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On a class of quasilinear eigenvalue problems
on unbounded domains

By

FLORICA-CORINA ST. CIRSTEA and VICENTIU D. RADULESCU

Abstract. We prove several existence and non-existence results for a quasilinear eigen-
value problem with nonlinear boundary condition on unbounded domain. Our paper ex-
tends previous results obtained in Chabrowski [1] and Pfliiger [4].

1. Preliminaries. Let £2 C RY be an unbounded domain with smooth boundary I". We
assume throughout this paper that p, ¢, r and o, are real numbers satisfying

pN N—-p

@)) l<p<N, max{p,2}<g<r<p’:= , —N<oy<qg-— —N.
N-p P

Denote by C5°(£2) the space of Ci°(RV) — functions restricted to §2. We define the weighted
Sobolev space E as the completion of C5°(£2) in the norm

lulle = <f|VM(X)|” + |u(x)]” dX)
2

1
(A +xDyr
Denote by L9(£2; w) and L™ (I"; w,) the weighted Lebesgue spaces with respect to
2) wi(x) =104+ xD%, i=1,2, ¢, €R
and norms
mow,

lullg, = Jwilu(x)|?dx and |ully, ,, = [walu(x)|" dT
2 r

Proposition 1. Assume (1) holds. Then the embedding E C L1(82; w,) is compact. If
1 N —
3) p=Em=p-—— and —N<oz2§m-—p—N+1,
N-—p p
then the trace operator E — L™ (I"; w,) is continuous. If the upper bounds for m in (3) are
strict, then the trace operator is compact.

This proposition is a consequence of Theorem 2 and Corollary 6 of [5].
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We assume throughout that a € L*°(£2) and b € L*°(I") such that

4 ax)=Zay >0 fora.e.x € 2
c C
%) ——=bhx) = ——, fora.e. x € I', where ¢, C > 0.
(1+ |x)r=! (1 + |xpr=!

Lemma 1. The quantity

lull) = fa(x)|Vu|” dx +fb(x)|u|”dF
2 r
defines an equivalent norm on E.

For the proof of this result we refer to [4], Lemma 2.

Let i : £2 — R be a positive and continuous function satisfying

wr/(r—q)
(6) / m dx < o0.
2

We assume that g : I x R — R is a Carathéodory function that satisfies the following condi-
tions:

(gl) g(-,0) =0, g(x,s)+ g(x,—s) = 0fora.e. x € I" and for any s € R,

(82) 1g(x,s)| = go(x) + g1()|s|™Y; p=m<p- 1’\\,'—:117, where g; are nonnegative, mea-
surable functions such that

0= gi(x) = Cqw; ae., goeL™™"Y (F; wé/(lf'")),

where —N < o, <m - N;” — N + 1 and w, is defined as in (2).

Set G(x,s) = f g(x, ndt. We denote by N,, N the corresponding Nemytskii operators.
0

Lemma 2. The operators
Ny L(Fs wy) — L7 (15w ), N s L5 wy) — L)

are bounded and continuous.

Proof. Letm'" =m/(m — 1) and u € L™ (I"; w,). Then, by (g2),

JIN oI w7 dr =
r
2m/71 (/'gom, . wé/(l—m) ar _’_fg)ln/'u'm ) wé/(l—m) dr) =
r r
2m’71 (C+ CNg .f|u|m . wzd[‘)’
r

which shows that N, is bounded. In a similar way we obtain
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[INg)|dI' = [goluldl" + L [gi|u|"dI" =
r r r
1

€1 L
(fgﬁ’/-wé/(l_wdr)m ' <f|“|m'wzdr) + S flul" - wydl
r r r

and the boundedness of N follows.

From the usual properties of Nemytskii operators we deduce the continuity of N, and
Ne. O

Define the Banach space
X = {u €E: [h)|u| dx < oo}
2

endowed with the norm
'g

el = llully + (fh(X)Iu(X)I’dX)
2

For A > 0, consider the problem

—div (@(x)|Vu|"72Vu) + h(x)|u) "2u = A(1 + |x)% |u|7u

in 2 CRY,
a(X)|Vul"2Vu -n +b(x) - |u|”>u = 0g(x,u) on I,
uz0, uz0 in 2.

(L)

The energy functional corresponding to (1, 4) is givenby @ : X — R,
D) =1 [a@)|Vu|”dx + L [b(x)|u|?dl” —
"o Pr

%S{w1|u|" dx + %S{h(x)|u|'"dx —GIIG(x, u)dr.

Proposition 1 implies that @ is well defined. Solutions to problem (1, 4) will be found as
critical points of @. Therefore, a function u# € X is a solution of the problem (1, y) provided
that, for any v € X,

fa|Vu|”72Vu -V +fb|u|”’2uv = )\fu)1|u|"72uv —fh|u|'"72uv + Gfgv.
o) r o) o) r

Problems of this type are considered in the study of physical phenomena related to equi-
librium of anisotropic continuous media which possible are somewhere “perfect” insulators,
cf. [2].

2. Main results and proofs.
Theorem 1. Assume hypotheses (1), (4), (5), (6), (gl) and (g2) hold. Then there exist real
numbers 6,, 0* and 1* > 0 such that Problem (1, 4) has no nontrivial solution, provided that

0, <0 <0 and0 < A < A*.

22%
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Proof. Suppose that u is a solution in X of (1, »). Then u satisfies
Ja@)|Vul? dx + [b)|ul|”dl — 6 [g(x,wudl + [h(x)|u|" dx
(7) 2 r r 2
= kfw1|u|q dx.
2

It follows from the Young inequality that

A _
A/w1|u|"dx - /ﬂ R | dx
halr
2 2

r=4q. 0 w;/(r—q) q
r/(r—q = r
- A /hq/(r_q) dx+r/h|u| dx.

2 2

lIA

This combined with (7) gives

_ 7/ (r=q) _
Nl — 6 [ gee,wuwar = “—Lyre-o [P1 g 0 T77 [ puy dx
b
r r

pal—a
r P J
(8) r_ q - / wg/(rfq)
= — /e dx.
r ha/r—a)
2
Set
A={ueX:fg(x,u)udF<0}, B={”€X1fg(x,u)ud1">0}
r r
14 p
©) b =sup e e uls
ueA fg(x, l/l)l/l drr ueB fg(x’ I/l)l/l ar
r r

We introduce the convention that if A = ¢ then §, = —oo and if B = () then 6* = +o0.
We show that if we take 6, < 6 < 0* then there exists Cy > 0 such that

(10) Collully = llully —6fg(x,uyudl forallu € X.
T

If 6 < 6* then there exists a constant C; € (0, 1) such that

ey

W forallu € B
gx,u)u
r

0=(1-Cpor=(1—-Cy

which implies

(11) lull, — 6 [gCx,u)udl’ = Cy|lull; forallu € B.
T

If 6, < 0 then there exists a constant C, € (0, 1) such that
llull,

(1-C) [g(x, uyudl’
r

=(1—-0C)o., =6 forallue A

which yields
(12) lull, — 6 [g(x,w)udl’ Z Cy|lull; forallu € A.
T
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From (11) and (12) we conclude that
lull? =6/ gCx, uyudl = min{C,, C,}||u|? forallu € X
T

and taking Cy = min{C, C,} we obtain (10).
By (7), (10) and Proposition 1 we have

2
— q
(13) COC<fu)1|u|"dx> = Gollully = Afwilul?dx,
2 2
for some constant C > 0. This inequality implies
(CL'C)? P = [w|ul?dx
2

which combined with (13) yields
CoC(CL™'Co)P! =P = Colull?.
Combining this with (8) and (10) we obtain

r/(r—q)
“onv-toalan < T "4 e [ ¥
CoC(CA™ Cy) = . A /hq/“*‘i) dx.
2
If we take
I NS N
¥ _ =ala-p_ " wy e
= (e [H0 ) )
2
the result follows. [
Set
U:{ueX:fG(x,u)dF<0}, V:{ueX:fG(x,u)d]">O}
r r
P 4
(14) 6_ =sup Ll , +t=in L1
uell pr(x, u)dr uev pr(x, u)dr
T r
If U=0 (resp. V =) then we set 6_ = —oo (resp. 6+ = +00). Proceeding in the same

manner as we did for proving (10) we can show that if we take 6_ < 6 < 6% then there exists
¢ > 0 such that

(15) i||u||f—91[G(x, w)dl' = c|ull} forallu € X.
We shall employ in what follows the following elementary inequality
B/(v=B)
(16) klul? = hlu)’ = Csk <E> Vu e R, Vh,k e (0,00), YO < B <y.

Proposition 2. If0_ < 0 < 07 then the functional @ is coercive.
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Proof. By virtue of (16) we have

A h Aw q/(r—q)
/ (—|u|qw1 — —|u|’> dx = C,q/)»wl (—1) dx
q 2r ' h

2 2
r/(r—q)

wy
r/(r—q)
= Crgh /hq/o q)d

2

Using (15) it follows that

1 A h 1
q§(u)=—||u||£—0/G(x, u)d]"—/ <—|u|qw1——|u|’) dx+—/h|u|’dx
p q 2r 2r
r 2 2

1
= clulf + 5 [ hlul dx— €,
2

and the coercivity of @ follows. O

Proposition 3. Suppose 6_ < 6 < 0" and let {u,} be a sequence in X such that ®(u,) is
bounded. Then there exists a subsequence of {u,}, relabelled again by {u,}, such that u, — u
in X and

D(ug) = liminf @(u,,).
n—o00
Proof. Since @ is coercive in X we see that the boundedness of @(u,,) implies that ||u, ||,
and [h|u,|" dx are bounded. From Proposition 1 we know that the embedding E C L7(£2; w))
2

is compact and using the fact that {u,,} is bounded in E we may assume that u,, — u, in E and
u, — ugin L1($2; w;).
Set F(x,u) = %|u|"w1 - }h|u|" and f(x, u) = F,(x, u). A simple computation yields

Aw, (g=2)/(r=q)
a7 fux,w) = (g = DAul"?wy — (= Dhlu|™ = C, yhw, < 7 )
where the last inequality follows from (16). We obtain
Do) = P(uy) =1 [a()|Vuol” dx+L [b(x) uol” dI" =L [a(x)|Vu,|” dx —
2 r 2
% Jb@)un|?dIl — 0 [G(x, uo)dI" + 0 [G(x,u,) dI" + [(F(x,u,) —
r r r 2

F(x,u0)) dx = l(||u0||g — lluall}) +9<fG(x, u,)dlm — fG(x, up) dF) +

f(fffu(x uo + 1(u, — uo))dtdS)(un —ug)*dx = 5 (lluolly — llually)+
2\ 00
(r 2)/(r—q)

0<fG(x, u,)dl — [G(x, uo)dl") + Cof (u, — uo)? 7d
r r 2

h@—=2)/(r—q)

where C; = 3C, A2/ We show that the last integral tends to 0 as n — oc. Indeed,
applying Holder’s inequality we obtain

w20 q> W/ @ 2
2 W X = ht S . T
/(”” o) h(q Do & </hq/<r—q> dx) </w1|”" ol dx) :
2 2
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Since u,, — wugyin L1(£2; w;) we have

5 w(lr—Z)/(r—q)
2

The compactness of the trace operator E — L"(I"; w,) and the continuity of the Nemytskii
operator Ng : L"(I'; wy) — L'(I") imply Ng(u,) = Ng(uo) in L'(I') ie. [|Ng(u,) —
r
Ng(ug)| dI' — 0 as n — oo. It follows that
(19) lim [G(x,u,)dl’ = [G(x, uo)dr.
H—)OOI—- I

Since the normin E is lower semicontinuous with respect to the weak topology our conclusion
follows from (18) and (19). O

Proposition 4. [f 0, < 0 < 0* and u is a solution of Problem (1, y), then

r—qg r—q wr/(r—q)
Collully + —/h|u|'" dx = —)\r/(rfq)/ 1 dx
r r
2

ha/r—a)
2

and
lully = Ko/,

where K > 0 is a constant independent of u.

Proof. If u is a solution of (1, 4) then

lull? — 60 [gCx, w)udl’ + [hlul"dx = A fw;|ul?dx =
r 2 2

r/(r—q)

"'—4q, 0o | Y1 1 r

. A il dx + . hlu|" dx.
2 2

Using (10) we obtain the first part of the assertion.
From Proposition 1 we have that there exists C, > 0 such that

”””Z‘I(rz;wl) = Cyllullf, forallu € E.
This inequality and (10) imply
lull, = C(l)/(q_p)C;l/(‘ifl’))(l/(qu)

and taking K = C,/“"" C, "/~ the second part follows. O

Theorem 2. Assume hypotheses (1), (4), (5), (6), (g1) and (g2) hold. Set 6 = max{6,,6_},
if g(x,-) is odd, and @ = 0 elsewhere, § = min{6*, 6"}. Suppose that J = (0, 0) # &. There
exists Ay > 0 such that the following hold:

(1) Problem (1, ) admits a nontrivial solution, for any A Z ro and every 6 € J;
(ii) Problem (1, 4) does not have any nontrivial solution, provided that 0 < A < Xy and
0elJ.
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Proof. According to Propositions 2 and 3, @ is coercive and lower semicontinuous.
Therefore there exists & € X such that ®(i1) = ir)}f @(u). To ensure that & # 0 we shall prove

that ir;f(b < 0. Set
A= inf{%”u”f —q0[Gx,u)dl + 2 [hlu"dx :u € X, [w;|u|?dx = 1}.
r 2 2
First we check that 4 > 0. For this aim we consider the constrained minimization problem
M := inf {fa(x)|Vu|”dx+fb(x)|u|”dF ‘uek, fu)1|u|"dx = 1}.
2 r 2

Clearly, M > 0. Since X is embedded in E, we have
fa(x)|Vu|”dx + fb(x)|u|”d1" =M
2 r
for all u € X with [w;|u|?dx = 1. Now, applying the Holder inequality we find
2

w e BN i
— q — | —_pariyl4 = - . r
(20) 1_/u)1|u| dx_/hq/rh |u| dx_</hq/(r_q) dx) </h|u| dx) .
2 2 2

2
Relation (15) implies
Lully - 49{0(& uydl' z g cllul,.

By virtue of (20) we have

%nung’ —q@/G(x, w)dlm + %/h|u|rdx = gellull? + g/hlul’ dx =
r 2 2

r/(r—q) —(r=q)/q
q wy
ch + ;(/hq/(rfq) dx)
2

forall u € X with [w;|u|?dx = 1. It follows that
2

q wr/(r—q) —(r=q)/q
a = 1 -t
A= qcM + p (/ il dx)
2
and our claim follows.
Let A > A. Then there exists a function u € X with [w,|u|? dx = 1 such that
2

A > %”M”Z —q0[G(x,u)dl’ + £ [h|u|" dx.
r 2

This can be rewritten as
() = %||u||£ —0[Gx,u)dl + X [h|u|" dx — gfw1|u|qu <0
r 2 2

and consequently in£ @(u) < 0. By Propositions 2 and 3 it follows that the problem (1, 4)
ue

has a solution.
We set

Ao = inf{A > 0 : (1, ) admits a solution}.
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Suppose Ay = 0. Then taking 1, € (0, A*) (where 1* is given by Theorem 1) we have that
there is A such that the problem (1 7.0) admits a solution. But this is a contradiction, according
to Theorem 1. Consequently, Ay > 0.

We now show that for each A > 4, problem (1, 4) admits a solution. Indeed, for every
A > A there exists p € (A, A) such that problem (1, ) has a solution u, which is a subsolution
of problem (1, 4). We consider the variational problem

inf{®@u) :u e Xandu = u,}.

By Propositions 2 and 3 this problem admits a solution . This minimizer # is a solution of
problem (1, 4). Since the hypothesis g(x, s) + g(x, —s) = 0 for a.e. x € I" and for all s € R
implies that G (x, |i]) = G(x, u) (that is, @(|i]) = @(u)) we may assume that # = 0 on £2.
It remains to show that problem (1,,4) has also a solution. Let &, — 49 and 1, > A, for
each n. Problem (1,, ¢) has a solution u, for each n. By Proposition 4 the sequence {u,} is
bounded in X. Therefore we may assume that u, — uo in X and u, — uy in L9(£2; w,).
We have that u is a solution of (1,,, 6). Since u,, and u, are solutions of (1,, ¢) and (1,,4),
respectively, we have

Ja)(IVu,|P=2Vu, — |Vuo|P2Vue)(Vu, — Vug) dx +
z.b(x)(lunlp_zun — ol 2uo) (uy — uo) dI" +
S{h(|un|rfzun — |uol"uo) (uy — uo) dx =

M S w1 ([t |7 20y — |ttg|*2u0) (ty — 1t0) dx +

()»f— lo)£w1|uo|q_zuo(un —up)dx+

Gf(g(x, M,,) - g(x, uO))(”n - uO) dI' = Jl,n + ]2,n + J3J17
r

where
Jl,n = }\nfwl(|un|q_2un - |u0|q_2u0)(un - MO) dx7
2
Jon = (M = ko) fwiluo|*uo(u, — uo) dx,
2
J3,n = ef(g(xa un) - g(xa MO))(un - MO) dr.
‘We have "

~1 _1
|Jl,n|§sup)\n<fwllun|q liy — ol dx + [wylugl? |Mn—uo|dx)
2 2

n=1

and it follows from the Holder inequality that

@=1/q 3
[Tl = supkn|:<fw1|un|q dx) . <fw1|un — upl? dx) +
2

=
n=1 7] 1

@D/ !
(fw1|u0|" dx) . <fw1|u,, — uol? dx) ]
2 2

We easily observe that J;, — 0 asn — oo.

From the estimate .

(g=D/q 7
|Janl = I)»n—k()l(fwlluol"dx) -<fw1|un—uo|"dx)
2 2

we obtain that J,,, — 0 asn — oo.
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Using the compactness of the trace operator E — L™ (I"; w,), the continuity of Nemytskii
operator N, : L™ (I"; wy) — L™=V (I"; wy"™™) and the estimate

flg(xv un) - g(xv uO)l : |un - uOldF =
r

1
m

(m—1)/m
(f lg(x, 1) — g(x, ug) ™=V, dr) : ( Jwslu, — uol™ dr)
r r

we see that J;,, — 0asn — oo.
We have so proved that

lim (fa(x)(Wu,,lp_ZVu,, — |Vuo|”2Vug) (Vu, — Vug) dx +
n—o0 Q

S (P21, — o) o) (uy — 1) dr) =0.
r

Applying the inequality (see [3], Lemma 4.10)
1§ —¢IP = CUEI"*E = 1K1" 20 (€ - ), Ve CeRY Vpz2

we find

lIA

lu, —uolly = [a)|Vu, — Vuol” dx + [b(x)|u, — uo|” dx
2 r
C( [a@)(IVu,|P*Vu, — [Vuo|”*Vue)(Vu, — Vue) dx +
2

SO (|21, — |uo|”2u0) (uy — uo) dF) — 0 asn — 00
r

which shows that ||u, ||, = [luoll»- If 1 < p <2 we use a similar argument based on the inequal-
ity |€ — ¢|> = C(I&1772€ — [£1720) (¢ — O(I§] + [¢])* 7. By Proposition 4 we have u, % 0. This
concludes our proof. [
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