x)(�). Czechoslov. Math. J. 41, 592–618

(1991)

123


	Multiple Solutions of Neumann Problems:  An Orlicz--Sobolev Space Setting
	Abstract
	1 Introduction
	2 Functional Setting
	3 Main Results
	Acknowledgements
	References




