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Abstract
In this paper, we consider eigenvalues to the follow-
ing double phase problem with unbalanced growth and
indefinite weight,

−Δ𝑎𝑝𝑢 − Δ𝑞𝑢 = 𝜆𝑚(𝑥)|𝑢|𝑞−2𝑢 in ℝ𝑁,

where 𝑁 ⩾ 2, 1 < 𝑝, 𝑞 < 𝑁, 𝑝 ≠ 𝑞, 𝑎 ∈ 𝐶0,1(ℝ𝑁,
[0, +∞)), 𝑎 ≢ 0 and 𝑚 ∶ ℝ𝑁 → ℝ is an indefinite
sign weight which may admit non-trivial positive and
negative parts. Here, Δ𝑞 is the 𝑞-Laplacian operator
and Δ𝑎𝑝 is the weighted 𝑝-Laplace operator defined
by Δ𝑎𝑝𝑢 ∶= div(𝑎(𝑥)|∇𝑢|𝑝−2∇𝑢). The problem can be
degenerate, in the sense that the infimum of 𝑎 in ℝ𝑁

may be zero. Our main results distinguish between the
cases 𝑝 < 𝑞 and 𝑞 < 𝑝. In the first case, we establish the
existence of a continuous family of eigenvalues, starting
from the principal frequency of a suitable single phase
eigenvalue problem. In the latter case, we prove the
existence of a discrete family of positive eigenvalues,
which diverges to infinity.
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2 GOU and RĂDULESCU

1 INTRODUCTION

In this paper, we investigate eigenvalues to the following double phase problem with unbalanced
growth and indefinite weight,

−Δ𝑎𝑝𝑢 − Δ𝑞𝑢 = 𝜆𝑚(𝑥)|𝑢|𝑞−2𝑢 in ℝ𝑁, (1.1)

where𝑁 ⩾ 2, 1 < 𝑝, 𝑞 < 𝑁, 𝑝 ≠ 𝑞, 𝑎 ∈ 𝐶0,1(ℝ𝑁, [0, +∞)), 𝑎 ≢ 0 and𝑚 ∶ ℝ𝑁 → ℝ is an indefinite
sign weight which may admit non-trivial positive and negative parts. Here, Δ𝑞 is the 𝑞-Laplacian
operator and Δ𝑎𝑝 is the weighted 𝑝-Laplace operator defined by Δ𝑎𝑝𝑢 ∶= div(𝑎(𝑥)|∇𝑢|𝑝−2∇𝑢).
Throughout of this paper, we shall always assume that the weight function𝑚 ∶ ℝ𝑁 → ℝ satisfies
the following assumption,

(𝐻) 𝑚 = 𝑚1 − 𝑚2, where𝑚1,𝑚2 ⩾ 0,𝑚1 ≢ 0,𝑚1 ∈ 𝐿
𝑁
𝑞 (ℝ𝑁) ∩ 𝐿∞(ℝ𝑁) and𝑚2 ∈ 𝐿∞(ℝ𝑁).

Remark 1.1. In our case,𝑚2 = 0 is allowable.

Problems like (1.1) arise when one looks for the stationary solutions of reaction–diffusion
systems of the form

𝑢𝑡 = div [𝐷(𝑥,∇𝑢)∇𝑢] + g(𝑥, 𝑢) (𝑥, 𝑡) ∈ ℝ𝑁 × (0,∞),

where𝐷(𝑥,∇𝑢) = 𝑎(𝑥)|∇𝑢|𝑝−2 + |∇𝑢|𝑞−2. This systemhas awide range of applications in physics
and related fields, such as biophysics, plasma physics and chemical reaction design (see [7, 26]).
In such applications, the function 𝑢 is a state variable and describes density or concentration
of multi-component substances, div [𝐷(𝑥,∇𝑢)∇𝑢] corresponds to the diffusion with a diffusion
coefficient 𝐷(𝑥,∇𝑢) and g(𝑥, 𝑢) is the reaction and relates to source and loss processes. Typically,
in chemical and biological applications, the reaction term g(𝑥, 𝑢) has a polynomial form with
respect to the unknown concentration denoted by 𝑢.
The analysis of the double phase eigenvalue problem (1.1) is closely associated with the

following single phase quasilinear eigenvalue problem,

−Δ𝑎𝑟 𝑢 = 𝜇𝑚(𝑥)|𝑢|𝑟−2𝑢 in ℝ𝑁. (1.2)

The first part of the paper is devoted to the study of (1.2). The main results we establish
regarding (1.2) are upcoming Theorem 3.1 and Proposition 3.1, which reveal that there exist
a sequence of eigenvalues to (1.2) and the first eigenvalue is simple. In the case of bounded
domains and 𝑟 = 2, this problem is related to the Riesz–Fredholm theory of self-adjoint and
compact operators. The anisotropic linear case (if 𝑟 = 2 and 𝑚(⋅) is non-constant) was first
considered in the pioneering papers of Bocher [6], Hess and Kato [17] and Pleijel [25]. An impor-
tant contribution in the case of unbounded domains is due to Allegretto and Huang [1] and
Szulkin and Willem [27]. In [27], the authors assumed that weight function may have singular
points.
Equation (1.1) contains the contribution of two differential operators in the left-hand side, so

this problem is not homogeneous. In fact, the differential operator 𝑢 ↦ −Δ𝑎𝑝𝑢 − Δ𝑞𝑢 is related to
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 3

the ‘double-phase variational functional defined by

𝑢 ↦ ∫ℝ𝑁 𝑎(𝑥)|∇𝑢|𝑝 + |∇𝑢|𝑞 𝑑𝑥.
The integrand of this functional is the function

𝜉(𝑥, 𝑡) = 𝑎(𝑥)𝑡𝑝 + 𝑡𝑞 for all 𝑥 ∈ ℝ𝑁and 𝑡 ⩾ 0.

When 𝑎 ≡ 1, then (1.1) becomes the so-called 𝑝& 𝑞 Laplacian problem, which was investigated by
Benouhiba and Belyacine [4, 5]. A feature of this paper is that we do not assume that the function
𝑎(⋅) is bounded away from zero, that is, we do not require that essinf𝑥∈ℝ𝑁𝑎(𝑥) > 0. This implies
that the integrand 𝜉(𝑥, 𝑡) exhibits unbalanced growth, namely there holds that

𝑡𝑞 ⩽ 𝜉(𝑥, 𝑡) ⩽ 𝐶0(𝑡
𝑝 + 𝑡𝑞) for all 𝑥 ∈ ℝ𝑁 and 𝑡 ⩾ 0, (1.3)

where 𝐶0 > 0 is a constant. In this scenario, the study is carried out in the framework of
Musielak–Orlicz–Sobolev spaces. Such functionals were first investigated by Marcellini [18–20]
in the context of problems of the calculus of variations and of non-linear elasticity for strongly
anisotropic materials. For such problems, there is no global (that is, up to the boundary) regular-
ity theory. There are only interior regularity results, which are primarily due to Baroni et al. [3] and
Marcellini [10, 20, 21]. In fact, most of works dealt with double phase problems having unbalanced
growth in bounded domains of ℝ𝑁 , we refer the readers to [12–15, 22–24] and references therein.
However, there exist relatively few ones treating the problems in ℝ𝑁 . The study of eigenvalue
problems like (1.1) is open until now. Since (1.1) is set in the whole space ℝ𝑁 , lack of compactness
is one of major difficulties we encounter to discuss the eigenvalue problem (1.1) in Musielak–
Orlicz–Sobolev spaces and more careful analysis is needed in suitable weighted functions spaces.
Indeed, this is mainly because the embedding 𝑊1,𝜉(ℝ𝑁) ↪ 𝐿𝑟(ℝ𝑁) is only continuous for any
𝑞 ⩽ 𝑟 ⩽ 𝑞∗ (see Lemma 2.3) and the weight function𝑚 ∶ ℝ𝑁 → ℝ is indefinite, which cause that
the verification of the compactness of the underlying (minimizing and Palasi–Smale) sequences
becomes difficult. Consequently, wemanage to study the problem (1.1) in a newweighted Sobolev
space 𝐸 defined by the completion of 𝐶∞

0
(ℝ𝑁) under the norm

‖𝑢‖𝐸 ∶= ‖∇𝑢‖𝜉 +(
∫ℝ𝑁 |𝑢|𝑞 max{𝑚2, 𝜔} 𝑑𝑥

) 1
𝑞

, 𝜔(𝑥) ∶=
1

(1 + |𝑥|)𝑞 , 𝑥 ∈ ℝ𝑁,
where ‖ ⋅ ‖𝜉 denotes the standard norm in𝐷1,𝜉(ℝ𝑁). Here,𝑊1,𝜉(ℝ𝑁) and𝐷1,𝜉(ℝ𝑁) areMusielak–
Orlicz–Sobolev spaces defined in Section 2. In this paper, when 𝑝 < 𝑞, we establish the existence
of a continuous family of eigenvalues to (1.1), starting from the principal frequency to (1.2), see
Theorems 3.2 and 3.3.While 𝑞 < 𝑝, we prove the existence of a discrete family of positive eigenval-
ues to (1.1), which diverges to infinity, see Theorem 3.4 and Proposition 3.2. The results we derive
reveal new facts of eigenvalues to double phase problems in ℝ𝑁 . In both cases, we actually need
to assume 𝑞 < 𝑞∗ ∶= 𝑁𝑞

𝑁−𝑞
, because of the unbalanced growth property (1.3) with respect to the

double phase operator and the dominance is the 𝑞-Laplacian term. Thus, the problem under con-
sideration is Sobolev subcritical and the energy functional 𝐽 corresponding to (1.1) is well-defined
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4 GOU and RĂDULESCU

in the Sobolev space 𝐸 by Theorem 2.3, where

𝐽(𝑢) ∶=
1

𝑝 ∫ℝ𝑁 𝑎(𝑥)|∇𝑢|𝑝 𝑑𝑥 + 1𝑞 ∫ℝ𝑁 |∇𝑢|𝑞 𝑑𝑥 − 𝜆𝑞 ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥.
Observe that 𝑝

𝑞
< 1 + 1

𝑁
implies𝑝 < 𝑞∗.When double phase problems are set in bounded domains

in ℝ𝑁 , then the condition 𝑝
𝑞
< 1 + 1

𝑁
can be applied to prove the desired compact embedding

results, for example [22, Proposition 4]. While double phase problems are set inℝ𝑁 , the condition
𝑝

𝑞
< 1 + 1

𝑁
can no longer be applicable to derive the compact embedding results, which leads to

lack of compactness for the study. In this paper, such a condition is actually used to guarantee the
regularity of solutions to (1.1) (see [8, 9]), which along with the maximum principle developed in
[23, 24] can lead to the simplicity of eigenvalues, see Proposition 3.2.

2 PRELIMINARIES

In the section, we are going to present some preliminary results used to establish our main
theorems. To deal with the eigenvalue problem (1.1), we shall work in the corresponding
Musielak–Orlicz–Sobolev space. For the convenience of the readers, let us first present a few
definitions from [11, Section 2] concerning the main notions and function spaces used in this
paper.

Definition 2.1. A function 𝜑 ∶ [0, +∞] → [0, +∞) is called a Φ-function if 𝜑 is convex and left-
continuous on [0, +∞). In addition, 𝜑 satisfies that

𝜑(0) = 0, lim
𝑡→0+

𝜑(𝑡) = 0, lim
𝑡→+∞

𝜑(𝑡) = +∞.

Definition 2.2. A function 𝜉 ∶ ℝ𝑁 × [0, +∞] → [0, +∞) is called a generalized Φ-function if it
satisfies the following conditions:

(i) for almost every 𝑥 ∈ ℝ𝑁 , 𝜉(𝑥, ⋅) is a Φ-function;
(ii) for almost every 𝑡 ∈ [0, +∞), 𝜉(⋅, 𝑡) is measurable.

Definition 2.3. A generalized Φ-function 𝜉 ∶ ℝ𝑁 × [0, +∞] → [0, +∞) satisfies Δ2-condition if
there exists 𝐾 ⩾ 2 such that, for almost every 𝑥 ∈ ℝ𝑁 and 𝑡 ⩾ 0,

𝜉(𝑥, 2𝑡) ⩾ 𝐾𝜉(𝑥, 𝑡).

Definition 2.4. AΦ-function𝜑 ∶ [0, +∞] → [0, +∞) is said to be an𝑁-function if it is continuous
and positive on [0, +∞). In addition, it satisfies that

lim
𝑡→0+

𝜑(𝑡)

𝑡
= 0, lim

𝑡→+∞

𝜑(𝑡)

𝑡
= +∞.

A generalized Φ-function 𝜉 ∶ ℝ𝑁 × [0, +∞] → [0, +∞) is said to be a generalized 𝑁-function if,
for almost every 𝑥 ∈ ℝ𝑁 , 𝜉(𝑥, ⋅) is an 𝑁-function.
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 5

Definition 2.5. A generalized 𝑁-function 𝜉 ∶ ℝ𝑁 × [0, +∞] → [0, +∞) is called uniformly
convex if, for any 𝜖 > 0, there exists 𝛿 > 0 such that, for almost every 𝑥 ∈ ℝ𝑁 ,

𝜉
(
𝑥,
𝑠 + 𝑡

2

)
⩽ (1 − 𝛿)

𝜉(𝑥, 𝑠) + 𝜉(𝑥, 𝑡)

2
,

whenever 𝑠, 𝑡 ⩾ 0 and |𝑥 − 𝑡| ⩾ 𝜖max{|𝑠|, |𝑡|}.
With these definitions in hand, we are now ready to introduce the double phase function 𝜉 ∶

ℝ𝑁 × [0, +∞) → [0, +∞) corresponding to (1.1) as

𝜉(𝑥, 𝑡) ∶= 𝑎(𝑥)𝑡𝑝 + 𝑡𝑞, 𝑥 ∈ ℝ𝑁, 𝑡 ⩾ 0. (2.1)

It is simple to check that 𝜉 is a generalized 𝑁-function. Moreover, 𝜉 is uniformly convex and it
satisfies theΔ2-condition. Let us denote by𝑀(ℝ𝑁) the space consisting of all Lebesguemeasurable
function 𝑢 ∶ ℝ𝑁 → ℝ. The Musielak–Orlicz space 𝐿𝜉(ℝ𝑁) is defined by

𝐿𝜉(ℝ𝑁) ∶=
{
𝑢 ∈ 𝑀(ℝ𝑁) ∶ 𝜌𝜉(𝑢) < +∞

}
,

where 𝜌𝜉 is the modular function given by

𝜌𝜉(𝑢) ∶= ∫ℝ𝑁 𝜉(𝑥, |𝑢|) 𝑑𝑥 = ∫ℝ𝑁 𝑎(𝑥)|𝑢|𝑝 + |𝑢|𝑞 𝑑𝑥. (2.2)

Here, the space 𝐿𝜉(ℝ𝑁) is equipped with the Luxemburg norm given by

‖𝑢‖𝜉 ∶= inf {𝜆 > 0 ∶ 𝜌𝜉(𝑢𝜆) ⩽ 1}. (2.3)

Using the above properties satisfied by 𝜉, we can easily check that 𝐿𝜉(ℝ𝑁) is a Banach space,
which is also separable and reflexive. The Musielak–Orlicz–Sobolev space 𝑊1,𝜉(ℝ𝑁) is defined
by

𝑊1,𝜉(ℝ𝑁) ∶=
{
𝑢 ∈ 𝐿𝜉(ℝ𝑁) ∶ |∇𝑢| ∈ 𝐿𝜉(ℝ𝑁)}.

Here, the space𝑊1,𝜉(ℝ𝑁) is equipped with the norm

‖𝑢‖1,𝜉 ∶= ‖𝑢‖𝜉 + ‖∇𝑢‖𝜉,
where ‖∇𝑢‖𝜉 ∶= ‖|∇𝑢|‖𝜉 . Clearly, 𝑊1,𝜉(ℝ𝑁) is a separable, reflexive Banach space. Let us
introduce the associated homogeneous Musielak–Orlicz–Sobolev 𝐷1,𝜉(ℝ𝑁) as the completion of
𝐶∞
0
(ℝ𝑁) under the norm ‖∇𝑢‖𝜉 .
Next, we are going to show some relations between the norm in 𝐿𝜉(ℝ𝑁) and the modular

function 𝜌𝜉 given by (2.2) and (2.3), respectively, proofs of which can be completed by using the
ingredients presented in [16, Section 3.2].
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6 GOU and RĂDULESCU

Lemma 2.1. Let 𝜉 ∶ ℝ𝑁 × [0, +∞) → [0, +∞) be defined by (2.1). Then, the following assertions
hold.

(i) ‖𝑢‖𝜉 = 𝜆 if and only if 𝜌𝜉(𝑢𝜆 ) = 1.
(ii) ‖𝑢‖𝜉 < 1(= 1, > 1, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) if and only if 𝜌𝜉(𝑢) < 1(= 1, > 1, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦).
(iii) If ‖𝑢‖𝜉 < 1, then ‖𝑢‖max{𝑝,𝑞}

𝜉
⩽ 𝜌𝜉(𝑢) ⩽ ‖𝑢‖min{𝑝,𝑞}

𝜉
.

(iv) If ‖𝑢‖𝜉 > 1, then ‖𝑢‖min{𝑝,𝑞}
𝜉

⩽ 𝜌𝜉(𝑢) ⩽ ‖𝑢‖max{𝑝,𝑞}
𝜉

.
(v) lim𝑛→+∞ ‖𝑢𝑛‖𝜉 = 0(+∞, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) if and only if lim𝑛→+∞ 𝜌𝜉(𝑢𝑛) =

0(+∞, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦).

Note that 𝑡𝑞 ⩽ 𝜉(𝑥, 𝑡) for any 𝑥 ∈ ℝ𝑁 and 𝑡 ∈ ℝ, by assertion (ii) of Lemma 2.1, then there holds
the following embedding result.

Lemma 2.2. Let 𝜉 ∶ ℝ𝑁 × [0, +∞) → [0, +∞) be defined by (2.1). Then, the embedding 𝐿𝜉(ℝ𝑁) ↪
𝐿𝑞(ℝ𝑁) is continuous.

As a consequence of Lemma 2.2 and Sobolev’s embeddings in𝑊1,𝑞(ℝ𝑁) and 𝐷1,𝑞(ℝ𝑁) for 1 <
𝑞 < 𝑁, we have the following embedding result.

Lemma 2.3. Let 𝜉 ∶ ℝ𝑁 × [0, +∞) → [0, +∞) be defined by (2.1). Then, the embedding
𝑊1,𝜉(ℝ𝑁) ↪ 𝑊1,𝑞(ℝ𝑁) ↪ 𝐿𝑟(ℝ𝑁) is continuous for any 𝑞 ⩽ 𝑟 ⩽ 𝑞∗. Moreover, the embedding
𝐷1,𝜉(ℝ𝑁) ↪ 𝐷1,𝑞(ℝ𝑁) ↪ 𝐿𝑞

∗
(ℝ𝑁) is continuous.

3 MAIN RESULTS

In this section, we shall consider the eigenvalue problem (1.1) under the assumption (𝐻). The
hypothesis (𝐻) is always assumed to hold in what follows. First, we shall present some results
related to the following eigenvalue problem,

−Δ𝑎𝑟 𝑢 = 𝜇𝑚(𝑥)|𝑢|𝑟−2𝑢 in ℝ𝑁. (3.1)

Theorem 3.1. Assume (𝐻) holds,𝑁 ⩾ 2, 1 < 𝑟 < 𝑁, 𝑎 ∈ 𝐶0,1(ℝ𝑁, [0, +∞)) and 𝑎 ≢ 0. Then, there
exists a sequence of solutions (𝜇𝑎,𝑟,𝑘, 𝑢𝑎,𝑟,𝑘) ∈ ℝ × 𝐷1,𝜂(ℝ𝑁) to (3.1) with 𝑢𝑎,𝑟,𝑘 ∈ and

0 < 𝜇𝑎,𝑟,1 < 𝜇𝑎,𝑟,2 ⩽⋯ ⩽ 𝜇𝑎,𝑟,𝑘 ⩽ ⋯ , lim
𝑘→∞

𝜇𝑎,𝑟,𝑘 → +∞ as 𝑘 → +∞,

where 𝜂(𝑥, 𝑡) = 𝑎(𝑥)𝑡𝑟 for 𝑥 ∈ ℝ𝑁 and 𝑡 ⩾ 0,

𝑟 ∶=

{
𝑢 ∈ 𝐷1,𝜂(ℝ𝑁) ∶ ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑟 𝑑𝑥 = 1

}
.

Proof. Define

Ψ(𝑢) ∶= ∫ℝ𝑁 𝑎(𝑥)|∇𝑢|𝑟 𝑑𝑥, 𝑀𝑟 ∶=𝑟 ∩  ,

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12961 by C

ochrane R
om

ania, W
iley O

nline L
ibrary on [05/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 7

where the Sobolev space  is the completion of 𝐶∞
0
(ℝ𝑁) under the norm

‖∇𝑢‖𝜂 +(
∫ℝ𝑁 |𝑢|𝑟 max{𝑚2, 𝜔} 𝑑𝑥

) 1
𝑟

, 𝜔(𝑥) =
1

(1 + |𝑥|)𝑟 , 𝑥 ∈ ℝ𝑁.
Reasoning as the proof of [1, Lemma 1], we are able to show Ψ(𝑢) restricted on 𝑀𝑟 satisfies
the Palais–Smale condition. Then, by adapting Ljusternik–Schnirelman theory as the proof of
forthcomingTheorem3.4,we can derive the desired conclusion. Thus, the proof is completed. □

Proposition 3.1. Assume (𝐻) holds, 𝑁 ⩾ 2, 1 < 𝑟 < 𝑁, 𝑎 ∈ 𝐶0,1(ℝ𝑁, [0, +∞)) and 𝑎 ≢ 0. Then,
the first eigenvalue 𝜇𝑎,𝑟,1 obtained in Theorem 3.1 is simple and the eigenfunction 𝑢𝑎,𝑟,1 has constant
sign. Moreover, if 𝑢 ∈ 𝐷1,𝜂(ℝ𝑁) is a non-trivial solution to (3.1) corresponding to 𝜇 > 𝜇𝑎,𝑟,1, then 𝑢
is sign-changing.

Since the function 𝑚 is an indefinite sign weight, then proof of Proposition 3.1 is not
straightforward. To prove this, we need the following auxiliary result.

Lemma 3.1. Define

𝐼(𝑢, 𝑣) ∶= −∫ℝ𝑁
(
Δ𝑎𝑟 𝑢

)𝑢𝑟 − 𝑣𝑟
𝑢𝑟−1

𝑑𝑥 − ∫ℝ𝑁
(
Δ𝑎𝑟 𝑣

)𝑣𝑟 − 𝑢𝑟
𝑣𝑟−1

𝑑𝑥, 𝑢, 𝑣 ∈ 𝐷1,𝜂(ℝ𝑁), 𝑢, 𝑣 > 0.

Then, 𝐼(𝑢, 𝑣) ⩾ 0. Moreover, 𝐼(𝑢, 𝑣) = 0 if and only if 𝑢 = 𝑘𝑣 for some 𝑘 ∈ ℝ.

Proof. Observe that

∇

(
𝑢𝑟 − 𝑣𝑟

𝑢𝑟−1

)
=
(
1 + (𝑟 − 1)

(
𝑣

𝑢

)𝑟)
∇𝑢 − 𝑟

(
𝑣

𝑢

)𝑟−1
∇𝑣,

∇

(
𝑣𝑟 − 𝑢𝑟

𝑣𝑟−1

)
=
(
1 + (𝑟 − 1)

(
𝑢

𝑣

)𝑟)
∇𝑣 − 𝑟

(
𝑢

𝑣

)𝑟−1
∇𝑢.

Then, by the divergence theorem, we see

𝐼(𝑢, 𝑣) = ∫ℝ𝑁 𝑎(𝑥)
((
1 + (𝑟 − 1)

(
𝑣

𝑢

)𝑟)|∇𝑢|𝑟 − 𝑟(𝑣
𝑢

)𝑟−1|∇𝑢|𝑟−2(∇𝑣 ⋅∇𝑢)) 𝑑𝑥
+ ∫ℝ𝑁 𝑎(𝑥)

((
1 + (𝑟 − 1)

(
𝑢

𝑣

)𝑟)|∇𝑣|𝑟 − 𝑟(𝑢
𝑣

)𝑟−1|∇𝑣|𝑟−2(∇𝑢 ⋅∇𝑣)) 𝑑𝑥. (3.2)

Using Young’s inequality, we have

𝑟
(
𝑣

𝑢

)𝑟−1|∇𝑢|𝑟−2(∇𝑣 ⋅∇𝑢) ⩽ 𝑟(𝑣
𝑢

)𝑟−1|∇𝑢|𝑟−1|∇𝑣| ⩽ (𝑟 − 1)(𝑣
𝑢

)𝑟|∇𝑢|𝑟 + |∇𝑣|𝑟,
𝑟
(
𝑢

𝑣

)𝑟−1|∇𝑣|𝑟−2(∇𝑢 ⋅∇𝑣) ⩽ 𝑟(𝑢
𝑣

)𝑟−1|∇𝑣|𝑟−1|∇𝑢| ⩽ (𝑟 − 1)(𝑢
𝑣

)𝑟|∇𝑣|𝑟 + |∇𝑢|𝑟.
As a consequence, coming back to (3.2), we can conclude 𝐼(𝑢, 𝑣) ⩾ 0. If 𝐼(𝑢, 𝑣) = 0, then

∇𝑢 ⋅∇𝑣 = |∇𝑢||∇𝑣|, (
𝑣

𝑢

)𝑟|∇𝑢|𝑟 = |∇𝑣|𝑟, (
𝑢

𝑣

)𝑟|∇𝑣|𝑟 = |∇𝑢|𝑟.
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8 GOU and RĂDULESCU

It then follows that

|𝑢∇𝑣 − 𝑣∇𝑢| = 0.
This implies that there exists 𝑘 ∈ ℝ such that 𝑢 = 𝑘𝑣 and the proof is completed. □

Proof of Proposition 3.1. Note first that

𝜇𝑎,𝑟,1 = inf
𝑢∈𝑟

Ψ(𝑢).

If 𝑢 ∈𝑟 satisfies Ψ(𝑢) = 𝑢𝑎,𝑟,1, then |𝑢| ∈𝑟 and Ψ(|𝑢|) = 𝑢𝑎,𝑟,1. Therefore, without restric-
tion, we may assume 𝑢𝑎,𝑟,1 is non-negative. Observe that 𝑢𝑎,𝑟,1 ∈ 𝐷1,𝜂(ℝ𝑁) satisfies the equation

−Δ𝑎𝑟 𝑢𝑎,𝑟,1 + 𝜇𝑎,𝑟,1𝑚2(𝑥)|𝑢𝑎,𝑟,1|𝑟−2𝑢𝑎,𝑟,1 = 𝜇𝑎,𝑟,1𝑚1(𝑥)|𝑢𝑎,𝑟,1|𝑟−2𝑢𝑎,𝑟,1 ⩾ 0 in ℝ𝑁.

Bymaximumprinciple, 𝑢𝑎,𝑟,1 > 0. Let 𝑢𝑎,𝑟,1 ∈𝑟 and 𝑣𝑎,𝑟,1 ∈𝑟 be two positive eigenfunctions
corresponding to 𝜇𝑎,𝑟,1, then

−Δ𝑎𝑟 𝑢𝑎,𝑟,1 = 𝜇𝑎,𝑟,1𝑚(𝑥)𝑢
𝑟−1
𝑎,𝑟,1, −Δ

𝑎
𝑟 𝑣𝑎,𝑟,1 = 𝜇𝑎,𝑟,1𝑚(𝑥)𝑣

𝑟−1
𝑎,𝑟,1 in ℝ𝑁.

It is simple to calculate 𝐼(𝑢𝑎,𝑟,1, 𝑣𝑎,𝑟,1) = 0. As a result of Lemma 3.1, we have 𝑢𝑎,𝑟,1 = 𝑘𝑣𝑎,𝑟,1 for
some 𝑘 ∈ ℝ. This indicates that 𝜇𝑎,𝑟,1 is simple.
Arguing by contradiction, we suppose 𝑢 ∈ 𝐷1,𝜂(ℝ𝑁) is a non-negative solution to (3.1)

corresponding to 𝜇 > 𝜇𝑎,𝑟,1. By the maximum principle, 𝑢 > 0. Notice

∫ℝ𝑁 𝑎(𝑥)|∇𝑢|𝑟 𝑑𝑥 = 𝜇 ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑟 𝑑𝑥 > 0.
In addition, we know that if 𝑢 ∈ 𝐷1,𝜂(ℝ𝑁) is a solution to (3.1), then 𝑘𝑢 ∈ 𝐷1,𝜂(ℝ𝑁) is also a
solution to (3.1) for any 𝑘 ∈ ℝ∖{0}. Then, by scaling, we may assume

0 < ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑟 𝑑𝑥 < 1. (3.3)

Let𝑢𝑎,𝑟,1 ∈ and𝑢𝑎,𝑟,1 > 0 be an eigenfunction to (3.1) corresponding to𝜇𝑎,𝑟,1. Then,𝑢𝑎,𝑟,1 solves
the equation

−Δ𝑎𝑟 𝑢𝑎,𝑟,1 = 𝜇𝑎,𝑟,1𝑚(𝑥)|𝑢𝑎,𝑟,1|𝑟−2𝑢𝑎,𝑟,1 in ℝ𝑁.

As a consequence of Lemma 3.1 and (3.3), we have

0 ⩽ 𝐼(𝑢, 𝑢𝑎,𝑟,1) = 𝜇 ∫ℝ𝑁 𝑚(𝑥)
(
𝑢𝑟 − 𝑢𝑟𝑎,𝑟,1

)
𝑑𝑥 + 𝜇𝑎,𝑟,1 ∫ℝ𝑁 𝑚(𝑥)

(
𝑢𝑟𝑎,𝑟,1 − 𝑢

𝑟
)
𝑑𝑥

= (𝜇 − 𝜇𝑎,𝑟,1)∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑟 𝑑𝑥 − (𝜇 − 𝜇𝑎,𝑟,1) < 0.
This is impossible, hence 𝑢 is sign-changing and the proof is completed. □

Theorem 3.2. Assume (𝐻) holds, 𝑁 ⩾ 2, 1 < 𝑝, 𝑞 < 𝑁, 𝑝 ≠ 𝑞, 𝑎 ∈ 𝐶0,1(ℝ𝑁, [0, +∞)) and 𝑎 ≢ 0.
Then, (1.1) has no non-trivial solutions in𝐷1,𝜉(ℝ𝑁) for any 0 ⩽ 𝜆 ⩽ 𝜇1,𝑞,1, where 𝜇1,𝑞,1 > 0 is the first
eigenvalue to (3.1) with 𝑎 ≡ 1 and 𝑟 = 𝑞.

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12961 by C

ochrane R
om

ania, W
iley O

nline L
ibrary on [05/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 9

Proof. Let 𝑢 ∈ 𝐷1,𝜉(ℝ𝑁) be a solution to (1.1) for some 0 ⩽ 𝜆 ⩽ 𝜇1,𝑞,1. Observe first that

∫ℝ𝑁 𝑎(𝑥)|∇𝑢|𝑝 𝑑𝑥 + ∫ℝ𝑁 |∇𝑢|𝑞 𝑑𝑥 = 𝜆 ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥. (3.4)

This implies 𝑢 = 0 if 𝜆 = 0. Let us assume 0 < 𝜆 < 𝜇1,𝑞,1. Assume 𝑢 ≠ 0, it then follows from (3.4)
that

∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 > 0. (3.5)

In addition, since 𝜇1,𝑞,1 > 0 is the first eigenvalue to (3.1), then

∫ℝ𝑁 |∇𝑢|𝑞 𝑑𝑥 ⩾ 𝜇1,𝑞,1 ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥. (3.6)

This along with (3.4) leads to

𝜇1,𝑞,1 ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 ⩽ 𝜆 ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥.
Using (3.5), we then get 𝑢 = 0. This is a contradiction. Next we assume 𝜆 = 𝜇1. In this case, by
combining (3.4) and (3.6), we obtain

∫ℝ𝑁 𝑎(𝑥)|∇𝑢|𝑝 𝑑𝑥 ⩽ 0,
hence 𝑢 = 0. Thus, the proof is completed. □

3.1 Case 𝒑 < 𝒒

In this case, to establish the existence of solutions to (1.1), we shall adapt some ideas from [1]. Let
us first introduce the weight function

𝜔(𝑥) =
1

(1 + |𝑥|)𝑞 , 𝑥 ∈ ℝ𝑁.
Let 𝐸 be the completion of 𝐶∞

0
(ℝ𝑁) under the norm

‖𝑢‖𝐸 ∶= ‖∇𝑢‖𝜉 +(
∫ℝ𝑁 |𝑢|𝑞 max{𝑚2, 𝜔} 𝑑𝑥

) 1
𝑞

.

It is standard to conclude that 𝐸 is a separable and reflexive Banach space. In order to prove the
existence of solutions to (1.1), we shall define the associated energy functional 𝐽 ∶ 𝐸 → ℝ by

𝐽(𝑢) ∶=
1

𝑝 ∫ℝ𝑁 𝑎(𝑥)|∇𝑢|𝑝 𝑑𝑥 + 1𝑞 ∫ℝ𝑁 |∇𝑢|𝑞 𝑑𝑥 − 𝜆𝑞 ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥.
Theorem 3.3. Assume (𝐻) holds,𝑁 ⩾ 2, 1 < 𝑝 < 𝑞 < 𝑁, 𝑎 ∈ 𝐶0,1(ℝ𝑁, [0, +∞)) and 𝑎 ≢ 0. Then,
there exist positive solutions to (1.1) for any 𝜆 > 𝜇1,𝑞,1.
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10 GOU and RĂDULESCU

In this case, we find that 𝐽 is unbounded from below in 𝐸. Indeed, let 𝑢1,𝑞,1 ∈ 𝐷1,𝑞(ℝ𝑁) be an
eigenfunction of (3.1) corresponding to 𝜇1,𝑞,1. We observe

𝐽(𝑡𝑢1) =
𝑡𝑝

𝑝 ∫ℝ𝑁 𝑎(𝑥)|∇𝑢1,𝑞,1|𝑝 𝑑𝑥 + 𝑡𝑞𝑞
(
1 −

𝜆

𝜇1,𝑞,1

)
∫ℝ𝑁 |∇𝑢1,𝑞,1|𝑞 𝑑𝑥.

Since 𝑝 < 𝑞 and 𝜆 > 𝜇1, 𝐽(𝑡𝑢1,𝑞,1) → −∞ as 𝑡 → +∞. In this situation, to seek solutions to (1.1),
we introduce the Nehari manifold

 ∶= {𝑢 ∈ 𝐸∖{0} ∶ 𝐼(𝑢) = 0},

where

𝐼(𝑢) ∶= ∫ℝ𝑁 𝑎(𝑥)|∇𝑢|𝑝 𝑑𝑥 + ∫ℝ𝑁 |∇𝑢|𝑞 𝑑𝑥 − 𝜆 ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥.
Then, we are able to define the minimization problem

𝑚 ∶= inf
𝑢∈ 𝐽(𝑢). (3.7)

Obviously, any minimizer of (3.7) is a solution to (1.1).

Proof of Theorem 3.3. Let {𝑢𝑛} ⊂ be a minimizing sequence to (3.7). Then, 𝑚 = 𝐽(𝑢𝑛) + 𝑜𝑛(1)
and 𝐼(𝑢𝑛) = 0. Since 𝐼(|𝑢|) ⩽ 𝐼(𝑢) = 0 for any 𝑢 ∈ , then there exists a unique 0 < 𝑡|𝑢| ⩽ 1 such
that 𝐼(𝑡|𝑢||𝑢|) = 0, where

𝑡|𝑢| =
( ∫

ℝ𝑁
𝑎(𝑥)|∇|𝑢||𝑝 𝑑𝑥

𝜆 ∫
ℝ𝑁
𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 − ∫

ℝ𝑁
|∇|𝑢||𝑞 𝑑𝑥

) 1
𝑞−𝑝

.

Moreover, for any 𝑢 ∈ , we see

𝐽(𝑢) = 𝐽(𝑢) −
1

𝑞
𝐼(𝑢) =

(
1

𝑝
−
1

𝑞

)
∫ℝ𝑁 𝑎(𝑥)|∇𝑢|𝑝 𝑑𝑥. (3.8)

Therefore, for any 𝑢 ∈ ,

𝐽(𝑡|𝑢||𝑢|) = 𝑡𝑝|𝑢|( 1𝑝 − 1𝑞
)
∫ℝ𝑁 𝑎(𝑥)|∇|𝑢||𝑝 𝑑𝑥 ⩽

(
1

𝑝
−
1

𝑞

)
∫ℝ𝑁 𝑎(𝑥)|∇𝑢|𝑝 𝑑𝑥 = 𝐽(𝑢).

As a consequence, we shall assume {𝑢𝑛} ⊂ is a non-negative minimizing sequence to (3.7).
Otherwise, we can replace {𝑢𝑛} by {𝑡|𝑢𝑛||𝑢𝑛|} as a new minimizing sequence to (3.7).
First we are going to prove𝑚 > 0. It follows from (3.8) that𝑚 ⩾ 0. Let us argue by contradiction

that𝑚 = 0. Then, by (3.8), we have

∫ℝ𝑁 𝑎(𝑥)|∇𝑢𝑛|𝑝 𝑑𝑥 = 𝑜𝑛(1).
Let us first assume

∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 = 𝑜𝑛(1). (3.9)
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 11

Since 𝐼(𝑢𝑛) = 0, there holds

∫ℝ𝑁 |∇𝑢𝑛|𝑞 𝑑𝑥 = 𝑜𝑛(1).
In this case, we set

𝑣𝑛 ∶=
𝑢𝑛(∫

ℝ𝑁
𝑚(𝑥)|𝑢𝑛|𝑞 𝑑𝑥) 1𝑞 ⩾ 0, ∀ 𝑛 ∈ ℕ

+. (3.10)

It is easy to see {𝑣𝑛} ⊂𝑞. Since 𝐼(𝑢𝑛) = 0,

∫ℝ𝑁 𝑎(𝑥)|∇𝑣𝑛|𝑝 𝑑𝑥 = ∫
ℝ𝑁
𝑎(𝑥)|∇𝑢𝑛|𝑝 𝑑𝑥(∫

ℝ𝑁
𝑚(𝑥)|𝑢𝑛|𝑞 𝑑𝑥) 𝑝𝑞 =

1(∫
ℝ𝑁
𝑚(𝑥)|𝑢𝑛|𝑞 𝑑𝑥) 𝑝𝑞 −1

(
𝜆 − ∫ℝ𝑁 |∇𝑣𝑛|𝑞 𝑑𝑥

)
.

(3.11)

In view of (3.9) and (3.11),

∫ℝ𝑁 𝑎(𝑥)|∇𝑣𝑛|𝑝 𝑑𝑥 = 𝑜𝑛(1).
It then yields that

∫ℝ𝑁 𝑚(𝑥)|𝑣𝑛|𝑝 𝑑𝑥 ⩽ 1

𝜇𝑎,𝑝,1 ∫ℝ𝑁 𝑎(𝑥)|∇𝑣𝑛|𝑝 𝑑𝑥 = 𝑜𝑛(1). (3.12)

Invoking Hölder’s inequality, Sobolev’s inequality and (3.12), we then get

∫ℝ𝑁 𝑚(𝑥)|𝑣𝑛|𝑞 𝑑𝑥 ⩽
(
∫ℝ𝑁 𝑚(𝑥)|𝑣𝑛|𝑝 𝑑𝑥

)𝜃(
∫ℝ𝑁 𝑚(𝑥)|𝑣𝑛|𝑞∗ 𝑑𝑥

)1−𝜃
⩽ ‖𝑚‖1−𝜃∞ (

∫ℝ𝑁 𝑚(𝑥)|𝑣𝑛|𝑝 𝑑𝑥
)𝜃(

∫ℝ𝑁 |𝑣𝑛|𝑞∗ 𝑑𝑥
)1−𝜃

⩽ 𝐶‖𝑚‖1−𝜃∞ (
∫ℝ𝑁 𝑚(𝑥)|𝑣𝑛|𝑝 𝑑𝑥

)𝜃(
∫ℝ𝑁 |∇𝑣𝑛|𝑞 𝑑𝑥

) 𝑞∗(1−𝜃)

𝑞

= 𝑜𝑛(1),

where 0 < 𝜃 < 1 and 𝑞 = 𝜃𝑝 + (1 − 𝜃)𝑞∗. This is a contradiction, because of 𝑣𝑛 ∈𝑞. Let us next
assume that there exists some 𝜆0 > 0 such that

∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 = 𝜆0 + 𝑜𝑛(1).
Since 𝐼(𝑢𝑛) = 0,

∫ℝ𝑁 |∇𝑣𝑛|𝑞 𝑑𝑥 = 𝜆 − ∫
ℝ𝑁
𝑎(𝑥)|∇𝑢𝑛|𝑝 𝑑𝑥

∫
ℝ𝑁
𝑚(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 = 𝜆 + 𝑜𝑛(1).
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12 GOU and RĂDULESCU

Therefore, there holds ‖∇𝑣𝑛‖𝑝𝑝 = 𝜆 + 𝑜𝑛(1). In virtue of [1, Lemma 1], we then get that {𝑣𝑛} is
compact in 𝑉, where the Sobolev space 𝑉 is the completion of 𝐶∞

0
(ℝ𝑁) under the norm

‖∇𝑢‖𝑞 +(
∫ℝ𝑁 |𝑢|𝑞 max{𝑚2, 𝜔} 𝑑𝑥

) 1
𝑞

.

Let 𝑣 ∈ 𝑉 be such that 𝑣𝑛 → 𝑣 in 𝑉 as 𝑛 → ∞, then 𝑣 ≠ 0 and 𝑣 ⩾ 0. It then infers that 𝑣 ∈ 𝑉 is a
non-negative eigenfunction to (3.1) corresponding to 𝜆. By Lemma 3.1, we reach a contradiction,
because 𝜆 > 𝜇1,𝑞,1. As a consequence, we have𝑚 > 0.
It is standard to show that is a natural constraint. By the fact that there exists a non-negative

minimizing sequence to (3.7) and applying Ekeland’s variational principle, there exists a Palais–
Smale sequence {𝑢𝑛} ⊂ 𝐸 with 𝑢−𝑛 = 𝑜𝑛(1) and 𝐼(𝑢𝑛) = 𝑜𝑛(1) for 𝐽 at the level 𝑚 > 0. Let us now
prove that {𝑢𝑛} is bounded in 𝐸. Observe

𝑚 + 𝑜𝑛(1) = 𝐽(𝑢𝑛) −
1

𝑞
𝐼(𝑢𝑛) + 𝑜𝑛(1) =

(
1

𝑝
−
1

𝑞

)
∫ℝ𝑁 𝑎(𝑥)|𝑢𝑛|𝑝 𝑑𝑥. (3.13)

Let us verify that {‖∇𝑢𝑛‖𝑞} is bounded. On the contrary, we may assume ‖∇𝑢𝑛‖𝑞 → +∞ as 𝑛 →
∞. Define 𝑣𝑛 by (3.10), use the fact 𝐼(𝑢𝑛) = 𝑜𝑛(1) and (3.13), then there holds that ‖∇𝑣𝑛‖𝑝𝑝 = 𝜆 +
𝑜𝑛(1). With the help of [1, Lemma 1], we can also reach a contradiction. This implies {‖∇𝑢𝑛‖𝑞} is
bounded. By Hardy’s inequality, it then follows that

∫ℝ𝑁
|𝑢𝑛|𝑞

(1 + |𝑥|)𝑞 𝑑𝑥 ⩽
(
𝑝

𝑁 − 𝑝

)𝑝
∫ℝ𝑁 |∇𝑢𝑛|𝑞 𝑑𝑥 ⩽ 𝐶.

Notice that 𝐼(𝑢𝑛) = 𝑜𝑛(1), then

∫ℝ𝑁 𝑚2(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 = ∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 − ∫ℝ𝑁 𝑚1(𝑥)|𝑢𝑛|𝑞 𝑑𝑥
⩽ ∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 = ∫ℝ𝑁 𝑎(𝑥)|∇𝑢𝑛|𝑝 𝑑𝑥 + ∫ℝ𝑁 |∇𝑢𝑛|𝑞 𝑑𝑥 + 𝑜𝑛(1) ⩽ 𝐶.

As a result, we get that {𝑢𝑛} is bounded in 𝐸. Then, there exists 𝑢 ∈ 𝐸 such that 𝑢𝑛 ⇀ 𝑢 in 𝐸 as
𝑛 → ∞. Since {𝑢𝑛} ⊂ 𝐸 is a bounded Palais–Smale sequence for 𝐽,

−Δ𝑎𝑝𝑢𝑛 − Δ𝑞𝑢𝑛 = 𝜆𝑚(𝑥)|𝑢𝑛|𝑞−2𝑢𝑛 + 𝑜𝑛(1) in ℝ𝑁. (3.14)

Therefore, we are able to derive that 𝑢 ∈ 𝐸 satisfies the following equation:

−Δ𝑎𝑝𝑢 − Δ𝑞𝑢 = 𝜆𝑚(𝑥)|𝑢|𝑞−2𝑢 in ℝ𝑁. (3.15)

Since the embedding 𝐸 ↪ 𝐷1,𝜉(ℝ𝑁) ↪ 𝐿𝑞∗(ℝ𝑁) is continuous by Lemma 2.3, {𝑢𝑛} is bounded in

𝐿𝑞
∗
(ℝ𝑁) and 𝑢𝑛 ⇀ 𝑢 in 𝐿𝑞

∗
(ℝ𝑁) as 𝑛 → ∞. It follows that {|𝑢𝑛|𝑞} is bounded in 𝐿 𝑁

𝑁−𝑞 (ℝ𝑁) and|𝑢𝑛|𝑞 ⇀ |𝑢|𝑞 in 𝐿 𝑁
𝑁−𝑞 (ℝ𝑁) as 𝑛 → ∞. Due to𝑚1 ∈ 𝐿

𝑁
𝑞 (ℝ𝑁), we have

∫ℝ𝑁 𝑚1(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 = ∫ℝ𝑁 𝑚1(𝑥)|𝑢|𝑞 𝑑𝑥 + 𝑜𝑛(1). (3.16)
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 13

This readily indicates 𝑢 ≠ 0. Otherwise, there holds

∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 = ∫ℝ𝑁 𝑚1(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 − ∫ℝ𝑁 𝑚2(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 ⩽ 𝑜𝑛(1). (3.17)

Since 𝐼(𝑢𝑛) = 𝑜𝑛(1),

∫ℝ𝑁 𝑎(𝑥)|∇𝑢𝑛|𝑝 𝑑𝑥 + ∫ℝ𝑁 |∇𝑢𝑛|𝑞 𝑑𝑥 ⩽ 𝑜𝑛(1).
This in turn gives 𝐽(𝑢𝑛) = 𝑜𝑛(1), which is impossible, because of 𝑚 > 0. Therefore, 𝑢 is a non-
trivial solution to (1.1). Moreover, as a consequence of maximum principle, see [24, Proposition
2.3], we have 𝑢 > 0. Thus, the proof is completed. □

3.2 Case 𝒒 < 𝒑

Next, we are going to deal with the case 𝑞 < 𝑝. In this case, we define

Φ(𝑢) ∶=
1

𝑝 ∫ℝ𝑁 𝑎(𝑥)|∇𝑢|𝑝 𝑑𝑥 + 1𝑞 ∫ℝ𝑁 |∇𝑢|𝑞 𝑑𝑥,
 ∶=

{
𝑢 ∈ 𝐸 ∶

1

𝑞 ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 = 1
}
.

Lemma 3.2. Assume (𝐻) holds,𝑁 ⩾ 2, 1 < 𝑞 < 𝑝 < 𝑁, 𝑎 ∈ 𝐶0,1(ℝ𝑁, [0, +∞)) and 𝑎 ≢ 0. Then,Φ
restricted on  satisfies the Palais–Smale condition at any level 𝑐 ∈ ℝ.

Proof. Let {𝑢𝑛} ⊂ 𝐸 be a Palais–Smale sequence for Φ restricted on  at the level 𝑐 ∈ ℝ. Then,

Φ(𝑢𝑛) = 𝑐 + 𝑜𝑛(1), (Φ∣ )
′(𝑢𝑛) = 𝑜𝑛(1).

The aim is to prove that {𝑢𝑛} is compact in 𝐸. It is straightforward to see that {𝑢𝑛} is bounded in
𝐷1,𝜉(ℝ𝑁), because of {𝑢𝑛} ⊂  . In virtue of Hardy’s inequality, we obtain

∫ℝ𝑁
|𝑢𝑛|𝑞

(1 + |𝑥|)𝑞 𝑑𝑥 ⩽
(
𝑝

𝑁 − 𝑝

)𝑝
∫ℝ𝑁 |∇𝑢𝑛|𝑞 𝑑𝑥 ⩽ 𝐶.

In addition, note that

∫ℝ𝑁 𝑚2(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 = ∫ℝ𝑁 𝑚1(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 − ∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞 𝑑𝑥.
By Hölder’s inequality and Sobolev’s inequality, we have

∫ℝ𝑁 𝑚1(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 ⩽
(
∫ℝ𝑁 |𝑚1|𝑁𝑞 𝑑𝑥

) 𝑞

𝑁
(
∫ℝ𝑁 |𝑢𝑛| 𝑞𝑁𝑁−𝑞 𝑑𝑥

)𝑁−𝑞

𝑁

⩽ 𝐶

(
∫ℝ𝑁 |𝑚1|𝑁𝑞 𝑑𝑥

) 𝑞

𝑁

∫ℝ𝑁 |∇𝑢𝑛|𝑞 𝑑𝑥 ⩽ 𝐶.
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14 GOU and RĂDULESCU

Accordingly, we obtain that {𝑢𝑛} is bounded in 𝐸. It then yields that there exists 𝑢 ∈ 𝐸 such that
𝑢𝑛 ⇀ 𝑢 in 𝐸 as 𝑛 → ∞. Since the embedding 𝐸 ↪ 𝐿𝑞∗(ℝ𝑁) is continuous, {𝑢𝑛} is bounded in

𝐿𝑞
∗
(ℝ𝑁) and 𝑢𝑛 ⇀ 𝑢 in 𝐿𝑞

∗
(ℝ𝑁) as 𝑛 → ∞. It then follows that {|𝑢𝑛|𝑞} is bounded in 𝐿 𝑁

𝑁−𝑞 (ℝ𝑁)

and |𝑢𝑛|𝑞 ⇀ |𝑢|𝑞 in 𝐿 𝑁
𝑁−𝑞 (ℝ𝑁) as 𝑛 → ∞. Due to𝑚1 ∈ 𝐿

𝑁
𝑞 (ℝ𝑁),

∫ℝ𝑁 𝑚1(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 = ∫ℝ𝑁 𝑚1(𝑥)|𝑢|𝑞 𝑑𝑥 + 𝑜𝑛(1). (3.18)

It readily indicates that 𝑢 ≠ 0. Otherwise, by (3.18), there holds that

𝑞 = ∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 = ∫ℝ𝑁 𝑚1(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 − ∫ℝ𝑁 𝑚2(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 ⩽ 𝑜𝑛(1). (3.19)

This is impossible. Since {𝑢𝑛} ⊂ 𝐸 is a bounded Palais–Smale sequence forΦ restricted on , there
exists a sequence {𝜆𝑛} ⊂ ℝ such that 𝑢𝑛 ∈ 𝐸 satisfies the equation

−Δ𝑎𝑝𝑢𝑛 − Δ𝑞𝑢𝑛 = 𝜆𝑛𝑚(𝑥)|𝑢𝑛|𝑞−2𝑢𝑛 + 𝑜𝑛(1) in ℝ𝑁, (3.20)

where

𝜆𝑛 =
1

𝑞 ∫ℝ𝑁 𝑎(𝑥)|∇𝑢𝑛|𝑝 𝑑𝑥 + 1𝑞 ∫ℝ𝑁 |∇𝑢𝑛|𝑞 𝑑𝑥 + 𝑜𝑛(1).
Notice that {𝑢𝑛} is bounded in 𝐷1,𝜉(ℝ𝑁), then {𝜆𝑛} is bounded in ℝ and there exists 𝜆 ∈ ℝ such
that 𝜆𝑛 → 𝜆 in ℝ as 𝑛 → ∞. Furthermore, 𝑢 ∈ 𝐸 and it satisfies the equation

−Δ𝑎𝑝𝑢 − Δ𝑞𝑢 = 𝜆𝑚(𝑥)|𝑢|𝑞−2𝑢 in ℝ𝑁. (3.21)

Thanks to 𝑢 ≠ 0, we then have 𝜆 > 0. Taking into account (3.20) and (3.21), we conclude

∫ℝ𝑁
(
𝑎(𝑥)

(|∇𝑢𝑛|𝑝−2∇𝑢𝑛 − |∇𝑢|𝑝−2∇𝑢) + (|∇𝑢𝑛|𝑞−2∇𝑢𝑛 − |∇𝑢|𝑞−2∇𝑢)) ⋅ (∇𝑢𝑛 − ∇𝑢) 𝑑𝑥
= 𝜆𝑛 ∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞−2𝑢𝑛(𝑢𝑛 − 𝑢) 𝑑𝑥 − 𝜆 ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞−2𝑢(𝑢𝑛 − 𝑢) 𝑑𝑥 + 𝑜𝑛(1)
= (𝜆𝑛 − 𝜆)∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞−2𝑢𝑛(𝑢𝑛 − 𝑢) 𝑑𝑥
+ 𝜆 ∫ℝ𝑁 𝑚(𝑥)

(|𝑢𝑛|𝑞−2𝑢𝑛 − |𝑢|𝑞−2𝑢)(𝑢𝑛 − 𝑢) 𝑑𝑥 + 𝑜𝑛(1). (3.22)

Observe first that

||||∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞−2𝑢𝑛(𝑢𝑛 − 𝑢) 𝑑𝑥|||| ⩽ ||||∫ℝ𝑁 𝑚1(𝑥)|𝑢𝑛|𝑞−2𝑢𝑛(𝑢𝑛 − 𝑢) 𝑑𝑥||||
+
||||∫ℝ𝑁 𝑚2(𝑥)|𝑢𝑛|𝑞−2𝑢𝑛(𝑢𝑛 − 𝑢) 𝑑𝑥||||.
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 15

In addition, we see

||||∫ℝ𝑁 𝑚1(𝑥)|𝑢𝑛|𝑞−2𝑢𝑛(𝑢𝑛 − 𝑢) 𝑑𝑥||||
⩽

(
∫ℝ𝑁 |𝑚1|𝑁𝑞 𝑑𝑥

) 𝑞

𝑁
(
∫ℝ𝑁 |𝑢𝑛|𝑞∗ 𝑑𝑥

) 𝑞−1

𝑞∗
(
∫ℝ𝑁 |𝑢𝑛 − 𝑢|𝑞∗ 𝑑𝑥

) 1
𝑞∗

,

||||∫ℝ𝑁 𝑚2(𝑥)|𝑢𝑛|𝑞−2𝑢𝑛(𝑢𝑛 − 𝑢) 𝑑𝑥||||
⩽

(
∫ℝ𝑁 𝑚2(𝑥)|𝑢𝑛|𝑞 𝑑𝑥

) 𝑞−1

𝑞
(
∫ℝ𝑁 𝑚2(𝑥)|𝑢|𝑞 𝑑𝑥

) 1
𝑞

+ ∫ℝ𝑁 𝑚2(𝑥)|𝑢𝑛|𝑞 𝑑𝑥.
Therefore, utilizing the fact that {𝑢𝑛} is bonded in 𝐸, we get

||||∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞−2𝑢𝑛(𝑢𝑛 − 𝑢) 𝑑𝑥|||| ⩽ 𝐶.
It necessarily follows that

(𝜆𝑛 − 𝜆)∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞−2𝑢𝑛(𝑢𝑛 − 𝑢) 𝑑𝑥 = 𝑜𝑛(1). (3.23)

Note that𝑢𝑛 ⇀ 𝑢 in𝐸 as𝑛 → ∞, then𝑢𝑛 ⇀ 𝑢 in𝐷1,𝑞(ℝ𝑁) as𝑛 → ∞.We then deduce that𝑢𝑛 → 𝑢
in 𝐿𝑞

𝑙𝑜𝑐
(ℝ𝑁) as 𝑛 → ∞. As a consequence, we have

∫𝐵(0,𝑅) 𝑚(𝑥)
(|𝑢𝑛|𝑞−2𝑢𝑛 − |𝑢|𝑞−2𝑢)(𝑢𝑛 − 𝑢) 𝑑𝑥 = 𝑜𝑛(1). (3.24)

On the other hand, by Hölder’s inequality and Sobolev’s inequality, we get

∫ℝ𝑁∖𝐵(0,𝑅) 𝑚(𝑥)
(|𝑢𝑛|𝑞−2𝑢𝑛 − |𝑢|𝑞−2𝑢)(𝑢𝑛 − 𝑢) 𝑑𝑥

⩽

(
∫ℝ𝑁∖𝐵(0,𝑅) |𝑚1|𝑁𝑞 𝑑𝑥

) 𝑞

𝑁 (‖𝑢𝑛‖𝑞−1𝑞∗ + ‖𝑢‖𝑞−1
𝑞∗

)‖𝑢𝑛 − 𝑢‖𝑞∗
⩽ 𝐶

(
∫ℝ𝑁∖𝐵(0,𝑅) |𝑚1|𝑁𝑞 𝑑𝑥

) 𝑞

𝑁 (‖∇𝑢𝑛‖𝑞−1𝑞 + ‖∇𝑢‖𝑞−1𝑞 )‖∇𝑢𝑛 − ∇𝑢‖𝑞 = 𝑜𝑅(1),
(3.25)

where we also used the facts(|𝑠|𝑞−2𝑠 − |𝑡|𝑞−2𝑡)(𝑠 − 𝑡) ⩾ 0, ∀ 𝑠, 𝑡 ∈ ℝ, 𝑞 > 1,
∫ℝ𝑁∖𝐵(0,𝑅) |𝑚1|𝑁𝑞 𝑑𝑥 = 𝑜𝑅(1),
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16 GOU and RĂDULESCU

where the second fact holds because of𝑚1 ∈ 𝐿
𝑁
𝑞 (ℝ𝑁) from the assumption (𝐻). Combining (3.23),

(3.24) and (3.25), by (3.22), we then obtain

∫ℝ𝑁
(
𝑎(𝑥)

(|∇𝑢𝑛|𝑝−2∇𝑢𝑛 − |∇𝑢|𝑝−2∇𝑢) + (|∇𝑢𝑛|𝑞−2∇𝑢𝑛 − |∇𝑢|𝑞−2∇𝑢)) ⋅ (∇𝑢𝑛 − ∇𝑢) 𝑑𝑥 = 𝑜𝑛(1).
Observe that

|𝑧1 − 𝑧2|𝑟 ⩽ 𝐶((|𝑧1|𝑟−2𝑧1 − |𝑧2|𝑟−2𝑧2) ⋅ (𝑧1 − 𝑧2)) 𝜃2 (|𝑧1|𝑟 + |𝑧2|𝑟)1− 𝜃2 , ∀ 𝑧1, 𝑧2 ∈ ℝ𝑁, (3.26)

where 𝜃 = 𝑟 if 1 < 𝑟 < 2 and 𝜃 = 2 if 𝑟 ⩾ 2. Then, we see

∫ℝ𝑁 𝑎(𝑥)(|∇𝑢𝑛 − ∇𝑢|𝑝) 𝑑𝑥 + ∫ℝ𝑁 |∇𝑢𝑛 − ∇𝑢|𝑞 𝑑𝑥
⩽ 𝐶

(
∫ℝ𝑁 𝑎(𝑥)

(|∇𝑢𝑛|𝑝−2∇𝑢𝑛 − |∇𝑢|𝑝−2∇𝑢) ⋅ (∇𝑢𝑛 − ∇𝑢) 𝑑𝑥) 𝜃

2
(
∫ℝ𝑁 𝑎(𝑥)(|∇𝑢𝑛|𝑝 + |∇𝑢|𝑝) 𝑑𝑥)1− 𝜃2

+ 𝐶

(
∫ℝ𝑁

(|∇𝑢𝑛|𝑞−2∇𝑢𝑛 − |∇𝑢|𝑞−2∇𝑢) ⋅ (∇𝑢𝑛 − ∇𝑢) 𝑑𝑥) 𝜃

2
(
∫ℝ𝑁 |∇𝑢𝑛|𝑞 + |∇𝑢|𝑞 𝑑𝑥)1− 𝜃2 = 𝑜𝑛(1).

This immediately indicates that 𝑢𝑛 → 𝑢 in 𝐷1,𝜉(ℝ𝑁) as 𝑛 → ∞. Taking advantage of (3.20) and
(3.21), we then get

∫ℝ𝑁 𝑚(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 = ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 + 𝑜𝑛(1),
because of 𝜆𝑛 = 𝜆 + 𝑜𝑛(1) and 𝜆 ≠ 0. In view of (3.18),

∫ℝ𝑁 𝑚2(𝑥)|𝑢𝑛|𝑞 𝑑𝑥 = ∫ℝ𝑁 𝑚2(𝑥)|𝑢|𝑞 𝑑𝑥 + 𝑜𝑛(1).
Since 𝑢𝑛 → 𝑢 in 𝐷1,𝑞(ℝ𝑁) as 𝑛 → ∞, by Hardy’s inequality,

∫ℝ𝑁
|𝑢𝑛 − 𝑢|𝑞
(1 + |𝑥|)𝑞 𝑑𝑥 ⩽

(
𝑝

𝑁 − 𝑝

)𝑝
∫ℝ𝑁 |∇𝑢𝑛 − ∇𝑢|𝑞 𝑑𝑥 = 𝑜𝑛(1).

Consequently, we derive that 𝑢𝑛 → 𝑢 in 𝐸 as 𝑛 → ∞. Thus, the proof is completed. □

Theorem 3.4. Assume (𝐻) holds,𝑁 ⩾ 2, 1 < 𝑞 < 𝑝 < 𝑁, 𝑎 ∈ 𝐶0,1(ℝ𝑁, [0, +∞)) and 𝑎 ≢ 0. Then,
there exists a sequence of solutions (𝜆𝑘, 𝑢𝑘) ∈ ℝ × 𝐸 with 𝑢𝑘 ∈  and

0 < 𝜆1 < 𝜆2 ⩽⋯ ⩽ 𝜆𝑘 ⩽ ⋯ , lim
𝑘→∞

𝜆𝑘 → +∞ as 𝑘 → +∞.

Proof. To establish the existence of a sequence of eigenvalues to (1.1), we shall take into account
Ljusternik–Schnirelman theory in [2]. Define

Σ ∶= {𝐴 ⊂  ∶ 𝐴 is compact and 𝐴 = −𝐴}.
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 17

For a set 𝐴 ∈ Σ, the genus of 𝐴 is defined by

𝛾(𝐴) ∶= min {𝑛 ∈ ℕ ∶ exists a function 𝜑 ∈ 𝐶(𝐴,ℝ𝑛∖{0}) satisfying 𝜑(−𝑥) = −𝜑(𝑥)}.

If such a minimum does not exist, we set 𝛾(𝐴) = +∞.
Let us now define

Σ𝑘 ∶= {𝐴 ∈ Σ ∶ 𝛾(𝐴) ⩾ 𝑘}, ∀ 𝑘 ∈ ℕ
+.

First we see that, for any 𝑘 ∈ ℕ+, Σ𝑘 ≠ ∅. Indeed, let 𝑋𝑘 be a 𝑘-dimensional subspace of 𝐸, by
Borsuk–Ulam’s theorem, then 𝛾( ∩ 𝑋𝑘) ⩾ 𝑘. Define

�̃�𝑘 ∶= inf
𝐴∈Σ𝑘

sup
𝑢∈𝐴
Φ(𝑢).

Since Σ𝑘+1 ⊂ Σ𝑘, �̃�𝑘 ⩽ �̃�𝑘+1 for any 𝑘 ∈ ℕ+. From Lemma 3.2, �̃�𝑘 is a critical point of 𝐽 restricted
on  for any 𝑘 ∈ ℕ+. Then, we derive that

0 < �̃�1 < �̃�2 ⩽ ⋯ ⩽ �̃�𝑘 ⩽ �̃�𝑘+1 ⩽ ⋯ .

Next we prove �̃�𝑘 → +∞ as 𝑘 → +∞. Let {𝑒𝑖} ⊂ 𝐸 be such that𝐸 = span{𝑒1, 𝑒2, … , 𝑒𝑖, …}. Let {𝑒′𝑖 } ⊂
𝐸 be such that 𝐸′ = span{𝑒′

1
, 𝑒′
2
, … , 𝑒′

𝑖
, …}, where 𝐸′ denotes the dual space of 𝐸. Define 𝑋𝑖 ∶=

span{𝑒𝑖} and

𝑌𝑘 ∶=

𝑘⨁
𝑖=1

𝑋𝑖, 𝑍𝑘 ∶=

∞⨁
𝑖=𝑘

𝑋𝑖, ∀ 𝑘 ∈ ℕ
+.

Let 𝐴 ∈ Σ𝑘 satisfy 𝛾(𝐴) ⩾ 𝑘. By basic properties of the genus, we have 𝐴 ∩ 𝑍𝑘 ≠ ∅. Define
𝛽𝑘 ∶= inf

𝐴∈Σ𝑘
sup
𝑢∈𝐴∩𝑍𝑘

𝐽(𝑢), ∀ 𝑘 ∈ ℕ+.

Then, 𝛽𝑘 → +∞ as 𝑘 → ∞. Otherwise, we may assume {𝛽𝑘} ⊂ ℝ is bounded. Thus, there exists a
sequence {𝑢𝑘} ⊂ 𝐴 ∩ 𝑍𝑘 such that {Φ(𝑢𝑘)} ⊂ ℝ is bounded. It then follows that {𝑢𝑘} is bounded in
𝐸. Further, there exists 𝑢 ∈ 𝐸 such that 𝑢𝑘 ⇀ 𝑢 in 𝐸 as 𝑛 → ∞. Observe that ⟨𝑒′𝑖 , 𝑢⟩ = ⟨𝑒′

𝑖
, 𝑢𝑘⟩ +

𝑜𝑘(1) = 𝑜𝑘(1), because of 𝑢𝑘 ∈ 𝑍𝑘. Therefore, we have 𝑢 = 0 and 𝑢𝑘 ⇀ 0 in 𝐸 as 𝑘 → ∞. This

along with the assumption that𝑚1 ∈ 𝐿
𝑁
𝑞 (ℝ𝑁) from the assumption (𝐻) leads to

∫ℝ𝑁 𝑚1(𝑥)|𝑢𝑘|𝑞 𝑑𝑥 = 𝑜𝑘(1).
Since𝑚2 ⩾ 0 from the assumption (𝐻),

∫ℝ𝑁 𝑚(𝑥)|𝑢𝑘|𝑞 𝑑𝑥 = ∫ℝ𝑁 𝑚1(𝑥)|𝑢𝑘|𝑞 𝑑𝑥 − ∫ℝ𝑁 𝑚2(𝑥)|𝑢𝑘|𝑞 𝑑𝑥 ⩽ 𝑜𝑘(1),
which is impossible due to 𝑢𝑘 ∈  . Consequently, we get that 𝛽𝑘 → +∞ as 𝑘 → ∞. Thanks to
�̃�𝑘 ⩾ 𝛽𝑘 for any 𝑘 ∈ ℕ+, �̃�𝑘 → +∞ as 𝑘 → ∞. Since 𝑢𝑘 ∈ 𝐸 is a critical point for 𝐸 restricted on  ,
there exists 𝜆𝑘 ∈ ℝ such that

−Δ𝑎𝑝𝑢𝑘 − Δ𝑞𝑢𝑘 = 𝜆𝑘𝑚(𝑥)|𝑢𝑘|𝑞−2𝑢𝑘 in ℝ𝑁,
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18 GOU and RĂDULESCU

where

𝜆𝑘 =
1

𝑞 ∫ℝ𝑁 𝑎(𝑥)|∇𝑢𝑘|𝑝 𝑑𝑥 + 1𝑞 ∫ℝ𝑁 |∇𝑢𝑘|𝑞 𝑑𝑥 > Φ(𝑢𝑘) = �̃�𝑘, ∀ 𝑘 ∈ ℕ+.
Thus, the proof is completed. □

Lemma 3.3. Define

𝐼(𝑢, 𝑣) ∶ = −∫ℝ𝑁
(
Δ𝑎𝑝𝑢

)
𝑢𝑞 − 𝑣𝑞

𝑢𝑞−1
𝑑𝑥 − ∫ℝ𝑁

(
Δ𝑞𝑢

)𝑢𝑞 − 𝑣𝑞
𝑢𝑞−1

𝑑𝑥

− ∫ℝ𝑁
(
Δ𝑎𝑝𝑣

)
𝑣𝑞 − 𝑢𝑞

𝑣𝑞−1
𝑑𝑥 − ∫ℝ𝑁

(
Δ𝑞𝑣

)𝑣𝑞 − 𝑢𝑞
𝑣𝑞−1

𝑑𝑥,

(3.27)

where 𝑢, 𝑣 ∈ 𝐷1,𝜉(ℝ𝑁), 𝑢, 𝑣 > 0 and 1 < 𝑞 < 𝑝. Then, 𝐼(𝑢, 𝑣) ⩾ 0. Moreover, 𝐼(𝑢, 𝑣) = 0 if and only
if 𝑢 = 𝑘𝑣 for some 𝑘 ∈ ℝ.

Proof. Let us first show

𝐼1(𝑢, 𝑣) ∶= −∫ℝ𝑁
(
Δ𝑎𝑝𝑢

)
𝑢𝑞 − 𝑣𝑞

𝑢𝑞−1
𝑑𝑥 − ∫ℝ𝑁

(
Δ𝑎𝑝𝑣

)
𝑣𝑞 − 𝑢𝑞

𝑣𝑞−1
𝑑𝑥 ⩾ 0, 𝑢, 𝑣 ∈ 𝐷1,𝜉(ℝ𝑁), 𝑢, 𝑣 > 0.

It is straightforward to compute

∇

(
𝑢𝑞 − 𝑣𝑞

𝑢𝑞−1

)
=
(
1 + (𝑞 − 1)

(
𝑣

𝑢

)𝑞)
∇𝑢 − 𝑞

(
𝑣

𝑢

)𝑞−1
∇𝑣, (3.28)

∇

(
𝑣𝑞 − 𝑢𝑞

𝑣𝑞−1

)
=
(
1 + (𝑞 − 1)

(
𝑢

𝑣

)𝑞)
∇𝑣 − 𝑞

(
𝑢

𝑣

)𝑞−1
∇𝑢. (3.29)

Therefore, by the divergence theorem, we derive that

𝐼1(𝑢, 𝑣) = ∫ℝ𝑁 𝑎(𝑥)
((
1 + (𝑞 − 1)

(
𝑣

𝑢

)𝑞)|∇𝑢|𝑝 − 𝑞(𝑣
𝑢

)𝑞−1|∇𝑢|𝑝−2∇𝑢 ⋅∇𝑣) 𝑑𝑥
+ ∫ℝ𝑁 𝑎(𝑥)

((
1 + (𝑞 − 1)

(
𝑢

𝑣

)𝑞)|∇𝑣|𝑝 − 𝑞(𝑢
𝑣

)𝑞−1|∇𝑣|𝑝−2∇𝑣 ⋅∇𝑢) 𝑑𝑥.
Using Young’s inequality, we know that

𝑞
(
𝑣

𝑢

)𝑞−1|∇𝑢|𝑝−2|∇𝑢 ⋅∇𝑣| ⩽ 𝑞(𝑣
𝑢

)𝑞−1|∇𝑢|𝑝−1|∇𝑣|
⩽
𝑞(𝑝 − 1)

𝑝

(
𝑣

𝑢

) 𝑝(𝑞−1)
𝑝−1 |∇𝑢|𝑝 + 𝑞

𝑝
|∇𝑣|𝑝

=
𝑞(𝑝 − 1)

𝑝

(
𝑣

𝑢

) 𝑝(𝑞−1)
𝑝−1 |∇𝑢| 𝑝2(𝑞−1)𝑞(𝑝−1) |∇𝑢| 𝑝(𝑝−𝑞)𝑞(𝑝−1) +

𝑞

𝑝
|∇𝑣|𝑝

⩽ (𝑞 − 1)
(
𝑣

𝑢

)𝑞|∇𝑢|𝑝 + 𝑝 − 𝑞
𝑝

|∇𝑢|𝑝 + 𝑞
𝑝
|∇𝑣|𝑝.
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NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 19

Similarly, we can get

𝑞
(
𝑢

𝑣

)𝑞−1|∇𝑣|𝑝−2|∇𝑣 ⋅∇𝑢| ⩽ 𝑞(𝑢
𝑣

)𝑞−1|∇𝑣|𝑝−1|∇𝑢| ⩽ (𝑞 − 1)(𝑢
𝑣

)𝑞|∇𝑣|𝑝 + 𝑝 − 𝑞
𝑝

|∇𝑣|𝑝 + 𝑞
𝑝
|∇𝑢|𝑝.

It then follows that 𝐼1(𝑢, 𝑣) ⩾ 0. Next, we prove that

𝐼2(𝑢, 𝑣) ∶= −∫ℝ𝑁
(
Δ𝑞𝑢

)𝑢𝑞 − 𝑣𝑞
𝑢𝑞−1

𝑑𝑥 − ∫ℝ𝑁
(
Δ𝑞𝑣

)𝑣𝑞 − 𝑢𝑞
𝑣𝑞−1

𝑑𝑥 ⩾ 0, 𝑢, 𝑣 ∈ 𝐷1,𝜉(ℝ𝑁), 𝑢, 𝑣 > 0.

In view of (3.28) and (3.29), by the divergence theorem,

𝐼2(𝑢, 𝑣) = ∫ℝ𝑁
(
1 + (𝑞 − 1)

(
𝑣

𝑢

)𝑞)|∇𝑢|𝑞 − 𝑞(𝑣
𝑢

)𝑞−1|∇𝑢|𝑞−2∇𝑢 ⋅∇𝑣 𝑑𝑥
+ ∫ℝ𝑁

(
1 + (𝑞 − 1)

(
𝑢

𝑣

)𝑞)|∇𝑣|𝑞 − 𝑞(𝑢
𝑣

)𝑞−1|∇𝑣|𝑞−2∇𝑣 ⋅∇𝑢 𝑑𝑥.
Using again Young’s inequality, we obtain

𝑞
(
𝑣

𝑢

)𝑞−1|∇𝑢|𝑞−2|∇𝑢 ⋅∇𝑣| ⩽ 𝑞(𝑣
𝑢

)𝑞−1|∇𝑢|𝑞−1|∇𝑣| ⩽ (𝑞 − 1)(𝑣
𝑢

)𝑞|∇𝑢|𝑞 + |∇𝑣|𝑞,
𝑞
(
𝑢

𝑣

)𝑞−1|∇𝑣|𝑞−2|∇𝑣 ⋅∇𝑢| ⩽ 𝑞(𝑢
𝑣

)𝑞−1|∇𝑣|𝑞−1|∇𝑢| ⩽ (𝑞 − 1)(𝑢
𝑣

)𝑞|∇𝑣|𝑞 + |∇𝑢|𝑞.
Therefore, we have 𝐼2(𝑢, 𝑣) = 0. Accordingly, there holds that 𝐼(𝑢, 𝑣) ⩾ 0 for any 𝑢, 𝑣 ∈ 𝐷1,𝜉(ℝ𝑁)
and 𝑢, 𝑣 > 0. If 𝐼(𝑢, 𝑣) = 0, then 𝐼2(𝑢, 𝑣) = 0. This leads to

∇𝑢 ⋅∇𝑣 = |∇𝑢||∇𝑣|, (
𝑣

𝑢

)𝑞|∇𝑢|𝑞 = |∇𝑣|𝑞, (
𝑢

𝑣

)𝑞|∇𝑣|𝑞 = |∇𝑢|𝑞,
As a consequence, we see that

|𝑢∇𝑣 − 𝑣∇𝑢| = 0.
This implies that there exists 𝑘 ∈ ℝ such that 𝑢 = 𝑘𝑣 and the proof is completed. □

Remark 3.1. In fact, Lemma 3.3 is established for the double phase operator under the assumption
𝑞 < 𝑝, which is not a direct consequence of Lemma 3.1. It is unknown to us if Lemma 3.3 remains
valid for the case 𝑝 < 𝑞. From the proof of Lemma 3.3, one can see that the assumption 𝑞 < 𝑝 is
crucial, which is the premise of the use of Young’s inequality.

Proposition 3.2. Assume (𝐻) holds, 𝑁 ⩾ 2, 1 < 𝑞 < 𝑝 < 𝑁, 𝑝
𝑞
< 1 + 1

𝑁
, 𝑎 ∈ 𝐶0,1(ℝ𝑁, [0, +∞))

and 𝑎 ≢ 0. Assume that any eigenfunction to (1.1) corresponding to 𝜆 is non-negative. Then, 𝜆
is simple.

Proof. Let 𝑢 ∈ 𝐸 be a non-negative eigenfunction to (1.1) corresponding to 𝜆. It follows from
[8] and [23, Proposition 3] or [24, Proposition 2.3] that 𝑢 > 0. Let 𝑢 > 0 and 𝑣 > 0 be two
eigenfunctions to (1.1) corresponding to 𝜆. Then, we see that

−Δ𝑎𝑝𝑢 − Δ𝑞𝑢 = 𝜆𝑚(𝑥)𝑢
𝑞−1, −Δ𝑎𝑝𝑣 − Δ𝑞𝑣 = 𝜆𝑚(𝑥)𝑣

𝑞−1 in ℝ𝑁.
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20 GOU and RĂDULESCU

As a result, there holds that

𝐼(𝑢, 𝑣) = 𝜆 ∫ℝ𝑁 𝑚(𝑥)(𝑢
𝑞 − 𝑣𝑞) 𝑑𝑥 + 𝜆 ∫ℝ𝑁 𝑚(𝑥)(𝑣

𝑞 − 𝑢𝑞) 𝑑𝑥 = 0.

It then follows from Lemma 3.3 that the desired conclusion holds. This completes the proof. □

Proposition 3.3. Assume (𝐻) holds,𝑁 ⩾ 2, 1 < 𝑝, 𝑞 < 𝑁,𝑝 ≠ 𝑞,𝑎 ∈ 𝐶0,1(ℝ𝑁, [0, +∞)) and𝑎 ≢ 0.
Then,

𝜇1,𝑞,1 = inf

⎧⎪⎨⎪⎩
1

𝑝
∫
ℝ𝑁
𝑎(𝑥)|∇𝑢|𝑝 𝑑𝑥 + 1

𝑞
∫
ℝ𝑁

|∇𝑢|𝑞 𝑑𝑥
1

𝑞
∫
ℝ𝑁
𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 ∶ 𝑢 ∈ 𝐸∖{0}, ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 > 0

⎫⎪⎬⎪⎭.
Proof. Since 𝜇1,𝑞,1 is the first eigenvalue to (3.1) and 𝐸 ⊂ 𝐷1,𝑞(ℝ𝑁),

𝜇1,𝑞,1 = inf

{ ∫
ℝ𝑁

|∇𝑢|𝑞 𝑑𝑥
∫
ℝ𝑁
𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 ∶ 𝑢 ∈ 𝐷1,𝑞(ℝ𝑁)∖{0}, ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 > 0

}

⩽ inf

⎧⎪⎨⎪⎩
1

𝑝
∫
ℝ𝑁
𝑎(𝑥)|∇𝑢1,𝑞,1|𝑝 𝑑𝑥 + 1𝑞 ∫ℝ𝑁 |∇𝑢|𝑞 𝑑𝑥

1

𝑞
∫
ℝ𝑁
𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 ∶ 𝑢 ∈ 𝐸∖{0}, ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 > 0

⎫⎪⎬⎪⎭.
Let 𝑢1,𝑞,1 ∈ 𝐸 be an eigenfunction to (3.1) corresponding to 𝜇1,𝑞,1 and 𝑝 < 𝑞, then

inf

⎧⎪⎨⎪⎩
1

𝑝
∫
ℝ𝑁
𝑎(𝑥)|∇𝑢|𝑝 𝑑𝑥 + 1

𝑞
∫
ℝ𝑁

|∇𝑢|𝑞 𝑑𝑥
1

𝑞
∫
ℝ𝑁
𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 ∶ 𝑢 ∈ 𝐸∖{0}, ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 > 0

⎫⎪⎬⎪⎭
⩽

𝑛𝑝

𝑝
∫
ℝ𝑁
𝑎(𝑥)|∇𝑢1,𝑞,1|𝑝 𝑑𝑥 + 𝑛𝑞𝑞 ∫

ℝ𝑁
|∇𝑢1,𝑞,1|𝑞 𝑑𝑥

𝑛𝑞

𝑞
∫
ℝ𝑁
𝑚(𝑥)|𝑢1,𝑞,1|𝑞 𝑑𝑥 = 𝜇1,𝑞,1 + 𝑜𝑛(1) as 𝑛 → ∞.

Similarly, if 𝑞 < 𝑝, then

inf

⎧⎪⎨⎪⎩
1

𝑝
∫
ℝ𝑁
𝑎(𝑥)|∇𝑢|𝑝 𝑑𝑥 + 1

𝑞
∫
ℝ𝑁

|∇𝑢|𝑞 𝑑𝑥
1

𝑞
∫
ℝ𝑁
𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 ∶ 𝑢 ∈ 𝐸∖{0}, ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 > 0

⎫⎪⎬⎪⎭
⩽

1

𝑝𝑛𝑝
∫
ℝ𝑁
𝑎(𝑥)|∇𝑢1,𝑞,1|𝑝 𝑑𝑥 + 1

𝑞𝑛𝑞
∫
ℝ𝑁

|∇𝑢1,𝑞,1|𝑞 𝑑𝑥
1

𝑞𝑛𝑞
∫
ℝ𝑁
𝑚(𝑥)|𝑢1,𝑞,1|𝑞 𝑑𝑥 = 𝜇1,𝑞,1 + 𝑜𝑛(1) as 𝑛 → ∞.

Thus, the desired result follows and the proof is completed. □

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12961 by C

ochrane R
om

ania, W
iley O

nline L
ibrary on [05/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NON-AUTONOMOUS DOUBLE PHASE EIGENVALUE PROBLEMS 21

Remark 3.2. Under the assumptions of Theorem 3.4, by Theorem 3.2 and Proposition 3.3, we have

𝜆1 > inf

⎧⎪⎨⎪⎩
1

𝑝
∫
ℝ𝑁
𝑎(𝑥)|∇𝑢|𝑝 𝑑𝑥 + 1

𝑞
∫
ℝ𝑁

|∇𝑢|𝑞 𝑑𝑥
1

𝑞
∫
ℝ𝑁
𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 ∶ 𝑢 ∈ 𝐸∖{0}, ∫ℝ𝑁 𝑚(𝑥)|𝑢|𝑞 𝑑𝑥 > 0

⎫⎪⎬⎪⎭.
Remark 3.3. The arguments developed in this paper allow to obtain similar results if the hypothesis
(𝐻) is replaced by the following condition introduced by Szulkin and Willem [27],

() 𝑚 ∈ 𝐿1
𝑙𝑜𝑐
(ℝ𝑁), 𝑚+ = 𝑚1 + 𝑚2 ≠ 0, 𝑚1 ∈ 𝐿

𝑁
𝑞 (ℝ𝑁), for every 𝑦 ∈ ℝ𝑁 , lim𝑥→𝑦 |𝑥 −

𝑦|𝑞𝑚2(𝑥) = 0 and lim|𝑥|→∞ |𝑥|𝑞𝑚2(𝑥) = 0, where𝑚+ ∶= max{𝑚(𝑥), 0}.
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