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On a class of quasilinear eigenvalue problems
on unbounded domains

By

FLORICA-CORINA ŞT. CÎRSTEA and VICENŢIU D. RĂDULESCU

Abstract. We prove several existence and non-existence results for a quasilinear eigen-
value problem with nonlinear boundary condition on unbounded domain. Our paper ex-
tends previous results obtained in Chabrowski [1] and Pflüger [4].

1. Preliminaries. Let Ω ⊂ RN be an unbounded domain with smooth boundary Γ . We
assume throughout this paper that p, q, r and α1 are real numbers satisfying

1< p<N, max{p, 2}<q<r< p� := pN

N − p
, −N<α1<q · N − p

p
− N.(1)

Denote by C∞δ (Ω) the space of C∞0 (R
N) – functions restricted toΩ. We define the weighted

Sobolev space E as the completion of C∞δ (Ω) in the norm

‖u‖E =
(∫
Ω

|∇u(x)|p + 1

(1+ |x|)p
|u(x)|p dx

) 1
p

.

Denote by Lq(Ω; w1) and Lm(Γ ; w2) the weighted Lebesgue spaces with respect to

wi(x) = (1+ |x|)αi , i = 1, 2, αi ∈ R(2)

and norms

‖u‖q
q,w1
= ∫

Ω

w1|u(x)|q dx and ‖u‖m
m,w2
= ∫

Γ

w2|u(x)|m dΓ.

Proposition 1. Assume (1) holds. Then the embedding E ⊂ Lq(Ω; w1) is compact. If

p � m � p · N − 1

N − p
and − N < α2 � m · N − p

p
− N + 1,(3)

then the trace operator E → Lm(Γ ; w2) is continuous. If the upper bounds for m in (3) are
strict, then the trace operator is compact.

This proposition is a consequence of Theorem 2 and Corollary 6 of [5].
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We assume throughout that a ∈ L∞(Ω) and b ∈ L∞(Γ ) such that

a(x) � a0 > 0 for a.e. x ∈ Ω(4)

c

(1+ |x|)p−1
� b(x) �

C

(1+ |x|)p−1
, for a.e. x ∈ Γ , where c, C > 0.(5)

Lemma 1. The quantity

‖u‖p
b =

∫
Ω

a(x)|∇u|p dx + ∫
Γ

b(x)|u|p dΓ

defines an equivalent norm on E.

For the proof of this result we refer to [4], Lemma 2.

Let h : Ω→ R be a positive and continuous function satisfying∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx <∞.(6)

We assume that g : Γ × R→ R is a Carathéodory function that satisfies the following condi-
tions:

(g1) g(·,0) = 0, g(x, s)+ g(x,−s) � 0 for a.e. x ∈ Γ and for any s ∈ R,
(g2) |g(x, s)| � g0(x)+ g1(x)|s|m−1; p � m < p · N−1

N−p , where gi are nonnegative, mea-
surable functions such that

0 � gi(x) � Cgw2 a.e., g0 ∈ Lm/(m−1)
(
Γ ; w1/(1−m)

2

)
,

where −N < α2 < m · N−p
p − N + 1 and w2 is defined as in (2).

Set G(x, s) =
s∫

0
g(x, t)dt. We denote by Ng, NG the corresponding Nemytskii operators.

Lemma 2. The operators

Ng : Lm(Γ ; w2)→ Lm/(m−1)
(
Γ ; w1/(1−m)

2

)
, NG : Lm(Γ ; w2)→ L1(Γ )

are bounded and continuous.

P r o o f. Let m′ = m/(m − 1) and u ∈ Lm(Γ ; w2). Then, by (g2),∫
Γ

|Ng(u)|m′ · w1/(1−m)
2 dΓ �

2m′−1

(∫
Γ

gm′
0 · w1/(1−m)

2 dΓ + ∫
Γ

gm′
1 |u|m ·w1/(1−m)

2 dΓ

)
�

2m′−1
(

C + C̃g ·
∫
Γ

|u|m · w2 dΓ
)
,

which shows that Ng is bounded. In a similar way we obtain
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Γ

|NG(u)| dΓ �
∫
Γ

g0|u| dΓ + 1
m

∫
Γ

g1|u|m dΓ �(∫
Γ

gm′
0 ·w1/(1−m)

2 dΓ

) 1
m′ ·

(∫
Γ

|u|m ·w2 dΓ

) 1
m

+ Cg
m ·

∫
Γ

|u|m ·w2 dΓ

and the boundedness of NG follows.
From the usual properties of Nemytskii operators we deduce the continuity of Ng and

NG . ��
Define the Banach space

X =
{

u ∈ E : ∫
Ω

h(x)|u|r dx <∞
}

endowed with the norm

‖u‖p
X = ‖u‖p

b +
(∫
Ω

h(x)|u(x)|r dx

) p
r

.

For λ > 0, consider the problem

(1λ,θ)


−div (a(x)|∇u|p−2∇u)+ h(x)|u|r−2u = λ(1+ |x|)α1 |u|q−2u

in Ω ⊂ RN,

a(x)|∇u|p−2∇u · n + b(x) · |u|p−2u = θg(x,u) on Γ ,

u � 0, u �≡ 0 in Ω .

The energy functional corresponding to (1λ,θ) is given by Φ : X → R ,

Φ(u) = 1
p

∫
Ω

a(x)|∇u|p dx + 1
p

∫
Γ

b(x)|u|p dΓ −
λ

q

∫
Ω

w1|u|q dx + 1
r

∫
Ω

h(x)|u|r dx − θ∫
Γ

G(x, u) dΓ.

Proposition 1 implies that Φ is well defined. Solutions to problem (1λ,θ) will be found as
critical points of Φ. Therefore, a function u ∈ X is a solution of the problem (1λ,θ) provided
that, for any v ∈ X,∫

Ω

a|∇u|p−2∇u · ∇v +∫
Γ

b|u|p−2uv = λ∫
Ω

w1|u|q−2uv−∫
Ω

h|u|r−2uv+ θ∫
Γ

gv .

Problems of this type are considered in the study of physical phenomena related to equi-
librium of anisotropic continuous media which possible are somewhere “perfect” insulators,
cf. [2].

2. Main results and proofs.

Theorem 1. Assume hypotheses (1), (4), (5), (6), (g1) and (g2) hold. Then there exist real
numbers θ∗, θ∗ and λ∗ > 0 such that Problem (1λ,θ) has no nontrivial solution, provided that
θ∗ < θ < θ∗ and 0 < λ < λ∗.

22*
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P r o o f. Suppose that u is a solution in X of (1λ,θ). Then u satisfies∫
Ω

a(x)|∇u|p dx + ∫
Γ

b(x)|u|p dΓ − θ∫
Γ

g(x,u)u dΓ + ∫
Ω

h(x)|u|r dx

= λ
∫
Ω

w1|u|q dx.
(7)

It follows from the Young inequality that

λ

∫
Ω

w1|u|q dx =
∫
Ω

λw1

hq/r
· hq/r |u|q dx

�
r − q

r
λr/(r−q)

∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx+ q

r

∫
Ω

h|u|r dx.

This combined with (7) gives

‖u‖p
b − θ

∫
Γ

g(x,u)u dΓ �
r − q

r
λr/(r−q)

∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx + q − r

r

∫
Ω

h|u|r dx

�
r − q

r
λr/(r−q)

∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx.

(8)

Set

A =
{

u ∈ X : ∫
Γ

g(x,u)u dΓ < 0
}
, B =

{
u ∈ X : ∫

Γ

g(x,u)u dΓ > 0
}

θ∗ = sup
u∈A

‖u‖p
b∫

Γ

g(x,u)u dΓ
, θ∗ = inf

u∈B

‖u‖p
b∫

Γ

g(x,u)u dΓ
(9)

We introduce the convention that if A = ∅ then θ∗ = −∞ and if B = ∅ then θ∗ = +∞.
We show that if we take θ∗ < θ < θ∗ then there exists C0 > 0 such that

C0‖u‖p
b � ‖u‖p

b − θ
∫
Γ

g(x,u)u dΓ for all u ∈ X.(10)

If θ < θ∗ then there exists a constant C1 ∈ (0,1) such that

θ � (1− C1)θ
∗ � (1− C1)

‖u‖p
b∫

Γ

g(x,u)u dΓ
for all u ∈ B

which implies

‖u‖p
b − θ

∫
Γ

g(x,u)u dΓ � C1‖u‖p
b for all u ∈ B.(11)

If θ∗ < θ then there exists a constant C2 ∈ (0,1) such that

(1− C2)
‖u‖p

b∫
Γ

g(x,u)u dΓ
� (1− C2)θ∗ � θ for all u ∈ A

which yields

‖u‖p
b − θ

∫
Γ

g(x,u)u dΓ � C2‖u‖p
b for all u ∈ A.(12)
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From (11) and (12) we conclude that

‖u‖p
b − θ

∫
Γ

g(x,u)u dΓ � min{C1,C2}‖u‖p
b for all u ∈ X

and taking C0 = min{C1,C2} we obtain (10).
By (7), (10) and Proposition 1 we have

C0C

(∫
Ω

w1|u|q dx

) p
q

� C0‖u‖p
b � λ

∫
Ω

w1|u|q dx,(13)

for some constant C > 0. This inequality implies

(Cλ−1C0)
q/(q−p) �

∫
Ω

w1|u|q dx

which combined with (13) yields

C0C(Cλ−1C0)
p/(q−p) � C0‖u‖p

b .

Combining this with (8) and (10) we obtain

C0C(Cλ−1C0)
p/(q−p) �

r − q

r
λr/(r−q)

∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx.

If we take

λ∗ =
(
(C0C)q/(q−p) r

r − q

(∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx

)−1) (r−q)(q−p)
q(r−p)

the result follows. ��

Set

U =
{

u ∈ X : ∫
Γ

G(x, u) dΓ < 0
}
, V =

{
u ∈ X : ∫

Γ

G(x, u) dΓ > 0
}

θ− = sup
u∈U

‖u‖p
b

p
∫
Γ

G(x, u) dΓ
, θ+ = inf

u∈V

‖u‖p
b

p
∫
Γ

G(x, u) dΓ
(14)

If U = ∅ (resp. V = ∅) then we set θ− = −∞ (resp. θ+ = +∞). Proceeding in the same
manner as we did for proving (10) we can show that if we take θ− < θ < θ+ then there exists
c > 0 such that

1
p‖u‖p

b − θ
∫
Γ

G(x, u) dΓ � c‖u‖p
b for all u ∈ X.(15)

We shall employ in what follows the following elementary inequality

k|u|β − h|u|γ � Cβ,γ k

(
k

h

)β/(γ−β)
∀u ∈ R, ∀h, k ∈ (0,∞), ∀0 < β < γ .(16)

Proposition 2. If θ− < θ < θ+ then the functional Φ is coercive.
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P r o o f. By virtue of (16) we have∫
Ω

(
λ

q
|u|qw1 −

h

2r
|u|r

)
dx � Cr,q

∫
Ω

λw1

(
λw1

h

)q/(r−q)

dx

= Cr,qλ
r/(r−q)

∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx.

Using (15) it follows that

Φ(u)= 1

p
‖u‖p

b− θ
∫
Γ

G(x, u) dΓ−
∫
Ω

(
λ

q
|u|qw1− h

2r
|u|r

)
dx+ 1

2r

∫
Ω

h|u|r dx

� c‖u‖p
b +

1

2r

∫
Ω

h|u|r dx − C1

and the coercivity of Φ follows. ��
Proposition 3. Suppose θ− < θ < θ+ and let {un} be a sequence in X such that Φ(un) is

bounded. Then there exists a subsequence of {un}, relabelled again by {un}, such that un ⇀ u0

in X and

Φ(u0) � lim inf
n→∞ Φ(un).

P r o o f. Since Φ is coercive in X we see that the boundedness of Φ(un) implies that ‖un‖b

and
∫
Ω

h|un|r dx are bounded. From Proposition 1 we know that the embedding E ⊂ Lq(Ω; w1)

is compact and using the fact that {un} is bounded in E we may assume that un ⇀ u0 in E and
un → u0 in Lq(Ω; w1).

Set F(x, u) = λ

q |u|qw1 − 1
r h|u|r and f(x, u) = Fu(x,u). A simple computation yields

fu(x, u) = (q − 1)λ|u|q−2w1 − (r − 1)h|u|r−2 � Cr,qλw1

(
λw1

h

)(q−2)/(r−q)

(17)

where the last inequality follows from (16). We obtain

Φ(u0)−Φ(un)= 1
p

∫
Ω

a(x)|∇u0|p dx+ 1
p

∫
Γ

b(x)|u0|p dΓ− 1
p

∫
Ω

a(x)|∇un|p dx −
1
p

∫
Γ

b(x)|un|p dΓ − θ∫
Γ

G(x, u0) dΓ + θ∫
Γ

G(x, un) dΓ + ∫
Ω

(F(x,un)−

F(x,u0)) dx = 1
p

(‖u0‖p
b − ‖un‖p

b

)+ θ(∫
Γ

G(x, un) dΓ − ∫
Γ

G(x, u0) dΓ

)
+∫

Ω

(
1∫

0

s∫
0

fu(x, u0 + t(un − u0)) dt ds

)
(un − u0)

2 dx � 1
p

(‖u0‖p
b − ‖un‖p

b

)+
θ

(∫
Γ

G(x, un) dΓ − ∫
Γ

G(x, u0) dΓ

)
+ C2

∫
Ω

(un − u0)
2
w
(r−2)/(r−q)
1

h(q−2)/(r−q)
dx,

where C2 = 1
2 Cr,qλ

(r−2)/(r−q) . We show that the last integral tends to 0 as n→∞. Indeed,
applying Hölder’s inequality we obtain∫

Ω

(un − u0)
2w

(r−2)/(r−q)
1

h(q−2)/(r−q)
dx �

(∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx

)(q−2)/q

·
(∫
Ω

w1|un − u0|q dx

) 2
q

.
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Since un → u0 in Lq(Ω; w1) we have

lim
n→∞

∫
Ω

(un − u0)
2w

(r−2)/(r−q)
1

h(q−2)/(r−q)
dx = 0.(18)

The compactness of the trace operator E → Lm(Γ ; w2) and the continuity of the Nemytskii
operator NG : Lm(Γ ; w2)→ L1(Γ ) imply NG(un)→ NG(u0) in L1(Γ ) i.e.

∫
Γ

|NG(un)−
NG(u0)| dΓ → 0 as n→∞. It follows that

lim
n→∞

∫
Γ

G(x, un) dΓ = ∫
Γ

G(x, u0) dΓ.(19)

Since the norm in E is lower semicontinuous with respect to the weak topology our conclusion
follows from (18) and (19). ��

Proposition 4. If θ∗ < θ < θ∗ and u is a solution of Problem (1λ,θ), then

C0‖u‖p
b +

r − q

r

∫
Ω

h|u|r dx �
r − q

r
λr/(r−q)

∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx

and

‖u‖b � Kλ−1/(q−p),

where K > 0 is a constant independent of u.

P r o o f. If u is a solution of (1λ,θ) then

‖u‖p
b − θ

∫
Γ

g(x,u)u dΓ + ∫
Ω

h|u|r dx = λ∫
Ω

w1|u|q dx �

r − q

r
λr/(r−q)

∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx + q

r

∫
Ω

h|u|r dx.

Using (10) we obtain the first part of the assertion.
From Proposition 1 we have that there exists Cq > 0 such that

‖u‖q
Lq (Ω;w1)

� Cq‖u‖q
b, for all u ∈ E.

This inequality and (10) imply

‖u‖b � C1/(q−p)
0 C−1/(q−p)

q λ−1/(q−p)

and taking K = C1/(q−p)
0 C−1/(q−p)

q the second part follows. ��
Theorem 2. Assume hypotheses (1), (4), (5), (6), (g1) and (g2) hold. Set θ = max{θ∗, θ−},

if g(x, ·) is odd, and θ = 0 elsewhere, θ = min{θ∗, θ+}. Suppose that J = (θ, θ) �= Φ. There
exists λ0 > 0 such that the following hold:

(i) Problem (1λ,θ) admits a nontrivial solution, for any λ � λ0 and every θ ∈ J;
(ii) Problem (1λ,θ) does not have any nontrivial solution, provided that 0 < λ < λ0 and

θ ∈ J.
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P r o o f. According to Propositions 2 and 3, Φ is coercive and lower semicontinuous.
Therefore there exists ũ ∈ X such that Φ(ũ) = inf

X
Φ(u). To ensure that ũ �≡ 0 we shall prove

that inf
X
Φ < 0. Set

λ̃ := inf
{

q
p‖u‖p

b − qθ
∫
Γ

G(x, u) dΓ + q
r

∫
Ω

h|u|r dx : u ∈ X,
∫
Ω

w1|u|q dx = 1
}
.

First we check that λ̃ > 0. For this aim we consider the constrained minimization problem

M := inf

{∫
Ω

a(x)|∇u|p dx + ∫
Γ

b(x)|u|p dΓ : u ∈ E,
∫
Ω

w1|u|q dx = 1

}
.

Clearly, M > 0. Since X is embedded in E, we have∫
Ω

a(x)|∇u|p dx + ∫
Γ

b(x)|u|p dΓ � M

for all u ∈ X with
∫
Ω

w1|u|q dx = 1. Now, applying the Hölder inequality we find

1=
∫
Ω

w1|u|q dx=
∫
Ω

w1

hq/r
hq/r |u|q dx �

(∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx

)(r−q)/r

·
(∫
Ω

h|u|r dx

) q
r

.(20)

Relation (15) implies
q
p‖u‖p

b − q θ
∫
Γ

G(x, u) dΓ � q c‖u‖p
b .

By virtue of (20) we have
q

p
‖u‖p

b − q θ
∫
Γ

G(x, u) dΓ + q

r

∫
Ω

h|u|r dx � qc‖u‖p
b +

q

r

∫
Ω

h|u|r dx �

qcM + q

r

(∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx

)−(r−q)/q

for all u ∈ X with
∫
Ω

w1|u|q dx = 1. It follows that

λ̃ � qcM + q

r

(∫
Ω

w
r/(r−q)
1

hq/(r−q)
dx

)−(r−q)/q

and our claim follows.
Let λ > λ̃. Then there exists a function u ∈ X with

∫
Ω

w1|u|q dx = 1 such that

λ >
q
p‖u‖p

b − qθ
∫
Γ

G(x, u) dΓ + q
r

∫
Ω

h|u|r dx.

This can be rewritten as

Φ(u) = 1
p‖u‖p

b − θ
∫
Γ

G(x, u) dΓ + 1
r

∫
Ω

h|u|r dx − λ

q

∫
Ω

w1|u|q dx < 0

and consequently inf
u∈X

Φ(u) < 0. By Propositions 2 and 3 it follows that the problem (1λ,θ)

has a solution.
We set

λ0 = inf{λ > 0 : (1λ,θ) admits a solution}.
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Suppose λ0 = 0. Then taking λ1 ∈ (0, λ∗) (where λ∗ is given by Theorem 1) we have that
there is λ̄ such that the problem (1λ̄,θ ) admits a solution. But this is a contradiction, according
to Theorem 1. Consequently, λ0 > 0.

We now show that for each λ > λ0 problem (1λ,θ) admits a solution. Indeed, for every
λ > λ0 there exists ρ ∈ (λ0, λ) such that problem (1ρ,θ) has a solution uρ which is a subsolution
of problem (1λ,θ). We consider the variational problem

inf{Φ(u) : u ∈ X and u � uρ}.
By Propositions 2 and 3 this problem admits a solution ū. This minimizer ū is a solution of
problem (1λ,θ). Since the hypothesis g(x, s)+ g(x,−s) � 0 for a.e. x ∈ Γ and for all s ∈ R
implies that G(x, |ū|) � G(x, ū) (that is, Φ(|ū|) � Φ(ū)) we may assume that ū � 0 on Ω.
It remains to show that problem (1λ0,θ) has also a solution. Let λn → λ0 and λn > λ0 for
each n. Problem (1λn ,θ) has a solution un for each n. By Proposition 4 the sequence {un} is
bounded in X. Therefore we may assume that un ⇀ u0 in X and un → u0 in Lq(Ω; w1).
We have that u0 is a solution of (1λ0 , θ). Since un and u0 are solutions of (1λn ,θ) and (1λ0,θ),
respectively, we have∫

Ω

a(x)(|∇un|p−2∇un − |∇u0|p−2∇u0)(∇un − ∇u0) dx+∫
Γ

b(x)(|un|p−2un − |u0|p−2u0)(un − u0) dΓ +∫
Ω

h(|un|r−2un − |u0|r−2u0)(un − u0) dx =
λn

∫
Ω

w1(|un|q−2un − |u0|q−2u0)(un − u0) dx+
(λn − λ0)

∫
Ω

w1|u0|q−2u0(un − u0) dx+
θ
∫
Γ

(g(x,un)− g(x,u0))(un − u0) dΓ = J1,n + J2,n + J3,n,

where
J1,n = λn

∫
Ω

w1(|un|q−2un − |u0|q−2u0)(un − u0) dx,

J2,n = (λn − λ0)
∫
Ω

w1|u0|q−2u0(un − u0) dx,

J3,n = θ
∫
Γ

(g(x,un)− g(x,u0))(un − u0) dΓ.

We have

|J1,n| � sup
n�1

λn

(∫
Ω

w1|un|q−1|un − u0| dx + ∫
Ω

w1|u0|q−1|un − u0| dx

)
and it follows from the Hölder inequality that

|J1,n| � sup
n�1

λn

[( ∫
Ω

w1|un|q dx

)(q−1)/q

·
(∫
Ω

w1|un − u0|q dx

) 1
q

+(∫
Ω

w1|u0|q dx

)(q−1)/q

·
(∫
Ω

w1|un − u0|q dx

) 1
q
]
.

We easily observe that J1,n → 0 as n→∞.
From the estimate

|J2,n| � |λn − λ0|
(∫
Ω

w1|u0|q dx

)(q−1)/q

·
(∫
Ω

w1|un − u0|q dx

) 1
q

we obtain that J2,n → 0 as n→∞.



F. CÎRSTEA and V. RĂDULESCU346 ARCH. MATH.

Using the compactness of the trace operator E → Lm(Γ ; w2), the continuity of Nemytskii
operator Ng : Lm(Γ ; w2)→ Lm/(m−1)(Γ ; w1/(1−m)

2 ) and the estimate∫
Γ

|g(x,un)− g(x,u0)| · |un − u0| dΓ �

(∫
Γ

|g(x,un)− g(x,u0)|m/(m−1)w
1/(1−m)
2 dΓ

)(m−1)/m

·
(∫
Γ

w2|un − u0|m dΓ

) 1
m

we see that J3,n → 0 as n→∞.
We have so proved that

lim
n→∞

(∫
Ω

a(x)(|∇un|p−2∇un − |∇u0|p−2∇u0)(∇un − ∇u0) dx+∫
Γ

b(x)(|un|p−2un − |u0|p−2u0)(un − u0) dΓ

)
= 0.

Applying the inequality (see [3], Lemma 4.10)

|ξ − ζ |p � C(|ξ|p−2ξ − |ζ |p−2ζ)(ξ − ζ), ∀ξ, ζ ∈ RN ∀p � 2

we find
‖un − u0‖p

b =
∫
Ω

a(x)|∇un − ∇u0|p dx + ∫
Γ

b(x)|un − u0|p dx �

C

( ∫
Ω

a(x)(|∇un|p−2∇un − |∇u0|p−2∇u0)(∇un −∇u0) dx+∫
Γ

b(x)(|un|p−2un − |u0|p−2u0)(un − u0) dΓ

)
→ 0 as n→∞

which shows that ‖un‖b→‖u0‖b. If 1 < p < 2 we use a similar argument based on the inequal-
ity |ξ − ζ |2 � C(|ξ|p−2ξ − |ζ |p−2ζ)(ξ − ζ)(|ξ| + |ζ |)2−p. By Proposition 4 we have u0 �≡ 0. This
concludes our proof. ��
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