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Abstract We consider anonlinear Dirichlet problem driven by the sum of p-Laplacian
and a Laplacian (a (p, 2)-equation) which is resonant at oo with respect to the
principal eigenvalue A (p) of (A, Wol’p (£2)) and resonant at zero with respect to
any nonprincipal eigenvalue of (—A, Hol(Q)). At £oo the resonance occurs from
the right of A p) and so the energy functional of the problem is indefinite. Using
critical groups, we show that the problem has at least one nontrivial smooth solution.
The result complements the recent work of Papageorgiou and Radulescu (Appl Math
Optim 69:393-430, 2014), where resonant (p, 2)-equations were examined with the
resonance occurring from the left of )A»l (p) (coercive problem).
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1 Introduction

Let Q@ € R be a bounded domain with a C2-boundary 9. In this paper, we study
the following nonlinear elliptic equation

—Apu(z) — Au(z) = f(z,u(z) in 2, ulpe=0, 2 < p. (1)
In this problem A, denotes the p-Laplacian differential operator defined by
Apu = div (|Du|’">Du) forallu e W'’ (Q).

The reaction term f(z, x) is a measurable function which is C'! in the x-variable.
We assume that f(z, -) is asymptotically as x — 00 and x — 0, resonant (double
resonance situation). For this doubly resonant problem, we prove an existence theorem
producing a nontrivial smooth solution.

Elliptic equations driven by the sum of a p-Laplacian and a Laplacian, are known
as (p, 2)-equations and arise in problems of mathematical physics. We mention the
papers of Benci et al. [2] (quantum physics) and Cherfils and Ilyasov [4] (plasma
physics). Recently there have been some existence and multiplicity results for such
equations. We mention the works of Aizicovici et al. [1], Cingolani and Degiovanni
[5], Mugnai and Papageorgiou [13], Papageorgiou and Rédulescu [15,16], Sun [18]
and Sun et al. [19].

Our work here is closely related to the paper of Papageorgiou and Radulescu [15]
and in fact it complements it. In that paper, the authors examined (p, 2)-equations
which at oo are resonant with respect to the principal eigenvalue A 1(p) > 0 of
the Dirichlet p-Laplacian (—A, W(}’P (£2)). The resonance occurs from the left of
)AL](p) in the sense that il(p)|x|p — pF(z,x) — 400 as x — Foo (here F(z,x) =
fox f(z,s)ds). Then the corresponding energy functional of the problem is coercive
and this permits the use of the direct method of the calculus of variations. So, using
this method together with suitable truncation techniques and Morse theory (critical
groups), Papageorgiou and Radulescu [15] proved multiplicity theorems producing
three or four nontrivial solutions, all with sign information.

Itis natural to ask what happens when the resonance at +0o with respect to A(p) >
0 occurs from the right, in the sense that a |x|? — pF(z,x) - —ooas x — *£o0.
In this case, the energy functional is no longer coercive and so the direct method fails
and it is not clear if we can have a nontrivial solution.

In this paper we study this case and using Morse theory (critical groups), we show
the existence of at least one nontrivial solution.

2 Mathematical Background
Let X be a Banach space and X* its topological dual. By (-, -) we denote the dual-

ity brackets for the pair (X*, X). We say that ¢ € C 1(X,R) satisfies the “Cerami
condition” (the “C-condition” for short), if the following property holds:

@ Springer
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“Every sequence {uy},>1 € X such that {¢(u,)},>1 € R is bounded and
(1 + lunlD¢'(up) = 0in X* as n — oo,

admits a strongly convergent subsequence.”

Let us briefly recall some basic definitions and facts concerning critical groups
(Morse theory) which we will need in the sequel. So, let ¢ € C'(X,R) and ¢ € R.
We introduce the following sets

e ¢ ={u € X : p(u) < c} (the sublevel set of ¢ at c),
o K, ={uc X :¢'(u) =0} (the critical set of ),
o K, ={u€ Ky : o) = c}(the critical set of ¢ at the level ¢).

Suppose (Y1, Y2) is a topological pair such that Y» € ¥} € X and k € Np. By
Hi (Y1, Y2) we denote the kth singular homology group for the pair (Y1, Y2) with
integer coefficients. Suppose that u € K is isolated. The critical groups of ¢ at u are
defined by

Cr(p,u) = He(° NU, o NU\{u}) forall k € Ny.

Here U is an open neighborhood of u such that K, N ¢° N U = {u}. The excision
property of singular homology implies that the above definition of critical groups is
independent of the choice of the neighborhood U of u.

Suppose that ¢ satisfies the C-condition and —oo < inf ¢(K). Then the critical
groups of ¢ at infinity, are defined by

Cr(p, 00) = Hp(X, ¢¢) forall k € Ny.

The second deformation theorem (see, for example, [9, p. 628]), implies that the
above definition is independent of the choice of the level ¢ < inf ¢ (K,). We know that
if for some k € No, Cy (¢, 00) # 0, then we can find u € K, such that Cy (¢, u) # 0.
Also, if X = H = Hilbert space, ¢ € CZ(H, R) and u € K, then the “Morse index”
of u, denoted by w(u), is defined to be the supremum of the dimensions of the vector
subspaces of H on which ¢” () is negative definite. The “nullity” of u, denoted by
v(u), is the dimension of ker ¢”(u). We say that u is “nondegenerate”, if ¢” () is
invertible (that is, v(u) = 0). If ¢ € C%(H,R) and u € K, is nondegenerate (hence
by the inverse function theorem automatically isolated) with Morse index u(u) = w,
then

Ci(p,u) = 0,72 forall k € Np.

Hereafter, by ;. , we denote the Kronecker symbol defined by

s [litk=n
k= 10ifk # p.

In our analysis of problem (1) we will use some basic facts about the spectrum of
the p-Laplacian and the Laplacian.

@ Springer
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So, consider the following nonlinear eigenvalue problem
— Agu(z) = Mu@)12uz) in Q, ulsg =01 < g < ). )

We say that Aisan eigenvalue of (—A, WO1 “1(Q)), if problem (2) admits a nontrivial
solution & € Wé’q (£2), which is an eigenfunction corresponding to the eigenvalue A
There exists a smallest eigenvalue A (g) > 0 with the following properties:

° ):1 (g) is isolated (that is, there exists € > 0 such that (il (@), ):1 (g) + €) contains
no eigenvalues of (—A,, Wol’q ());

° ):1 (¢) is simple (that is, if &, 0 € Wé 4(Q) are eigenfunction corresponding to ):1,
then &1 = £0 with & € R\{0});

|| Dul|g

2] 1§

i) = inf|: cue Wy l(Q), u # 0} > 0. 3)

The infimum in (3) is realized on the corresponding one dimensional eigenspace.
It is clear from (3) that the elements of this eigenspace do not change sign. By i (q)
we denote the L7-normalized positive eigenfunction corresponding to A (g) > 0.
From the nonlinear regularity theory and the nonlinear maximum principle (see, for
example, [9, pp. 737-738]), we have

_ 3
fi(g) €intCy = [u € CH@) 1 u(z) > Oforall z € 2, a—”
n

< 0]
Q2

with n(-) being the outward unit normal on 9<2 (C4 denotes the positive cone of the
ordered Banach space Cé (Q), definedby C; = {u € COl () :u(z) > 0forallz € Q)
and int C is its interior). Using the Ljusternik—Schnirelmann minimax scheme, we
can produce a whole strictly increasing sequence {)A»k (q)}x>1 of eigenvalues (known as
LS-eigenvalues) such that ik(q) — 400. We can have at least three such sequences
of LS-eigenvalues depending on the index used in the minimax scheme. All three
coincide in the first two eigenvalues, but we do not know if this is also true for the
higher eigenvalues. We only know that their elements are ordered. In general, the
spectrum of (—A, Wol’q(Q)) is far from fully described. Note that the isolation of
A (g) > 0 implies he second eigenvalue ij(q) is well-defined by

):;(q) = inf[A : A is an eigenvalue of (2), A~ il(q)].

We know that )Afz‘(q) = iz(q) (that is, the second eigenvalue coincides with the
second LS-eigenvalue). So, the Ljusternik—Schnirelmann minimax scheme provides
a variational characterization of A>(g). However, for our purposes more convenient is
an alternative minimax characterization due to Cuesta et al. [7]. Let

OB ={ue L9(Q) : ||ull, =1}, M =Wy (@) naBL,
F={eCq-L11LM):p(=1) = —ii(g), 7(1) = ii1(q)).

@ Springer
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Proposition 1 We have iz(q) = inf max ||D)7(t)||z.

yel' IS/

When ¢ = 2 (linear eigenvalue problem), we have a complete description of
the spectrum of (—A, HOl (£2)). This consists of a sequence of distinct eigenvalues

{ik(2)}k>1 such that )A»k (2) — +o0. By E(ik (2)) we denote the eigenspace for the
eigenvalue Ax(2). In this case we have the orthogonal direct sum decomposition

Hi(Q) = keglE(ik(z)).

These eigenspaces exhibit the unique continuation property, which says that if
uek ():k (2)) vanishes on a set of positive measure, then u = 0. Also, each E ():k )
is finite dimensional and E (ik (2)) < Cé (Q) (regularity theory).

Now we have variational characterizations for all the eigenvalues, namely

- | 11Dull3 | :
A1(2) = inf W tu e Hy(R),u #0| (see (3) withg = 2) @)
uil
. D)y
)\,k(z) = 1nf —2 u e @ E()\q(z))s u 75 0
[ul13 i>k
1Dull3 ko
= sup W.ue DEMXQ2), u0| forallk > 2. 5)
ully i=1

In (4) and (5) the infima and suprema are realized on the corresponding eigenspaces.

We mention thatforall 1 < g < ocoandallk > 2, the eigenfunctions corresponding
to Ak (g) are nodal (that is, sign changing).

We introduce the following linear subspace of WO1 Q) (1 < g < 00):

V,=1ue Wé’q(Q) : / i1(@)? 'udz = 0.
Q
We have the following direct sum decomposition
1, N
Wy (Q) =Riii(q) & V.
We define

|[Dul|

q
Iullg

i(q):inf[ :uqu,u#O]. (6)

Proposition 2 We have i1(q) < A(q) < A2(q).

Proof From (3) and (6), we have

r(g) < (q).
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Suppose that equality holds. So, we can find {u,},>1 € V; such that
[lupllg =1 forallnm e N and ||Du||3 — il(q) = ;\(q) asn — oo. (7)

From (3) it is clear that {u,},>1 € W& "1(Q) is bounded and so we may assume
that
Uy = uin Wy 4(Q) and u, — uin L9(Q). (8)

Then u € V,; and ||u]|; = 1. Also, from (6) and (8), we have

hi(q) < [|Dully < liminf | Duy||G = X(q) = 41(9).

= A1(q) = ||Dull§ with [|ull, = 1,
= u = +iu,(q),

a contradiction to the fact that u € V. Therefore, we have
(@) < A(9).
Next we show that
g) < ha(@).

Again we argue by contradiction. So, suppose that A (q) < A(g).From Proposition
1 we know that we can find y € T such that

||D)?(t)||Z < X(q) forall t € [—1, 1]. ©)]
From the definition of f‘, we have
y(=1)=—u1(q) € —intCy and p(1) =1u;(q) €intCy.

Consider the function & : [—1, 1] — R defined by
é(t)=/Qa7(t)(z)ﬁ1(q)(z)‘f’ldz.

Then &(—1) = —||i1(@lld = -1 < 0 < 1 = [l (g)|l§ = &(1). Since &() is
continuous, it follows from Bolzano’s theorem that we can find 7y € (—1, 1) such that

E(to) =0,
= / P (o) (@)1 dz = 0,
Q

@ Springer



Appl Math Optim (2017) 76:621-639 627

= y(t) € Vg,
= A(q) < |IDP(t0)||d (see (6))

and this contradicts (9). Therefore we conclude that X(q) < )A\z(q). O

Remark 1 In general we do not know if the inequality Mg < )Aug(q) can be strict.
Note that if ¢ = 2, then A(2) = A2(2).

In the sequel for I < g < oo, by A, : Wy (Q) — W14 (Q) = W, (Q)*

(% + % = l) , we denote the map defined by

(Aq(u),u)z/g|Du|q*2(Du,Dv)RNdz forallu,veWOI’q(Q). (10)

From Gasinski and Papageorgiou [9, p. 746], we have:

Proposition 3 If 1 < ¢ < oo and A, : W(}"f (Q) - WL4(Q) is defined by (10),
then A, is monotone, continuous (hence maximal monotone), bounded (that is, maps
bounded sets to bounded sets) and of type (S)4, that is, if u, 5 uin WOl Q) and

lim sup (Ag (up), un — u) < 0,

n—00

then u, — uin Wg’q(Q).
If g =2, we write A = A, € L(HJ (Q), H1(Q)).

Finally let us fix our notation. By | - |y we denote the Lebesgue measure on RV .
Also, if h : Q x R — R is a measurable function, then we set

Na@)(-) = h(-,u(-)) forall Wy (Q),

the Nemytskii operator corresponding to 4. By || - || we denote the norm for the Sobolev
space W(; "P(£2). The Poincaré inequality implies that

[lull = |Dul|, forall ue Wé’p(Q).
Let p* denote the critical Sobolev exponent, that is,

N
x P ifp<N
Ppr=1N-p

400 if N < p.
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3 Existence of Nontrivial Solutions

The hypotheses on the reaction term f(z, x) are the following:
H : f:Q xR — Ris ameasurable function such that for almost all z € €,
f(z,00=0, f(z,-) € C'(R) and

@O 1fizx)] < al)A + |x|’_1) for almost all z € Q, all x € R, with a €
L®(Q)y, p<r < p%

(ii) hrf Iﬁfl('fﬁl = 1(p) uniformly for almost all z € §;
X—> 00

(i) if F(z,x) = fox f(z, s)ds, then there exist T > 2 and o > 0 such that

, — pF(z, .
lim sup flz,x)x — pF(z, %) < —fo uniformly for almost all z € ;

x—>=o00 |x|*

(iv) there exist/ € N, [ > 2,8 > 0 and n € L*(€) such that (2) < n(2) for
almost all z € Q, n £ A(2),

n(@2)x> < f(z,x)x < Ajy1(2)x? for almost all z € , all 0 < |x| < 8,

and the second inequality is strict on a set of positive measure.

Remark 2 Hypothesis H (ii) implies that asymptotically as x — o0, we have res-
onance with respect to the principal eigenvalue )AL](p) > 0 of (A, W(}’p (2)).

Hypothesis H (iii) implies that the resonance occurs from the right of A1(p). Indeed,
as will see in the proof of Proposition 5, this hypothesis implies that

M (p)x|? — F(z,x) — —ocoas x — %oo.

Hypothesis H (iv) implies that we can have resonance also at zero (double reso-
nance). Resonance is possible with respect to A;41(2) as x — 0, since we can have

lim

L = il+1 (2) uniformly for almost all z € Q.
x—

f(z,x)
X

Symmetrically, we may assume that
M(2)x% < fz, x)x < H(z)x* foralmostall z € Q, all 0 < |x| <8

with § € L®(Q), #(z) < Aj41(2) for almost all z € 2,  # A1 (2) and the first
inequality is strict on a set of positive measure. Note that hypothesis H (iv) is in
contrast to the situation in Papageorgiou and Radulescu [15], where the hypotheses
on the reaction term do not permit resonance at zero.
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Let g : Wé "P(Q) — R be the energy functional for problem (1) defined by
1 p, 1 2 Lp
o) = ;||Du||p + 5|IDu||2 — [ F(z,u(z))dz forallu € Wy (Q).
Q

Evidently ¢ € C2(W,""(Q)).

Proposition 4 [f hypotheses H (i), (ii), (iii) hold, then the functional ¢ satisfies the
C-condition.

Proof Let {uy},>1 € Wol’p(Q) be a sequence such that

lo(uy)| < M for some My > 0, alln € N, (11)
(1 + |unD¢' () = 0in WP (Q) as n — oo. (12)

From (11) we have

el
(a0} e 1) [ e umae] <

forall h € Wy'"(Q), with e, — 0% (13)

We claim that {u,},>1 C Wé’p (€2) is bounded. We argue indirectly. So, suppose
that the sequence is unbounded. By passing to a subsequence if necessary, we may
assume that

[ty || = o0 asn — o0. 14)
Lety, = Ty € N. Then ||y,|| = 1 for all n € N and so we may assume that
Yu = yin Wy (Q) and y, — yin LP() as n — oo. (15)
From (13) we have
1 Ny (up)
ApO).h (AGw .0~ | —hdz‘
(A Con): )+ 1lunllP2 " Q |lun P!

enllhl|
(L D121

foralln € N. (16)
Hypotheses H (i), (ii) imply that

[fz, )| < (1 + |x|p_1) for almost all z € 2, allx € R, somec; > 0. (17)
From (17) it follows that

lun [P~

N, ,
[  tn) ] C L” (Q) is bounded. (18)
n>1
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So, by passing to a subsequence if necessary and using hypothesis H (ii), we have

Nr(uy) ~ s /
”ufl7”_1 2 Ay’ 2yin LV (@) (19)
n

(see Filippakis and Papageorgiou [8], proof of Proposition 4.4). In (16) we choose
h=y,—ye Wol’p(Q), pass to the limit as n — oo and use (14), (15), (18) and the
fact that 2 < p. Then

im (A, (ya)., yu — y) =0,

=y — yin W, P (), hence |[y|| = 1. (20)

So, if in (16) we pass to the limit as n — oo and use (14), (19), (20) and the fact
that 2 < p, then

(Ap(y),h)zil(p)/g|y|1’*2yhdz forallh e Wol’p(Q),

= —Apy(z) = M(PIy@)IP2y(z) foralmostallz € Q, ylso =0,
=y = Edy(p) with £ % 0 (see (20)).

Recall that i1 (p) € int Cy, hence |y(z)| > 0 for all z € € and so
lup(z)| > +oo forallz € Q, asn — oo.

Hypothesis H (iii) implies that

i f @z, un(@)un(z) — pF(z, un(2))
1m sup

(O < —Bop <0 foralmostallz € Q. (21)
n—o00 un(z

By hypothesis H (iii) we see that we can find 81 € (0, o) and M > O such that

3 - F )
fz,x)x — pFG x) < —p1 foralmostall z € @2, all |x| > M.

lx|*
Then we have

1 s u u,—pF(z,u
/ Lf G ttn)itn — pF (2. un)ldz = / S tn)in = PE@ ) | ey
unll® Jo {|lun | >M) |t |”

1
+ ,/ Lf(z, un)uy
Hun I J <y
—pF(z,up)ldz.

Recalling that ||u, || — oo (see (14)), we see that

en|I*

/ [f(Z? Up)Uy — PF(Z, up)ldz — 0.
{lunl<M}
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On the other hand from (21), Fatou’s lemma and because y # 0 (see (20)), we infer
that

— pF(z.
lim sup/ Sz up)uy — pF(z, up) |yn|fdz <0,
n—>00 J{ju,|>M) |tnl”
= lim sup / [f(z,up)u, — pF(z,uy)]ldz <O. (22)
n—oo |lunll™ Jo

On the other hand from (11) we have
— pMy < 1Dyl + §||Dun||§ —/QpF(z,un)dz foralln e N.  (23)
Also in (13) we choose h = u, € W&’p(Q). We obtain
— €, < —||Dun||§ — ||Du,,||§ —I—/Qf(z, up)updz foralln € N. (24)
Adding (23) and (24) we have foralln € N

—M> < (5 = 1) 11Dunl} + / Lf (2 tndttn = pF (2, un)ldz,
Q

M Dy, ||? 1
S (2 - 1) [1Dynlly + /[f(z,un)un — pF(z, un)ldz,
unll® Ja

lunllT = \2 ot |72

M, @ 1 / Lf o )it — pf o un)ld (25)
— < ZyUp)Uy — pJ2,u <

Htnll™ ~ Nunll™=2 " Nunll® Jo e "

for some ¢ > 0, all n € N (since {Dy,},>1 C L2(2, RV) is bounded and 2 < p).
Passing to the limit as n — o0 in (25), using (14) and recalling that 7 > 2 (see
hypothesis H (iii)), we have

0 < liminf L / [f(z, up)u, — pF(z,u,)ldz. (26)
Q

n=>00 |[up|*®

Comparing (22) and (26), we reach a contradiction. This proves that
{n}n>1 € WP (R) is bounded.
So, we may assume that
Uy 5 win Wol’p(Q) and u, — uin LP(Q) asn — oo. 27
From (17) and (27) it is clear that

[N (n)}a>1 S LP () is bounded. (28)
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If in (13) we choose h = u,, —u € Wol’p(Q), pass to the limit as n — oo and use
(27), (28), then

nli)ngo [(Ap(un)’ Up — “) + (A(un), un — M)] =0,

= limsup [(Ap (), n — u) + (Au), up —u)] <0

(recall A is monotone, see Proposition3),

= lim sup (Ap(un), U, — u) <0,
n—0oo

= u, — uin Wol’p(Q) (see Proposition3),
= ¢ satisfies the C-condition.

The proof is now complete. O

In the sequel we assume that K, is finite or otherwise we already have an infinity
of solutions for problem (1), which belong to C(l)(Q) (see the proof of Theorem 7).
So, we are done.

Proposition 5 [f hypotheses H (i), (ii), (iii) hold, then C(p, 00) # 0.

Proof Recall that

Wy ?(Q) = Rity(p) ® V.

Claim 1 ¢|gg, (p) is anticoercive (that is, ¢(tii1(p)) — —o0 ast — £00).

It is clear from hypothesis H (iii) that we can always assume that T < p.
Hypothesis H (iii) implies that we can find 8; € (0, B9) and M3 > 0 such that

f(z,x)x — pF(z,x) < —pB1]x|* foralmostall z € , all |x| > Mj3. (29)
We have

d Fzx) _ f@x)x]? = plx[PxF(z,x)

dx |x|P |x 27
[z, x)x = pF(z,x)
N |x|Px
< _’BIW ifx > M; and > _ﬂllxll’;*fxifx < —Ms,
Fzx) F@y _ A [ L }
1 yl? T p—t Lixlpmt o ylpT
forall z € 2, all |x| > |y| > M;. (30)
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Note that hypothesis H (ii) implies that

pF(z,x)

= il( p) uniformly for almost all z € Q2. a3
x—Fo0 |x|l7

So, if in (30) we let |x| — 400 and use (31), then

I, F(z,
—Ai(p) — ) < - d — foralmostall z € Q, all |y| > M3
p Iy1? p—t ylrr
(recall T < p),
A
= Mlylp —F(z,y) < — b |y|® foralmostall z € 2, all |y| > Ms.
p p—T

(32)
Hypothesis H (i) and (32) imply that we can find ¢3 > 0 such that

B1

p—1

r(p)

Iy|? — F(z,y) < — |y|* +¢3 foralmostallz € , ally € R. (33)

Then we have

2

X
w(zﬁl(p»:/g[ ‘;”)w](p)w—F(z,zm<p)>]dz+%nDa](p)H%

T 2
Bltl* . _— .0
< e Nui(p)llz + 5 [1Duilly + c31Q2n (see(33)). (34)

Since T > 2 (see hypothesis H (iii)), from (34) we infer that

p@tuy(p)) —> —ocoast — Fo0,

= ¢|Rra, (p) 1s anticoercive.

This proves Claim 1.
Claim 2 ¢|y, is bounded below.

From (31) and hypothesis H (i), we see that givene > 0, wecanfindcs = ca(¢) > 0
such that

F(z,x) <

a(p) +
M) te |x|” + ¢4 foralmostall z € Q, all x € R. 35)
p

For u € V,, we have
Ir2 A
0w > [Ap) = Gap) + O | ] = cal@ly Gee® and (35)). (36)
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Choosing € € (0, A(p) — A1(p)) (see Proposition 1), from (36) we see that
@|v, is bounded below.

This proves Claim 2.

Recall that K, is finite or otherwise we already have infinitely many nontrivial
solutions for problem (1) and so we are done. Then Claims 1, 2 and Proposition 4,
permit the use of Proposition 6.63, p. 160, of Motreanu et al. [12] and have C (¢, 00) #
0.

Next we compute the critical group of ¢ at the origin.

Proposition 6 If hypotheses H (i), (iv) hold, then Ci (¢, 0) = &k 4,7 for all k € Ny
1 ~
withd; = dim @ E(A;i(2)).
i=1

Proof Consider the C2-functional 1/} : HOI(Q) — R defined by

. 1
V) = E||Du||§ —/ F(z,u)dz forallu € H} ().
Q

Lety = WW(}"’(Q) (recall 2 < p).
Claim 3 We have Cy (Y, 0) = 8k q,Z for all k € No.

Letng € ()ALZ 2), 5»1+1 (2)) and consider the C2-functional o : HOl (2) — R defined
by

1
o) = E||Du||§ — %Hung for all u € Hy (Q).

Evidently u = 0 is a nondegenerate critical point of o with Morse index d;. There-
fore
Ci(0,0) = 8¢ qZ forall k € Np. 37)

We consider the homotopy 4(¢, u) defined by
h(t,u) = (1 — )Y () +to(u) forall (t,u) € [0, 1] x HI(RQ).
Lettr € (0,1] and u € C&(ﬁ) with ||”||C(§(§) < & (here 5 > 0 is as pos-

tulated in hypothesis H(iv)). Let (-, )y denote the duality brackets for the pair
(H™(Q), Hj (Q)). We have

(ki (e 0, )y = (1 =0 (9, y>0 +ilo'u),y), forally e HJ(Q). (38)
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We consider the following orthogonal direct sum decomposition of the Hilbert

space HOl (R2):

- N - l A A -~
H}(Q) = H @ H; with H) = ®EGQ2), Hi= & EGi2).
1= +

1=
Then every v € HOl (£2) admits a unique sum decomposition as

V=104 0 withv € H and 9 € H,.

In (38) we choose y = &t — it € H& (€2). Exploiting the orthogonality of the

component spaces in the above decomposition, we have
(0. it — ) = |1Dal3 - || Dall} —/ f @)@ — idz.
Q

Note that hypothesis H (iv) implies that

f(z, x)

X

n(z) < < A41(2) foralmostall z € Q, all 0 < |x| < 6.

Lety = ii — i € HJ(S). Then

P -1 = Feuy = L&y

u
- M@ —i?) ifuy >0

n(2) (@2 — i?) if uy <0
< 1 Qi = ()i’

So, we have proved that

fzu@)@ —i)(z) < 5»1+1(2)12(z)2 —n(2)i(z)> foralmostallz € 2.

Using (40) in (39), we obtain

(0@ i — i) =Dl = i@l - [10al - L@ ials]
> 0 (see (5)).

Also we have

(o' wy. it = )y = 11Dall§ = nollal3 = [I1DaI = molll3

(39)

(40)

(41)

> ¢s||Du||? for some ¢s5 > 0 (recall that g € (A;(2), Ai+1(2))).

(42)
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Returning to (39) and using (41) and (42), we have
(h;(t, u),u — IZ)O > IC5||Du||2 > 0 (recall that ¢ € (0, 1]). 43)

We claim that 0 € K "

is false. Then we can find {u,},>1 C Hé (£2) such that

is isolated. Arguing by contradiction, suppose that the claim

up — 0in HY () and ¥/’ (u,) =0 foralln € N. (44)
From the equality in (44), we have
— Auy(2) = f(z,u,(z)) foralmostall z € 2, u,lgg =0 foralln e N (45)

Standard regularity theory (the Calderon—Zygmund estimates), implies that we can
find « € (0, 1) and M4 > O such that

Uy € Cy*(Q) and |luy| cleg S Ms foralln e N. (46)

Exploiting the compact embedding of Cé’a () into Cé (), from (44) and (46) we
have

Uy —>0inCé(§) asn — oo,

= N(@un(2)? < (@ un (@) (2) < A1 Q) (2)*
for almost all z € @, all n > ng (see hypothesis H (iv)). 47)

Relation (47) implies that

F (@ () i (2) — i1n(2)) < Ap1(itn (2)* = 1(2)itn (2)*
for almost all z € 2, all n > ny.

Multiplying (45) with (i1,, — it,)(z), integrating over 2 and using Green’s identity,
the orthogonality of the component spaces and (47), we have

A2 = 2
[[Dun|ly = [ Dunllz

= / (Duy, Di, — Diiy)pndz (since u, = iy + ity)
Q

= /Q f(Z, un)(izn — uy)dz (see(45))

< / 1 Q)i — n(@)i2dz
Q

= 0 < ||Diiy 13 — 1|0l < ||Dﬁn||%—/ n(2)irdz < —Eollity|)?
Q
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for some éo > 0 (see[17)]),
= i, =0and u, = i, € E(A+1(2)) forall n > ny.

The unique continuation property of the eigenspaces implies that
i, (z) #0 foralmostall z € Q.

Then
A1 )|unl13 = [|Duy )3 = / F(z, u)undz < A1 (2)||unll3 forall > no,
Q

since u, (z) # 0 for almost all z € €2, see hypothesis H (iv). This contradiction proves

that 0 € K " is isolated.

Since (0, ) = g@(-), using (43) we see that u = 0 is an isolated critical point of
h(t,-) forallt € [0, 1]. Invoking Theorem 5.2 of Corvellec and Hantoute [6], we have

Cr(¥,0) = Ci(0,0) forall k € No,
= Cr(,0) = 8.4 Z forall k € Ny (see (37)). (48)

Because Wol’p(Q) is dense in HO1 (€2), it follows that

Ck(lﬁ, 0) = Cx(r,0) forall k € Ny (see [3, p.14] and [14]),
= Cr(¥,0) = 6k,q,Z forall k € Ny (see (48)). (49)

This proves the Claim.
We have

lo@) — Y] < —[lull” (50)

o' (w) — ¥ (u), h
= [l¢" () — ¥ @]« < collul|P~". (51)

S | =

| < cellul|P~[|R]| for some c6 > O,

—_

From (50), (51) and the continuity of critical groups in the C'-topology (see Corvel-
lec and Hantoute [6, Theorem 5.1]), we have

Cr(p,0) = Cx(¥,0) forall k € N,
= Cr(9,0) =6, qZ forall k € Ny (see(49)s).

Now we are ready for the existence theorem.

Theorem 7 Assume that hypotheses H hold. Then problem (1) admits a nontrivial
solution ug € Cé (2).
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Proof From Proposition 5 we know that
Ci(p,00) #0.
So, we can find ug € Wol’p(Q) such that
ug € Ky, and Ci(g, ug) #0. (52)

Sincep € C 2(WO1 "P(Q)) from (52) and Papageorgiou and Ridulescu [15], it follows
that
Ci(@, up) = 817 forall k € No. (53)

From Proposition 6, we have
Ci(9,0) = 6k,qZ forall k € Ny. (54)

Comparing (53) and (54) we see that ug # 0 (recall [ > 2). Since ug € K, (see
(52)) it follows that u is a nontrivial solution of (1). Moreover, from Ladyzhenskaya
and Uraltseva [10, Theorem 7.1, p. 286], we have ug € L°°(2) and so we can apply
Theorem 1 of Lieberman [11] and conclude that ug € C} (). m]
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