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Abstract Westudy the Fermat–Torricelli problem in the framework of normed linear
spaces by using some ingredients of convex analysis and optimization. Several general
formulations of the Fermat–Torricelli problem are presented. Sufficient conditions for
the existence and uniqueness of the minimum point are formulated. Existence condi-
tions for theminimumpoint are related to reflexivity assumptions on the normed space.
Uniqueness conditions are related to strict convexity assumptions on the normed space.
In the second part of the paper we study the Fermat problem subject to constraints in
the plane and on the sphere.
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1 Introduction

Fermat challenged Torricelli with the following problem: “given three points in the
plane, find the minimizer of the sum of distances to these three points”. Torricelli found
several solutions of this problem. Theminimizer is a point called the Fermat–Torricelli
point.

In 1909,Weber formulated in [24] a generalization of Fermat’s problem in economic
terms, multiplying the distances by some scalars, which are the costs of the distances.
In Weber’s problem the costs for transportation net that connects a central point to
the branches of the manufacturing facilities were minimized. A great interest for the
Fermat–Torricelli problem appeared after Weber’s generalization was published. This
can be seen in the papers of Haikimi [12], Kuhn [17], Perreur and Thisse [22], Wendel
and Hurter [26] and Witzgall [28]. New results were obtained in the optimization
problems in the case of different parameters such as natural factors that include the
relief, natural resources, human or economic factors were taken into account.

The Fermat–Torricelli problem, as well as its generalizations, still draw the atten-
tion of many mathematicians as they are mathematically interesting and have a wide
range of applications including those connected to network optimization and wireless
communications.

Some of the reference books that contain surveys on the Fermat–Torricelli problem
are Boltyanski et al. [3], Drezner et al. [10], Rădulescu et al. [16] and Mordukhovich
and Nam [21].

In [25] Weiszfeld proposed an algorithm that approximates the minimum point for
the generalized Fermat problem for n given points. Martelli [19] and Sokolowski [23]
studied generalized methods to find the solution for the weighted Fermat–Weber prob-
lem. Klamroth [15] was concerned with the facility location problem with barriers.
Such barriers, as rivers, mountains or motorways are usually met in practice. In this
sense, there are presented structural results and also algorithms for this problem of
non-convex optimization, which depends on the distance function and the number and
the location of the passages on the barrier. Mordukhovich and Nam [20,21] developed
new applications of the variational analysis to the following optimization problem:
“given n closed subsets in a Banach space, find a point such that the sum of distances
to these subsets is minimum”.Mordukhovich andNam considered that the study of this
generalized problem is of great interest and has many applications in location theory
and in optimal networks. Several authors studied the facility location problem on a
sphere [2,8,13,29]. Drezner and Wesolowsky [8] formulated the following problem:
“given n points on a sphere, find a point such that the weighted sum of distances on
the geodesics to the n given points is minimum ”. They proposed some algorithms of
Weiszfeld type whose convergence to the global minimum is not proved.

The following papers studied the Fermat–Torricelli problem in normed linear
spaces: Alexandrescu [1], Durier and Michelot [9,11] and Vesely [27]. Durier and
Michelot in [9,11] studied geometric properties of the Fermat–Weber point in spaces
with scalar product, and Vesely studied generalized Chebyschev centers in [27].
Alexandrescu [1] studied the Fermat point problem for a system of n distinct points
in Hilbert spaces. The author established the existence and uniqueness of the solution
and the location of the Fermat point in the convex hull of the given n points. There are
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Facility location in normed linear spaces 1355

given closed form formulas for the Fermat point in the case of three and four distinct
points. Iterative methods for finding the Fermat point were developed.

In the paper of Brimberg and Love [5], the Fermat–Torricelli problem is generalized
replacing the sum of distances from the point x to the points a1, . . . , an in R

N with
the function

f (x) =
n∑

i=1

φi (‖x − ai‖), x ∈ R
N . (1)

The generalized Fermat–Torricelli problem consists in minimization of the function
(1). The results obtained in Brimberg and Love [5] are in the setting of RN with the
l p norm.

In the caseφi (t) ≡ wi t, i = 1, . . . , n the generalizedproblem is theWeber problem.
In the case when in (1) all functions φi are equal to the function φ(t) = 2 arcsin(t/2),
we obtain the Fermat–Torricelli problem on the unit sphere of a Hilbert space. In this
problem one considers the distance between two points x and y on the unit sphere to
be the geodesic length that connect the points. Thus

d(x, y) = φ(‖x − y‖) = 2 arcsin(‖x − y‖/2).
In the present paper we complement the results fromBrimberg and Love [5] by formu-
lating a more general Fermat–Torricelli problem in normed linear spaces of arbitrary
dimension and we obtain conditions for existence and uniqueness of the minimizer.
More precisely if A1, . . . , An ∈ L(E, F) are invertible operators we denote

di (x, y) = ‖Ai x − Ai y‖, x, y ∈ E, i = 1, . . . , n.

Let a1, . . . , an be points in F . We study the more general facility location problem,
that is to find the minimizer of the function:

f (x) =
n∑

i=1

ϕi (di (x, A
−1ai )), x ∈ E . (2)

This is an extension of the Fermat–Torricelli problem.We introduced the operators Ai ,
i = 1, . . . , n with the purpose of characterizing the anisotropy of the space. They lead
to an useful extension of the Fermat–Torricelli problem that generatemore generalized
structures of the space E .

In Sects. 3 and 4 is considered the Fermat–Torricelli problem with constraints on a
hyperplane and on a sphere of a Hilbert space. This issues are considered here for the
first time.

2 Existence of the minimum point

Let E , F be normed linear spaces, L(E, F) is the set of linear continuous operators
from E to F , ϕi : R+ → R, i = 1, 2, . . . , n, n ∈ N. We consider the distinct points
a1, a2, . . . , an ∈ F , Ai ∈ L(E, F), i = 1, . . . , n and f : E → R, given by
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1356 S. Rădulescu et al.

f (x) =
n∑

i=1

ϕi (‖Ai x − ai‖) . (3)

Our purpose is tofind conditions on the spaces E and F , on the functionsϕ1, ϕ2, . . . , ϕn

and on the operators Ai , i = 1, . . . , n such that the point of global minimum of the
function f exists. We also give conditions under which this point is unique. We start
with some preliminary results.

Lemma 2.1 Let ϕ : R+ → R be a convex, increasing function. Then ϕ is continuous.

Proof It is known that a convex function on an interval [a, b], where a < b, is
continuous on (a, b). As ϕ is increasing, ϕ(+0) exists. We prove that ϕ(0) = ϕ(+0).
Indeed, for every λ ∈ (0, 1) and for every x > 0 we have

ϕ(λx) = ϕ((1 − λ)0 + λx) ≤ (1 − λ)ϕ(0) + λϕ(x).

Letting x → 0+ we obtain

ϕ(+0) ≤ (1 − λ)ϕ(0) + λϕ(+0), ∀λ ∈ (0, 1).

Hence

(1 − λ)ϕ(+0) ≤ (1 − λ)ϕ(0).

Thus, ϕ(+0) ≤ ϕ(0). But ϕ is increasing, so ϕ(0) ≤ ϕ(+0). We deduce that ϕ(0) =
ϕ(+0). 	


Lemma 2.2 Let ϕ1, ϕ2, . . . , ϕn : R+ → R be real functions, Ai ∈ L(E, F), i =
1, 2, . . . , n, f : E → R be given by relation (3) with the properties:

(i) ϕi is increasing, i = 1, . . . , n;
(ii) for all j ∈ {1, . . . , n} there exists c j ∈ (0,∞) such that

‖A j x‖ ≥ c j‖x‖, ∀x ∈ E;

(iii) lim
t→∞

(
n∑

i=1

ϕi

)
(t) = ∞.

Then lim‖x‖→∞ f (x) = ∞.

Proof Let t0 = max1≤ j≤n ‖a j‖. For all x ∈ E with ‖x‖ ≥ t0
min c j

we have
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f (x) =
n∑

i=1

ϕi (‖Ai x − ai‖) ≥
n∑

i=1

ϕi (‖Ai x‖ − ‖ai‖)

≥
n∑

i=1

ϕi

(
min

1≤ j≤n
‖A j x‖ − max

1≤ j≤n
‖a j‖

)

=
n∑

i=1

ϕi

(
min

1≤ j≤n
‖A j x‖ − t0

)
≥

n∑

i=1

ϕi

((
min

1≤ j≤n
c j

)
· ‖x‖ − t0

)
.

This relation implies that lim‖x‖→∞ f (x) = ∞. 	

Lemma 2.3 Let ϕ1, ϕ2, . . . , ϕn : R+ → R be increasing functions, Ai ∈ L(E, F),

i ∈ {1, 2, . . . , n}. Suppose there exists k ∈ {1, 2, . . . , n} such that lim
t→∞ ϕk(t) = ∞

and Ak is invertible. Then:

lim‖x‖→∞ f (x) = ∞.

Proof Note that there exists a constant L > 0 such that ‖x‖ ≥ L implies:

f (x) =
n∑

i=1

ϕi (‖Ai x − ai‖) ≥
∑

i =k

ϕi (0) + ϕk(‖Akx − ak‖)

≥
∑

i =k

ϕi (0) + ϕk(‖Akx‖ − ‖ak‖).

As lim‖x‖→∞ ‖Akx‖ = ∞ results that lim‖x‖→∞ f (x) = ∞.

The next result is a strong reason why convex functions and reflexive spaces are so
important in optimization. 	

Theorem 2.1 Let E be a reflexive Banach space and let ϕi : R+ → R (i =
1, 2, . . . , n) be convex and increasing functions forwhich there exists k ∈ {1, 2, . . . , n}
such that limt→∞ ϕk(t) = ∞ and Ak is invertible. Then the function f defined by (3)
admits at least one minimum point.

Proof Let x0 ∈ E and define M = {x ∈ E | f (x) ≤ f (x0)}. Note that:
(i) M is closed, since f is continuous;
(ii) M is convex, since f is a sum of convex functions;
(iii) M is bounded, since lim‖x‖→∞ f (x) = ∞ (see Lemma 2.3).

Now, since M ⊂ E and E is a reflexive space, we deduce that M is weakly compact.
The continuity and convexity of f imply that f is weakly lower semicontinuous on
the weakly compact set M , hence f attains its minimum, which is also its global
minimum. 	
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1358 S. Rădulescu et al.

3 Uniqueness of the minimum point

We start with some auxiliary results that provide sufficient conditions for the strict
convexity of the function f defined by (3).

Definition 3.1 A norm is strictly convex if and only if ‖x + y‖ = ‖x‖ + ‖y‖ and
x = 0, y = 0 imply that there exists λ ≥ 0 such that y = λx .

Lemma 3.1 Let E and F be normed linear spaces such that the norm on F is strictly
convex, Ai ∈ L(E, F), i = 1, . . . , n, let ϕi : R+ → R(i = 1, 2, . . . , n) be convex
increasing functions, a1, a2, . . . , an ∈ F, and

f (x) =
n∑

i=1

ϕi (‖Ai x − ai‖), x ∈ E .

If there exists k ∈ {1, 2, . . . , n} such that ϕk is strictly increasing and strictly convex
and Ker Ak = {0}, then f is strictly convex.

Proof Note that f is continuous and convex since it is the sum of convex functions.
Suppose that f is not strictly convex. This implies that there are x, y ∈ E , x = y,
such that

2 f

(
x + y

2

)
= f (x) + f (y).

We have

2
n∑

i=1

ϕi

(∥∥∥∥Ai

(
x + y

2

)
− ai

∥∥∥∥

)
=

n∑

i=1

ϕi (‖Ai x − ai‖) +
n∑

i=1

ϕi (‖Ai y − ai‖),

which is equivalent to:

n∑

i=1

[
ϕi (‖Ai x − ai‖) + ϕi (‖Ai y − ai‖) − 2ϕi

(∥∥∥∥
Ai x − ai + Ai y − ai

2

∥∥∥∥

)]
= 0.

All the terms of the above sum are nonnegative, and ϕi are convex functions, for all
i ∈ {1, . . . , n}. Therefore

ϕi (‖Ai x − ai‖) + ϕi (‖Ai y − ai‖) = 2ϕi

(∥∥∥∥
Ai x − ai + Ai y − ai

2

∥∥∥∥

)
,

i = 1, . . . , n.

We have

2ϕk

(∥∥∥∥
Akx − ak + Ak y − ak

2

∥∥∥∥

)
≤ 2ϕk

(‖Akx − ak‖ + ‖Ak y − ak‖
2

)

≤ ϕk(‖Akx − ak‖) + ϕk(‖Ak y − ak‖) = 2ϕk

(∥∥∥∥
Akx − ak + Ak y − ak

2

∥∥∥∥

)
.
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Facility location in normed linear spaces 1359

We used here the fact that ϕk is increasing and convex.
Since ϕk is strictly increasing, and hence injective, it follows that

2
∥∥∥
Akx − ak + Ak y − ak

2

∥∥∥ = ‖Akx − ak‖ + ‖Ak y − ak‖.

Combining this relation with the fact that ϕk is strictly convex, we deduce that ‖Ak y−
ak‖ = ‖Akx − ak‖.

Denote Ak y − ak = u, Akx − ak = v. Since ‖u + v‖ = ‖u‖ + ‖v‖, ‖u‖ = ‖v‖
and ‖ · ‖ is a strictly convex norm, it follows that Ak y − ak = Akx − ak and hence
Akx = Ak y which implies that x = y as Ker Ak = {0}. This contradicts the fact that
f is not strictly convex. 	

Lemma 3.2 Let F be a strictly convex space, ϕi be convex, strictly increasing func-
tions, ∀i ∈ {1, . . . , n}, Ai be invertible operators, ∀i ∈ {1, . . . , n} and A−1

i ai ,
(i = 1, . . . , n) be noncolinear points. Then the function defined by relation (3) is
strictly convex.

Proof Suppose that f is not strictly convex. Then there exist x , y ∈ E , x = y such

that 2 f

(
x + y

2

)
= f (x) + f (y). This implies that there exists k ∈ {1, 2, . . . , n}

such that x, y, A−1
k ak are non-collinear.

From relation

0 = f (x) + f (y) − 2 f
( x + y

2

)

=
n∑

i=1

[
ϕi (‖Ai x − ai‖) + ϕi (‖Ai y − ai‖) − 2ϕi

(
‖Ai

x + y

2
− ai‖

)]
(4)

and ϕi convex, i = 1, 2, . . . , n, results that all the terms are nonnegative and hence
they are null. Therefore we further obtain that

2ϕi

(∥∥∥∥Ai
x + y

2
− ai

∥∥∥∥

)
= ϕi (‖Ai x − ai‖) + ϕi (‖Ai y − ai‖), ∀i = 1, . . . , n,(5)

but

2ϕi

(
‖Ai

x + y

2
− ai‖

)
= 2ϕi

(∥∥∥∥
Ai x − ai + Ai y − ai

2

∥∥∥∥

)

≤ 2ϕi
(‖Ai x − ai‖ + ‖Ai y − ai‖

2

)

≤ ϕi (‖Ai x − ai‖) + ϕi (‖Ai y − ai‖), ∀i = 1, . . . , n.

From relation (5) results that the first term is equal to the last one and hence all are
equal.
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1360 S. Rădulescu et al.

As ϕi is strictly increasing for i = 1, 2, . . . , n we obtain:

‖Ai x − ai + Ai y − ai‖ = ‖Ai x − ai‖ + ‖Ai y − ai‖, i = 1, 2, . . . , n.

From here and from the fact that F is strictly convex, results that the points 0, Akx −
ak, Ak y − ak are collinear, which is equivalent to ak, Akx, Ak y collinear, which is
further equivalent to A−1

k ak, x, y are collinear. This is a contradiction.
The following theorem establishes the existence and uniqueness of the minimum

of f . 	

Theorem 3.1 Let E be a reflexive Banach space, F be a strictly convex Banach
space and ϕi : R+ → R (i = 1, . . . , n) be increasing convex functions. Assume
that there exists k ∈ {1, . . . , n} such that ϕk is strictly increasing, strictly convex and
Ker Ak = {0}. Then f admits a point of global minimum and this is unique.

Proof The existence is proved in Sect. 2. In the following, we deal with the uniqueness
of the minimum point. Suppose that there exist two distinct points of global minimum,
say x1 and x2. Let

L = {x ∈ E | f (x) = f (x1)}.

Then x2 ∈ L and (x1 + x2)/2 ∈ L . Using the strict convexity of f we deduce that

f
( x1 + x2

2

)
<

f (x1) + f (x2)

2
= f (x1).

This relation contradicts the fact that x1 is a global minimum point . Therefore the
minimum of f is unique. 	


The following theorem establishes similar conditions, which ensure the existence
and uniqueness of the global minimum point for the function f .

Theorem 3.2 Let E be a reflexive Banach space, F be a strictly convex Banach space
and ϕi : R+ → R (i = 1, 2, . . . , n) be convex, strictly increasing functions. Suppose
that A−1

i ai ∈ E, i = 1, . . . , n, are non-collinear. Then there exists and is unique a
minimum point of f .

The proof of this theorem is similar to the proof of the theorem above.

Remark (i) The functions ϕi (t) = ci t pi , pi ∈ [1,∞), ci > 0 satisfy the conditions
in the above theorem.

(ii) The spaces L p(μ) with 1 < p < ∞ are reflexive and strictly convex.

Theorem 3.3 Let E be a Hilbert space, Ai ∈ L(E, E), i = 1, . . . , n, be linear
continuous and invertible operators with the property that for all i = 1, . . . , n there
exists βi > 0 such that A∗

i Ai = βi I, i ∈ {1, . . . , n}. Let the functions ϕi : R+ → R,
i ∈ {1, . . . , n} be differentiable on (0,∞) with ϕ′

i (t) > 0, ∀t ∈ (0,∞) and i ∈
{1, . . . , n} and a1, . . . , an ∈ E .
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If x is a global minimum point of the function

f (x) =
n∑

i=1

ϕi (‖Ai x − ai‖)

then x ∈ co(A−1
1 a1, A

−1
2 a2, . . . , A−1

n an).

Proof If x ∈ {A−1
1 a1, . . . , A−1

n an} then, obviously x ∈ co{A−1
1 a1, . . . , A−1

n an}.
We consider

∇ f (x) =
n∑

i=1

ϕ′
i (‖Ai x − ai‖) A

∗
i Ai x − A∗

i ai
‖Ai x − ai‖

for all x ∈ E \{A−1
1 a1, . . . , A−1

n an}.
If x ∈ E \{A−1

1 a1, . . . , A−1
n an} is the minimum point of f , then

∇ f (x) = 0.

Denote by αi = ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ , i ∈ {1, . . . , n}.

Notice that αi ∈ (0,∞), i = 1, . . . , n and

∇ f (x) =
n∑

i=1

αi (A
∗
i Ai x − A∗

i ai ) = 0

which is equivalent to

n∑

i=1

αi A
∗
i Ai x =

n∑

i=1

αi A
∗
i ai .

Taking into account that A∗
i Ai = βi I, i = 1, . . . , n, then the relation below becomes:

n∑

i=1

αiβi x =
n∑

i=1

αi A
∗
i ai

which is further equivalent to:

x
n∑

i=1

αiβi =
n∑

i=1

αiβi A
−1
i ai
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1362 S. Rădulescu et al.

where from we get

x =

n∑

i=1

αiβi A
−1
i ai

n∑

i=1

αiβi

that is x ∈ co(A−1
1 a1, . . . , A−1

n an). 	


4 Facility location problem with constraint in the hyperplane

4.1 Existence of the minimum

As so far, we present a qualitative property in the most general context. The following
result is a refined version of Corollary 3.23 in Brezis [4].

Theorem 4.1 Let E be a reflexive Banach space with dimE ≥ 2, ϕ1, . . . , ϕn : R+ →
R be convex, increasing functions with the property that there exists k ∈ {1, . . . , n}
such that limt→∞ ϕk(t) = ∞, Ak be invertible, η ∈ E ′, η = 0, d ∈ R. Consider the
set H = {x ∈ E |η(x) = d}. Then the following properties hold:

(i) lim‖x‖→∞ f (x) = ∞
(ii) there exists x ∈ H such that f (x) ≥ f (x), for all x ∈ H.

Proof Let x0 ∈ H . Since dimE ≥ 2 there exists y ∈ E\H such that y = 0 and
η(y) = 0. Then x0 + t y ∈ H for all t ∈ R and

lim
t→∞ ‖x0 + t y‖ = ∞.

We take into account that

lim‖x‖→∞,x∈H ‖Akx‖ = ∞.

Then, there exists L > 0 such that ‖x‖ ≥ L implies

f (x) =
n∑

i=1

ϕi (‖Ai x − ai‖) ≥
∑

i =k

ϕi (0) + ϕk(‖Akx‖ − ‖ak‖),

where from we get lim‖x‖→∞,x∈H f (x) = ∞.

(ii) We define the convex, closed and bounded set:

M = {x ∈ H | f (x) ≤ f (x0)}.
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Using (i) and the hypothesis that E is reflexive and f is continuous and convex, we
deduce that f is lower semicontinuous and hence weakly lower semicontinuous on
M , that is weakly compact. This implies that f attains its minimum on H . 	

Remark Let E be a Hilbert space. If c ∈ E with ‖c‖ = 1 and d ∈ R, we define the
following closed hyperplane

H = {x ∈ E |〈c, x〉 = d}. (6)

If a ∈ E, let πHa denote the projection of a on H . It follows that (see also Corollary
5.4 in Brezis [4])

πHa = a + (d − 〈c, a〉) · c.

Theorem 4.2 Let E beaHilbert space, a1, . . . , an ∈ E bedistinct points,ϕ1, . . . , ϕn :
R+ → R be convex, increasing and differentiable functions on (0,∞) and ϕ′

i (t) > 0,
for all t ∈ (0,∞), i ∈ {1, . . . , n}. Suppose that there exists k ∈ {1, . . . , n} such that
limt→∞ ϕk(t) = ∞. We consider Ai ∈ L(E, E) invertible and suppose that there
exists βi > 0, ∀i ∈ {1, . . . , n} such that A∗

i Ai = βi I , i ∈ {1, . . . , n}. If H is given
by relation (6) , then there exists x ∈ H such that f (x) ≥ f (x), for all x ∈ H and
x ∈ co(πH A−1

1 a1, . . . , πH A−1
n an).

Proof The existence of the minimum point results from Theorem 4.1. We define the
function:

F(x, λ) = f (x) − λ(〈c, x〉 − d), x ∈ E, λ ∈ R.

For x ∈ E \{A−1
1 a1, . . . , A−1

n an} and λ ∈ R, we have

∇x F(x, λ) =
n∑

i=1

ϕ′
i (‖Ai x − ai‖) · A∗

i Ai x − A∗
i ai

‖Ai x − ai‖ − λc.

Then ∇x F(x, λ) = 0. Hence we have

n∑

i=1

ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ · A∗

i Ai x =
n∑

i=1

ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ A∗

i ai + λc.

Multiplying the relation above by c we get:

n∑

i=1

ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ · 〈A∗

i Ai x, c〉 =
n∑

i=1

ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ · 〈c, A∗

i ai 〉 + λ.

We further obtain:

λ =
n∑

i=1

ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ 〈A∗

i Ai x − A∗
i ai , c〉,
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end hence

n∑

i=1

ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ · A∗

i Ai x =
n∑

i=1

ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ A∗

i ai

−
n∑

i=1

ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ 〈A∗

i ai − A∗
i Ai x, c〉 · c.

Denote by: αi = ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ , ∀i = 1, . . . , n.

We get:
∑n

i=1 αi A∗
i Ai x = ∑n

i=1 αi A∗
i ai − ∑n

i=1 αi 〈A∗
i ai − A∗

i Ai x, c〉 · c which
is equivalent to

n∑

i=1

αi A
∗
i Ai x =

n∑

i=1

αi A
∗
i ai −

〈
n∑

i=1

αi (A
∗
i ai − A∗

i Ai x), c

〉
· c.

Taking into account that A∗
i Ai = βi I, that is A∗

i = βi A
−1
i , i = 1, . . . , n, we obtain:

x =

n∑

i=1

αiβi A
−1
i ai −

〈
n∑

i=1

αiβi (A
−1
i ai − x), c

〉
· c

n∑

i=1

αiβi

=

n∑

i=1

αiβi A
−1
i ai −

n∑

i=1

αiβi 〈A−1
i ai − x, c〉 · c

n∑

i=1

αiβi

=

n∑

i=1

αiβi

(
A−1
i ai − 〈A−1

i ai − x, c〉
)

· c
n∑

i=1

αiβi

=

n∑

i=1

αiβi

(
A−1
i ai + 〈c, x − A−1

i ai 〉
)

· c
n∑

i=1

αiβi
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=

n∑

i=1

αiβi

[
A−1
i ai + (d − 〈A−1

i ai , c〉) · c
]

n∑

i=1

αiβi

=

n∑

i=1

αiβiπH A−1
i ai

n∑

i=1

αiβi

.

This representation of x shows that if x ∈ E\{A−1
1 a1, . . . , A−1

n an}, then x ∈
co(πH A−1

1 a1, . . . , πH A−1
n an), this means that the existence of a minimum point

x implies that x belongs to the convex hull of the projections on the hyperplane
H . If x ∈ {A−1

1 a1, . . . , A−1
n an}, we suppose that x = A−1

k ak, ak ∈ H . As
A−1
k ak = πH A−1

k ak, implies that x ∈ co(πH A−1
1 a1, . . . , πH A−1

n an). 	


5 Conditions on the existence of the minimum point on the sphere

In this section we establish sufficient conditions for the existence of the minimum
point on the unit sphere.

Theorem 5.1 Let E be a reflexive Banach space, a1, . . . , an ∈ E be distinct points
and ϕi : R+ → R be convex and increasing functions (i = 1, 2, . . . , n). If x̃ is a
global minimum point for the function f defined by (3) and ‖x̃‖ ≥ 1, then f attains
its minimum on S = {x ∈ E |‖x‖ = 1}.
Proof The existence of x̃ results from Theorem 2.1. Indeed, if ‖x̃‖ = 1 then x̃ ∈ S.
Suppose that ‖x̃‖ > 1. The set B = {x ∈ E | ‖x‖ ≤ 1} is convex, closed and bounded
in the space E and hence it is weakly compact. Next, since f is continuous and convex,
it follows that f is weakly lower semicontinuous onweakly compact sets and therefore
it attains its minimum in B. Let x ∈ B be the minimum point of f on B. We consider
the function

u(t) = f ((1 − t )̃x + t x), t ∈ [0, 1],

where x̃ is the point of global minimum of f on E and x is the minimum point of f
on B.

Let x∗ be the intersection of the segment [x, x̃] with the sphere S. Therefore there
exists t0 ∈ [0, 1] such that x∗ = (1 − t )̃x + t0x . We notice that u(t0) = f (x∗).

Note that the convexity of f implies that u is convex and u(t) ≥ u(0) = f (x) for
all t ∈ [0, 1], which implies that u is increasing. Thus, u(0) ≤ u(t0) ≤ u(1), which
implies

f (̃x) ≤ f (x∗) ≤ f (x) ≤ f (x∗).

We further conclude that f (x∗) = f (x), that is, f attains its minimum on S at x∗ ∈ S.
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5.1 Facility location problem subject to constraint on the sphere

If E is a normed space, we denote by S = {x ∈ E |‖x‖ = 1}. For x ∈ E and x = 0,

we define the projection of x on the sphere S by πSx = x

‖x‖ .

Theorem 5.2 Let E be a Hilbert space, ai ∈ E, i = 1, . . . , n be distinct points,
ϕi : R+ → R be convex, continuous and differentiable functions on (0,∞) with
ϕ′
i (t) > 0 on (0,∞), for all i = 1, . . . , n, Ai ∈ L(E, E) be linear, continuous and

invertible operators, i = 1, . . . , n, with the following properties:

(1) 〈A−1
i ai , A

−1
j a j 〉 > 0, ∀i, j ∈ {1, . . . n};

(2) for all i = 1, . . . , n, there exists βi > 0 such that A∗
i Ai = βi I , where I is the

unit operator. If x ∈ S has the property that

f (x) ≤ f (x), ∀x ∈ S,

then

x ∈ πSco
(
A−1
1 a1, . . . , A

−1
n an

)
.

Proof Consider the auxiliary function

F(x, λ) = f (x) − λ(‖x‖2 − 1), x ∈ E, λ ∈ R . (7)

Then

∇x F(x, λ) =
n∑

i=1

ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ (A∗

i Ai x − A∗
i ai ) − 2λx,

x ∈ E\{A−1
1 a1, . . . , A

−1
n an}, λ ∈ R.

If x ∈ S\{A−1
1 a1, . . . , A−1

n an}, then there exists λ ∈ R such that

∇x F(x, λ) = 0,

which is further equivalent to

n∑

i=1

ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ (A∗

i Ai x − A∗
i ai ) − 2λx = 0. (8)

Multiplying relation (8) by x we obtain

n∑

i=1

ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖

(
βi − 〈A−1

i aiβi , x〉
)

= 2λ. (9)

123

Author's personal copy



Facility location in normed linear spaces 1367

We denote by αi = ϕ′
i (‖Ai x − ai‖)
‖Ai x − ai‖ , i = 1, . . . , n. Then we have:

n∑

i=1

αiβi

(
1 − 〈A−1

i ai , x〉
)

= 2λ

and hence we have

x =

n∑

i=1

αiβi A
−1
i ai

n∑

i=1

αiβi − 2λ

=

n∑

i=1

αiβi A
−1
i ai

n∑

i=1

αiβi 〈A−1
i ai , x〉

. (10)

Equation (10) is equivalent to:

x ·
n∑

i=1

αiβi 〈A−1
i ai , x〉 =

n∑

i=1

αiβi A
−1
i ai . (11)

Multiplying Eq. (11) by α jβ j A
−1
j a j and summing after j we obtain:

n∑

i, j=1

αiβi 〈A−1
i ai , x〉α jβ j 〈A−1

j a j , x〉 =
n∑

i, j=1

αiβiα jβ j 〈A−1
i ai , A

−1
j a j 〉. (12)

We have:

(
n∑

i=1

αiβi 〈A−1
i ai , x〉

)2

=
∥∥∥∥∥

n∑

i=1

αiβi A
−1
i ai

∥∥∥∥∥

2

,

wherefrom we deduce that :
〈
x,

n∑

i=1

αiβi A
−1
i ai

〉
= ε

∥∥∥∥∥

n∑

i=1

αiβi A
−1
i ai

∥∥∥∥∥ , ε ∈ {−1, 1}. (13)

From Eq. (13) and taking into account that
∥∥∥
∑n

i=1 αiβi A
−1
i ai

∥∥∥
2 = ∑n

i, j=1 αiβiα jβ j

〈A−1
i ai , A

−1
j a j 〉 > 0 results that:

x =
ε

n∑

i=1

αiβi A
−1
i ai

∥∥∥∥∥

n∑

i=1

αiβi A
−1
i ai

∥∥∥∥∥

.
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Let u =
∑n

i=1 αiβi A
−1
i ai∥∥∥

∑n
i=1 αiβi A

−1
i ai

∥∥∥
. This means that x = εu.

We prove that

‖u − A−1
i ai‖ ≤ ‖ − u − A−1

i ai‖, ∀i ∈ {1, . . . , n}. (14)

We square relation (14) and we obtain:

‖u‖2 − 2
〈
u, A−1

i ai
〉
+ ‖A−1

i ai‖2 ≤ ‖u‖2 + 2
〈
u, A−1

i ai
〉
+ ‖A−1

i ai‖2

which is further equivalent to:

〈
u, A−1

i ai
〉
≥ 0, i ∈ {1, . . . , n}.

The functions ϕi are increasing and hence

ϕi

(
‖u − A−1

i ai‖
)

≤ ϕi

(
‖ − u − A−1

i ai‖
)

, i = 1, . . . , n.

From here results that f (u) ≤ f (−u), but x ∈ {−u, u}, therefore we have:

x =

n∑

i=1

αiβi A
−1
i ai

∥∥∥∥∥

n∑

i=1

αiβi A
−1
i ai

∥∥∥∥∥

.

This shows that x is the projection on the sphere of the point belonging to

co
{
A−1
1 a1, . . . A−1

n an
}

. If x ∈
{
A−1
1 a1, . . . , A−1

n an
}

, then x = A−1
k ak, which

implies that x = πS A
−1
k ak and hence we have x ∈ πSco

{
A−1
1 a1, . . . , A−1

n an
}

.

The proof is now complete. 	
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