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Abstract Weconsider a nonlinearDirichlet problemdriven by the sumof p-Laplacian
and a Laplacian (a (p, 2)-equation) which is resonant at ±∞ with respect to the
principal eigenvalue λ̂1(p) of (−�p,W

1,p
0 (�)) and resonant at zero with respect to

any nonprincipal eigenvalue of (−�, H1
0 (�)). At ±∞ the resonance occurs from

the right of λ̂1(p) and so the energy functional of the problem is indefinite. Using
critical groups, we show that the problem has at least one nontrivial smooth solution.
The result complements the recent work of Papageorgiou and Rădulescu (Appl Math
Optim 69:393–430, 2014), where resonant (p, 2)-equations were examined with the
resonance occurring from the left of λ̂1(p) (coercive problem).
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper, we study

the following nonlinear elliptic equation

− �pu(z) − �u(z) = f (z, u(z)) in �, u|∂� = 0, 2 < p. (1)

In this problem �p denotes the p-Laplacian differential operator defined by

�pu = div (|Du|p−2Du) for all u ∈ W 1,p(�).

The reaction term f (z, x) is a measurable function which is C1 in the x-variable.
We assume that f (z, ·) is asymptotically as x → ±∞ and x → 0, resonant (double
resonance situation). For this doubly resonant problem, we prove an existence theorem
producing a nontrivial smooth solution.

Elliptic equations driven by the sum of a p-Laplacian and a Laplacian, are known
as (p, 2)-equations and arise in problems of mathematical physics. We mention the
papers of Benci et al. [2] (quantum physics) and Cherfils and Ilyasov [4] (plasma
physics). Recently there have been some existence and multiplicity results for such
equations. We mention the works of Aizicovici et al. [1], Cingolani and Degiovanni
[5], Mugnai and Papageorgiou [13], Papageorgiou and Rădulescu [15,16], Sun [18]
and Sun et al. [19].

Our work here is closely related to the paper of Papageorgiou and Rădulescu [15]
and in fact it complements it. In that paper, the authors examined (p, 2)-equations
which at ±∞ are resonant with respect to the principal eigenvalue λ̂1(p) > 0 of
the Dirichlet p-Laplacian (−�p,W

1,p
0 (�)). The resonance occurs from the left of

λ̂1(p) in the sense that λ̂1(p)|x |p − pF(z, x) → +∞ as x → ±∞ (here F(z, x) =∫ x
0 f (z, s)ds). Then the corresponding energy functional of the problem is coercive
and this permits the use of the direct method of the calculus of variations. So, using
this method together with suitable truncation techniques and Morse theory (critical
groups), Papageorgiou and Rădulescu [15] proved multiplicity theorems producing
three or four nontrivial solutions, all with sign information.

It is natural to askwhat happens when the resonance at±∞with respect to λ̂1(p) >

0 occurs from the right, in the sense that λ̂1|x |p − pF(z, x) → −∞ as x → ±∞.
In this case, the energy functional is no longer coercive and so the direct method fails
and it is not clear if we can have a nontrivial solution.

In this paper we study this case and using Morse theory (critical groups), we show
the existence of at least one nontrivial solution.

2 Mathematical Background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the dual-
ity brackets for the pair (X∗, X). We say that ϕ ∈ C1(X,R) satisfies the “Cerami
condition” (the “C-condition” for short), if the following property holds:
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“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and

(1 + ||un||)ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence.′′

Let us briefly recall some basic definitions and facts concerning critical groups
(Morse theory) which we will need in the sequel. So, let ϕ ∈ C1(X,R) and c ∈ R.
We introduce the following sets

• ϕc = {u ∈ X : ϕ(u) � c} (the sublevel set of ϕ at c),
• Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),
• Kc

ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c).

Suppose (Y1,Y2) is a topological pair such that Y2 ⊆ Y1 ⊆ X and k ∈ N0. By
Hk(Y1,Y2) we denote the kth singular homology group for the pair (Y1,Y2) with
integer coefficients. Suppose that u ∈ Kc

ϕ is isolated. The critical groups of ϕ at u are
defined by

Ck(ϕ, u) = Hk(ϕ
c ∩U, ϕc ∩U\{u}) for all k ∈ N0.

Here U is an open neighborhood of u such that Kϕ ∩ ϕc ∩U = {u}. The excision
property of singular homology implies that the above definition of critical groups is
independent of the choice of the neighborhood U of u.

Suppose that ϕ satisfies the C-condition and −∞ < inf ϕ(Kϕ). Then the critical
groups of ϕ at infinity, are defined by

Ck(ϕ,∞) = Hk(X, ϕc) for all k ∈ N0.

The second deformation theorem (see, for example, [9, p. 628]), implies that the
above definition is independent of the choice of the level c < inf ϕ(Kϕ). We know that
if for some k ∈ N0, Ck(ϕ,∞) �= 0, then we can find u ∈ Kϕ such that Ck(ϕ, u) �= 0.
Also, if X = H = Hilbert space, ϕ ∈ C2(H,R) and u ∈ Kϕ , then the “Morse index”
of u, denoted by μ(u), is defined to be the supremum of the dimensions of the vector
subspaces of H on which ϕ′′(u) is negative definite. The “nullity” of u, denoted by
ν(u), is the dimension of ker ϕ′′(u). We say that u is “nondegenerate”, if ϕ′′(u) is
invertible (that is, ν(u) = 0). If ϕ ∈ C2(H,R) and u ∈ Kϕ is nondegenerate (hence
by the inverse function theorem automatically isolated) with Morse index μ(u) = μ,
then

Ck(ϕ, u) = δk,μZ for all k ∈ N0.

Hereafter, by δk,μ we denote the Kronecker symbol defined by

δk,μ =
{
1 if k = μ

0 if k �= μ.

In our analysis of problem (1) we will use some basic facts about the spectrum of
the p-Laplacian and the Laplacian.
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So, consider the following nonlinear eigenvalue problem

− �qu(z) = λ̂|u(z))|q−2u(z) in �, u|∂� = 0 (1 < q < ∞). (2)

We say that λ̂ is an eigenvalue of (−�q ,W
1,q
0 (�)), if problem (2) admits a nontrivial

solution û ∈ W 1,q
0 (�), which is an eigenfunction corresponding to the eigenvalue λ̂.

There exists a smallest eigenvalue λ̂1(q) > 0 with the following properties:

• λ̂1(q) is isolated (that is, there exists ε > 0 such that (λ̂1(q), λ̂1(q) + ε) contains
no eigenvalues of (−�q ,W

1,q
0 (�)));

• λ̂1(q) is simple (that is, if û, v̂ ∈ W 1,q
0 (�) are eigenfunction corresponding to λ̂1,

then û = ξ v̂ with ξ ∈ R\{0});
•

λ̂1(q) = inf

[
||Du||qq
||u||qq

: u ∈ W 1,q
0 (�), u �= 0

]

> 0. (3)

The infimum in (3) is realized on the corresponding one dimensional eigenspace.
It is clear from (3) that the elements of this eigenspace do not change sign. By û1(q)

we denote the Lq -normalized positive eigenfunction corresponding to λ̂1(q) > 0.
From the nonlinear regularity theory and the nonlinear maximum principle (see, for
example, [9, pp. 737–738]), we have

û1(q) ∈ intC+ =
{

u ∈ C1
0(�) : u(z) > 0 for all z ∈ �,

∂u

∂n

∣
∣
∣
∣
∂�

< 0

}

with n(·) being the outward unit normal on ∂� (C+ denotes the positive cone of the
ordered Banach spaceC1

0(�), defined byC+ = {u ∈ C1
0(�) : u(z) � 0 for all z ∈ �}

and intC+ is its interior). Using the Ljusternik–Schnirelmann minimax scheme, we
can produce a whole strictly increasing sequence {λ̂k(q)}k�1 of eigenvalues (known as
LS-eigenvalues) such that λ̂k(q) → +∞. We can have at least three such sequences
of LS-eigenvalues depending on the index used in the minimax scheme. All three
coincide in the first two eigenvalues, but we do not know if this is also true for the
higher eigenvalues. We only know that their elements are ordered. In general, the
spectrum of (−�q ,W

1,q
0 (�)) is far from fully described. Note that the isolation of

λ̂1(q) > 0 implies he second eigenvalue λ̂∗
2(q) is well-defined by

λ̂∗
2(q) = inf[λ̂ : λ̂ is an eigenvalue of (2), λ̂ > λ̂1(q)].

We know that λ̂∗
2(q) = λ̂2(q) (that is, the second eigenvalue coincides with the

second LS-eigenvalue). So, the Ljusternik–Schnirelmann minimax scheme provides
a variational characterization of λ̂2(q). However, for our purposes more convenient is
an alternative minimax characterization due to Cuesta et al. [7]. Let

∂BLq

1 = {u ∈ Lq(�) : ||u||q = 1}, M = W 1,q
0 (�) ∩ ∂BLq

1 ,

�̂ = {γ̂ ∈ C([−1, 1], M) : γ̂ (−1) = −û1(q), γ̂ (1) = û1(q)}.
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Proposition 1 We have λ̂2(q) = inf
γ̂∈�̂

max
−1�t�1

||Dγ̂ (t)||qq .

When q = 2 (linear eigenvalue problem), we have a complete description of
the spectrum of (−�, H1

0 (�)). This consists of a sequence of distinct eigenvalues
{λ̂k(2)}k�1 such that λ̂k(2) → +∞. By E(λ̂k(2)) we denote the eigenspace for the
eigenvalue λ̂k(2). In this case we have the orthogonal direct sum decomposition

H1
0 (�) = ⊕

k�1
E(λ̂k(2)).

These eigenspaces exhibit the unique continuation property, which says that if
u ∈ E(λ̂k(2)) vanishes on a set of positive measure, then u = 0. Also, each E(λ̂k(2))
is finite dimensional and E(λ̂k(2)) ⊆ C1

0(�) (regularity theory).
Now we have variational characterizations for all the eigenvalues, namely

λ̂1(2) = inf

[
||Du||22
||u||22

: u ∈ H1
0 (�), u �= 0

]

(see (3) with q = 2) (4)

λ̂k(2) = inf

[
||Du||22
||u||22

: u ∈ ⊕
i�k

E(λ̂i (2)), u �= 0

]

= sup

[
||Du||22
||u||22

: u ∈ k⊕
i=1

E(λ̂i (2)), u �= 0

]

for all k � 2. (5)

In (4) and (5) the infima and suprema are realized on the corresponding eigenspaces.
Wemention that for all 1 < q < ∞ and all k � 2, the eigenfunctions corresponding

to λ̂k(q) are nodal (that is, sign changing).
We introduce the following linear subspace of W 1,q

0 (�) (1 < q < ∞):

Vq = {u ∈ W 1,q
0 (�) :

∫

�

û1(q)q−1udz = 0}.

We have the following direct sum decomposition

W 1,q
0 (�) = Rû1(q) ⊕ Vq .

We define

λ̃(q) = inf

[
||Du||qq
||u||qq

: u ∈ Vq , u �= 0

]

. (6)

Proposition 2 We have λ̂1(q) < λ̃(q) � λ̂2(q).

Proof From (3) and (6), we have

λ̂1(q) � λ̃(q).
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Suppose that equality holds. So, we can find {un}n�1 ⊆ Vq such that

||un||q = 1 for all n ∈ N and ||Du||qq → λ̂1(q) = λ̃(q) as n → ∞. (7)

From (3) it is clear that {un}n�1 ⊆ W 1,q
0 (�) is bounded and so we may assume

that
un

w→ u in W 1,q
0 (�) and un → u in Lq(�). (8)

Then u ∈ Vq and ||u||q = 1. Also, from (6) and (8), we have

λ̂1(q) � ||Du||qq � lim inf
n→∞ ||Dun||qq = λ̃(q) = λ̂1(q),

⇒ λ̂1(q) = ||Du||qq with ||u||q = 1,

⇒ u = ±û1(q),

a contradiction to the fact that u ∈ Vq . Therefore, we have

λ̂1(q) < λ̃(q).

Next we show that

λ̃(q) � λ̂2(q).

Again we argue by contradiction. So, suppose that λ̂2(q) < λ̃(q). From Proposition
1 we know that we can find γ̂ ∈ �̂ such that

||Dγ̂ (t)||qq < λ̃(q) for all t ∈ [−1, 1]. (9)

From the definition of �̂, we have

γ̂ (−1) = −û1(q) ∈ −intC+ and γ̂ (1) = û1(q) ∈ intC+.

Consider the function ξ : [−1, 1] → R defined by

ξ(t) =
∫

�

γ̂ (t)(z)û1(q)(z)q−1dz.

Then ξ(−1) = −||û1(q)||qq = −1 < 0 < 1 = ||û1(q)||qq = ξ(1). Since ξ(·) is
continuous, it follows from Bolzano’s theorem that we can find t0 ∈ (−1, 1) such that

ξ(t0) = 0,

⇒
∫

�

γ̂ (t0)û1(q)q−1dz = 0,
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⇒ γ̂ (t0) ∈ Vq ,

⇒ λ̃(q) � ||Dγ̂ (t0)||qq (see (6))

and this contradicts (9). Therefore we conclude that λ̃(q) � λ̂2(q). ��

Remark 1 In general we do not know if the inequality λ̃(q) � λ̂2(q) can be strict.
Note that if q = 2, then λ̃(2) = λ̂2(2).

In the sequel for 1 < q < ∞, by Aq : W 1,q
0 (�) → W−1,q ′

(�) = W 1,q
0 (�)∗(

1
q + 1

q ′ = 1
)
, we denote the map defined by

〈
Aq(u), v

〉 =
∫

�

|Du|q−2(Du, Dv)RN dz for all u, v ∈ W 1,q
0 (�). (10)

From Gasinski and Papageorgiou [9, p. 746], we have:

Proposition 3 If 1 < q < ∞ and Aq : W 1,q
0 (�) → W−1,q ′

(�) is defined by (10),
then Aq is monotone, continuous (hence maximal monotone), bounded (that is, maps

bounded sets to bounded sets) and of type (S)+, that is, if un
w→ u in W 1,q

0 (�) and

lim sup
n→∞

〈
Aq(un), un − u

〉
� 0,

then un → u in W 1,q
0 (�).

If q = 2, we write A = A2 ∈ L(H1
0 (�), H−1(�)).

Finally let us fix our notation. By | · |N we denote the Lebesgue measure on R
N .

Also, if h : � × R → R is a measurable function, then we set

Nh(u)(·) = h(·, u(·)) for all W 1,q
0 (�),

theNemytskii operator corresponding to h. By ||·||we denote the norm for the Sobolev
space W 1,p

0 (�). The Poincaré inequality implies that

||u|| = ||Du||p for all u ∈ W 1,p
0 (�).

Let p∗ denote the critical Sobolev exponent, that is,

p∗ =
⎧
⎨

⎩

Np

N − p
if p < N

+∞ if N � p.
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3 Existence of Nontrivial Solutions

The hypotheses on the reaction term f (z, x) are the following:
H : f : � × R → R is a measurable function such that for almost all z ∈ �,

f (z, 0) = 0, f (z, ·) ∈ C1(R) and

(i) | f ′
x (z, x)| � a(z)(1 + |x |r−1) for almost all z ∈ �, all x ∈ R, with a ∈

L∞(�)+, p � r < p∗;
(ii) lim

x→±∞
f (z,x)

|x |p−2x
= λ̂1(p) uniformly for almost all z ∈ �;

(iii) if F(z, x) = ∫ x
0 f (z, s)ds, then there exist τ > 2 and β0 > 0 such that

lim sup
x→±∞

f (z, x)x − pF(z, x)

|x |τ � −β0 uniformly for almost all z ∈ �;

(iv) there exist l ∈ N, l � 2, δ > 0 and η ∈ L∞(�) such that λ̂l(2) � η(z) for
almost all z ∈ �, η �≡ λ̂l(2),

η(z)x2 � f (z, x)x � λ̂l+1(2)x
2 for almost all z ∈ �, all 0 < |x | � δ,

and the second inequality is strict on a set of positive measure.

Remark 2 Hypothesis H(i i) implies that asymptotically as x → ±∞, we have res-
onance with respect to the principal eigenvalue λ̂1(p) > 0 of (−�p,W

1,p
0 (�)).

Hypothesis H(i i i) implies that the resonance occurs from the right of λ̂1(p). Indeed,
as will see in the proof of Proposition 5, this hypothesis implies that

λ̂1(p)|x |p − F(z, x) → −∞ as x → ±∞.

Hypothesis H(iv) implies that we can have resonance also at zero (double reso-
nance). Resonance is possible with respect to λ̂l+1(2) as x → 0, since we can have

lim
x→0

f (z, x)

x
= λ̂l+1(2) uniformly for almost all z ∈ �.

Symmetrically, we may assume that

λ̂l(2)x
2 � f (z, x)x � η̂(z)x2 for almost all z ∈ �, all 0 < |x | � δ

with η̂ ∈ L∞(�), η̂(z) � λ̂l+1(2) for almost all z ∈ �, η̂ �≡ λ̂l+1(2) and the first
inequality is strict on a set of positive measure. Note that hypothesis H(iv) is in
contrast to the situation in Papageorgiou and Rădulescu [15], where the hypotheses
on the reaction term do not permit resonance at zero.
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Let ϕ : W 1,p
0 (�) → R be the energy functional for problem (1) defined by

ϕ(u) = 1

p
||Du||pp + 1

2
||Du||22 −

∫

�

F(z, u(z))dz for all u ∈ W 1,p
0 (�).

Evidently ϕ ∈ C2(W 1,p
0 (�)).

Proposition 4 If hypotheses H(i), (i i), (i i i) hold, then the functional ϕ satisfies the
C-condition.

Proof Let {un}n�1 ⊆ W 1,p
0 (�) be a sequence such that

|ϕ(un)| � M1 for some M1 > 0, all n ∈ N, (11)

(1 + ||un||)ϕ′(un) → 0 in W−1,p′
(�) as n → ∞. (12)

From (11) we have

∣
∣
∣
∣
〈
Ap(un), h

〉 + 〈A(un), h〉 −
∫

�

f (z, un)hdz

∣
∣
∣
∣ � εn||h||

1 + ||un||
for all h ∈ W 1,p

0 (�), with εn → 0+. (13)

We claim that {un}n�1 ⊆ W 1,p
0 (�) is bounded. We argue indirectly. So, suppose

that the sequence is unbounded. By passing to a subsequence if necessary, we may
assume that

||un|| → ∞ as n → ∞. (14)

Let yn = un||un || , n ∈ N. Then ||yn|| = 1 for all n ∈ N and so we may assume that

yn
w→ y in W 1,p

0 (�) and yn → y in L p(�) as n → ∞. (15)

From (13) we have

∣
∣
∣
∣
〈
Ap(yn), h

〉 + 1

||un||p−2
〈A(yn), h〉 −

∫

�

N f (un)

||un||p−1 hdz

∣
∣
∣
∣

� εn||h||
(1 + ||un||)||un||p−1 for all n ∈ N. (16)

Hypotheses H(i), (i i) imply that

| f (z, x)| � c1(1 + |x |p−1) for almost all z ∈ �, all x ∈ R, some c1 > 0. (17)

From (17) it follows that

{
N f (un)

||un||p−1

}

n�1
⊆ L p′

(�) is bounded. (18)
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So, by passing to a subsequence if necessary and using hypothesis H(i i), we have

N f (un)

||un||p−1
w→ λ̂1(p)|y|p−2y in L p′

(�) (19)

(see Filippakis and Papageorgiou [8], proof of Proposition 4.4). In (16) we choose
h = yn − y ∈ W 1,p

0 (�), pass to the limit as n → ∞ and use (14), (15), (18) and the
fact that 2 < p. Then

lim
n→∞

〈
Ap(yn), yn − y

〉 = 0,

⇒ yn → y in W 1,p
0 (�), hence ||y|| = 1. (20)

So, if in (16) we pass to the limit as n → ∞ and use (14), (19), (20) and the fact
that 2 < p, then

〈
Ap(y), h

〉 = λ̂1(p)
∫

�

|y|p−2yhdz for all h ∈ W 1,p
0 (�),

⇒ −�p y(z) = λ̂1(p)|y(z)|p−2y(z) for almost all z ∈ �, y|∂� = 0,

⇒ y = ξ û1(p) with ξ �= 0 (see (20)).

Recall that û1(p) ∈ intC+, hence |y(z)| > 0 for all z ∈ � and so

|un(z)| → +∞ for all z ∈ �, as n → ∞.

Hypothesis H(i i i) implies that

lim sup
n→∞

f (z, un(z))un(z) − pF(z, un(z))

|un(z)|τ � −β0 < 0 for almost all z ∈ �. (21)

By hypothesis H(i i i) we see that we can find β1 ∈ (0, β0) and M > 0 such that

f (z, x)x − pF(z, x)

|x |τ � −β1 for almost all z ∈ �, all |x | � M.

Then we have

1

||un||τ
∫

�

[ f (z, un)un − pF(z, un)]dz=
∫

{|un |�M}
f (z, un)un− pF(z, un)

|un|τ |yn|τdz

+ 1

||un||τ
∫

{|un |<M}
[ f (z, un)un

− pF(z, un)]dz.
Recalling that ||un|| → ∞ (see (14)), we see that

1

||un||τ
∫

{|un |<M}
[ f (z, un)un − pF(z, un)]dz → 0.
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On the other hand from (21), Fatou’s lemma and because y �= 0 (see (20)), we infer
that

lim sup
n→∞

∫

{|un |�M}
f (z, un)un − pF(z, un)

|un|τ |yn|τdz < 0,

⇒ lim sup
n→∞

1

||un||τ
∫

�

[ f (z, un)un − pF(z, un)]dz < 0. (22)

On the other hand from (11) we have

− pM1 � ||Dun||pp + p

2
||Dun||22 −

∫

�

pF(z, un)dz for all n ∈ N. (23)

Also in (13) we choose h = un ∈ W 1,p
0 (�). We obtain

− εn � −||Dun||pp − ||Dun||22 +
∫

�

f (z, un)undz for all n ∈ N. (24)

Adding (23) and (24) we have for all n ∈ N

−M2 �
( p

2
− 1

)
||Dun||22 +

∫

�

[ f (z, un)un − pF(z, un)]dz,

⇒ − M2

||un||τ �
( p

2
− 1

) ||Dyn||22
||un||τ−2 + 1

||un||τ
∫

�

[ f (z, un)un − pF(z, un)]dz,

⇒ − M2

||un||τ � c2
||un||τ−2 + 1

||un||τ
∫

�

[ f (z, un)un − p f (z, un)]dz (25)

for some c2 > 0, all n ∈ N (since {Dyn}n�1 ⊆ L2(�,RN ) is bounded and 2 < p).
Passing to the limit as n → ∞ in (25), using (14) and recalling that τ > 2 (see

hypothesis H(i i i)), we have

0 � lim inf
n→∞

1

||un||τ
∫

�

[ f (z, un)un − pF(z, un)]dz. (26)

Comparing (22) and (26), we reach a contradiction. This proves that

{un}n�1 ⊆ W 1,p
0 (�) is bounded.

So, we may assume that

un
w→ u in W 1,p

0 (�) and un → u in L p(�) as n → ∞. (27)

From (17) and (27) it is clear that

{N f (un)}n�1 ⊆ L p′
(�) is bounded. (28)

123

Author's personal copy



632 Appl Math Optim (2017) 76:621–639

If in (13) we choose h = un − u ∈ W 1,p
0 (�), pass to the limit as n → ∞ and use

(27), (28), then

lim
n→∞

[〈
Ap(un), un − u

〉 + 〈A(un), un − u〉] = 0,

⇒ lim sup
n→∞

[〈
Ap(un), un − u

〉 + 〈A(u), un − u〉] � 0

(recall A is monotone, see Proposition3),

⇒ lim sup
n→∞

〈
Ap(un), un − u

〉
� 0,

⇒ un → u in W 1,p
0 (�) (see Proposition3),

⇒ ϕ satisfies the C-condition.

The proof is now complete. ��
In the sequel we assume that Kϕ is finite or otherwise we already have an infinity

of solutions for problem (1), which belong to C1
0(�) (see the proof of Theorem 7).

So, we are done.

Proposition 5 If hypotheses H(i), (i i), (i i i) hold, then C1(ϕ,∞) �= 0.

Proof Recall that

W 1,p
0 (�) = Rû1(p) ⊕ Vp.

��
Claim 1 ϕ|Rû1(p) is anticoercive (that is, ϕ(t û1(p)) → −∞ as t → ±∞).

It is clear from hypothesis H(i i i) that we can always assume that τ < p.
Hypothesis H(i i i) implies that we can find β1 ∈ (0, β0) and M3 > 0 such that

f (z, x)x − pF(z, x) � −β1|x |τ for almost all z ∈ �, all |x | � M3. (29)

We have

d

dx

F(z, x)

|x |p = f (z, x)|x |p − p|x |p−2xF(z, x)

|x |2p
= f (z, x)x − pF(z, x)

|x |px
� −β1

1

|x |p−τ+1 if x � M3 and � −β1
1

|x |p−τ x
if x � −M3,

⇒ F(z, x)

|x |p − F(z, y)

|y|p � β1

p − τ

[
1

|x |p−τ
− 1

|y|p−τ

]

for all z ∈ �, all |x | � |y| � M3. (30)
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Note that hypothesis H(i i) implies that

lim
x→±∞

pF(z, x)

|x |p = λ̂1(p) uniformly for almost all z ∈ � . (31)

So, if in (30) we let |x | → +∞ and use (31), then

1

p
λ̂1(p) − F(z, y)

|y|p � − β1

p − τ

1

|y|p−τ
for almost all z ∈ �, all |y| � M3

(recall τ < p),

⇒ λ̂1(p)

p
|y|p − F(z, y) � − β1

p − τ
|y|τ for almost all z ∈ �, all |y| � M3.

(32)

Hypothesis H(i) and (32) imply that we can find c3 > 0 such that

λ̂1(p)

p
|y|p − F(z, y) � − β1

p − τ
|y|τ + c3 for almost all z ∈ �, all y ∈ R . (33)

Then we have

ϕ(t û1(p)) =
∫

�

[
λ̂1(p)

p
|t û1(p)|p − F(z, t û1(p))

]

dz + t2

2
||Dû1(p)||22

� −β1|t |τ
p − τ

||û1(p)||ττ + t2

2
||Dû1||22 + c3|�|N (see(33)). (34)

Since τ > 2 (see hypothesis H(i i i)), from (34) we infer that

ϕ(t û1(p)) → −∞ as t → ±∞,

⇒ ϕ|Rû1(p) is anticoercive.

This proves Claim 1.

Claim 2 ϕ|Vp is bounded below.

From (31) andhypothesis H(i), we see that given ε > 0,we canfind c4 = c4(ε) > 0
such that

F(z, x) � λ̂1(p) + ε

p
|x |p + c4 for almost all z ∈ �, all x ∈ R. (35)

For u ∈ Vp, we have

ϕ(u) � 1

p

[
λ̂(p) − (λ̂1(p) + ε)

]
||u||pp − c4|�|N (see(6) and (35)). (36)
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Choosing ε ∈ (0, λ̂(p) − λ̂1(p)) (see Proposition 1), from (36) we see that

ϕ|Vp is bounded below.

This proves Claim 2.
Recall that Kϕ is finite or otherwise we already have infinitely many nontrivial

solutions for problem (1) and so we are done. Then Claims 1, 2 and Proposition 4,
permit the use of Proposition 6.63, p. 160, ofMotreanu et al. [12] and haveC1(ϕ,∞) �=
0.

Next we compute the critical group of ϕ at the origin.

Proposition 6 If hypotheses H(i), (iv) hold, then Ck(ϕ, 0) = δk,dlZ for all k ∈ N0

with dl = dim
l⊕

i=1
E(λ̂i (2)).

Proof Consider the C2-functional ψ̂ : H1
0 (�) → R defined by

ψ̂(u) = 1

2
||Du||22 −

∫

�

F(z, u)dz for all u ∈ H1
0 (�).

��
Let ψ = ψ̂ |

W 1,p
0 (�)

(recall 2 < p).

Claim 3 We have Ck(ψ, 0) = δk,dlZ for all k ∈ N0.

Let η0 ∈ (λ̂l(2), λ̂l+1(2)) and consider the C2-functional σ : H1
0 (�) → R defined

by

σ(u) = 1

2
||Du||22 − η0

2
||u||22 for all u ∈ H1

0 (�).

Evidently u = 0 is a nondegenerate critical point of σ with Morse index dl . There-
fore

Ck(σ, 0) = δk,dlZ for all k ∈ N0. (37)

We consider the homotopy h(t, u) defined by

h(t, u) = (1 − t)ψ̂(u) + tσ(u) for all (t, u) ∈ [0, 1] × H1
0 (�).

Let t ∈ (0, 1] and u ∈ C1
0(�) with ||u||C1

0 (�) � δ (here δ > 0 is as pos-
tulated in hypothesis H(iv)). Let 〈·, ·〉0 denote the duality brackets for the pair
(H−1(�), H1

0 (�)). We have

〈
h′
u(t, u), y

〉
0 = (1 − t)

〈
ψ̂ ′(u), y

〉

0
+ t

〈
σ ′(u), y

〉
0 for all y ∈ H1

0 (�). (38)
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We consider the following orthogonal direct sum decomposition of the Hilbert
space H1

0 (�):

H1
0 (�) = H̄l ⊕ Ĥl with H̄l = l⊕

i=1
E(λ̂i (2)), Ĥl = ⊕

i�l+1
E(λ̂i (2)) .

Then every v ∈ H1
0 (�) admits a unique sum decomposition as

v = v̄ + v̂ with v̄ ∈ H̄l and v̂ ∈ Ĥl .

In (38) we choose y = û − ū ∈ H1
0 (�). Exploiting the orthogonality of the

component spaces in the above decomposition, we have

〈
ψ̂ ′(u), û − ū

〉

0
= ||Dû||22 − ||Dū||22 −

∫

�

f (z, u)(û − ū)dz. (39)

Note that hypothesis H(iv) implies that

η(z) � f (z, x)

x
� λ̂l+1(2) for almost all z ∈ �, all 0 < |x | � δ.

Let y = û − ū ∈ H1
0 (�). Then

f (z, u)(û − ū) = f (z, u)y = f (z, u)

u
uy

�
{

λ̂l+1(2)(û2 − ū2) if uy > 0
η(z)(û2 − ū2) if uy < 0

� λ̂l+1(2)û
2 − η(z)ū2.

So, we have proved that

f (z, u(z))(û − ū)(z) � λ̂l+1(2)û(z)2 − η(z)ū(z)2 for almost all z ∈ � . (40)

Using (40) in (39), we obtain

〈
ψ̂ ′(u), û − ū

〉

0
= ||Dû||22 − λ̂l+1(2)||û||22 −

[
||Dū||22 − λ̂l(2)||ū||22

]

� 0 (see (5)). (41)

Also we have

〈
σ ′(u), û − ū

〉
0 = ||Dû||22 − η0||û||22 −

[
||Dū||22 − η0||ū||22

]

� c5||Du||2 for some c5 > 0 (recall that η0 ∈ (λ̂l(2), λ̂l+1(2))).

(42)
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Returning to (39) and using (41) and (42), we have

〈
h′
u(t, u), û − ū

〉
0 � tc5||Du||2 > 0 (recall that t ∈ (0, 1]). (43)

We claim that 0 ∈ K
ψ̂
is isolated. Arguing by contradiction, suppose that the claim

is false. Then we can find {un}n�1 ⊆ H1
0 (�) such that

un → 0 in H1
0 (�) and ψ̂ ′(un) = 0 for all n ∈ N . (44)

From the equality in (44), we have

− �un(z) = f (z, un(z)) for almost all z ∈ �, un|∂� = 0 for all n ∈ N (45)

Standard regularity theory (the Calderon–Zygmund estimates), implies that we can
find α ∈ (0, 1) and M4 > 0 such that

un ∈ C1,α
0 (�) and ||un||C1,α

0 (�)
� M4 for all n ∈ N. (46)

Exploiting the compact embedding of C1,α
0 (�) into C1

0(�), from (44) and (46) we
have

un → 0 in C1
0(�) as n → ∞,

⇒ η(z)un(z)
2 � f (z, un(z))un(z) � λ̂l+1(2)un(z)

2

for almost all z ∈ �, all n � n0 (see hypothesis H(iv)). (47)

Relation (47) implies that

f (z, un(z))(ûn(z) − ūn(z)) � λ̂l+1(2)ûn(z)
2 − η(z)ūn(z)

2

for almost all z ∈ �, all n � n0.

Multiplying (45) with (ûn − ūn)(z), integrating over � and using Green’s identity,
the orthogonality of the component spaces and (47), we have

||Dûn||22 − ||Dūn||22
=

∫

�

(Dun, Dûn − Dūn)RN dz (since un = ûn + ūn)

=
∫

�

f (z, un)(ûn − ūn)dz (see(45))

�
∫

�

[λ̂l+1(2)û
2
n − η(z)ū2n]dz

⇒ 0 � ||Dûn||22 − λ̂l+1(2)||ûn||22 � ||Dūn||22 −
∫

�

η(z)ū2ndz � −ξ̂0||ūn||2
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for some ξ̂0 > 0 (see [17]),
⇒ ūn = 0 and un = ûn ∈ E(λ̂l+1(2)) for all n � n0.

The unique continuation property of the eigenspaces implies that

ûn(z) �= 0 for almost all z ∈ �.

Then

λ̂l+1(2)||un||22 = ||Dun||22 =
∫

�

f (z, un)undz < λ̂l+1(2)||un||22 for all � n0,

since un(z) �= 0 for almost all z ∈ �, see hypothesis H(iv). This contradiction proves
that 0 ∈ K

ψ̂
is isolated.

Since h(0, ·) = ψ̂(·), using (43) we see that u = 0 is an isolated critical point of
h(t, ·) for all t ∈ [0, 1]. Invoking Theorem 5.2 of Corvellec and Hantoute [6], we have

Ck(ψ̂, 0) = Ck(σ, 0) for all k ∈ N0,

⇒ Ck(ψ̂, 0) = δk,dlZ for all k ∈ N0 (see (37)). (48)

Because W 1,p
0 (�) is dense in H1

0 (�), it follows that

Ck(ψ̂, 0) = Ck(ψ, 0) for all k ∈ N0 (see [3, p.14] and [14]),
⇒ Ck(ψ, 0) = δk,dlZ for all k ∈ N0 (see (48)). (49)

This proves the Claim.
We have

|ϕ(u) − ψ(u)| � 1

p
||u||p (50)

| 〈ϕ′(u) − ψ ′(u), h
〉 | � c6||u||p−1||h|| for some c6 > 0,

⇒ ||ϕ′(u) − ψ ′(u)||∗ � c6||u||p−1. (51)

From (50), (51) and the continuity of critical groups in theC1-topology (see Corvel-
lec and Hantoute [6, Theorem 5.1]), we have

Ck(ϕ, 0) = Ck(ψ, 0) for all k ∈ N0,

⇒ Ck(ϕ, 0) = δk,dlZ for all k ∈ N0 (see(49)s).

Now we are ready for the existence theorem.

Theorem 7 Assume that hypotheses H hold. Then problem (1) admits a nontrivial
solution u0 ∈ C1

0(�).
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Proof From Proposition 5 we know that

C1(ϕ,∞) �= 0.

So, we can find u0 ∈ W 1,p
0 (�) such that

u0 ∈ Kϕ and C1(ϕ, u0) �= 0. (52)

Sinceϕ ∈ C2(W 1,p
0 (�)) from (52) andPapageorgiou andRădulescu [15], it follows

that
Ck(ϕ, u0) = δk,1Z for all k ∈ N0. (53)

From Proposition 6, we have

Ck(ϕ, 0) = δk,dlZ for all k ∈ N0. (54)

Comparing (53) and (54) we see that u0 �= 0 (recall l � 2). Since u0 ∈ Kϕ (see
(52)) it follows that u0 is a nontrivial solution of (1). Moreover, from Ladyzhenskaya
and Uraltseva [10, Theorem 7.1, p. 286], we have u0 ∈ L∞(�) and so we can apply
Theorem 1 of Lieberman [11] and conclude that u0 ∈ C1

0(�). ��
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