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Regularity of solutions to degenerate fully nonlinear elliptic
equations with variable exponent

Yuzhou Fang, Vicenţiu D. Rădulescu and Chao Zhang

Abstract

We consider the fully nonlinear equation with variable-exponent double phase type degeneracies
[
|Du|p(x) + a(x)|Du|q(x)

]
F (D2u) = f(x).

Under some appropriate assumptions, by making use of geometric tangential methods and
combing a refined improvement-of-flatness approach with compactness and scaling techniques,
we obtain the sharp local C1,α regularity of viscosity solutions to such equations.

1. Introduction

In this paper, we are concerned with the local regularity properties for solutions of the following
fully nonlinear elliptic equation[

|Du|p(x) + a(x)|Du|q(x)
]
F (D2u) = f(x) in Ω, (1.1)

where F (·) is a uniformly (λ,Λ)-elliptic operator and Ω ⊂ R
n (n � 2) is a bounded domain.

Equation (1.1) features an inhomogeneous degenerate term modelled on the double phase
integrand with variable exponents

H(x, ξ) = |ξ|p(x) + a(x)|ξ|q(x), q(x) � p(x) > 1, a(x) � 0, ∀x ∈ Ω. (1.2)

From a variational point of view, (1.2) is closely related to the energy functional

u �→
∫

(|Du|p(x) + a(x)|Du|q(x)) dx, (1.3)

which can be regarded as a combination of the p(x)-growth functional and double phase
possessing not only the mild phase transition but also the drastic phase transition. Such
functionals were initially introduced by Zhikov in the context of homogenization (see [30,
31]). They provide useful models for strongly anisotropic materials whose hardening properties
relevant to the exponents determining the growth order of the gradient variable switches
according to the position.

These functionals with nonstandard growth conditions

u �→
∫

Ω

F (x, u,Du) dx, ν|ξ|p � F (x, u, ξ) � L(|ξ|q + 1),
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starting with the pioneering works of Marcellini [21–23], have been a surge of interest over the
last years. Recently, the study of nonautonomous functionals, especially for the double phase
problems

u �→
∫

Ω

(|Du|p + a(x)|Du|q) dx,

has been continued in a series of remarkable papers, see, for instance, [2, 12, 13] and references
therein. From a purely mathematical point of view, the functional (1.3) is a natural extension
of double phase functional to the variable exponent case. Under the assumptions that

0 � a(·) ∈ C0,γ , 1 < p(·), q(·) ∈ C0,σ, 1 � q(x)
p(x)

< 1 +
β

n

with β := min{γ, σ}, Ragusa and Tachikawa in [25] showed that the minimizer u of (1.3) is
locally C1,α-regular. The boundary regularity results for the variable exponent double phase
problems with Dirichlet boundary conditions were further studied by Tachikawa [29]. On the
other hand, Byun and Lee in [9] considered the inhomogeneous double phase equation with
variable exponents

div(|Du|p(x)−2Du + a(x)|Du|q(x)−2Du) = div(|F |p(x)−2F + a(x)|F |q(x)−2F )

and established the Calderón–Zygmund type estimates

(|F |p(x) + a(x)|F |q(x)) ∈ Lγ
loc(Ω) ⇒ (|Du|p(x) + a(x)|Du|q(x)) ∈ Lγ

loc(Ω), γ > 1

under some suitable conditions. For more results on the double phase problems with variable
exponents, we refer to [10, 20, 26] and references therein.

The nonvariational counterparts of the models that have been mentioned above could be
cast as degenerate fully nonlinear equations. There are an emblematic class of fully nonlinear
equations with degeneracy (or singularity) exhibiting the following type

|Du|pF (D2u) = f. (1.4)

The fairly comprehensive investigation of this kind of fully nonlinear equations has been
carried out. Birindelli and Demengel [3] established the comparison principle and Liouville-
type theorems in the singular setting, and showed the regularity and uniquness of the first
eigenfunction in [4]. Alexandrov–Bakelman–Pucci estimates have also been performed for such
class of equations in [15, 18], which were applied to deduce the Harnack inequality in [16,
18]. In particular, Imbert and Silvestre [19] proved the interior C1,α estimates on the viscosity
solutions to (1.4) by means of an improvement-of-flatness approach, which states that if p � 0,
F (·) is uniformly elliptic as well as the source term f is bounded in Ω, then, for any U ⊂⊂ Ω,
u is C1,α regular in U and it holds that

[u]1+α,U � C

(
‖u‖L∞(Ω) + ‖f‖

1
1+p

L∞(Ω)

)
.

Whereafter, Araújo, Ricarte and Teixeira in [1] studied the optimal regularity for the viscosity
solutions to (1.4), that is, solutions are of class C1,α̂

loc with α̂ = min{α, 1
p+1}. Here α ∈ (0, 1) is the

Hölder index corresponding to the Krylov–Sofonov regularity for the equation F (D2u) = 0. It
is noteworthy to mention that De Filippis in [17] introduced the double phase type degeneracies
to the fully nonlinear equation

[|Du|p + a(x)|Du|q]F (D2u) = f(x), 0 < p � q,

and proved the C1,γ local regularity for viscosity solutions. Moreover, the sharp local C1,γ

geometric regularity estimates for bounded viscosity solutions were obtained by da Silva and
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Ricarte in [27]. Meanwhile, under rather general conditions, Bronzi et al. in [8] proved that
viscosity solutions to the following variable exponent fully nonlinear elliptic equations

|Du|p(x)F (D2u) = f

are locally of class C1,γ for a universal constant γ ∈ (0, 1). We refer the readers to [5–7, 28]
for more related results. In a recent paper, Mingione and Rădulescu [24] provided an overview
of relevant results concerning regularity properties for elliptic variational problems with
nonstandard growth conditions and related to different kinds of nonuniformly elliptic operators.

In this paper, motivated by the results in [8, 17, 27], we consider the fully nonlinear elliptic
equations with variable-exponent nonhomogeneous degeneracy of the form (1.1). By making
use of geometric tangential methods and combing a refined improvement-of-flatness approach
with compactness and scaling techniques, we show that the viscosity solutions to (1.1) are
locally of class C1,α(Ω).

Now we are in position to state our main result of this work.

Theorem 1.1. Suppose u ∈ C(Ω) is a viscosity solution to problem (1.1). Under hypotheses
(A1)–(A4) (see Section 2), there holds that u ∈ C1,α

loc (Ω) for any α verifying

0 < α < min
{
α,

1
1 + supΩ p(x)

}
.

Moreover, we have the following Hölder estimate on the gradient of solution, that is, for any
subdomain Ω′ ⊂⊂ Ω, there is a constant C depending on n, λ,Λ, α,dist(Ω′,Ω) and supΩ p(x)
such that

sup
x,y∈Ω′
x �=y

|Du(x) −Du(y)|
|x− y|α � C

(
1 + ‖u‖L∞(Ω) + ‖f‖

1
1+infΩ p(x)

L∞(Ω)

)
.

This paper is organized as follows. In Section 2, we first collect some basic notations, notions
and present the assumptions on equation (1.1), then explain how to simplify the problem to
a smallness regime. Sections 3 and 4 are devoted to showing the C1,α-regularity properties of
solutions to (1.1).

2. Preliminaries

In this section, we give some hypotheses on equation (1.1) together with definitions of Pucci
operators and viscosity solutions. Additionally, we will explain how to reduce this problem to
a smallness regime.

2.1. Notions and assumptions

Now we give the main assumptions as follows:

(A1) The fully nonlinear operator F : Sym(n) → R is continuous and uniformly (λ,Λ)-
elliptic in the sense that

λ‖N‖ � F (M + N) − F (M) � Λ‖N‖
for some 0 < λ � Λ and each M,N ∈ Sym(n) with N � 0. Here Sym(n) stands for
the set of all n× n real symmetric matrices. Let us suppose F (0) = 0 for convenience.

(A2) The modulating coefficient a(x) satisfies 0 � a(·) ∈ C(Ω).
(A3) We assume that these two variable exponents p(x), q(x) ∈ C(Ω) such that 0 � p(x) �

q(x) < ∞ for all x ∈ Ω.
(A4) The source term f belongs to C(Ω) ∩ L∞(Ω).
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The Pucci extremal operators P±
λ,Λ : Sym(n) → R are defined as

P+
λ,Λ(M) := Λ

∑
λi>0

λi + λ
∑
λi<0

λi

and

P−
λ,Λ(M) := λ

∑
λi>0

λi + Λ
∑
λi<0

λi,

where {λi}n1 are the eigenvalues of matrix M . With the Pucci operators in hand, the (λ,Λ)-
ellipticity of nonlinear operator F can be reformulated as

P−
λ,Λ(N) � F (M + N) − F (M) � P+

λ,Λ(N)

for any M,N ∈ Sym(n).

Definition 2.1. A function u ∈ C(Ω) is called a viscosity supersolution to (1.1), if for all
x0 ∈ Ω and ϕ(x) ∈ C2(Ω) such that u− ϕ attains a local minimum at x0, one has[

|Dϕ(x0)|p(x0) + a(x0)|Dϕ(x0)|q(x0)
]
F (D2ϕ(x0)) � f(x0).

A function u ∈ C(Ω) is a viscosity subsolution if for all x0 ∈ Ω and ϕ(x) ∈ C2(Ω) such that
u− ϕ attains a local maximum at x0, one has[

|Dϕ(x0)|p(x0) + a(x0)|Dϕ(x0)|q(x0)
]
F (D2ϕ(x0)) � f(x0).

We say that u is a viscosity solution to (1.1) if it is viscosity super- and subsolution simulta-
neously.

2.2. Smallness regime

In this part, we will make use of the scaling properties of (1.1) to trace the problem back to a
smallness regime. Namely, without loss of generality, it is possible to assume that

‖u‖L∞(B1) � 1 and ‖f‖L∞(B1) � ε (2.1)

with 0 < ε � 1. We call u a normalized viscosity solution to equation (1.1) if hypothesis (2.1)
holds. In what follows, we check its scaling features that permit us to work under assumption
(2.1). Assume that u is a viscosity solution to (1.1). We define w : B1 → R as

w(x) :=
u(x0 + τx)

K

where x0 ∈ Ω and τ,K are two positive constants to be fixed later. We can check readily that
w solves in the viscosity sense[

|Dw|p̃(x) + ã(x)|Dw|q̃(x)
]
F̃ (D2w) = f̃(x) in B1.

Here the notations p̃(x), q̃(x), ã(x), F̃ (M), and f̃(x) are defined by

p̃(x) = p(x0 + τx), q̃(x) = q(x0 + τx),

ã(x) =
(
K

τ

)q̃(x)−p̃(x)

a(x0 + τx),

F̃ (M) =
τ2

K
F

(
K

τ2
M

)
,
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f̃(x) =
τ p̃(x)+2

K p̃(x)+1
f(x0 + τx).

Now set

τ := ε
1

2+infΩ p(x)

with 0 < ε < 1 small enough, and

K := 2
(

1 + ‖u‖L∞(Ω) + ‖f‖
1

1+infΩ p(x)

L∞(Ω)

)
.

It is easy to verify that the nonlinear operator F̃ (·) is uniformly (λ,Λ)-elliptic as well. By the
previous definition, there holds that 0 � p̃(x), q̃(x), ã(x) ∈ C(Ω) and p̃(x) � q̃(x). In addition,
we can find that

‖w‖L∞(Ω) � 1 and ‖f̃‖L∞(Ω) � ε.

Therefore, w solves an equation possessing the same structure as (1.1) and then w is in the
smallness regime.

3. C1,α-regularity of solutions

We shall prove in this section that the viscosity solutions to (1.1) are locally of class C1,α(Ω).
Now we first provide the local Hölder continuity of viscosity solutions to the following problem

[
|Du + ξ|p(x) + a(x)|Du + ξ|q(x)

]
F (D2u) = f(x) in B1, (3.1)

where ξ is an arbitrary vector in R
n. Its proof is postponed to the next section.

Proposition 3.1. Assume that u ∈ C(B1) is a normalized viscosity solution to equation

(3.1). Then we conclude that u ∈ C0,β
loc (B1) for some β ∈ (0, 1) and moreover it holds that

[u]0,β;Br
� C

(
n, λ,Λ, r, sup

B1

p(x)
)

for any ball Br ⊂⊂ B1.

The Hölder estimate on viscosity solution provides the compactness with respect to the
uniform convergence, which is the key ingredient of the following approximation result. We
now recall a nice regularity result on solutions to the homogeneous problem

F (D2u) = 0 in B1

with the fully nonlinear operator F (·) satisfying the condition (A1) above, which states that
such solution is locally C1,α regular for α ∈ (0, 1) depending only on n, λ,Λ. Furthermore, there
holds that, for a constant C depending on n, λ,Λ,

‖u‖C1,α(B1/2) � C‖u‖L∞(B1).

We refer to ([11, Chapter 5]) for more details.

Lemma 3.2. Suppose that u ∈ C(B1) is a normalized viscosity solution to (3.1) in B1. For
any ε > 0, there is δ > 0 that depends on n, λ,Λ, ε and supB1

p(x), such that if ‖f‖L∞(B1) � δ,
then

‖u− v‖L∞(B1/2) � ε
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for some C1,α(B3/4)-regular function v(x) with α ∈ (0, 1). Furthermore, ‖v‖C1,α(B3/4) � C with
C depending only on n, λ,Λ.

Proof. We argue by contradiction. If this claim fails, then there are ε0 > 0 and sequences
of functions {aj}, {pj}, {qj}, {fj}, {uj}, {Fj} and sequence of vectors {ξj} satisfying separately
that:

(i) Fj(·) is uniformly (λ,Λ)-elliptic;
(ii) ‖fj‖L∞(B1) � 1

j and fj ∈ C(B1);
(iii) 0 � pj(x) � qj(x), pj(x) � supx∈B1

p(x) and pj(·), qj(·) ∈ C(B1);
(iv) aj(·) ∈ C(B1) and aj(·) � 0 in B1;
(v) uj ∈ C(B1) and ‖uj‖L∞(B1) � 1.

Furthermore, there holds that[
|Duj + ξj |pj(x) + aj(x)|Duj + ξj |qj(x)

]
Fj(D2uj) = fj(x) in B1. (3.2)

Nonetheless, for any v(x) ∈ C1,α(B3/4),

‖uj − v‖L∞(B1/2) > ε0.

Note that the condition (i) renders that Fj(·) converges uniformly to some (λ,Λ)-elliptic
operator F (·) ∈ C(Sym(n),R). Moreover, by means of condition (v) and the Hölder continuity
(Proposition 3.1) of uj , it follows that uj converges locally uniformly to some function u in B1.
Particularly, it holds that

u ∈ C(B3/4) and ‖u‖L∞(B3/4) � 1,

but

sup
x∈B1/2

|u(x) − v(x)| > ε0. (3.3)

Next, we aim at showing that u solves in the viscosity sense

F (D2h) = 0 in B3/4. (3.4)

To this end, we only verify that u is a viscosity supersolution, because we can prove that it is a
subsolution in a similar way. We first suppose that ϕ(x) ∈ C2(B3/4) touches u(x) from below
at x, that is, {

ϕ(x) = u(x),
ϕ(x) < u(x) for x �= x.

Without loss of generality, we assume that |x| = u(0) = 0 and ϕ(x) is a quadratic polynomial,
that is,

ϕ(x) =
1
2
〈Mx, x〉 + 〈b, x〉.

Here 〈·, ·〉 denotes the inner product. Since uj → u locally uniformly in B1, we find that

ϕj(x) :=
1
2
〈M(x− xj), (x− xj)〉 + 〈b, x− xj〉 + uj(xj)

touches uj from below at xj lying in a small neighbourhood of origin. Due to uj a viscosity
solution, we have [

|b + ξj |pj(xj) + aj(xj)|b + ξj |qj(xj)
]
Fj(M) � fj(xj).
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First of all, if {ξj} is unbounded, we can assume |ξj | → ∞ (up to a subsequence), which implies

F (M) � 0.

In the second case, if {ξj} is bounded, we may assume ξj → ξ (up to a subsequence). For the
case |b + ξ| �= 0, it is easy to infer that F (M) � 0 as well. Here we observe that {pj(xj)} is a
bounded sequence. Now let us concentrate on the case |b + ξ| = 0 (There are two possibilities
that |b| = |ξ| = 0 or b = −ξ with |b|, |ξ| > 0). We are going to justify F (M) � 0 in this scenario.
We suppose F (M) > 0 by contradiction. Then we can see from ellipticity condition of F (·) that
the matrix M has at least one positive eigenvalue. Let R

n = T ⊕Q be the orthogonal sum. Here
T = span(e1, e2, . . . , ek) is the invariant space composed of those eigenvectors corresponding to
positive eigenvalues.

Case 1. b = −ξ with |b|, |ξ| > 0. Let γ > 0 and set

φ(x) := ϕ(x) + γ|PT (x)| =
1
2
〈Mx, x〉 + 〈b, x〉 + γ|PT (x)|,

where PT stands for the orthogonal projection over T . Because of uj → u locally uniformly in
B1 and ϕ(x) touching u(x) from below at the origin, then, for γ small enough, φ(x) touches
uj(x) from below at a point xγ

j ∈ Br (Br is a small neighbourhood of the origin). In addition,
there holds that, up to a subsequence, xγ

j → x, for some x ∈ B3/4, as j → ∞.
First, when PT (xγ

j ) = 0, we assert F (M) � 0, which contradicts the previous assumption.
To this aim, we note that

φ(x) := ϕ(x) + γe · PT (x)

touches uj from below at xγ
j for every e ∈ S

n−1 (that is, |e| = 1). We can readily derive

Dφ(xγ
j ) = Mxγ

j + b + γPT (e), D2φ(xγ
j ) = M.

We choose e ∈ T ∩ S
n−1 so that PT (e) = e. It follows from uj being viscosity solution that[

|ξj + Mxγ
j + b + γe|pj(x

γ
j ) + aj(x

γ
j )|ξj + Mxγ

j + b + γe|qj(xγ
j )
]
Fj(M) � fj(xj). (3.5)

If Mx = 0, then for j sufficiently large, we arrive at

|ξj + Mxγ
j + b| � γ

2
so that

|ξj + Mxγ
j + b + γe| � γ

2
.

Furthermore, (3.5) becomes

Fj(M) �
fj(x

γ
j )

|ξj + Mxγ
j + b + γe|pj(x

γ
j ) + aj(x

γ
j )|ξj + Mxγ

j + b + γe|qj(xγ
j )

�
fj(x

γ
j )

|ξj + Mxγ
j + b + γe|pj(x

γ
j )

�
(

2
γ

)pj(x
γ
j )

fj(x
γ
j ),

where {pj(xγ
j )}j is a bounded sequence. Thus we obtain F (M) � 0 as j → ∞. When |Mx| > 0,

it yields that, for j large enough,

|Mxγ
j | >

1
2
|Mx|
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and

|ξj + b| < 1
8
|Mx|.

Moreover, we pick γ < 1
8 |Mx|. Then we could find

|ξj + Mxγ
j + b + γe| > 1

4
|Mx|.

Thereby, (3.5) turns into

Fj(M) �
fj(x

γ
j )

(4−1|Mx|)pj(x
γ
j )
.

By sending j → ∞, we again have F (M) � 0. Next, we proceed with the scenario PT (xγ
j ) �= 0.

Note that |PT (x)| is smooth and convex in a small neighbourhood of xγ
j . Denote

ζγj =
PT (xγ

j )
|PT (xγ

j )| .

There holds that

D(|PT (x)|)|xγ
j

= ζγj and D2(|PT (x)|)|xγ
j

= |PT (xγ
j )|−1(I − ζγj ⊗ ζγj ).

Hence through uj being a viscosity supersolution, we derive the following viscosity inequality

fj(x
γ
j ) �

[
|Mxγ

j + b + γζγj + ξj |pj(x
γ
j ) + aj(x

γ
j )|Mxγ

j + b + γζγj + ξj |qj(x
γ
j )
]

· Fj(M + γ|PT (xγ
j )|−1(I − ζγj ⊗ ζγj )).

Here we observe that |ζγj | = 1. Let

e := ζγj =
PT (xγ

j )
|PT (xγ

j )| .

We could easily perform the same procedure as in the case PT (xγ
j ) = 0, via distinguishing

Mx = 0 and Mx �= 0. Therefore, under the condition that b = −ξ �= 0, we reach F (M) � 0,
which contradicts the assumption F (M) > 0.

Case 2. b = ξ = 0. In this case, the proceedings become easier. Because 1
2 〈Mx, x〉 touches

u(x) from below at the origin and uj → u locally uniformly, the test function

φ̂(x) :=
1
2
〈Mx, x〉 + γ|PT (x)|

touches uj from below at a point x̂j ∈ Br for sufficiently small γ > 0. Also, the sequence
{x̂j} is uniformly bounded. Likewise, we examine these two scenarios that |PT (x̂j)| = 0 and
|PT (x̂j)| > 0. The remaining work is to evaluate the boundedness on |Mx̂j + ξj + γe| and
|Mx̂j + ξj + γê| with ê := PT (x̂j)

|PT (x̂j)| (PT (x̂j) �= 0), which is analogous to the Case 1. Eventually,

we shall infer that F (M) � 0.
As has been stated above, we proves that u is a viscosity supersolution to (3.4). In order

to verify that u is a viscosity subsolution of (3.4), it suffices to show −u is a supersolution
to F̂ (D2w) = 0, where F̂ (M) := −F (−M) is uniformly (λ,Λ)-elliptic as well. Hence owing to
u being a viscosity solution to (3.4), it follows from the well-known regularity results in [11,
Chapter 5] that u ∈ C1,α

loc (B3/4) with some α ∈ (0, 1) and moreover ‖u‖C1,α(B1/2) � C with C

depending only on n, λ,Λ. Thus we could choose v := u so that a contradiction with (3.3) is
reached. �
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Lemma 3.3. Suppose that u is a normalized viscosity solution to (3.1). Given α ∈ (0, α),
there are two constants 0 < ρ � 1 and δ > 0, the former depending on n, λ,Λ, α and the latter
also depending on supB1

p(x) besides these previous parameters, such that if

‖f‖L∞(B1) � δ,

then there is an affine function l(x) = a + b · x (a ∈ R, b ∈ R
n) fulfilling

‖u− l‖L∞(Bρ) � ρ1+α

and

|a| + |b| � C,

where C only depends on n, λ,Λ.

Proof. For ε > 0 to be fixed a posteriori, let v be a solution to F (D2v) = 0, where F (·) is
a uniformly (λ,Λ)-elliptic operator, which is ε-close to u in L∞(B1/2). From Lemma 3.2, the
existence of such function v(x) is ensured, provided that δ > 0 is small enough.

By virtue of the C1,α-regularity of v, there exists a constant C > 1 depending only on n, λ,Λ
such that

sup
x∈Bρ

|v(x) − (v(0) + Dv(0) · x)| � Cρ1+α

and
|v(0)| + |Dv(0)| � C.

Set
l(x) = a + b · x := v(0) + Dv(0) · x.

It yields that

sup
x∈Bρ

|u(x) − l(x)| � sup
x∈Bρ

|u(x) − v(x)| + sup
x∈Bρ

|v(x) − l(x)| < ε + Cρ1+α.

Since 0 < α < α, we can choose 0 < ρ � 1 so small that

Cρα−α � 1
2
, that is, ρ � (2C)−

1
α−α .

Also, we fix

ε =
1
2
ρ1+α � 1

2
(2C)−

1+α
α−α .

Finally, merging these preceding displays obtains

‖u− l‖L∞(Bρ) � ρ1+α.

We complete the proof. �

Lemma 3.4. Assume that u is a normalized viscosity solution to (1.1) in B1. Given α ∈
(0, α) ∩ (0, 1

1+supB1
p(x) ], there exist 0 < ρ < 1

2 and δ > 0, both of which are the same as those

in Lemma 3.3, such that if

‖f‖L∞(B1) � δ,

then for each j ∈ N, there is a sequence {lj(x)}, where lj(x) = aj + bj · x (aj ∈ R, bj ∈ R
n),

satisfying

‖u− lj‖L∞(Bρj ) � ρj(1+α),

|aj − aj−1| � Cρ(j−1)(1+α)
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and

|bj − bj−1| � Cρ(j−1)α,

where the constant C depends only on n, λ,Λ.

Proof. Arguing by induction. Obviously, this claim holds for j = 1 by Lemma 3.3 (a0 =
0, b0 = 0). Suppose that this conclusion holds true for j = 1, 2, . . . , k. Now we are going to
justify that for j = k + 1. Set uk(x) : B1 → R

uk(x) :=
u(ρkx) − lk(ρkx)

ρk(1+α)
.

We can readily check that uk solves in the viscosity sense[
|ξk + Duk|pk(x) + ak(x)|ξk + Duk|qk(x)

]
Fk(D2uk) = fk(x) in B1,

where
Fk(M) := ρk(1−α)F (ρk(α−1)M),

fk(x) := ρk(1−α(1+pk(x)))f(ρkx),

ak(x) := ρqk(x)−pk(x)a(ρkx),
and

pk(x) := p(ρkx), qk(x) := q(ρkx), ξk := ρ−kαbk.

Obviously, Fk(·) is also a uniformly (λ,Λ)-elliptic operator. By induction, we can see that

‖uk‖L∞(B1) � 1, ‖pk‖L∞(B1) � sup
B1

p(x),

‖qk‖L∞(B1) � sup
B1

q(x), ‖ak‖C(B1) � ‖a‖C(B1).

Moreover, in view of the choice of α, we easily estimate

‖fk(x)‖L∞(B1) = ‖ρk(1−α(1+pk(x)))f(ρkx)‖L∞(B1)

� δρk(1−α(1+supB1
p(x))) � δ.

Then the smallness assumption in Lemma 3.3 is satisfied. Thus there is an affine function
l̃(x) = ã + b̃ · x with |ã| + |b̃| � C(n, λ,Λ) such that

‖uk(x) − l̃(x)‖L∞(Bρ) � ρ1+α. (3.6)

In the sequel, we denote

lk+1 := ak+1 + bk+1 · x,
where

ak+1 = ak + ρk(1+α)ã and bk+1 = bk + ρkαb̃.

Thus, scaling (3.6) back, we reach that
‖u− lk+1‖L∞(B

ρk+1 ) � ρ(k+1)(1+α),

|ak+1 − ak| = |ρk(1+α)ã| � Cρk(1+α)

and
|bk+1 − bk| = |ρkαb̃| � Cρkα.

The proof is finished. �
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Corollary 3.5. Under the hypotheses of Lemma 3.4, we will deduce that there exists an
affine function l(x) = a + b · x with

|a| + |b| � C (a ∈ R, b ∈ R
n)

such that for each 0 < r � ρ with ρ being identical to that in Lemma 3.4

‖u− l‖L∞(Br) � Cr1+α,

where C depends only on n, λ,Λ, α.

Proof. From Lemma 3.4, we know that {aj}, {bj} are Cauchy sequences in R and in R
n,

respectively. Denote

a = lim
j→∞

aj , b = lim
j→∞

bj .

For any m � j, we have

|aj − am| � |aj − aj+1| + |aj+1 − aj+2| + · · · + |am−1 − am|

� Cρj(1+α) + Cρ(j+1)(1+α) + · · · + Cρ(m−1)(1+α)

= Cρj(1+α) 1 − ρ(m−j)(1+α)

1 − ρ1+α
.

Letting m → ∞, we get

|aj − a| � C
ρj(1+α)

1 − ρ1+α
.

Similarly,

|bj − b| � C
ρjα

1 − ρα
.

Now fixing a 0 < r � ρ, we can take j ∈ N such that

ρj+1 < r � ρj .

Furthermore,

‖u(x) − l(x)‖L∞(Br) � ‖u(x) − l(x)‖L∞(Bρj )

� ‖u(x) − lj(x)‖L∞(Bρj ) + ‖lj(x) − l(x)‖L∞(Bρj )

� ρj(1+α) + |aj − a| + ρj |bj − b|

� ρj(1+α) +
C

1 − ρα
ρj(1+α)

� 1
ρ1+α

(
1 +

C

1 − ρα

)
r1+α.

Now we complete the proof. �

From Corollary 3.5, we have known that the solution to (1.1), u, is C1,α-regular around the
origin. Then we could verify that u is also C1,α-regular for every point of B1/2 by a standard
translation argument, which means that u ∈ C1,α(B1/2). Consequently, we deduce Theorem 1.1
by making use of a covering argument.
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4. Hölder continuity of solutions

In this section, we give the proof of local Hölder estimates for viscosity solutions to (3.1).
Indeed, Proposition 3.1 is a plain consequence of Lemmas 4.1 and 4.2, which yields compactness
with respect to uniform convergence. First, using Ishii–Lions method, we demonstrate that the
viscosity solutions to (3.1) are Lipschitz continuous if |ξ| is large enough.

Lemma 4.1. Suppose that u ∈ C(B1) is a normalized viscosity solution to (3.1). If |ξ| > M0

with M0 > 0 depending on n, λ,Λ, supB1
p(x), r, then u ∈ C0,1

loc (B1).

Proof. Fix 0 < r < 1. We are going to show that there exist two positive constants M1,M2

satisfying

G(x0) := sup
Br(x0)×Br(x0)

(u(x) − u(y) −M1υ(|x− y|) −M2(|x− x0|2 + |y − x0|2)) � 0 (4.1)

for each x0 ∈ B1/2, where

υ(s) =

{
s− ω0s

3
2 if 0 � s � s0,

υ(s0) if s > s0

with ω0 > 0 such that s0 := ( 2
3ω0

)2 � 1. Here ω0 is actually a fixed quantity, such as 1
3 . Thriving

for contradiction. Let us assume that there is x′
0 ∈ B 1

2
satisfying G(x′

0) > 0 for any M1,M2 > 0.
Set

ϕ(x, y) := M1υ(|x− y|) + M2(|x− x′
0|2 + |y − x′

0|2)
and

ψ(x, y) := u(x) − u(y) − ϕ(x, y).

Denote by (x̂, ŷ) the maximum point of ψ(x, y) in Br(x′
0) ×Br(x′

0). We can choose M2 = (4
√

2
r )2

so that

|x̂− x′
0| + |ŷ − x′

0| �
r

2
.

Hence (x̂, ŷ) ∈ Br(x0) ×Br(x0) and obviously x̂ �= ŷ.
Next, we use the Ishii–Lions lemma ([14, Theorem 3.2]) to obtain a limiting subject (ξ̂1, X)

of u at x̂ and a limiting superjet (ξ̂2, Y ) of u at ŷ, such that the matrices X,Y verify the
inequality (

X

−Y

)
�

(
A −A

−A A

)
+ (2M2 + κ)I (4.2)

with κ > 0, that depends on the norm of A, being small enough. Here

A := M1

[
υ′(|x̂− ŷ|)
|x̂− ŷ| I +

(
υ′′(|x̂− ŷ|) − υ′(|x̂− ŷ|)

|x̂− ŷ|
)

(x̂− ŷ) ⊗ (x̂− ŷ)
|x̂− ŷ|2

]
and

ξ̂1 := M1υ
′(|x̂− ŷ|) x̂− ŷ

|x̂− ŷ| + 2M2(x̂− x′
0),

ξ̂2 := M1υ
′(|x̂− ŷ|) x̂− ŷ

|x̂− ŷ| − 2M2(ŷ − x′
0).

From (4.2), we could readily deduce that all eigenvalues of X − Y are below 4M2 + 2κ, and
at least one eigenvalue of X − Y is below 4M2 + 2κ + 4M1υ

′′(|x̂− ŷ|). Note that when the
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number M1 is large enough, then this quantity is negative. Indeed, we can select M1 � 4M2+2
3ω0

.
Therefore, we get

P+(X − Y ) � Λ(n− 1)(4M2 + 2κ) + λ(4M2 + 2κ + 4M1υ
′′(|x̂− ŷ|))

= 2(λ + Λ(n− 1))(2M2 + κ) + 4λM1υ
′′(|x̂− ŷ|). (4.3)

In addition, we have the following inequalities in the viscosity sense⎧⎨⎩
(
|ξ̂1 + ξ|p(x̂) + a(x̂)|ξ̂1 + ξ|q(x̂)

)
F (X) � f(x̂),(

|ξ̂2 + ξ|p(ŷ) + a(ŷ)|ξ̂2 + ξ|q(ŷ)
)
F (Y ) � f(ŷ).

(4.4)

If |ξ| � M0 > 0, where M0 will be determined later, then we rewrite (4.4) as⎧⎨⎩
(
||ξ|−1ξ̂1 + e|p(x̂) + |ξ|q(x̂)−p(x̂)a(x̂)||ξ|−1ξ̂1 + e|q(x̂)

)
F (X) � |ξ|−p(x̂)f(x̂),(

||ξ|−1ξ̂2 + e|p(ŷ) + |ξ|q(ŷ)−p(ŷ)a(ŷ)||ξ|−1ξ̂2 + e|q(ŷ)
)
F (Y ) � |ξ|−p(ŷ)f(ŷ).

(4.5)

On the other hand, we can easily estimate

|ξ̂1|, |ξ̂2| � M1 + M2.

Now we take M0 = 4(M1 + M2) so that |ξ|−1ξ̂1, |ξ|−1ξ̂2 � 1
2 .

Merging (4.5) with the uniform ellipticity of the operator F (·), it yields that

|ξ|−p(x̂)f(x̂)

||ξ|−1ξ̂1 + e|p(x̂) + |ξ|q(x̂)−p(x̂)a(x̂)||ξ|−1ξ̂1 + e|q(x̂)

� F (X) � F (Y ) + P+(X − Y )

� |ξ|−p(ŷ)f(ŷ)

||ξ|−1ξ̂2 + e|p(ŷ) + |ξ|q(ŷ)−p(ŷ)a(ŷ)||ξ|−1ξ̂2 + e|q(ŷ)
+ P+(X − Y ).

Utilizing (4.3), we further derive

−ε · 2supB1
p(x) � ε · 2supB1

p(x) + 2(λ + Λ(n− 1))(2M2 + κ) − 3λM1ω0|x̂− ŷ|− 1
2 ,

then

3λM1ω0 � 21+supB1
p(x) + 2(λ + Λ(n− 1))(2M2 + 1). (4.6)

Thus if we choose ahead of time

M1 � max

{
21+supB1

p(x) + 2(λ + Λ(n− 1))(2M2 + 1)
3λω0

,
4M2 + 2

3ω0

}
+ 1, (4.7)

we can reach a contradiction with (4.6).
As has been stated above, we verify the claim (4.1), which implies u is Lipschitz continuous

and satisfies

[u]0,1;Br(x0) � C

(
n, λ,Λ, sup

B1

p(x), r
)
.

The proof is now complete. �

Next, we verify, in the complementary case, that the solutions to (3.1) are β-Hölder
continuous in a similar way.
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Lemma 4.2. Suppose that u ∈ C(B1) is a normalized viscosity solution to (3.1). If |ξ| � M0

with M0 being the same as that in Lemma 4.1, then for some β ∈ (0, 1)

u ∈ C0,β
loc (B1).

Proof. The outline of this proof is similar to that in Lemma 4.1. At this point, it is worth
observing that υ(s) = sβ with β ∈ ( 1

4 ,
3
4 ) and

P+(X − Y ) � (λ + Λ(n− 1))(4M2 + 2κ) − 4λM1β(1 − β)|x̂− ŷ|β−2

� (λ + Λ(n− 1))(4M2 + 2) − 4λβ(1 − β)M1.
(4.8)

Moreover, it is easy to see

|ξ̂1 + ξ| � M1β|x̂− ŷ|β−1 − 2M2 −M0

= M1(β|x̂− ŷ|β−1 − 4) − 6M2

� M1

(
β
(r

2

)β−1

− 4
)
− 6M2

� C1M2 > 1, (4.9)

where the last inequality holds true if r is sufficiently small. Analogously,

|ξ̂2 + ξ| � C2M2 > 1. (4.10)

From (4.4) and the uniform ellipticity of F (·), we have

f(x̂)

|ξ̂1 + ξ|p(x̂) + a(x̂)|ξ̂1 + ξ|q(x̂)

� F (X)

� f(ŷ)

|ξ̂2 + ξ|p(ŷ) + a(ŷ)|ξ̂2 + ξ|q(ŷ)
+ P+(X − Y ).

We can further infer from (4.8)–(4.10) that

−ε

(C1M2)infB1 p(x)
� ε

(C2M2)infB1 p(x)
+ (λ + Λ(n− 1))(4M2 + 2) − 4λβ(1 − β)M1,

after rearrangement, getting

1
4
λM1 � 4λβ(1 − β)M1 � (λ + Λ(n− 1))(4M2 + 2) +

2
(CM2)infB1 p(x)

� (λ + Λ(n− 1))(4M2 + 2) + 2.

(4.11)

Thus from the selection of M1 in (4.7), then we will derive a contradiction with (4.11).
Thereby, if |ξ| � M0, then u is β-Hölder continuous with the estimate

[u]0,β;Br(x0) � C

(
n, λ,Λ, r, sup

B1

p(x)
)
.

We now finish the proof. �
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1. D. J. Araújo, G. Ricarte and E. V. Teixeira, ‘Geometric gradient estimates for solutions to degenerate
elliptic equations’, Calc. Var. Partial Differ. Equ. 53 (2015) 605–625.



REGULARITY OF SOLUTIONS TO FULLY NONLINEAR ELLIPTIC EQUATIONS 1877

2. P. Baroni, M. Colombo and G. Mingione, ‘Regularity for general functionals with double phase’, Calc.
Var. Partial Differ. Equ. 57 (2018), Paper 62.

3. I. Birindelli and F. Demengel, ‘Comparison principle and Liouville type results for singular fully
nonlinear operators’, Ann. Fac. Sci. Toulouse Math. 13 (2004) 261–287.

4. I. Birindelli and F. Demengel, ‘Regularity and uniqueness of the first eigenfunction for singular fully
nonlinear operators’, J. Differential Equations 249 (2010) 1089–1110.

5. I. Birindelli and F. Demengel, ‘Regularity for radial solutions of degenerate fully nonlinear equations’,
Nonlinear Anal. 75 (2012) 6237–6249.

6. I. Birindelli and F. Demengel, ‘C1,β regularity for Dirichlet problems associated to fully nonlinear
degenerate elliptic equations’, ESAIM Control Optim. Calc. Var. 20 (2014) 1009–1024.

7. I. Birindelli, F. Demengel and F. Leoni, ‘C1,γ regularity for singular or degenerate fully nonlinear
equations and applications’, NoDEA Nonlinear Differential Equations Appl. 26 (2019), Paper 40.

8. A. C. Bronzi, E. A. Pimentel, G. C. Rampasso and E. V. Teixeira, ‘Regularity of solutions to a class
of variable-exponent fully nonlinear elliptic equations’, J. Funct. Anal. 279 (2020), Paper 108781.

9. S.-S. Byun and H.-S. Lee, ‘Calderón-Zygmund estimates for elliptic double phase problems with variable
exponents’, J. Math. Anal. Appl. 501 (2021) 124015.

10. S.-S. Byun and H.-S. Lee, ‘Gradient estimates of w-minimizers to double phase problems with variable
exponents’, Quart. J. Math. (2021). https://doi.org/10.1093/qmath/haaa067.
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